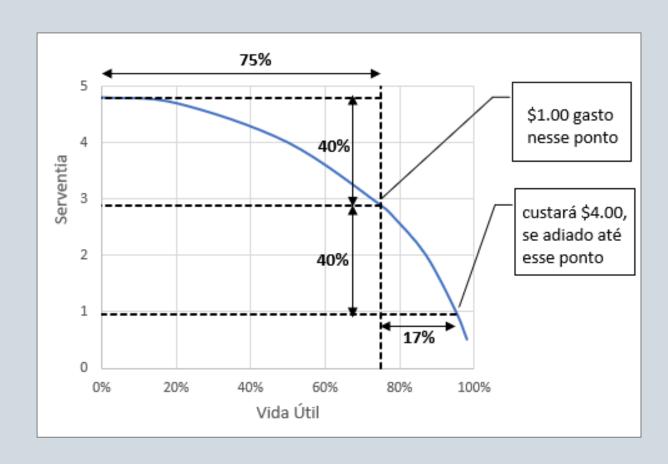
Previsão de desempenho estrutural e funcional

ABORDAGEM BASEADA EM CIÊNCIA DE DADOS

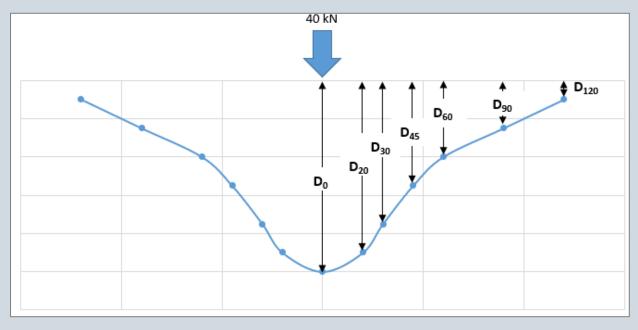

Agenda

- Motivação
- Modelos de Desempenho
- Desempenho Estrutural
 - Parâmetros de interesse
 - Técnicas convencionais
- Desempenho Funcional
 - Parâmetros de interesse
 - Técnicas convencionais
- Machine Learning
 - Fundamentos
 - Estudo de caso: Aplicação na previsão de desempenho de pavimento

Motivação

PREVISÃO DE DESEMPENHO

- Essencial para sistemas de gerência de pavimento;
- Pavimento: maior ativo do sistema rodoviário;
- Planejamento de atividades de manutenção e reabilitação;
- Estimativa de recursos necessários para a preservação das rodovias.


Modelos de Desempenho

ABORDAGENS MAIS COMUNS

- Empírico: Relacionam os materiais de pavimentação, tráfego e clima diretamente ao desempenho medido.
- Mecanístico Empírico: Utiliza dados empíricos para calcular a resposta do pavimento (tensões e deformações), através de um processo mecanístico e, depois, relaciona estas respostas ao desempenho.
- Mecanístico: Modelos baseados em respostas estruturais (tensão e deformação)

- Parâmetros avaliados: Bacia de deflexão, Número Estrutural
- Equipamentos: Viga Benkelman; Falling Weight Deflectometer (FWD)

FWD

Bacia de Deflexão

PARÂMETROS DE INTERESSE

- Tipo de estrutura: Flexível, Semirrígida, Rígida;
- Rigidez dos materiais e/ou conjunto;
- Estado da estrutura;
- Subleito (tipo e estado);

Resistência

- Tráfego;
- Clima.

Solicitação

TÉCNICAS CONVENCIONAIS - DNIT

- Definem uma deflexão máxima admissível para construção/reabilitação;
- Função: estrutura, condição atual e tráfego estimado para vida útil.

DNIT PRO-11 / 79

$$\log D_{adm} = 3.01 - 0.176 * \log N$$

D_{adm}: Deflexão admissível

N: Tráfego estimado (VDM e FV)

DNIT PRO-269 / 94

$$\log D_{adm} = 3,148 - 0,188 * \log N$$

D_{adm}: Deflexão admissível

N: Tráfego estimado (VDM e FV USACE)

TÉCNICAS CONVENCIONAIS – HDM-4

- Estimam a deterioração do número estrutural ao longo do tempo;
- Função: condição atual, deterioração funcional, tráfego, **geometria**, **qualidade da construção**, **drenagem** e **clima**.

Número Estrutural

$$SN = \sum_{i=1}^{n} a_i * h_i$$

SN: Número Estrutural do pavimento

n: Número de camadas

a_i: coeficiente estrutural da camada i

h_i: espessura da camada i

Número Estrutural: Simplificação

$$SNP = 3.2 * D_0^{-0.63}$$
 (base granular)

$$SNP = 2.2 * D_0^{-0.63}$$
 (base cimentada)

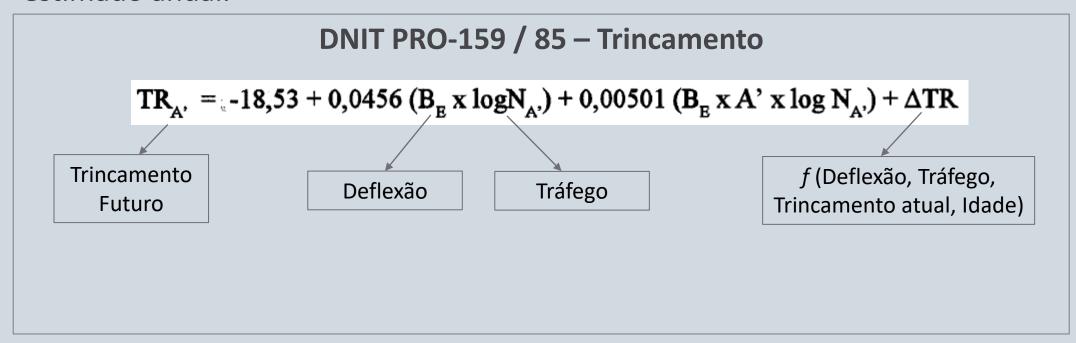
SNP: Número Estrutural Corrigido

D₀: Deflexão Máxima

Parâmetro Avaliado	Equipamento
Trincamento	Levantamento Visual
Desgaste	Levantamento Visual
Panelas	Levantamento Visual
Deformação Permanente	Treliça, Perfilômetro Laser
Irregularidade Longitudinal	Bump Integrator, Perfilômetro Laser

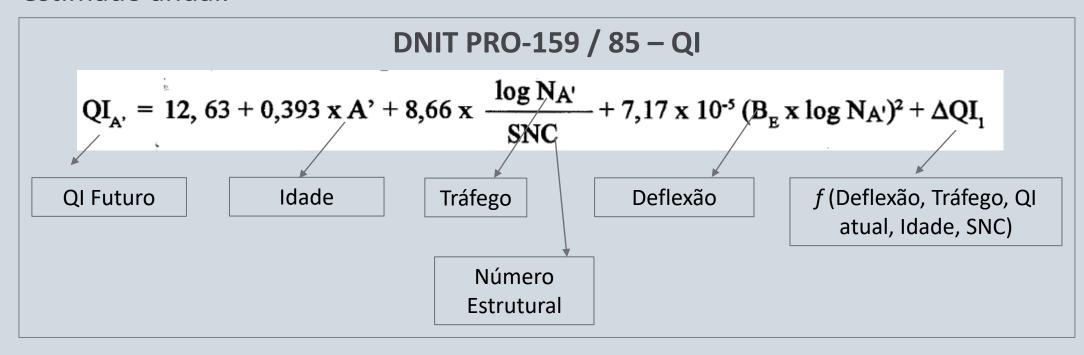
International Roughness Index (IRI) [m/km]

Quociente de Irregularidade (QI) [cont/km]

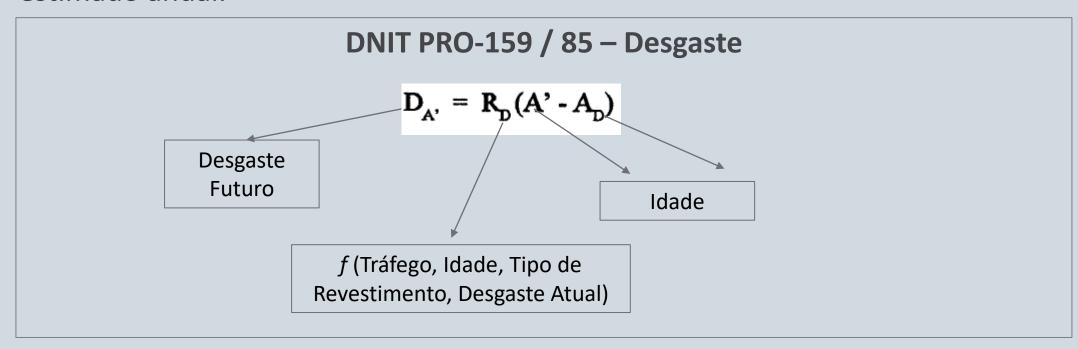

$$IRI = \frac{QI}{13}$$

PARÂMETROS DE INTERESSE

- Tipo de estrutura: Flexível, Semirrígida, Rígida;
- Rigidez dos materiais e/ou conjunto;
- Estado da estrutura;
- Revestimento (tipo, estado e idade)
- Subleito (tipo e estado);
- Tráfego (VDM e Fator de Veículo);
- Drenagem;
- Clima.


TÉCNICAS CONVENCIONAIS – DNIT

- Previsão de Trincamento, Irregularidade, Desgaste;
- Função: condição estrutural e funcional atual, idade do pavimento e tráfego estimado anual.


TÉCNICAS CONVENCIONAIS – DNIT

- Previsão de Trincamento, Irregularidade, Desgaste;
- Função: condição estrutural e funcional atual, idade do pavimento e tráfego estimado anual.

TÉCNICAS CONVENCIONAIS - DNIT

- Previsão de Trincamento, Irregularidade, Desgaste;
- Função: condição estrutural e funcional atual, idade do pavimento e tráfego estimado anual.

TÉCNICAS CONVENCIONAIS – HDM-4

- Previsão de Trincamento, Desgaste, Irregularidade, Panelas, Deformação Permanente;
- Função: condição estrutural e funcional atual, idade do pavimento, clima, geometria, tráfego, fator de veículo, tipos de estrutura, revestimentos, qualidade de construção, condição de drenagem.
- Equações diferentes para: Momento da deterioração, Classes das variáveis acima.

Machine Learning

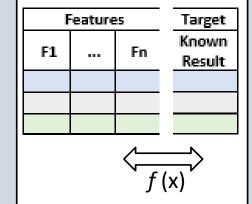
PREVISÃO DE DESEMPENHO DE PAVIMENTOS

APRENDIZADO DE MÁQUINA

DEFINIÇÃO: área de estudos da estatística, combinada com desenvolvimentos em ciência da computação. Se baseia em dados de observações, para interpretá-los, criar modelos e fazer a previsão de resultados.

APRENDIZADO SUPERVISIONADO: cada cenário observado, e descrito através de características específicas, é associado a um resultado observado para a variável que se pretende prever.

APRENDIZADO DE MÁQUINA



F	eature	Target	
F1	***	Fn	Known Result

Base de Dados de Treinamento

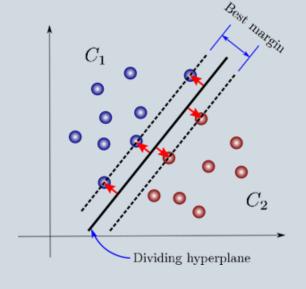
F	Target							
E41	F1 Fn							
LI	***	FIII	Result					

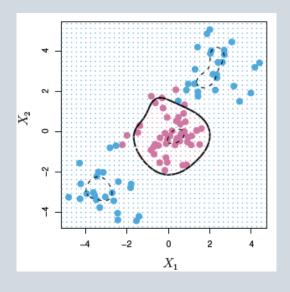
Treinamento do Modelo

Avaliação do Modelo

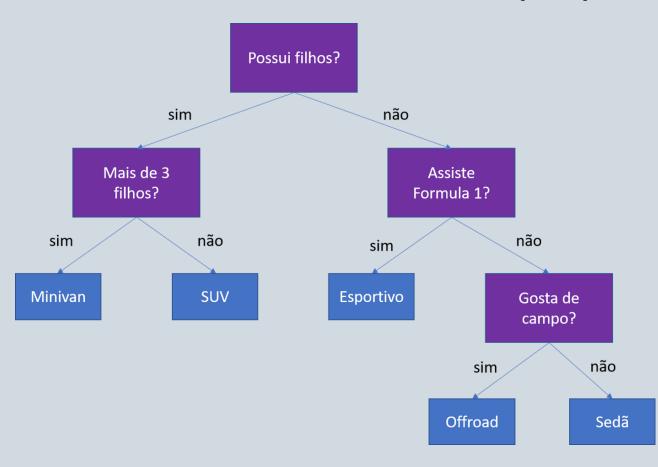
Target											
Known	Predicted										
Result	Result										

APRENDIZADO DE MÁQUINA


APLICAÇÕES: Medicina, Engenharia, Economia, Segurança Pública, etc.

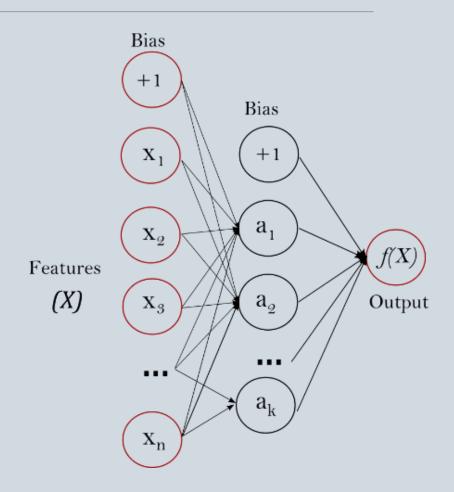

TIPOS DE PROBLEMA: Classificação e Regressão

REGRESSÃO: a variável que se deseja prever é um número real; a equação resultante não é possível de ser transcrita.


SUPPORT VECTOR MACHINE REGRESSION (SVR)

- Generalização do classificador de margem máxima;
- Os pontos de dados são dispostos no espaço e separados por um hiperplano ótimo;
- Utilizam funções quadráticas, cúbicas, polinomiais, sigmoides ou gaussianas para acomodar margens não lineares.

RANDOM FOREST REGRESSION (RFR)



RANDOM FOREST REGRESSION (RFR)

- Baseado nos resultados de múltiplas árvores de decisão;
- Parcelas dos dados de treinamento são sucessivamente separadas e submetidas ao modelo de árvores de decisão;
- As diversas árvores que compõem a floresta funcionam em paralelo, sem qualquer interação entre elas;
- Os resultados são obtidos através das médias dos valores previstos por cada árvore;
- A cada divisão de um ramo, uma amostra aleatória das variáveis é escolhida como candidata à divisão desse ramo;
- Garante que todas as variáveis sejam consideradas.

ARTIFICIAL NEURAL NETWORK REGRESSION (ANN)

- Baseados na emulação do funcionamento do sistema nervoso humano;
- Rede interconectada, disposta em camadas que interagem trocando informações;
- Interações ativadas por funções de ativação, com otimização bidirecional de seus pesos;
- Otimização por gradientes descentes da matriz de pesos.

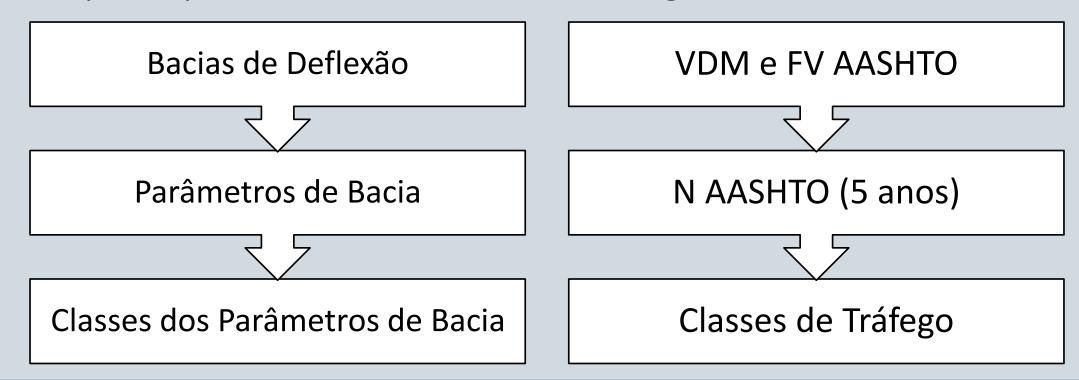
OBJETIVO: Prever a curva de evolução do IRI ao longo do tempo.

METODOLOGIA: Treinar um modelo de ML com base em dados históricos de desempenho de pavimento.

DADOS UTILIZADOS:

- Histórico de 20 anos, de 23 rodovias segmentadas em trechos de 200m;
- Informações de projeto: Estrutura, materiais, idade, tráfego;
- o Informações de cronograma: Idade, ciclos de conserva.

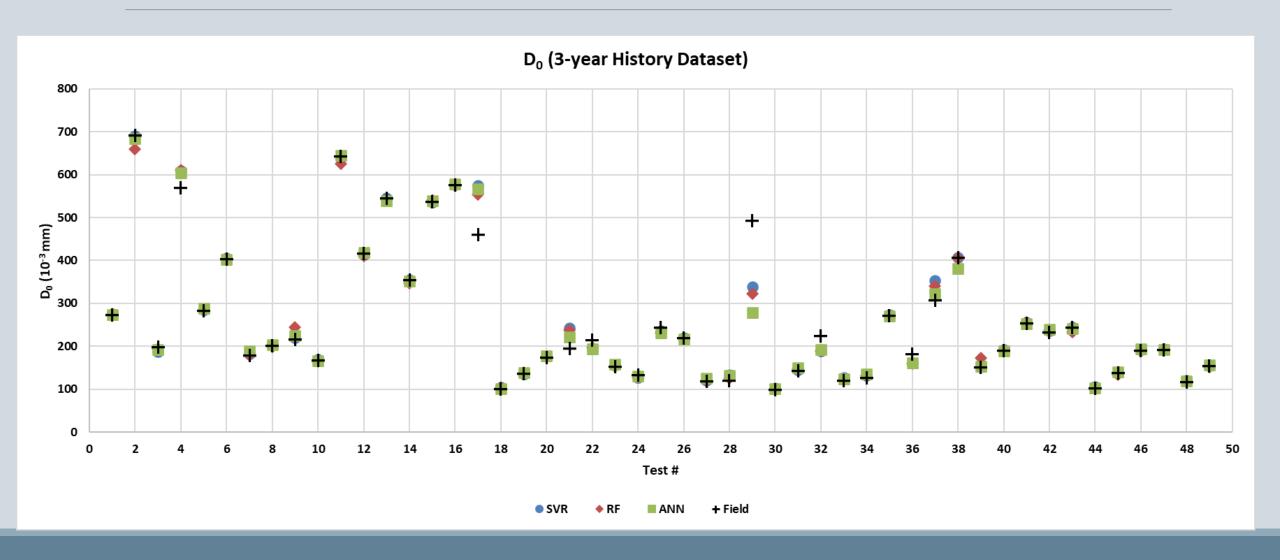
BASE DE DADOS RESULTANTE: 11.471 segmentos utilizados no treinamento.

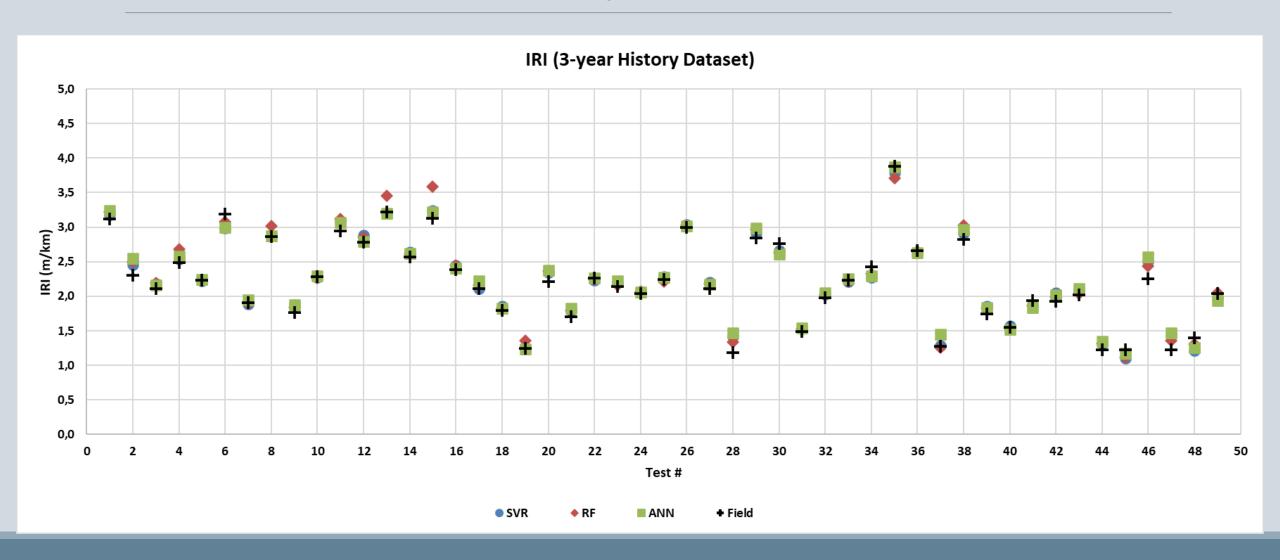

RESULTADOS OBTIDOS: D₀ [R² = 0,99 e EMQ = 2 * 10^{-2} mm] IRI [R² = 0,91 e EMQ = 0,03 m/km]

PREPARAÇÃO DOS DADOS

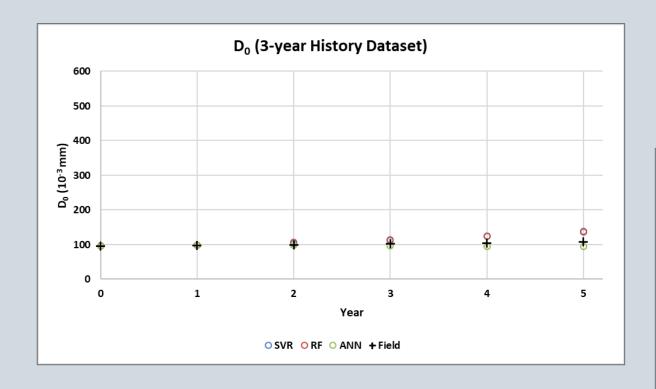
- Limpeza de dados: Exclusão de dados não confiáveis (falhas na identificação, dados incompletos, erros de procedimento de ensaio, erros de resultados)
- Consolidação dos dados: Junção de tabelas (FWD, IRI, Tráfego, Idade)
- Inserção de dados: Rodovias em pior estado de conservação
- Séries Temporais: Limitação de 3 anos consecutivos de histórico
- Feature Engineering: Cálculo de indicadores conhecidos na engenharia de pavimentos (parâmetros de bacia de deflexão, categorias de tráfego)

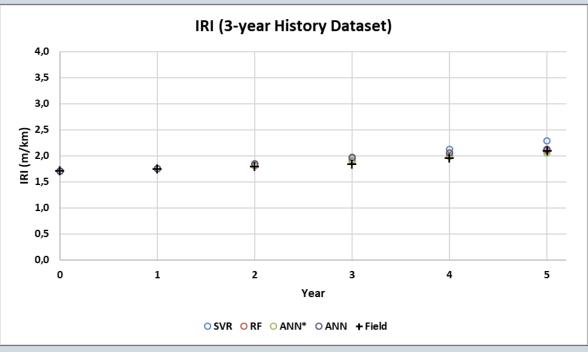
FEATURE ENGINEERING


Extrair informações de dados brutos e transformá-las em variáveis mais adequadas para o modelo de *machine learning*

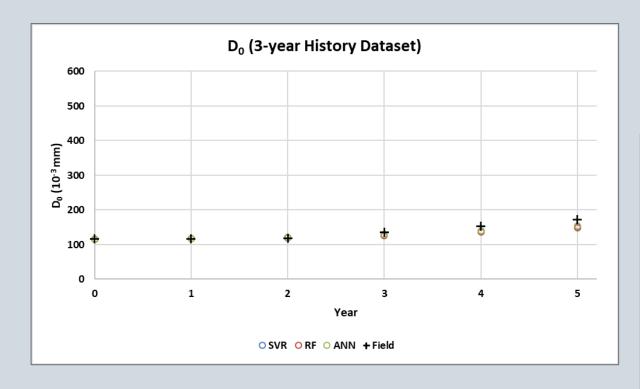

			SVR							
Canária	Duaditana	Configuração	2-year	history	3-year history					
Cenário	Preditores	Algoritmo	R²	RMSE	R²	RMSE				
			, n	(10 ⁻³ mm)	N	(10 ⁻³ mm)				
1	Dados Brutos	Default	0.12	116	0.14	122				
2	Parâmetros da Bacia de Deflexão	Default	0.11	117	0.14	122				
3	Classes da Bacia de Deflexão	Default	0.11	117	0.15	119				
4	Classes da Bacia de Deflexão e de Tráfego	Default	0.91	38	0.97	23				
5	Dados Brutos	Otimizada	0.82	53	0.77	63				
6	Classes da Bacia de Deflexão e de Tráfego	Otimizada	0.91	37	0.99	16				

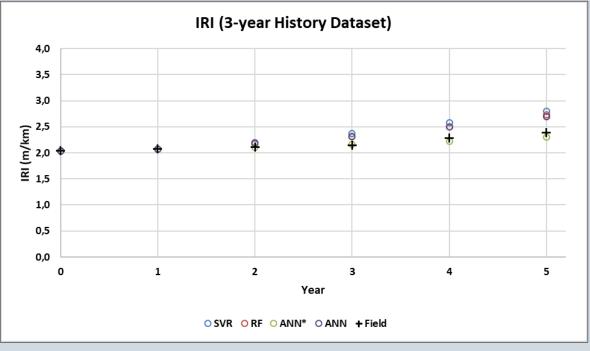
Test Segment	D ₀ (10 ⁻³ mm)	AREA (mm)	IRI (m/km)	N AASHTO	Surface Age (years)
1	221	530	3.01	6.94E+05	2
2	501	332	1.99	6.69E+06	5
3	168	504	2.04	4.55E+05	5
4	514	320	2.41	6.24E+05	6
5	244	372	1.74	1.71E+07	3
6	318	438	2.85	4.35E+05	5
7	171	452	1.40	9.92E+07	3
8	145	573	2.49	1.65E+07	7
9	190	475	1.67	1.76E+07	5
10	116	576	1.85	3.39E+07	2
11	444	385	2.53	4.74E+05	5
12	191	282	2.78	2.70E+06	3
12	402	ാവാ	2.56	5 06E±07	1

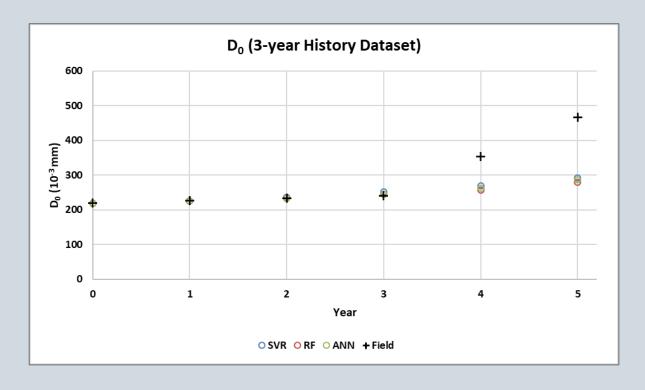

ML: Teste de curto prazo (1 ano)

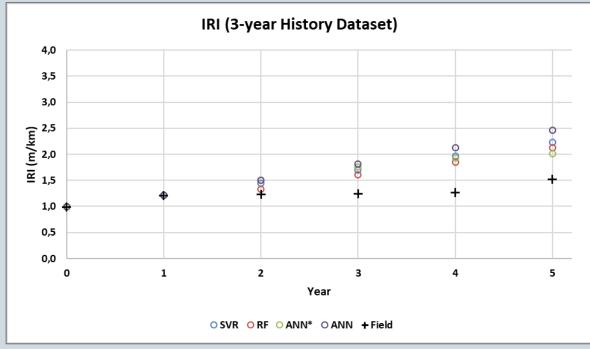


ML: Teste de curto prazo (1 ano)




ML: Teste de longo prazo (5 anos)




ML: Teste de longo prazo (5 anos)

ML: Teste de longo prazo (5 anos)

ML: Exemplo de análise

D0_i	D0_m	CF_i	FV_AASHTO	AREA_c	N_c	age	1	2	3	4	5	6	7
15,1	23,3	4,4	3,0	2	2	5	31,0	39,1	46,7	53,5	59,0	63,5	66,8
18,4	18,9	4,1	3,0	2	2	2	19,4	21,3	23,4	26,6	29,8	33,0	36,8
26,2	27,5	5,5	3,1	2	2	5	28,8	30,2	31,8	33,5	36,1	40,0	44,8
21,1	22,4	6,1	3,2	1	3	5	23,8	25,9	27,8	30,7	33,6	36,6	39,3
13,9	14,3	3,0	3,5	3	5	1	15,5	16,7	18,0	19,3	20,5	23,3	26,7
12,1	12,4	3,0	3,5	3	5	1	13,3	14,4	16,0	17,6	19,0	21,5	23,8
13,4	16,2	2,0	1,9	3	4	2	19,0	21,9	24,9	27,7	30,6	33,5	37,0
16,1	16,3	4,6	1,9	2	4	2	16,6	16,9	17,5	18,6	20,9	23,2	25,9
19,5	20,1	4,3	2,1	2	5	4	20,7	21,3	22,1	23,1	25,1	27,3	30,2
21,8	23,6	6,6	2,1	2	5	6	25,5	27,5	29,8	32,6	35,7	38,1	41,4
11,5	11,5	4,5	2,1	2	5	6	12,7	14,4	16,6	18,9	21,7	24,2	26,7
17,2	19,5	6,0	2,1	2	4	2	21,7	23,7	25,7	27,6	29,6	31,5	33,5

ML: Exemplo de análise

IRI_i	IRI_m	D0_i	D0_f	D0_m	CF_i	FV_AASHTO	AREA_c	N_c	age	1	2	3	4	5	6
1,93	2,57	15,1	31,0	23,3	4,4	3,0	2	2	5	2,88	3,14	3,38	3,61	3,82	4,02
2,74	2,76	18,4	19,4	18,9	4,1	3,0	2	2	2	2,83	2,95	3,15	3,28	3,56	3,87
1,61	1,71	26,2	28,8	27,5	5,5	3,1	2	2	5	1,84	1,97	2,06	2,18	2,28	2,47
1,78	1,96	21,1	23,8	22,4	6,1	3,2	1	3	5	2,06	2,16	2,25	2,43	2,60	2,76
1,42	1,42	13,9	15,5	14,3	3,0	3,5	3	5	1	1,58	1,76	1,88	2,01	2,22	2,44
1,29	1,30	12,1	13,3	12,4	3,0	3,5	3	5	1	1,44	1,58	1,79	1,90	2,05	2,22
1,46	1,47	13,4	19,0	16,2	2,0	1,9	3	4	2	1,55	1,64	1,80	1,95	2,09	2,25
1,31	1,32	16,1	16,6	16,3	4,6	1,9	2	4	2	1,44	1,64	1,81	2,00	2,15	2,32
1,00	1,04	19,5	20,7	20,1	4,3	2,1	2	5	4	1,15	1,28	1,49	1,70	1,90	2,10
1,04	1,05	21,8	25,5	23,6	6,6	2,1	2	5	6	1,23	1,44	1,68	1,93	2,17	2,34
1,40	1,52	11,5	12,7	11,5	4,5	2,1	2	5	6	1,71	1,88	2,11	2,32	2,51	2,68
2,67	2,84	17,2	21,7	19,5	6,0	2,1	2	4	2	3,02	3,21	3,88	4,32	4,96	5,07

Considerações finais

- Modelagem depende muito da qualidade dos dados
- HDM 4: Dificuldades de calibração e inserção dos dados
- HDM 4: Funções consagradas e de fácil interpretação
- HDM 4: Precisão menor dos modelos
- ML: Depende da disponibilidade de dados regionais para treinamento
- ML: Praticidade no carregamento de dados e geração de resultados
- ML: Modelos muito precisos

Obrigada!

analuisa.aranha@gmail.com

https://www.teses.usp.br/teses/disponiveis/3/3138/tde-04042023-075119/publico/AnaLuisaAranhaCorr23_upload.pdf