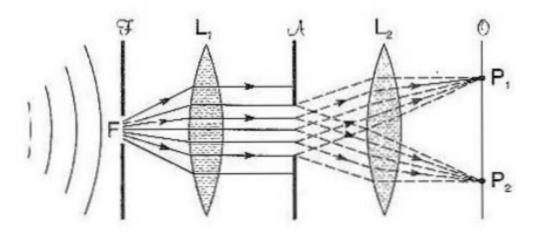
Física IV (IQ 2022) Aula 19

- Objetivos de aprendizagem:
 - Explicar como é possível melhorar a visualização da difração com o uso de lentes
 - Obter a expressão para a intensidade em função do ângulo da difração de Fraunhoffer para uma fenda simples
 - Descrever a figura de difração de uma fenda simples iluminada por uma fonte extensa
 - Relacionar a abertura angular do pico central com a largura da fenda em uma difração de Fresnel

Observação da difração de Fraunhoffer



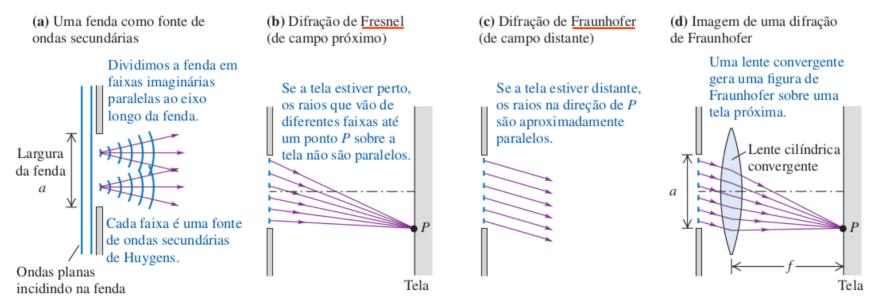
Obs.: os ângulos estão exagerados na figura

Fig. 4.2 Observação da difração de Fraunhofer

As lentes permitem focalizar a frente de onda plana em um ponto, sem modificar as diferenças de caminho óptico.

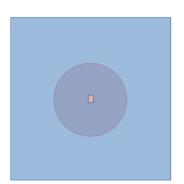
Young & Friedman – Cap. 36

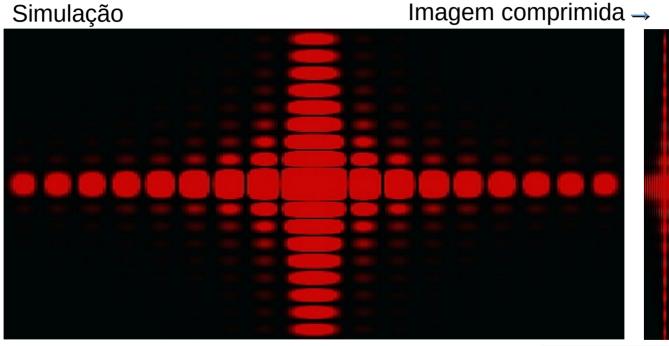
Figura 36.4 Difração produzida por uma fenda única retangular. O lado comprido da fenda é perpendicular ao plano da figura.



https://edisciplinas.usp.br/pluginfile.php/5393647/mod_resource/content/2/Young%2C%20Freedman%2C%20Cap%2036%2C%20Difra%C3%A7%C3%A3o.pdf

Fenda retangular

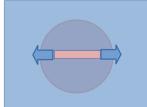




Luz incidente: onda plana coerente (e.g. Laser)

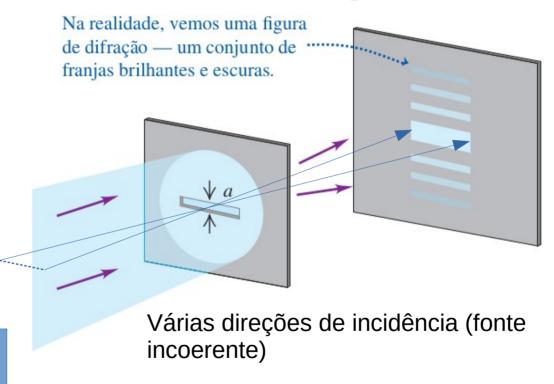
$$\frac{I}{I_0} = \frac{\operatorname{sen}^2(ka\alpha)}{(ka\alpha)^2} \frac{\operatorname{sen}^2(kb\beta)}{(kb\beta)^2}$$

Fenda alargada em uma direção



Laser

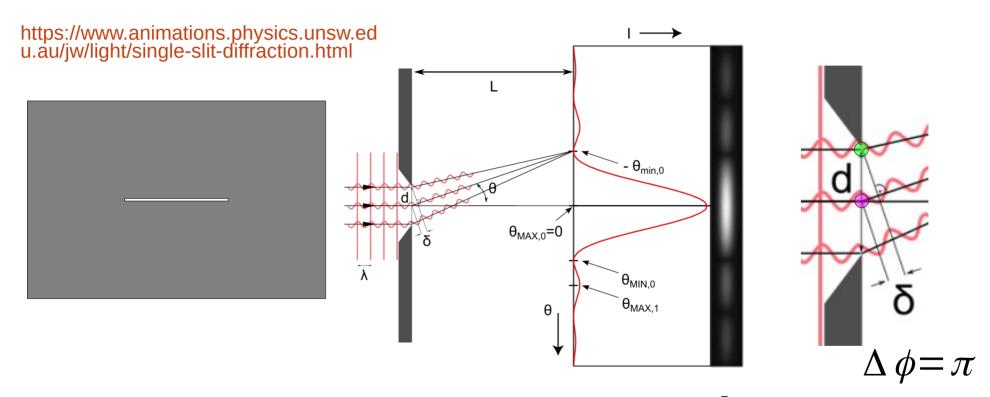
Fenda fina retangular



Laser

Obs.:

Difração por fenda simples



Mínimo: Interferência destrutiva aos "pares" de pontos:

$$\delta = \frac{d}{2} \operatorname{sen} \theta = \frac{\lambda}{2}$$

Abertura do feixe de luz difratado

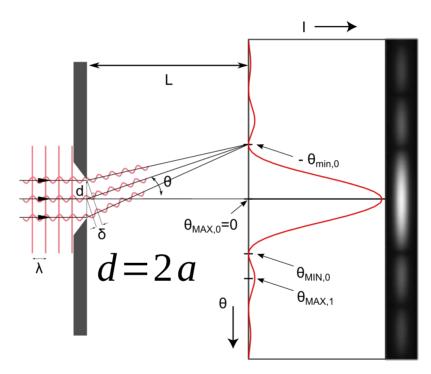
$$\frac{I}{I_0} \approx \frac{\operatorname{sen}^2(ka \,\alpha)}{(ka \,\alpha)^2}$$

Zeros de intensidade:

$$sen(ka \alpha) = 0$$

exceto $ka \alpha = 0$ (máximo)

$$ka \alpha = n \pi$$



$$\alpha = n \frac{\lambda}{2a}$$
, $n = \dots - 2, -1, 1, 2, 3 \dots$; $\forall n$ inteiro não nulo

Abertura do feixe de luz difratado

$$\frac{I}{I_0} \approx \frac{\operatorname{sen}^2(ka \,\alpha)}{(ka \,\alpha)^2}$$

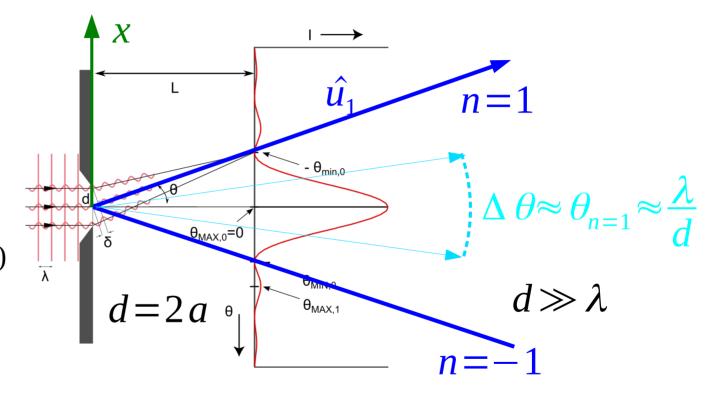
Zeros de intensidade:

$$sen(ka \alpha) = 0$$

exceto $ka \alpha = 0$ (máximo)

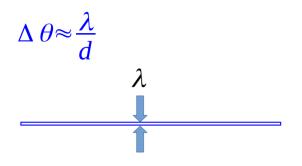
$$ka \alpha = n \pi$$

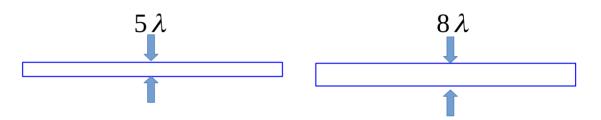
$$\alpha = n \frac{\lambda}{2a} (n \neq 0)$$



$$\alpha = \cos \theta_x$$
 Obs. 2D \rightarrow : $\theta_x = \frac{\pi}{2} - \theta$ $\alpha_{n=1} = \sin \theta_{n=1} \approx \theta_{n=1}$

Larguras de fenda diferentes

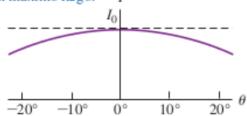


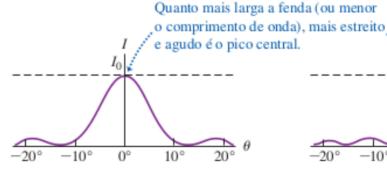


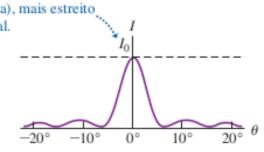
(a)
$$a = \lambda$$

(c)
$$a = 8\lambda$$

Se a largura da fenda é igual ao comprimento de onda ou menor que ele, forma-se apenas um máximo largo. I



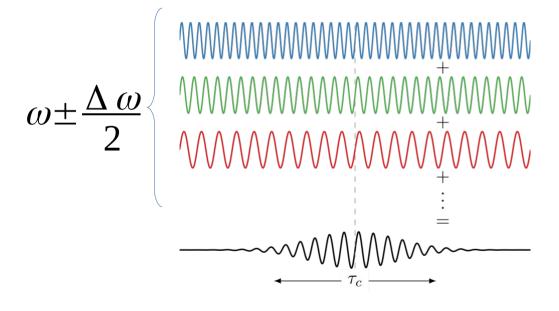




Coerência

Correlação temporal-espacial

M.N. v.4 cap. 3.6 Hecht Cap. 12



$$\tau_c \approx \frac{2 \pi}{\Delta \omega}$$

$$l_c = c \tau_c$$

Decaimento atômico:

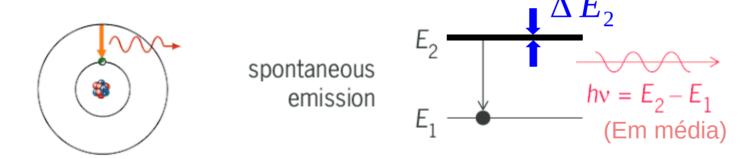
 $\tau \approx 10^{-9} \text{ a } 10^{-8} \text{ s}$

$$l_c \leq 1 - 2 \,\mathrm{m}$$

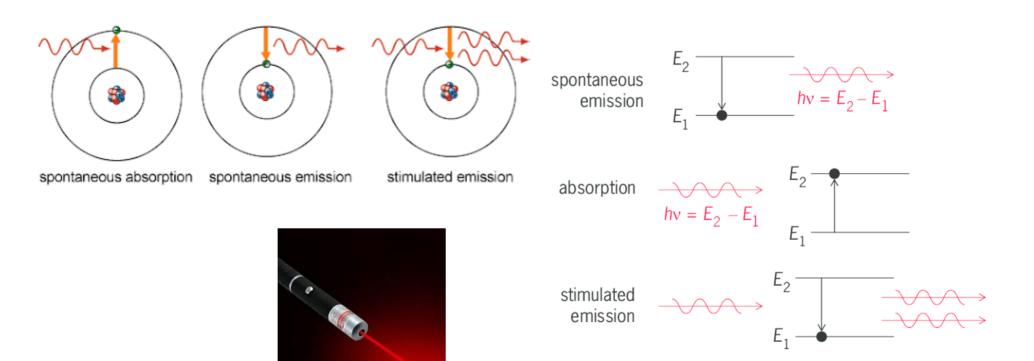
LASER: $l_c \approx 10^6 \text{ m}$

Átomo decaindo

- Decaimento ocorre numa certa escala de tempo au
- Nível tem uma certa largura correspondente $\Delta E = \hbar \Delta \omega \approx \frac{h}{\tau}$



Emissão espontânea X estimulada



Fonte incoerente (térmica)

- Pontos afastados mais que ~1 comprimento de onda são não correlacionados
- → I total ~ Soma algébrica das intensidades

