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Abstract
In recent years, unsupervised feature selection methods have raised considerable interest
in many research areas; this is mainly due to their ability to identify and select relevant
features without needing class label information. In this paper, we provide a comprehensive
and structured review of the most relevant and recent unsupervised feature selection methods
reported in the literature. We present a taxonomy of these methods and describe the main
characteristics and the fundamental ideas they are based on. Additionally, we summarized
the advantages and disadvantages of the general lines in which we have categorized the
methods analyzed in this review. Moreover, an experimental comparison among the most
representativemethods of each approach is also presented. Finally,we discuss some important
open challenges in this research area.

Keywords Unsupervised learning · Dimensionality reduction · Unsupervised feature
selection · Feature selection for clustering

1 Introduction

Feature selection (Liu and Motoda 1998, 2007; Guyon et al. 2003) (also known as attribute
selection) appears in different areas such as pattern recognition (Tou and González 1974;
Theodoridis and Koutroumbas 2008a), machine learning (Kotsiantis 2011; Hall 1999), data
mining (García et al. 2015; Chakrabarti et al. 2008) and statistical analysis (Webb 2003;
Friedman et al. 2001). In all these areas, often the objects1 under study include in their
description irrelevant and redundant features (Ritter 2015), which can significantly affect
the analysis of the data, resulting in biases or even incorrect models (Zhao and Liu 2011).
Feature selection is the process of selecting the most useful features for building models in

1 Also called instances, observations or samples; commonly represented as vectors.

B Saúl Solorio-Fernández
sausolofer@inaoep.mx

J. Ariel Carrasco-Ochoa
ariel@inaoep.mx

José Fco. Martínez-Trinidad
fmartine@inaoep.mx

1 Computer Sciences Department, Instituto Nacional de Atrofísica, Óptica y Electrónica, Luis Enrique
Erro # 1, Tonantzintla, 72840 Puebla, Mexico

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-019-09682-y&domain=pdf
http://orcid.org/0000-0002-4674-852X


908 S. Solorio-Fernández et al.

tasks like classification, regression or clustering.Moreover, feature selection not only reduces
the dimensionality of the data facilitating their visualization and understanding; but also it
commonly leads to more compact models with better generalization ability (Pal and Mitra
2004). All these characteristics make feature selection an interesting research area, wherein
the last decades, numerous feature selection methods have been introduced.

According to the information available in the datasets, feature selection methods can be
classified as supervised (Kotsiantis 2011; Tang et al. 2014), semi-supervised (Sheikhpour
et al. 2017) and unsupervised (Alelyani et al. 2013). The former require a set of labeled data
(supervised dataset) in order to identify and select relevant features; this label, assigned to
each object in the dataset, can be a category, an ordered value or a real value (depending
on the specific task). Semi-supervised methods only require that some objects be labeled.
On the other hand, Unsupervised Feature Selection (UFS) methods (Dy and Brodley 2004;
Alelyani et al. 2013; Fowlkes et al. 1988) do not require a supervised dataset.

Over the last decades, many feature selection methods have been proposed, most of them
developed for supervised classification tasks (Tang et al. 2014). However, due to the tech-
nological development raised in the last years, as well as the vast amount of unlabeled data
generated in different applications such as text mining (Feldman and Sanger 2006; Bharti
and kumar Singh 2014; Forman 2003), bioinformatics (Saeys et al. 2007), image retrieval
(Yasmin et al. 2014; Swets and Weng 1995), social media (Zafarani et al. 2014; Tang and
Liu 2014) and intrusion detection (Ahmed et al. 2016; Lee et al. 2000; Agrawal and Agrawal
2015; Ambusaidi et al. 2015), to name a few; UFS methods have gained significant interest
in the scientific community. Moreover, according to (Guyon et al. 2003; Niijima and Okuno
2009; Devakumari and Thangavel 2010), UFS methods have two important advantages. (1)
they are unbiased and perform well when prior knowledge is not available, and (2) they can
reduce the risk of data overfitting in contrast to supervised feature selection methods that
may be unable to deal with a new class of data.

In the same way as in supervised and semi-supervised feature selection, according to the
strategy used for selecting features, Unsupervised Feature Selection methods can be divided
into three main approaches (Alelyani et al. 2013; Dong and Liu 2018):

• Filter methods select the most relevant features through the data itself, i.e., features are
evaluated based on intrinsic properties of the data, without using any clustering algorithm
that could guide the search of relevant features. The main characteristic of filter methods
is their speed and scalability.

• Wrapper methods evaluate feature subsets using the results of a specific clustering algo-
rithm. Methods developed under this approach are characterized by finding features
subsets that contribute to improving the quality of the results of the clustering algorithm
used for the selection. However, the main disadvantage of wrapper methods is that they
usually have a high computational cost, and they are limited to be used in conjunction
with a particular clustering algorithm.

• Hybrid methods try to exploit the qualities of both approaches, filter, and wrapper, trying
to have a good compromise between efficiency (computational effort) and effectiveness
(quality in the associated objective task when using the selected features).

Currently, in the literaturewe canfind some reviews about feature selection (Cai et al. 2018;
Sheikhpour et al. 2017; Miao and Niu 2016; Li et al. 2016; Ang et al. 2016; Chandrashekar
and Sahin 2014; Vergara and Estévez 2014; Kotsiantis 2011; Liu et al. 2005; Yu 2005).
Nevertheless, all of them are focused either on supervised/semi-supervised feature selection,
or feature selection in general; while some reviews concentrate on describing feature selection
applied to specific domains (Lee et al. 2017; Bharti and kumar Singh 2014; Lazar et al. 2012;
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Mugunthadevi et al. 2011; Saeys et al. 2007). As far we know, the most similar work to
our review is presented in Alelyani et al. (2013), where feature selection for clustering is
reviewed. However, in Alelyani et al. (2013) only a few relevant methods of the state-of-the-
art are mentioned; and mainly focusing on feature selection methods designed exclusively
for specific domains, such as text data, streaming data, and link data. In our paper, we
focus on Unsupervised Feature Selection (UFS). We intend to provide a big picture over
UFS methods throughout a comprehensive and structured review of the most relevant (most
referenced) and recent works of the state-of-the-art; describing their main characteristics and
the fundamental ideas these methods are based on. Furthermore, in our review, we present
a taxonomy of reviewed UFS methods; classifying them according to their approach, type,
and subtype, and pointing out the major advantages and disadvantages of these general lines.
Additionally, we perform an experimental comparison, on standard public datasets among
the most representative methods of each approach and conclude our review highlighting
some open challenges in Unsupervised Feature Selection. To the best of our knowledge, this
is the first comprehensive review in Unsupervised Feature Selection that provides a general
perspective to the audience, practitioners and academics, about the most relevant and recent
feature selection methods in this field of research.

The structure of this paper is as follows: in Sect. 2, the main Unsupervised Feature Selec-
tion methods proposed in the literature are reviewed. An analysis and discussion of the UFS
methods is presented in Sect. 3. In this section, the advantages, disadvantages, feature selec-
tion criteria, analysis of the performance evaluation, and the experimental comparison of the
reviewedUFSmethods are provided. Finally, in Sect. 4, our conclusions are exposed; pointing
out some open challenges and research directions in Unsupervised Feature Selection.

2 Unsupervised feature selectionmethods

Aswe have commented in the previous section, Unsupervised Feature Selection (UFS)meth-
ods can be categorized according to the strategy used for selecting features as filter, wrapper,
and hybrid methods. In this section, first, we organize the UFS methods reported in the lit-
erature into the taxonomy shown in Fig. 1. Then, we describe each one of these methods by
focusing on their main characteristics and the ideas they are based on.

2.1 Filter approach

According to Alelyani et al. (2013), UFSmethods based on the filter approach can be catego-
rized as univariate and multivariate. The former, also known as ranking based UFS methods
use some criteria to evaluate each feature in order to get an ordered list (ranking) of features,
where the final feature subset is selected according to this order. Suchmethods can effectively
identify and remove irrelevant features, but they are unable to remove redundant ones since
they do not take into account possible dependencies among features. On the other hand, mul-
tivariate filter methods evaluate the relevance of the features jointly rather than individually.
Multivariate methods can handle redundant and irrelevant features; thus, in many cases, the
accuracy reached by learning algorithms using the subset of features selected by multivariate
methods is better than the one achieved by using univariate methods (Tabakhi et al. 2015).
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Wrapper

Unsupervised Feature Selection

Filter Hybrid

Univariate Multivariate Sequential Bio-inspired

Iterative
Information Spectral-Similarity

Statistical/Information Bio-inspired Spectral/Sparse learning

(Dash et al., 1997)
(Varshavsky et al., 2006)

(Devakumari and
Thangavel, 2010)

(Rao and Sastry, 2012)
(Banerjee and Pal,
2014).

(He et al., 2005)
(Zhao and Liu, 2007)
(Padungweang et al.,
2009)
(Solorio-Fernández et al.,
2017)

(Talavera, 2000)
(Mitra et al., 2002)
(Dash et al., 2002)
(Haindl et al., 2006)
(Li et al., 2007)
(Yen et al., 2010)
(Ferreira and Figueiredo, 2012)
(Wang et al., 2015a)

(Devaney and Ram, 1997)
(Dy and Brodley, 2004)
(Hruschka and Covoes, 2005)
(Breaban and Luchian, 2011)

(Kim et al., 2002)
(Dutta et al., 2014)

(Roth and Lange, 2004)
(Law et al., 2004)
(Zeng and Cheung, 2011)
(Wang et al., 2015b)
(Guo et al., 2017)
(Guo and Zhu, 2018)

(Dash and Liu, 2000)
(Hruschka et al.,
2005)
(Li et al., 2006)
(Kim and Gao, 2006)

(Solorio-Fernández et al.,
2016)

(Tabakhi et al., 2014)
(Tabakhi and Moradi, 2015)
(Tabakhi et al., 2015)
(Dadaneh et al., 2016)

(Niijima and Okuno,
2009)

(Garcia-Garcia and
Santos-Rodriguez, 2009)

(Liu et al., 2009b)
(Cai et al., 2010)
(Zhao and Liu, 2011)
(Zheng et al., 2010)
(Yang et al., 2011b)
(Hou et al., 2011, 2014)
(Li et al., 2012)
(Zhao et al., 2013)
(Qian and Zhai, 2013)
(Li et al., 2014b)
(Li and Tang, 2015)

(Han et al., 2015)
(Shi et al., 2015)

(Yi et al., 2016)
(Wang et al., 2016)
(Du et al., 2017)
(Zhu et al., 2015, 2017)
(Zhou et al., 2017)
(Wang and Wang, 2017)
(Lu et al., 2018)
(Tang et al., 2018a)
(Tang et al., 2018b)
(Luo et al., 2018)
(Shi et al., 2018)

(Nie et al., 2016)
(Zhu et al., 2016)

Fig. 1 Taxonomy of unsupervised feature selection (UFS) methods

2.1.1 Univariate filter methods

Within the univariate filter methods, two main groups can be highlighted: methods that
assess the relevancy of each feature based on Information Theory (Cover and Thomas 2006),
and those methods that evaluate features based on Spectral Analysis (manifold learning)
(Chung 1997; Luxburg 2007) using the similarities among objects. The former follow the
idea of assessing the degree of dispersion of the data through measures such as entropy,
divergence, mutual information, among others, to identify cluster structures in the data. On
the other hand, methods based on Spectral Analysis—Similarity, also known as Spectral
Feature Selection methods (Zhao and Liu 2011), follow the idea of modeling or identifying
the local or global data structure using the eigen-system of Laplacian or normalized Laplacian
matrices (Luxburg 2007) derived from an object similarity matrix.

Information based methods One of the first methods developed in this category was
introduced inDash et al. (1997), where the authors presented a newfilter unsupervised feature
selectionmethod calledSUD(Sequential backward selectionmethod forUnsupervisedData).
Thisfiltermethodweighs features using ameasure of entropyof similarities basedondistance,
which is defined as the total entropy induced from a similarity matrixW , where the elements
of this matrix contain the similarity between pairs of objects in the dataset. The idea is to
measure the entropy of the data based on the fact that when every pair of objects is very
close or very far, the entropy is low, and it is high if most of the distances between pairs of
objects are close to the average distance. Therefore, if the data has low entropy, there are
well-defined cluster structures, while there are not when the entropy is high. The relevance
of each feature is quantified using a leave-one-out sequential backward strategy jointly with
the entropy measure above mentioned. The final result is a feature ranking ordered from the
most to the least relevant feature.
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In Varshavsky et al. (2006) another information-based UFS method called SVD-Entropy
was proposed. The basic idea is to select those features that best represent the data, measuring
the entropy of the original data matrix through its singular values (Alter and Alter 2000). This
entropy varies between 0 and 1, in such a way that when the entropy is low (close to zero),
well-formed clusters are generated, since the spectrum of the data matrix is not uniformly
distributed; by contrast, when the entropy is high, the spectrum2 is uniformly distributed, and
the cluster structure is not well-defined. Through a leave-one-out comparison, the contribu-
tion of each feature to the entropy (CE) is evaluated, and the features are sorted according
to their respective CE values. In this work, three different ways of selecting a final feature
subset were presented: simple ranking, forward selection, and backward elimination. The
first strategy consists in selecting the first d features from the ranking. The forward selection,
on the other hand, starts choosing the first feature according to the highest CE, then the CE
values of the remaining set of features are recalculated and the second feature according
to the highest CE value is selected, this procedure continues until selecting d features. The
backward elimination is similar to the forward selection, with the difference that it begins
with the whole set of features and removes that feature with lowest CE value in each iter-
ation until reaching the pre-specified number of features. Two more recent works based on
this same idea were introduced in Devakumari and Thangavel (2010) and Banerjee and Pal
(2014), where the authors propose to solve some drawbacks of SVD-Entropy. In Devaku-
mari and Thangavel (2010) an Adaptive Floating Search which alleviates the weaknesses
of forward/backward selection searches used in SVD-Entropy was proposed. Meanwhile, in
Banerjee and Pal (2014), the inability of SVD-Entropy to distinguish features with a constant
value was addressed. Furthermore, in the last, an extension to the supervised case was also
proposed.

Another unsupervised univariate filtermethod that ranks features using information theory
was proposed in Rao and Sastry (2012). In this method, the aim is weighting each feature
using the concept of Representation Entropy (Devijver and Kittler 1982). Representation
Entropy is a measure of information compression in a dataset, and it is computed from the
entropy of eigenvalues of the covariance matrix of the data. Representation Entropy ranges
from 0 to 1, where 1 represents the maximum compression, and 0 is the minimum one. In
Rao and Sastry (2012), as in the previous methods, features are scored using a leave-one-out
strategy, i.e., the importance of a particular feature in the dataset will depend on the increase
in the value of the Entropy (CE value) of the dataset calculated without that particular feature.
In this way, it is possible to obtain a feature ranking sorted from the most relevant feature
(that one with the highest CE value) to the least one.

Spectral-similarity basedmethods One of the most referenced and relevant univariate filter
UFS methods based on Spectral Feature Selection is Laplacian Score (LS) (He et al. 2005).
In Laplacian Score, the importance of a feature is evaluated by its variance and its power
of locality preserving (He and Niyogi 2004). This method assigns high weights to those
features that most preserve the predefined graph structure (manifold structure) represented
by the Laplacian matrix. This idea comes from the observation that two objects are probably
related to the same cluster if they are close to each other; in such a way that those features
that take similar values for close objects, and dissimilar values for the far away ones are
the most relevant. An extension of the Laplacian Score called Laplacian++ was proposed in
Padungweang et al. (2009), where the idea is to evaluate the features based on the global
topology instead of the local topology.

2 The set composed by the square of the singular values of the data matrix.
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Another univariate filter method in this category is SPEC (SPECtrum decomposition)
(Zhao and Liu 2007). SPEC evaluates the relevance of a feature by its consistency with the
structure of the graph induced from the similarities among objects. This method consists of
three steps: (1) building the object similarity matrixW as well as its graph representation. (2)
evaluating features using the eigensystem of the graph bymeasuring the consistency between
each feature and those nontrivial eigenvectors of the Laplacian matrix. And (3), ranking
features in descending order in term of their feature relevance (consistency). According to
Zhao and Liu (2011), SPEC is a generalization of Laplacian Score.

Finally, a recent univariate unsupervised spectral feature selectionmethod developed to be
applied over mixed data (De Leon and Chough 2013) called USFSM (Unsupervised Spectral
Feature SelectionMethod for mixed data) was introduced in Solorio-Fernández et al. (2017).
USFSM assess features by analyzing the changes in the spectrum distribution (spectral gaps)
of the first non-trivial eigenvalues of the Normalized Laplacian matrix when each feature is
excluded from the whole set of features separately. Features are sorted in descending order
according to their respective spectral gaps values.

2.1.2 Multivariate filter methods

Multivariate filter methods can be divided into three main groups: Statistical/Information,
Bio-inspired, and Spectral/Sparse Learning basedmethods. The former, as its name suggests,
includes UFS methods that perform the selection using statistical and/or information theory
measures such as variance-covariance, linear correlation, entropy,mutual information, among
others. The second group, on the other hand, includes UFS methods that use stochastic
search strategies based on the swarm intelligence paradigm (Beni and Wang 1993; Dorigo
and Gambardella 1997) for finding a good subset of features, which satisfies some criterion
of quality. Finally, the third group includes those UFS methods based on Spectral Analysis
(Zhao and Liu 2011) or on a combination of Spectral Analysis and Sparse Learning (El
Ghaoui et al. 2011). It is noteworthy that some authors (Chandrashekar and Sahin 2014; Ang
et al. 2016) often call these last methods as embedded because feature selection is achieved as
part of the learning process, commonly through the optimization of a constrained regression
model. However, in this study, we prefer to categorize them as filter multivariate, since in
addition to jointly evaluate features, the primary objective is to perform feature selection (or
ranking) rather than finding the cluster labels. Moreover, we think that embedded methods
could be considered as a sub-category inside the main approaches (i.e., filter, wrapper, and
hybrid), not hindering the possibility of having embedded methods in the three approaches.

Statistical/information based methods One of the most representative and referenced
works in this category is FSFS (Feature Selection using Feature Similarity) (Mitra et al.
2002). In this work, the authors introduced a statistical measure of dependency/similarity
to reduce feature redundancy; this measure called Maximal Information Compression Index
(MICI) is based on the variance-covariance between features. The idea of this method is
partitioning the original set of features into clusters, such that those features in the same
cluster are highly similar, while those in different clusters are dissimilar. Feature clustering
is done iteratively based on the kNN principle as follows: In each iteration, FSFS computes
the k-nearest features of each feature (using MICI). Then, the feature with the most compact
subset of k-nearest features (determined by the distance to its farthest feature among the k-
nearest) is selected, and its k nearest features are discarded. This procedure is repeated for the
remaining features until all of them are either picked or discarded. Following a similar idea,
in Li et al. (2007) a hierarchical method called Mitra’s + AIF that removes both redundant
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and irrelevant features was proposed. This method uses the algorithm developed in Mitra
et al. (2002) to remove redundant features. Subsequently, an exponential entropy measure is
used to sort the features according to their relevance. Afterward, from the feature ranking
obtained in the previous step, a relevant-non-redundant feature subset is selected using the
fuzzy evaluation index FFEI (Pal et al. 2000) in combination with a forward selection search.

Other two multivariate filter methods based on statistical measures were proposed in
Haindl et al. (2006) and Ferreira and Figueiredo (2012) respectively. In Haindl et al. (2006),
the idea is to evaluate all mutual correlations for all feature pairs. Then, the feature with
the largest average mutual correlation with all other features is removed, and the process is
repeated for the remaining features until a number of features, previously specified by the user,
is reached. Meanwhile, in Ferreira and Figueiredo (2012), a filter supervised/unsupervised
feature selection method called RRFS (Relevance Redundancy Feature Selection), which
selects features in two steps was proposed. In this method, first, the features are sorted
according to a relevance measure (variance for the unsupervised version and the Fisher’s
Ratio or mutual information for the supervised one). Then, in the second step, following
the order generated in the previous step, the features are evaluated using a feature similarity
measure to quantify the redundancy between them. Afterward, the first p features with the
lowest redundancy are selected.

Following the idea of using statistical measures for feature selection, in Talavera (2000)
a multivariate filter method based on a dependency measure was introduced. This method,
unlike the previous ones, proposes that in the absence of classes, the relevant features are
those that are highly correlated with others; and those features having low correlation with
other features are not likely to play an important role in the clustering process (irrelevant
features). This conjecture is based on the observation that cohesive and distinct clusters tend
to capture feature inter-correlations (Fisher 1987). Therefore, the idea is to evaluate each
individual feature fi through the dependency measure above mentioned. Afterward, the p
features with the highest dependency are selected.

Another multivariate statistical-based filter method was introduced in Yen et al. (2010).
In this work, the objective is to remove redundant features using the concept of minimization
of the feature dependency. The idea is to find independent features (relevant) by choosing
a set of coefficients such that the linear dependency of features (expressed by the error
vector E) could be close to zero. At each iteration, the feature with the largest absolute
coefficients (that one with the smallest ||E ||2) is removed, and the effect of its removal is
updated. This process is iterated until all the remaining error vectors E are smaller than a
threshold fixed by the user. Another statistical-basedmethodwith a similar idea calledMPMR
(feature selection based on Maximum Projection and Minimum Redundancy) was proposed
inWang et al. (2015a). In this work, a new criterion calledmaximumprojection andminimum
redundancy feature selection was introduced. The idea is to select a feature subset such that
all original features are projected into a feature subspace (applying a linear transformation)
with minimum reconstruction error. Moreover, in this work, with the aim of maintaining low
redundancy, a term for quantifying the redundancy among features (redundancy rate using
the Pearson correlation coefficient) was added.

Finally in Dash et al. (2002) amultivariate information-basedmethod similar to Dash et al.
(1997) was introduced. In this method, as in Dash et al. (1997), the basic idea is to select
features using a measure of entropy of similarities based on distance. The main difference
between (Dash et al. 1997) and (Dash et al. 2002) is that in Dash et al. (2002) some weighing
parameters for the entropy measure were added, and the entropy measure was reformulated
as an exponential function instead of a logarithmic function. Additionally, the authors select
a subset of features using a forward selection search.
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Bio-inspired methods Recently, several bio-inspired unsupervised feature selection meth-
ods basedon the swarm intelligence paradigm (Beni andWang1993;Dorigo andGambardella
1997) have been proposed. In Tabakhi et al. (2014), one of the first methods based on this
idea called UFSACO (Unsupervised Feature Selection based on Ant Colony Optimization)
was introduced. Themain objective is to select feature subsets with low similarity among fea-
tures (low redundancy). In this work, the search space is represented as a complete undirected
graph; where the nodes represent the features and the weights of the edges represent the sim-
ilarities between features. This similarity is computed using the cosine similarity function.
The authors follow the idea that if two features are similar, then these features are redundant.
Each node in the graph has a desirability value called pheromone, which is updated by agents
(ants) in function of its current value, a pre-specified decay rate, and the number of times that
a given feature has been selected by an agent. The agents traverse the graph iteratively prefer-
ring high pheromone values and low similarities until a pre-specified stop criterion (number
of iterations) is reached. Finally, those featureswith the highest pheromone value are selected.
Thus, it is expected to pick feature subsets with low redundancy. Other later methods based
on the same idea are MGSACO (Microarray Gene Selection based on Ant Colony Optimiza-
tion) (Tabakhi et al. 2015), RR-FSACO (Relevance-Redundancy Feature Selection based on
ACO) (Tabakhi and Moradi 2015), and UPFS (Unsupervised Probabilistic Feature Selection
using ant colony optimization) (Dadaneh et al. 2016). In both MGSACO and RR-FSACO, in
addition to quantifying the feature redundancy as in the previous method, they also measure
the relevance of each feature through its variance (Theodoridis and Koutroumbas 2008b).
Therefore, the main objective of all these methods is to select features that minimize redun-
dancy and at the same time maximize relevance. Meanwhile, UPFS, the idea is to pick
non-redundant features, but using the Pearson’s correlation instead of the cosine similarity.

Spectral/sparse learningmethods Some multivariate methods based on Spectral Analysis
derived from the SPECand theLaplacian Scorewere introduced inGarcia-Garcia and Santos-
Rodriguez (2009), Liu et al. (2009b), Niijima and Okuno (2009). In Garcia-Garcia and
Santos-Rodriguez (2009), a feature selection method called mR-SP (minimum-Redundancy
SPectral feature selection) that combines the SPEC ranking and the minimum redundancy
optimality criterion (Peng et al. 2005) was proposed. The basic idea of this method is to add
a way for controlling the feature redundancy in SPEC, by introducing an evaluation measure
for quantifying the similarity of each pair of features through a modified cosine similarity
function. While in Liu et al. (2009b) a method that combines the Laplacian Score with the
distance entropy introduced inDash et al. (2002)was developed. Thismethod selects a feature
subset (using the entropy measure) based on the ranking produced by the Laplacian Score.
Likewise, in Niijima and Okuno (2009) a method called LLDA-RFE (Laplacian Linear
Discriminant Analysis-based Recursive Feature Elimination) was proposed. This method
extends the Linear Discriminant Analysis (LDA) (Fukunaga 1990) to the unsupervised case
using the similarities among objects; this extension is called LLDA. The idea is to recursively
remove features with the smallest absolute values of the discriminant vectors of the LLDA
to identify features that potentially reveals clusters in the samples. According to the authors,
LLDA-RFE is closely related to Laplacian Score; the main difference is that LLDA-RFE
is a multivariate method, which allows selecting features that in combination contribute to
discriminate.

Other multivariate feature selection methods that have received attention in the last years,
due to their good performance and interpretability (Li et al. 2016), are those based on Spectral
Analysis combined with Sparse Learning (El Ghaoui et al. 2011). Sparse Learning refers to
those methods that seek a trade-off between some goodness-of-fit measure and the sparsity
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(El Ghaoui et al. 2011) of the results. Examples of earlier methods based on this idea are:
MCFS (Cai et al. 2010), MRSF (Zheng et al. 2010), UDFS (Yang et al. 2011b) NDFS (Li
et al. 2012), JELSR (Hou et al. 2011, 2014), SPFS (Zhao et al. 2013), CGSSL (Li et al.
2014b), RUFS (Qian and Zhai 2013), and RSFS (Shi et al. 2015).

MCFS (Cai et al. 2010) and MRSF (Zheng et al. 2010) were among the earliest unsuper-
vised multivariate spectral/sparse learning feature selection methods. MCFS (Multi-Cluster
Feature Selection) consists of three steps: (1) spectral analysis, (2) sparse coefficient learn-
ing, and (3) feature selection. In the first step, spectral analysis (Luxburg 2007) is applied
on the dataset to detect the cluster structure of the data. Then, in the second step, since the
embedding clustering structure of the data is known, through of the first k eigenvectors of the
Laplacian matrix, MCFSmeasures the importance of the features by a regression model with
a l1-norm regularization (Donoho and Tsaig 2008). Finally, in the third step, after solving
the regression problem, MCFS selects d features based on the highest absolute values of the
coefficients obtained through the regression problem. On the other hand, MRSF (Minimize
the feature Redundancy for Spectral Feature selection) evaluates the features all together in
order to eliminate redundant features. The idea is to formulate the feature selection problem
as a multi-output regression problem (Friedman et al. 2001), and the selection is performed
by enforcing the sparsity applying the norm l2,1 (Argyriou et al. 2008) instead of the l1-
norm. Moreover, in this work, an efficient algorithm based on the Nesterov’s method (Liu
et al. 2009a) for solving the regression problem was also proposed. The final feature subset
is selected based on the values of a weighted W matrix.

Following a similar idea to MRFS, UDFS (Yang et al. 2011b) (Unsupervised Discrimi-
native Feature Selection algorithm) performs feature selection by simultaneously exploiting
discriminative information contained in the scatter matrices and feature correlations. This
method proposes to address the feature selection problem taking into account the trace crite-
rion (Fukunaga 1990) into the regression problem. Furthermore, UDFS adds some additional
constraints to the regression problem and proposes an efficient algorithm to optimize it. UDFS
ranks each feature according to the corresponding weight value in descending order, and the
top-ranked features are selected. Another method that shares many common features with
MRSF is JELSR(JointEmbeddingLearning andSparseRegression) (Houet al. 2011). JELSR
works with the same objective function asMRSF, and it only differs in the construction of the
Laplacian graph, since in this work, locally linear approximation weight (Roweis and Saul
2000) is used to measure local similarity for building the Laplacian graph. A later general-
ization of JELSR was introduced in Hou et al. (2014), where instead of using the Laplacian
graph to characterize the structure of high dimensional data and then apply regression, a
unify embedding learning and sparse regression framework was proposed. Furthermore, in
this work, a unified perspective for understanding and comparingmany popular unsupervised
feature selection methods was presented. A recent work related to JELSR is USFS (Wang
et al. 2016) (Unsupervised Spectral Feature Selection with l1-norm graph), where the idea
is to use spectral clustering and a l1-norm graph to select discriminative features. The main
difference between USFS and JELSR is the way of building the Laplacian graph; JELSR
uses locally linear approximation weights to construct the graph, while USFS adopts a new
l1-norm graph.

Another method related to the works described above is NDFS (Nonnegative Discrimi-
native Feature Selection) (Li et al. 2012). NDFS like UDFS and MRFS, performs feature
selection exploiting the discriminative information and feature correlations in a unified frame-
work. First,NDFSuses SpectralAnalysis to learn pseudo class labels (defined as non-negative
real values). Then, a regression model with l2,1-norm regularization (Argyriou et al. 2008) is
formulated and optimized through a special solver also proposed in this work. According to
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the authors, themain difference betweenNDFS andUDFS is thatNDFS adds a non-negativity
constraint to the regression problem, since removing this constraint NDFS becomes UDFS.
The same authors proposed a later modification of NDFS in Li and Tang (2015), where a
method called NSCR (Nonnegative Spectral analysis with Constrained Redundancy) was
introduced. The main difference regarding NDFS is that NSCR adds a mechanism to explic-
itly control the redundancy. Following the idea of NDFS in Han et al. (2015), a method called
FSLR (Feature subset with Sparsity and Low Redundancy) was proposed. FSLR employs
Spectral Analysis to represent the data in a lower dimension and introduces a novel regu-
larization term into the objective function with a non-negative constraint. Additionally, an
iterative multiplicative algorithm to efficiently solve the constrained optimization problem
was proposed. Another UFS method called CDL-FS (Couple Dictionary Learning Feature
Selection) which uses a coupled analysis/synthesis dictionary instead of Spectral Analysis
to learn pseudo class labels was proposed in Zhu et al. (2016). The general idea is to use a
dictionary learning (Gu et al. 2014) in order to model the cluster structure of the data. Feature
selection is achieved by imposing an l2,p-norm (0 < p ≤ 1) regularization of the feature
weight matrix on the dictionary learning model.

In Nie et al. (2016) a sparse learning based method called SOGFS (Structured Optimal
Graph Feature Selection)which simultaneously performs feature selection and local structure
learning, was proposed. SOGFS adaptively learns local manifold structure by introducing a
similarity matrix in a sparse optimization model based on l2,1-norm minimization on both
loss function and regularization (Nie et al. 2010). Features are selected according to the cor-
responding weights once the proposed model has been optimized. Another sparse learning
feature selection method named SPFS (Similarity Preserving Feature Selection) was intro-
duced in Zhao et al. (2013). In thismethod, the idea is to select the d features that best preserve
the similarity of the objects using multiple-output regression (Friedman et al. 2001) with an
l2,1-norm constraint. Additionally, in this work, the authors show the relationship between
the proposed method and many other supervised and unsupervised feature selection methods
of the state-of-the-art. The authors show that many existing feature evaluation criteria can be
unified under a common formulation, where the relevance of features is quantified by mea-
suring their capability in preserving the pairwise sample similarity specified by a predefined
similarity matrix. Likewise, in Li et al. (2014b) another method called CGSSL (Clustering-
Guided Sparse Structural Learning) was proposed. This work presents a general method for
feature selection which jointly exploits nonnegative spectral analysis and structural learning
with sparsity. The idea is to use the cluster indicators (learned with nonnegative spectral clus-
tering) in a linear model to provide label information for the structural learning. Moreover,
similar to the previous method, in this work, the authors show the relationships between the
introduced method and several feature selection methods, including SPFS, MCFS, UDFS,
and NDFS.

In order to address the problem of outliers or noise present in many datasets, in Qian
and Zhai (2013) a filter method named RUFS (Robust Unsupervised Feature Selection) was
proposed. The objective is to achieve both robust clustering and robust feature selection.
Unlike the unsupervised feature selection methods above mentioned such as MCFS, UDFS,
and NDFS, RUFS learns the pseudo cluster labels via local learning regularized robust non-
negative matrix factorization (Kong et al. 2011). The idea is to learn the labels while feature
selection is performed by means of a robust joint l2,1 norms minimization. In this work, the
authors also proposed an iterative limited-memory BFGS (Liu and Nocedal 1989) algorithm
for solving the optimization problem efficiently, and to make RUFS applicable on real-world
applications. Following a similar idea to RUFS, in Du et al. (2017) a method called RUFSM
(Robust Unsupervised Feature Selection via Matrix Factorization) was proposed. RUFSM
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selects features by performing discriminative feature selection and robust clustering simul-
taneously using the l2,1-norm. The main difference between RUFS and RUFSM is that the
latter uses the cluster centers as objective concept rather than the pseudo labels of the data.
Another method that addresses the problem of noisy features and outliers is RSFS (Robust
Spectral learning framework for unsupervised Feature Selection) (Shi et al. 2015). RSFS
selects features by applying a graph embedding step (using kernel regression) to efficiently
learn the cluster structure, and sparse spectral regression to handle noise and outliers. The
idea is to build the Laplacian graph taking into account a weight assigned to each object
by local kernel regression and develop an efficient iterative algorithm in order to solve the
optimization problem proposed.

In recent years, some works developed under Sparse Learning/Spectral analysis category
but under a new perspective called self-representation of features, have been proposed. The
assumption behind these methods is that each feature can be well approximated by a linear
combination of relevant features and a coefficient matrix with sparsity constraints (which can
be used as feature weights). RSR (Zhu et al. 2015) (Regularized Self-Representation model
for unsupervised feature selection) was the first one on exploiting this idea. In this work,
the authors argue that if a feature is important, then it will participate in the representation
of most of the other features. The feature selection is done by the minimization of the
self-representation error using the l2,1-norm for the characterization of residuals, and the
most representative features (those with high feature weights) are selected. In Zhu et al.
(2017) an extended version of RSR was proposed, where the authors use the l2,p-norm
regularization instead of l2,1-norm to select features with emphasis on small values for p (0 ≤
p < 1). Another method related to RSR is GRNSR (Graph Regularized Non-negative Self
Representation) (Yi et al. 2016). LikeRSR,GRNSRexploits the self-representation capability
of the features, but with the difference that GRNSR also takes into account the geometrical
structure of the data using a neighborhood weighted graph (low-rank representation graph).
In GRNSR each feature is first represented by all other features through a non-negative
linear combination. Then, a similarity matrix is constructed to uncover the local structure
information of the objects and a Nonnegative Least Squares (NNLS) problem is formulated
and considered as a new term in the final l2,1-normnonnegative constraint regression problem.
Afterward, once themodel (regression problem) has been optimized, the top d ranked features
with the highest weights are selected.

Other more recent methods also developed under self-representation perspective are SPN-
FSR (Zhou et al. 2017), LRSL (Wang andWang 2017), DSRMR (Tang et al. 2018a), l2,1-UFS
(Tang et al. 2018b) and the proposed introduced in Lu et al. (2018). SPNFSR (Structure-
PreservingNon-negativeFeatureSelf-Representation), l2,1-UFS (l2,1 basedgraph regularized
UFSmethod) andDSRMR (Dual Self-Representation andManifoldRegularization) take into
account both the self-representation and the structure-preserving ability of features by opti-
mizing a model based on the l2,1-norm. The general idea of these methods is to optimize
a model (objective function) take into account three aspects: (1) the self-representation of
features using the l2,1 norm. (2) the local manifold geometrical structure of the original data
using a graph-based norm regularization term. And 3) a regularization term W to reflect the
importance of each feature. The optimization problem is solved through an efficient iterative
algorithm. At the final stage, each feature is sorted according to the corresponding W values
in descending order and the top p ranked features are selected. For its part LRSL (Low-rank
approximation and structure learning for unsupervised feature selection), unlike the previous
methods, uses the Frobenius norm instead of l2,1-norm. Finally, the method introduced in
Lu et al. (2018) proposes an objective function for modeling the feature selection problem
through a linear combination of all the features in the original feature space and considering
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the local manifold structure of the data using an object similarity matrix. Then, once the
model has converged, features are ordered according to the corresponding weights and the
top p ranked features are selected.

Recently, some works that use Locally Linear Embedding (LLE) and non-convex sparse
regularizers functions in sparse learning models have been proposed. In Luo et al. (2018), a
novel unsupervised feature selection method that uses LLE (Roweis and Saul 2000) to model
the manifold structure of the data was proposed. The idea is to characterize the intrinsic
local geometric through an LLE graph-based instead of the typical pairwise similarity matrix
jointly with a structure regularization term. For each feature, a feature-level reconstruction
score based on the LLE graph is defined, and the final feature subset is selected according
to this score. On the other hand, in Shi et al. (2018) a non-convex sparse learning model
was proposed. The idea is to perform feature selection through an orthogonal-nonnegative
constraint sparse regularized model using a new norm named �2,1−2-norm defined as the
difference of the l2,1 and the Frobenius norm. To solve the model efficiently, an iterative
algorithm based on the Alternating Direction Method of Multipliers (ADMM) (Boyd et al.
2011) was also proposed.

2.2 Wrapper approach

UFS methods based on the wrapper approach can be divided into three broad categories
according to the feature search strategy: sequential, bio-inspired, and iterative. In the former,
features are added or removed sequentially. Methods based on sequential search are easy to
implement and fast. On the other hand, bio-inspired methods try to incorporate randomness
into the search process, aiming to escape from local optima. Finally, iterativemethods address
the unsupervised feature selection problem by casting it as an estimation problem and thus
avoiding a combinatorial search.

2.2.1 Sequential methods

One of the most outstanding methods in this category was introduced in Dy and Brodley
(2004). In this work, two feature selection criteria were evaluated: the criterion of Maxi-
mum Likelihood (ML) and the scatter separability criterion (trace criterion TR) (Fukunaga
1990). This method searches through the space of feature subsets, evaluating each candidate
subset as follows: First, Expectation Maximization (EM) (Dempster et al. 1977) or k-means
(MacQueen 1967) clustering algorithms are applied on the data described by each candidate
subset. Then, the obtained clusters are evaluated with the ML or TR criteria. The method
uses a forward selection search for generating subsets of features that will be evaluated as
described above. The method ends when the change in the value of the used criterion is
smaller than a given threshold.

In Breaban and Luchian (2011), a method that uses a new optimization criterion for,
respectively, minimizing and maximizing the intra-cluster and inter-cluster inertias was pro-
posed. The authors propose a function, unbiased w.r.t. the number of clusters and features,
based minimization-maximization of the variance of scatter matrices obtained from the clus-
ters built by the k-means clustering algorithm. This function assigns a ranking score to each
partition that may be defined in the search space of all possible subsets of features and number
of clusters. The criterion proposed in this method provides both a ranking of relevant features
and an optimal partition.
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A UFS method that uses a conceptual clustering algorithm for feature selection was
proposed in Devaney and Ram (1997). In this work, the authors developed an unsupervised
feature selection method based on a measure called category utility, which is used to measure
the quality of the clusters found by the COBWEB hierarchical clustering algorithm (Fisher
1987). Thismethod generates subsets of featureswith two search strategies: forward selection
and backward elimination. Feature selection is performed running the COBWEB algorithm
using the subset of features generated by the search strategy and evaluating the category
utility for this feature subset. The process ends when no higher category utility score can be
obtained in the backward or forward selection.

Finally, in Hruschka and Covoes (2005), a method for feature selection called SS-SFS
(Simplified Silhouette Sequential Forward Selection) was proposed. This method selects a
feature subset that provides the best quality according to the simplified silhouette criterion.
In this method, a forward selection search is used for generating subsets of features. Each
feature subset is used to cluster the data using the k-means clustering algorithm, and the
quality of the feature subset is evaluated through the quality of the clusters measured with the
simplified silhouette criterion. The feature subset that produces the best value of this criterion
in the forward selection is selected.

2.2.2 Bio-inspired methods

A representative UFS method in this category was introduced in Kim et al. (2002), where
an evolutionary local selection algorithm (ELSA) was proposed to search feature subsets as
well as the number of clusters based on the k-means and Gaussian Mixture clustering algo-
rithms. Each solution provided by the clustering algorithms is associated with a vector whose
elements represent the quality of the evaluation criteria, which are based on the cohesion of
the clusters, inter-class separation, and maximum likelihood. Those features that optimize
the objective functions in the evaluation stage are selected.

Another method, also based on an evolutionary algorithm, was introduced in Dutta et al.
(2014). In this work, feature selection is performed while the data are clustered using a
multi-objective genetic algorithm (MOGA). This method proposes a multi-objective fitness
function thatminimizes the intra-cluster distance (uniformity) andmaximizes the inter-cluster
distance (separation). Each chromosome represents a solution, which is composed by a set
of k cluster centroids (cluster center for continuous features and cluster mode for categorical
features) described by a subset of features. The number of features used for each centroid
in each chromosome is randomly generated, and the cluster centers and cluster modes of
chromosomes in the initial population are created by generating random numbers, and feature
values from the same feature domain, respectively. Then, for reassigning cluster centroids,
MOGA uses the k-prototypes clustering algorithm (Huang 1997, 1998) which obtains its
inputs from the initial population generated in the previous step. Afterward, the crossover,
mutation, and substitution operators are applied, and the process is repeated until a pre-
specified stop criterion is met. In the final stage, this method returns the feature subset that
optimizes the fitness function jointly with the clusters that they produced.

2.2.3 Iterative

An outstanding method in this category was proposed in Law et al. (2004). The method
proposes a strategy to cluster data and to perform feature selection simultaneously using the
EM (Dempster et al. 1977) clustering algorithm. The idea is to estimate a set of weights (real
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values in [0 − 1]) called “feature saliences” (one for each feature) to quantify the relevance
of each feature. This estimation is carried out by a modified EM algorithm derived for the
task. The method returns the parameters of the density functions that model the components
(clusters), as well as the set of feature saliences values. Then, the user can consider those
feature saliencies that best discriminate between different components (thosewith the highest
values). Similar to the previousmethod, in Roth and Lange (2004) the authors perform feature
selection and clustering simultaneously using a Gaussian mixture model (Figueiredo and
Jain 2002). In this method, the idea is to optimize the Gaussian mixture model via the EM
clustering algorithm, where the Maximization-step of this algorithm was reformulated as a
l1-constraint LASSO problem (Tibshirani 1996; Osborne et al. 2000). The method returns
the clusters as well as the coefficients of the model; the coefficients indicate the relevance of
each feature.

In more recent years, wrapper methods that use clustering algorithms for initialization or
optimization of Sparse Learning models have been proposed, such is the case of the methods
introduced in Zeng and Cheung (2011), Wang et al. (2015b), Guo et al. (2017), and Guo and
Zhu (2018). In Zeng and Cheung (2011) a wrapper method called LLC-fs (Local Learning-
basedClustering algorithmwith feature selection)was proposed. In thismethod, it is assumed
that the cluster indicator value at each point should be estimated by a ridge regression model.
The authors propose to use the Local Learning-Based Clustering (LLC) framework (Wu and
Schölkopf 2007) to formulate the final ridge regression model. Feature selection is done by
introducing a binary feature selection vector τ to the local discriminant function of themodel.
At the end, after the convergence, the output is the vector τ along with a discretized cluster
indicator matrix. In Wang et al. (2015b) a method called EUFS (Embedded Unsupervised
Feature Selection), which directly embeds the feature selection in the clustering algorithm via
Sparse Learningwas proposed. In thiswork, a not convex sparse regressionmodel using a loss
function based on l2,1-norm is introduced and optimized through an Alternating Direction
Method of Multipliers (Boyd et al. 2011). EUFS uses the k-means clustering algorithm to
initialize a pseudo cluster indicatormatrixU and a latent featurematrix V (used for indicating
feature weights) in the final model. Once the model has converged, the output is a feature
ranking sorted according to the final values of the latent feature matrix along with the pseudo
clusters indicators. A more recent work based on the same idea as the previous work was
in introduced in Guo et al. (2017). This method proposes the same objective function as
EUFS and only differs in that the loss function of the final model uses the Frobenius-norm
instead of l2,1-norm, and the update of U and V is performed iteratively by the k-means
clustering algorithm until convergence of the model. Moreover, in Guo and Zhu (2018), the
first author of the last work proposed another wrapper method called DGUFS (Dependence
Guided Unsupervised Feature Selection), which simultaneously performs feature selection
and clustering3 using a constraint model based on l2,0-norm. The model is optimized using a
modified algorithm based on the iterative Alternating DirectionMethod ofMultipliers (Boyd
et al. 2011).

2.3 Hybrids

In order to take advantage of the filter and wrapper approaches, hybrid methods, in a filter
stage, the features are ranked or selected applying a measure based on intrinsic properties
of the data. While, in a wrapper stage, certain feature subsets are evaluated for finding the

3 Clustering can be made using the Constrained Boolean Matrix Factorization (CBMF) algorithm proposed
by Li et al. (2014a) or employing eigendecomposition and exhaustive search.

123



A review of unsupervised feature selection methods 921

best one, through a specific clustering algorithm. We can distinguish two types of hybrid
methods: methods based on ranking and methods non-based on ranking of features. In this
section, we described some methods of both types belonging to this approach.

In Dash and Liu (2000) one of the first based on ranking unsupervised hybrid feature
selection methods was introduced. This method is based on the entropy measure proposed
in Dash et al. (1997) (filter stage), jointly with the internal scatter separability criterion (Dy
and Brodley 2004) (wrapper stage). In the filter stage, each feature, one by one, is removed
from the whole set of features, and the entropy generated in the dataset after the elimination
of the feature is computed. This produces a sorted list of features according to the degree
of disorder that each feature generates when it was removed from the whole set of features.
Once all features have been sorted, in the wrapper stage, a forward selection search is applied
jointly with the k-means clustering algorithm in order to build clusters which are evaluated
using the scatter separability criterion. This method selects the feature subset that reaches
the highest value for the separability criterion.

Another hybrid method also based on feature ranking was proposed in Li et al. (2006). In
this method, the authors combine an exponential entropy measure with the fuzzy evaluation
index FFEI (Pal et al. 2000) for feature ranking and feature subset selection, respectively. The
method employs sequential search considering subsets of features based on the generated
ranking and using the fuzzy evaluation index as quality measure. In the wrapper stage, with
the purpose of selecting even a smaller feature subset, the fuzzy-c-means algorithm and the
scatter separability criterion (Dy and Brodley 2004) are used to select what the authors called
a “compact” subset of features.

A more recent hybrid based on ranking unsupervised feature selection method was pro-
posed in Solorio-Fernández et al. (2016). In this method, the authors combine spectral feature
selection and the Calinski-Harabasz index (Calinski and Harabasz 1974) for selecting a rel-
evant feature subset. The feature selection is divided into two stages: (1) Feature ranking
and, (2) feature subset selection. In the first stage, the idea is to identify those features that
preserve the data structure computing for each feature the Laplacian Score (He et al. 2005);
this produces a feature ranking. After, in the second stage, taking advantage of the rank-
ing generated in the previous stage and using forward or backward selection search, feature
subsets are evaluated through a modified internal evaluation index called WNCH (Weighted
Normalized Calinski-Harabasz index). The feature subset with the highest WNCH value is
selected.

On the other hand, in Hruschka et al. (2005) a hybrid UFS method non-based on ranking
called BFK that combines k-means and a Bayesian filter was introduced. This method, unlike
all the above mentioned hybrid methods, begins with the wrapper stage, by running the k-
means clustering algorithm on the dataset with a range of clusters specified by the user. The
clusters are evaluated with the simplified silhouette criterion and the one with the highest
value is selected. Subsequently, in the filter stage, using the concept of Markov blanket, a
feature subset is selected through a Bayesian network, where each cluster represents a class,
the nodes represent features, and the edges represent relationships between features.

Another hybrid method non-based on ranking that removes both irrelevant and redundant
features was introduced in Kim and Gao (2006). This method performs feature selection
in two steps: In the first step, a subset of features is founded by applying the least-square
estimation (LSE)-based evaluation (Mao 2005). The second step works only with those
features identified in the first step, and by using a Sequential Forward Selection search the
best feature subset that maximizes the clustering performance (using a modified version of
the EM clustering algorithm) is found.
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Finally, It is worth noting that, in the literature, some hybrid unsupervised feature selection
methods like (Jashki et al. 2009; Hu et al. 2009; Yang et al. 2011a; Yu 2011) designed
specifically for handling data in specific domains also have been proposed. Likewise, there
are other works such as those proposed in Hruschka et al. (2007), Luo and Xiong (2009)
and Dash and Ong (2011), which solve the problem from another different perspective;
performing feature selection assuming that a set of clusters can be modeled as being a set of
different classes, where they can apply traditional supervised feature selection methods on
data.

3 Analysis and discussion

In the previous section, Unsupervised Feature Selection methods were categorized and
reviewed according to their approach, type, and subtype. In this section, some overall aspects,
advantages, and disadvantages of the UFS methods described in Sect. 2 are discussed. Fur-
thermore, in this section, an experimental evaluation of the most relevant and recent UFS
methods of each category is carried out.

In Table 1, we summarize the general advantages and disadvantages of UFS methods
belonging to the filter, wrapper, hybrid approaches, and in Table 2, we show the advantages
and disadvantages of the describedUFSmethods regarding their type, subtype, and approach;
in concordance to the taxonomy shown in Fig. 1. Moreover, in order to give more details
about the UFS methods analyzed in this review, in Table 3, we show a summary of these
methods. In this table, the reference, approach, type of method, as well as the datasets,4

classifiers/clustering algorithms, and the validation measures used to assess the quality of the
selection, are shown.

As we can see in Tables 1 and 2, in general, there is not a better UFS approach or method
for all kind of data and domain, every approach has its own pros and cons. Nevertheless,
from our literature study and from Tables 1, 2 and 3 we can highlight some important general
characteristics of the different methods belonging to the different approaches and types.

In Table 3, we can see that there are only a few wrapper methods for Unsupervised
Feature Selection, in contrast to filter methods. This is mainly because wrappers become
less useful for high dimensionality problems, which makes them seldom used in practice.
On the other hand, hybrid methods are preferred to wrapper ones, given their compromise
between efficiency and quality of the selected feature subsets. However, there are also few
hybrid methods for unsupervised feature selection reported in the literature. Conversely, the
filter approach has received more attention. This is understandable given the technological
advancement in the last years, and the vast amount of unlabeled data generated across many
scientific disciplines, such as text mining, genomic analysis, social media, and intrusion
detection, to name a few, where fast and scalable methods are needed. Unsupervised feature
selectionmethods under the filter approach rely on general characteristics of data and evaluate
features without involving any clustering algorithm; therefore, they do not have a bias to
specific learning models. Besides, filter methods are easy to design, easy to be understood by
other researchers, and they are usually very fast (Zhao 2010), which makes them attractive
for high-dimensional data. Moreover, as we can see in the taxonomy of Fig. 1, there is an
inclination to the development of filter methods based on Spectral Feature Selection and
Sparse Learning. This last is mainly because these methods besides being fast, obtain good
results in terms of the quality of the selected features.

4 The number in parentheses denotes the number of datasets used for validation.
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3.1 Criteria for determining relevant features

Unlike supervised and semi-supervised feature selection, Unsupervised Feature Selection is
considered a much harder problem due to the difficulty of defining feature relevancy (Dy
and Brodley 2004).5 In this regard, from all UFS methods analyzed in our review, we have
been able to identify three main criteria commonly used to determine relevant features. The
first one consists in choosing those features that can best preserve the manifold structure of
the original data; we can find examples of methods using this criterion in the Univariate and
Multivariate Spectral/Sparse Learning-based methods belonging to the filter approach. The
second criterion consists in seeking cluster indicators (considered as pseudo labels) through
clustering algorithms and then transform the unsupervised feature selection into a supervised
context; some examples of this kind of methods can be found in Multivariate Spectral/Sparse
Learning-basedmethods of the filter,wrapper, and hybrid approaches. Finally, there is another
criterion based on the analysis of correlation among features (feature dependency), where the
objective consists in selecting a feature subset with the highest or lowest correlation among
features. Some examples of this last criterion can be found in the Multivariate-Statistical
based methods in the filter approach.

3.2 Criteria for determining redundant features

Feature correlation, besides to be used as a criterion for selecting relevant features, it is also
used for defining feature redundancy. In general, in the literature of Unsupervised Feature
Selection, we have identified twomain approaches for quantifying redundancy of a particular
subset of features: (1) quantifying redundancy without considering an objective concept, and
(2) quantifying redundancy considering an objective concept. In the first case, the objective
consists in measuring the degree of dependence, similarity, association or correlation (com-
monly by pairs) among the features by using statistical or information based measures. Some
examples ofmethods under this approach areMitra et al. (2002), Haindl et al. (2006) , Garcia-
Garcia and Santos-Rodriguez (2009), Yen et al. (2010), Zhao et al. (2013), Tabakhi et al.
(2014), Tabakhi and Moradi (2015), Tabakhi et al. (2015), Han et al. (2015) and Li and Tang
(2015). Meanwhile, in the second case, the aim is to quantify the relationship among fea-
tures; considering further a specific task or objective concept for which these features could
be considered redundant. This is commonly achieved by evaluating features jointly and using
sparsity regularization in a constrained regression optimization model. Some examples of
UFS methods using this last approach are Zheng et al. (2010), Cai et al. (2010), Zhao and
Liu (2011), Hou et al. (2011) and Zhu et al. (2016).

3.3 Performance evaluation and datasets used for assessing UFSmethods

Table 3 help us to appreciate that performance evaluation of Unsupervised Feature Selection
methods has been done in different ways. Nevertheless, from the analysis made in this review,
we can identify three main ways for evaluating the results of the UFS methods:

• Evaluation in terms of the quality of the selected features for a specific super-
vised/unsupervised classifier. This evaluation is the most widely used, and it has become

5 Unlike supervised feature selection, which has class labels to guide the search for discriminative features,
in UFS, we must define feature relevancy in the form of objective concepts.
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the most accepted way for assessing Unsupervised Feature Selection methods. Within
this type of evaluation, two standard ways are distinguished.

1. Evaluation using the classification accuracy or error rate of supervised classifiers
such as kNN (Fix and Hodges 1951), SVM (Cortes and Vapnik 1995), and Naive
Bayes (NB) (Maron 1961; John and Langley 1995), among others. From Table 3,
we can see that this evaluation is commonly used by Spectral Feature Selection,
Statistic-based, and Bio-inspired methods.

2. Evaluation using the results of clustering algorithms such as k-means (MacQueen
1967), EM (Dempster et al. 1977), and COBWEB (Fisher 1987). For assessing the
clustering quality, measures like Normalized Mutual Information (NMI) and Clus-
tering Accuracy (ACC) are commonly used. Wrapper and hybrid UFS methods, as
well as multivariate filter methods based on Sparse Learning and Spectral Feature
Selection commonly use clustering algorithms to assess the quality of the selected
features.

• Evaluation in terms of the redundancy of the selected features. This evaluation is used
by those methods that consider the elimination of redundant features (Mitra et al. 2002;
Li et al. 2007; Haindl et al. 2006; Yen et al. 2010; Wang et al. 2015a; Tabakhi et al.
2014; Garcia-Garcia and Santos-Rodriguez 2009; Li et al. 2012; Li and Tang 2015).
For this evaluation, the redundancy rate (Zheng et al. 2010) and Representation Entropy
(Devijver and Kittler 1982) are the most used redundancy measures.

• Evaluation in terms of the correctness of the selected features. This evaluation consists
in quantifying with a specific measure such as precision, recall or F-measure the amount
of relevant features selected by an unsupervised feature selection method. Of course, this
is commonly done using synthetic datasets, where the actual relevant features are known
a priori, which usually is not possible for real-world datasets.

Regarding the datasets used for evaluation of UFS methods, from Table 3, it can be seen
that at least half of the reviewed works use data from the well-known UCI machine learning
repository6 (Lichman 2013), which contains many kinds of datasets with different sizes in
both, number of objects and features (including numeric, non-numeric and mixed). The other
half of the reviewed works, especially those based on Spectral Analysis and Sparse Learning,
mostly use datasets of high dimensionality, such as text, biological data, and images, among
others. Likewise, we can observe in Table 3 that the number of datasets used to validate UFS
methods ranges from 1 to 42, being seven the average. This indicates, from our point of view,
that a more extensive empirical study using a large number of datasets is required to evaluate
the actual performance of the UFS methods proposed in the literature.

3.4 Experimental comparison

In order to make a comparison of the performance of the different approaches and categories
of the UFS methods reviewed in this paper, we selected 15 of the most relevant an recent
UFSmethods (taking into account each approach and category) and we evaluated them on 15
datasets from the UCI machine learning repository (detailed information about the selected
datasets is summarized in Table 4). The aim is to carry out an empirical comparison about
the performance of these methods, regarding the quality of selected features and runtime,
over different kind of data (numerical, non-numerical, and mixed data) and perform a further

6 https://archive.ics.uci.edu/ml/index.php.
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analysis based on the experimental results. Specifically, in our experiments, we compared
the following UFS methods:

• Filter

– Univariate: SVD-Entropy (Varshavsky et al. 2006), Laplacian Score (LS) (He et al.
2005), SPEC (Zhao and Liu 2007), and USFSM (Solorio-Fernández et al. 2017).

– Multivariate: FSFS (Mitra et al. 2002), RRFS (Ferreira and Figueiredo 2012), UDFS
(Yang et al. 2011b),NDFS (Li et al. 2012),UFSACO (Tabakhi et al. 2014),MGSACO
(Tabakhi et al. 2015), and DSRMR (Tang et al. 2018a).

• Wrapper
LLC-fs (Zeng and Cheung 2011) and DGUFS (Guo and Zhu 2018).

• Hybrid
Li et al. (2006) and WNCH-BE (Solorio-Fernández et al. 2016).

• All original features are adopted as the baseline in our experiments.

Following the standard ways to assess UFS methods, we evaluate the UFS methods in
terms of clustering and classification performance. For evaluating the clustering results, the
commonly used clustering performance metrics ACC (Clustering Accuracy) and the NMI
(Normalized Mutual Information) were applied over the partitions produced by the k-means
clustering algorithm7 on the selected features by each UFS method on each dataset. On the
other hand, for evaluating theUFSmethods in termsof classificationperformance,weused the
well-known and broadly used SVM (Cortes and Vapnik 1995) classifier. For the evaluation,
we applied stratified fivefold cross-validation, and the final classification performance is
reported as the average accuracy over the five folds. For each fold, each UFS method is first
applied on the training set (ignoring the class labels) to obtain a feature subset. Then, after
training the classifier using the selected features, the respective test sets are used for assessing
the classifier through its accuracy. Additionally, we evaluate the runtime spent by each UFS
method for performing feature selection.

The SVM classifier and the k-means clustering algorithm used in our experiments were
taken from theWeka data mining software tool (Hall et al. 2009), for SVMwe used its default
parameter values while the parameter k for k-means was set as the number of classes declared
for each dataset. Likewise, for the different UFS methods analyzed in our experiments, we
used the author’s implementation, and the parameter values were fixed according to the
recommendation of their respective authors. All experiments were run in Matlab® R2018a
with Java 1.8, using a computer with an Intel Core i7-2600 3.40 GHz × 8 processor with
32 GB DDR4 RAM, running 64-bit Ubuntu 16.04 LTS (GNU/Linux 4.13.0-38 generic)
operating system.

In our experiments, for those UFS methods that provide a feature ranking as output, or
those that need as an input parameter the number of features to select, we set 40%, 50% and
60% of the ranked features for the first ones, and the same percentage of the whole set of
features for the second ones, respectively. The best classification and clustering results in
the different percents were reported as the final result for all the feature selection methods.
Furthermore, in our experiments, the Friedman test (Friedman 1937) was used to make and
evaluate the ranking of all the evaluated methods over all the datasets. It is important to
mention that for all datasets, class labels were removed for feature selection and clustering,
and for those UFS methods that can only process numerical features, the non-numerical

7 In order to get more reliable results, we repeat the k-means algorithm ten times with different initial points
and report the average clustering quality results.
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Table 4 Description of the used datasets taken from the UCI machine learning repository

# Dataset No. of objects No. of features No. of classes

1 Automovile 205 25 6

2 Breast-cancer 286 9 2

3 Heart-c 303 13 2

4 Heart-statlog 270 13 2

5 Hepatitis 155 19 2

6 Ionosphere 351 34 2

7 Liver-disorders 345 6 2

8 Lung cancer 32 56 3

9 Lymphography 148 18 4

10 Monks-problems-2-train 169 6 2

11 Sonar 208 60 2

12 Soybean 683 35 19

13 Wdbc 569 30 2

14 Wine 178 13 3

15 Zoo 101 17 7

features were transformed into numerical ones by mapping each categorical value into an
integer value in the order of appearance of the dataset.

Tables 5, 6, 7 and 8 show the final results regarding classification (see Table 5), clustering
(see Tables 6 and 7), and runtime (see Table 8) performance. In Tables 5, 6 and 7 the best
method on average for each dataset appears in “bold”, and the last row of each table shows
the average rank over all tested datasets.

Regarding the evaluation of the UFS methods in terms of supervised classification perfor-
mance, from Table 5, it can be seen that UFSmethods allow obtaining competitive or in some
cases better classification performance than using all the features, but with fewer features.
In this table, we can see that USFSM and NDFS obtained the best average ranking among
those UFS methods in the filter approach; LLC-fs was the best in the wrapper approach, and
the method proposed by Li et al. (2006) was the best in the hybrid approach.

On the other hand, regarding the evaluation of the UFS methods in terms of clustering
performance, in Tables 6 and 7 we can see that among univariate methods, for both quality
measures NMI and ACC, into the filter approach, the best results were obtained by SVD-
entropy andLSmethods amongUFSunivariatemethods;meanwhileUDFS,NDFS,DSRMR,
and UFSACO got the best results among the multivariate ones. Notice that most of above
mentioned univariate and multivariate methods got even better results than those obtained
when using all the features. The worst results in the filter approach were obtained by the
multivariate statistical methods. In this case, in general, the methods in the wrapper and
hybrid approaches obtained the worst results.

Regarding the runtime, from Table 8, we can see that the fastest UFS methods were those
in the filter approach; LS and SPEC among univariate UFSmethods, and FSFS, RRFS among
multivariate UFS methods. While LLC-fs and LS-WNCH-BE were the fastest methods in
the wrapper and hybrid approaches respectively. It also can be noted that the slowest methods
were DSRMR, USFSM, and the hybrid method proposed in Li et al. (2006).

Finally, from the results shown in Tables 5, 6, 7 and 8, we can conclude the following:
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1. The quality of the features selected by each UFS method depends to a large extent on the
learning algorithm and the validation measure used. For example, we can observe that a
useful feature subset for SVM might not be as good for k-means and vice versa.

2. The best results in both classification and clustering tasks were obtained by filter multi-
variate Spectral/Sparse Learning based methods. Conversely, the multivariate statistical
based methods generally got the worst results in both classification and clustering tasks.
Especially those methods that eliminate redundant features without first considering the
elimination of irrelevant ones.

3. The quality of the results of clustering algorithms is better when feature selection is
applied, while in tasks of supervised classification it is worse.

4. Filter methods are the fastest, specifically, statistical basedmethods. However, these filter
methods usually provide the worst results in terms of quality.

4 Concluding remarks

Unsupervised Feature Selection methods have drawn interest in various research areas due to
their ability to select features in unlabeled data (unsupervised datasets). This paper provides
a review of the most relevant and recent UFS methods of the state-of-the-art. Additionally,
we have introduced a taxonomy of UFS methods, and we have summarized the advantages
and disadvantages of the general lines in which we have categorized the methods analyzed in
this review. Moreover, an experimental comparison among the most representative methods
of each approach was also presented.

In general, we observe that many researchers have devoted huge and fruitful efforts in
developing methods under the filter approach. This because, commonly, filter methods have
lower computational cost than wrappers and hybrids, which makes them suitable for high
dimensionality datasets. Moreover, recent developments indicate that filter methods based
on Spectral Feature Selection (Zhao and Liu 2011) and Sparse Learning (El Ghaoui et al.
2011) have increasingly been developed, particularly for their application on image, text, and
biological data.

Regarding the main challenges and open problems in Unsupervised Feature Selection, we
can mention the following:

– Based on the literature review, it was observed thatmost of the unsupervised feature selec-
tion methods (filter, wrapper or hybrids) require the specification of hyper-parameters
such as the number of features, number of clusters or other parameters inherent to the
feature selection technique used by each method. However, there is no such knowledge
in practice, and most of the time it is impossible to know the best parameters values for
each dataset. Therefore, the automatic selection of the best parameter values is an open
problem.

– Scalability is another important challenge in feature selection, since many applications
involve very large collections of objects and/or features. In the last few years, datasets
with millions of features have been produced, and according to Bolón-Canedo et al.
(2015) there is evidence that this number will increase, given the rapid advancements in
computing and information technologies. Therefore, scalable methods are needed, since
existing ones can not deal with a huge number of features.

– Stability of feature selection methods is the sensitivity of the selection toward data per-
turbation (Alelyani et al. 2011). According to Li et al. (2016), studying stability for
Unsupervised Feature Selection is muchmore difficult than supervisedmethods because,
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in Unsupervised Feature Selection, we do not have enough prior knowledge about the
cluster structure of the data. Although some recent efforts for analyzing the stability of
feature selection methods in the unsupervised contexts have been done (Alelyani 2013),
there is a lot of work to do in this direction.

– Another important challenge inUnsupervised Feature Selection is regarding how to select
relevant features in problems where data are described simultaneously by both numerical
an non-numerical features (mixed data). Mixed data is very common, and it appears
in many real-world problems. For example, in biomedical and health-care applications
(Daniels andNormand 2005), socioeconomics and business (DeLeon andChough 2013),
software cost estimations (Liu et al. 2013), etc. However, as we have seen in this review,
most of the current methods (except those proposed in Solorio-Fernández et al. (2017)
and Dutta et al. (2014)) have been designed only for numerical data. Therefore, there is
a room for developing new Unsupervised Feature Selection methods for mixed data.
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