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For real-world concept learning problems, feature 
selection is important to speed up learning and to 
improve concept quality. We review and analyze past 
approaches to feature selection and note their strengths 
and weaknesses. We then introduce and theoretically 
examine a new algorithm Relief which selects relevant 
features using a statistical method. Relief does not depend 
on heuristics, is accurate even if features interact, and is 
noise-tolerant. It requires only linear time in the number 
of given features and the number of training instances, 
regardless of the target concept complexity. The 
algorithm also has certain limitations such as non- 
optimal feature set size. Ways to overcome the 
limitations are suggested. We also report the test results 
of comparison between Relief and other feature selection 
algorithms. The empirical results support the theoretical 
analysis, suggesting a practical approach to feature 
selection for real-world problems. 

The representation of raw data often uses many 
features, only some of which are relevant to the 
target concept. Since relevant features are often 
unknown in real-world problems, we must 
introduce many candidate features. 
Unfortunately redundant features degrade the 
performance of concept learners both in speed 
(due to high dimensionality) and predictive 
accuracy (due to irrelevant information). The 
situation is particularly serious in constructive 
induction, as many candidate features are 
generated in order to enhance the power of the 
representation language. Feature selection is the 
problem of choosing a small subset of features 
that ideally is necessary and sufficient to describe 
the target concept. 

For many real-world problems, which 
possibly involve much feature interaction, we 
need a reliable and practically efficient method to 
eliminate irrelevant features. Approaches and 
their problems are discussed in Section 2. 
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Intended to circumvent some of the problems, a 
new algorithm is described in Section 3. Its 
detailed theoretical analysis and brief empirical 
evaluation are given in Sections 4 and 5. Section 
4 addresses current limitations and future work. 
Section 7 concludes. 

as eir s 

We assume two-class classification problems. An 
instance is represented by a vector composed of p feature 
values. S denotes a set of training instances with size n. 
P is the given feature set ( fl , f2, . . . 9 fp } . An 
instance X is denoted by a p-dimensional vector (xl, x2, . 

x: 
9 xp), where xj denotes the value of the feature fj of 

Typical approaches need a function J 
evaluates the subset @ of P usi 
@I is better than @2 if J(3E 1) 
examine all the training instance 
O(J), must be at least O(n). 

es 
] or IxSl 

[Rendell, Cho & Seshu 19891, select relevant features by 
themselves, using measures such as information gain for 
J. Hence, one might think that feature selection is not a 
problem at all. But hard concepts having feature 
interaction are problematic for induction algorithms 
[Devijver & Kittler 1982, Pagallo 1989, Wendell $ Seshu 
19901. For example, if the target concept is fl @ f2 = 1 
and the distribution of the feature values is uniform over 
{ 0, 1) , the probability of an instance’s being positive is 
50% when fl = I (f2 = 1). There is little information gain 
in selecting either of fl or f2 though they are relevant. 
Since real-world problems may involve feature interaction, 
it is not always enough to apply concept learners only. 

2.2 xhaustive Sear@ 
One way to select a necessary and sufficient subset is to 
try exhaustive search over all subsets of F and find the 
subset that maximizes the value of J. This exhaustive 
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search is optimal - it gives the smallest subset 
maximizing J. But since the number of subsets of F is 
2p, the complexity of the algorithm is O(2p).0(J). This 
approach is appropriate only if p is small and J is 
computalionally inexpensive. 

Almuallim and Dietterich [ 1991 J introduced FOCUS, 
an exhaustive search algorithm Figure 11. They showed 
that FOCUS can detect the necessary and sufficient 
features in quasi-polynomial time, provided (1) the 
complexity of the target concept is limited and (2) there is 
no noise. They defined the complexity for a concept c to 
be the number of bits needed to encode c using their bit- 
vector representation, and showed that FOCUS will 
terminate in time O((2p)10g(s - p>,) where s is the 
complexity of the target concept. 

But the complexity can be as large as O(2p), for 
example when all the features are relevant. Since the 
complexity of the target concept is generally not known a 
priori , we have to expect as much as 0(2Ppn) time for the 
worst case when all the subsets of P are to be examined. 
Moreover, with noisy data, FOCUS would select a larger 
subset of F, since the optimal subset would not give clear 
class separation. 

FoCUS(S, F) 
For i = 0, 1, 2, .*a 

ForallEEPofsizei 
If there exist no two instances in S that agree on 
all features in @ but do not agree on the class 
then return E and exit 

Figure 1 FOCUS 

2.3 Heuristic Search Algorithms 
Devijver and Kittler [1982] review heuristic feature 
selection methods for reducing the search space. Their 

SFS(S, F) 
Is=0 
For i=ltod 

Find a feature fmax E F - E, where 

J(1E U { fmax), S) = max 
fE IF-E 

J(2: u (f), 8) 

@=@u umax) 
Return $5 

(a) SFS 

definition of the feature selection problem, “select the best 
d features from F, given an integer d 5 p” requires the size 
d to be given explicitly and differs from ours in the sense. 
This is problematic in real-world domains, because the 
appropriate size of the target feature subset is generally 
unknown. The value d may be decided by computational 
feasibility, but then the selected d features may result in 
poor concept description even if the number of relevant 
features exceeds d only by 1. 

Figure 2 shows Sequential Forward Selection (SFS) 
and Sequential Backward Selection (SBS) algorithms. 
These algorithms use a strong heuristic, “the best feature 
to add (remove) in every stage of the loop is the feature to 
be selected (discarded).” These algorithm are much more 

efficient. SFS’s complexity is O( &)-O(J). SBS’s 

complexity is @($0(J). 

But the heuristic also causes a problem. These 
algorithms perform poorly with feature interaction. 
Interacting features (e.g. in protein folding, parity (Section 
5)) may not maximize J individually, even though they 
maximize it together. 

2.4 Feature weight based approaches 
Research in AI tends not to view feature selection as a 
distinct problem but rather handles it as an implicit part of 
induction. The following approaches handle feature 
selection implicitly. 

STAGGER [Schlimmer 1987, Schlimmer & Granger 
19861 selects source features for constructing a new 
feature, judging from the feature weights based on their 
relevance to the concept. However, since the relevance is 
determined one feature at a time, the method does not work 
for domains where features interact with one another. 

SW& 3’) 
E=P 
For i = 1 to (p - d) 

Find a feature fmax E iE, where 

J(@- (fmax), S) = max J(E - (f}, S) 
fE E 

@=IE:- (fmax) 
Return E 

(b) SBS 

Figure 2 Heuristic Search Algorithms 
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Callan, Fawcett and Rissland [ 199 l] also introduce an 
interesting feature weight update algorithm in their case- 
based system CABOT, which showed significant 
improvement over pure case-based reasoning in the 
OTHELLO domain. CABOT updates the weights by 
asking the domain expert to identify the best case. This 
dependency on the expert makes the system less 
autonomous, which is problematic for feature selection. 

3 eIief Algorithm 

Relief is a feature weight based algorithm inspired by 
instance-based learning [Aha, Kibler & Albert 199 1, 
Callan, Fawcett dz Rissland 19911. Given training data S, 
sample size m, and a threshold of relevancy 2, Relief 
detects those features which are statistically relevant to the 
target concept. z encodes a relevance threshold (0 I 2 I 
1). We assume the scale of every feature is either nominal 
(including boolean) or numerical (integer or real). 
Differences of feature values between two instances X and 
Y are defined by the following function diff. 

When Xk and yk are nominal, 
<if Xk and yk are the same> 
cif xk and yk are different> 

When Xk and yk are numerical, 
diff(xk, Yk)=(Xk - yk)/nUk 

where nUk iS a normalization unit to normalize 
the values of diff into the interval [0, l] 

Relief@, m, 7) 
Separate S into S+ = {positive instances] and 

S’= (negative instances) 
w = (O,O, . . . * 0) 
Fori= 1 tom 

Pick at random an instance X E S 
Pick at random one of the positive instances 

closest to X, Z+ 62 8+ 
Pick at random one of the negative instances 

closest to X, Z- E S- 
if (X is a positive instance) 

then Near-hit = Z+; Near-miss = Z’ 
else Near-hit = Z-; Near-miss = Z+ 

update-weight(W, X, Near-hit, Near-miss) 
Relevance = .( l/m)W 
For i = 1 to p 

if (relevancei 1 t) 
then fi is a relevant feature 
else fi is an irrelevant feature 

update-weight(W, X, Near-hit, Near-miss) 
Fori= 1 top 

Wi = Wi - diff(xi, near-hiti)2 + diff(xi, near-missi)2 

Figure 3 Relief Algorithm 

Relief (Figure 3) picks a sample composed of m triplets of 
an instance X, its Near-hit instance1 and Near- 
instance. Relief uses the p-dimensional Euclid distance for 
selecting Near-hit and Near-miss. calls a 
routine to update the feature weight vecto r every 

plet and to determine the average weight 
elevanee (of all the features to the target 

concept). Finally, Relief selects those features whose 
average weight (‘relevance level’) is above the given 
threshold 2. 

The following theoretical analysis shows that Relief 
is different from other feature weight based algorithms in 
that it can handle feature interaction, or that it is more 
autonomous. 

esretical nalysis 

Relief has two critical components: the averaged weight 
elevance and the threshold 2. 
ged vector of the value - (xi - 

(xi- near-missj)2 for e h feature fi over m sample 
triplets. Each element of levanee corresponding to a 
feature shows how relevant the feature is to the target 
concept. z is a relevance threshold for determining 
whether the feature should be selected. 

The complexity of Relief is O(pmn). Since m is an 
arbitrarily chosen constant, the complexity is O(pn). 
Thus the algorithm can select statistically relevant features 
in linear time in the number of features and the number of 
training instances. 

Relief is valid only when (1) the relevance level is 
huge for relevant features and small for irrelevant features, 
and (2) 2 retains relevant features and discards irrelevant 
features. We will show why (1) and (2) hold in the 
following sections. 

ellevance leve 
Let A be a vector of random ables (Si) such that 

)2 + (xi - near-missj)2 
date-weight function 

accumulates the value of 6; for each feature over m 
samples. Vance gives the averaged value of 6i for 
each feat 

If fi is a relevant feature, xi and near-hiti are 
expected to be very close in the neighborhood of 
contrast, the values of at least one of the relevant features 
of X and Near -miss are expected to be different. 
Therefore, near-hiti is expected to be close to xl more 
often than near-misq to xi, and relevancei= E(6i) >> 0. 

1 We call an instance a near-hit of X if it belongs to the close 
neighborhood of X and also to the same category as X. We 
call an instance a near-miss when it belongs to the properly 
close neighborhood of X but not to the same category as X. 
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If instead fi is an irrelevant feature, the values of 
random variables xi, near-hit1 and near-miss1 do not 
depend on one another. Therefore, (xi - near-hiti) and 
(Xi - near-missi) are independent. Since near-hiti and 
near-missi are expected to obey the same distribution,2 

E((xi - near-hiti)2) = E((xI - near-missi)2) 
E(6i) = - E((xI - near-hiti)2) 

+ E((xi - near-missi)2) = 0 
relevance; = E(Si) = 0 
Therefore, statistically, the relevance level of a 

relevant feature is expected to be larger than zero and that 
of an irrelevant one is expected to be zero (or negative)2. 

4.2 Threshold z 
Figure 3 shows that those features whose relevance levels 
are greater than or equal to 2 are selected and the rest are 
discarded. Hence the problem to pick a proper value of 2. 
Relief can be considered to statistically estimate the 
relevance level 6; for each feature fi, using interval 
estimation. First we assume all the features are irrelevant 
(E(&) = 0). z gives the acceptance and critical regions of 
the hypothesis. 

acceptance-region = { eil I&-E(&)l<~) 
= ( 4; I I ei I5 Z } 

critical-region = ( & I I & - E(6i) I > z ) 
= { 5; I I ci I > 2 ) 

If the relevance level of a feature is in the acceptance 
region of the hypothesis, it is considered to be irrelevant. 
If the relevance level of a feature is in the critical region of 
the hypothesis, it is considered to be relevant. 

One way to determine z is to use Cebysev’s 
inequality, 

P(I p - E(p) I I ha(p)) > 1 - l/h2 
for any distribution of p 

where a(p) is the standard deviation of p and h > 0. 
Since xi, near-hiti, and near-missi are normalized, -1 
5 6i I 1. Since fi is assumed to be irrelevant, E(6i) = 0 
and therefore O(6i) I 1. Since the relevance level 
relevancei is the average of 6i over m sample instances, 

E(relevancei) = 0 and o(relevancei) = o&)/G 5 l/G. 
Therefore, 

P(I relevance; I 5 hfi) 
2 P(I relevance; I 5 ho(relevance;)) > 1 - l/h2 

According to the inequality, if we want the probability of 
a Type I error (rejecting the hypothesis when it is true) to 

2Strictly speaking, the distributions differ slightly. Since 
Relief does not allow X to be identical with Near-hit, some of 
their irrelevant feature values are expected to be different. On 
the other hand, since X and Near-miss are not identical (if 
there is no noise), all of their irrelevant feature values can be 
the same at the same time. This asymmetry tends to make 
E(Si) negative for irrelevant features. 

be less than a, l/h2 I a is sufficient. Therefore h = 1 / 
d-- a is good enough. It follows that z = h&=I/lrotm 
is good enough to make the probability of a Type I error 
to be less than a. 

Note that Cebysev’s inequality does not assume any 
specific distribution of 6i. h can usually be much smaller 

than 1 / 6 Also, O(6i) can be much smaller than 1 
(e.g. for the discrete distribution of (0 : l/2, 1 : l/2), d = 
0.707. For the continuous uniform distribution over [0, 
11, CT =0.0666). Since we only want z = ha, z can be 
much smaller than I / 6. 

While the above formula determines z by a (the value 
to decide how strict we want to be) and m (the sample 
size), experiments show that the relevance levels display 
clear contrast between relevant and irrelevant features [Kira 
& Rendell’92J. z can also be determined by inspection. 

5 Empirical Evaluation 

In section 2, we discussed three types of past approaches. 
One is concept learners alone, another is exhaustive 
search, the third is heuristic search. In this section, we 
compare Relief with these approaches. ID3 represents 
concept-learner-alone approach and also heuristic search - 
a kind of sequential forward search [Devijver $ Kittler 
19821, since it incrementally selects the best feature with 
the most information gain while building a decision tree. 
Exhaustive search is represented by FOCUS [Almuallim 
& Dietterich 19911. 

Figure 4 shows the results of comparing (1) ID3 
alone, (2) FOCUS + ID3, and (3) Relief (m = 40,~ = 0.1) 
+ ID3 in terms of predictive accuracy and learning time in 
a parity domain. The target concept is fI @ f2 = 1. The 
horizontal axis shows the size of the given feature set P in 
which only two are relevant features. The results are the 
averages of 10 runs. 

The predictive accuracy of ID3 alone was inferior to 
both FOCUS + ID3 and Relief + ID3. This shows the 
importance of feature selection algorithms. With noise- 
free data, both FOCUS -o- ID3 and Relief + ID3 learned the 
correct concept. FOCUS + ID3 is more effective than 
Relief + ID3, because FOCUS can select the two relevant 
features more quickly than Relief. With noisy data, 
however, the predictive accuracy of ID3 with Relief is 
higher than with FOCUS. In fact, Relief + ID3 typically 
learns the correct concept. The learning time of FOCUS 
+ ID3 increases exponentially as the size of P increases, 
while that of Relief + ID3 increases only linearly. Thus 
Relief is a useful algorithm even when feature interaction 
is prevalent and the data is noisy. These results show that 
Relief is significantly faster than exhaustive search and 
more accurate than heuristic search. 
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Figure 4 Test Results in Parity Domain 

Relief requires retention of data in incremental uses. 
However it can be easily modified for incremental update 
of relevance levels. Relief does not help with redundant 
features. If most of the given features are relevant to the 
concept, it would select most of them even though only a 
fraction are necessary for concept description. 

Relief is applicable only to the two-class 
classification problem. However the algorithm can easily 
be extended for solving multiple-class classification 
problems by considering them as a set of two-class 
classification problems. Relief can also be extended for 
solving continuous value prediction problems. 

Insufficient training instances fools Relief. Sparse 
distribution of training instances increases the probability 
of picking instances in different peaks or disjuncts 
[Rendell & Seshu 19901 as Near-hit (Figure 3). It is 
crucial for Relief to pick real near-hit instances. One way 
is to give enough near-hit instances for all instances. 
Another is to apply feature construction [Matheus & 
Rendell 1989, Rendell & Seshu 1990, Yang, Blix & 
Rendell 19911. By generating good new features, the 

number of peaks of the target concept is reduced. 
Accordingly the same training instances may provide 
enough near-hit instances to detect relevance of those new 
features to the concept. These limitations also suggest 
research directions. 

Relief is a simple algorithm which relies entirely on a 
statistical method. The algorithm employs few heuristics, 
and is less often fooled. It is efficient - its computational 
complexity is polynomial (O(pn)). Relief is also noise- 
tolerant and is unaffected by feature interaction. This is 
especially important for hard real-world domains such as 
protein folding. 

Though our approach is suboptimal in the sense that 
the subset acquired is not always the smallest, this 
limitation may not be critical for two reasons. One is that 
the smallest set can be achieved by subsequent exhaustive 
search over the subsets of all the features selected by 
Relief. The other mitigating factor is that the concept 
learners such as ID3 [Quinlan I9831 and PLSI mendell, 
Cho & Seshu 19891 themselves can select necessary 
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features to describe the target concept if the given features 
are all relevant. 

More experiments and thorough theoretical analysis 
are warranted. The experiments should include combining 
our algorithm and various kinds of concept learners such 
as similarity-based learners, and connectionist learners. 
Relief can also be applied to IBL to learn relative weights 
of features and integrated with constructive induction. 
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