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The efficiency of an array of tidal turbines
partially blocking a wide channel
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A new theoretical model is proposed to explore the efficiency of a long array of tidal
turbines partially blocking a wide channel cross-section. An idea of scale separation is
introduced between the flow around each device (or turbine) and that around the entire
array to assume that all device-scale flow events, including ‘far-wake’ mixing behind
each device, take place much faster than the horizontal expansion of the flow around
the entire array. This assumption makes it possible to model the flow as a combination
of two quasi-inviscid problems of different scales, in both of which the conservation
of mass, momentum and energy is considered. The new model suggests the following:
when turbines block only a small portion of the span of a shallow channel cross-
section, there is an optimal intra-turbine spacing to maximize the efficiency (limit of
power extraction) for a given channel height and width. The efficiency increases as the
spacing is reduced to the optimal value due to the effect of local blockage, but then
decreases as the spacing is further reduced due to the effect of array-scale choking, i.e.
reduced flow through the entire array. Also, when the channel is infinitely wide, the
efficiency depends solely on the local area blockage rather than on the combination of
the intra-turbine spacing and the channel height. As the local blockage is increased,
the efficiency increases from the Lanchester–Betz limit of 0.593 to another limiting
value of 0.798, but then decreases as the local blockage is further increased.

Key words: channel flow, coastal engineering, shallow water flows

1. Introduction
The limit of power extraction by a turbine in a tidal channel is significantly affected

by its channel blockage ratio, i.e. the ratio of the frontal projected area of the turbine
to the channel cross-sectional area (Garrett & Cummins 2007; Houlsby et al. 2008;
Whelan, Graham & Peiró 2009). Garrett & Cummins (2007) used a one-dimensional
quasi-inviscid model to show that the limit of power extraction by a single turbine
in a channel of uniform cross-sectional area is proportional to (1− B)−2, where
B is the blockage ratio. Their model assumed that viscous (or turbulent) mixing
behind the turbine takes place only downstream of the location where the pressure
equilibrates across the channel cross-section. The actual limit can be even higher due
to turbulent mixing just downstream of the turbine (i.e. upstream of the pressure
equilibrium location) as the turbulent shear stress acts in such a way as to accelerate
the turbine wake and decelerate the flow surrounding the wake (Nishino & Willden
2012). Nevertheless, the one-dimensional quasi-inviscid model agrees fairly well with
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FIGURE 1. (Colour online) Schematic of the turbine array model: (a) array-scale flow
expansion and mixing; (b) device-scale flow expansion and mixing; and (c) cross-sectional
view of the channel.

three-dimensional actuator disk computations, provided that the mixing just
downstream of the turbine is not significant.

For the development of practical tidal power generation systems making a
meaningful contribution to the future energy supply, it is necessary to consider the
efficiency of a number of turbines installed in a large tidal channel. The quasi-inviscid
model of Garrett & Cummins (2007) suggests that the efficiency (limit of power
extraction) increases as the channel blockage is increased by installing more and more
turbines across the channel cross-section. In reality, however, the efficiency is expected
to decrease if too many turbines are installed as their hydrodynamic drag becomes
significant compared to the drag along the (undisturbed) channel itself and hence
the energy flux through the channel is reduced (Garrett & Cummins 2005). Recently,
Vennell (2010) combined these two effects (namely the cross-sectional blockage effect
and the channel choking effect) in his tidal farm model, which explored the efficiency
of a number of turbines homogeneously arrayed across the channel cross-section and
at several streamwise locations of the channel. Vennell (2011) further extended his
tidal farm model to account for the effect of non-uniformity of the channel cross-
section.

In this study we extend the model of Garrett & Cummins (2007) in a different
direction from the tidal farm model of Vennell (2010, 2011). Specifically, we consider
the efficiency of a partial tidal fence, i.e. a row of a number of turbines arrayed
only across a part of a wide channel cross-section rather than the entire cross-section
(figure 1). This flow configuration is closely related to a practical situation where
a considerable portion of a tidal channel cross-section needs to be unblocked to
allow for navigation of vessels and so forth. We first consider the separation of the
scales of flow around each turbine and that around a large array, followed by the
introduction of three different channel blockage definitions (namely the local, array
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and global blockages). These concepts result in a new tidal turbine array model, which
theoretically explores the effects of channel height, width and intra-turbine spacing on
the efficiency of a partial tidal fence.

In the present study, we assume that the mass flux through the channel is constant
in order to simplify the problem and thus focus on the combined effects of local and
global blockages in an ideal tidal channel situation. These combined effects are of
fundamental importance for understanding the efficiency of a partial tidal fence and
are theoretically explored for the first time in this paper. It should be borne in mind
that, in a practical tidal channel situation, the above assumption may not fully hold as
the hydrodynamic drag induced by the installation of the turbine array may become
significant compared to the drag along the entire channel. For such a case, a further
extension of the model would be required to take account of the channel choking
effect, perhaps in a similar way to the model of Vennell (2010) for homogeneously
distributed turbines. It should also be noted that the present model does not account
for the effect of changes in water depth, which has been previously discussed, e.g. by
Houlsby et al. (2008), Whelan et al. (2009) and Draper et al. (2010).

2. Model
Consider a large number (n) of turbine rotors of diameter d arrayed in a rectangular

channel of uniform height h and width w (figure 1). The intra-turbine spacing, s, is
constant along the array; hence the spanwise length or width of the array is n(d + s).
As with the model of Garrett & Cummins (2007), the flow through the channel
is assumed to be incompressible and inviscid except for the far-wake region where
mixing is allowed (discussed later). The flow speed far upstream of the array is
uniform and identical to the channel cross-sectional average of the streamwise velocity,
UC, which is fixed in the present model.

To theoretically explore the efficiency of this partial tidal fence, we first consider the
separation of the scales of flow around each device (or turbine) and that around the
entire array (or fence). Since the scale of (three-dimensional) flow around each turbine
is related to the rotor diameter d whereas the scale of (quasi-two-dimensional) flow
around the entire array is related to the array width n(d + s), all device-scale flow
events around each device (including ‘far-wake’ mixing behind each device) take place
much faster than the horizontal expansion of the flow around the entire array when the
number of turbines (n) is sufficiently large. This scale separation makes it possible to
model this flow system as a combination of two quasi-inviscid problems of different
scales; namely the array-scale (figure 1a) and device-scale (figure 1b) problems, to
both of which the model of Garrett & Cummins (2007) is applicable.

For the array-scale problem, the flow through the channel is assumed to be two-
dimensional (as the channel height h is significantly smaller than its width w) and the
array is considered as a single power-extracting fence of height h and width n(d + s),
blocking the channel cross-section entirely in the vertical direction but only partially in
the spanwise direction. Here we define the array blockage, BA, as

BA = (representative) array area
channel cross-sectional area

= hn(d + s)

hw
=

1+ s

d
w

nd

, (2.1)

where s/d and w/nd are non-dimensionalized intra-turbine spacing and channel
width, respectively. Following the model concept of Garrett & Cummins (2007), the
streamwise velocity at the fence, UA, is assumed to be uniform across the fence, i.e.
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we assume that the array end effects are negligible. (From a practical point of view, a
key question here is how large the number of turbines, n, needs to be to satisfy this
assumption; this is an open question and is the subject of ongoing investigation.) The
array-scale mixing is assumed to take place only downstream of the location where the
pressure equilibrates across the entire channel cross-section. Following the array-scale
mixing, the flow speed returns to UC far downstream of the array. It should be noted
that here we implicitly assume that the channel is long enough to accommodate the
array-scale mixing; hence the channel length is long compared to the array wake
length, which itself is long compared to the array width.

Meanwhile, for the device-scale problem, we consider n identical rectangular flow
passages of height h and width d + s arrayed in parallel across the entire array span.
The streamwise length of each passage is long enough to contain all device-scale flow
events but still negligibly short compared to the scale of horizontal flow expansion
around the entire array. Hence the flow speed at the inlet of each local flow passage,
U+A , is assumed to be identical to UA used in the array-scale problem. Each device
blocks a part of the cross-section of local flow passage; the local blockage, BL, is
therefore defined as

BL = single device area
local passage cross-sectional area

=
πd2

4
h(d + s)

= π

4
h

d

(
1+ s

d

) , (2.2)

where h/d is a non-dimensionalized channel height. Here the global blockage, BG, may
also be defined as

BG = total device area
channel cross-sectional area

=
n
πd2

4
hw
= π

4
h

d

w

nd

. (2.3)

Note that BG = BLBA. Again following the concept of Garrett & Cummins (2007), it is
assumed that the streamwise velocity at the device, UD, is uniform across the device
area, and the (device-scale) mixing takes place only downstream of the location where
the pressure equilibrates across the cross-section of each local flow passage. The flow
speed at the outlet of the local flow passage, U−A , is uniform and identical to UA used
in the array-scale problem, provided that the number of turbines (n) is sufficiently
large.

Similarly to the three different blockages defined above, three different axial
induction factors are also defined as follows:

aL = 1− UD

UA
, aA = 1− UA

UC
, aG = 1− UD

UC
. (2.4)

Note that (1− aG)= (1− aL)(1− aA).
The array-scale and device-scale problems described above are solved

simultaneously by considering that the thrust force on the entire array (obtained from
the array-scale problem) is n-times larger than that on each device, TD (obtained from
the device-scale problem). Using q and ρ to denote dynamic pressure and fluid density,
respectively, we define three different thrust coefficients, namely the local (CTL), array
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600 T. Nishino and R. H. J. Willden

(CTA) and global (CTG) thrust coefficients:

CTL = thrust on single device
local inlet q× single device area

= TD

1
2
ρU2

A

πd2

4

, (2.5)

CTA = thrust on array
channel inlet q× array area

= nTD

1
2
ρU2

Chn(d + s)
= (1− aA)

2 BLCTL, (2.6)

CTG = total thrust on n devices
channel inlet q× total device area

= nTD

1
2
ρU2

Cn
πd2

4

= (1− aA)
2 CTL. (2.7)

Also, three different power coefficients, namely the local (CPL), array (CPA) and global
(CPG) power coefficients, are defined as

CPL = PD

1
2
ρU3

A

πd2

4

, CPA = (1− aA)
3BLCPL, CPG = (1− aA)

3CPL, (2.8)

where PD = TDUD is the power extracted by each device.
Following Garrett & Cummins (2007), we first consider the conservation of mass,

momentum and energy in each local flow passage to obtain CTL as a function of the
local induction factor, aL, and blockage, BL (see also Houlsby et al. 2008):

CTL = (1− γL)

[
(1+ γL)− 2BL(1− aL)

(1− BL(1− aL)/γL)
2

]
, (2.9)

where γL, which is the ratio of the device wake velocity (at the device-scale pressure
equilibrium location) to UA, is also related to aL and BL as

(1− aL)= 1+ γL

(1+ BL)+
√
(1− BL)

2+BL (1− 1/γL)
2
. (2.10)

Note that CPL is also obtained by CPL = (1 − aL)CTL at this stage; however, CTA, CTG,
CPA and CPG are still unknown as they depend on the array induction factor aA.

Next, we consider the conservation of mass, momentum and energy in the array-
scale problem. In analogy with the derivation of CTL (2.9), CTA is obtained as a
function of the array induction factor, aA, and blockage, BA:

CTA = (1− γA)

[
(1+ γA)− 2BA(1− aA)

(1− BA(1− aA)/γA)
2

]
, (2.11)

where γA, which is the ratio of the array wake velocity (at the array-scale pressure
equilibrium location) to UC, is also related to aA and BA as

(1− aA)= 1+ γA

(1+ BA)+
√
(1− BA)

2+BA (1− 1/γA)
2
. (2.12)

Equations (2.9) and (2.11) present thrust coefficients for the local- and array-
scale problems as a function of induction factor and blockage for each problem.
Equation (2.6) provides the coupling between the two problems, i.e. CTA obtained
from the array-scale problem (2.11) needs to agree with CTA from (2.6), where CTL

is obtained from the device-scale problem (2.9). Since the former (array-derived) CTA
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FIGURE 2. (Colour online) Influence of the local axial induction factor aL for a high local
blockage case (w/nd = 5, h/d = 1.2, s/d = 0.5, BL = 0.436, BA = 0.3, BG = 0.131).

increases whilst the latter (device-derived) CTA decreases as aA increases, the value
of aA that yields the same CTA for the local- and array-scale problems is uniquely
determined for a given aL. Eventually, all thrust and power coefficients defined above
are uniquely determined (numerically solved) for a given aL.

3. Discussion
An example of the solution of the new turbine array model is shown in figure 2 to

illustrate the effects of aL on the local and global power coefficients, CPL and CPG. In
this example, the local blockage is relatively high (BL = 0.436) but the array blockage
is moderate (BA = 0.3, i.e. 30 % of the channel span is blocked by the array). Due to
the high local blockage, CPL significantly exceeds the Lanchester–Betz limit of 16/27
(for a turbine in an unconfined flow) and peaks at a high induction factor (compared
to the unconfined flow case, where 1/3 is the optimal induction factor to maximize the
power coefficient). As aL increases, however, CTL and CTA both increase and therefore
the array induction factor aA also increases (i.e. the flow through the array is reduced).
Hence CPG is lower than CPL and peaks at an induction factor of only slightly higher
than 1/3 in this case.

An interesting question here is how CPG varies depending on the intra-turbine
spacing. Figure 3 shows an example of the effects of s/d on the CPG versus aL

curve (a) and on its peak value, CPGmax (b). (Note that the results for s/d < 0 included
on (b) are only mathematically meaningful as, in practice, the intra-turbine spacing
cannot be negative.) The values of CPL and (1− aA)

3 at the optimal aL (that yields
CPGmax for each s/d case) are also plotted for comparison; note that CPG is identical
to the product of CPL and (1− aA)

3. Here w/nd and h/d are the same as those for
figure 2 and hence the global blockage is also the same (BG = 0.131); however, the
local and array blockages vary depending on s/d. As can be seen from figure 3, in
this example, CPGmax increases as s/d is reduced from 4 to ∼0.4 but then decreases
as s/d is further reduced. This is because CPL increases whilst (1− aA)

3 decreases as
s/d is reduced. In other words, the optimal intra-turbine spacing is determined by the
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FIGURE 3. (Colour online) Effects of the normalized intra-turbine spacing s/d: on CPG (a)
and on its maximum value (b) (w/nd = 5, h/d = 1.2, BG = 0.131).

balance between the local cross-sectional blockage effect, represented by CPL, and the
array-scale choking effect, represented by (1− aA)

3.
It should be noted that the present tidal array model reduces to the original model

of Garrett & Cummins (2007) in the limiting cases where s/d = w/nd − 1. In the
above example, s/d = 4 corresponds to this limiting case where a large number (n)
of turbines are homogeneously arrayed across the entire channel of w/nd = 5. In such
a case, the local and global power coefficients are identical since the array induction
factor aA is always zero, i.e. the array-scale (horizontal) flow expansion does not take
place.

Figure 4 shows the effects of s/d and h/d on CPGmax for four different channel width
cases (w/nd = 2, 5, 10 and 100). For w/nd = 2 (where 0.5 6 BA 6 1.0, depending on
s/d), the optimal spacing exists only when h/d is very small; for h/d > 1.3, CPGmax

continues to increase as s/d is reduced to zero. For w/nd = 5 (where 0.2 6 BA 6 1.0,
depending on s/d), however, the optimal spacing exists for h/d < 1.7. This seems to
be within the range of practical interest: for example, if we plan to install 30 turbines
of d = 20 m in a wide channel cross-section of w = 3 km (w/nd = 5) and h = 30 m
(h/d = 1.5), the present model predicts the optimal spacing of ∼2 m (s/d = 0.1). As
w/nd further increases, the optimal spacing for each given h/d increases and the effect
of h/d on the peak of CPGmax diminishes.

A more comprehensive view of the variation of CPGmax is provided in figure 5,
where contours of CPGmax are plotted with respect to the local and global blockages,
BL and BG. Note that BL becomes identical to BG (and this is the minimum
possible BL) when turbines are homogeneously distributed across the channel span
(i.e. s/d = w/nd − 1), whilst the maximum blockage (which is achieved when s/d = 0)
depends on h/d, as indicated by the dashed lines. The white line represents the locus
of the maximum power (maxima of CPGmax) for given BG, showing that the optimal
local blockage increases as the global blockage is increased. For all global blockages
there is advantage in clustering turbines over a homogeneous distribution.

For an infinitely wide channel (w/nd→∞), CPGmax depends solely on BL rather
than on the combination of s/d and h/d, as shown in figure 6(a). As the local
blockage BL is increased, CPGmax increases from the Lanchester–Betz limit of 0.593 (at
BL = 0) to another limiting value of 0.798 (at BL ≈ 0.40), but then decreases as BL
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FIGURE 4. Effect of s/d and h/d on CPGmax : for w/nd = 2, 5, 10 and 100.

is further increased. The new limiting value of CPGmax can be considered as a limit
of power extraction for turbine installations with finite local blockage but deployed
in effectively infinite channel widths. Note that under the condition w/nd→∞ the
resistance induced by the installation of turbines will be negligible compared to other
flow resistances through a real channel (e.g. bed resistance). Hence the assumption that
the mass flux through the channel is unaltered by the installation of the array is valid
for such channels. The practical significance of this case is for headland sites where
the channel stretches semi-infinitely from the shoreline.

Last but not least, it should be borne in mind that CPGmax discussed above is not the
only measure to assess the efficiency of a tidal fence/farm. Another important measure
is the ratio of the power extracted by the turbines to the power removed from the flow
(rather than to the power available). This ratio is often referred to as ‘basin efficiency’
in order to distinguish it from the efficiency represented by the power coefficient, and
is identical to (1− aG) for the present study:

power extracted
power removed

= nPD

nTDUC
= UD

UC
= (1− aG). (3.1)

This means that the basin efficiency decreases as the global induction factor aG

increases. Note that (1 − aG) = (1 − aL)(1 − aA), i.e. increases in local and array
induction factors, aL and aA, both contribute to an increase in aG and thus a decrease
in basin efficiency. Figure 6(b) shows the values of these three induction factors that
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FIGURE 5. Combined effects of BG and BL on CPGmax . White line represents the locus of the
maximum power for given BG.
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FIGURE 6. Effects of BL on CPGmax (a) and on the axial induction factors to achieve CPGmax
for given BL (b): for w/nd→∞.

are required to achieve CPGmax plotted in figure 6(a). As the local blockage BL is
increased, the basin efficiency (to achieve CPGmax for a given BL) slightly decreases
from 2/3 for the Lanchester–Betz case (at BL = 0) to 0.55 (at BL ≈ 0.33) and then it
recovers as BL is further increased. It should be noted, however, that this decrease in
basin efficiency is the outcome of maximizing CPG; in practice, we may operate tidal
turbines at a more sensible condition such that CPG is slightly lower than CPGmax so as
to maintain a higher basin efficiency. Figure 7 shows combined effects of BL and the
basin efficiency (1− aG) on CPG (again for w/nd→∞). It can be seen that for a fixed
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FIGURE 7. Relationship between global power coefficient (CPG) and basin efficiency (1− aG)
as a function of local blockage (BL): for w/nd→∞. White line represents the locus of
CPGmax and × indicates the peak of CPG (0.798).

high basin efficiency, for example (1− aG)= 0.7, CPG still increases as BL is increased
up to ∼0.4.

4. Conclusions
A new theoretical model is proposed to explore the efficiency of a long array

of tidal turbines partially blocking a wide channel cross-section. An idea of scale
separation was introduced between the flow around each device (or turbine) and that
around the entire array to assume that all device-scale flow events, including the ‘far-
wake’ mixing behind each device, take place much faster than the horizontal expansion
of the flow around the entire array. This assumption made it possible to model the flow
around a long array of tidal turbines as a combination of two quasi-inviscid problems
of different scales, in both of which the conservation of mass, momentum and energy
was considered following the model of Garrett & Cummins (2007).

The new model provides fundamental physical insight into the efficiency of a partial
tidal fence, specifically the effects of channel width, height and intra-turbine spacing
(note, however, that the effect of changes in water depth was not considered in this
study; hence the results for very high local blockage cases, such as h/d ≈ 1 and
s/d ≈ 0, should be considered hypothetical). When the turbines block only a small
portion of the span of a shallow channel cross-section, there is an optimal intra-turbine
spacing to maximize the efficiency (limit of power extraction). The efficiency increases
as the spacing is reduced to the optimal value due to the local blockage effect, but
then decreases as the spacing is further reduced due to the array-scale choking effect,
i.e. reduced flow through the entire array. When the turbines block a rather large
portion of the channel span and/or when the channel is not shallow relative to turbine
diameter, the efficiency monotonically increases as the intra-turbine spacing is reduced
to zero. Also, when the channel is infinitely wide, the efficiency depends solely on
the local blockage BL rather than the combination of the intra-turbine spacing and the
channel height. As BL is increased, the efficiency increases from the Lanchester–Betz
limit of 0.593 (at BL = 0) to another limiting value of 0.798 (at BL ≈ 0.40), but then
decreases as BL is further increased.
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