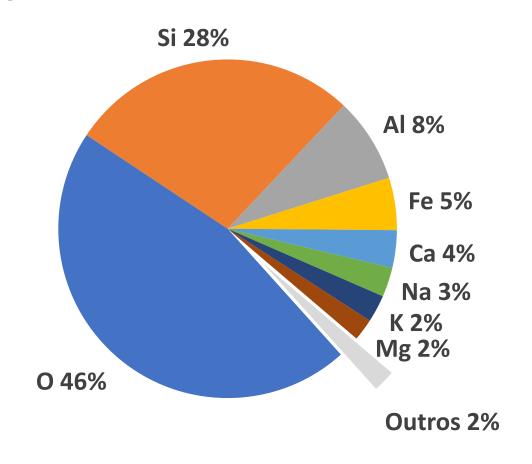


Introdução à Hidratação e Microestrutura do Cimento Portland

Objetivos da aula


- Compreender como o cimento endurece e o papel da porosidade no desempenho no longo prazo
 - os mecanismos de endurecimento do cimento
 - Como a hidratação do cimento afeta a porosidade da pasta
 - Correlacionar a microestrutura com o comportamento de concretos

Revisão

- Quais são as matérias primas do clínquer?
- O que são adições?
- Quais são as diferenças entre cimento CP II F e o CP V?

Elementos químicos do clínquer e a composição da crosta terrestre

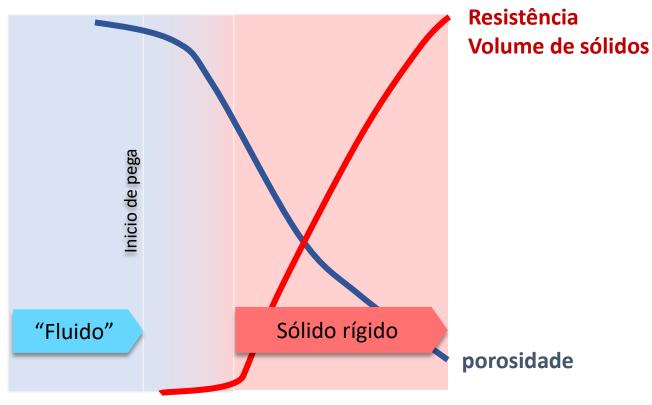
~98% da composição da crosta terrestre

Revisão:

De micropartículas para macro sólido poroso dos grãos de ligante

de novo sólido continuo com geometria da forma

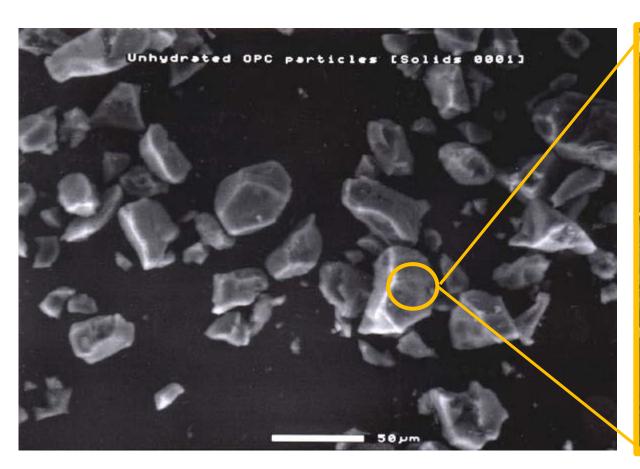
Endurecimento do Cimento

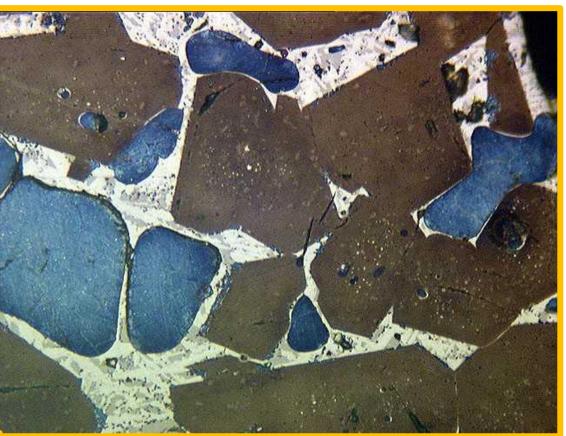

Hidratação: reação quimica com a água

aumento do volume de sólidos causa contato "molecular" entre cristiais

Mistura Tempo HR>95, T> 4°C

Hidratação: aumento progressivo do volume de sólidos




Tempo de reação de hidratação

A água quimicamente combinada (evapora >> 100°C) é responsável pela redução de porosidade e ganho de resistência

Grãos de clínquer (<50 µm) tem múltiplas fases

Hidratação do clínquer – como ocorre?

Grão de cimento anidro

> Alita (C_3S)

Belita (C_2S)

Aluminato de cálcio (C_3A)

Ferroaluminato de cálcio (C₄AF)

Dissolução em água

pH>12.4

Ca²⁺

 $H_2SiO_4^{2-}$

 $AI(OH)_4$

OH-

SO₄2-

CO₃²⁻

Precipitação (hidratados)

C-S-H

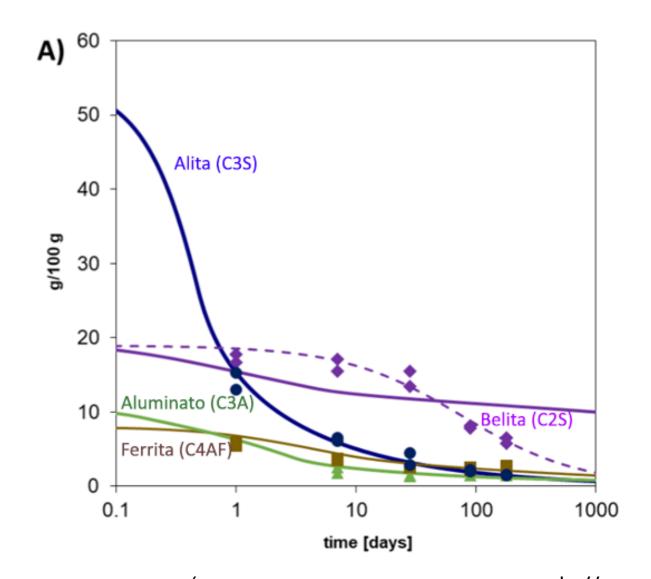
Silicato de cálcio hidratado

CH - portlandita

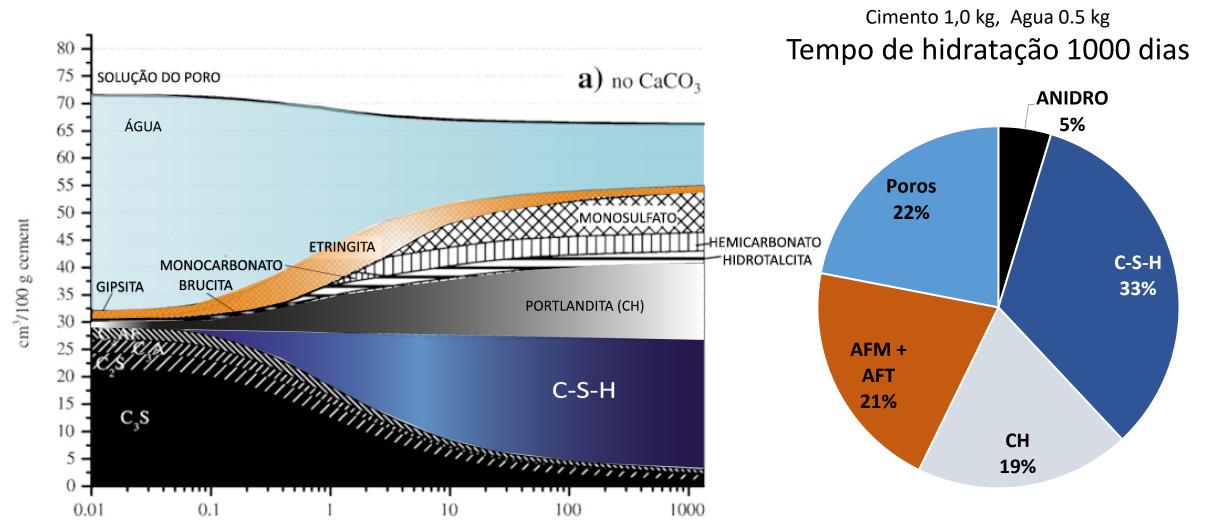
Hidróxido de cálcio

Trisulfo-aluminatos (etringita)

Monosulfo - aluminatos


"AFm phases in hydrated cement is monosulfate and by far the most common AFt phase is ettringite."

C-CaO $S-SiO_2$ $A-AI_2O_3$ $H-H_2O$ $\check{S}-So_3$


Fonte - Profa Karin Scrivener

Hidratação: fases do clínquer são consumidas

Formação de hidratados (a partir do clínquer + sulfato)

hydration time Jdays]

Hidratação do cimento $(C_3S e C_2S) + H_2O = xC-S-H + nCH + Calor$

C₃S ~0,65 g/g Rápida

$$2C_3S + 6H \rightarrow \approx C_3S_2H_3 + 3CH$$

C₂S ~0,15 g/g *Lenta*

$$2C_2S + 4H \rightarrow \approx C_3S_2H_3 + CH$$

C_n**-S**_x**-H**_y - silicato de cálcio hidratado

- principal fase hidratada principal produto
- estequiometria variável de acordo com os reagentes e espaço disponível
- Espaço inter-lamelar acumula quantidade variável de água

CH – hidróxido de cálcio

$$C - CaO S - SiO_2 A - Al_2O_3 \qquad H - H_2O \check{S} - SO_3$$

Calor é liberado

Hidratação do cimento (C₃A + Gipsita)

$$C_3A + 3C\check{S}H_2$$
 (~0,20 g/g)
 $C_3A + 3C\check{S}H_2 + 26H \rightarrow C_6A \check{S}_3H_{32}$ (etringita)
 $C_6A \check{S}_3H_{32} + 2 C_3A + 22H \rightarrow 3C_4A \check{S}H_{18}$ (monosulfato)
 $C_3A + C\check{S}H_2 + 16H \rightarrow C_4A \check{S}H_{18}$ (monosulfato)

- C₃A (Sem gipsita): reação imediata
 - $C_3A + xH \rightarrow C_3AH_6$, C_3AH_6 ou C_2AH_8

$$C-CaO$$
 $S-SiO_2$ $A-AI_2O_3$ $H-H_2O$ $\check{S}-So_3$

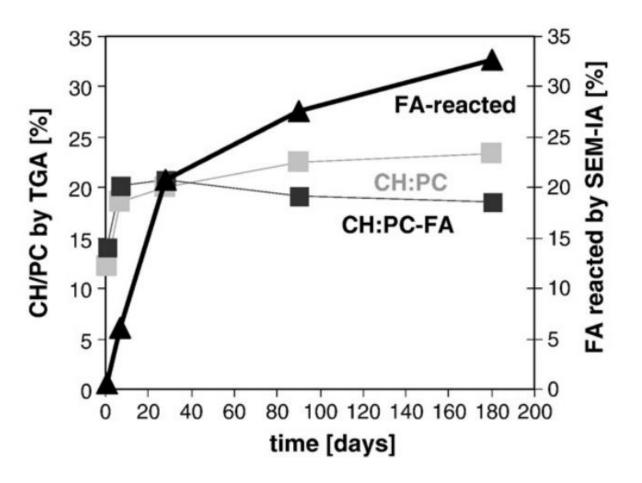
Reação pozolânica (Si Amorfo)

C₃S e C₂S hidratam precipitando CH (hidróxido de cálcio) pH> 12,4 torna sílica amorfa da pozolana solúvel a temp ambiente

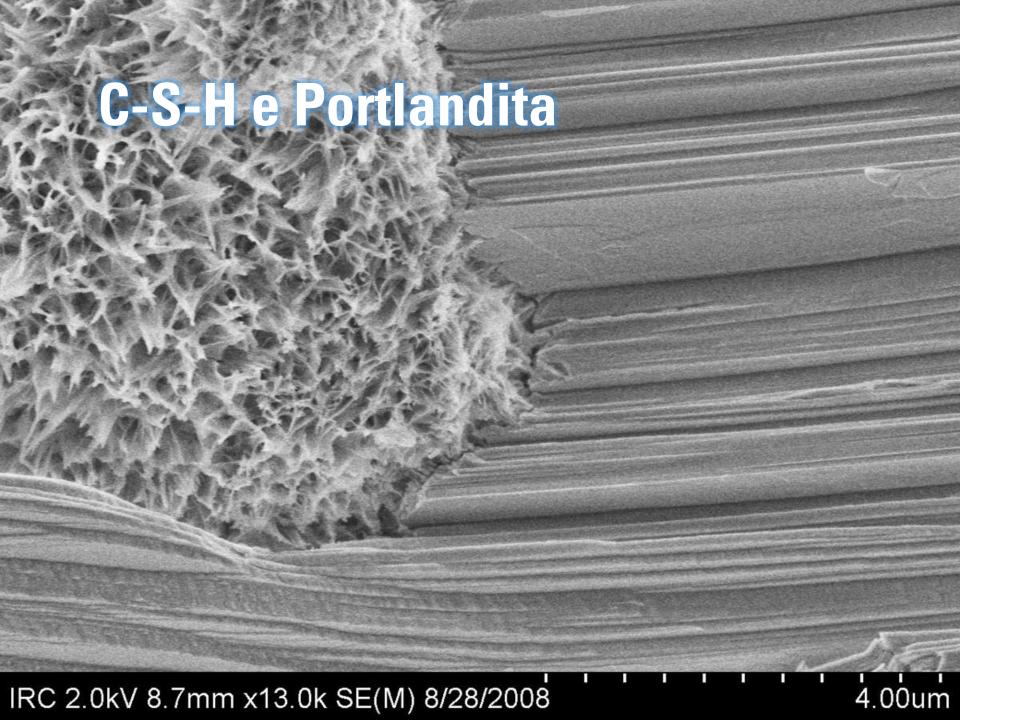
$$3CH + 2S \rightarrow C_3S_2H_3$$

Pozolanas reduzem CH e aumentam C-S-H Reação **lenta**, refinam porosidade

$$C-CaO$$
 $S-SiO_2$ $A-Al_2O_3$ $H-H_2O$ $\check{S}-So_3$

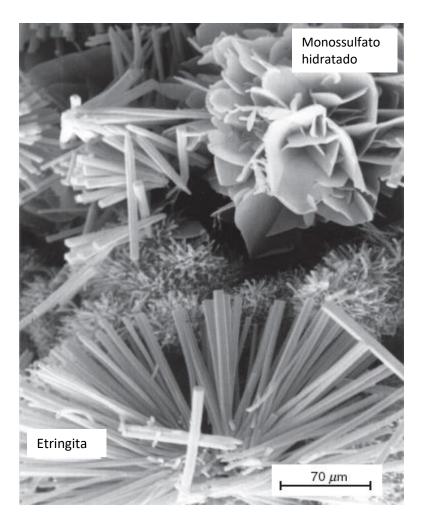

Efeito das Escórias e Pozolanas nos hidratados

- Redução de CH e aumento do C-S-H
- Redução do razão C/S do C-S-H
- Alumínio nas adições
 - C-S-H transformado em C-(A-)S-H
 - Aumento teor de aluminatos como (hidrogranada)
 - C₃AH₆
 - C₃AH₁₀
- Parte significativa das adições não hidrata, mesmo em longas idades



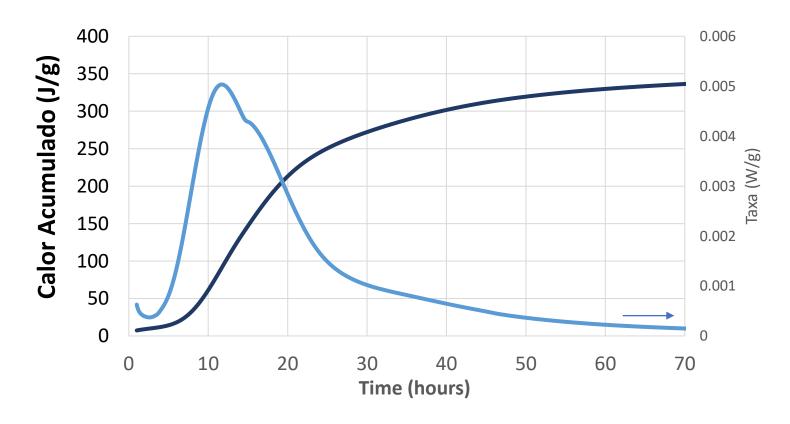
Exemplo de reação de cinza volante

- Pouca reação até 28 dias
- 1/3 após 200 dias



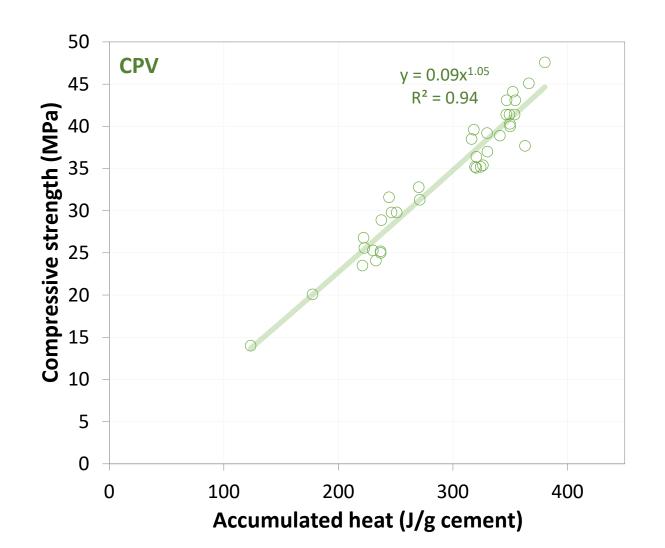
Cimento hidratado: Solido multifásico

- Poros
- C-S-H
- CH
- Etringita
- •


A microestrutura é complexa.

Hidratação do cimento é exotérmica

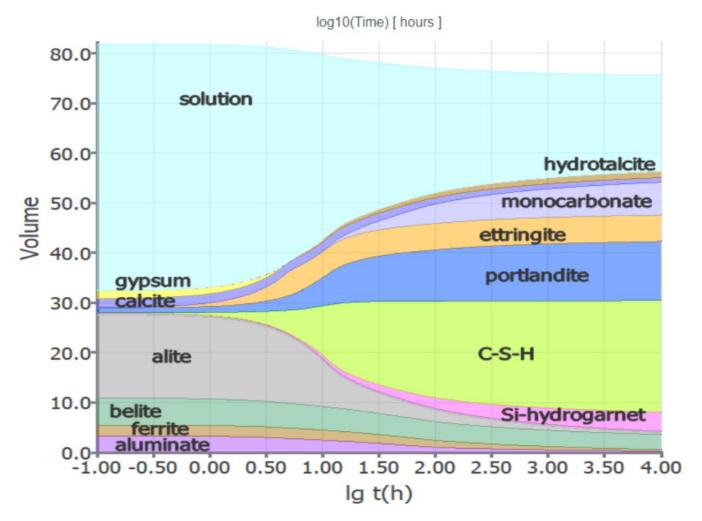
Calorimetria isotérmica (23°C)

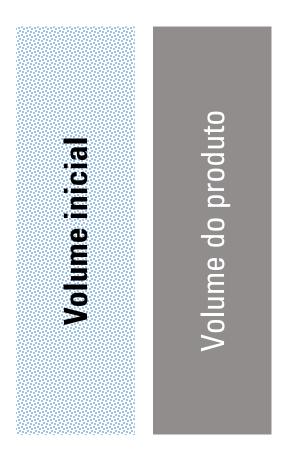


Quantidade de liberado f(quantidade de reação química)

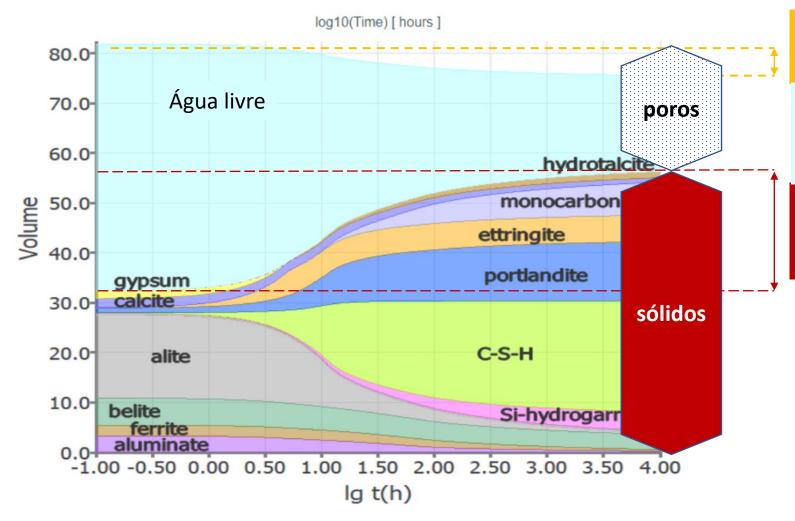
Calor liberado x Resistência à Compressão (argamassas 1:3:0,48)

Pedro Abrão (2021) - Dados de cimentos Brasileiros

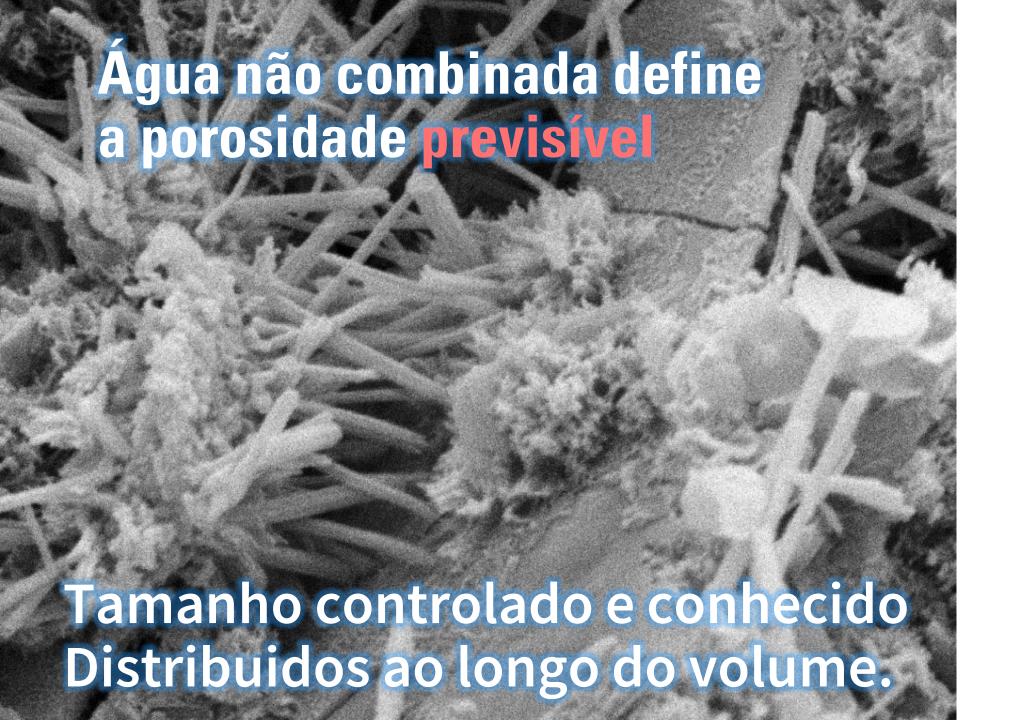

Exercício de revisão


https://forms.gle/GFY4P3eSFsPgMtan6

Microestrutura


Fração volumétrica de fases ao longo do tempo

Fração volumétrica de fases ao longo do tempo

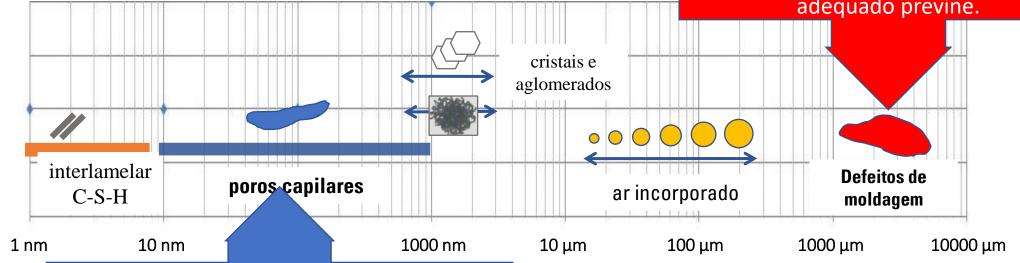


Retração Volumétrica Química

Excesso de água (necessário para trabalhabilidade)

Aumento do volume de sólidos p/hidratação

Água de reação química (contrai ao entrar no solido)



Poros na pasta de cimento

Imprevisíveis:

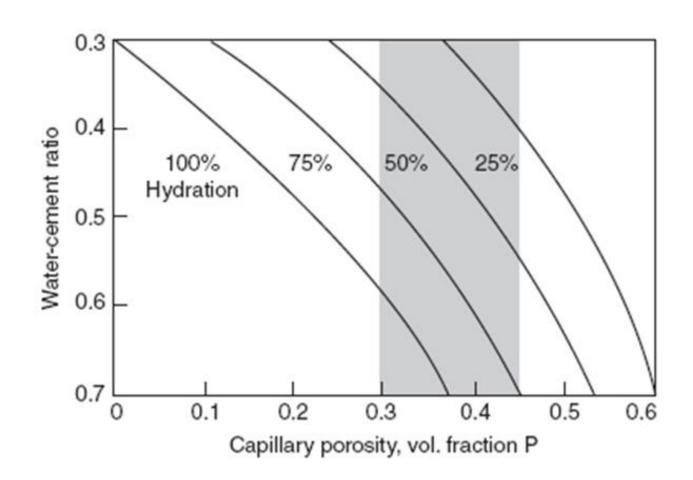
Defeitos localizados podem causar falhas catastróficas.

Comportamento reológico adequado previne.

Previsíveis:

Volume manipulado para obter resistência mecânica de projeto

Defeitos de moldagem

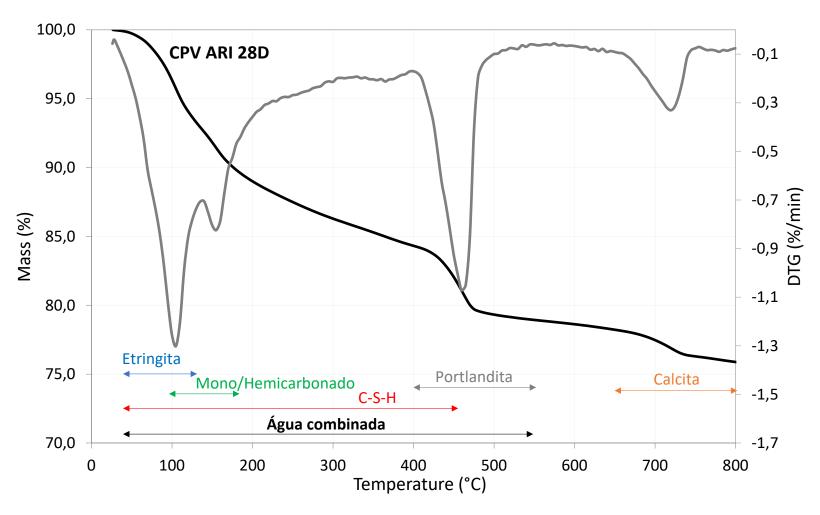

- Localização imprevisível
- Tamanho pouco previsível

Consequências destes defeitos?

Agua para hidratar: 0,2-0,3 g/g de cimento Excesso gera porosidade.

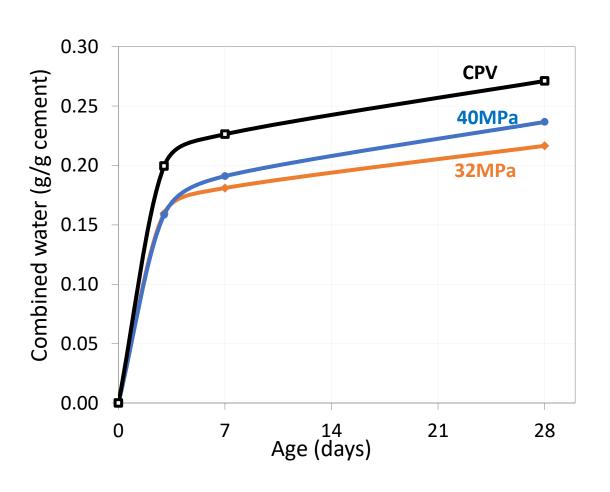
Porosidade capilar influencia:

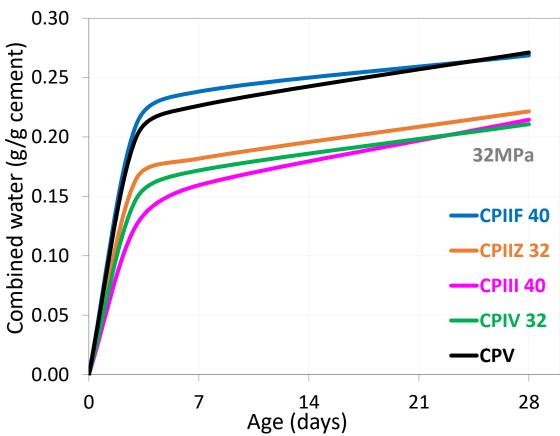
- Resistência mecânica
- Módulo de elasticidade
- Estabilidade dimensional
- Permeabilidade (e durabilidade)

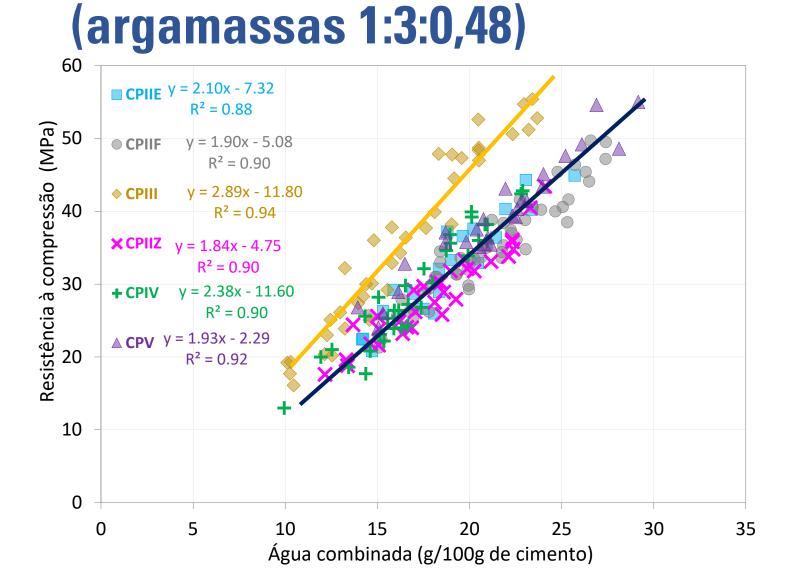


Estimativa da água combinada

$$C_w = \frac{m_{50^{\circ}C} - m_{550^{\circ}C}}{m_{550^{\circ}C}}$$


Onde,


- Cw é água combinada (g/g de cimento)
- M_{x°C} é a massa na temperatura indicada


Água combinada Diferente tipos e classes de cimentos

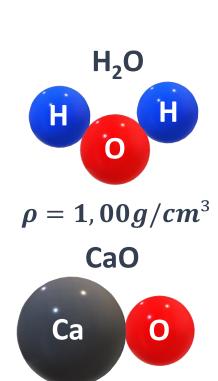
Modelagem da água combinada x Resistência à Compressão

Leitura obrigatória

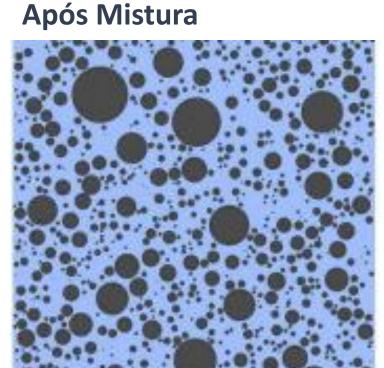
- Mehta; Monteiro
 - Item 6.3 Hidratação do Cimento Portland em.. P.216-23
 - Item 2.5 Microestrutura da Pasta de Cimento Hidratada. P.26-41
 - Item 2.6 Zona de transição no Concreto P.41-46

Estimando a porosidade do cimento hidratado

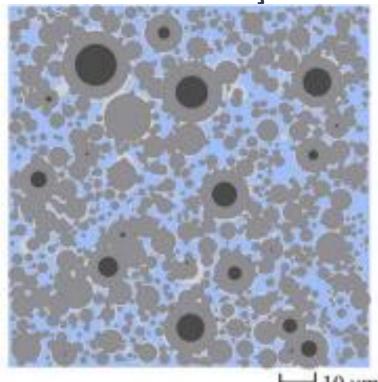
Porosidade previsível. A formulação do concreto varia a porosidade capilar para controlar a resistência e outras propriedades relevantes do concreto.


Porosidade

• Fração do volume total que é constituída de poros v/v (ex 0,1 cm³/cm³, ...) ou 100*v/v (10%)


$$p = \frac{V_p}{V_t} = \frac{V_p}{V_S + V_p}$$

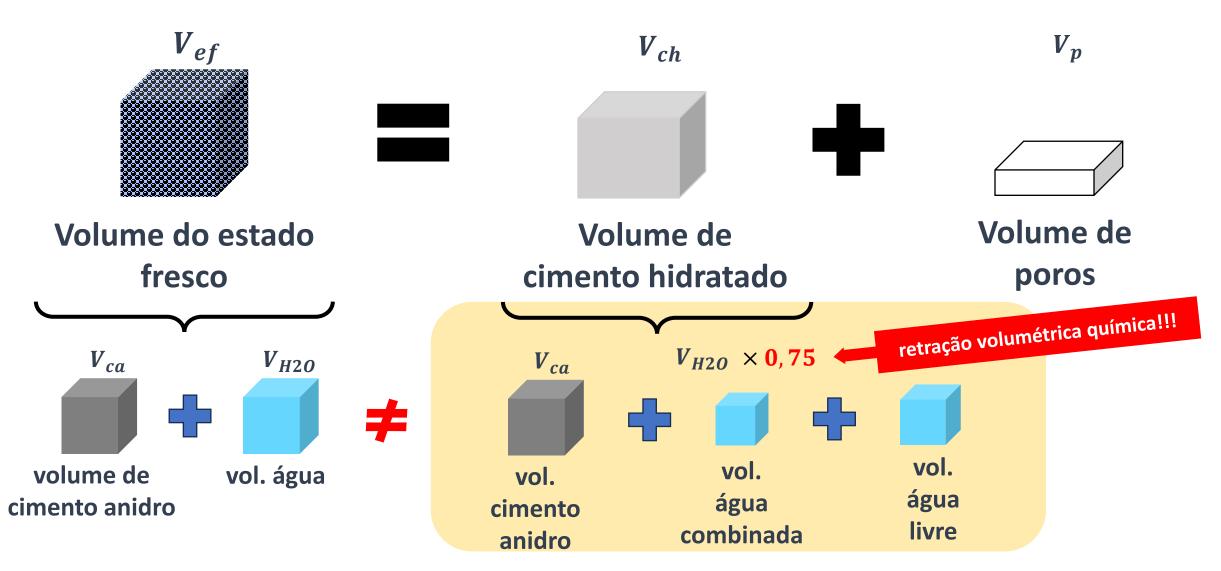
- Vp –volume de poros
- Vs = volume de sólidos
- Vt = volume total


Como estimar a porosidade da pasta (e controlar RC)?

 $\rho = 3{,}34g/cm^3$

28 dias de hidratação

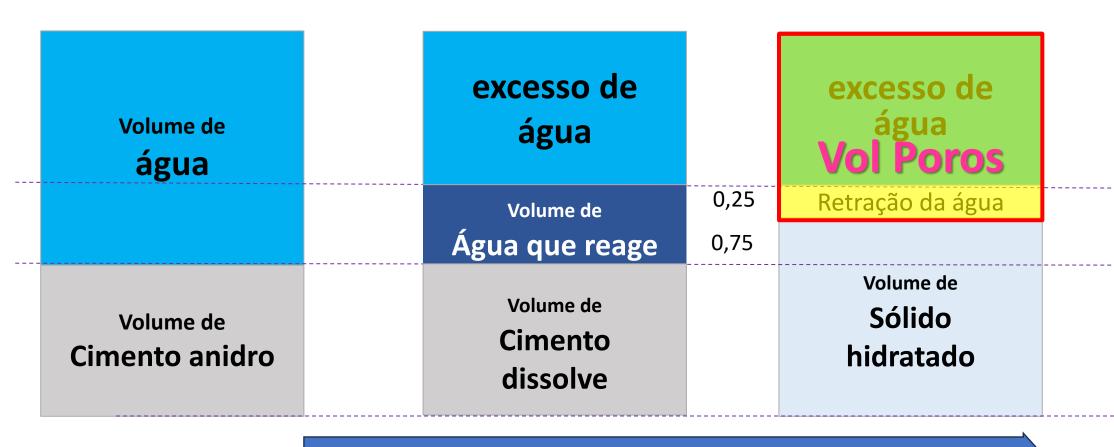
A água de reação diminui ~25% de seu volume após hidratação


 $Ca(OH)_2$

anidro; hidratado; água

 $\rho = 2,21g/cm^3$

Como estimar a porosidade da pasta (e controlar RC)?



Transição de Vol suspensão -> Vol solido

Excesso de Excesso de água água Volume de água 0,25 Retração da água Volume de Agua que reage 0,75 Sólido Volume de Volume de hidratado **Cimento** Cimento anidro dissolve

Transição de Vol suspensão -> Vol solido

Estimando porosidade da pasta de cimento 1:0,5 (cimento:água)

- Formulação da pasta :
 - 1,00 kg de cimento
 - 0,50 kg de água
- Água combinada com o cimento: 0,2g/g de cimento
- (~100% de hidratação do cimento para cimento CP 32)
- Densidade das fases:
 - Cimento anidro $\approx 3,10 \frac{g}{cm^3}$
 - Água $\approx 1,00 \frac{g}{cm^3}$
 - Agregados naturais $\approx 2,60 \frac{g}{cm^3}$

Transformando massa em volume

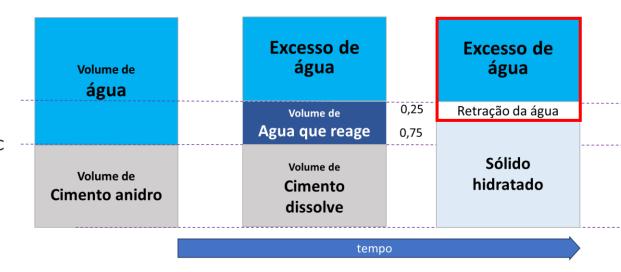
Massa

Densidades

Madeira: 0,7 t/m³

0,7t ocupam 1 m³ 2t ocupam 2,8 m³

Cimento: 3 t/m³


3t ocupam 1 m³ 2t ocupam 0,66m³

$$V = \frac{M}{\rho} \left(\frac{g.cm^3}{g} \right)$$

Calculo dos volumes

- Volume total de água V_h
- Volume de cimento anidro V_{ca}
- Volume Total da Mistura (V_t)
- Volume da água combinada que reage V_{hc}
- Volume de contração da água combinada (0,25*V_{hc})
- Volume do solido hidratado (V_{sh})
- Volume total de poros (V_p)
- Porosidade total (p)

Estimando porosidade da pasta de cimento 1:0,5 (cimento:água) (0,2 g/g de agua combinada)

SOLUÇÃO

1° Etapa – calcular o volume total do estado fresco

$$V_t = V_{cim a} + V_{H_2O}$$

1kg cimento ---> X dm³ de cimento

Estimando porosidade da pasta de cimento 1:0,5 (cimento:água) (0,2 g/g de agua combinada)

1° Etapa – calcular o volume do estado fresco

$$V_{t} = \left(\frac{1000 \text{ g}}{3,1 \text{ g/cm}^{3}}\right) + \left(\frac{500 \text{ g}}{1 \text{ g/cm}^{3}}\right)$$

$$V_{t} = 322,58 \text{cm}^{3} + 500 \text{cm}^{3} = 822,58 \text{cm}^{3}$$

$$V_{t} = 0,82 \text{d}m^{3} \times \frac{1 \text{dm}^{3}}{10000 \text{cm}^{3}}$$

Desprezamos o ar aprisionado. Como ele poderia ser considerado?

Estimando porosidade da pasta de cimento 1:0,5 (cimento:água) (0,2 g/g de agua combinada)

2° Etapa – calcular o volume de pasta hidratada

$$V_h = V_{ca} + V_{hc} - 0.25 V_{hc}$$
 Contração da água que vira solido

 V_{ca} = Vol cimento anidro - V_{hc} = Vol água combinada

$$V_{sh} = \left(\frac{m_{ca}}{\rho_{ca}}\right) + 0.75 \left(\frac{m_{H20}}{\rho_{H20}}\right)$$

$$V_{sh} = \left(\frac{1000 \text{ g}}{3,1 \text{ g/cm}^3}\right) + 0.75 \left(\frac{200 \text{ g}}{1 \text{ g/cm}^3}\right)$$

Estimando porosidade da pasta de cimento 1:0,5 (cimento:água) (0,2 g/g de agua combinada)

2° Etapa – calcular o volume de pasta hidratada

$$V_{sh} = \left(\frac{1000 \text{ g}}{3,1 \text{ g/cm}^3}\right) + \left(\frac{200 \text{ g}}{1 \text{ g/cm}^3}\right) \times 0,75$$

$$V_{sh} = 322,58 \text{cm}^3 + 150 \text{cm}^3 = 472,58 \text{cm}^3 \times \frac{1 \text{dm}^3}{1000 \text{cm}^3}$$

$$V_{sh} = 0,47 \text{ dm}^3$$

Estimando porosidade da pasta de cimento 1:0,5 (cimento:água) (hc=0,2 g/g de agua combinada)

SOLUÇÃO

3° Etapa – calcular o volume de poros

$$V_p = V_t - V_h = 0.82 \,\mathrm{dm^3} - 0.47 \,\mathrm{dm^3} = 0.35 \,\mathrm{dm^3}$$

4° Etapa – calcular a porosidade

$$P = \frac{V_p}{V_t} = \frac{0,35 \text{ dm}^3}{0,82 \text{ dm}^3} = 0,43 \text{ dm}^3/\text{dm}^3$$

Na pratica porosidade é maior que a estimada: defeitos de moldagem + ar incorporado

Poros capilares x gel

- Poros capilares maiores dimensões, entre cristais
 - Definem a resistência mecânica
 - Transporte de agentes agressivos
 - Fração volumétrica pode ser controlada
- Poros do Gel dimensões muito pequenas
 - Não influenciam a resistência significativamente
 - Fazem parte da microestrutura
 - Agua adsorvida no C-S-H
 - Dificilmente secam em temperaturas ambiente

Estimando poros do gel

- Poros do gel são uma fração do volume do sólido hidratado.
- Dependem da quantidade de cimento e sua reatividade (água combinada)

$$V_{pg} = \sim 0.389 \times V_{sh}$$

$$V_{p,q} = 0.389 \times 0.47 \,\mathrm{dm^3} = 0.18 \,\mathrm{dm^3}$$

$$P_{pg} = \frac{V_{Poros\ de\ gel}}{V_t} = \frac{0.18}{0.82} = 0.22\ dm^3/dm^3$$

Poros capilares x gel

$$V_{pc} = V_{ph} - V_{pg} = 0.35 \text{ dm}^3 - 0.18 \text{ dm}^3 = 0.17 \text{ dm}^3$$

$$P_{cap} = \frac{V_{pc}}{V_t} = \frac{0.17}{0.82} = 0.21 \text{ dm}^3/\text{dm}^3$$

Porosidade da pasta 1:0,5 (hc=0,2/g/g)

Poros Capilares
0,21 dm³/dm³
(49%)

Poros do Gel 0,22 dm³/dm³ (51%)

- Aumento da proporção água/cimento na formulação
 - não afeta significativamente o volume de poros do gel

$$V_{pg} = 0.389 \times V_{sh}$$

$$V_{sh} = V_{ca} + V_{hc} - 0.25V_{hc}$$

 Aumenta a porosidade capilar reduzindo resistência e facilitando penetração de agentes agressivos.

Exercício individual

A hidratação de um cimento consome 0,20g/g de água. Qual a porosidade (v/v) mínima da pasta 1:0,4 quando 50% do cimento hidratou?

Por que o adjetivo "mínima"?

Tempo: 10 minutos

https://forms.gle/PjpormwwEQDqR32V6

Volume no estado fresco

• 1 kg de cimento 1/3,1 0,32dm³

• 0,4 kg de água 0,4/1 0,40dm³

• Volume total (mistura) 0,72dm³

- Desprezamos o ar aprisionado inserido no concreto durante o processo de mistura.
- Como ele poderia ser considerado?

Volume de sólidos 1:0,4

(50% hidratado)

 0,5 kg de cimento 	0,5/3,1	0,160dm ³
---------------------------------------	---------	----------------------

Retração química

25% volume de água rea	cão O	,25*0	.1 -0	ا.0	125	dı	m	5

- Volume de sólidos hidratados 0 0,235dm³
- Volume de sólidos anidros 0,5/3,1 0,160dm³
- Volume de sólidos totais 0,395dm³
- Poros = $0.72 0.395 = 0.325 \text{ dm}^3$
- Porosidade 0,325/0,72 0,45dm³/dm³

Volume de poros 1:0,4

(50% hidratação)

• H₂O em excesso

0,4-0,1

0,30dm³

• Retração química

0,025

0,025dm³

Poros totais

0,325dm³

Volume total

 $0,72 \text{ dm}^3$

• Porosidade

0,325/0,72

0,45dm³/dm³

Exercício em grupo até 4 pessoas (para entregar no moodle até dia 08/09)

- Estime a porosidade **mínima** (m³/m³) de **um concreto** confeccionado com 360 kg/m³ e relação água/cimento de 0,5 g/g. **A hidratação completa de 1g deste cimento exige 0,24g de água.** Despreze a porosidade dos agregados.
- O cimento hidratado foi exposto a estufa ventilada a temperatura de 105ºC até constância de massa. Nesta condição acredita-se que toda a água não combinada evaporou e não houve perda de água combinada. Estimem quanta água (g/100g de material seco) seriam absorvidas se este cimento hidratado for imerso em água até saturação.

Exercício em grupo (continuação)

 Pastas de mesma porosidade apresentarão a mesma resistência?

Explique.

 Você acha que há outros fatores, além da porosidade da pasta, que pode afetar o comportamento do mecânico do concreto?

Explique.

 Como você imagina que a porosidade da pasta afeta a durabilidade do concreto?

Atividade Extra

(upload arquivo com memória de cálculo no Moodle opcional)

 Faça gráficos mostrando a influência do grau de hidratação (0 a 100%) na porosidade total e da pasta dos concretos.

	Densidade (g/cm³)	Traço 1 (% Massa)	Traço 2 (% Massa)
Cimento	3,1	15	10
Areia	2,6	25	31
Brita	2,6	52	52
Água	1	8	7

• Compare e discuta os resultados.

