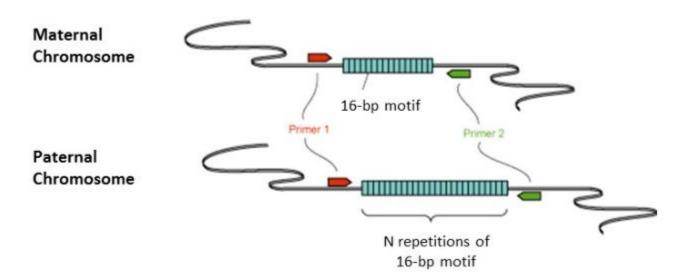

Aula prática - PCR

Aula de hoje:

- Introdução
- Protocolo da aula
 - Incubação de 50 minutos
- Mais alguns dados teóricos

PCR - Reação em Cadeia da Polimerase


• Amplificação in vitro de um fragmento de DNA

Qual DNA? Amplificação do locus D1S80 de vocês

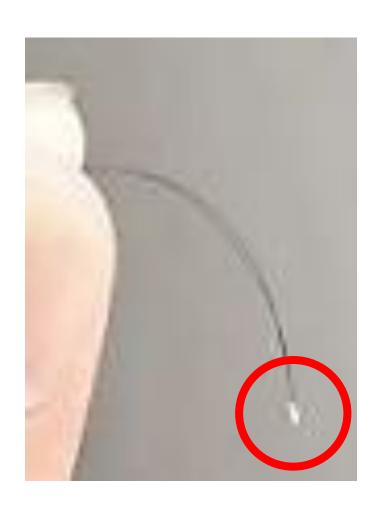
- Locus D1S80: locus muito variável
- Alto grau de heterozigosidade
 - 80,8% heterozigosidade para caucasianos
 - 87% heterozigosidade para afro-americanos

D1S80 Locus (on Chromosome 1)

DNA fingerprinting

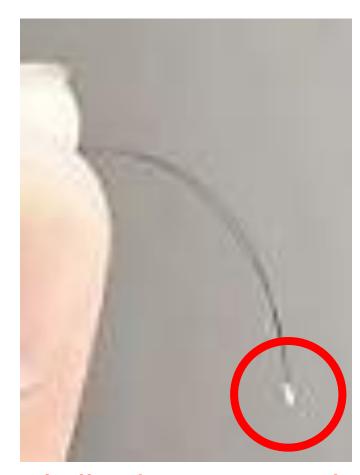
Impressão digital do DNA

Testes de paternidade Estudos forenses Estudos filogenéticos


VNTR - Variable number of tandem repeats

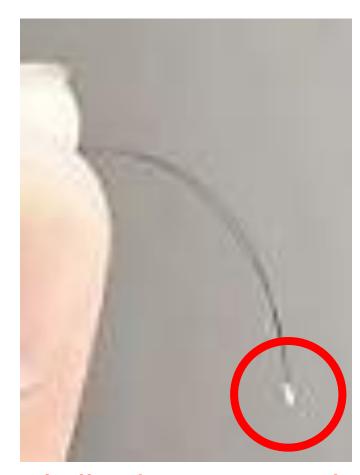
- Unidade: 16 bases ricas em GC
- Existem variações da sequência consenso

Repeat type									Se	quenc	e								
Type A	T	C	A	*	C	4		٠	-	A	*		-			*	1-1		
Туре В	A	C	A							A									
Type C		*	+	*		4			*	*	*	*	A						
Type D			A										A						D1S80 Locus (on Chromosome 1)
Type E	*	*	A	*		4				A	*					*			
Type F	*				*					A			*			+		Maternal	
Type G		*	A						*	*			*	4		*		Chromosome	_
Type H	G	A	G	G	A	C	C	A	C	C	G	G	C	A	A	G	(Consensus)	Chromosome	
Type I		*				4				*	A		G			*			
Type J	*			A	*						A		G			*			16-bp motif
Type K		*								*	A	*				*			Primer 1 Primer 2
Type L	*									T					*	*		Paternal	
Type M											A		G		G	*		Chromosome	
Type N						4				G		*						cinomosome	
Type 0		*	*	*	*				+	*	*			G					
Type P			A							*		*	A		G				N repetitions of
Type Q		*	A	*	+				G	**			A	•		*			16-bp motif
Type R		G		A							A		G						20 bp moti
Type S		*	A	*						*	A	*	G						


Extração do DNA a ser amplificado

- Arrancar 3-4 pelos.
- Verificar se possui bulbo
 - Cortar ponta do bulbo
 - Bulbo = células => DNA
- Tratar bulbo com proteinase K
 - Protease inespecífica: corta em resíduos com anel aromático
 - 50 minutos a 55°C
 - Inativar 10 minutos a 95°C
- Misturar com o mix da PCR e fazer a reação

Extração do DNA a ser amplificado


- Arrancar 3-4 pelos.
- Verificar se possui bulbo
 - Cortar ponta do bulbo
 - Bulbo = células => DNA
- Tratar bulbo com proteinase K
 - Protease inespecífica: corta em resíduos com anel aromático
 - 50 minutos a 55°C
 - Inativar 10 minutos a 95°C
- Misturar com o mix da PCR e fazer a reação

O tubo da proteínase K já possui o volume indicado. Colocar o bulbo diretamente nele

Extração do DNA a ser amplificado

- Arrancar 3-4 pelos.
- Verificar se possui bulbo
 - Cortar ponta do bulbo
 - Bulbo = células => DNA
- Tratar bulbo com proteinase K
 - Protease inespecífica: corta em resíduos com anel aromático
 - 50 minutos a 55°C
 - Inativar 10 minutos a 95°C
- Misturar com o mix da PCR e fazer a reação

O tubo da proteínase K já possui o volume indicado. Colocar o bulbo diretamente nele

Voltamos logo com mais informações sobre PCR

PCR - Reação em Cadeia da Polimerase

- Reação in vitro de amplificação de DNA
- "Equivalente" a uma replicação

Reação de PCR

Reagente	Volume	Concentração final
Água	11,25uL	
Tampão 10X	2,5uL	1X
10mM dNTPs	0,5uL	200uM de cada dNTP
Taq DNA polimerase (2U/uL)	0,25uL	0.05U/uL
Primer forward 50mM	0,25uL	0,5uM
Primer reverse 50mM	0,25uL	0,5uM
Template (DNA)	10,0uL	
Volume total	25,0uL	

Reação de PCR

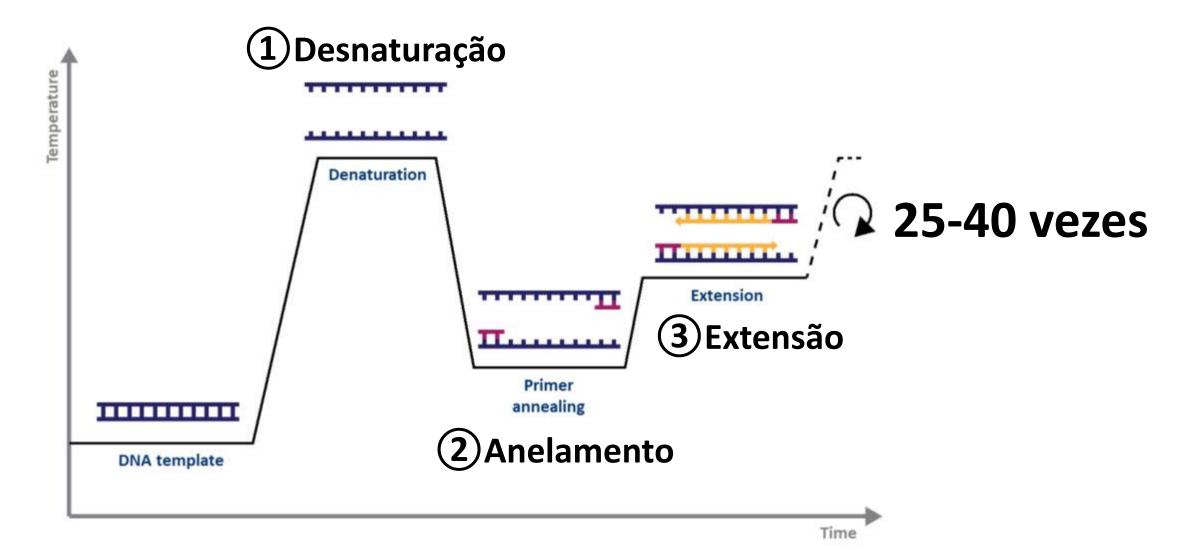
Reagente	Volume	Concentração final
Água	2uL	
Master Mix 2X	12,5uL	1X
Primer forward 50mM	0,25uL	0,5uM
Primer reverse 50mM	0,25uL	0,5uM
Template (DNA)	10,0uL	
Volume total	25,0uL	

Usaremos um master mix comercial: Go Taq (Promega): Tampão + Taq + dNTPs já vem misturados

Reação de PCR

Reagente	Volume	Concentração final
Água	2uL	
Master Mix 2X	12,5uL	1X
Primer forward 50mM	0,25uL	0,5uM
Primer reverse 50mM	0,25uL	0,5uM
Template (DNA)	10,0uL	
Volume total	25,0uL	

Usaremos um master mix comercial: Go Taq (Promega): Tampão + Taq + dNTPs já vem misturados


PCR x Replicação

Componente	Replicação	PCR
Template	Genoma	DNA de interesse Nesse caso próprio DNA de cada um
Polimerase	Holopolimerase	Subunidade α – Taq polimerase
Primer	RNA (feito pela primase)	DNA (síntese química)
Separar fitas	Helicase	Temperatura
Cofator	Magnésio	Magnésio
Substrato	dNTPs	dNTPs

Replicação x PCR

Enzima	Tem na PCR?	Por que?
DNA polimerase	PARCIALMENTE	Apenas a subunidade alfa
SSB	NÃO	Não precisa de SSB para proteger o DNA simples fita
Topoisomerase/girase	NÃO	Não precisa tirar a tensão de dsDNA, temperatura vai tornar ssDNA
Primase	NÃO	O primer é comprado (síntese química)
DNA ligase	NÃO	Não tem nicks de fragmentos de okazaki para ligar
Helicase	NÃO	Aumento de temperatura separa as fitas
Grampos deslizantes	NÃO	Não é essencial Existem algumas versões modificadas de polimerases onde um domínio de ligação ao DNA (Sso7d) é fusionado aumentando processividade

PCR

Desnaturação térmica – separação das fitas

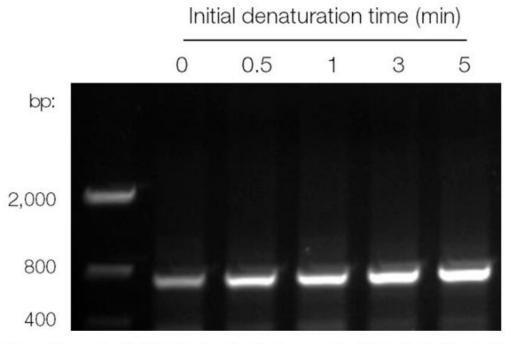
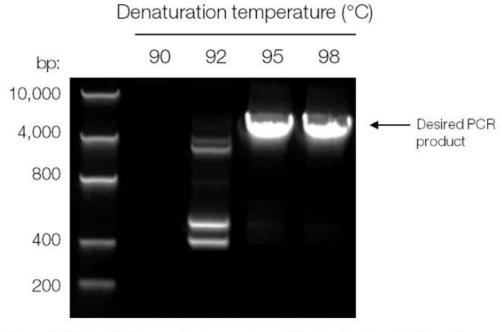



Figure 2. Increasing the initial denaturation time improves the PCR yield of a GC-rich, 0.7 kb fragment amplified from a human gDNA sample. The initial denaturation steps were set to 0, 0.5, 1, 3, and 5 minutes respectively.

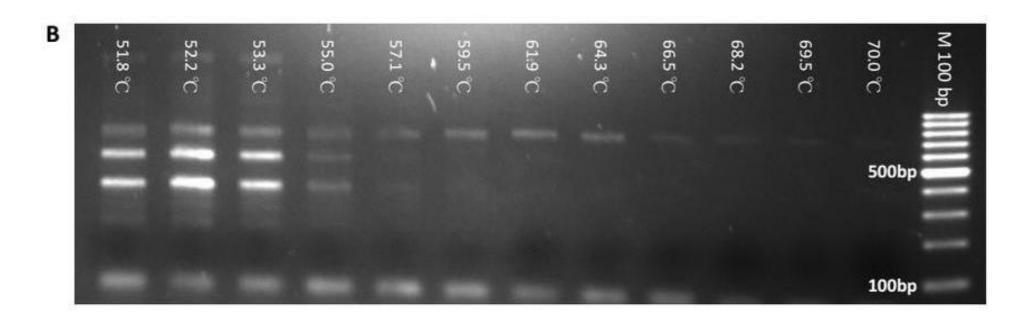
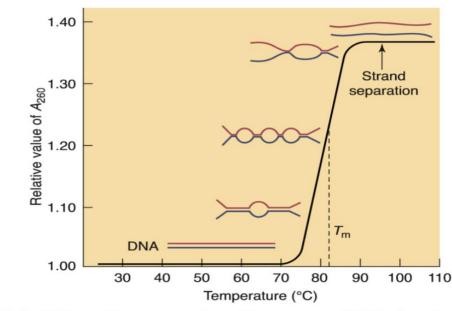


Figure 3. PCR results from varying temperatures of the denaturation step. Lower than recommended denaturation temperatures (e.g., 90°C and 92°C) result in poor amplification of a 5-kb fragment from lambda gDNA in these experiments.

Se não desnaturar adequadamente o primer não vai conseguir ligar

Anelamento

- Temperatura muito baixa: liga em locais inespecíficos
- Temperatura muito alta: diminui o rendimento



E como saber qual temperatura de anelamento usar?

E como saber qual temperatura de anelamento usar?

$$T_m = 2(A + T) + 4(C + G) - 7$$

- Primer 20 bases 50%GC: 53°C
- Extremos:
 - Primer 16 bases só AT: 25°C
 - Primer 22 bases só GC: 81°C
 - Ideal ter no mínimo 30% de GC e no máximo 80% de GC

FIGURE 4.4 DNA melting curve. A melting curve of DNA showing $T_{\rm m}$ (the melting temperature) and possible molecular conformations for various degrees of melting.

Três bases

Tamanho	Chance - Uma em:
1	4
2	16
3	64
4	256
5	1024
6	4096
7	16384
8	65536
9	262144
10	1048576
11	4.194.304
12	16777216
13	67108864
14	268435456
15	1073741824
16	4.294.967.296
17	17179869184
18	68719476736
19	274.877.906.944
20	1099511627776
21	4398046511104
22	17592186044416

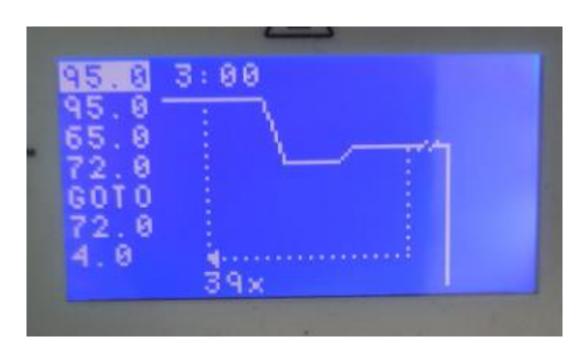
	Duas bases	
	1.AA	
	2.AT	
	3.AC	
Uma base	4.AG	
Ollia Dasc	5.TA	
1.A	6.TT	
2.T	7.TC	
3.C	8.TG	
4.G	9.CA	
	10.CT	
	11.CC	
	12.CG	
	13.GA	
	14.GT	
	15.GC	
	16.GG	


1.AAA	23.TTC	45.CGA
2.AAT	24.TTG	46.CGT
3.AAC	25.TCA	47.CGC
4.AAG	26.TCT	48.CGG
5.ATA	27.TCC	49.GAA
6.ATT	28.TCG	50.GAT
7.ATC	29.TGA	51.GAC
8.ATG	30.TGT	52.GAG
9.ACA	31.TGC	53.GTA
10.ACT	32.TGG	54.GTT
11.ACC	33.CAA	55.GTC
12.ACG	34.CAT	56.GTG
13.AGA	35.CAC	57.GCA
14.AGT	36.CAG	58.GCT
15.AGC	37.CTA	59.GCC
16.AGG	38.CTT	60.GCG
17.TAA	39.CTC	61.GGA
18.TAT	40.CTG	62.GGT
19.TAC	41.CCA	63.GGC
20.TAG	42.CCT	64.GGG
21.TTA	43.CCC	
22.TTT	44.CCG	

Tamanho	Chance - Uma em:
1	4
2	16
3	64
4	256
5	1024
6	4096
7	16384
8	65536
9	262144
10	1048576
11	4.194.304
12	16777216
13	67108864
14	268435456
15	1073741824
16	4.294.967.296
17	17179869184
18	68719476736
19	274.877.906.944
20	1099511627776
21	4398046511104
22	17592186044416

- Genoma bacteriano: 4 milhões de bases
- Genoma humano: 3 bilhões de bases
- Maior genoma conhecido: 149 bilhões de bases (Paris japônica)

• Primer de 22bp: 1 chance em 17 trilhões



- +3min
- 40X 3min
- +10min
- Total: 2h13min
- E esses 40 minutos extras?
 - Tempo de esquentar e esfriar entre os passos

7= 4.0° FOREVER 8= END

Combine DNA with PCR reagents Add oil

■ Enzyme == Sample DNA → Primers == Target

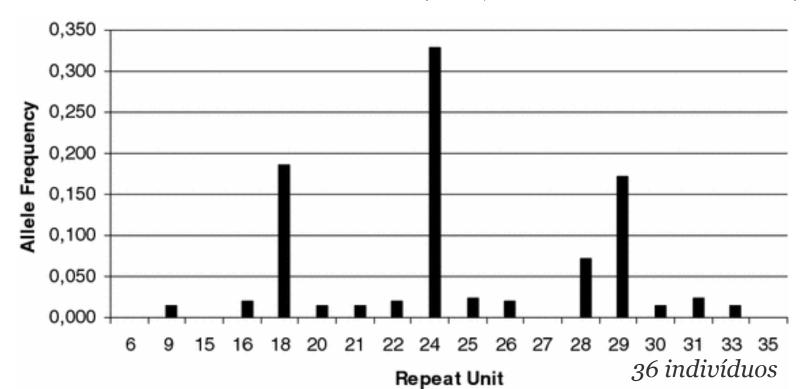
Heated lid pcr

E o que esperamos ver com a PCR de hoje?

E o que esperamos ver com a PCR de hoje?

Distribuição alélica do locus D1S80

E o que esperamos ver?


• Distribuição alélica do locus D1S80

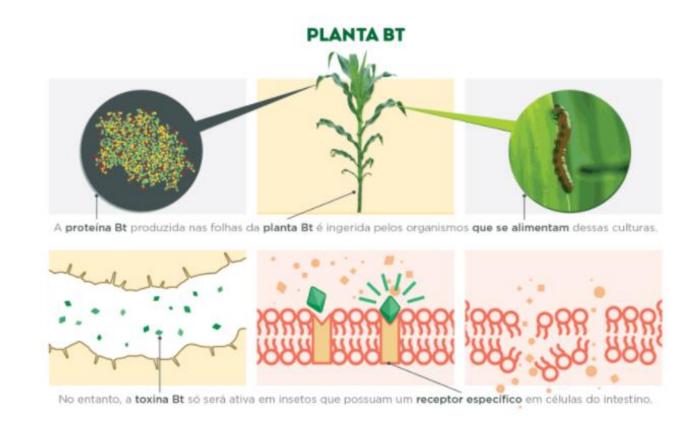
Alelos mais comuns:

24 repetições (Europa e Ásia)

21 repetições (África)

Normalmente entre 14 e 41 repetições (máximo conhecido 72 repetições)

Tamanho (bp)	Repetições
369	14
385	15
401	16
417	17
433	18
449	19
465	20
481	21
497	22
513	23
529	24
545	25
561	26
577	27
593	28
609	29
625	30
641	31
657	32
673	33
689	34
705	35
721	36
737	37
753	38
769	39
785	40
801	41


Exemplo de resultado esperado (Eu)

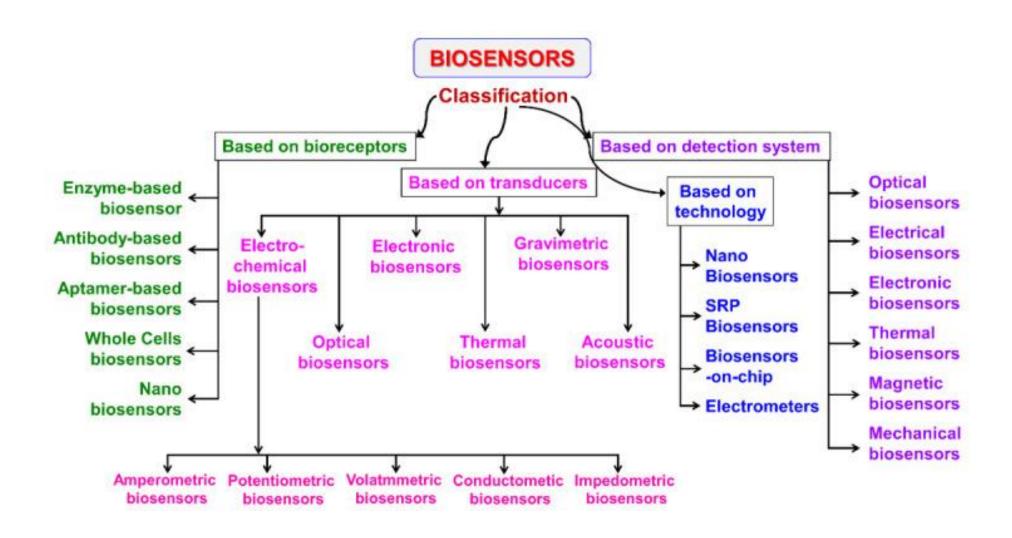
Outros exemplos de aplicação de PCR

Outros exemplos de aplicação de PCR

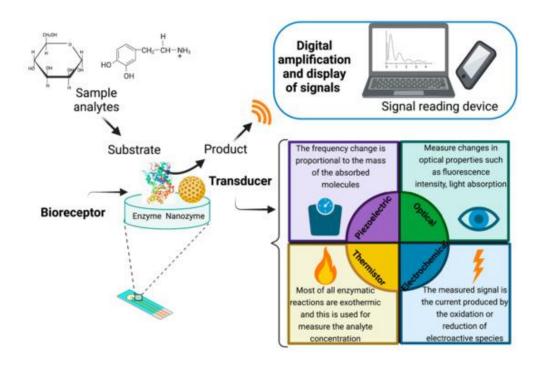
Produzir organismos transgênicos:

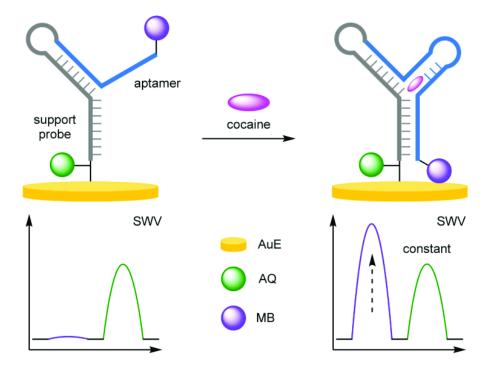
Exemplo Milho Bt
Expressão de proteínas que
matam insetos
provenientes de *Bacillus*thuringiensis no milho

Outros exemplos de aplicação de PCR


- Diagnóstico de inúmeras infecções:
 - HIV
 - Neisseria gonorrhoeae
 - Herpes
 - Treponema pallidum
 - Candida
 - Hepatite
 - Toxoplasma goondi
 - Etc....

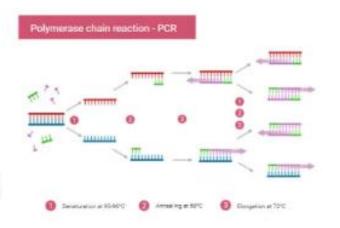
- Diagnóstico de mutações
 - JAK2 V617F (síndromes mieloproliferativas)
 - PMS2 (síndrome de Lynch)
 - Metilenotetraidrofolato redutase (Homocistinúria)
- Genotipagens


Aplicações voltadas para química


- Química verde:
 - Enzimas para catálise enzimática
 - Enzimas estereosseletivas
 - Lipases
 - Proteases
 - Amilases
 - Etanol 2° geração

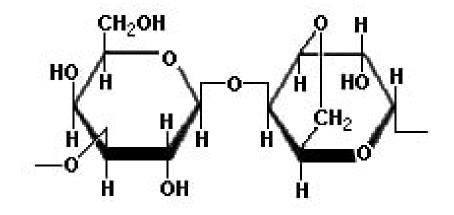
Biossensores

Biossensores

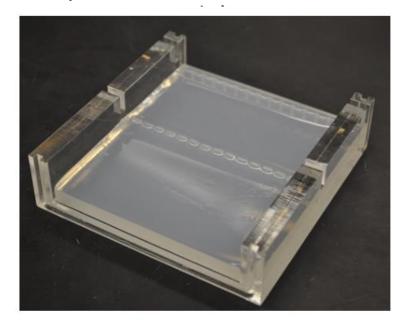

Existem diversas variações de PCR


- 1. AFLP PCR
- 2. Allele-specific PCR
- 3. Alu PCR
- 4. Assembly PCR
- 5. Asymmetric PCR
- 6. COLD PCR
- 7. Colony PCR
- 8. Conventional PCR
- 9. Digital PCR (dPCR)
- 10. Fast-cycling PCR
- 11. High-fidelity PCR
- 12. Hot-start PCR
- 13. In situ PCR
- 14. Intersequence-specific (ISSR) PCR
- 15. Inverse PCR
- 16. LATE (linear after the exponential) PCR
- 17. Ligation-mediated PCR
- 18. Long-range PCR

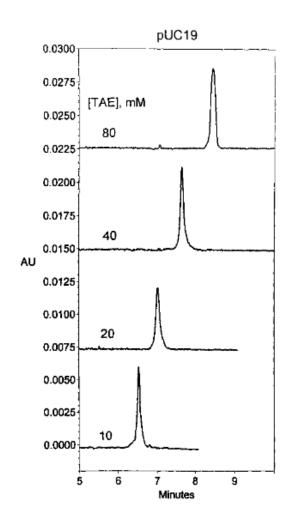
- 19. Methylation-specific PCR (MSP)
- 20. Miniprimer PCR
- 21. Multiplex-PCR
- 22. Nanoparticle-Assisted PCR (nanoPCR)
- 23. Nested PCR
- 24. Overlap extension PCR
- 25. Real-Time PCR (quantitative PCR or qPCR)
- 26. Repetitive sequence-based PCR
- 27. Reverse-Transcriptase (RT-PCR)
- 28. Reverse-Transcriptase Real-Time PCR (RT-qPCR)
- 29. RNase H-dependent PCR (rhPCR)
- 30. Single cell PCR
- 31. Single Specific Primer-PCR (SSP-PCR)
- 32. Solid phase PCR
- 33. Suicide PCR
- 34. Thermal asymmetric interlaced PCR (TAIL-PCR)
- 35. Touch down (TD) PCR
- 36. Variable Number of Tandem Repeats (VNTR) PCR

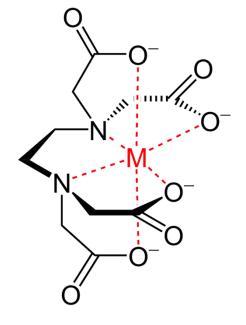

Aula prática – Gel de Agarose

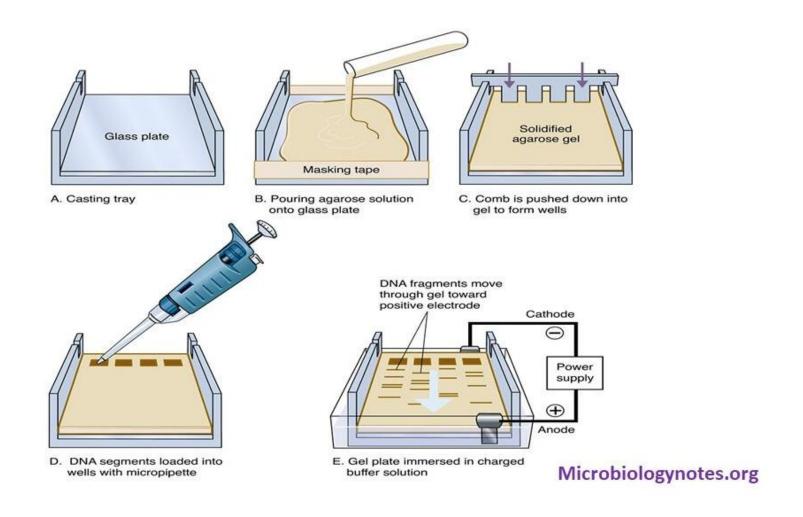
Gel de agarose

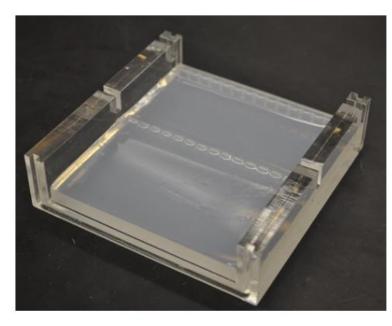

 Objetivo: separação de DNA para posterior determinação do tamanho em relações a padrões de tamanho conhecido

Agarose


- Em baixas temperatura: cadeias de agarose interagem por pontes de hidrogênio e interações eletrostáticas
 - Aquecimento: rompe essas interações
 - Resfriamento: cadeias voltam a interagir e solidifica novamente

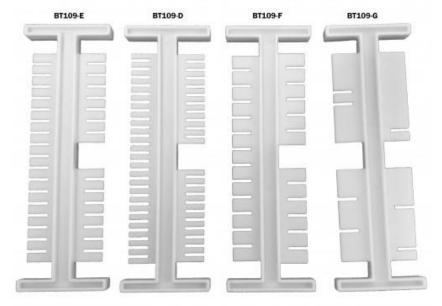

D-galactose e 3,6-anidro-Lgalactopiranose Repetido cerca de 400X na

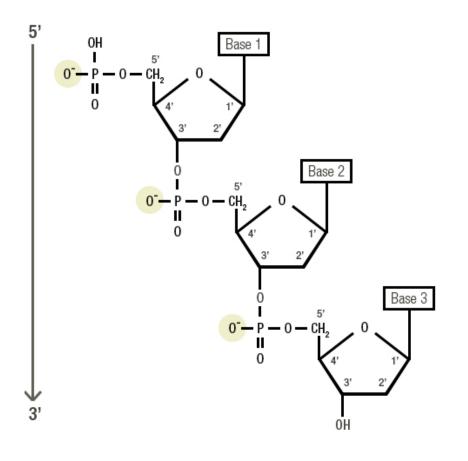

Gel de agarose é feito em tampão!

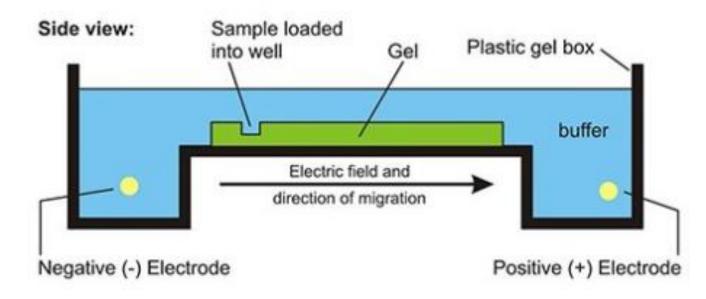


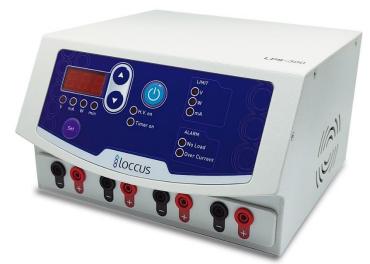
- Água pura não conduz eletricidade
- TAE buffer Tris-Acetato-EDTA
 - Tris-Acetato: manter pH8.3
 - EDTA: quelante
 - Da mesma forma que polimerase usa Magnésio, muitas enzimas que degradam DNA também usam magnésio
- TBE
 - Tris-Ácido Bórico-EDTA
 - Tampona melhor
 - Melhor para fragmentos pequenos
 - Mais caro
 - Mais lento de correr
 - Pode inibir enzimas com DNA extraído do gel
 - Solução estoque precipita

Preparo do gel de agarose

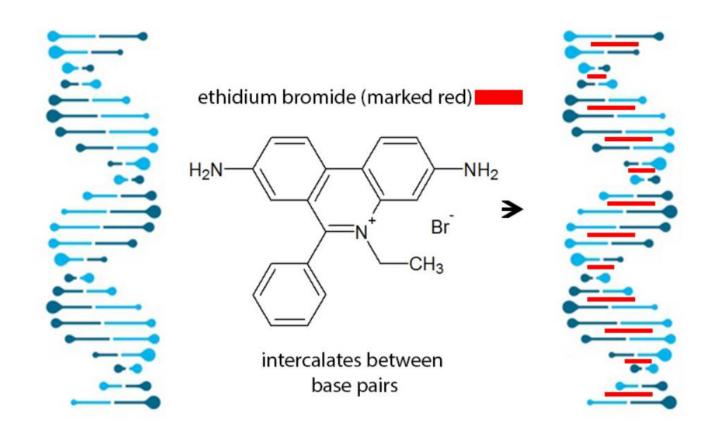



Diferentes tamanhos


Cat. No.†	Description	Thickness / Width of Teeth	RECOMMENDED LOADING VOLUMES Calculated at 75% of total well volume			
			0.25cm gel thickness	0.5cm gel thickness	0.75cm gel thickness	1.0cm gel thickness
A1-8C	Standard 8-tooth comb	1.0mm / 13.9mm	10µL	36µL	63µL	89µL
A1-8D	Standard 8-tooth comb	1.5mm / 13.9mm	16µL	55µL	95µL	133µL
A1-12C	Standard 12-tooth comb	1.0mm / 8.7mm	7µL	23µL	39µL	55µL
A1-12D	Standard 12-tooth comb	1.5mm / 8.7mm	10µL	34µL	59µL	83µL
A1-16C	Standard 16-tooth comb	1.0mm / 6.1mm	5µL	16µL	27µL	39µL
A1-16D	Standard 16-tooth comb	1.5mm / 6.1mm	7μL	24µL	41µL	58µL
A1-20C	Standard 20-tooth comb	1.0mm / 4.5mm	3µL	12µL	20µL	29µL
A1-20D	Standard 20-tooth comb	1.5mm / 4.5mm	5µL	18µL	30µL	43µL
A1-24C	Standard 24-tooth comb	1.0mm / 3.5mm	3µL	9µL	16µL	22µL
A1-24D	Standard 24-tooth comb	1.5mm / 3.5mm	4µL	14µL	24µL	33µL
A1-MTC‡	Micro well 14 (1X) tooth comb	1.0mm / 7.2mm	5µL	19µL	32µL	46µL
A1-MTD‡	Micro well 14 (1X) tooth comb	1.5mm / 7.2mm	8µL	28µL	49µL	69µL
A1-RL-9C‡	Rapid load 9 (1X) tooth comb	1.0mm / 7.2mm	5µL	19µL	32µL	46µL
A1-RL-9D‡	Rapid load 9 (1X) tooth comb	1.5mm / 7.2mm	8µL	28µL	49µL	69µL
A1-RL-25C‡	Rapid load 25 (2X) tooth comb	1.0mm / 2.5mm	2µL	7μL	12µL	17µL
A1-RL-25D‡	Rapid load 25 (2X) tooth comb	1.5mm / 2.5mm	3µL	11µL	18µL	26µL
A1-PREP	Prep 2-tooth comb	1.5mm / 117 / 5mm	130 / 6µL	455 / 20µL	775 / 34µL	1100 / 48µL
A1-WALL	Wall 1-tooth comb	1.5mm / 130mm	_	_	_	_



DNA – Do polo negativo ao positivo

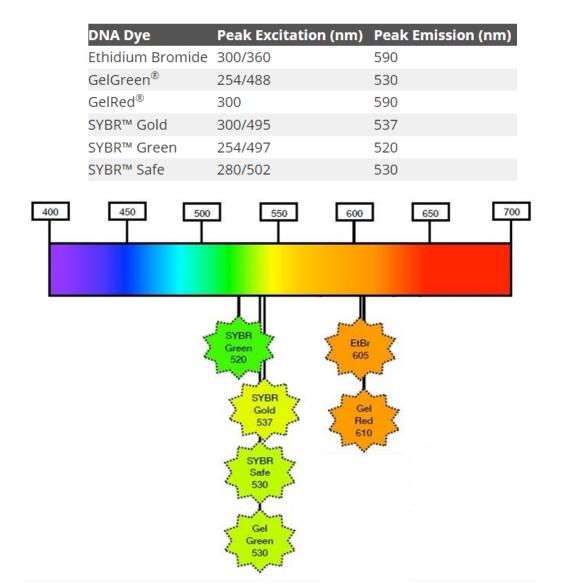


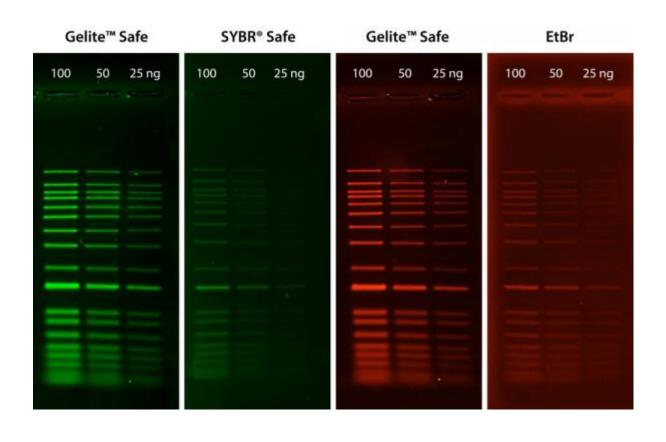
Qual voltagem correr?

- 5 a 10V para cada centímetro de distância entre os eletrodos. (<5kb)
- 1 a 3V para cada centímetro de distância entre os eletrodos. (>5kb)

E como conseguimos ver o DNA no gel?

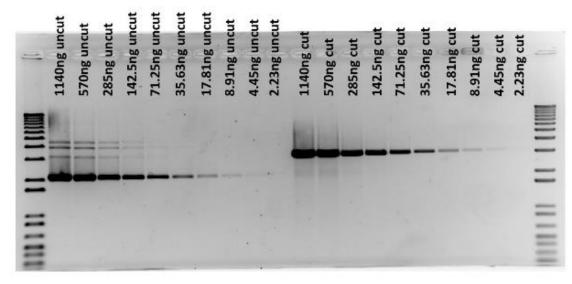
Transiluminador

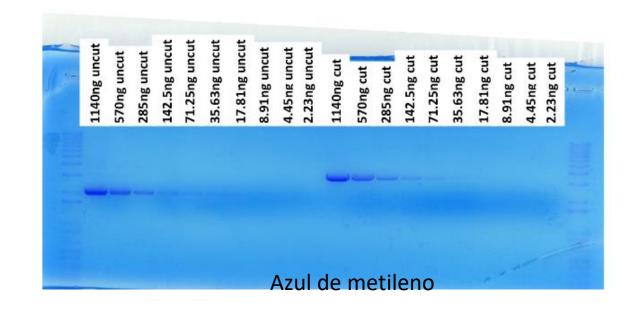


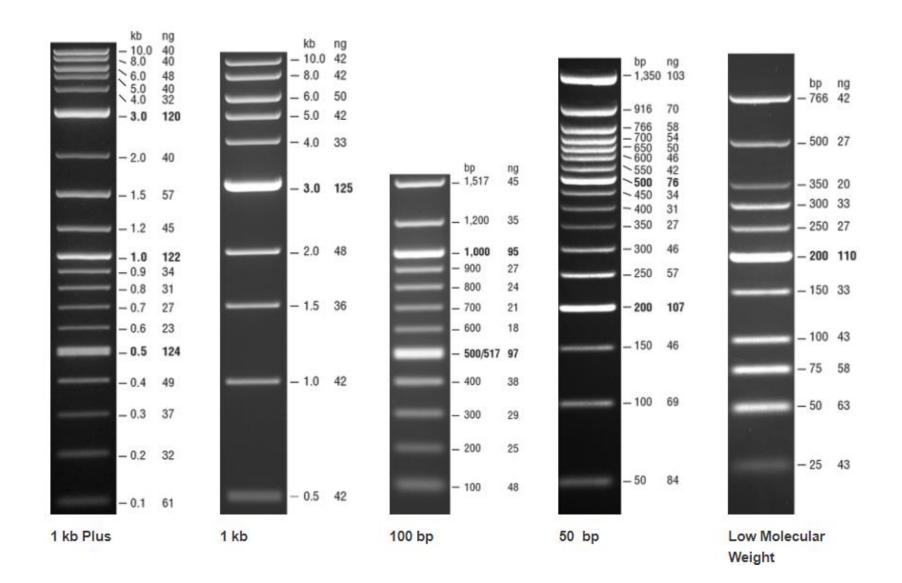



UV: ±254 - 365nm

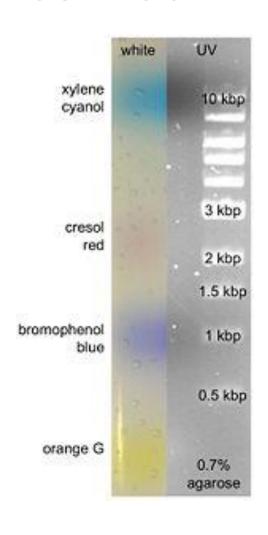
Alternativas ao brometo de etídio




Alternativas ao brometo de etídio


Violeta genciana

Brometo de etídio

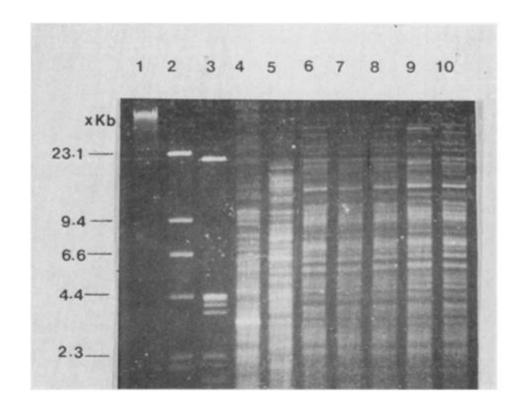


Como determinar o tamanho das bandas?

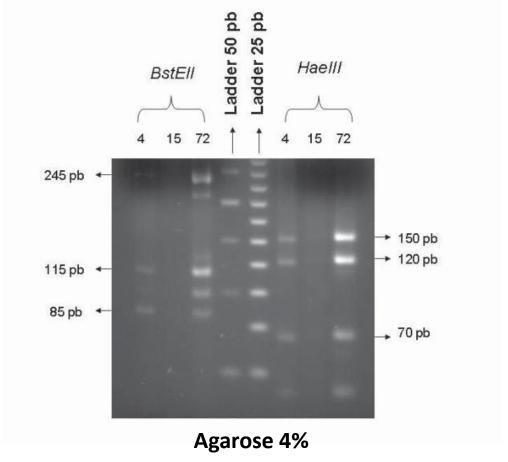
E como saber o quanto já correu durante a corrida?

E como saber o quanto já correu durante a corrida?

- Corantes: ter noção de quanto a amostra correu
- Amostra não pode estar apenas em água:
 - Mesma densidade iria se dispersar
- Aumento da densidade:
 - Glicerol
 - Sacarose
 - Ficoll

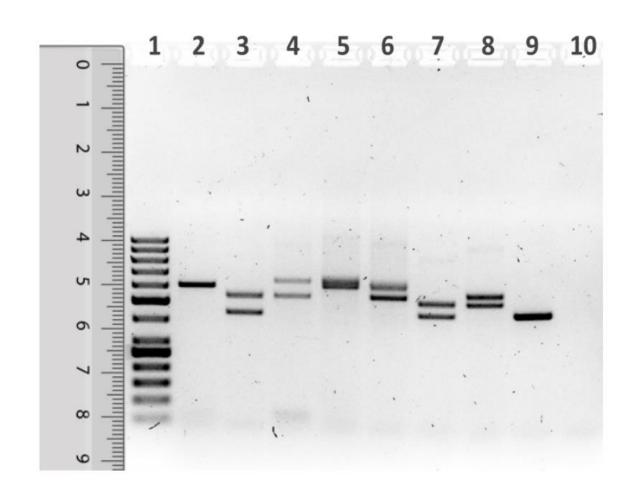

Concentração ideal de agarose

		Approximate positions of tracking dyes, bp*				
Agarose gel, %	Range of effective separation, bp	Bromophenol blue		Xylene cyanol FF		
		TBE buffer	TAE buffer	TBE buffer	TAE buffer	
0.5	2000-50000	750	1150	13000	16700	
0.6	1000-20000	540	850	8820	11600	
0.7	800-12000	410	660	6400	8500	
0.8	800-10000	320	530	4830	6500	
0.9	600-10000	260	440	3770	5140	
1.0	400-8000	220	370	3030	4160	
1.2	300-7000	160	275	2070	2890	
1.5	200-3000	110	190	1300	1840	
2.0	100-2000	65	120	710	1040	
3.0	25-1000	30	60	300	460	
4.0	10-500	18	40	170	260	
5.0	10-300	12	27	105	165	


Concentração ideal de agarose

Ex: Diferenciação de cepas usando métodos diferentes que usam concentrações

diferentes de agarose



Agarose 0,5%
Cromossomo digerido com HaellI

PCR-restriction enzyme pattern analyses

Para o relatório:

С9	*	: × ✓ j	ž =LOG10(AS	9)
4	Α	В	С	D
1	Size (bp)	Distance (cm)	log ₁₀ (bp)	
2	1000	4.0	3.00	
3	900	4.2	2.95	
4	800	4.4	2.90	
5	700	4.7	2.85	
6	600	5.0	2.78	
7	500	5.4	2.70	
8	400	5.7	2.60	
9	300	6.3	2.48	
10				

Exemplo de resultado esperado (Eu)

