

5 6

Biologia Reprodutiva

<u>Sistemas de Reprodução ou</u>

Sistemas de Cruzamentos afetam:

- ·migração de genes através do fluxo de pólen
- ·variabilidade genética entre e dentro de populações da espécie
- · estrutura genética da população

Biologia Reprodutiva

Sistemas de Reprodução

Sexuada

AUTOGAMIA (Autofecundação)

e

ALOGAMIA (Fecundação Cruzada)

<u>Assexuada</u>

APOMIXIA (reprodução vegetativa)

* PROPORÇÃO

7

8

Autofecundação

· Desvantagens:

- Redução na variabilidade genética
- Progênie com menor vigor (depressão por endogamia)

Autofecundação

- Vantagens
 - Em ambientes onde há escassez de polinizadores
 - Em indivíduos que iniciam novas colônias
 - Quando o principal componente de adaptabilidade é a quantidade de sementes produzidas (anuais e monocárpicas)

9

10

Fecundação cruzada:

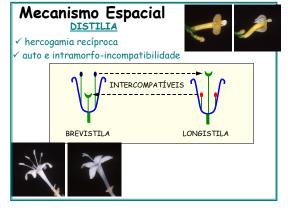
Vantagens

- Ampliação e manutenção da variabilidade genética
- Resposta rápida à seleção natural.
- Progênie de qualidade superior

Fecundação cruzada

Desvantagens:

- Alto investimento em estruturas florais relacionadas com a polinização
- Plantas isoladas podem não produzir sementes se dependerem exclusivamente de polinização cruzada
- Parte dos genótipos recombinantes pode manifestar combinações deletérias de genes.
- Recombinação podem romper combinações genéticas favoráveis


11

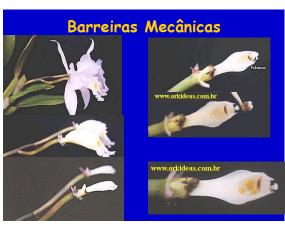
Plantas hermafroditas

 Se a fecundação cruzada é vantajosa, como evitar a auto polinização? Mecanismos para favorecer a Fecundação Cruzada (Alogamia)

- ·Mecanismo Espacial
- ·Mecanismo Temporal
- ·Barreiras Mecânicas
- ·Barreiras Fisiológicas
 - ·Monoicia/Dioicia

13 14

Funcionalidade: teoria dos polinizadores

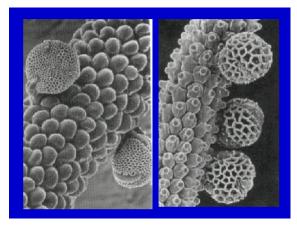

BREVISTILA LONGISTILA

15 16

Mecanismo Temporal

- · Dicogamia
 - Protoginia
 - Protandria
 - Ex. abacate: tipo A-vermelho; tipo B azul

	1º. Dia	2. Dia
Manhã	₽ ←	∂
Tarde	₽ ←	- 3


17 18

Barreiras Fisiológicas

- Autoincompatibilidade
 - Determinação genética
 - Reconhecimento entre estigma e pólen ou entre estile e tubo polínico

19 20

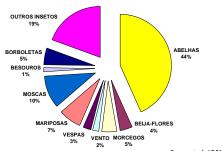
Monoicia

Inflorescência de mamona, Ricinus communis

21

Dioicia

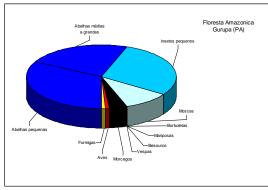
24


22

POLINIZAÇÃO DAS FLORES E PRODUÇÃO DOS FRUTOS

MAIOR PROPORÇÃO ANIMAIS

Menor Proporção VENTO, ÁGUA, AUTOMÁTICA


265 ESPÉCIES(Árvores e Lianas)

Bawa et al. 1985

25

26

Piña-Rodrigues, Louaiza & Loiselle (2006)

Cerrado, Brasil

Bortoletas Marcegos

Vespas Besouros Marjosas Aves
Formigas

Abelhas médias a grandes

27

28

Atrativos florais

- · Odor
- · Forma
- · Cor
- Disposição

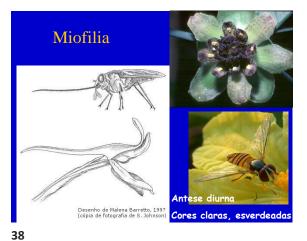
Recursos florais x fauna antófita

- NÉCTAR: Mosca, abelha, borboleta, mariposa, bejja-flor, morcego, vespa, coleóptero
- PÓLEN: Abelhas fêmeas (para as larvas), coleópero, mosca, borboleta (Micropteryx), morcego (Glossofaga)
- Óleo (elaióforos) Abelhas fêmeas solitárias (Anthophoridae e Mellitidae - para larvas)
- Exudados estigmáticos (especialmente em floresarmadilha- insetos)
- Tecidos florais insetos (besouros, abelhas, morcegos)
- · Perfume Abelhas machos Euglossine
- · Resina Abelhas fêmeas Euglossa e Trigona
- · Abrigo e calor Besouros, moscas abelhas

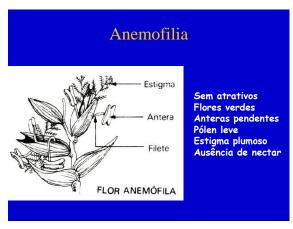
Ecologia Floral e Síndromes de Polinização

31 32

Analisar: • Atrativos: - Forma - Disposição dos órgão sexuais e da flor - Cor - Odor • Recursos: - Nectar, pólen, outros - tipo, qualidade, quantidade, localização, disponibilidade • Antese:


33 34

35 36



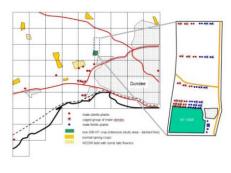
CULTURA	TRATAMENTO	RESULTADO
MANGA	COM INSETOS	9,8 frutos / panícula
(SP)	SEM INSETOS	4,7 frutos / panícula
ALGODÃO	COM ABELHAS	61 % de frutos
(SP)	SEM ABELHAS	43 % de frutos
CHUCHU	COM ABELHAS	77 % de frutos
(SP)	SEM ABELHAS	0 % de frutos
CAFÉ	COM ABELHAS	84 % da produção
(SP)	SEM ABELHAS	47 % da produção
MAÇÃ	COM ABELHAS	861 frutos
(SC)	SEM ABELHAS	54 frutos
PEPINO	2 COLMÉIAS / ha	Aumentos de Produção
(SP)	0,5 COLMÉIA / ha	Sem aumentos de Produção

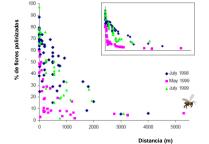
CULTURA	RESULTADO
MAÇÃ	2 OU MAIS COLMÉIAS / ha
KIWI	8 COLMÉIA / ha
ALGODÃO	0,5 - 12 COLMÉIAS / ha
MACADÂMIA	5 - 8 COLMÉIA / ha
MANGA	8 - 15 COLMÉIAS / ha
MELÃO	0,5 - 3 COLMÉIA / ha
MORANGO	25 OU MAIS COLMÉIAS / ha

Distância de fluxo gênico via polinizadores

- · Comportamento do polinizador
- Padrões de vôo (direcionalidade, distância)
- · Intensidade de oferta de recursos
- · Distribuição das plantas na área
- Fenologia

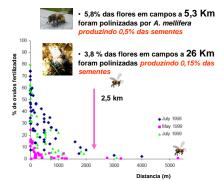
51 52





Apis mellifera

53 54



DEFRA Project RG0216

56

58

55

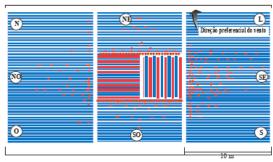


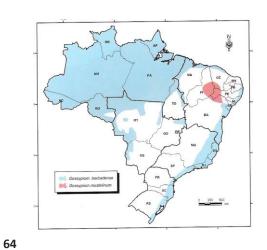
Figura 1. Área experimental com as linhas de ocorrência da transferência dos genes

57

Figura 2.A) Vista geral do campo experimental nº 1; B) Detalhe de linhas com plantas transgênicas (direita) e não-transgênicas (caquerda) após a aplicação do herbicida; C) Vista geral do campo nº 2; D) Detalhe de uma planta transgênica (F) resistente a herbicida, resultante do cruzzmento de uma planta transgênica com uma não-transgênica herbicida, resultante do cruzzmento de uma planta transgênica com uma não-transgênica

35 30 25 Número de eventos 20 15 10 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 Distância (m)

Figura 3. Distribuição de eventos de fecundação entre plantas transgênicas da parcela central e plantas não-transgênicas direcionadas a Nordeste (——) e Sudoeste (——).


Desn agroner bras Brasilia v 38 n 10 n 1220-12

эгаз., Brasilia, v. 38, n. 10, p. 1229-1235, out. 2003

