

Universidade de São Paulo Escola Superior de Agricultura "Luiz de Queiroz" Departamento de Ciências Biológicas

Termodinâmica

Agronomia

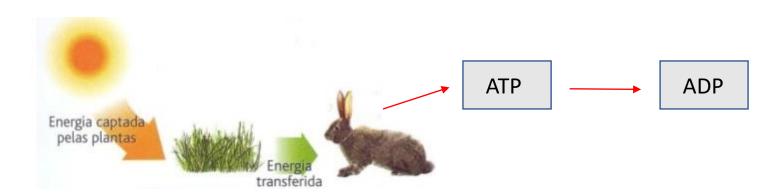
Professora: Nubia Eloy

Termodinâmica

 Termodinâmica é o estudo da relação entre calor, trabalho e a associação com o fluxo de energia

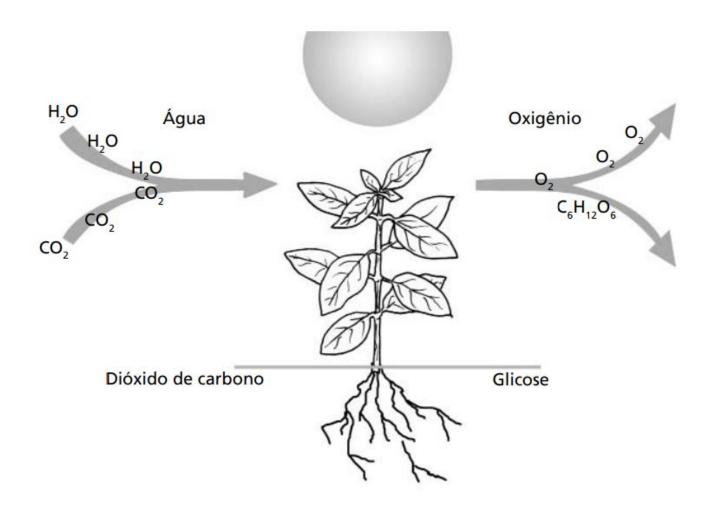
- Conversão de calor (energia) em outros tipos de energia
- Fluxo (dinâmica, movimento) do calor

A vida obedece as leis da termodinâmica


1º lei da termodinâmica: estados em que a energia é conservada – Lei da conservação de Energia

A energia é conservada, não pode ser criada ou destruída, apenas transformada.

✓ A vida demanda energia


A Primeira Lei da Termodinâmica

✓ A energia é conservada

A cada transformação a energia não é criada ou destruída, ela é simplesmente convertida

"Nada se cria, nada se perde, tudo se transforma."

A energia solar foi usada para formar as ligações covalentes entre os átomos de carbono, oxigênio e hidrogênio originando a molécula de glicose, ou seja, a energia solar foi transformada em energia química.

SISTEMA E ENERGIA

Sistema

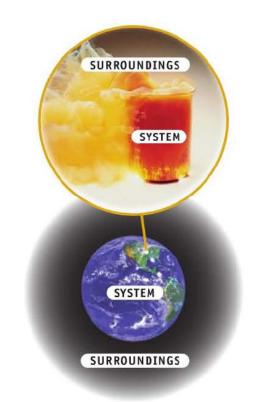
conjunto de elementos interconectados de modo a formar um todo organizado

Energia

potencial inato para executar um trabalho ou realizar uma ação

A quantidade total de energia num sistema fechado não se altera.

Energia


Sistema, Vizinhança e Universo

Sistema: parte do universo em estudo

Vizinhança: o restante

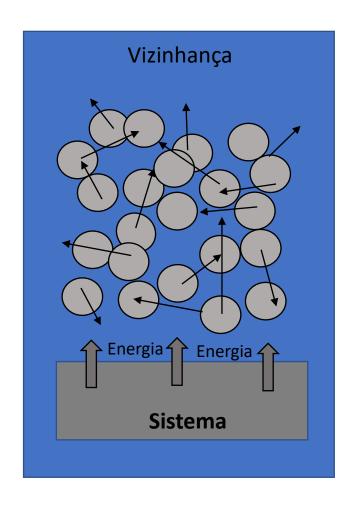
Universo: Sistema + Vizinhança

 $E_{universo} = E_{sistema} + E_{vizinhança}$

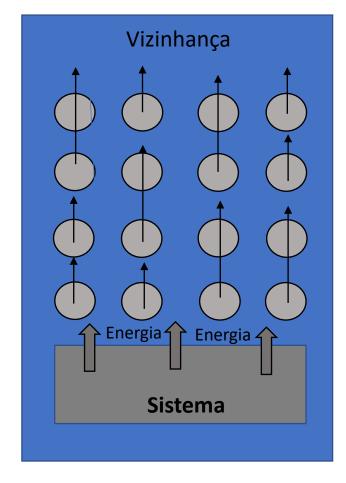
Um sistema pode ser aberto, fechado ou isolado:

Estados em que a energia é conservada

Energia interna - é a energia total de um sistema, sendo a soma de todas as energias cinéticas do sistema


A energia interna é uma <u>função de estado</u>, pois depende do estado em que o sistema está, e não da forma como o sistema chegou até esse estado

A alteração de qualquer <u>variável do estado</u> (P, T, V) faz com que ocorra uma variação da energia interna


A energia interna é uma propriedade extensiva - são as propriedades de um sistema que dependem da massa da amostra

Calor e o trabalho são maneiras equivalentes de alterar a energia do sistema.

Movimento caótico das moléculas das vizinhanças

CALOR

Movimento ordenado

TRABALHO

A segunda lei da termodinâmica

- ✓ O Universo tende a máxima entropia
- ✓ O Universo tende a máxima dispersão de energia

A Segunda Lei da Termodinâmica diz:

- A entropia tende a aumentar
- Um processo será espontâneo se o CAOS do sistema aumentar

"Algo que acontece **espontaneamente** está associada à **dispersão de energia**"

"A força motriz de algo Espontâneo é a dispersão de energia"

ENTALPIA - representamos por H, é o conteúdo de energia de cada substância participante da reação

A variação da entalpia de um sistema é o calor liberado ou absorvido, quando uma transformação ocorre, sob pressão constante.

$$\Delta H_{\text{reação}} = H_{\text{produtos}} - H_{\text{reagentes}}$$

Exemplo:
$$H_2$$
 (I)+ $1/2$ O_2 (g) \longrightarrow H_2 O (I)

$$\Delta$$
H= – 68,5 kcal/mol

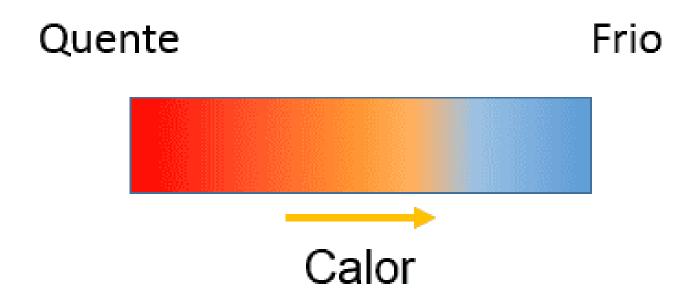
Observe que o ΔH da reação de formação da água (em estado líquido), a partir de hidrogênio (líquido) e oxigênio (gasoso), é um valor negativo. Este valor é negativo, pois a entalpia do produto (água) é menor do que a entalpia dos reagentes (hidrogênio e oxigênio), ou seja, houve uma liberação de energia na formação de água.

"para quantificar o grau de dispersão de energia e matéria, temos a entropia"

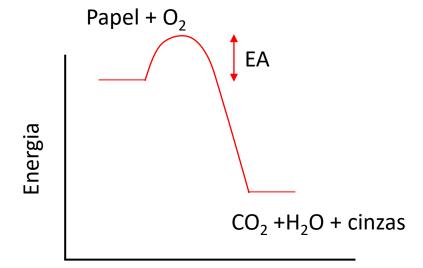
"A entropia de um sistema isolado tende a aumentar" - segunda lei

Sistema aberto é o sistema que temos interesse, corpo humano, célula biológica, organela e a sua vizinhança. Os dois juntos formam o universo.

A formação de um SISTEMA ORGANIZADO pode ocorrer em um local do universo pelo aumento da DESORGANIZAÇÃO de um sistema em outro local do universo.

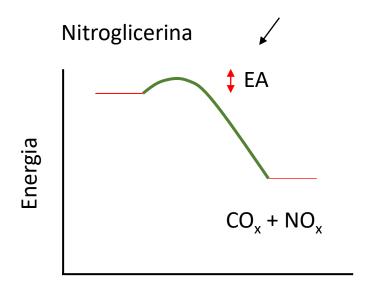

ENTROPIA: Quantidade de energia que não realiza trabalho.

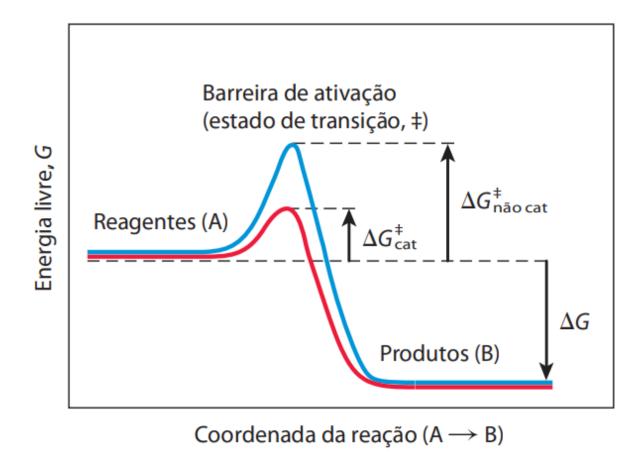
A entropia representa a energia inaproveitável em processos reais, e é obtida pelo produto da variação da entropia (S) pela temperatura absoluta do processo.


Energia entrópica = $T\Delta S$

"A <u>variação de entropia</u> de um sistema é igual á <u>energia transferida</u> para ocorrer a <u>reversibilidade</u> desse sistema à <u>temperatura</u> a que essa transferência ocorre"

Energia, espontaneamente tende a fluir de um local onde está concentrada para um outro onde estará dispersa




EA= Estado de Ativação

Ex: Papel queimando

A energia de ativação protege as substâncias da mudança Entropia é dispersão de energia

A dispersão é bloqueada pela força das ligações químicas (energia de ativação)

Energia Livre de Gibbs

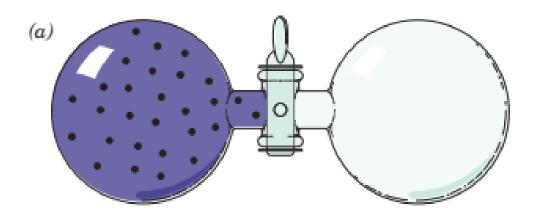
$$\Delta G = \Delta H - T\Delta S$$

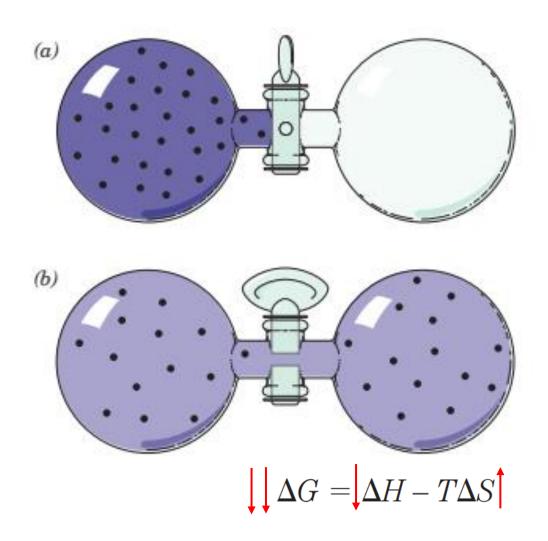

Energia associada a uma reação, energia que pode ser usada

 Δ G, variação de energia livre

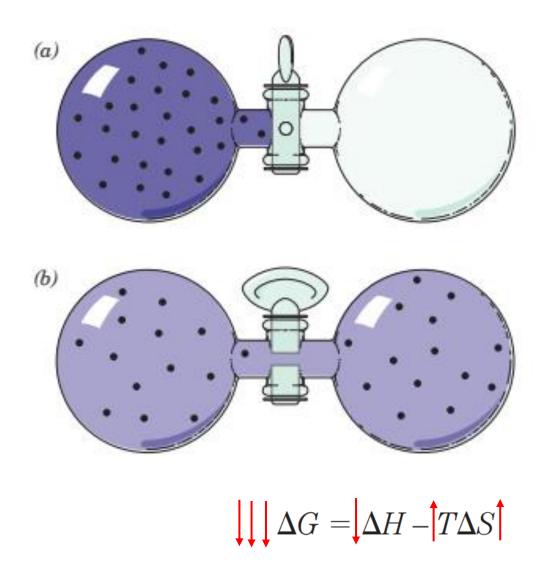
 Δ H, variação de energia total ou entalpia

T, Temperatura

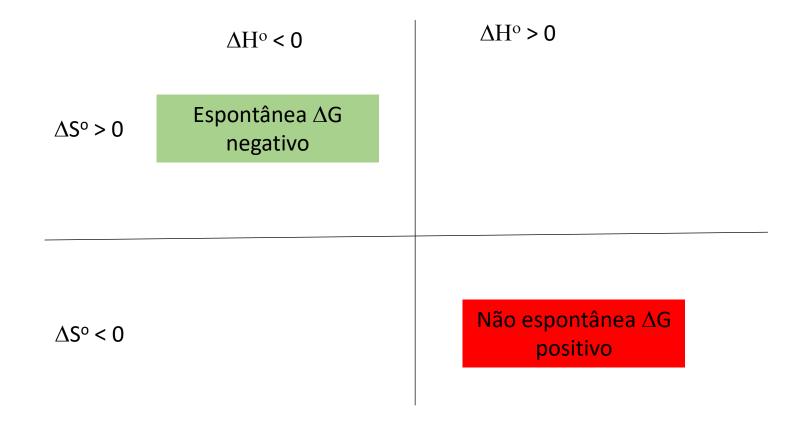

 Δ S, variação na entropia

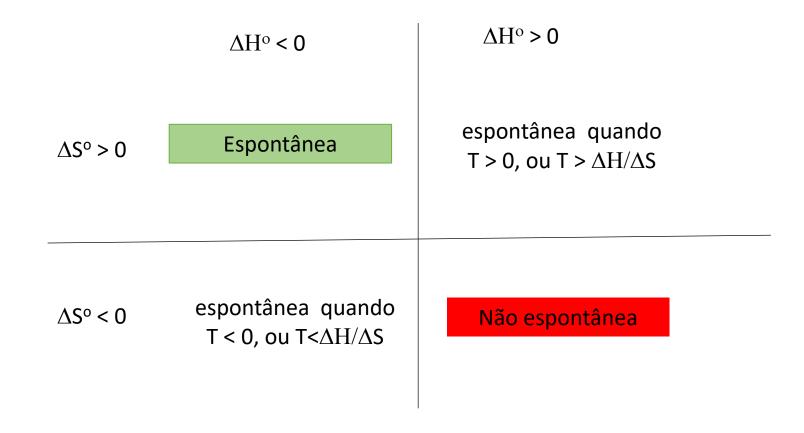

Energia total= ΔH

$$\Delta G = \Delta H - T\Delta S$$


Entropia= ΔS

$$\Delta G = \Delta H - T\Delta S$$


Entropia= ΔS

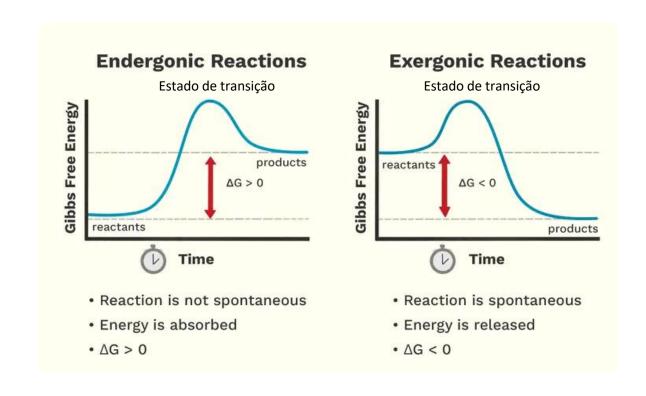

Temperatura =T

Entropia varia com a concentração, o ΔG também

Energia Livre de Gibbs

Energia Livre de Gibbs

Importância da Temperatura


Energia Livre e Espontaneidade

Se ΔG < 0 Espontâneo - Liberação de energia para o meio

Se $\Delta G > 0$ Não espontâneo -Necessita de energia do meio

Se $\Delta G = 0$ - Equilíbrio

 $\Delta G = \Delta H - T\Delta S$

ΔH	ΔS	$\Delta G = \Delta H - T \Delta S$
_	+	A reação é tanto entalpicamente favorecida (exotérmi- ca) quanto entropicamente favorecida. Ela é espontânea (exergônica) em todas as temperaturas.
_	_	A reação é entalpicamente favorecida, mas entropicamente oposta. Ela é espontânea apenas em temperaturas abaixo $T = \Delta H/\Delta S$.
+	+	A reação é entalpicamente oposta (endotérmica), mas entropicamente favorecida. É espontânea apenas em temperaturas <i>acima</i> de $T = \Delta H/\Delta S$.
+	_	A reação é tanto entalpicamente quanto entropicamen- te oposta. Ela é não espontânea (endergônica) em todas as temperaturas.

ΔH	ΔS	$\Delta G = \Delta H - T \Delta S$
_	+	A reação é tanto entalpicamente favorecida (exotérmi- ca) quanto entropicamente favorecida. Ela é espontânea (exergônica) em todas as temperaturas.
_	_	A reação é entalpicamente favorecida, mas entropicamente oposta. Ela é espontânea apenas em temperaturas abaixo $T = \Delta H/\Delta S$.
+	+	A reação é entalpicamente oposta (endotérmica), mas entropicamente favorecida. É espontânea apenas em temperaturas <i>acima</i> de $T = \Delta H/\Delta S$.
+	_	A reação é tanto entalpicamente quanto entropicamen- te oposta. Ela é não espontânea (endergônica) em todas as temperaturas.