
A Probabilistic Approach to Feature Selection{ A Filter SolutionHuan Liu & Rudy SetionoDepartment of Information Systems and Computer ScienceNational University of SingaporeKent Ridge, Singapore 119260fliuh,rudysg@iscs.nus.sgAbstractFeature selection can be de�ned as a problemof �nding a minimum set of M relevant at-tributes that describes the dataset as well asthe original N attributes do, where M � N .After examining the problems with both theexhaustive and the heuristic approach to fea-ture selection, this paper proposes a proba-bilistic approach. The theoretic analysis andthe experimental study show that the pro-posed approach is simple to implement andguaranteed to �nd the optimal if resourcespermit. It is also fast in obtaining resultsand e�ective in selecting features that im-prove the performance of a learning algo-rithm. An on-site application involving hugedatasets has been conducted independently.It proves the e�ectiveness and scalability ofthe proposed algorithm. Discussed also arevarious aspects and applications of this fea-ture selection algorithm.1 IntroductionThe problem of feature selection can be de�ned as �nd-ing M relevant attributes among the N original at-tributes, where M � N , to describe the data in orderto minimize the error probability or some other rea-sonable selection criteria. Feature selection has longbeen the focus of researchers of many �elds - pat-tern recognition, statistics, machine learning (see Sec-tion 2). Many methods have been proposed. In gen-eral, they can be classi�ed into two categories: (1)the �lter approach [Almuallim and Dietterich, 1994;Kira and Rendell, 1992], i.e., the feature selector is in-dependent of a learning algorithm and serves as a �lterto sieve the irrelevant and/or redundant attributes;and (2) the wrapper approach [John et al., 1994],i.e., the feature selector works as a wrapper around

a learning algorithm relying on which the relevant at-tributes are determined. Although the wrapper ap-proach has certain advantages, it is not as generalas the �lter approach because (1) any learning algo-rithm is biased, choosing relevant attributes accord-ing to a particular learning algorithm is equivalent tochanging the data to �t the learning algorithm, (2) thewrapper approach is restricted by the time complex-ity of the learning algorithm [Langley, 1994], and (3)when the dataset is too large, it may cause a prob-lem in running some learning algorithms - recall thatone of the purposes of applying feature selection isto reduce the data. In addition, it may be imprac-tical to employ computationally intensive learning al-gorithms such as neural nets or genetic algorithms.Furthermore, a good feature selector provided by the�lter approach can always be used in the wrapper ap-proach due to the former's independence of any learn-ing algorithm. Not vice versa, though. Therefore, thispaper adopts the �lter approach. In each category,feature selection methods can be further divided intotwo types: exhaustive or heuristic search. The di�-culty of feature selection can be explained as follows:except in a few very special cases, the optimal selec-tion can only be done by testing all possible sets ofM features chosen from the N attributes, i.e., by ap-plying the criterion �NM� = N !M !(N�M)! times. If thereare M relevant attributes, the total number of timesis PMi=0 �Ni � = O(NM ). This is prohibitive whenN and/or M is large. In practice, heuristic meth-ods are the way out of this exponential computation.Heuristic methods in general make use of low order(�rst or second) information1 to approximately esti-mate the relevance of attributes. Although the heuris-tic methods work reasonably well [Quinlan, 1993;Liu and Wen, 1993], it is certain that they miss outthe attributes with high order correlations, for exam-ple, the parity problem. Hence, on one hand, it is a1First order information contains only one attribute,second order information two attributes, etc.



problem of exponential explosion; on the other hand, itis likely that some relevant attributes will be omittedif the heuristic approach is taken. Our goal becomesclear, i.e., to have a reasonably fast algorithm that can�nd M relevant attributes with high probability.Based on the study in line with [Cheeseman et al.,1991; Selman, 1995], this work proposes a probabilisticapproach, in particular, a Las Vegas algorithm, thatmakes probabilistic choices to help guide the searchmore quickly to �nd a correct set (or sets) of M at-tributes. Las Vegas algorithms (LV's) use randomnessto guide their search in such a way that a correct so-lution is guaranteed even if unfortunate choices aremade: it will only take longer if this happens [Bras-sard and Bratley, 1996]. Better still, the proposedalgorithm will not keep a user wait forever, it pro-vides the current best solution(s) while the probabilis-tic searching for the best set ofM attributes continues.This paper will start with a review of the previous ap-proaches in Section 2. Section 3 explains our designof the LV algorithm for feature selection, a correctnesscriterion, and some theoretic analysis of why a correctsolution should be expected. Section 4 describes theexperimental study with arti�cial, real-world datasetsand an on-site application involving huge datasets re-ported independently by a local institution2. Section 5discusses various aspects of the algorithm and furtherwork.2 Previous Approaches and ProblemsThe problem of feature selection has long been an ac-tive research topic within statistics and pattern recog-nition [Narendra and Fukunaga, 1977; Wyse et al.,1980; Devijver and Kittler, 1982], but most work inthis area has dealt with linear regression [Langley,1994] and is under assumptions that do not applyto most learning algorithms [John et al., 1994]. Re-searchers pointed out that the most common assump-tion is monotonicity, that increasing the number of fea-tures can only improve the performance of a learningalgorithm3. In the past few years, feature selection hasreceived considerable attention from machine learningand knowledge discovery researchers interested in im-proving the performance of their algorithms and incleaning data.All the feature selection methods (refer to the relatedwork sections in [Kira and Rendell, 1992; Langley,1994; John et al., 1994]) can be grouped into two cate-gories: exhaustive or heuristic search of an optimal set2Japan - Singapore AI Center, Singapore3The monotonicity assumption is not valid for manyinduction algorithms used in machine learning. See fordataset 1 (CorrAL) in Section 4 which is reproducedfrom [John et al., 1994].

of M attributes. For example, Almuallim and Diet-terich's FOCUS algorithm [Almuallim and Dietterich,1994] starts with an empty feature set and carries outexhaustive search until it �nds a minimal combinationof features that are su�cient to construct a hypothesisconsistent with a given set of examples. It works onbinary, noise-free data. As pointed out earlier, its timecomplexity is O(NM). They proposed three heuristicalgorithms to speed up the searching [Almuallim andDietterich, 1994].There are many heuristic feature selection algorithms.The Relief algorithm [Kira and Rendell, 1992] assignsa \relevance" weight to each feature, which is meantto denote the relevance of the feature to the targetconcept. Relief samples instances randomly from thetraining set and updates the relevance values basedon the di�erence between the selected instance andthe two nearest instances of the same and oppositeclasses. According to [Kira and Rendell, 1992], Reliefassumes two-class classi�cation problems and does nothelp with redundant features. If most of the given fea-tures are relevant to the concept, it would select mostof them even though only a fraction are necessary forconcept description. The PRESET algorithm [Mod-rzejewski, 1993] is another heuristic feature selectorthat uses the theory of Rough Sets to heuristically rankthe features, assuming a noise-free binary domain. Inorder to consider higher order information among theattribute, Liu andWen suggest [1993] to use high orderinformation gains to select features. Since the last twoalgorithms do not try to explore all the combinationsof features, it is certain that they fail on the parityproblems (parity-5, parity-10, etc.) where the combi-nations of a small number of attributes do not helpin �nding the relevant attributes. Chi2 [Liu and Se-tiono, 1995] is another heuristic feature selector. It au-tomatically discretizes the continuous attributes andremoves irrelevant continuous attributes based on thechi-square statistics and the inconsistency found in thedata. If an attribute's values are discretized into oneinterval, the attribute can be removed since it does nothelp di�erentiate di�erent patterns. With the nominaland continuous attributes being mixed, Chi2 considersthe latter only since nominal attributes cannot be fur-ther discretized.Another common understanding is that some learningalgorithms have built-in feature selection, for example,ID3 [Quinlan, 1986], FRINGE [Pagallo and Haussler,1990] and C4.5 [Quinlan, 1993]. The results in [Al-muallim and Dietterich, 1994] suggest that one shouldnot rely on ID3 or FRINGE to �lter out irrelevantfeatures. Since C4.5 conducts test on each individualattribute as well, it is not proper either to use C4.5 to�nd the minimum set of attributes. It is expected (tobe shown in Section 4) that it will fail badly on theparity problems.



To sum up, the exhaustive search approach is infeasi-ble in practice; and the heuristic search approach canreduce the search time signi�cantly, but will fail onhard problems (e.g., the parity problem) or cannot re-move redundant attributes. It is right time for a thirdapproach that is fast in producing solutions and selectsthe optimal and/or near-optimal set(s) of relevant fea-tures.3 A Probabilistic Approach - LVFThe proposed probabilistic approach is a Las VegasAlgorithm [Brassard and Bratley, 1996]. Las Vegas al-gorithmsmake probabilistic choices to help guide themmore quickly to a correct solution. One kind of Las Ve-gas algorithms uses randomness to guide their searchin such a way that a correct solution is guaranteedeven if unfortunate choices are made. As we men-tioned earlier, heuristic search methods are vulnerableto the datasets of high order correlations. Las Vegasalgorithms free us from worrying about such situationsby evening out the time required on di�erent situa-tions. The time performance of a Las Vegas algorithmmay not be better than that of some heuristic algo-rithms. With high probability, data that took a longtime deterministically are now solved much faster, butdata on which the heuristic algorithm was particularlygood are slowed down to average by the Las Vegas al-gorithm.3.1 Algorithm and inconsistency criterionThe LVF 4 algorithm below generates a random sub-set, S, from N features in every round. If the numberof features (C) of S is less than the current best, i.e.,C < Cbest, the data D with the features prescribedin S is checked against the inconsistency criterion (tobe explained later). If its inconsistency rate is belowa pre-speci�ed one (), Cbest and Sbest are replacedby C and S respectively; the new current best (S)is printed. If C = Cbest and the inconsistency cri-terion is satis�ed, then an equally good current bestis found and printed. MAX TRIES is set to 77�N 5in our experimental study following the rule-of-thumbthat the more attributes a dataset has (in other words,the larger N is), the harder the problem of feature se-lection (parity-5 is more di�cult than parity-2, e.g.),and hence more tries are needed. When LVF loops4F stands for a �lter version of Las Vegas algorithms.577 is chosen by experiment. MAX TRIES can be de-�ned according to applications in hand or based on theexperience from experimentation. Too small or too biga MAX TRIES will a�ect the performance of LVF. Thecompromise is made between good and fast solutions. Thelonger LVF runs, the better its results are. Refer to theanalysis in Section 3.2.

MAX TRIES times, it stops. In our experiments (Sec-tion 4.2), the best S obtained last is chosen for furthertests using a learning algorithm. When there is a tie,one is chosen at random.LVF algorithmInput: MAX-TRIES,D - dataset,N - number of attributes; - allowable inconsistency rate,Output: sets of M features satisfyingthe inconsistency criterionCbest = N ;for i=1 to MAX-TRIESS = randomSet(seed);C = numOfFeatures(S);if (C < Cbest)if (InconCheck(S;D) < );Sbest = S; Cbest = C;print Current Best(S)else if ((C = Cbest) and(InconCheck(S;D) < ))print Current Best(S)end forThe inconsistency criterion (InconCheck(S;D) < )is the key to the success of LVF. The criterion spec-i�es to what extent the dimensionally reduced datacan be accepted. The inconsistency rate of the datadescribed by the selected features is checked againsta pre-speci�ed rate (). If it is smaller than , itmeans the dimensionally reduced data is acceptable.The default value of  is 0 unless speci�ed. The incon-sistency rate of a dataset is calculated as follows: (1)two instances are considered inconsistent if they matchexcept for their class labels; (2) for all the matchinginstances (without considering their class labels), theinconsistency count is the number of the instances mi-nus the largest number of instances of class labels: forexample, there are n matching instances, among them,c1 instances belong to label1, c2 to label2, and c3 tolabel3 where c1+c2+c3 = n. If c3 is the largest amongthe three, the inconsistency count is (n � c3); (3) theinconsistency rate is the sum of all the inconsistencycounts divided by the total number of instances.3.2 Theoretic analysisHere, we show that LVF will select the optimal set(s)of M features. Also, the larger number of optima is,the more likely LVF will �nd M features, in presenceof redundant attributes, according to the inconsistencycriterion.With a good pseudo random number generator [Presset al., 1992], the selection of an optimal subset of



M features can be considered non-replacement experi-ments. The probability of �nding the optimal subset atthe (k+ 1)th experiment is 12N�k , and the probabilityof having to conduct (k+1) experiments before �ndingthe optimal subset is still 2N�12N � 2N�22N�1 � :::� 12N�k =12N , where N is the number of original features. WhenN is large, MAX TRIES� 2N . Here we assume thereis only one optimum.In presence of redundant attributes (it is quite com-mon in the real-world data), using the inconsistencycriterion, this means that the number of optima (l) islarger than 1. Therefore, since at the (k+1)th tossing,the probability of �nding one optimum is l2N�k , it ismore likely for LVF to �nd an optimal feature set. Inother words, redundant attributes help �nd an optimalsolution faster.4 Experimental ResultsTwo types of datasets are chosen in experiments. Onetype is arti�cial data so that the relevant features areknown before feature selection is conducted, which in-cludes CorrAL [John et al., 1994], Monks1-3 [Thrunet al., 1991], and Parity5+5. The other type is real-world data including Credit, Vote, Labor, and Mush-room [Quinlan, 1993; Murphy and Aha, 1994]. Thechoice of these datasets simpli�es the comparison ofthis work with some published work. These datasetsexcept Mushroom were used in [John et al., 1994] inwhich comparisons with di�erent methods were de-scribed. Nevertheless, the experiments here can alonedemonstrate the e�ectiveness of LVF owing to theanalysis given in the previous sections (1, 2 and 3).Arti�cial Data:1. CorrAL The data was designed in [John et al.,1994]. There are six binary features, A0; A1;B0; B1; I; and C. Feature I is irrelevant, featureC is correlated to the class label 75% of the time.The Boolean target concept is (A0 ^A1) _ (B0 ^B1). Both ID3 and C4.5 chose feature C as theroot. This is an example of datasets in which ifa feature like C is removed, a more accurate treewill result.2. Monk1, Monk2, Monk3 The datasets weretaken from [Thrun et al., 1991]. They have six fea-tures. The training datasets provided were usedfor feature selection. Monk1 andMonk3 only needthree features to describe the target concepts, butMonk2 requires all the six. The training data ofMonk3 contains some noise. These datasets canbe used to show that a feature selector selects ei-ther only the relevant features or the relevant onesplus others.

3. Parity5+5 The target concept is the parity of�ve bits. The dataset contains 10 features, ofwhich 5 are uniformly random (irrelevant). Thetraining set contains 100 instances randomly se-lected from all 1024 instances. Another indepen-dent 100 instances are drawn to form the testingset. Most heuristic feature selectors will fail onthis sort of problems since an individual featuredoes not mean anything.Real-World Data:4. Vote This dataset includes votes from the U.S.House of Representatives Congress-persons on the16 key votes identi�ed by the Congressional Quar-terly Almanac Volume XL. The data set consistsof 16 features, 300 training instances and 135 testinstances.5. Credit (or CRX) The dataset contains instancesfor credit card applications. There are 15 featuresand a Boolean label. The dataset was dividedby Quinlan [Quinlan, 1993] into 490 training in-stances and 200 test instances.6. Labor The dataset contains instances for accept-able and unacceptable contracts. It is a smalldataset with 16 features, a training set of 40 in-stances, and a testing set of 17 instances.7. Mushroom The dataset has a total of 8124 in-stances, of which 1000 instances are randomly se-lected for testing, the rest are used for training.The data has 22 discrete attributes. Each at-tribute can have 2 to 10 values.4.1 ResultsFor the arti�cial datasets, the evaluation of LVF is sim-ple since the relevant attributes are known. However,for the real-world datasets, it is not clear what therelevant features are. Therefore, whether the selectedfeatures are relevant or not can be only determinedindirectly. One way is to see the e�ect of feature selec-tion through a learning algorithm. These results arereported in Section 4.2. LVF is run 100 times on eachtraining dataset. The numbers of selected features andfrequency are reported in Table 1 under the conditionthat the inconsistency criterion be satis�ed. Also re-ported is a sample of these selected features for eachdataset which can be directly used by readers.For the arti�cial datasets, the relevant attributes arealways selected, albeit a few of irrelevant ones are alsochosen sometimes. For the problem as hard as Par-ity5+5, LVF correctly identi�es the correct attributesall the time, plus one irrelevant attribute sometimes.For the real-world datasets, the number of attributesis reduced at least by half to less than one �fth ofthe original. In the next section, how e�ective these



Table 1: Results of 100 runs of LVF on the datasets with one example of the minimum set of features for eachdataset. Dataset # Att # Selected Att (Frequency) Features (1 minimum set)CorrAL 6 4 (86), 5 (14) A0, A1, B0, B1Monk1 6 3 (100) A1, A2, A5Monk2 6 6 (100) A1 - A6Monk36 6 3 (100) A2, A4, A5Parity5+5 10 5 (71), 6 (29) A1 - A5Vote 16 8 (7), 9 (53), 10 (30), 11 (10) A1 - A4, A9, A11, A13, A16Credit (CRX) 15 5 (100) A2, A3, A4, A9, A14Labor 16 3 (44), 4 (56) A2, A10, A11Mushroom 22 4 (57), 5 (43) A4, A5, A12, A226Allowing 5% inconsistency. If not, four attributes are selected: the above chosen 3 plus A1.Table 2: 10-fold cross validation results on Tree Size and Error Rates of ID3 and C4.5 before and after applyingLVF to the datasets. Bef stands for Before; Aft for After; P-val for P value of t-test; and \-" means that allvalues for the two groups in comparison are equal.ID3 C4.5TreeSize ErrorRate(%) TreeSize ErrorRate (%)Dataset Bef Aft P-val Bef Aft P-val Bef Aft P-val Bef Aft P-valCorrAL 10.6 11.4 .2277 37.5 20.8 .1205 10.6 11.4 .2277 37.5 20.8 .1205Monk1 103.7 41.0 .0001 4.5 0.0 .0217 43.0 41.0 .2105 .7 0.0 .1039Monk2 217.4 217.4 - 37.0 37.0 - 16.3 16.3 - 21.1 21.1 -Monk3 20.6 19.0 .1679 1.4 1.1 .5109 19.0 19.0 - 1.1 1.1 1Parity5+5 79.0 62.8 .0001 48.5 1.5 .0001 47.0 62.8 .0015 45.5 1.5 .0001Vote 29.8 27.1 .2878 5.3 5.3 .9934 14.5 6.1 .0001 5.3 5.5 .8357Credit 139.8 144.8 .5033 16.8 19.7 .1001 54.0 38.0 .0164 15.5 15.2 .8490Labor 15.2 8.4 .0001 15.3 14.0 .8218 7.3 7.0 .3434 17.3 14.3 .6631Mushroom 29 29 1 0.0 0.0 - 29 29 1 0.0 0.0 -selected features are will be determined by cross vali-dations of a learning algorithm.4.2 Further veri�cationTable 1 shows that those features in the last col-umn are necessary in order to satisfy the inconsis-tency criterion (the inconsistency rate is 0 except forMonk3). As mentioned above, it is clear for thearti�cial datasets whether the relevant features arechosen or not, but for the real-world datasets, in-direct evaluation is necessary by checking a learn-ing algorithm's performance before and after featureselection. C4.5 [Quinlan, 1993] is chosen here be-cause (1) it works well on most data sets as reportedby many researchers; and (2) it employs a heuris-tic to �nd simplest tree structures [Quinlan, 1986;Quinlan and Rivest, 1989; Quinlan, 1995]. 10-foldcross validation is applied and the default settings ofC4.5 are used in the experiment. For the experimentsof \after feature selection", only the features shownthe last column of Table 1 are used. Given in Table 2
are the average accuracy rates of C4.5 before and afterapplying feature selection to the datasets. ID3 resultsare also given by taking unpruned trees of C4.5.Results in Table 2 suggest that the performance ofboth ID3 and C4.5 has improved in general. Thatis, the tree size is getting smaller and the accuracyhigher. For the arti�cial datasets, this experimentfurther shows that with the relevant attributes, ID3and C4.5 are doing better than with the full set ofattributes. For the real-world datasets, ID3 and C4.5are also doing better with the selected attributes. Thisindicates that LVF has selected relevant attributesfor these datasets. In particular, ID3 and C4.5 didbadly on Parity5+5 before feature selection. Never-theless, ID3 and C4.5 did as well on Mushroom with22 attributes as with 4 attributes. This demonstratesthat ID3 and C4.5 do select relevant features for somedatasets, though not for all. Given also in Table 2 arethe results of t-test. The lower a P-value is, the morecon�dent we are in rejecting the NULL hypothesis thatthe two averages are the same.



Table 3: Experimental results reported in John et al 94: Bf - Before, Fw - Forward, Bw - Backward, Rl - Relieve.X means the �gure is not available in the original paper.ID3 AlgorithmTreeSize ErrorRate(%) AttributesDataset Bf Fw Bw Bf Fw Bw Bf Fw BwCorrAL X X X X X X X X XMonk3* X X X X X X X X XParity5+5 109 13 63 49 50 0 10 3 5Vote 25 13 37 5 4 2 16 3 15Credit 117 66 98 20 21 19 15 4 13Labor 12 7 12 18 18 18 16 3 12C4.5 AlgorithmTreeSize ErrorRate(%) AttributesDataset Bf Fw Bw Rl Bf Fw Bw Rl Bf Fw Bw RlCorrAL 11 5 13 5 19 19 0 19 6 2 5 5Monk3* 8 13 8 6 1 2 1 2 6 3 2 2Parity5+5 X X X X X X X X X X X XVote 7 4 7 7 3 3 3 3 16 1 15 15Credit 44 16 44 41 21 19 21 18 15 3 14 14Labor X X X X X X X X X X X XThe experimental results from [John et al., 1994] arereproduced here in Table 3 for a reference purpose. Seemore details in the paper. Before (Bf) means beforefeature selection, Forward (Fw) means forward step-wise selection, Backward (Bw) means backward step-wise selection, Relieve (Rl) is a modi�ed version ofRelief [Kira and Rendell, 1992], because of signi�cantvariance in the relevance rankings given by Relief [Johnet al., 1994].4.3 Applying LVF to huge datasetsFeature selection is particularly useful when datasetsare huge since many learning algorithms may en-counter di�culties. Feature selection can help reducethe dimensionality of the datasets so that more learn-ing algorithms can be chosen to induce rules. Hence,the huge datasets are also an ultimate test for a featureselection algorithm. It is obvious that the wrapper ap-proach is not suitable in this case since some favoritelearning algorithms may have problems with handlingthe huge datasets. LVF had an opportunity to undergoa real test of huge datasets.The datasets involved are related to the service indus-try. LVF was given to a local institution, who was inneed of a method to reduce the number of attributesbefore applying some machine learning algorithms tothe datasets due to the huge size of the datasets. Thedatasets are con�dential. The limited information wehave is the size of datasets and the number of at-tributes. One dataset (let us call it HD1) has 65,000

instances and 59 attributes; the other (HD2) has 5,909instances and 81 attributes. Both datasets are dis-crete, attribute values range from 2 to 13. Accordingto the report from the testing site (the institution ranLVF independently and without modi�cation), LVFfound that 10 and 35 attributes were needed for de-scribing HD1 and HD2 respectively without sacri�cingtheir discriminating power, after several hours of run-ning LVF on Sun Sparc. They did another experimentin which only 10,000 instances of HD1 were used, ittook LVF about 5 minutes to complete its run and ob-tained the same results. LVF has signi�cantly reducedthe number of attributes. At present, the institutionapplies it to more datasets for the preprocessing pur-pose in search of simple rules.5 Discussion and Future WorkThe special advantages of this method are (1) simpleto implement; (2) fast to obtain results; and (3) nota�ected by any bias of a learning algorithm. This fea-ture selector prints out a possible solution wheneverit is found; afterwards it reports either a better oneor equally good ones. This is a really nice feature be-cause while it works hard to �nd the optimal solution,it provides those near optimal solutions. The longer itruns, the better solutions we get. It stops when a spec-i�ed MAX-TRIES is exceeded. In this way, it avoidsthe exponential computation problem. If the resourcespermit, LVF can be run on as many machines as wewish by having di�erent seeds in LVF. The time to �nd



the optimal solution can be reduced and the chance to�nd it becomes greater.5.1 Filter and/or wrapperAlthough it is natural to use this feature selector as a�lter, it is straightforward to use it in a wrapper ap-proach by replacing inconsistency checking with accu-racy comparisons by a learning algorithm on di�erentsets of features. However, since inconsistency checkingis O(n) 7 and a fast learning algorithm requires at leastO(n logn), where n is the number of patterns in thetraining data, it is suggested to use inconsistency as acriterion to select features. In addition, for the �lterapproach, only for those better selections with fewernumber of attributes, the inconsistency criterion willbe tested. It is noticed in the experiments that thenumber of features selected is quickly reduced approx-imately by half, since the number of relevant featuresis usually small (refer to Table 1). Comparing to thewrapper approach, because the criterion is the pre-dictive accuracy, for every newly generated set of fea-tures, the criterion must be tested. In other words, thenumber of criterion testing is signi�cantly larger. Ex-periments [Liu and Setiono, 1996] have con�rmed thatfor the above datasets, the wrapper model normallyspends a few hours8 while the �lter model usually takesseveral minutes on a dedicated SUN SPARC20 for eachexperiment of LVF on the publically available datasets.Normally, our feature selector will report several setsof M features for a given problem. In other words,in terms of inconsistency rate, they are equally good.Choosing which set should depend on the particularlearning algorithm employed for application. One setcan be chosen if the learning algorithm gives the high-est accuracy on this set among others. This is a proper,recommended use of the wrapper approach for featureselection.5.2 Inconsistency criterionThere may be a problem with using inconsistency asa feature selection criterion when one attribute alone(such as social security number) can guarantee thatthere is no inconsistency in the data. Obviously, thisattribute is irrelevant for rule induction. The problemcan be solved by leaving this attribute out of the fea-ture selection process. If there is no prior knowledge, itwill just take one run of LVF to locate this kind of at-tributes (Recall that one run of LVF has MAX TRIES7Precisely, it is close to O(n) since this is achieved byimplementing hashing in inconsistency checking. Anothermethod of O(n) can be found in [Almuallim and Dietterich,1994].8Using 10-fold cross validations to obtain accuracy isanother factor that increases the time.

loops). Another run of LVF on the other attributeswill recognize the correct set of features.LV works on discrete attributes only since it relies onthe inconsistency calculation. One way is to apply adiscretization algorithm (e.g., Chi2) to deiscreze thecontinuous attributes �rst before one runs LVF. Otherpossibilities are (1) simply treat a continuous attributeas a discrete one in some cases; (2) apply LVF only tothe discrete attributes when the number of attributesis large. Another concern about the inconsistency cri-terion is that the reduced data may not be ideal fora particular learning algorithm. Although this phe-nomenon has not been observed in the experiments,more empirical study is needed for con�rmation. A�lter/wrapper combined model mentione above mayhelp in this regard.5.3 Speed of LVF and value of MIn all the experiments, it is shown that M - the num-ber of relevant features is usually small. Since onlythose sets whose number of features is smaller thanor equal to the current best will be checked for incon-sistency, when M becomes smaller and smaller, manyrandomly generated sets of features need not be testedat all. In any case, the inconsistency checking is O(N )in our implementation. As reported by the users ofon-site application, it took LVF about 5 minutes torun on a dataset of 10,000 instances and 59 attributes.It is natural to expect that the more patterns and at-tributes, the more time LVF requires; but the timerequired increases nearly linearly due to the reasonsabove.5.4 Handling noisy data and multiple classvaluesNoisy data can be easily handled by initializing theminimumallowable inconsistency rate (i.e., ) to a cer-tain value. In all the experiments reported here,  isobtained by calculating the inconsistency among theoriginal training data. It is 0 except for Monk3. If thenoise level is reected in the inconsistency among thedata, LVF automatically takes care of it. However, ifthere is no link between the noise level and the incon-sistency rate, prior knowledge about the noise level isneeded. For the instance of the Monk3 problem, thetraining data contains 5% noise (6 items are contam-inated) and no inconsistency. If  = 0, LVF found 4attributes although only three are relevant. When thenoise level was known a priori ( = 5%), LVF thenfound the three relevant attributes.As pointed out in Section 2, several popular featureselectors work only on binary class values. LVF doesnot impose such a constraint. This allows LVF to beapplied to various applications.



5.5 Scaling-upSection 4.3 shows that LVF can scale up. However, im-provement is still possible. When datasets are huge,the running time of LVF is no doubt longer. In order tospeed up the preprocessing, one way of improving thepresent one-go approach is to go for incremental sam-pling. The idea is as follows: when the dataset con-tains a large enough number of instances (say 20,000),take 10% of it (called the training data) to run LVFand check the inconsistency criterion based on its se-lected features on the remaining 90% of the data, addthose patterns causing inconsistencies to the trainingdata, rerun LVF, then check again; continue the pro-cess until the number of inconsistencies is below a tol-erable value ().5.6 Using LVF as a referenceWith some knowledge about the data, a heuristic fea-ture selection method can be designed. The advan-tages of doing so are (1) the heuristic method can bedeterministic; and (2) since it is specially designed, itcan be made faster. However, it is not a simple taskto fully test the e�ectiveness of a heuristic method.The LVF method can help in veri�cation. Since it hasbeen established that LVF gives all the best solutionswith high probability (= 1 if given a reasonably longtime), the heuristic solutions can be compared withthe solutions by LVF. If there is no matching solutionor if the di�erence is big, it can be said safely (or it istrue with high probability) that the heuristic methodis not properly designed. In general, if determinism isnot required, LVF can be always used as a �rst choice.6 ConclusionA probabilistic approach to feature selection is pro-posed in contrast to the two common approaches (ex-haustive and heuristic). Theoretic analysis and em-pirical study show that the proposed approach is sim-ple to implement, fast to get results, and guaranteedto �nd the optimal if resources permit. It can scaleup, too. All these have been achieved due to (1) theprobabilistic approach; (2) the inconsistency criterion(which makes a �lter solution possible); and (3) the lin-ear time cost of inconsistency checking, among others.It has been successfully used by a local institution inpreprocessing huge datasets. LVF is available for trial.Also presented here is an extensive discussion on thechoice of the �lter model vs. the wrapper model, onwhy LVF is fast to obtain results, on practical is-sues such as noise handling, multiple class values andscaling-up, and on when and how to use of this ap-proach (e.g., choosing between a heuristic method andLVF).
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