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Sequential Quadratic Programming - SQP

Consider the problem:

minimize f (x)

s.t gi (x) ≤ 0 i ∈ I = {1, 2, . . .m}
hi (x) = 0 i ∈ E = {1, 2, . . . l}

Definition
x∗ is KKT point if there are lagrange multipliers vectors λ∗ and µ∗, such that[

x∗ λ∗ µ∗
]t

satisfies:

∇xL (x∗, λ∗, µ∗) = 0

g (x∗) ≤ 0

h (x∗) = 0

µ∗ ≥ 0

µigi (x
∗) = 0 ∀i ∈ I
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Assumptions:

1. There exist x∗, λ∗ and µ∗ satisfying KKT conditions

2. The columns of

G = [
∇h1(x) ∇h2(x) ... ∇hl (x) ∇gi1 (x) ... ∇gip (x)

]
are linearly independent, ∀ij ∈ I
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Figure 1: lecture notes from Fred van Keulen and Matthijs Langelaar
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Sequential Quadratic Programming

Sequential Quadratic Programming (SQP)

• One of the most successful methods for the numerical solution of constrained

nonlinear optimization problems.

• It relies on a profound theoretical foundation and provides powerful algorithmic

tools for the solution of large-scale technologically relevant problems.
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Main ideas

• SQP methods are iterative methods that generate a sequence of quadratic

optimization problems whose solutions approach the solution of the original

problem

• At a current iterate xk , the step to the next iterate is obtained through

information generated by solving a quadratic subproblem

• quadratic problems are based on applying KKT conditions to the original problem

• Minimize a quadratic approximation of the Lagrangian function with respect to

linear approximation of the constraints
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Sequential Quadratic Programming - SQP

Idea of algorithms

S1 Choose initial point x0 and initial lagrange multiplier estimates λ0

S2 Obtain matrices for QP subproblem

S3 Solve QP subproblem to find a feasible direction dk

S4 xk+1 ← xk + αkdk

S5 If xk+1 is not optimal go to S2
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The QP subproblems to be solved in each iteration step should reflect the local

properties of the NLP with respect to the current iterate xk .

A natural idea:

• replace objective function by its local quadratic approximation

f (x) = f (xk ) +∇f (xk )t(x − xk) +
1

2
(x − xk )

t∇2f (xk )(x − xk )

• replace constraint functions g and h by their local afine approximations

g(x) ≈ g(xk ) +∇g(xk)t(x − xk)

h(x) ≈ h(xk) +∇h(xk)t(x − xk)

Celma de Oliveira Ribeiro



Sequential Quadratic Programming - SQP

The QP subproblems to be solved in each iteration step should reflect the local

properties of the NLP with respect to the current iterate xk .

A natural idea:

• replace objective function by its local quadratic approximation

f (x) = f (xk ) +∇f (xk )t(x − xk) +
1

2
(x − xk )

t∇2f (xk )(x − xk )

• replace constraint functions g and h by their local afine approximations

g(x) ≈ g(xk ) +∇g(xk)t(x − xk)

h(x) ≈ h(xk ) +∇h(xk )t(x − xk )

Celma de Oliveira Ribeiro



Sequential Quadratic Programming - SQP

Example
Consider the following,

∇f (x) =
[

3

3

]
,

∇2f (x) =

[
1 2

2 1

]

∇h1(x) =
[

1

3

]
∇h2(x) =

[
7

2

]
∇g1(x) =

[
13

21

]
Write an approximation of the problem

minimize f (x)

s.t gi (x) ≤ 0 i ∈ I = {1, 2, . . .m}
hi (x) = 0 i ∈ E = {1, 2, . . . l}

Assume : f (x∗) = 100, h1(x∗) = 4, h2(x∗) = 1− 1, g1(x∗) = 11,
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Idea: Consider

min
d∈Rn

1

2
d t∇2f (xk )d +∇f (xk )td

s.t ∇gi (xk)td + gi (xk ) ≤ 0 i ∈ I
∇hj (xk )td + hj (xk) = 0 j ∈ E

Note that d = (x − xk)
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Instead of analysing the original problem, consider the model related to the Lagrangian

L, where λ∗ and µ∗ are the Lagrangian multipliers associated with the original

problem.

minimize L (x , λ∗, µ∗)

s.t gi (x) ≤ 0 i ∈ I = {1, 2, . . .m}
hi (x) = 0 i ∈ E = {1, 2, . . . l}

Although the optimal multipliers are not known, approximations λk , µk to the

multipliers can be maintained as part of the iterative process.
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Then given a current iterate, xk , λk , µk the quadratic Taylor series approximation in x

for the Lagrangian is

L
(
xk , λk , µk

)
+∇L(xk , µk , λk )

td +
1

2
d t∇2L(xk , µk , λk)d

Then we solve:

min
x∈Rn

1

2
d t∇2L(xk , µk , λk)d +∇L(xk , µk , λk)

td

s.t ∇gi (xk)td + gi (xk) ≤ 0 i ∈ I
∇hj (xk)td + hj (xk) = 0 j ∈ E

d = (x − xk)
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Equality constrained problems
Let’s consider equality constraints

minimize f (x)

hi (x) = 0 i ∈ E = {1, 2, . . . l}

Necessary conditions for a constrained optimal solution are:

∇f (x) +
l∑

i=1

λihi (x) = 0

hi (x) = 0, i ∈ E = {1, 2, . . . l}

Celma de Oliveira Ribeiro



Sequential Quadratic Programming - SQP

Equality constrained problems

When we only have equality constraints, we do not have to worry about

complementary slackness which makes things simpler...

In this case

min
x∈Rn

1

2
d t∇2L(xk , µk , λk)d +∇L(xk , µk , λk)

td

s.t ∇hj (xk )td + hj (xk) = 0 j ∈ E

is equivalent to

min
x∈Rn

1

2
d t∇2L(xk , µk , λk )d +∇f (xk )td

s.t ∇hj (xk )td + hj (xk) = 0 j ∈ E

Explain based on the previous example!

Hint: ∇hj (xk )td = −hj (xk ) j ∈ E is constant
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Equality constrained problems

The SQP Approximation

f (x) ≈ f (xk) +∇f (xk)td +
1

2
d t∇2

xL(xk , λk )d , d = x − xk

h(x) ≈ hi (xk ) +∇hi (xk)td = 0 i ∈ E

Solve the KKT equations for this problem ( a linear problem!)
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Equality constrained problems

SQP problem at iteration k

min
x∈Rn

1

2
d t∇2L(xk , µk , λk )d +∇f (xk )td

s.t ∇hj (xk )td + hj (xk) = 0 j ∈ E

We know how to solve quadratic problems!

Use KKT

Solve the following system:

[
∇2L(xk) ∇h((xk)
∇th((xk) 0

] [
dk
λk+1

]
=

[
−∇f (xk)−∇h(xk)λk

−h(xk)

]
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Equality constrained problems

The SQP Approximation
Example: Suppose our approximation is the following,

f (x) ≈ 3 +
[

3 2
] [ d1

d2

]
+ 1

2

[
d1 d2

] [ 1 0

0 1

][
d1
d2

]

h(x) ≈ 5 +
[

1 3
] [ d1

d2

]

Exercice: Write the lagrangian and the KkT conditions
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Equality constrained problems

The KKT equations for this approximation are[
3

2

]
+

[
1 0

0 1

][
d1
d2

]
− λ

[
1

3

]
= 0

5 +
[

1 3
] [ d1

d2

]
= 0

The solution is, d1
d2
λ

 =

 −2.6−0.8
0.4


• This calculation represents the main step in an iteration of the SQP algorithm

which solves a sequence of quadratic programs.

• To continue, add d to the current x , update the Lagrangian Hessian, make a new

approximation, solve for that solution, and continue iterating in this fashion.
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Example
Attention: this approximation considers the gradient of the Lagragian

Consider the following problem:

minimize (x2 − x1)4 + (x1 + x2 − x3)2

s.t. 2x1 + 3x2 + 5x3 = 10

Formulate the SQP subproblem for the candidate point xk = (2; 2; 0)t and the

candidate Lagrange multiplier λk = 2.
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Equality constrained problems

Rudimentary SQP (equality)

Inicialization

k ← 1

Select a starting solution (xk , λk )

Main step

Solve the quadratic problem QP(xk , λk) to obtain a solution dk along with a set

of Lagrange multipliers λk+1

• if dk = 0 stop (xk , λk+1) satisfies KKT for the original problem

• Otherwise xk+1 ← xk + dk
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Equality and inequality constrained problems

ref: Bazaraa, ex 10.24

We can consider the inclusion of inequality constraints gi (x) ≤ 0, i ∈ {1, 2, ...m} in
the problem

The quadratic subproblem Q(xk , µk , λk ) is given as

min
x∈Rn

1

2
d t∇2

kL(xk , λk , µk)d +∇f (xk )td

s.t ∇gi (xk)td + gi (xk ) ≤ 0 i ∈ I
∇hj (xk )td + hj (xk) = 0 j ∈ E
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Equality and inequality constrained problems

ref: Bazaraa

The KKT conditions for this problem require that, in addition to feasibility, the

complementary conditions to be satisfied for Lagrange multipliers (µk+1, λk+1)

µi [∇gi (xk)td + gi (xk )] = 0 i ∈ I

µ ≥ 0

Hence, if dk solves Q(xk , µk , λk ) with lagrange multipliers (µk+1, λk+1)

• if dk = 0, then xk , along with (µk+1, λk+1) yields a KKT solution for the original

problem

• Otherwise set xk+1 ← x + k + dk , increment k by 1, and repeat the process.

It can be shown that under second-order sufficiency conditions, if (xk , µk , λk ) is

initialized sufficiently close to the optimal solution, the iterative process will converge

quadratically to the solution.

See example 10.4.3 from Bazaraa!
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Equality and inequality constrained problems

Quasi-Newton approximations

Disadvantage of the SQP method: it requires second order derivatives to be calculated

and the Hessian might not be positive definite.

• We can adopt an approach similar to the unconstrained case, considering

approximations Hk of the hessian ∇2
xL(xk , λk , µk)

• Create a quadratic approximation to the Lagrangian and linear approximations to

the constraints

• At the kth iteration solve a quadratic subproblem (QP) of the form

min
x∈Rn

1

2
d tHkd +∇f (xk)td

s.t ∇gi (xk)td + gi (xk) ≤ 0 i ∈ I
∇hj (xk)td + hj (xk) = 0 j ∈ E

where d is the search direction and Hk is a positive definite approximation to the

Hessian matrix of Lagrangian function of the original problem

• Solve the quadratic problem to find the search direction, dk , used to generate a

new iterate xk+1 = xk + αkdk
• Perform line search to find αk

• If optimality not achieved update the approximation to the Lagrangian
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Some important issues

• The solution dk of the quadratic program (QP) can be used to generate a new

iterate xk+1 by taking a step from xk in the direction of dk .

• To continue to the next iteration, new estimates for the Lagrange multipliers are

needed.

• One obvious approach: use the optimal multipliers of the quadratic subproblem

Let the optimal multipliers of QP be λqp and µqp and setting dλ = λqp − λk and

dµ = µqp − µk , the updates will be :

• xk+1 ← xk + αd

• λk+1 ← λk + αdλ
• µk+1 ← µk + αdµ

for some selection of the steplength parameter α

SQP gradually enforces feasibility of the constraints as part of the KT equations
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Advantages and disadvantages

• One of the most successful methods for solving NLP

• It is not an algorithm but rather a conceptual method

• Usually violates non linear constraints until convergence, often by large amounts

• Requires a good QP solver
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Methods of feasible directions

Linear constraints
Not presented in 2023

Consider the problem (PLC)

minimize f (x)

s.t Ax ≤ b

Ex = e

Lemma

Let x be a feasible solution for the PLC problem. Suppose A1x = b1 and A2x < b2.

Decompose matrix A and vector b as:

At =
[

At
1 At

2

]
and bt =

[
bt1 bt2

]
Then a non zero vector d is a feasible direction at x ⇔ A1d ≤ 0 and Ed = 0.

If ∇f (x)td < 0, then d is a descent direction.
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Example
Consider

minimize (x1 − 2)2 + (x2 − 6)2

s.t −x1 + 2x2 ≤ 4

3x1 + 2x2 ≤ 12

−x1 ≤ 0

−x2 ≤ 0

Let x =
[

2 3
]t

Find the set of descent directions at x
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A1 =

[
−1 2

3 2

]

Vector d is a feasible solution ⇔
{
−1d1 + 2d2 ≤ 0

3d1 + 2d2 ≤ 0

Descent directions
{
d ∈ R2| − 8d1 + 2d2 < 0

}
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Methods of feasible directions

Generating Descent Feasible directions

Solve the problem:

minimize ∇f (x)td
s.t A1d ≤ 0

Ed = 0

−1 ≤ d ≤ 1

x is a KKT point ⇔ the optimal solution of the problem is equal to zero
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Methods of feasible directions

Line search
Given xk , the next point is xk+1 ← xk + λkdk . The value λk is obtained through:

minimize f (xk + λkdk)

s.t A (xk + λkdk ) ≤ b

E (xk + λkdk) = e Redundant!

λk ≥ 0

Note that

A1xk + λkA1dk = b1 + λk︸︷︷︸
≥0

A1dk︸ ︷︷ ︸
≤0

≤ b1 Redundant!

λkA2dk = b2 − A2xk︸ ︷︷ ︸
≥0
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Methods of feasible directions

Line search
The line search then reduces to:

minimize f (xk + λdk )

s.t 0 ≤ λ ≤ λmax

with λmax =

{
min

{
p̂i
q̂i
|q̂i > 0

}
q̂ ̸≤ 0

∞ q̂ ≤ 0

p̂ = b2 − A2xk

q̂ = A2dk
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Methods of feasible directions

ZOUTENDIJK algorithm (Linear constraints)

Step 0

• Find a starting feasible solution x1 with Ax1 ≤ b and Ex1 = e

• k ← 1

Step 1

• Given xk solve

minimize
{
∇f (xk )

td|A1d ≤ 0 Ed = 0 − 1 ≤ d ≤ 1
}

• if ∇f (xk )
td = 0 stop xk is KKT point.

Otherwise, go to step 2

Step 2

• Let λk be an optimal solution to the line search problem: min 0≤λ≤λmax {f (xk + λdk )}
• xk+1 ← xk + λkdk
• Identify the new set of binding constraints at xk+1, and update A1 and A2 accordingly.

k ← k + 1 Go to step 1.
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Methods of feasible directions

Zoutendijk’s method

• Subproblem linear: efficiently solved

• Determine active set before solving subproblem!

• When ∇f (xk )td = 0 KKT point found

• Method needs a feasible starting point.

• Convergence is not generally guaranteed (modification of the method assures

convergence)
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Methods of feasible directions

Example 1
Consider

minimize 2x21 + 2x22 − 2x1x2 − 4x1 − 6x2
s.t x1 + x2 ≤ 2

x1 + 5x2 ≤ 5

−x1 ≤ 0

−x2 ≤ 0

Solve the problem considering the initial point x(1) =

[
0

0

]
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