PRO 5970 Métodos de Otimização Não Linear

Celma de Oliveira Ribeiro
Aula 11-2023
Sequential Quadratic Programming

Departamento de Engenharia de Produção
Universidade de São Paulo

Sequential Quadratic Programming - SQP

Consider the problem:

$$
\begin{array}{ccc}
& \operatorname{minimize} f(x) & \\
\text { s.t } & g_{i}(x) \leq 0 & \mathrm{i} \in \mathcal{I}=\{1,2, \ldots m\} \\
& h_{i}(x)=0 & \mathrm{i} \in \mathcal{E}=\{1,2, \ldots l\}
\end{array}
$$

Definition

x^{*} is KKT point if there are lagrange multipliers vectors λ^{*} and μ^{*}, such that $\left[\begin{array}{lll}x^{*} & \lambda^{*} & \mu^{*}\end{array}\right]^{t}$ satisfies:

$$
\begin{array}{lll}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right) & =0 \\
g\left(x^{*}\right) & \leq 0 & \\
h\left(x^{*}\right) & =0 \\
\mu^{*} & \geq 0 \\
\mu_{i} g_{i}\left(x^{*}\right) & =0 \quad \forall i \in \mathcal{I}
\end{array}
$$

Sequential Quadratic Programming - SQP

Assumptions:

1. There exist x^{*}, λ^{*} and μ^{*} satisfying KKT conditions
2. The columns of $\mathrm{G}=$

$$
\left[\begin{array}{lllllll}
\nabla h_{1}(x) & \nabla h_{2}(x) & \ldots & \nabla h_{l}(x) & \nabla g_{i_{1}}(x) & \ldots & \nabla g_{i_{p}}(x)
\end{array}\right]
$$

are linearly independent, $\forall i_{j} \in \mathcal{I}$

Sequential Quadratic Programming - SQP

Sequential Approximate Optimization

- Good approach for expensive models
- RS dampens noise
- Versatile

Figure 1: lecture notes from Fred van Keulen and Matthijs Langelaar

Sequential Quadratic Programming

Sequential Quadratic Programming (SQP)

- One of the most successful methods for the numerical solution of constrained nonlinear optimization problems.
- It relies on a profound theoretical foundation and provides powerful algorithmic tools for the solution of large-scale technologically relevant problems.

Sequential Quadratic Programming - SQP

Main ideas

- SQP methods are iterative methods that generate a sequence of quadratic optimization problems whose solutions approach the solution of the original problem

Sequential Quadratic Programming - SQP

Main ideas

- SQP methods are iterative methods that generate a sequence of quadratic optimization problems whose solutions approach the solution of the original problem
- At a current iterate x^{k}, the step to the next iterate is obtained through information generated by solving a quadratic subproblem

Sequential Quadratic Programming - SQP

Main ideas

- SQP methods are iterative methods that generate a sequence of quadratic optimization problems whose solutions approach the solution of the original problem
- At a current iterate x^{k}, the step to the next iterate is obtained through information generated by solving a quadratic subproblem
- quadratic problems are based on applying KKT conditions to the original problem

Sequential Quadratic Programming - SQP

Main ideas

- SQP methods are iterative methods that generate a sequence of quadratic optimization problems whose solutions approach the solution of the original problem
- At a current iterate x^{k}, the step to the next iterate is obtained through information generated by solving a quadratic subproblem
- quadratic problems are based on applying KKT conditions to the original problem
- Minimize a quadratic approximation of the Lagrangian function with respect to linear approximation of the constraints

Sequential Quadratic Programming - SQP

Idea of algorithms

S1 Choose initial point x_{0} and initial lagrange multiplier estimates λ_{0}

Sequential Quadratic Programming - SQP

Idea of algorithms

S1 Choose initial point x_{0} and initial lagrange multiplier estimates λ_{0}
S2 Obtain matrices for QP subproblem

Sequential Quadratic Programming - SQP

Idea of algorithms

S1 Choose initial point x_{0} and initial lagrange multiplier estimates λ_{0}
S2 Obtain matrices for QP subproblem
S3 Solve QP subproblem to find a feasible direction d_{k}

Sequential Quadratic Programming - SQP

Idea of algorithms

S1 Choose initial point x_{0} and initial lagrange multiplier estimates λ_{0}
S2 Obtain matrices for QP subproblem
S3 Solve QP subproblem to find a feasible direction d_{k}
S4 $x_{k+1} \leftarrow x_{k}+\alpha_{k} d_{k}$

Sequential Quadratic Programming - SQP

Idea of algorithms

S1 Choose initial point x_{0} and initial lagrange multiplier estimates λ_{0}
S2 Obtain matrices for QP subproblem
S3 Solve QP subproblem to find a feasible direction d_{k}
S4 $x_{k+1} \leftarrow x_{k}+\alpha_{k} d_{k}$
S5 If x_{k+1} is not optimal go to S2

Sequential Quadratic Programming - SQP

The QP subproblems to be solved in each iteration step should reflect the local properties of the NLP with respect to the current iterate x_{k}.

A natural idea:

- replace objective function by its local quadratic approximation

$$
f(x)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{t}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{t} \nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right)
$$

Sequential Quadratic Programming - SQP

The QP subproblems to be solved in each iteration step should reflect the local properties of the NLP with respect to the current iterate x_{k}.

A natural idea:

- replace objective function by its local quadratic approximation

$$
f(x)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{t}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{t} \nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right)
$$

- replace constraint functions g and h by their local afine approximations

$$
\begin{aligned}
& g(x) \approx g\left(x_{k}\right)+\nabla g\left(x_{k}\right)^{t}\left(x-x_{k}\right) \\
& h(x) \approx h\left(x_{k}\right)+\nabla h\left(x_{k}\right)^{t}\left(x-x_{k}\right)
\end{aligned}
$$

Sequential Quadratic Programming - SQP

Example

Consider the following,

$$
\begin{aligned}
& \nabla f(x)=\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
& \nabla^{2} f(x)=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \\
& \nabla h_{1}(x)=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad \nabla h_{2}(x)=\left[\begin{array}{l}
7 \\
2
\end{array}\right] \quad \nabla g_{1}(x)=\left[\begin{array}{l}
13 \\
21
\end{array}\right]
\end{aligned}
$$

Write an approximation of the problem

$$
\begin{array}{ccc}
& \text { minimize } f(x) & \\
\text { s.t } & g_{i}(x) \leq 0 & \mathrm{i} \in \mathcal{I}=\{1,2, \ldots m\} \\
& h_{i}(x)=0 & \mathrm{i} \in \mathcal{E}=\{1,2, \ldots /\}
\end{array}
$$

Assume : $f\left(x^{*}\right)=100, h_{1}\left(x^{*}\right)=4, h_{2}\left(x^{*}\right)=1-1, g_{1}\left(x^{*}\right)=11$,

Sequential Quadratic Programming - SQP

Idea: Consider

$$
\begin{aligned}
& \min _{d \in \mathbb{R}^{n}} \frac{1}{2} d^{t} \nabla^{2} f\left(x_{k}\right) d+\nabla f\left(x_{k}\right)^{t} d \\
& \text { s.t } \quad \nabla g_{i}\left(x_{k}\right)^{t} d+g_{i}\left(x_{k}\right) \leq 0 \quad i \in \mathcal{I} \\
& \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{aligned}
$$

Note that $d=\left(x-x^{k}\right)$

Sequential Quadratic Programming - SQP

Instead of analysing the original problem, consider the model related to the Lagrangian \mathcal{L}, where λ^{*} and μ^{*} are the Lagrangian multipliers associated with the original problem.

$$
\begin{array}{cc}
& \begin{array}{c}
\text { minimize } \mathcal{L}\left(x, \lambda^{*}, \mu^{*}\right) \\
\text { s.t }
\end{array} \\
g_{i}(x) \leq 0 & \mathrm{i} \in \mathcal{I}=\{1,2, \ldots m\} \\
h_{i}(x)=0 & \mathrm{i} \in \mathcal{E}=\{1,2, \ldots /\}
\end{array}
$$

Sequential Quadratic Programming - SQP

Instead of analysing the original problem, consider the model related to the Lagrangian \mathcal{L}, where λ^{*} and μ^{*} are the Lagrangian multipliers associated with the original problem.

$$
\begin{array}{cc}
& \text { minimize } \mathcal{L}\left(x, \lambda^{*}, \mu^{*}\right) \\
\text { s.t } & g_{i}(x) \leq 0 \\
h_{i}(x)=0 & \mathrm{i} \in \mathcal{I}=\{1,2, \ldots m\} \\
& \mathrm{i} \in \mathcal{E}=\{1,2, \ldots l\}
\end{array}
$$

Although the optimal multipliers are not known, approximations λ^{k}, μ^{k} to the multipliers can be maintained as part of the iterative process.

Sequential Quadratic Programming - SQP

Then given a current iterate, $x^{k}, \lambda^{k}, \mu^{k}$ the quadratic Taylor series approximation in x for the Lagrangian is

$$
\mathcal{L}\left(x^{k}, \lambda^{k}, \mu^{k}\right)+\nabla \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right)^{t} d+\frac{1}{2} d^{t} \nabla^{2} \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right) d
$$

Sequential Quadratic Programming - SQP

Then given a current iterate, $x^{k}, \lambda^{k}, \mu^{k}$ the quadratic Taylor series approximation in x for the Lagrangian is

$$
\mathcal{L}\left(x^{k}, \lambda^{k}, \mu^{k}\right)+\nabla \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right)^{t} d+\frac{1}{2} d^{t} \nabla^{2} \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right) d
$$

Then we solve:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} \nabla^{2} \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right) d+\nabla \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right)^{t} d \\
& \text { s.t } \nabla g_{i}\left(x_{k}\right)^{t} d+g_{i}\left(x_{k}\right) \leq 0 \quad i \in \mathcal{I} \\
& \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{aligned}
$$

$d=\left(x-x^{k}\right)$

Sequential Quadratic Programming - SQP

Equality constrained problems
Let's consider equality constraints

$$
\begin{aligned}
& \operatorname{minimize} f(x) \\
& \qquad h_{i}(x)=0 \quad \mathrm{i} \in \mathcal{E}=\{1,2, \ldots I\}
\end{aligned}
$$

Necessary conditions for a constrained optimal solution are:

$$
\begin{gathered}
\nabla f(x)+\sum_{i=1}^{l} \lambda_{i} h_{i}(x)=0 \\
h_{i}(x)=0, i \in \mathcal{E}=\{1,2, \ldots l\}
\end{gathered}
$$

Sequential Quadratic Programming - SQP

Equality constrained problems
When we only have equality constraints, we do not have to worry about complementary slackness which makes things simpler...

In this case

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} \nabla^{2} \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right) d+\nabla \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right)^{t} d \\
\text { s.t } \quad \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{gathered}
$$

is equivalent to

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} \nabla^{2} \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right) d+\nabla f\left(x_{k}\right)^{t} d \\
& \text { s.t } \quad \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 j \in \mathcal{E}
\end{aligned}
$$

Explain based on the previous example!
Hint: $\quad \nabla h_{j}\left(x_{k}\right)^{t} d=-h_{j}\left(x_{k}\right) j \in \mathcal{E}$ is constant

Sequential Quadratic Programming - SQP

Equality constrained problems
The SQP Approximation

$$
\begin{gathered}
f(x) \approx f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{t} d+\frac{1}{2} d^{t} \nabla_{x}^{2} L\left(x_{k}, \lambda_{k}\right) d, d=x-x_{k} \\
h(x) \approx h_{i}\left(x_{k}\right)+\nabla h_{i}\left(x_{k}\right)^{t} d=0 \quad i \in \mathcal{E}
\end{gathered}
$$

Solve the KKT equations for this problem (a linear problem!)

Sequential Quadratic Programming - SQP

Equality constrained problems
SQP problem at iteration k

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} \nabla^{2} \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right) d+\nabla f\left(x_{k}\right)^{t} d \\
\text { s.t } \quad \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{gathered}
$$

We know how to solve quadratic problems!

Sequential Quadratic Programming - SQP

Equality constrained problems
SQP problem at iteration k

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} \nabla^{2} \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right) d+\nabla f\left(x_{k}\right)^{t} d \\
\text { s.t } \quad \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{gathered}
$$

We know how to solve quadratic problems!
Use KKT

Sequential Quadratic Programming - SQP

Equality constrained problems

SQP problem at iteration k

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} \nabla^{2} \mathcal{L}\left(x_{k}, \mu_{k}, \lambda_{k}\right) d+\nabla f\left(x_{k}\right)^{t} d \\
\text { s.t } \quad \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{gathered}
$$

> We know how to solve quadratic problems!

> Use KKT

Solve the following system:

$$
\left[\begin{array}{cc}
\nabla^{2} \mathcal{L}\left(x_{k}\right) & \nabla h\left(\left(x_{k}\right)\right. \\
\nabla^{t} h\left(\left(x_{k}\right)\right. & 0
\end{array}\right] \quad\left[\begin{array}{l}
\mathrm{d}_{k} \\
\lambda_{k+1}
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left(x_{k}\right)-\nabla h\left(x_{k}\right) \lambda_{k} \\
-h\left(x_{k}\right)
\end{array}\right]
$$

Sequential Quadratic Programming - SQP

Equality constrained problems

The SQP Approximation

Example: Suppose our approximation is the following,

$$
\begin{aligned}
& f(x) \approx 3+\left[\begin{array}{ll}
3 & 2
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
d_{1} & d_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right] \\
& h(x) \approx 5+\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]
\end{aligned}
$$

Exercice: Write the lagrangian and the KkT conditions

Sequential Quadratic Programming - SQP

Equality constrained problems
The KKT equations for this approximation are

$$
\begin{aligned}
& {\left[\begin{array}{l}
3 \\
2
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]-\lambda\left[\begin{array}{l}
1 \\
3
\end{array}\right]=0} \\
& 5+\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=0
\end{aligned}
$$

The solution is,

$$
\left[\begin{array}{l}
d_{1} \\
d_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-2.6 \\
-0.8 \\
0.4
\end{array}\right]
$$

- This calculation represents the main step in an iteration of the SQP algorithm which solves a sequence of quadratic programs.
- To continue, add d to the current x, update the Lagrangian Hessian, make a new approximation, solve for that solution, and continue iterating in this fashion.

Sequential Quadratic Programming - SQP

Example

Attention: this approximation considers the gradient of the Lagragian
Consider the following problem:

$$
\begin{array}{lc}
& \text { minimize }\left(x_{2}-x_{1}\right)^{4}+\left(x_{1}+x_{2}-x_{3}\right)^{2} \\
\text { s.t. } & 2 x_{1}+3 x_{2}+5 x_{3}=10
\end{array}
$$

Formulate the SQP subproblem for the candidate point $x^{k}=(2 ; 2 ; 0)^{t}$ and the candidate Lagrange multiplier $\lambda^{k}=2$.

Sequential Quadratic Programming - SQP

The general form of NLO problem is

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & h_{j}(x)=0, j=1, \ldots, m .
\end{array}
$$

The Lagrange function is

$$
L(x, y)=f(x)+\sum_{j=1}^{m} y_{j} h_{j}(x)
$$

where $y_{j}=\mathbb{R}, j=1, \ldots, m$.
In our case the Lagrange function is

$$
L(x, y)=\left(x_{2}-x_{1}\right)^{4}+\left(x_{1}+x_{2}-x_{3}\right)^{2}+y\left(2 x_{1}+3 x_{2}+5 x_{3}-10\right)
$$

The gradient and Hessian of the Lagrange function with respect to x are:

$$
\begin{gathered}
\nabla_{x} L(x, y)=\left(\begin{array}{c}
4\left(x_{1}-x_{2}\right)^{3}+2\left(x_{1}+x_{2}-x_{3}\right)+2 y \\
4\left(x_{2}-x_{1}\right)^{3}+2\left(x_{1}+x_{2}-x_{3}\right)+3 y \\
-2\left(x_{1}+x_{2}-x_{3}\right)+5 y
\end{array}\right) \\
\nabla_{x x}^{2} L(x, y)=\left(\begin{array}{ccc}
12\left(x_{1}-x_{2}\right)^{2}+2 & -12\left(x_{1}-x_{2}\right)^{2}+2 & -2 \\
-12\left(x_{1}-x_{2}\right)^{2}+2 & 12\left(x_{1}-x_{2}\right)^{2}+2 & -2 \\
-2 & -2 & 2
\end{array}\right)
\end{gathered}
$$

Sequential Quadratic Programming - SQP

The SQP subproblem is

$$
\begin{array}{ll}
\min _{\Delta x} & \frac{1}{2} \triangle x^{T} \nabla_{x x}^{2} L(x, y) \triangle x+\nabla_{x} L(x, y) \triangle x \\
\text { s.t. } & \nabla H(x) \triangle x=-H(x)
\end{array}
$$

where $H(x)=\left(h_{1}(x), \ldots, h_{m}(x)\right)^{T}$.
Substituting $x=(2,2,0)^{T}$ and $y=2$, we get the SQP subproblem

$$
\text { s.t. } \quad\left(\begin{array}{lll}
2 & 3 & 5
\end{array}\right) \Delta x=0 .
$$

where $\nabla H(x)=\left(\begin{array}{lll}2 & 3 & 5\end{array}\right)$ and $H(x)=0$.

Sequential Quadratic Programming - SQP

Equality constrained problems

Rudimentary SQP (equality)

Inicialization

$k \leftarrow 1$
Select a starting solution $\left(x_{k}, \lambda_{k}\right)$

Main step

Solve the quadratic problem $Q P\left(x_{k}, \lambda_{k}\right)$ to obtain a solution d_{k} along with a set of Lagrange multipliers λ_{k+1}

- if $d_{k}=0$ stop $\left(x_{k}, \lambda_{k+1}\right)$ satisfies KKT for the original problem
- Otherwise $x_{k+1} \leftarrow x_{k}+d_{k}$

Sequential Quadratic Programming - SQP

Equality and inequality constrained problems
ref: Bazaraa, ex 10.24
We can consider the inclusion of inequality constraints $g_{i}(x) \leq 0, i \in\{1,2, \ldots m\}$ in the problem

The quadratic subproblem $Q\left(x_{k}, \mu_{k}, \lambda_{k}\right)$ is given as

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{2} d^{t} \nabla_{k}^{2} \mathcal{L}\left(x_{k}, \lambda_{k}, \mu_{k}\right) d+\nabla f\left(x_{k}\right)^{t} d \\
\text { s.t } & \nabla g_{i}\left(x_{k}\right)^{t} d+g_{i}\left(x_{k}\right) \leq 0 \quad i \in \mathcal{I} \\
& \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{array}
$$

Sequential Quadratic Programming - SQP

Equality and inequality constrained problems

ref: Bazaraa

The KKT conditions for this problem require that, in addition to feasibility, the complementary conditions to be satisfied for Lagrange multipliers (μ_{k+1}, λ_{k+1})

$$
\begin{gathered}
\mu_{i}\left[\nabla g_{i}\left(x_{k}\right)^{t} d+g_{i}\left(x_{k}\right)\right]=0 \quad i \in \mathcal{I} \\
\mu \geq 0
\end{gathered}
$$

Hence, if d_{k} solves $Q\left(x_{k}, \mu_{k}, \lambda_{k}\right)$ with lagrange multipliers (μ_{k+1}, λ_{k+1})

- if $d_{k}=0$, then x_{k}, along with $\left(\mu_{k+1}, \lambda_{k+1}\right)$ yields a KKT solution for the original problem
- Otherwise set $x_{k+1} \leftarrow x+k+d_{k}$, increment k by 1 , and repeat the process.

It can be shown that under second-order sufficiency conditions, if $\left(x_{k}, \mu_{k}, \lambda_{k}\right)$ is initialized sufficiently close to the optimal solution, the iterative process will converge quadratically to the solution.

See example 10.4.3 from Bazaraa!

Sequential Quadratic Programming - SQP

Equality and inequality constrained problems
Quasi-Newton approximations
Disadvantage of the SQP method: it requires second order derivatives to be calculated and the Hessian might not be positive definite.

Sequential Quadratic Programming - SQP

Equality and inequality constrained problems
Quasi-Newton approximations
Disadvantage of the SQP method: it requires second order derivatives to be calculated and the Hessian might not be positive definite.

- We can adopt an approach similar to the unconstrained case, considering approximations H_{k} of the hessian $\nabla_{x}^{2} \mathcal{L}\left(x_{k}, \lambda_{k}, \mu_{k}\right)$
- Create a quadratic approximation to the Lagrangian and linear approximations to the constraints

Sequential Quadratic Programming - SQP

Equality and inequality constrained problems
Quasi-Newton approximations
Disadvantage of the SQP method: it requires second order derivatives to be calculated and the Hessian might not be positive definite.

- We can adopt an approach similar to the unconstrained case, considering approximations H_{k} of the hessian $\nabla_{x}^{2} \mathcal{L}\left(x_{k}, \lambda_{k}, \mu_{k}\right)$
- Create a quadratic approximation to the Lagrangian and linear approximations to the constraints
- At the kth iteration solve a quadratic subproblem (QP) of the form

$$
\begin{array}{ll}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} H_{k} d+\nabla f\left(x_{k}\right)^{t} d \\
\text { s.t } \quad \nabla g_{i}\left(x_{k}\right)^{t} d+g_{i}\left(x_{k}\right) \leq 0 \quad i \in \mathcal{I} \\
& \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{array}
$$

where d is the search direction and H_{k} is a positive definite approximation to the Hessian matrix of Lagrangian function of the original problem

Sequential Quadratic Programming - SQP

Equality and inequality constrained problems
Quasi-Newton approximations
Disadvantage of the SQP method: it requires second order derivatives to be calculated and the Hessian might not be positive definite.

- We can adopt an approach similar to the unconstrained case, considering approximations H_{k} of the hessian $\nabla_{x}^{2} \mathcal{L}\left(x_{k}, \lambda_{k}, \mu_{k}\right)$
- Create a quadratic approximation to the Lagrangian and linear approximations to the constraints
- At the kth iteration solve a quadratic subproblem (QP) of the form

$$
\begin{array}{ll}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} H_{k} d+\nabla f\left(x_{k}\right)^{t} d \\
\text { s.t } \quad \nabla g_{i}\left(x_{k}\right)^{t} d+g_{i}\left(x_{k}\right) \leq 0 \quad i \in \mathcal{I} \\
& \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{array}
$$

where d is the search direction and H_{k} is a positive definite approximation to the Hessian matrix of Lagrangian function of the original problem

- Solve the quadratic problem to find the search direction, d_{k}, used to generate a new iterate $x_{k+1}=x_{k}+\alpha_{k} d_{k}$

Sequential Quadratic Programming - SQP

Equality and inequality constrained problems
Quasi-Newton approximations
Disadvantage of the SQP method: it requires second order derivatives to be calculated and the Hessian might not be positive definite.

- We can adopt an approach similar to the unconstrained case, considering approximations H_{k} of the hessian $\nabla_{x}^{2} \mathcal{L}\left(x_{k}, \lambda_{k}, \mu_{k}\right)$
- Create a quadratic approximation to the Lagrangian and linear approximations to the constraints
- At the kth iteration solve a quadratic subproblem (QP) of the form

$$
\begin{array}{ll}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} H_{k} d+\nabla f\left(x_{k}\right)^{t} d \\
\text { s.t } \quad \nabla g_{i}\left(x_{k}\right)^{t} d+g_{i}\left(x_{k}\right) \leq 0 \quad i \in \mathcal{I} \\
& \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{array}
$$

where d is the search direction and H_{k} is a positive definite approximation to the Hessian matrix of Lagrangian function of the original problem

- Solve the quadratic problem to find the search direction, d_{k}, used to generate a new iterate $x_{k+1}=x_{k}+\alpha_{k} d_{k}$
- Perform line search to find α_{k}

Sequential Quadratic Programming - SQP

Equality and inequality constrained problems
Quasi-Newton approximations
Disadvantage of the SQP method: it requires second order derivatives to be calculated and the Hessian might not be positive definite.

- We can adopt an approach similar to the unconstrained case, considering approximations H_{k} of the hessian $\nabla_{x}^{2} \mathcal{L}\left(x_{k}, \lambda_{k}, \mu_{k}\right)$
- Create a quadratic approximation to the Lagrangian and linear approximations to the constraints
- At the kth iteration solve a quadratic subproblem (QP) of the form

$$
\begin{array}{ll}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{2} d^{t} H_{k} d+\nabla f\left(x_{k}\right)^{t} d \\
\text { s.t } \quad \nabla g_{i}\left(x_{k}\right)^{t} d+g_{i}\left(x_{k}\right) \leq 0 \quad i \in \mathcal{I} \\
& \nabla h_{j}\left(x_{k}\right)^{t} d+h_{j}\left(x_{k}\right)=0 \quad j \in \mathcal{E}
\end{array}
$$

where d is the search direction and H_{k} is a positive definite approximation to the Hessian matrix of Lagrangian function of the original problem

- Solve the quadratic problem to find the search direction, d_{k}, used to generate a new iterate $x_{k+1}=x_{k}+\alpha_{k} d_{k}$
- Perform line search to find α_{k}
- If optimality not achieved update the approximation to the Lagrangian

Sequential Quadratic Programming - SQP

Some important issues

- The solution d_{k} of the quadratic program (QP) can be used to generate a new iterate x^{k+1} by taking a step from x^{k} in the direction of d_{k}.

Sequential Quadratic Programming - SQP

Some important issues

- The solution d_{k} of the quadratic program (QP) can be used to generate a new iterate x^{k+1} by taking a step from x^{k} in the direction of d_{k}.
- To continue to the next iteration, new estimates for the Lagrange multipliers are needed.

Sequential Quadratic Programming - SQP

Some important issues

- The solution d_{k} of the quadratic program (QP) can be used to generate a new iterate x^{k+1} by taking a step from x^{k} in the direction of d_{k}.
- To continue to the next iteration, new estimates for the Lagrange multipliers are needed.
- One obvious approach: use the optimal multipliers of the quadratic subproblem Let the optimal multipliers of QP be $\lambda_{q p}$ and $\mu_{q p}$ and setting $d_{\lambda}=\lambda_{q p}-\lambda^{k}$ and $d_{\mu}=\mu_{q p}-\mu^{k}$, the updates will be:
- $x^{k+1} \leftarrow x^{k}+\alpha d$
- $\lambda^{k+1} \leftarrow \lambda^{k}+\alpha d_{\lambda}$
- $\mu^{k+1} \leftarrow \mu^{k}+\alpha d_{\mu}$
for some selection of the steplength parameter α
SQP gradually enforces feasibility of the constraints as part of the KT equations

Sequential Quadratic Programming - SQP

Advantages and disadvantages

- One of the most successful methods for solving NLP
- It is not an algorithm but rather a conceptual method
- Usually violates non linear constraints until convergence, often by large amounts
- Requires a good QP solver

Methods of feasible directions

Linear constraints

Not presented in 2023
Consider the problem (PLC)

$$
\begin{array}{lc}
& \text { minimize } f(x) \\
\text { s.t } \quad A x & \leq b \\
E x & =e
\end{array}
$$

Lemma

Let \times be a feasible solution for the PLC problem. Suppose $A_{1} x=b_{1}$ and $A_{2} \times<b_{2}$.
Decompose matrix A and vector b as:
$A^{t}=\left[\begin{array}{ll}A_{1}^{t} & A_{2}^{t}\end{array}\right]$ and $b^{t}=\left[\begin{array}{ll}b_{1}^{t} & b_{2}^{t}\end{array}\right]$
Then a non zero vector d is a feasible direction at $x \Leftrightarrow A_{1} d \leq 0$ and $E d=0$.
If $\nabla f(x)^{t} d<0$, then d is a descent direction.

Example

Consider

$$
\begin{array}{cc}
\operatorname{minimize} & \left(x_{1}-2\right)^{2}+\left(x_{2}-6\right)^{2} \\
\text { s.t } & -x_{1}+2 x_{2} \leq 4 \\
3 x_{1}+2 x_{2} \leq 12 \\
& -x_{1} \leq 0 \\
& -x_{2} \leq 0
\end{array}
$$

Let $x=\left[\begin{array}{ll}2 & 3\end{array}\right]^{t}$
Find the set of descent directions at x
$A_{1}=\left[\begin{array}{rr}-1 & 2 \\ 3 & 2\end{array}\right]$
Vector d is a feasible solution $\Leftrightarrow\left\{\begin{array}{c}-1 d_{1}+2 d_{2} \leq 0 \\ 3 d_{1}+2 d_{2} \leq 0\end{array}\right.$
Descent directions $\left\{d \in \mathbb{R}^{2} \mid-8 d_{1}+2 d_{2}<0\right\}$

Figure 10.1 Improving feasible directions.

Methods of feasible directions

Generating Descent Feasible directions

Solve the problem:

$$
\begin{array}{cc}
\underset{\text { minimize }}{ } & \nabla f(x)^{t} d \\
& A_{1} d \leq 0 \\
& E d=0 \\
& -1 \leq d \leq \mathbf{1}
\end{array}
$$

x is a $K K T$ point \Leftrightarrow the optimal solution of the problem is equal to zero

Methods of feasible directions

Line search
Given x_{k}, the next point is $x_{k+1} \leftarrow x_{k}+\lambda_{k} d_{k}$. The value λ_{k} is obtained through:

$$
\begin{array}{clll}
\operatorname{minimize} & f\left(x_{k}+\lambda_{k} d_{k}\right) & & \\
\text { s.t } & A\left(x_{k}+\lambda_{k} d_{k}\right) & \leq b & \\
& E\left(x_{k}+\lambda_{k} d_{k}\right) & =e & \text { Redundant! } \\
& \lambda_{k} & \geq 0
\end{array}
$$

Note that

$$
\begin{aligned}
& A_{1} x_{k}+\lambda_{k} A_{1} d_{k}=b_{1}+\underbrace{\lambda_{k}}_{\geq 0} \underbrace{A_{1} d_{k}}_{\leq 0} \leq b_{1} \text { Redundant! } \\
& \lambda_{k} A_{2} d_{k}=\underbrace{b_{2}-A_{2} x_{k}}_{\geq 0}
\end{aligned}
$$

Methods of feasible directions

Line search
The line search then reduces to:

$$
\begin{gathered}
\begin{array}{cl}
\begin{array}{c}
\text { minimize } \\
\text { s.t }
\end{array} & f\left(x_{k}+\lambda d_{k}\right) \\
\text { with } & 0 \leq \lambda \leq \lambda_{\max }
\end{array} \\
\lambda_{\max }=\left\{\begin{array}{cl}
\min \left\{\begin{array}{l}
\hat{p}_{i} \\
\hat{q}_{i} \\
\left.\hat{q}_{i}>0\right\}
\end{array}\right. & \hat{q} \not \leq 0 \\
\infty & \hat{q} \leq 0 \\
\hat{p}=b_{2}-A_{2} x_{k} \\
\hat{q}=A_{2} d_{k}
\end{array}\right.
\end{gathered}
$$

Methods of feasible directions

ZOUTENDIJK algorithm (Linear constraints)

Step 0

- Find a starting feasible solution x_{1} with $A x_{1} \leq b$ and $E x_{1}=e$
- $k \leftarrow 1$

Step 1

- Given x_{k} solve
minimize $\left\{\nabla f\left(x_{k}\right)^{t} d \mid A_{1} d \leq 0 \quad E d=0 \quad-1 \leq d \leq \mathbf{1}\right\}$
- if $\nabla f\left(x_{k}\right)^{t} d=0$ stop x_{k} is KKT point.

Otherwise, go to step 2
Step 2

- Let λ_{k} be an optimal solution to the line search problem: $\min _{0 \leq \lambda \leq \lambda_{\max }}\left\{f\left(x_{k}+\lambda d_{k}\right)\right\}$
- $x_{k+1} \leftarrow x_{k}+\lambda_{k} d_{k}$
- Identify the new set of binding constraints at x_{k+1}, and update A_{1} and A_{2} accordingly. $k \leftarrow k+1$ Go to step 1 .

Methods of feasible directions

Zoutendijk's method

- Subproblem linear: efficiently solved
- Determine active set before solving subproblem!
- When $\nabla f\left(x_{k}\right)^{t} d=0$ KKT point found
- Method needs a feasible starting point.
- Convergence is not generally guaranteed (modification of the method assures convergence)

Methods of feasible directions

Example 1

Consider

$$
\begin{array}{cl}
\operatorname{minimize} & 2 x_{1}^{2}+2 x_{2}^{2}-2 x_{1} x_{2}-4 x_{1}-6 x_{2} \\
\text { s.t } & x_{1}+x_{2} \leq 2 \\
& x_{1}+5 x_{2} \leq 5 \\
& -x_{1} \leq 0 \\
& -x_{2} \leq 0
\end{array}
$$

Solve the problem considering the initial point $x^{(1)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

