

Chapter 2 Review Questions

1. The Web: HTTP; file transfer: FTP; remote login: Telnet; Network News: NNTP;

e-mail: SMTP.

2. Network architecture refers to the organization of the communication process into

layers (e.g., the five-layer Internet architecture). Application architecture, on the

other hand, is designed by an application developer and dictates the broad

structure of the application (e.g., client-server or P2P)

3. The process which initiates the communication is the client; the process that waits

to be contacted is the server.

4. No. As stated in the text, all communication sessions have a client side and a

server side. In a P2P file-sharing application, the peer that is receiving a file is

typically the client and the peer that is sending the file is typically the server.

5. The IP address of the destination host and the port number of the destination

socket.

6. You would use UDP. With UDP, the transaction can be completed in one

roundtrip time (RTT) - the client sends the transaction request into a UDP socket,

and the server sends the reply back to the client's UDP socket. With TCP, a

minimum of two RTTs are needed - one to set-up the TCP connection, and

another for the client to send the request, and for the server to send back the reply.

7. There are no good examples of an application that requires no data loss and

timing. If you know of one, send an e-mail to the authors.

8. a) Reliable data transfer

TCP provides a reliable byte-stream between client and server but UDP does

not.

 b) A guarantee that a certain value for throughput will be maintained

 Neither

 c) A guarantee that data will be delivered within a specified amount of time

 Neither

 d) Security

 Neither

9. SSL operates at the application layer. The SSL socket takes unencrypted data from

the application layer, encrypts it and then passes it to the TCP socket. If the

application developer wants TCP to be enhanced with SSL, she has to include the

SSL code in the application.

10. A protocol uses handshaking if the two communicating entities first exchange

control packets before sending data to each other. SMTP uses handshaking at the

application layer whereas HTTP does not.

11. The applications associated with those protocols require that all application data

be received in the correct order and without gaps. TCP provides this service

whereas UDP does not.

12. When the user first visits the site, the site returns a cookie number. This cookie

number is stored on the user’s host and is managed by the browser. During each

subsequent visit (and purchase), the browser sends the cookie number back to the

site. Thus the site knows when this user (more precisely, this browser) is visiting

the site.

13. Web caching can bring the desired content “closer” to the user, perhaps to the

same LAN to which the user’s host is connected. Web caching can reduce the

delay for all objects, even objects that are not cached, since caching reduces the

traffic on links.

 14. Issued the following command (in Windows command prompt) followed by the

HTTP GET message to the “utopia.poly.edu” web server:

 > telnet utopia.poly.edu 80

Since the index.html page in this web server was not modified since Fri, 18 May

2007 09:23:34 GMT, the following output was displayed when the above

commands were issued on Sat, 19 May 2007. Note that the first 4 lines are the

GET message and header lines input by the user and the next 4 lines (starting

from HTTP/1.1 304 Not Modified) is the response from the web server.

15. FTP uses two parallel TCP connections, one connection for sending control

information (such as a request to transfer a file) and another connection for

actually transferring the file. Because the control information is not sent over the

same connection that the file is sent over, FTP sends control information out of

band.

16. Message is sent from Alice’s host to her mail server over HTTP. Alice’s mail

server then sends the message to Bob’s mail server over SMTP. Bob then

transfers the message from his mail server to his host over POP3.

17.

Received:

from 65.54.246.203 (EHLO bay0-omc3-s3.bay0.hotmail.com)

(65.54.246.203) by mta419.mail.mud.yahoo.com with SMTP; Sat, 19

May 2007 16:53:51 -0700

Received:

from hotmail.com ([65.55.135.106]) by bay0-omc3-s3.bay0.hotmail.com

with Microsoft SMTPSVC(6.0.3790.2668); Sat, 19 May 2007 16:52:42 -

0700

Received:
from mail pickup service by hotmail.com with Microsoft SMTPSVC; Sat,

19 May 2007 16:52:41 -0700

Message-ID: <BAY130-F26D9E35BF59E0D18A819AFB9310@phx.gbl>

Received:
from 65.55.135.123 by by130fd.bay130.hotmail.msn.com with HTTP;

Sat, 19 May 2007 23:52:36 GMT

From: "prithula dhungel" <prithuladhungel@hotmail.com>

To: prithula@yahoo.com

Bcc:

Subject: Test mail

Date: Sat, 19 May 2007 23:52:36 +0000

Mime-Version:1.0

Content-Type: Text/html; format=flowed

Return-Path: prithuladhungel@hotmail.com

Figure: A sample mail message header

Received: This header field indicates the sequence in which the SMTP servers

send and receive the mail message including the respective timestamps.

In this example there are 4 “Received:” header lines. This means the mail

message passed through 5 different SMTP servers before being delivered to the

receiver’s mail box. The last (forth) “Received:” header indicates the mail

message flow from the SMTP server of the sender to the second SMTP server in

the chain of servers. The sender’s SMTP server is at address 65.55.135.123 and

the second SMTP server in the chain is by130fd.bay130.hotmail.msn.com.

The third “Received:” header indicates the mail message flow from the second

SMTP server in the chain to the third server, and so on.

Finally, the first “Received:” header indicates the flow of the mail message from

the forth SMTP server to the last SMTP server (i.e. the receiver’s mail server) in

the chain.

Message-id: The message has been given this number BAY130-

F26D9E35BF59E0D18A819AFB9310@phx.gbl (by bay0-omc3-

s3.bay0.hotmail.com. Message-id is a unique string assigned by the mail system

when the message is first created.

From: This indicates the email address of the sender of the mail. In the given

example, the sender is “prithuladhungel@hotmail.com”

To: This field indicates the email address of the receiver of the mail. In the

example, the receiver is “prithula@yahoo.com”

Subject: This gives the subject of the mail (if any specified by the sender). In the

example, the subject specified by the sender is “Test mail”

Date: The date and time when the mail was sent by the sender. In the example,

the sender sent the mail on 19
th

 May 2007, at time 23:52:36 GMT.

Mime-version: MIME version used for the mail. In the example, it is 1.0.

Content-type: The type of content in the body of the mail message. In the

example, it is “text/html”.

Return-Path: This specifies the email address to which the mail will be sent if the

receiver of this mail wants to reply to the sender. This is also used by the sender’s

mail server for bouncing back undeliverable mail messages of mailer-daemon

error messages. In the example, the return path is

“prithuladhungel@hotmail.com”.

18. With download and delete, after a user retrieves its messages from a POP server,

the messages are deleted. This poses a problem for the nomadic user, who may

want to access the messages from many different machines (office PC, home PC,

etc.). In the download and keep configuration, messages are not deleted after the

user retrieves the messages. This can also be inconvenient, as each time the user

retrieves the stored messages from a new machine, all of non-deleted messages

will be transferred to the new machine (including very old messages).

19. Yes an organization’s mail server and Web server can have the same alias for a

host name. The MX record is used to map the mail server’s host name to its IP

address.

20. It is not necessary that Bob will also provide chunks to Alice. Alice has to be in

the top 4 neighbors of Bob for Bob to send out chunks to her; this might not occur

even if Alice is provides chunks to Bob throughout a 30-second interval.

21. Alice will get her first chunk as a result of she being selected by one of her

neighbors as a result of an “optimistic unchoke,” for sending out chunks to her.

22. The overlay network in a P2P file sharing system consists of the nodes

participating in the file sharing system and the logical links between the nodes.

There is a logical link (an “edge” in graph theory terms) from node A to node B if

there is a semi-permanent TCP connection between A and B. An overlay network

does not include routers. With Gnutella, when a node wants to join the Gnutella

network, it first discovers (“out of band”) the IP address of one or more nodes

already in the network. It then sends join messages to these nodes. When the node

receives confirmations, it becomes a member of the of Gnutella network. Nodes

maintain their logical links with periodic refresh messages.

23. It is a hybrid of client server and P2P architectures:

a) There is a centralized component (the index) like in the case of a client

server system.

b) Other functions (except the indexing) do not use any kind of central

server. This is similar to what exists in a P2P system.

24. Mesh DHT: The advantage is to a route a message to the peer closest to the key,

only one hop is required; the disadvantage is that each peer must track all other

peers in the in the DHT. Circular DHT: the advantage is that each peer needs to

track only a few other peers; the disadvantage is that O(N) hops are needed to

route a message to a peer responsible for the key.

25. a) User location

 b) NAT traversal

26. a) File Distribution

 b) Instant Messaging

 c) Video Streaming

 d) Distributed Computing

27. With the UDP server, there is no welcoming socket, and all data from different

clients enters the server through this one socket. With the TCP server, there is a

welcoming socket, and each time a client initiates a connection to the server, a

new socket is created. Thus, to support n simultaneous connections, the server

would need n+1 sockets.

28. For the TCP application, as soon as the client is executed, it attempts to initiate a

TCP connection with the server. If the TCP server is not running, then the client

will fail to make a connection. For the UDP application, the client does not

initiate connections (or attempt to communicate with the UDP server)

immediately upon execution

Chapter 2 Problems

Problem 1

a) F

b) T

c) F

d) F

e) F

Problem 2

Access control commands:

USER, PASS, ACT, CWD, CDUP, SMNT, REIN, QUIT.

Transfer parameter commands:

PORT, PASV, TYPE STRU, MODE.

Service commands:
RETR, STOR, STOU, APPE, ALLO, REST, RNFR, RNTO, ABOR, DELE,
RMD, MRD, PWD, LIST, NLST, SITE, SYST, STAT, HELP, NOOP.

Problem 3

Application layer protocols: DNS and HTTP

Transport layer protocols: UDP for DNS; TCP for HTTP

Problem 4

a) The document request was http://gaia.cs.umass.edu/cs453/index.html. The Host : field

indicates the server's name and /cs453/index.html indicates the file name.

b) The browser is running HTTP version 1.1, as indicated just before the first <cr><lf>

pair.

c) The browser is requesting a persistent connection, as indicated by the Connection:

keep-alive.

d) This is a trick question. This information is not contained in an HTTP message

anywhere. So there is no way to tell this from looking at the exchange of HTTP messages

alone. One would need information from the IP datagrams (that carried the TCP segment

that carried the HTTP GET request) to answer this question.

e) Mozilla/5.0. The browser type information is needed by the server to send different

versions of the same object to different types of browsers.

Problem 5

a) The status code of 200 and the phrase OK indicate that the server was able to locate the

document successfully. The reply was provided on Tuesday, 07 Mar 2008 12:39:45

Greenwich Mean Time.

b) The document index.html was last modified on Saturday 10 Dec 2005 18:27:46 GMT.

c) There are 3874 bytes in the document being returned.

d) The first five bytes of the returned document are : <!doc. The server agreed to a

persistent connection, as indicated by the Connection: Keep-Alive field

Problem 6

a) Persistent connections are discussed in section 8 of RFC 2616 (the real goal of

this question was to get you to retrieve and read an RFC). Sections 8.1.2 and

8.1.2.1 of the RFC indicate that either the client or the server can indicate to the

other that it is going to close the persistent connection. It does so by including the

including the connection-token "close" in the Connection-header field of the http

request/reply.

b) HTTP does not provide any encryption services.

c) (From RFC 2616) “Clients that use persistent connections should limit the

number of simultaneous connections that they maintain to a given server. A

single-user client SHOULD NOT maintain more than 2 connections with any

server or proxy.”

d) Yes. (From RFC 2616) “A client might have started to send a new request at the

same time that the server has decided to close the "idle" connection. From the

server's point of view, the connection is being closed while it was idle, but from

the client's point of view, a request is in progress.”

Problem 7

The total amount of time to get the IP address is

nRTTRTTRTT ��� �21 .

Once the IP address is known, elapses to set up the TCP connection and another

 elapses to request and receive the small object. The total response time is

ORTT

ORTT

no RTTRTTRTTRTT ���� �212

Problem 8

a)

oon RTTRTTRTTRTT 2821 ������

 no RTTRTTRTT ��� �118 .

b)

oon RTTRTTRTTRTT 2221 ������

 no RTTRTTRTT ��� �16

c) oon RTTRTTRTTRTT ���� 21 �

 no RTTRTTRTT ��� �13 .

Problem 9

a) The time to transmit an object of size L over a link or rate R is L/R. The average time

is the average size of the object divided by R:

'= (850,000 bits)/(15,000,000 bits/sec) = .0567 sec

The traffic intensity on the link is given by E'=(16 requests/sec)(.0567 sec/request) =

0.907. Thus, the average access delay is (.0567 sec)/(1 - .907) | .6 seconds. The total

average response time is therefore .6 sec + 3 sec = 3.6 sec.

b) The traffic intensity on the access link is reduced by 60% since the 60% of the

requests are satisfied within the institutional network. Thus the average access delay

is (.0567 sec)/[1 – (.4)(.907)] = .089 seconds. The response time is approximately

zero if the request is satisfied by the cache (which happens with probability .6); the

average response time is .089 sec + 3 sec = 3.089 sec for cache misses (which

happens 40% of the time). So the average response time is (.6)(0 sec) + (.4)(3.089

sec) = 1.24 seconds. Thus the average response time is reduced from 3.6 sec to 1.24

sec.

Problem 10

Note that each downloaded object can be completely put into one data packet. Let Tp

denote the one-way propagation delay between the client and the server.

First consider parallel downloads via non-persistent connections. Parallel download

would allow 10 connections share the 150 bits/sec bandwidth, thus each gets just 15

bits/sec. Thus, the total time needed to receive all objects is given by:

 (200/150+Tp + 200/150 +Tp + 200/150+Tp + 100,000/150+ Tp)

+ (200/(150/10)+Tp + 200/(150/10) +Tp + 200/(150/10)+Tp + 100,000/(150/10)+ Tp)

= 7377 + 8*Tp (seconds)

Then consider persistent HTTP connection. The total time needed is give by:

(200/150+Tp + 200/150 +Tp + 200/150+Tp + 100,000/150+ Tp)

+ 10*(200/150+Tp + 100,000/150+ Tp)

=7351 + 24*Tp (seconds)

Assume the speed of light is 300*10
6
 m/sec, then Tp=10/(300*10

6
)=0.03 microsec. Tp is

negligible compared with transmission delay.

Thus, we see that the persistent HTTP does not have significant gain (less than 1 percent)

over the non-persistent case with parallel download.

Problem 11
a). Yes, because Bob has more connections, so he can proportionally get more aggregate

bandwidth share out of the total link bandwidth.

b) Yes, Bob still needs to perform parallel download, otherwise he will get less

bandwidth share than other four users. In fact, all users might tend to open more

connections in order to gain more bandwidth share.

Problem 12

TCPServer.java

import java.io.*;

import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception

 {

 String clientSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient = new BufferedReader(new

 InputStreamReader(connectionSocket.getInputStream()));

 clientSentence = inFromClient.readLine();

 System.out.println(“RECEIVED FROM CLIENT : ” +

 clientSentence + “\n”);

 }

 }

}

Problem 13

The MAIL FROM: in SMTP is a message from the SMTP client that identifies the sender

of the mail message to the SMTP server. The From: on the mail message itself is NOT an

SMTP message, but rather is just a line in the body of the mail message.

Problem 14

SMTP uses a line containing only a period to mark the end of a message body.

HTTP uses “Content-Length header field” to indicate the length of a message body.

No, HTTP cannot use the method used by SMTP, because HTTP message could be

binary data, whereas in SMTP, the message body must be in 7-bit ASCII format.

Problem 15

MTA stands for Mail Transfer Agents. A mail is forwarded by a source to a MTA and

then it follows a sequence of MTAs to reach the receiver’s mail reader.

We see that this spam email follows a chain of MTAs. An honest MTA should report

where it receives the message. Notice that in this email, “asusus-4b96

([58.88.21.177])” does not report where it receives the email. As we assume that the

only the originator is dishonest, so “ asusus-4b96 ([58.88.21.177])” must be the

originator.

Problem 16

UIDL abbreviates “unique-ID listing”. When a POP3 client issues the UIDL command,

the server responds with the unique message ID for all of the messages present in the

users mailbox. This command is useful for “download and keep”. By keeping a file that

lists the messages retrieved in earlier sessions, the client can use the UIDL command to

determine which messages on the server have already been seen.

Problem 17

a) C: dele 1

 C: retr 2

 S: (blah blah …

 S: ………..blah)

 S: .
 C: dele 2

 C: quit

 S: +OK POP3 server signing off

b) C: retr 2

 S: blah blah …

 S: ………..blah

 S: .
 C: quit

 S: +OK POP3 server signing off

c) C: list

S: 1 498

S: 2 912

S: .
C: retr 1

S: blah …..

S: ….blah

S: .
 C: retr 2

 S: blah blah …

 S: ………..blah

 S: .
 C: quit

 S: +OK POP3 server signing off

Problem 18

a) For a given input of domain name (such as ccn.com), IP address or network

administrator name, whois database can be used to locate the corresponding registrar,

whois server, DNS server, and so on.

b) NS4.YAHOO.COM from www.register.com; NS1.MSFT.NET from ww.register.com

c) Local Domain: www.mindspring.com
 Web servers : www.mindspring.com

 207.69.189.21, 207.69.189.22,

 207.69.189.23, 207.69.189.24,

 207.69.189.25, 207.69.189.26, 207.69.189.27,

 207.69.189.28

 Mail Servers : mx1.mindspring.com (207.69.189.217)

 mx2.mindspring.com (207.69.189.218)

 mx3.mindspring.com (207.69.189.219)

 mx4.mindspring.com (207.69.189.220)

 Name Servers: itchy.earthlink.net (207.69.188.196)

 scratchy.earthlink.net (207.69.188.197)

 www.yahoo.com
 Web Servers: www.yahoo.com (216.109.112.135, 66.94.234.13)

 Mail Servers: a.mx.mail.yahoo.com (209.191.118.103)

 b.mx.mail.yahoo.com (66.196.97.250)

 c.mx.mail.yahoo.com (68.142.237.182, 216.39.53.3)

 d.mx.mail.yahoo.com (216.39.53.2)

 e.mx.mail.yahoo.com (216.39.53.1)

 f.mx.mail.yahoo.com (209.191.88.247, 68.142.202.247)

 g.mx.mail.yahoo.com (209.191.88.239, 206.190.53.191)

 Name Servers: ns1.yahoo.com (66.218.71.63)

 ns2.yahoo.com (68.142.255.16)

 ns3.yahoo.com (217.12.4.104)

 ns4.yahoo.com (68.142.196.63)

 ns5.yahoo.com (216.109.116.17)

 ns8.yahoo.com (202.165.104.22)

 ns9.yahoo.com (202.160.176.146)

 www.hotmail.com

 Web Servers: www.hotmail.com (64.4.33.7, 64.4.32.7)

 Mail Servers: mx1.hotmail.com (65.54.245.8, 65.54.244.8, 65.54.244.136)

 mx2.hotmail.com (65.54.244.40, 65.54.244.168, 65.54.245.40)

 mx3.hotmail.com (65.54.244.72, 65.54.244.200, 65.54.245.72)

 mx4.hotmail.com (65.54.244.232, 65.54.245.104, 65.54.244.104)

 Name Servers: ns1.msft.net (207.68.160.190)

 ns2.msft.net (65.54.240.126)

 ns3.msft.net (213.199.161.77)

 ns4.msft.net (207.46.66.126)

 ns5.msft.net (65.55.238.126)

d) The yahoo web server has multiple IP addresses

 www.yahoo.com (216.109.112.135, 66.94.234.13)

e) The address range for Polytechnic University: 128.238.0.0 – 128.238.255.255

f) An attacker can use the whois database and nslookup tool to determine the IP address

ranges, DNS server addresses, etc., for the target institution.

g) By analyzing the source address of attack packets, the victim can use whois to obtain

information about domain from which the attack is coming and possibly inform the

administrators of the origin domain.

Problem 19

a)

The following delegation chain is used for gaia.cs.umass.edu

a.root-servers.net

E.GTLD-SERVERS.NET

ns1.umass.edu(authoritative)

First command:

dig +norecurse @a.root-servers.net any gaia.cs.umass.edu

;; AUTHORITY SECTION:

edu. 172800 IN NS E.GTLD-SERVERS.NET.

edu. 172800 IN NS A.GTLD-SERVERS.NET.

edu. 172800 IN NS G3.NSTLD.COM.

edu. 172800 IN NS D.GTLD-SERVERS.NET.

edu. 172800 IN NS H3.NSTLD.COM.

edu. 172800 IN NS L3.NSTLD.COM.

edu. 172800 IN NS M3.NSTLD.COM.

edu. 172800 IN NS C.GTLD-SERVERS.NET.

Among all returned edu DNS servers, we send a query to the first one.

dig +norecurse @E.GTLD-SERVERS.NET any gaia.cs.umass.edu

umass.edu. 172800 IN NS ns1.umass.edu.

umass.edu. 172800 IN NS ns2.umass.edu.

umass.edu. 172800 IN NS ns3.umass.edu.

Among all three returned authoritative DNS servers, we send a query to the first one.

dig +norecurse @ns1.umass.edu any gaia.cs.umass.edu

gaia.cs.umass.edu. 21600 IN A 128.119.245.12

b) The answer for google.com could be:

a.root-servers.net

E.GTLD-SERVERS.NET

ns1.google.com(authoritative)

Problem 20

We can periodically take a snapshot of the DNS caches in those local DNS servers. The

Web server that appears most frequently in the DNS caches is the most popular server.

This is because if more users are interested in a Web server, then DNS requests for that

server are more frequently sent by users. Thus, that Web server will appear in the DNS

caches more frequently.

For a complete measurement study, see:

Craig E. Wills, Mikhail Mikhailov, Hao Shang

“Inferring Relative Popularity of Internet Applications by Actively Querying DNS

Caches”, in IMC'03, October 27-29, 2003, Miami Beach, Florida, USA

Problem 21

Yes, we can use dig to query that Web site in the local DNS server.

For example, “dig cnn.com” will return the query time for finding cnn.com. If cnn.com is

just accessed a couple of seconds ago, an entry for cnn.com is cached in the local DNS

cache, so the query time is 0 msec. Otherwise, the query time is large.

Problem 22

For calculating the minimum distribution time for client-server distribution, we use the

following formula:

 Dcs = max {NF/us, F/dmin}
Similarly, for calculating the minimum distribution time for P2P distribution, we use the

following formula:

)}u , NF/(u, F/dmax{F/uD
N

1i

isminsPP ¦

� 2

Where, F = 15 Gbits = 15 * 1024 Mbits

 us = 30 Mbps

 dmin = di = 2 Mbps

Note, 300Kbps = 300/1024 Mbps.

Client Server

N
10 100 1000

300 Kbps 7680 51200 512000

700 Kbps 7680 51200 512000

u

2 Mbps 7680 51200 512000

Peer to Peer

N
10 100 1000

300 Kbps 7680 25904 47559

700 Kbps 7680 15616 21525

u

2 Mbps 7680 7680 7680

Problem 23

a) Consider a distribution scheme in which the server sends the file to each client, in

parallel, at a rate of a rate of us/N. Note that this rate is less than each of the client’s

download rate, since by assumption us/N � dmin. Thus each client can also receive at rate

us/N. Since each client receives at rate us/N, the time for each client to receive the entire

file is F/(us/N) = NF/ us. Since all the clients receive the file in NF/ us, the overall

distribution time is also NF/ us.

b) Consider a distribution scheme in which the server sends the file to each client, in

parallel, at a rate of dmin. Note that the aggregate rate, N dmin, is less than the server’s link

rate us, since by assumption us/N � dmin. Since each client receives at rate dmin, the time

for each client to receive the entire file is F/ dmin. Since all the clients receive the file in

this time, the overall distribution time is also F/ dmin.

c) From Section 2.6 we know that

DCS � max {NF/us, F/dmin} (Equation 1)

Suppose that us/N � dmin. Then from Equation 1 we have DCS � NF/us . But from (a) we

have DCS � NF/us . Combining these two gives:

DCS = NF/us when us/N � dmin. (Equation 2)

We can similarly show that:

DCS =F/dmin when us/N � dmin (Equation 3).

Combining Equation 2 and Equation 3 gives the desired result.

Problem 24

a) Define u = u1 + u2 + ….. + uN. By assumption

 us <= (us + u)/N Equation 1

Divide the file into N parts, with the i
th

 part having size (ui/u)F. The server transmits

the i
th

 part to peer i at rate ri = (ui/u)us. Note that r1 + r2 + ….. + rN = us, so that the

aggregate server rate does not exceed the link rate of the server. Also have each peer i

forward the bits it receives to each of the N-1 peers at rate ri. The aggregate

forwarding rate by peer i is (N-1)ri. We have

 (N-1)ri = (N-1)(usui)/u <= ui,

where the last inequality follows from Equation 1. Thus the aggregate forwarding rate

of peer i is less than its link rate ui.

In this distribution scheme, peer i receives bits at an aggregate rate of

 sj

ij

i urr �¦
�!

Thus each peer receives the file in F/us.

b) Again define u = u1 + u2 + ….. + uN. By assumption

 us >= (us + u)/N Equation 2

Let ri = ui/(N-1) and

 rN+1 = (us – u/(N-1))/N

In this distribution scheme, the file is broken into N+1 parts. The server sends bits

from the i
th

 part to the i
th

 peer (i = 1, …., N) at rate ri. Each peer i forwards the bits

arriving at rate ri to each of the other N-1 peers. Additionally, the server sends bits

from the (N+1)
 st

 part at rate rN+1 to each of the N peers. The peers do not forward the

bits from the (N+1)
st
 part.

The aggregate send rate of the server is

r1+ …. + rN + N rN+1 = u/(N-1) + us – u/(N-1) = us

Thus, the server’s send rate does not exceed its link rate. The aggregate send rate of

peer i is

(N-1)ri = ui

Thus, each peer’s send rate does not exceed its link rate.

In this distribution scheme, peer i receives bits at an aggregate rate of

 NuuNNuuNujrrr ss
ij

Ni /)(/))1/(()1/(1 � ���� ¦��
�!

�

Thus each peer receives the file in NF/(us+u).

(For simplicity, we neglected to specify the size of the file part for i = 1, …., N+1. We

now provide that here. Let û = (us+u)/N be the distribution time. For i = 1, …, N, the i
th

file part is Fi = ri û bits. The (N+1)
st
 file part is FN+1 = rN+1 û bits. It is straightforward to

show that F1+ ….. + FN+1 = F.)

c) The solution to this part is similar to that of 17 (c). We know from section 2.6 that

 u)}, NF/(umax{F/uD ssPP �! 2

Combining this with (a) and (b) gives the desired result.

Problem 25

There are N nodes in the overlay network. There are N(N-1)/2 edges.

Problem 26

Yes. His first claim is possible, as long as there are enough peers staying in the swarm for

a long enough time. Bob can always receive data through optimistic unchoking by other

peers.

His second claim is also true. He can run a client on each machine, and let each client do

“free-riding”, and combine those collected chunks from different machines into a single

file. He can even write a small scheduling program to let different machines only asking

for different chunks of the file. This is actually a kind of Sybil attack in P2P networks.

Problem 27

a).

Note that we assume nb>=na.

),(

),(

b

aba

nNC

nnnNC ��
, where C(N, n) is the notation for combination, which means the

number of ways of choosing n out of N.

b). p(na)=
),(

),(11

b

aba
N

nn nNC

nnnNC

N
ab

��
¦
�

.

c). prob=
5

1

0

))(
1

(1 a

N

n

np
N

a

¦
�

� .

For a complete analysis, see:

Donyu Qiu and R. Srikant.

Modeling and Performance Analsysis of BitTorrent-Like Peer-to-Peer Networks.

ACM Sigcomm 2004, Portland, Oregon, USA

Problem 28
Peer 3 learns that peer 5 has just left the system, so Peer 3 asks its first successor (peer 4)

for the identifier of its immediate successor (peer 8). Then peer 3 will make peer 8 as its

second successor.

Note that peer 3 knows that peer 5 was originally the first successor of peer 4, so peer 3

would wait until peer 4 finishes updating its first successor.

Problem 29

Peer 6 would first send peer 15 a message, saying “what will be peer 6’s predecessor and

successor?” This message gets forwarded through the DHT until it reaches peer 5, who

realizes that it will be 6’s predecessor and that its current successor, peer 8, will become

6’s successor. Next, peer 5 sends this predecessor and successor information back to 6.

Peer 6 can now join the DHT by making peer 8 its successor and by notifying peer 5 that

it should change its immediate successor to 6.

Problem 30

a).

Our assumption about keys and queries:

1. All keys are uniformly at random distributed in the key range, and all 8 peers are

responsible for the same number of queries on average.

2. The queries generated by a peer are for keys uniformly at random distributed in

the key range. That is, the query for any key is generated with the same

probability.

Because of the homogeneity of peers and queries, we know that all peers will choose a

shortcut peer with the same number of overlay hops away.

We also assume that by default, a peer node only knows about its immediate successor

peer and its immediate predecessor node. (Unlike the case where a peer must know its

second immediate successor in order to deal with peer churn).

We further assume that a peer can forward query to its predecessor.

And if there are multiple routing paths exist for a query, a peer always chooses the

shortest path.

Note the number of messages sent for a query for a key is equal to the number of routing
hops needed from the query generating peer to the peer that is holding the key.

Note that in our description, a routing hop is different from an overlay hop. An overlay

hop simply means a logical hop between two adjacent peers along the DHT overlay ring.

But a routing hop can span multiple overlay hops (or multiple consecutive adjacent peers)

if shortcut is allowed.

Thus, minimizing the number of messages sent for any query (starting from any peer) is

equivalent to minimizing the average or total number of routing hops traversed from one

peer to all other peers.

Without loss of generality, lets look at peer 0.

To solve this problem, we look at all possibilities: a node shortcuts to a peer two overlay

hops away in DHT id ring; or three overlay hops away; or four overlay hops away, so on.

We can find that the best configuration is for a peer to choose a shortcut peer with 4
overlay hops away. “Best” in the sense that the average number of messages per query

(or the total number of routing hops for all queries for all keys in the key space) is

minimized. The computation is shown in the following table. Each column (except the

last column) shows the number of messages needed for routing a query within a range.

We see that the total number of messages needed is 11 when every peer shortcuts to

another peer with 4 overlay hops (i.e., span 4 consecutive adjacent peers) away.

Queries for keys in

range

(0,8] (8,16] (16,24] (24,32] (32,40] (40,48] (48,56] (56,0] Total

messages

2 1 1 2 2 3 3 1 0 13

3 1 2 1 2 3 2 1 0 12

4 1 2 2 1 2 2 1 0 11

5 Same as 3 hops away 12

Number of

overlay

hops away

for

shortcutting 6 Same as 2 hops away 13

Note, if there are multiple routing paths exist for a query, we choose the shortest path’s length as the

number of needed messages.

So for example, for the case where a peer shortcuts to another peer 4 overlay hops away, and if peer 0’s

query is for a key in range (48,56], then the shortest path is 0Æ56, only one routing hop (i.e., one message).

b).

Follow the same reasoning as in part a).

We can find that the best configuration is for a peer to choose two shortcut peers with 3
and 6 overlay hops away, or two shortcut peers with 5 and 6 overlay hops away.

Queries for keys

in range

(0,8] (8,16] (16,24] (24,32] (32,40] (40,48] (48,

56]

(56,

0]

Total

messages

Num. of overlay

hops away

Nbr 1 Nbr 2

2 3 1 1 1 2 2 2 1 0 10

2 4 1 1 2 2 2 1 1 0 10

2 5 1 1 1 2 2 2 1 0 10

2 6 1 1 1 2 2 2 1 0 10

3 4 1 2 1 1 1 2 1 0 9

3 5 1 2 1 1 1 2 1 0 9

3 6 1 1 1 2 1 1 1 0 8
4 5 Same as nbr 1, nbr 2 with 3 and 4 hops away respectively 9

4 6 1 1 2 1 2 1 1 0 9

5 6 Same as nbr 1, nbr 2 with 3 and 6 hops away respectively 8

Problem 31

For each key, we first calculate the distances (according to d(k,p)) between itself and all

peers, and then store this key into the peer that is closed to this key (with smallest

distance value).

Then, as in circular DHT described in textbook, we arrange those peers in a ring. In this

ring, there are many clusters of keys, and each cluster is centered at a particular peer.

Each key in a peer’s cluster is closer to this peer than to all other peers. Some of the keys

in this cluster can be larger than this peer’s ID. Note that a peer is responsible for the

keys in its cluster, instead of being responsible for only keys that are preceding it (i.e,

keys have smaller value than the ID of this peer) in the key range.

Each peer keeps a routing table of n lists of entries. Each entry contains the information

of one other peer. These lists are arranged sequentially, and the k-th (1<=k<=n) list

contains peers with IDs that differ from that of this peer in k-th significant bit but match

with all k-1 bits more significant than k, including the most significant bit, the second

most significant bit, so on, until the (k-1)-th most significant bit. Note here we use

longest-prefix matching. Also note that with this arrangement, it is possible that half of

the IDs in the ID range can be put into the first list.

If i>j, then a peer in i-th list is closer to this node than a peer in j-th list.

The query routing can be done as follows. A peer first tries to match the bits of the key

with its own ID’s bits, and finds the “right” list in its routing table, and then forwards the

query to any one entry in the list. A “right” list is a list that has the longest prefix

matching with the target key. Once a peer receives the target key, it also checks its

routing table, and forwards the search query to a peer in the “right” list, so on, so forth,

until a peer that is responsible for the key is located, or returns “no such key” if no further

routing is possible.

Problem 32

This is a generalized Kademlia DHT, and also similar to Pastry’s prefix-matching DHT.

The DHT based on binary numbers generates more messages, log2N in the worst case.

This new DHT generates logbN messages in the worst case.

Problem 33

Yes, that assignment scheme of keys to peers does not consider underlying network at all,

so it very likely causes mismatch.

The mismatch may potentially degrade the search performance. For example, consider a

logical path p1 (consisting of only two logical links): AÆBÆC, where A and B are

neighboring peers, and B and C are neighboring peers. Suppose that there is another

logical path p2 from A to B (consisting of 3 logical links): AÆDÆEÆC.

It might be the case that A and B could be very far away physically, and B and C could

be very far away physically. But A, D, E, and C are very close physically. In other words,

a shorter logical path corresponds to a longer physical path than does a longer logical

path.

Problem 34

a) If you run TCPClient first, then the client will attempt to make a TCP connection with

a non-existent server process. A TCP connection will not be made.

b) UDPClient doesn't establish a TCP connection with the server. Thus, everything

should work fine if you first run UDPClient, then run UDPServer, and then type some

input into the keyboard.

c) If you use different port numbers, then the client will attempt to establish a TCP

connection with the wrong process or a non-existent process. Errors will occur.

Problem 35

With the original line, UDPClient does not specify a port number when it creates the

socket. In this case, the code lets the underlying operating system choose a port number.

With the replacement line, when UDPClient is executed, a UDP socket is created with

port number 5432 .

UDPServer needs to know the client port number so that it can send packets back to the

correct client socket. Glancing at UDPServer, we see that the client port number is not

“hard-wired” into the server code; instead, UDPServer determines the client port number

by unraveling the datagram it receives from the client (using the .getPort() method). Thus

UDP server will work with any client port number, including 5432. UDPServer therefore

does not need to be modified.

Before:

Client socket = x (chosen by OS)

Server socket = 9876

After:

Client socket = 5432

