
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 9, SEPTEMBER 1977

Correspondence_

A Branch and Bound Algorithm for Feature Subset
Selection

PATRENAHALLI M. NARENDRA AND KEINOSUKE
FUKUNAGA

Abstract-A feature subset selection algorithm based on branch
and bound techniques is developed to select the best subset of m
features from an n-feature set. Existing procedures for feature
subset selection, such as sequential selection and dynamic pro-
gramming, do not guarantee optimality of the selected feature
subset. Exhaustive search, on the other hand, is generally compu-
tationally unfeasible. The present algorithm is very efficient and
it selects the best subset without exhaustive search. Computational
aspects of the algorithm are discussed. Results of several experi-
ments demonstrate the very substantial computational savings
realized. For example, the best 12-feature set from a 24-feature set
was selected with the computational effort of evaluating only 6000
subsets. Exhaustive search would require the evaluation of 2 704 156
subsets.

Index Terms-Branch and bound, combinatorial optimization,
feature selection, recursive computation.

I. INTRODUCTION

The problem of feature subset selection is to select a subset of (m)
features from a larger set of (n) features or measurements to optimize
the value of a criterion over all subsets of the size m. There are (m) =
n!/m!(n - m)! such subsets. Exhaustive evaluation of all the subsets is
computationally prohibitive, as the number of subsets to be considered
grows very rapidly with the number of features, for example, ('2) is 924,
while (M) is 2 704 156. Stepwise techniques [1] and dynamic programming
solutions [2] are more efficient because they avoid exhaustive enumera-
tion, but they offer no guarantee that the selected subset yields the best
value of the criterion among all subsets of size m.

Here, we present a branch and bound formulation of the feature subset
selection problem. The algorithm is very efficient because it avoids ex-
haustive enumeration by rejecting suboptimal subsets without direct
evaluation and guarantees that the selected subset yields the globally
best value of any criterion that satisfies monotonicity. Branch and bound
methods are powerful combinatorial optimization tools and similar for-
mulations have been applied to other problems in pattern recognition,
such as clustering [5] and nearest neighbor computation [6]. Here an ef-
ficient subset enumeration scheme is developed to realize maximum
advantage of the branch and bound principle. Recursive equations which
facilitate rapid computation are derived for the class of quadratic criteria
such as the discriminant function, divergence and Bhattacharyya distance
for the normal case, etc. A suboptimal variant of the globally optimal
branch and bound algorithm is also presented. Results of computer ex-
periments demonstrating the efficiency of the algorithms are also in-
cluded.
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II. THE BRANCH AND BOUND ALGORITHM

Let the number of features in the original set be n. We have to select
a subset of m features so that the value of a criterion is optimized over
all subsets of size m.

Let (Z1, -*- ,Zm) be the imi = n - m features to be discarded to obtain
an m feature subset. Each variable Zi can take on values in [1,2, . . . nl.
But the order of the Zi's is immaterial, hence, we will consider only se-
quences of Zi's such that

Zl <Z2 <... <Zm (1)

A more general enumeration of the subsets will be given later.
The feature selection criterion is Jmr(Zi, - * - ,Zg), a function of the m

features obtained by discarding Z1, - - * ,Zg, from the n feature set. The
feature subset selection problem is to find the optimum subset Z;, - - * Z!-
such that

J7 (Z*, -*-Z- ) = max Jm(Z1, * *Zm), Zi, .* *Z.

Fig. 1 is a solution tree enumerating all the possible subsets satisfying
relation (1) for n = 6 and m = 2 (mi = 4). Each node is uniquely identified
by the discarded feature, for example (1,4) for node A.

Let us assume that the criterion J satisfies monotonicity, which is
defined by

(2)

The monotonicity is not particularly restrictive, as it merely means that
a subset of features should be not better than any larger set that contains
the subset. Indeed, a large variety of feature selection criteria does satisfy
the monotonicity relation. Discriminant functions and distance measures
such as the Bhattacharyya distance and divergence are examples.

Let B be a lower bound1 on the optimum (maximum) value of the cri-
terion Jmi(Z;, - - *,Z* ), i.e.,

B S Jm(Z; - *. )

If Jk(Zl, - - - Zk)(k < i) were less than B, then by (2),
Jm(Z1, -*-*,Zk,Zk+l, - - *,Zm) < B|
for all possible tZk+1, * *Z.l..

(3)

(4)

This means that whenever the criterion evaluated for any node is less than
the bound B, all nodes that are successors of that node also have criterion
values less than B, and therefore cannot be the optimum solution. This
forms the basis for the branch and bound algorithm.
The branch and bound algorithm successively generates portions of

the solution tree and computes the criterion. Whenever a suboptimal
partial sequence or node is found to satisfy (4), the subtree under the node
is implicitly rejected, and enumeration begins on partial sequences which
have not yet been explored.

The Enumeration Scheme

We note that with reference to Fig. 1, the nodes at a given level do not
all have the same number of terminal nodes. Node (1,2) has three suc-
cessors, while node (1,4) has only one. As a result, if the suboptimality
test (4) is satisfied for node (1,2) (i.e., if J2(1,2) < B), six sequences are
rejected as being suboptimal, while for node (1,4), only the single sequence

1 B could be the best value of Jw(Zi, - - ,Zw) found so far in the search, for ex-
ample.
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Fig. 1. Illustrating the solution tree generated by relation (1).

(1,4,5,6) would be rejected. The enumeration scheme that follows is based
on the same tree structure as in Fig. 1. But, the successors of each node
are ordered at each level so that the successors with smaller values of the
partial criterion will be nodes which will have a larger number of suc-

cessors in turn. This ensures that maximum advantage will be realized
from the suboptimality test (4).

The Branch and Bound Algorithm

The following notation will be used in the algorithm.
LIST(i): An ordered list of the features enumerated at level i.
POINTER(i): The pointer to the element of LIST(i) being currently

considered. For example, if the current element in LIST(i) is the kth, then
POINTER(i) = k.

SUCCESSOR(i,k): The number of successors that the kth element in
LIST(i) can have.

AVAIL: A list of available feature values that LIST(i) can assume.

Step O- (Initialization): Set B = B0, AVAIL = 11,2, - -,n, i = 1,

LIST(0) 10j, SUCCESSOR(0,1) = m + 1, POINTER(0) = 1.
Step 1-[Initialize List(i)]: Set NODE = POINTER(i- 1). Compute

Ji(Z1, * *,Zi- ,k) for all k in AVAIL. Rank the features in AVAIL in the
increasing order of JL (Z1, * *. ,Zi1,k) and store the smallest p of these
in LIST(i) in the increasing order (with the first element in LIST(i) being
the feature in AVAIL yielding the smallest Ji), where p = SUCCESSOR(i

1,NODE). Set SUCCESSOR(ij) = p -j + 1, for j = 1,2, * ,p. Remove
LIST(i) from AVAIL.

Step 2-(Select new node): If LIST(i) is empty, go to Step 4. Otherwise,
set Zi = k where k is the last element in LIST(i). Set POINTER(i) jj
where j is the current number of elements in LIST(i). Delete k from
LIST(i).

Step 3- (Check bound): If Ji(Z1, * - ,Zi)-< B, return Zi to AVAIL and
go to Step 4. If level i = m, go to Step 5. Otherwise, set i = i + 1 and go to
Step 1.
-Step 4- (Backtrack): Set i = i - 1. If i = 0, terminate the algorithm.

Otherwise, return Zi to AVAIL and go to Step 2.
Step 5-(Final level, update bound): SetB =Jm (Zl, -*.*,Z4r) and save

(Z1, - *,Zm) as (Z;, * * *,Z* ). Return Zm to AVAIL. Go to Step 4.
The flowchart in Fig. 2 illustrates the algorithm. The functioning of

the algorithm is as follows: starting from the root of the tree, the succes-

sors of the current node are enumerated in the ordered list LIST(i). The
successor, for which the partial criterion Ji(Z1, ,Zi) is maximum (the
rightmost successor), is picked as the new current node and the algorithm
moves on to the next higher level. The lists LIST(i) at each level i keep
track of the nodes that have been explored. The SUCCESSOR variables
determine the number of successor nodes the current node will have at

the next level. AVAIL keeps track of the feature values that can be enu-
merated at any level.
Whenever the partial criterion is found to be less than the bound, the

algorithm backtracks to the previous level and selects a hitherto unex-
plored node for expansion. Whenever the algorithm reaches the last level
mi, the lower boundB is updated to be the current value of J7g(Zl, .** *4
and the current sequence (Z1, -* ,Zmf) is saved as (Z;, - -,Z*). When
all the nodes in LIST(i) for a given i are exhausted, the algorithm back-
tracks to the previous level. When the algorithm backtracks to level 0,
it terminates.
At the conclusion of the algorithm (Z;, * * *,Z* ) will give the comple-

ment of the best feature set. Fig. 3 illustrates, for a random example, the
tree enumerated including the nodes which were rejected by the
suboptimality test (4). At level 1, features 4, 3, and 6 were enumerated
because JI(4) < J1(3) < J1(6) < J1(1) < J1(2), J1(5). The present algo-
rithm is totally independent of the ordering of the features. No sequence
is enumerated more than once (even as a permutation) and all possible
sequences are considered either explicitly or implicitly, guaranteeing
optimality of the subset sought. Moreover, the suboptimality test (4) is
always used to the best advantage, rendering the algorithm very effi-
cient.

Suboptimal Solutions
We have presented an efficient branch and bound formulation which

guarantees global optimality of the subset under the assumption of mo-
notonicity. Ifwe allow global optimality to be compromised, it is possible
to improve the efficiency even further. We present a scheme that employs
lookahead in the basic branch and bound algorithm, so that nonoptimal
solutions were detected higher up in the tree, eliminating more subop-
timal solutions.
We define upper bounds bi of the criterion for each stage i as fol-

lows:
bi is the best (largest) value of J (Z1, .. ,Zi) found so far in the

search. bi is updated every time a Ji(Zl, *..,Z- ) is computed to be greater
than the current value of bi. In Step 3 of the algorithm, we replace the
test Ji(Z1, --- ,Zi) < B by Ji(Z1, -- ,Zi) < bi+1, where 1 is an integer
constant representing the lookahead factor. It is understood that bi+1 =
b7w, for i + 1 > K.
With this change, instead of comparing the partial criterion Ji(Z1,
- ,Zi) with the bound B (on J7g(ZI, - - -,Zx)), we now compare it with

a bound bi+i(on Ji+1(ZI, * * ,Zi+)) for 1 stages down the tree. Note that
if I = m- 1, then bi+1 = bm B for all i, and the scheme is equivalent to
the original branch and bound algorithm. For I < m - 1 since bi < B,
more branches are eliminated in Step 3 of the algorithm and only the
more promising nodes are evaluated at the higher levels of the tree. So,
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Fig. 2. Flowchart for the branch and bound algorithm.

for I < i - 1 the algorithm enumerates fewer nodes and is therefore more
efficient, although now there is no guarantee that the subset obtained
is globally optimal. Incidentally, for I = 0 the algorithm approximates
the familiar backward selection schemes. Therefore, we can expect that
for 0<1 <Iff - 1 the algorithm would fall between the backward selection
schemes and the globally optimal branch and bound algorithm, both in
efficiency and optimality of the subset obtained. Indeed, this is borne
out by the experimental results reported in Section IV.

III. RECURSIVELY COMPUTABLE CRITERIA
We noted in the previous section that the algorithms are implemented

with the criterion evaluated for the partial sequences (Z1, - - ,Zk ). The
nature of the enumeration schemes requires that the value of the criterion
be computed successively as features are deleted from the full set. For
the class of quadratic criteria, we derive recursive equations to evaluate
the criterion as a new feature is deleted from the present partial set. We
will first consider the following quadratic form

Sk- _Sk-1 Ik-1
L yT Skk 111

k-1 1

(7)

A fundamental identity in matrix algebra [7] gives S 1' in terms of Sk-1
as

IS*1 + dS-1Y S idsk-1
k +y Si1YYTSi Y1
1 l1

(8)

where

If we -write
d = Skk - YTSA-LY (9)

(10)
Jk = XkTSk lXk (6)

S-1- A C1ik-1k [CT ba 1
k-1 11

where Xk is a k-vector and Sk a k X k positive definite matrix when k
features are present.
This quadratic form is the basis of various quadratic criteria such as

the discriminant function, the Fisher criterion, and Mahalanobis distance.
Bhattacharyya distance and the divergence, for the normal case, also have
terms of the same form as (6).

A. Recursive Computation of Sk 1

The inversion of Sk is the major computational effort in evaluating (6)
as features are successively deleted from the full set of features. When
the ith feature is deleted it is necessary to compute the inverse of Sk with
the ith row and column deleted. Without loss of generality, let the feature
being deleted correspond to the kth row and column of Sk.

then, by (8) and (10) it can be verified that

S41 =A-CCT.k- b
(11)

Hence, S',1 can be computed from Sk I with little computational effort.
With reference to the algorithm, the inverse matrices Sk are stored for
each level. The inverse at any level is computed from that of the- previous
level using the recursive equation (11). Whenever the algorithm back-
tracks and proceeds down another branch, the inverse for the new Sk can
be recomputed from the inverse at the level at which the branching oc-
curred. For example, suppose in Fig. 2, after (3,1,6,2) is explored, the al-
gorithm backtracks to the node (3,5). The value of Sk for the node (3,5)
can be computed from the current value ofS' at level 1. The Sa for level
two is updated to be this value as feature 5 is now chosen to be Z2.
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Fig. 3. A solution tree generated by the enumeration scheme in the algorithm.

B. Recursive Computation of XkTSk X5

It is also possible to recursively compute the quadratic XkS -Xa for

k-1 features given its value with k features and the Sk ' matrix from the
previous level. This is useful in Step 1 of the algorithm where it is nec-
essary to compute the criterion after deleting one feature at a time from
a partial set. This avoids computation of S-j11 during this step. Once a

node is selected however (Step 3), the S'1 for the new level has to be
updated using (11).

Let the criterion with k features be denoted by Jk = XkTSk1Xk, and
let us assume that the kth feature is being deleted as before.

Jk-l = X-jSk lXk-I iS the criterion with k - 1 features where

Xk =Xk-l k,-1 (12)
LXk

and Sk1 is defined as in (7).
As a consequence of (11), it is easy to verify that

xTk_1xlk-1=Xl.,[AT - CCT] Xk-

k-_ AXk-l- ( Xk-)

=XkTSklXk-X[bX2 + 2xkCTXk- + b (CTXk-1)2]

= XkTSk1lXk [(Ct:b)Xk]2. (13)
b

Note that (CT:b) is a row of Sk1 corresponding to the feature being de-
leted. Hence (CT:b) Xk is merely the inner product of that row with Xk.
Thus, the Ji(Z1, - - *,Zi-.,j) in the algorithms can be directly evaluated
from Jj_l(Z1, - - *,Zi-1) by (13) without actually having to compute S'
for all the variables j. Incidentally, (13) also furnishes proof that J is
monotonic.

V. COMPUTER EXPERIMENTS

The algorithms were tested on multispectral data acquired from air-
borne remote sensing scanners at the Laboratory for Applications for
Remote Sensing (LARS) at Purdue University.
The data were comprised of 423 sample vectors each, from two classes

classified as soybean and corn. There were 12 data channels corre-

sponding to 12 bands ofthe spectrum in which the sensing was performed.
Each channel is, of course, a feature and the problem was to select a subset
of the channels which was best, according to a given criterion. The cri-
terion chosen was the discriminant function defined as follows:

Jd = (M1- M2)T ( 2 2> (M1- M2)

where Mi are the sample means for the two classes and 2i are the within
class scatter matrices.

First the algorithm was applied to choose the best four out of the 12
channels. There are (12) = 495, four-channel subsets. The total number
of partial sequences of all sizes enumerated (nodes visited) was 37. Since
the criterion is to be evaluated once for each node visited, this would
suggest a computational saving of the order of ten over exhaustive search.
However, we note that the recursive equations were used for evaluating
the bounds. Hence, we estimate a further saving of the order of four
(because four feature subsets would be considered an exhaustive search
without recursive computation).
The experiment was repeated with data from additional classes such

as rye, wheat, rape, etc., taken in pairs. The average number of subsets
enumerated was 35, with a minimum of 28 and a maximum of 64.
To evaluate the performance of the algorithms for large problems, an

additional set of 12 features was generated by taking the square of the
first 12 features. The covariance matrix and the means were computed
for the 24 feature set. It is to be expected that the resulting 24 feature set
is very correlated, and there may be several subsets that yield very close
values of the criterion.
The optimal algorithm was applied to the 24 feature problem to choose

the best 12 features. There are (24) = 2 704 156 subsets. The algorithm
explored 5646 subsets and took 269 s of the PDP-10 central processing
unit (CPU) time to terminate. This demonstrates a very considerable
saving over the exhaustive search. Table I gives the number of nodes
expanded (subsets enumerated) at each level and the number of nodes
for which the inequality (4) was satisfied at each level. Because of the
reordering of the features, every node that was rejected at each level of
the algorithm results in a large number of suboptimal sequences being
discovered. Hence, fewer nodes are enumerated overall. The additional
complexity of the feature ordering appears justified in the light of its
efficiency. Also, this renders the algorithm independent of the initial
ordering of the features.

Suboptimal Solutions

The lookahead scheme in Section II was incorporated into the basic
algorithm. Experiments were repeated with the 12 channel and 24
channel corn-soybean data. Tables II and III give the corresponding re-
sults for different values of the lookahead factor 1. For 1 = 0, the algorithm
approximates backward selection as the worst feature is discarded at each
stage, and no backtracking is involved. I = 7 corresponds to the globally
optimal scheme (the basic branch and bound algorithm). With the 12-
channel example, we see that for 1 2 1, the optimum subset is obtained.
But the number of nodes enumerated for I = 1 (33) is not substantially
smaller than for the optimal case (37). The larger example in Table III
is more indicative of the effectiveness of the scheme. The optimal subset
is obtained with 1 = 3, and the number of subsets evaluated is only 1008
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TABLE I
Summary of Behavior of the Algorithm for the 24-Variable

Problem

LEVEL

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

No. of nodes 13 91 323 631 1091 1674 2024 1742 1242 910 347 188

No. of nodes 0 13 90 127 199 452 756 800 466 633 180 168

TABLE II
Results of Suboptimal Selection Scheme for the 12-Channel

Example

LEVEL OF OPTIMIZATION

0 1 2 3 4 7
~(

Number of
Nodes 8 33 36 36 37 37
Explored

CPU Time
(PDP-10) 0.81 0.93 0.98 0.98 .98 .98
in Seconds

Criterion Value
with Subset 7.36 7.98 7.98 7.98 7.98 7.98
Selected

Feature
Subset (1 4 6 10)| (4 6 10 11) (4 6 10 11) (4 6 10 11) (4 6 10 11) (4 6 10 11)
Sel ected

TABLE III
Results of the Suboptimal Selection Scheme for the 24-Channel

Example

LEVEL OF OPTIM IIZATION

0 1 2 3 4 5 6 7 8 9 1 0 Opma

No. of Nodes
Explored 12 102 389 1008 1790 3318 5017 5397 5549 5646 5646 5646

CPU Time*
(POP-1) 2.23 6.37 18.57 45.32 79.71 161.22 223.37 244.8 268.27 268.49 268.5 268.5
Seconds

Criterion
Value with
Subset 6.87 7.01 9.27 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47
Sel ected

No. of
Features in
the Select-
ed Subset 3 3 1 0 0 0 0 0 0 0 0 0
Different
from the
Optimal
Subset
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versus 5646 for the optimal algorithm. Hence, for the larger variable
problems, the suboptimal lookahead scheme with smaller values of I is
more efficient than the optimal algorithm and yields more optimal sub-
sets than backward sequential selection.

VI. SUMMARY

A branch and bound algorithm to select the globally best feature subset,
based on an efficient subset enumeration scheme, was presented. A
suboptimal variant of the basic branch and bound algorithm was sug-
gested. For a general class of feature selection criteria, recursive equations
were developed to facilitate the implementation ofthe algorithms. Results
of computer experiments were presented to substantiate the claim that
the algorithms are very efficient.
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Correction to "An Application of Relaxation Labeling to
Line and Curve Enhancement"

STEVEN W. ZUCKER, ROBERT A. HUMMEL, AND
AZRIEL ROSENFELD

In the above paper' Figs. 4-7, and 10-12 were inadvertently misrep-
resented. They are correctly displayed here.
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(d)

Fig. 4. (a) Computer-generated line in noise. (b) Initial probability assignments
for (a), obtained from nonlinear line detector responses. (c)-(g) Iterations 1-4,
and 8 of the relaxation process applied to (b).
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(b)

(c)
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