

ESCOLA POLITÉCNICA DA UNIVERSIDADE SÃO PAULO

Programa de Graduação em Engenharia da Computação

PCS3858 - Laboratório de Sistemas Embarcados

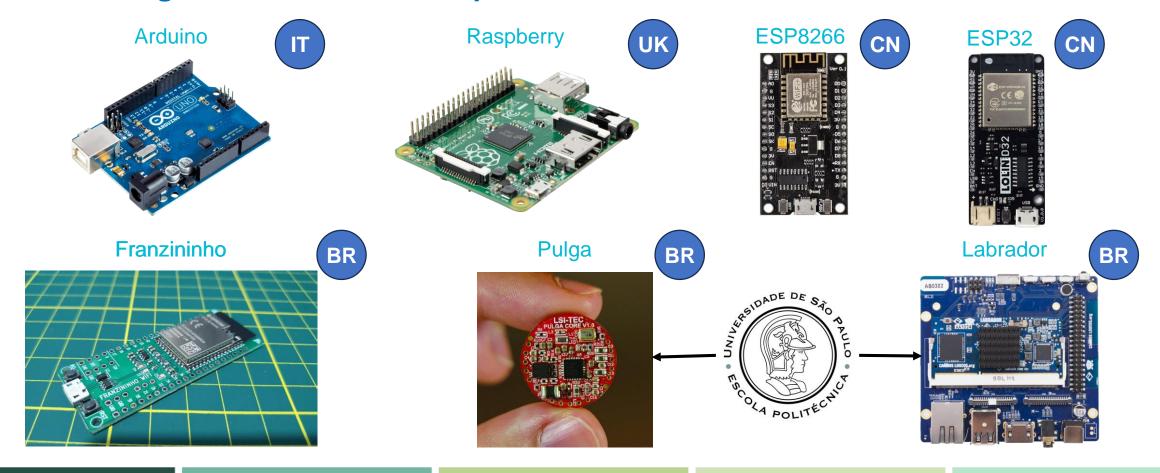
Título – Da Teoria à Prática

José Sinézio Rebello de Faria Prof. Dr. Carlos Eduardo Cugnasca

Data: 01/09/2023

Agenda

- Introdução
- Justificativa e Motivação
- Objetivo
- Concepção do Sistema de Monitoramento de Árvores (SMA)
- Experimentos e Resultados
- Simulador/Plataforma de teste
- Documentação e Componentes


Introdução (1/8)

Sistemas Embarcados

- Um sistema embarcado (Embedded System) é um sistema computacional, conjunto de hardware e software, completamente encapsulado, dedicado ao dispositivo ou sistema que ele controla, de forma a desempenhar uma função ou servir a uma aplicação específica.
- Os sistemas embarcados são encontrados em diferentes aplicações como: Sistemas de controle de motor em automóveis, Dispositivos médicos, Eletrodomésticos, Sistemas de segurança, Dispositivos de comunicação, Urnas eletrônicas, entre outros.

Introdução (2/8)

Algumas alternativas de plataformas de Sistemas Embarcados

Introdução (3/8)

ESP32

- Microcontrolador.
- Plataforma de desenvolvimento.
- Internet das coisa (IoT).
- Robótica.
- Automação.
- Estação meteorológica...

Site da espressif: https://www.espressif.com/en/products/socs/esp32

Introdução (4/8)

Características de algumas plataformas programáveis de prototipagem

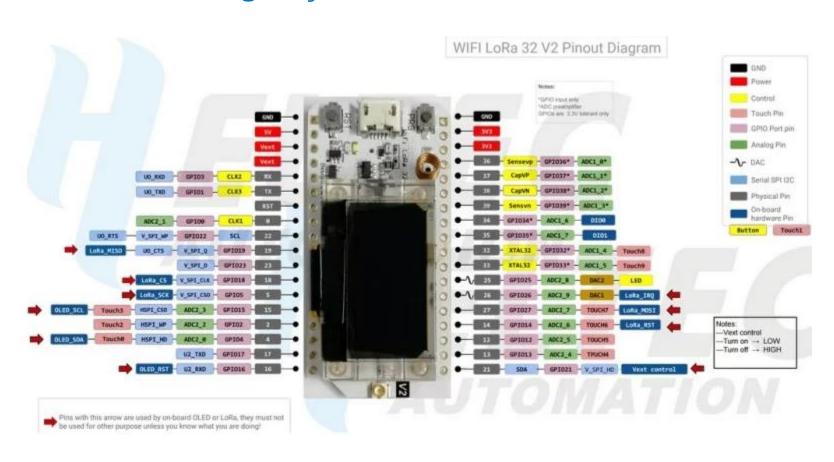
	ESP32	ESP8266	ARDUINO UNO R3
Cores	2	1	1
Arquitetura	32 bits	32 bits	8 bits
Clock	160MHz	80MHz	16MHz
WiFi	Sim	Sim	Não
Bluetooth	Sim	Não	Não
RAM	512KB	160KB	2KB
FLASH	16Mb	16Mb	32KB
GPIO	36	17	14
Interfaces	SPI / I2C / UART / I2S / CAN	SPI / I2C / UART / I2S	SPI / I2C / UART
ADC	18	1	6
DAC	2	0	0

Introdução (5/8)

ESP32 com algumas variações

ESP32 SIM800L

ESP32 Heltec LoRa


ESP32 CAM

É versátil

Introdução (6/8)

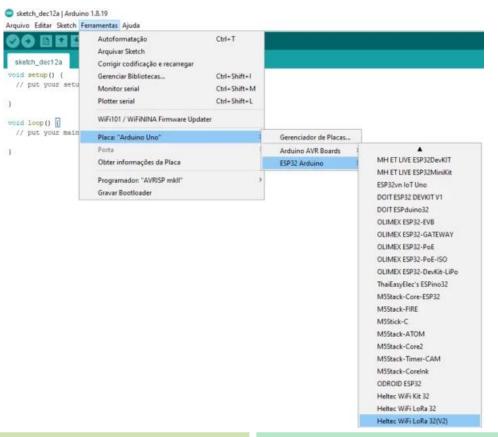
Configuração do ESP32 Wi-Fi LoRa

Introdução (7/8)

Programação do módulo

1. Conexão via Serial USB com computador

2. Escrever programa


3. Upload do programa via serial

4. Programa salvo no ESP32

IDE

Justificativa e Motivação (1/2)

Benefícios e Importância das árvores:

Absorve dióxido de carbono (CO₂).

Libera oxigênio (O₂).

Faz captação de partículas.

Faz captação de **particulados de poluição**.

Promove a infiltração das chuvas no local.

Intercepta e evapora a água da chuva.

Reduz o escoamento superficial da água.

O₂). Intercepta e absorve a radiação do Sol. Faz resfriamento por transpiração.

Gera biomassa

filtro

Cisterna

Proteção do solo

refrigeração 13

Faz resfriamento da superfície e microclima local.

Reflete a radiação do Sol.

Gera conforto térmico para o pedestre.

Absorve água e nutrientes do solo.

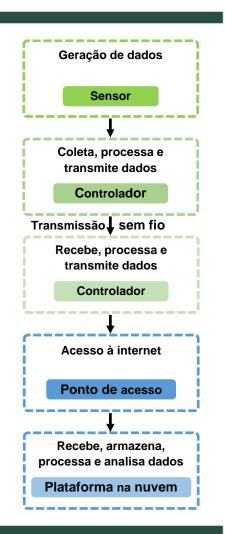
Justificativa e Motivação (2/2)

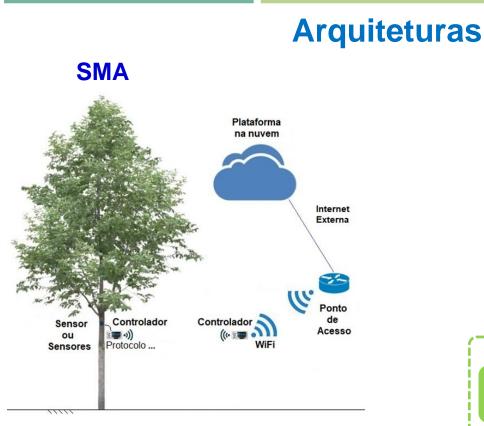
Consequências prováveis da queda de árvores em ambiente urbano:

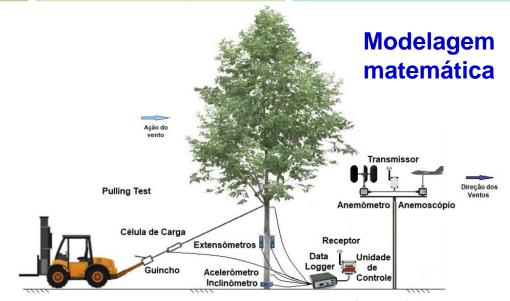
- Exposição a risco de vida de seus habitantes.
- Perdas econômicas e ambientais diretas e indiretas, levando a paralisar parte da infraestrutura como: Edifícios, Ruas, Dutos subterrâneos, Linhas aéreas de energia e comunicação, entre outros.

A cidade de São Paulo e suas árvores.

 Ela contava em 2014 com cerca de 650 mil árvores nas ruas, tendo outras tantas em parques e propriedades.


Plano de Desenvolvimento Institucional na Área de Transformação Digital (PDIp):


- Manufatura Avançada, Cidades Inteligentes e Sustentabilidade.
- Processo Fapesp 2017/50348-2.
- Linha de pesquisa de Sensoriamento Inercial Autônomo.
- Voltados para o monitoramento de árvore, encosta e saneamento.


Objetivo

• O objetivo da pesquisa foi propor um Sistema de Monitoramento de Árvores (SMA), para análise e previsão de risco de quedas destas em ambientes urbanos.


Concepção do SMA (1/1)

Fonte: adaptado de Koizumi et al. (2010).

Concepção do SMA (2/2)

SMA

Etapas:

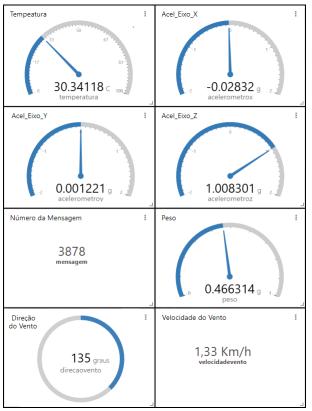
- Definição do hardware básico;
- Conectividade do SMA com a nuvem;
- Avaliação do consumo de energia;
- Sincronismo dos dados (RTC);
- Distância e potência no envio da mensagem;
- Sistema de sinalizações;
- Algoritmo de coleta de dados.

Modelagem matemática

Etapa das equações:

- Módulo de elasticidade do fuste;
- Momento de tombamento;
- Força de tombamento;
- Força de vento;
- Determinação do coeficiente de arrasto;
- Resistência da raiz.

Etapa das variáveis:


Experimento em campo.

Experimentos e Resultados (1/5)

Em laboratório e prototipagem

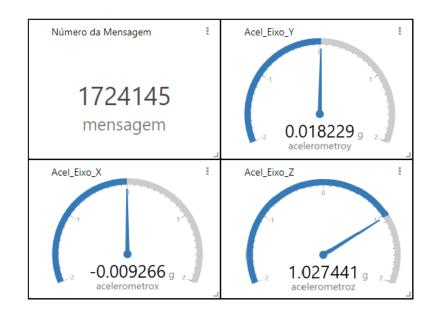
Arquitetura Plataformas testadas Mosquitto Internet Roteador (5) TagolO Externa InterSCity Protocolo MQTT Anemoscópio Nuvem Protocolo HTTP Enlace com a Anemômetro rede externa Extensômetro Placa HX-711 ∘)) WiFi •)) LoRa Tecnologia MENS (2) (4) Ponto de Acesso Acelerômetro Placa GY-521 Módulo ESP32 Heltec Módulo ESP32 Heltec

Resultado TagolO

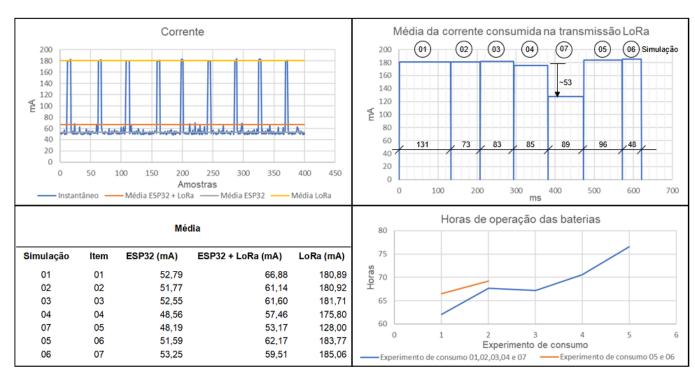
Experimentos e Resultados (2/5)

Estruturas da IoT

Protótipo


Validação de operação com a nuvem

RTC com TimeStamp


- O protótipo tem o gasto de energia do módulo DS3231 e do processamento do TimeStamp;
- Com o protocolo NTP, não há gasto de energia no módulo, mas terá que acrescer tempo de transmissão dos dados entre o módulo e o gateway.

Experimentos e Resultados (3/5)

Estruturas da IoT

Protótipo

Consumo de energia do módulo

Algoritmo

550	Modo	taxa de atualização (Hz)	Consumo
6	Normal	-	450 µA
MPU	Baixa potência	0,98	8,4 µA
Σ	Baixa potência	31,25	19,8 µA
-			

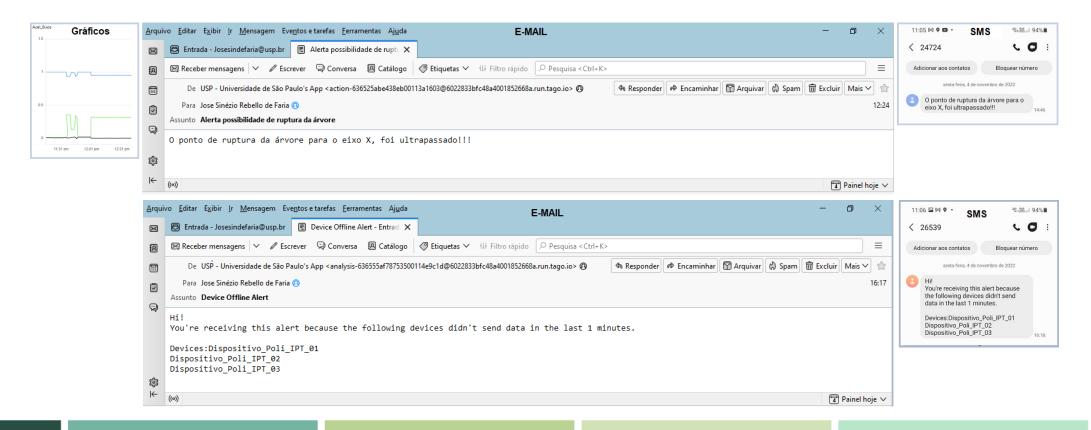
ESP32	Modo Consum		
	Normal	30 mA ~ 68 mA	
	Dormir	150 μΑ	

LoRa	Modo	Transmissão (dB)	Consumo
	LoRa	20	130 mA

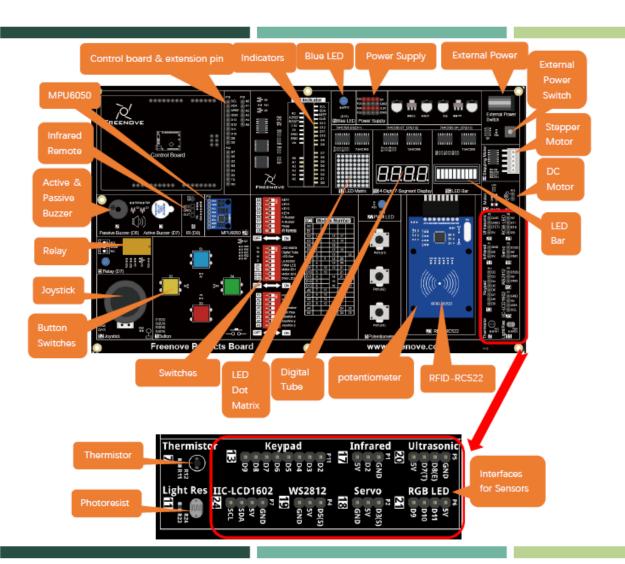
Experimentos e Resultados (4/5)

Estruturas da IoT

Experimentos e Resultados (5/5)


Estruturas da IoT

Mensagens de sinalização e análise dos dados na nuvem



Simulador/Plataforma de teste

Freenove - https://www.freenove.com/

Documentação e Componentes

Alguns livros

Alguns Site de Pesquisa

Arduino - https://www.arduino.cc/

Raspberry Pi - https://www.raspberrypi.com/

Embarcados - https://embarcados.com.br/

IDE (Integrated Development Enviroment) Arduino - Exemplos

Instituto Newton C. Braga - https://www.newtoncbraga.com.br/

Crescer Indústria de Automação - https://www.crescerengenharia.com/

Random Nerd Tutorials - https://randomnerdtutorials.com/

Fernando K Tecnologia - https://www.fernandok.com/

Udemy - Cursos Online - https://www.udemy.com/

GitHub - Desenvolvedor do software - https://github.com/

Alguns Site de Componentes

Saravati - https://www.saravati.com.br/

Mamute Eletrônica - https://www.mamuteeletronica.com.br/

Curto Circuito - https://curtocircuito.com.br/ - Blog

MakerHero - https://www.makerhero.com/ - Blog

Usinainfo - https://www.usinainfo.com.br/ - Blog

Eletrogate - https://www.eletrogate.com/ - Blog

RoboCore - https://www.robocore.net/ - Tutoriais

Alguns Site de Simulação

Wokwi – Simulador Online de projetos - https://wokwi.com/

José Sinézio Rebello de Faria - josesindefaria@gmail.br

OBRIGADO