Exercício 1 : O Pesquisador, Parte I

Um pesquisador deseja verificar se um instrumento para medir concentração de ácido lático no sangue está bem calibrado. Para isto ele tomou 20 amostras de concetrações conhecidas e determinou a respectiva concentração através do instrumento. Como uma análise de regressão poderia auxiliar o pesquisador? Modelo o problema acima, especificando as variáveis independentes e dependente e as hipóteses de interese.

Exercício 2: Modelo de Segundo Grau, Parte I

Encontre os estimadores de mínimos quadrados para o modelo de 2° grau $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$.

Exercício 3: Modelo de Segundo Grau, Parte II

Sejam

Tabela 1: Tabela dos dados para o Exercício 3.

X	0	3/2	2	5/2	3	7/2
\overline{Y}	1/10	3/10	9/10	$11/_{5}$	4	6

Item (a) Construa o modelo $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ e determine o coeficiente de explicação.

Item (b) Ajuste uma parábola para os dados e escreva a ANOVA.

Item (c) Determine o coeficiente de explicação para o modelo do item (b) e compare com o obtido no item (a). Justifique a diferença obtida entre os dois valores.

Exercício 4: Introdução ao TikZ

No modelo $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ com $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ e $\epsilon_i \perp \epsilon_j$, $i \neq j$, suponha que $\beta_0 = 210$, $\beta_1 = 4$ e $\sigma = 5$.

Item (a) Qual a distribuição de y dado $x \in \{10, 20, 40\}$?

Item (b) Construa um desenho que esquematize este modelo.

Exercício 5 : Umidade \times Densidade

Acredita-se que a umidade de um produto influencia a densidade final do produto. Num experimento, a umidade foi controlada e a densidade final foi medida resultando nos seguintes dados (codificados):

Tabela 2: Tabela dos dados para o Exercício 5.

X (umidade)	4,7	5	5,2	5,2	5,9	4,7	5,9	5,2	5,2	5,3	5,9	5,6	5
Y (densidade)	3	3	4	5	10	2	9	3	3	7	6	6	4

Item (a) Se adotarmos o modelo $y = \beta_0 + \beta_1 x + \epsilon$, qual o significado prático de β_1 ?

Item (b) Ajuste o modelo $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ e construa a ANOVA.

Item (c) Teste as hipóteses $\mathcal{H}_0: \beta_1 = 0$ contra $\mathcal{H}_a: \beta_1 \neq 0$. Qual dos modelos você adotaria para estes dados?

Exercício 6: Teste de hipóteses

Com base em 10 pares de valores das variáveis X e Y obteve-se a equação de regressão $\hat{y} = 20 - x$, com coeficiente de explicação $R^2 = 0,64$. Se a estimativa não viciada de σ^2 é 4, teste ao nível $\alpha = 0,05$ a hipótese $\mathcal{H}_0: \beta_1 = 0$ contra a alternativa $\mathcal{H}_a: \beta_1 \neq 0$.

Exercício 7: Conjuntos de retas

Dado um conjunto de pares de valores $\{(x_{ij}, Y_{ij})\}, i \in \{1, \dots, m\}$ e $j \in \{1, \dots, n_i\}$, ajusta-se um conjunto de retas paralelas como

$$\hat{y}_{ij} = a_i + bx_{ij}.$$

Mostre que as estimativas dos parâmetros, de acordo com o método dos mínimos quadrados, são dadas por:

$$\hat{b} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)(y_{ij} - \bar{y}_i)}{\sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2},$$

$$\hat{a}_i = \bar{y}_i - \hat{b}\bar{x}_i, \qquad \forall i\{1, \dots, m\},$$
onde $\bar{x}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} x_{ij} \in \bar{y}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} y_{ij}, \quad \forall i\{1, \dots, m\}.$

Exercício 8: Ponto médio

Prove que a reta de regressão $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ passa pelo ponto (\bar{x}, \bar{y}) .

Exercício 9: Resíduo

Prove que se $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ e $e_i = y_i - \hat{y}_i, i \in \{1, \dots, n\}$, então:

Item (a)

$$\sum_{i=1}^{n} e_i = 0.$$

Item (b)

$$\sum_{i=1}^{n} x_i e_i = 0.$$

Item (c)

$$\sum_{i=1}^{n} \hat{y}_i e_i = 0.$$

Item (d)

$$\sum_{i=1}^{n} \hat{y}_i = \sum_{i=1}^{n} y_i.$$

Exercício 10: Modelo Inverso

Com base em n observações $\{(x_i, Y_i)\}_{i \in \{1, ..., n\}}$, encontre os estimadores de mínimos quadrados para o modelo:

$$\mathbb{E}[y|x] = \beta_0 + \beta_1 \frac{1}{x}.$$

Calcule a variância de $\hat{\beta}_1$.

Exercício 11: Modelo sem Intercepto

Adotou-se o modelo $\mathbb{E}[y|x] = \beta x$, na situação em que o verdadeiro modelo era $\mathbb{E}[y|x] = \beta_0 + \beta_1 x$. Prove que o estimador de mínimos quadrados de β é viciado para β_1 e determine seu vício.

Exercício 12: Modelo com apenas Intercepto

Com base numa amostra de n observações da variável y, determine o estimador de mínimos quadrados de β_0 no modelo $y_i = \beta_0 + \epsilon_i$. A qual característica populacional corresponde β_0 neste modelo?

Exercício 13: Uma Afirmação

O que você acha da afirmação: "Para que o método de mínimos quadrados seja válido, é necessário que a distribuição da variável y seja normal"?

Exercício 14: Propriedades de $F_{\rm obs}$

No modelo de regressão linear simples $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$, sejam $F_{\text{obs}} = \text{SSR/MSE}$ e R^2 o coeficiente de explicação do modelo.

Item (a) Prove que $F_{\text{obs}} = \frac{(n-2)R^2}{1-R^2}$.

Item (b) Analise o comportamente de F para os possíveis valores de \mathbb{R}^2 .

Exercício 15: O Pesquisador, Parte II

Um pesquisador desejava estimar o nível de altitude acima do mar através do ponto da ebulição da água. Ele sabia que a altitude poderia ser determinada através da pressão atmosférica, medida através de um barômetro. No seu experimento, realizado em 1850, ele registrou a relação entre pressão e o ponto de ebulição. Seu interesse foi motivado pela dificuldade do transporte dos frágeis barômetros da época. As medidas do ponto de ebulição lhe forneceriam uma previsão da pressão e posteriormente uma rápida maneira de prever altitudes. Os dados a seguir correspondem a uma amostra de 30 pares de medidas as variáveis TEMP - ponto de evulição (graus Fahrenheit) e PRES - pressão barométrica (em polegadas de mercúrio).

Tabela 3: Tabela dos dados para o Exercício 15.

Temp	Pres	Temp	Pres
210,8	29,211	189,5	18,869
210,2	$28,\!559$	188,8	18,356
208,4	27,972	188,5	18,507
202,5	24,697	185,7	17,267
200,6	23,726	186,0	17,221
200,1	23,369	185,6	17,062
199,5	23,030	184,1	16,959
197,0	21,892	184,6	16,881
196,4	21,928	184,1	16,817
196,3	$21,\!654$	183,2	16,385
195,6	21,605	182,4	16,235
193,4	$20,\!480$	181,9	16,106
193,6	20,212	181,9	15,928
191,4	19,758	181,0	15,919
191,1	19,490	180,6	$15,\!376$
190,6	$19,\!386$		

Item (a) Construa o diagrama de dispersão da variável Pres contra Temp. Uma reta se ajusta bem aos dados?

Item (b) Construa um diagrama de dispersão da variável $100 \cdot \log_{10}$ Pres contra Temp e compare com o do item (a) (como os valores de log Pres) não variam muito, eles foram multiplicados por 100. Isto evita que trabalhemos com valores muito baixos e com pouca variabilidade, sem comprometer os principais aspectos da análise). Este diagrama de dispersão está mais próximo de uma reta que o do item (a)?

Item (c) Ajuste o modelo de regressão linear simples $y = 100 \cdot \log_{10} \text{Pres em } X = \text{Temp e calcule}$ as estatísticas relevantes (estimativas dos parâmetros, testes e tabela de Análise de Variância, R^2).

Exercício 16: Modelo segmentado

Com base em n observações $\{(x_i, Y_i)\}_{i \in \{1, ..., n\}}$:

Item (a) Encontre os estimadores de mínimos quadrados para o seguinte modelo

$$\mathbb{E}[y|x] = \beta_0 + \beta_1(x-c)_+,$$

onde $c \in \mathbb{R}$ é um valor fixo (não deve ser estimado), e a função $(x)_+$ é denominada função "positiva truncada", tal que

$$(x)_{+} = \begin{cases} x & \text{se } x \ge 0, \\ 0 & \text{se } x < 0. \end{cases}$$

Item (b) Considere o seguinte experimento: um roedor é injetado com uma substância química, e oito semanas após a injeção é iniciado um processo semanal onde ele é levado a se exercitar através do uso de uma barra rotatória, de forma que sua performance semanal é baseada no tempo máximo (em segundos) que o roedor permaneceu na barra rotatória. São feitas medições da semana 8 até a semana 21. É obtida a seguinte tabela

Semana	Tempo
8	130
9	180
10	180
11	180
12	176
13	177
14	175
15	167
16	106
17	103
18	107
19	52
20	18
21	0

Construa o gráfico de dispersão para este conjunto de dados. É possível observar uma mudança na tendência linear dos dados? Se sim, dê um "palpite" de onde ocorre esta mudança.

Item (c) Construa uma estimativa para o modelo linear $\mathbb{E}[y|x] = \beta_0 + \beta_1 x$ a partir dos dados do item (b) usando as observações das semanas 8 até (e incluindo) a semana 15. Teste $\mathcal{H}_0: \beta_1 = 0$ a nível de significância $\alpha = 0,05$.

Item (d) Refaça o item (c) utilizando apenas as observações da semana 16 até (e incluindo) a semana 21.

Item (e) Construa uma estimativa para os parâmetros β_0 e β_1 vistos no modelo do item (a) a partir de todas as observações dos dados do item (b), fixando c = 15, 5. Interprete os resultados.

Item (f) Reescreva o modelo estimado no item (e) como segue

$$\hat{y} = \begin{cases} \hat{\alpha}_0 & \text{se } x \le 15, 5 \\ \hat{\alpha}_1 + \hat{\alpha}_2 x & \text{se } x > 15, 5 \end{cases}$$

em que $(\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2)$ são combinações lineares de $(\hat{\beta}_0, \hat{\beta}_1)$.

Item (g) Teste no modelo estimado em (e) a hipótese $\mathcal{H}_0: \beta_1 = 0$.

Exercício 17: Dados padronizados

Sabe-se que para um conjunto de dados $\sum_{i=1}^n y_i = 0$, $\sum_{i=1}^n y_i^2 = 1$, $\sum_{i=1}^n x_i = 0$ e $\sum_{i=1}^n x_i^2 = 1$. Adotou-se o modelo $\mathbb{E}[y|x] = \beta_0 + \beta_1 x$ para realização da regressão. Mostre que, para este conjunto de dados, os estimadores de mínimos quadrados são $\hat{\beta}_0 = 0$ e $\hat{\beta}_1 = r$, onde r indica a correlação amostral entre X e Y.

Exercício 18: Correlação

Supõe-se que a quantidade de vapor (em 1000 libras) gasto mensalmente em uma determinada usina está correlacionada à temperatura ambiente mensal na mesma usina (em graus Fahrenheit). A seguinte tabela contêm os dados associados para um ano qualquer

Tabela 5: Tabela dos dados para o Exercício 18.

Mês	Temperatura	Vapor gasto
 Janeiro	21	185.79
Fevereiro	$\frac{21}{24}$	214,47
Março	32	288,03
Abril	47	$424,\!84$
Maio	50	$454,\!68$
Junho	59	539,03
Julho	68	$621,\!55$
Agosto	74	$675,\!06$
Setembro	62	562,03
Outubro	50	452,93
Novembro	41	369,95
Dezembro	30	273,98

Item (a) Estime a correlação linear ρ .

Observação:

Nota-se que, para amostras suficientemente grandes, para testarmos a hipótese nula $\mathcal{H}_0: \rho = \rho_0$ a nível de significância α podemos usar da seguinte estatística teste

$$z_{\text{obs}} = \sqrt{n-3} \{ \operatorname{arctanh}(\hat{\rho}) - \operatorname{arctanh}(\rho_0) \},$$

de forma que rejeitamos \mathcal{H}_0 se $z_c < |z_{\rm obs}|$, onde z_c é calculado como

$$\mathbb{P}(Z \ge z_c) = \frac{\alpha}{2},$$

onde $Z \sim \mathcal{N}(0, 1)$.

Item (b) Supondo que a amostra dada é suficientemente grande, teste a hipótese $\mathcal{H}_0: \rho=0$ e a hipótese $\mathcal{H}_0: \rho=1/2$, a nível de significância $\alpha=0,05$.

Observação:

Ainda no contexto de amostras suficientemente grandes, é possível construir um intervalo de confiança a nível γ para ρ como segue

$$IC(\rho, \gamma) = \left[\tanh \left(\operatorname{arctanh}(\hat{\rho}) - \frac{|z_c|}{\sqrt{n-3}} \right); \tanh \left(\operatorname{arctanh}(\hat{\rho}) + \frac{|z_c|}{\sqrt{n-3}} \right) \right]$$

onde, para $Z \sim \mathcal{N}(0,1), \, z_c$ é obtido como segue

$$\mathbb{P}(Z \ge z_c) = \frac{1 - \gamma}{2},$$

Item (c) Supondo que a amostra dada é suficientemente grande, calcule um intervalo de confiança a nível $\gamma = 99\%$ para ρ .