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Livro do Silberschatz Operating System Concepts
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Threads

A thread is a lightweight process (LWP)

It comprises:

A program counter,

A register set,

A stack.

It shares with other threads belonging to the same
process:

Its code section,

Data section,

Open files, etc.

A traditional process (heavyweight) has a single thread

of control.
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Single and Multithreaded Processes
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The Stack
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Remote Procedure Call Using Threads - 1
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Remote Procedure Call Using Threads - 2
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Remote Procedure Call Using Threads - 3
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Benef́ıcios da Utilização de Threads

Responsiveness allow a program to continue running even if

part of it is blocked or performing a lengthy

operation.

Resource Sharing code, data and files are shared.

Economy allocation of memory and other resources are

costly. In Solaris 2 creating a process is 30 times

slower than is creating a thread, and context

switching is about five times slower.

Utilization of MP Architectures a single threaded process can

only run in one CPU. Multithreading allow each

thread to run on a different processor.
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User Threads

Thread management done by user-level threads library

Fast to create and manage.

Examples

POSIX Pthreads

Mach C-threads

Solaris threads
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Relationship between user level threads states and

process states

Process PB is executing in its thread t2. The application

executing in t2 makes a system call that blocks B. For

example, an IO call is made. This causes control to transfer

to the kernel. The kernel invokes the IO action, places PB in

the blocked state and switches to another process.

Fabio Kawaoka Takase, Newton Maruyama PMR5230 Sistemas Computacionais para Automação



Relationship between user level threads states and

process states

Meanwhile, according to the data structure maintained by the

threads library, t2 of PB is still in the running state. It is

important to note that t2 is not actually running in the sense

of being executed, but it is perceived as being in the running

state by the threads library.
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Relationship between user level threads states and

process states

Process PB is executing in its thread t2.

A clock interrupt passes control to the

kernel and the kernel determines that

the currently running process PB has ex-

hausted its time slice. The kernel places

PB in the ready state and switches to an-

other process. Meanwhile, t2 of PB is

still in the running state.
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Relationship between user level threads states and

process states

Process PB is executing in its thread t2.

t2 has reached a point where it needs

some action performed by thread 1 of

process B. t2 enters a blocked state and

thread 1 transitions from ready to run-

ning. The process itself remains in the

running state.
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Kernel Threads

Supported by the Kernel

Examples

Windows 95/98/NT/2000

Solaris

Tru64 UNIX

BeOS

Linux
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Multithreading Models

Many-to-One

One-to-One

Many-to-Many
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Many-to-One

Many user-level threads mapped to single kernel thread.

Only one thread can access the kernel at a time.

Entire process is blocked if a thread makes a blocking

system call

Used on systems that do not support kernel threads.
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Many-to-One
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One-to-One

Each user-level thread maps to kernel thread.

Provides more concurrency than the many-to-one model

by allowing another thread to run when a thread makes a

system call.

Allows multiple threads to run in parallel on

multiprocessors.

The drawback of this model is that creating a user thread

requires creating the corresponding kernel thread and

this creates an important overhead.

Examples

Windows 95/98/NT/2000

OS/2
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One-to-One

Fabio Kawaoka Takase, Newton Maruyama PMR5230 Sistemas Computacionais para Automação



Many-to-Many

Allows many user level threads to be mapped to many

kernel threads.

Developers can create as many user threads as necessary

and the corresponding kernel thread can run in parallel

on a multiprocessor.

When a thread performs a blocking system call, the

kernel can schedule another thread execution.

Solaris 2, IRIX, HP-UX
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Many-to-Many
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Threading Issues

Semantics of fork() and exec() system calls.

Thread cancellation.

Signal handling

Thread pools

Thread specific data
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The Fork and Exec System calls

In a multithreaded program the semantics of the fork

and exec system calls change.

If one thread in a program calls fork, does the new

process duplicate all threads or is the new process single

threaded ?

Some UNIX systems have chosen to have two versions of

fork, one that duplicates all threads and another that

duplicates only the thread that invoked the fork system

call.
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The Fork and Exec System calls

If exec is called immediately after forking then

duplicating all threads are unnecessary as the program

specified will replace the entire process. Duplicating only

the calling thread is appropriate.

If the separate process does not call exec after forking

the separate process will duplicate all threads.
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Thread Cancellation

Thread cancellation is the task of terminating a thread

before it is completed.

For exemple, if multiple threads are concurrently

searching through a database and one thread returns the

result, the remaining threads might be cancelled.

Another situation might occur when a user presses a

button on a web browser that stops a web page from

loading any further. Often a web page is loaded in a

separate thread.

A thread that is to be cancelled is called target thread.
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Thread Cancellation

Cancellation may occur in two different scenarios:

Asynchronous cancellation one thread immediately

terminates the target thread.

Deferred cancellation the target thread can periodically

check if it should terminate, allowing the

target thread to terminate in an orderly

fashion.

The difficulty with cancellation arise in situations where

resources have been allocated to a cancelled thread or if

a thread was cancelled while in the middle of updating

data it is sharing with other threads.

Specially during an asynchronous cancellation a

necessary system wide resource might not be released.
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Signal Handling

A signal is used to notify a process that a particular

event has occured.

A signal may be received either synchronously or

asynchronously.

All signals follow the same pattern:
1 A signal is generated by the occurence of a particular

event.
2 A generated signal is delivered to a process.
3 Once delivered, the signal must be handled.

In a single threaded program signals are always

delivered to a process.

In multithreaded programs a process may have several

threads, where then should the signal be delivered ?

Fabio Kawaoka Takase, Newton Maruyama PMR5230 Sistemas Computacionais para Automação



Signal Handling

The following options exist:

Deliver the signal to the thread to which the signal

applies.

Deliver the signal to every thread in the process.

Deliver the signal to certain threads in the process.

Assign a specific thread to receive all signals for the

process. (SOLARIS 2)

Windows 2000 does not support explicitly for signals,

but it can be emulated using Asynchronous Procedure

Calls (APC).
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Thread Pools

If we allow all concurrent requests to be serviced in a

new thread systems resources can be exhausted.

One possible solution is the creation of thread pools.

The idea behind a thread pools is to create a number of

threads at process startup and place them into a pool

where they sit and wait for work.

When a server receives a request, it awakes a thread

from this pool passing it the request to service.

Once the thread completes its service it returns to the

pool.

If the pool contains no available thread, the server waits

until one becomes free.
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Thread-Specific Data

Threads belonging to a process share the data of the

process.

However, each thread might need its own copy of certain

data in some circumstances, this is called thread

specific data.

For example, in a transaction processing system we

might service each transaction in a separate thread.
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Pthreads

a POSIX standard (IEEE 1003.1c) Application

Programming Interface API for thread creation and

synchronization.

API specifies behavior of the thread library,

implementation is up to development of the library.

Common in UNIX operating systems.
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Solaris 2 Threads
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Windows 2000 Threads

Implements the one-to-one mapping.

Each thread contains

a thread id

register set

separate user and kernel stacks

private data storage area
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Linux Threads

Linux refers to them as tasks rather than threads.

Thread creation is done through clone() system call.

clone() allows a child task to share the address space of

the parent task (process)
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Java Threads

Java threads may be created by:

Extending Thread class

Implementing the Runnable interface

Java threads are managed by the JVM.
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Java Thread States
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Java Threads

1 class Somatoria extends Thread{

2 private int limite;

3 public Somatoria(int n){ limite = n; }

4 public void run(){

5 int somatoria = 0;

6 for (int i=1;i<=limite;i++) somatoria +=i;

7 System.out.println("Somatoria = "+ somatoria);

8 }

9 }

10

11 public class TesteSomatoria{

12 public static void main(String[] args){

13 Somatoria threadSomatoria = new Somatoria(10);

14 threadSomatoria.start();

15 }

16 }
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Escalonamento de CPU

Basic Concepts

Scheduling Criteria

Scheduling Algorithms

Multiple-Processor Scheduling

Real-Time Scheduling

Algorithm Evaluation
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Basic Concepts

Maximum CPU utilization obtained with

multiprogramming

CPU-I/O Burst Cycle - Process execution consists of a

cycle of CPU execution and I/O wait.

CPU burst distribution

An I/O bound program typically have many very short

CPU bursts.

A CPU bound program might have a few very long CPU

bursts.

”To burst into or out of a place means to enter or leave it

suddenly with a lot of energy or force”

(Collins CoBuild)
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Alternating Sequence of CPU And I/O Bursts
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Histogram of CPU-burst Times
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CPU Scheduler

Information associated with each process.

Selects from among the processes in memory that are

ready to execute, and allocates the CPU to one of them.

CPU scheduling decisions may take place when a
process:

1 Switches from running to waiting state (for example, due

to an I/O request).
2 Switches from running to ready state (For example, when

an interrupt occurs).
3 Switches from waiting to ready (For example, due to a

completion of I/O).
4 Terminates.

Scheduling under 1 and 4 is nonpreemptive.

All other scheduling is preemptive.
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Dispatcher

Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

switching context

switching to user mode

jumping to the proper location in the user program to

restart that program

Dispatch latency - time it takes for the dispatcher to

stop one process and start another running.
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Scheduling Criteria

CPU utilization keep the CPU as busy as possible

Throughput # of processes that complete their execution per

time unit

Turnaround time amount of time to execute a particular

process, i.e. time spent waiting to get into

memory + waiting in the ready queue, executing

on the CPU and doing I/O.

Waiting time amount of time a process has been waiting in

the ready queue

Response time amount of time it takes from when a request

was submitted until the first response is

produced, not output (for time-sharing

environment)
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Optimization Criteria

Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

Arrival order: P1 , P2 , P3 Gantt Chart:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

Arrival order: P2 , P3 , P1 Gantt Chart:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case.

Convoy effect short process behind long process
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Shortest-Job-First (SJR) Scheduling

Associate with each process the length of its next CPU

burst. Use these lengths to schedule the process with

the shortest time.

Two schemes:

nonpreemptive once CPU given to the process it cannot

be preempted until completes its CPU burst.

preemptive if a new process arrives with CPU burst

length less than remaining time of current

executing process, preempt. This scheme is

know as the Shortest-Remaining-Time-First

(SRTF).

SJF is optimal - gives minimum average waiting time for a

given set of processes.
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Example of Non-Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4
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Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 = 3
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Determining Length of Next CPU Burst

Can only estimate the length.

Can be done by using the length of previous CPU bursts,

using exponential averaging.

τn+1 = α · tn + (1−α) · τn

where

tn = actual lenght of nth CPU Burst

τn+1 = predicted value for the next CPU Burst

0 ≤ α ≤ 1
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Prediction of the Length of the Next CPU Burst

Fabio Kawaoka Takase, Newton Maruyama PMR5230 Sistemas Computacionais para Automação



Examples of Exponential Averaging

α = 0

τn+1 = τn

recent history does not count.

α = 1

τn+1 = tn

Only the actual last CPU burst counts.

If we expand the formula, we get:

τn+1 = αtn + (1−α)αtn−1 + ...

(1−α)jαtn−j + ...

(1−α)n−1αtnτ0

Since both α and (1−α) are less than or equal to 1, each

successive term has less weight than its predecessor.
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Priority Scheduling

A priority number (integer) is associated with each

process

The CPU is allocated to the process with the highest
priority (smallest integer = highest priority).

Preemptive

nonpreemptive

SJF is a priority scheduling where priority is the predicted

next CPU burst time.

Problem = Starvation - low priority processes may never

execute.

Solution = Aging - as time progresses increase the

priority of the process.
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Round Robin (RR)

Each process gets a small unit of CPU time (time

quantum), usually 10-100 milliseconds. After this time

has elapsed, the process is preempted and added to the

end of the ready queue.

If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU

time in chunks of at most q time units at once. No

process waits more than (n− 1)q time units.

Performance

q large ⇒ FIFO

q small ⇒ q must be large with respect to context

switch, otherwise overhead is too high.
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Example of RR with Time Quantum = 20

Process Burst Time

P1 53

P2 17

P3 68

P4 24

The Gantt Chart for the schedule is:

Typically, higher average turnaround than SJF, but better

response.
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Time Quantum and Context Switch Time
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Turnaround Time Varies With The Time Quantum
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Multilevel Queue

Ready queue is partitioned into separate queues:

foreground (interactive)

background (batch)

Each queue has its own scheduling algorithm,

foreground - RR

background - FCFS

Scheduling must be done between the queues.

Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
Time slice - each queue gets a certain amount of CPU
time which it can schedule amongst its processes; i.e.,

80% to foreground in RR

20% to background in FCFS
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Multilevel Queue Scheduling
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Multilevel Feedback Queue

A process can move between the various queues; aging

can be implemented this way.

Multilevel-feedback-queue scheduler defined by the
following parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will

enter when that process needs service
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Example of Multilevel Feedback Queue

Three queues:

Q0 - time quantum 8 milliseconds

Q1 - time quantum 16 milliseconds

Q2 - FCFS

Scheduling

A new job enters queue Q0 which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not

finish in 8 milliseconds, job is moved to queue Q1.

At Q1 job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted

and moved to queue Q2.
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Multilevel Feedback Queues
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Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are

available.

Homogeneous processors within a multiprocessor.

Load sharing

Asymmetric multiprocessing - only one processor

accesses the system data structures, alleviating the need

for data sharing.
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Real-Time Scheduling

Hard real-time systems required to complete a critical task

within a guaranteed amount of time.

Resource Reservation

Hardware support

Soft real-time computing - requires that critical processes

receive priority over less fortunate ones.
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Dispatch Latency

Must be small

Disable process aging

System Calls

Preemption points on long duration systems call (safe

points)

Preemptible kernel

Priority Inversion

Priority Inheritance protocol
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Dispatch Latency
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Scheduling Algorithm Evaluation

Deterministic modeling - takes a particular

predetermined workload and defines the performance of

each algorithm for that workload.

Queueing models

Aproximate/estimated arrivals and service distributions

Simulation

Implementation
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Evaluation of CPU Schedulers by Simulation
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Solaris 2 Scheduling
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Windows 2000 Priorities
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