

PME-3554 – Introdução às Estruturas Aeronáuticas

Aula #07

Prof. Dr. Roberto Ramos Jr.

01/09/2023

Problemas 2D em coordenadas polares. Parte 2

- 1. Efeito de orifícios circulares na distribuição de tensões em chapas
- 2. Força concentrada em um ponto de um bordo reto;
- 3. Solução geral do problema 2D em coordenadas polares

1. Efeito de orifícios circulares na distribuição de tensões em chapas

Hipóteses:

- Chapa fina, submetida a tração uniforme de valor σ_o na direção x;
- Pequeno orifício circular de raio *a* existente no centro da chapa.

Consideremos a porção da chapa no interior de um círculo de raio b (b >> a), concêntrico com o orifício. Considerando que o efeito do orifício é localizado, podemos admitir que as tensões à distância b são efetivamente as mesmas que em uma chapa sem orifício.

Assim, o estado de tensões para os pontos que estão sobre a circunferência de raio *b* é dado pelo tensor:

$$\begin{bmatrix} T \end{bmatrix}_b = \begin{bmatrix} \sigma_o & 0 \\ 0 & 0 \end{bmatrix} \quad \text{Onde:} \quad b = \left(\vec{e}_x, \vec{e}_y \right)$$

Vamos determinar as componentes do vetor tensão que atua em um plano tangente a um dado ponto da circunferência de raio *b*:

As componentes normal e cisalhante do vetor tensão no plano inclinado são dadas por:

$$\sigma = \sigma_r = \vec{\rho} \cdot \vec{n} = \sigma_o .\cos^2 \theta$$
$$\tau = \tau_{r\theta} = \vec{\rho} \cdot \vec{t} = -\sigma_o .\cos\theta .\sin\theta$$

Assim, a distribuição de tensões nos pontos distantes do orifício é dada por:

$$\sigma_r = \sigma_o .\cos^2 \theta = \sigma_o . \left(\frac{1}{2} + \frac{\cos(2\theta)}{2}\right)$$
$$\tau_{r\theta} = -\sigma_o .\cos \theta . \sin \theta = -\sigma_o .\frac{\sin(2\theta)}{2}$$

Pelo princípio da superposição:

A solução para o primeiro caso pode ser obtida a partir da solução para vasos de pressão de parede espessa, ou seja:

$$\sigma_{r} = \frac{(p_{o} - p_{i}).a^{2}.b^{2}}{(b^{2} - a^{2}).r^{2}} + \frac{p_{i}.a^{2} - p_{o}.b^{2}}{(b^{2} - a^{2})}$$
$$\sigma_{\theta} = -\frac{(p_{o} - p_{i}).a^{2}.b^{2}}{(b^{2} - a^{2}).r^{2}} + \frac{p_{i}.a^{2} - p_{o}.b^{2}}{(b^{2} - a^{2})}$$
$$\tau_{r\theta} = 0$$

que, aplicada para este caso em particular, resultará:

$$p_{i} = 0$$

$$b^{2} - a^{2} \cong b^{2}$$

$$\sigma_{r,1} = -p_{o} \cdot \left(1 - \frac{a^{2}}{r^{2}}\right) = \frac{\sigma_{o}}{2} \cdot \left(1 - \frac{a^{2}}{r^{2}}\right)$$

$$\sigma_{\theta,1} = -p_{o} \cdot \left(1 + \frac{a^{2}}{r^{2}}\right) = \frac{\sigma_{o}}{2} \cdot \left(1 + \frac{a^{2}}{r^{2}}\right)$$

$$\tau_{r\theta,1} = 0$$

Falta determinar a solução para a parte restante do carregamento:

Lembrando, porém, que:

$$\sigma_{r} = \frac{1}{r} \cdot \frac{\partial \phi}{\partial r} + \frac{1}{r^{2}} \cdot \frac{\partial^{2} \phi}{\partial \theta^{2}}$$
$$\tau_{r\theta} = \frac{1}{r^{2}} \cdot \frac{\partial \phi}{\partial \theta} - \frac{1}{r} \cdot \frac{\partial^{2} \phi}{\partial r \partial \theta}$$

Tal carregamento sobre o contorno sugere o uso de uma função de tensão da forma:

$$\phi(r,\theta) = f(r).\cos(2\theta)$$

Substituindo tal função na equação de compatibilidade de deformações:

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial}{\partial r} + \frac{1}{r^2} \cdot \frac{\partial^2}{\partial \theta^2}\right) \left(\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \cdot \frac{\partial^2 \phi}{\partial \theta^2}\right) = 0$$

obteremos a seguinte EDO para a determinação de f(r):

$$\left(\frac{d^2}{dr^2} + \frac{1}{r} \cdot \frac{d}{dr} - \frac{4}{r^2}\right) \left(\frac{d^2f}{dr^2} + \frac{1}{r} \cdot \frac{df}{dr} - \frac{4f}{r^2}\right) = 0$$

cuja solução geral é:

$$f(r) = A.r^{2} + B.r^{4} + C.\frac{1}{r^{2}} + D$$

01/09/2023

Logo:
$$\phi(r,\theta) = \left[A.r^2 + B.r^4 + C.\frac{1}{r^2} + D\right].\cos(2\theta)$$

Que leva ao campo de tensões

$$\sigma_{r,2} = \frac{1}{r} \cdot \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \cdot \frac{\partial^2 \phi}{\partial \theta^2} = -\left(2A + \frac{6C}{r^4} + \frac{4D}{r^2}\right) \cdot \cos(2\theta)$$

$$\sigma_{\theta,2} = \frac{\partial^2 \phi}{\partial r^2} = \left(2A + 12B \cdot r^2 + \frac{6C}{r^4}\right) \cdot \cos(2\theta)$$

$$\tau_{r\theta,2} = \frac{1}{r^2} \cdot \frac{\partial \phi}{\partial \theta} - \frac{1}{r} \cdot \frac{\partial^2 \phi}{\partial r \partial \theta} = \left(2A + 6B \cdot r^2 - \frac{6C}{r^4} - \frac{2D}{r^2}\right) \cdot \sin(2\theta)$$

onde as constantes *A*, *B*, *C* e *D* são obtidas a partir das condições de contorno do problema (2ª parcela do carregamento).

Para
$$r = a$$
, devemos ter:

$$\begin{bmatrix} \sigma_r = 0 \\ \tau_{r\theta} = 0 \end{bmatrix}$$
E, para $r = b$, devemos ter:

$$\begin{bmatrix} \sigma_r = \sigma_o \cdot \frac{\cos(2\theta)}{2} \\ \tau_{r\theta} = -\sigma_o \cdot \frac{\sin(2\theta)}{2} \end{bmatrix}$$
Resultando no seguinte sistema linear:

$$\begin{bmatrix} 2A + \frac{6C}{a^4} + \frac{4D}{a^2} = 0 \\ 2A + 6B \cdot a^2 - \frac{6C}{a^4} - \frac{2D}{a^2} = 0 \\ 2A + 6B \cdot b^2 - \frac{6C}{b^4} + \frac{4D}{b^2} = -\frac{\sigma_o}{2} \\ 2A + 6B \cdot b^2 - \frac{6C}{b^4} - \frac{2D}{b^2} = -\frac{\sigma_o}{2} \end{bmatrix}$$

PME-3454 Introdução às Estruturas Aeronáuticas - Aula #07

Resolvendo o sistema e fazendo a substituição: $b = a/\xi$:

virá (no limite para
$$\xi \to 0$$
):

$$\begin{bmatrix}
A = -\frac{\sigma_o}{4} & B = 0 \\
C = -\sigma_o \cdot \frac{a^4}{4} & D = \sigma_o \cdot \frac{a^2}{2} \\
\sigma_{r,2} = \frac{\sigma_o}{2} \left(1 + \frac{3a^4}{r^4} - \frac{4a^2}{r^2} \right) \cdot \cos(2\theta) \\
\sigma_{\theta,2} = -\frac{\sigma_o}{2} \left(1 + \frac{3a^4}{r^4} \right) \cdot \cos(2\theta) \\
\tau_{r\theta,2} = -\frac{\sigma_o}{2} \left(1 - \frac{3a^4}{r^4} + \frac{2a^2}{r^2} \right) \cdot \sin(2\theta)$$

Finalmente, pelo Princípio da Superposição, teremos o campo de tensões resultante:

$$\sigma_{r} = \frac{\sigma_{o}}{2} \left(1 - \frac{a^{2}}{r^{2}} \right) + \frac{\sigma_{o}}{2} \left(1 + \frac{3a^{4}}{r^{4}} - \frac{4a^{2}}{r^{2}} \right) \cdot \cos(2\theta)$$

$$\sigma_{\theta} = \frac{\sigma_{o}}{2} \left(1 + \frac{a^{2}}{r^{2}} \right) - \frac{\sigma_{o}}{2} \left(1 + \frac{3a^{4}}{r^{4}} \right) \cdot \cos(2\theta)$$

$$\tau_{r\theta} = -\frac{\sigma_{o}}{2} \left(1 - \frac{3a^{4}}{r^{4}} + \frac{2a^{2}}{r^{2}} \right) \cdot \sin(2\theta)$$

Esta solução foi obtida por G. Kirsch em 1898.

Em particular, no bordo do orifício teremos:

 $\sigma_{\theta} = \sigma_o(1 - 2\cos(2\theta))$

2. Força concentrada atuando em um ponto de um bordo reto

Consideremos agora o problema referente a uma força vertical concentrada, de intensidade *P*, atuando em um bordo reto horizontal de uma chapa semi-infinita. Consideremos também que a força esteja distribuída uniformemente sobre a espessura da chapa.

A solução deste problema pode ser encontrada pelo uso da função de tensão (biharmônica) dada por:

$$\phi(r,\theta) = Cr\theta sen\theta$$

que leva à seguinte distribuição de tensões (denominada distribuição radial simples):

$$\sigma_r = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = \frac{2C\cos\theta}{r}$$
$$\sigma_\theta = \frac{\partial^2 \phi}{\partial r^2} = 0$$
$$\tau_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \phi}{\partial \theta}\right) = 0$$

01/09/2023

Verifica-se que as condições de contorno sobre o bordo reto (visivelmente descarregado, exceto no ponto de aplicação da carga) ficam prontamente atendidas com esta solução (tensões cisalhantes e tensões circunferenciais nulas para $\theta = \pm \pi/2$ e r > 0).

Para obter a constante C da função de tensão basta impor que a resultante das forças que atuam em uma superfície cilíndrica de raio r seja igual a P, ou seja:

$$\int_{-\pi/2}^{\pi/2} \sigma_r \cos\theta r d\theta = -P$$

$$C \left(\theta + \frac{sen(2\theta)}{2} \right) \Big|_{-\pi/2}^{\pi/2} = -P C = -\frac{P}{\pi}$$

Logo:
$$\sigma_r = -\frac{2P}{\pi} \frac{\cos\theta}{r}$$

A solução deste problema foi obtida por meio da solução tridimensional de Boussinesq por Flamant, em 1892.

3. Solução geral do problema 2D em coordenadas polares

Uma expressão geral da função de tensão $\phi = \phi(r, \theta)$ para a solução de problemas 2D em coordenadas polares foi apresentada por Michell, em 1899. Tal função de tensão é uma superposição de várias outras soluções encontradas e pode ser aplicada para casos gerais.

Os três primeiros termos da 1ª linha, por exemplo, representam a solução para a distribuição simétrica de tensões em relação à origem. O 1º termo da 2ª linha fornece a solução para a distribuição radial simples (problema de Flamant). Já os termos restantes da 2ª linha juntamente com os termos da 3ª linha fornecem a solução para uma porção de um anel circular submetido à flexão. Os termos da 4ª linha, para n = 2, fornecem a solução do problema de Kirsch, e assim por diante.

Distribuição simétrica de tensões em relação à origem

Reportagem – Jornal da USP (31/08/2023)

Projeto de avião da USP pode reduzir até 30% o consumo de combustível Junção inédita de duas tecnologias inovadoras nas asas e nas turbinas conseguiria economizar 12% do combustível queimado, que pode ser poupado ainda mais com as inovações previstas para os próximos 20 anos.

Fig. 1. Projeto de asa em caixa. Foto: Pedro Bravo-Mosquera (vide: https://jornal.usp.br/ciencias/projeto-de-aviao-da-usp-pode-reduzir-ate-30-oconsumo-de-combustivel/).

Referências:

[1] Timoshenko, S.P., Goodier, J.N., Theory of Elasticity, McGraw-Hill, 1970.