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ABSTRACT

This report presents a step by step extension of the simple one-dimensional linear momentum
actuator disc theory (LMADT), which results in the well known Betz-Lanchester limit for wind
turbines, to a general cross sectional array of tidal turbines in an open channel tidal flow. Unlike
previous models no restriction is placed on the geometry of the turbine array or the Froude number
of the flow.

One of the key findings from applying LMADT to open channel flow is that the efficiency of an
arbitrary array of turbines can be determined relative to the total power extracted from the channel
flow, including the effects of downstream mixing. A general form of this dimensionless efficiency
may be more important for open channel flow, given the possibility of downstream constraints, than
the typical dimensionless power co-efficient used for wind turbines.

1. INTRODUCTION

The growing worldwide demand for renewable energy, coupled with the apparent pool of energy
within the world’s tidal currents, has led to considerable interest in tidal power development over
the last 25 years. Current developments in the U.K. leading towards tidal power generation include
initiatives such as the Marine Energy Challenge (Carbon Trust, 2007) and the commissioning of an
Atlas of Marine Renewable Energy Resources (DTI, 2007). However, despite this activity, very
little has been established about the actual limit to power extraction from a flow in an open channel.
Without this limit, it becomes hard to benchmark the efficiency of a given tidal power device or
scheme, and subsequently to optimize a design for full scale generation.

A method to determine the limit of power extraction in a fluid is the simple LMADT, first
introduced by Betz in the 1920’s (Burton ef al., 2001). The application of the model in an infinite
volume of air is used in the analysis and design of wind turbines. However, it is well known that the
flow of air in the atmosphere is different to that of a liquid constrained in an open channel (Bryden
et al. 2007). For example, the atmospheric flow of air is substantially less constrained, due to the
air’s negligible density, and therefore a given stream tube will expand relatively freely when the
flow slows. By contrast an open channel flow is constrained by the fluid’s density, and the resulting
free surface that forms. For these reasons it is acknowledged (Bryden ef al. 2007) that the adoption
of a Betz-Lanchester calculation, in its standard form, is irrelevant for tidal streams.

The purpose of this report is to demonstrate how the simple LMADT can be extended to a flow that
characterises an open channel more precisely. To illustrate how the extension can be achieved a
series of four flows is analysed. The first of these flows is the simple LMADT in an infinite
medium, which we can call the Betz analysis for convenience. The second and third flows then
introduce the concept of a finite medium, through the addition of a constant pressure boundary and
a constant volume boundary respectively. Finally, the fourth flow will introduce a finite medium for
a dense fluid - a condition that represents an open channel.
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The application of actuator disc models to open channel flow has been attempted before by Whelan
et al. (2007) and by Garrett & Cummins (2004, 2007). These attempts have included restrictions on
the flow conditions that do not permit general analysis of a cross sectional array of turbines in an
open channel. For instance, Whelan ef al. (2007) restrict their model to an infinite row of turbines in
an open channel. Alternatively Garrett & Cummins (2007) require a sufficiently low Froude
number for their model to be accurate. (This requirement stems from Garrett & Cummins’
assumption of no change in height along the channel — a somewhat contradictory assumption given
that at the same time they allow the pressure within the fluid to vary.) The model presented in this
report has no restrictions on the geometry of the turbine array or the Froude number of the flow.

The analysis of the finite flows allows for a thorough examination of the downstream mixing that
results in the far wake of the actuator disc. The mixing process involves a loss of energy that will, in
most cases, be an unavoidable by-product of the extraction of power at the actuator disc. If the total
power that is removed from a channel is restricted, (for example by environmental constraints
(Bryden et al. 2007)), the ability to extract as much power as possible, while minimising mixing
losses will be desirable. This gives rise to the need to understand the efficiency of a tidal turbine
device in an open channel flow. A measure of efficiency that can be used to characterise a turbine is
presented in this report.

2. LAYOUT OF THIS REPORT

The four sections §6-§9 present the four flow conditions used to illustrate the extension of LMADT
to an open channel flow. For each flow a standard framework is adopted, which consists of

A diagram illustrating the flow conditions

A table that develops the continuity relations between the different regions of the flow
Commentary and manipulation of the relevant integral equations

A proposed calculation sequence that can be used to ‘solve’ the integral equations (for the
open channel flow an additional section on the solution space of the model is included)

b S

A summary table is presented at the end to allow comparison of the models.
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5. NOMENCLATURE

Definition

Stream velocity (uniform)

Fluid density

Gravity

Pressure (gauge)

Stream height/hydrostatic head

Turbine flow velocity coefficient

Turbine wake flow velocity coefficient

N

Bypass flow velocity coefficient

Area of the turbine defined as an actuator disc

Area ratio

Width of flow (open channel)

SSE IS = VB NN e

§8: Blockage ratio (1/R)
§9: Blockage ratio (A/bh)

Thrust from the actuator disc to the fluid

Reaction between the turbine flow and bypass flow

Power extracted by the turbine

2o [ ||~

Power dissipate in downstream mixing

]

Dimensionless power coefficient, normalised by upstream kinetic flux

v
*

Dimensionless power coefficient, normalised by upstream kinetic flux and the
pressure drop across the actuator disc

)
s

Dimensionless power dissipation in downstream mixing, normalised by
upstream kinetic flux

Dimensionless thrust coefficient, normalised by upstream kinetic pressure

s

Dimensionless thrust coefficient, normalised by turbine kinetic pressure

Efficiency of a turbine in a finite flow

w300l ol oln

~

Froude number = u/ @

Subscripts

Definition

t

Turbine flow

b

Bypass flow

1,2,3...

Station of the flow
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6. THE STANDARD ‘BETZ’ LINEAR MOMENTUM ACTUATOR DISC THEORY

6.1 Geometry of the flow

[ I —
|
:> An = aA
= |
U4 u S AN

Figure 1: One dimensional linear momentum actuator disc theory in an infinite medium.

6.2 Continuity relations

Region Station 1 Station 2| Station 3| Station 4
o
Area Ay = Aoy Ay = Ay =A | Ay = 22
Oq
Turbine | Y ¢10¢ity Uy =u Upy =U3y =UC) | Uy =UAY
Volumetric
flow q1; =4y =udoy | g =q3; =udoy | g4 =uda,
Pressure Piu=0r P2t P3¢ P4 =P
Velocity up =u Ugp = U
By-pass
Pressure Pp =" Dap =D

Table 1
6.3 Commentary and derivation

The basic Betz calculation, as applied to the power generation problem, relates to flow through a
turbine in a medium of infinite extent. The analysis addresses just the flow through the turbine
itself. We use the terminology defined in Figure 1 in which four stations are identified (1) far
upstream of the turbine, (2) immediately upstream of the turbine, (3) immediately downstream of
the turbine and (4) sufficiently far downstream from the turbine that the pressure can again be
treated as uniform (although the velocity is not). Variables relating to each station will be identified
by appropriate subscripts, and in addition the subscript “#” is used for that part of the flow passing
through the turbine and “b” for the remainder of the flow (the by-pass flow, in this case infinite in
extent).
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In this simple case the analysis can be confined to the flow passing through the turbine. It is
assumed that at station 1 the pressure and velocity are uniform so that pj, = p;, = p and
uy; =uyp =u . At the turbine it is assumed that the velocity has been reduced to uy, =u3, =ua,,
and at station 4 that it is further reduced to u4, =uo 4. At station (4) it is assumed that the pressure
is once more uniform across the flow so that py, = p4p = p (in the by-pass region it is assumed

that the pressure is p throughout). The volumetric flux through the turbine is g, = uda.,.

Applying Bernoulli from station 1 to station 4 in the by-pass flow simply gives the result that, since
the pressures are the same at these two stations, so are the velocities, so uy4;, =u. Applying

Bernoulli from stations 1 to 2 and from 3 to 4 in the turbine flow gives:

| ) 1 29
pt—pu” =py +—putar (D)
2 2
1 22 | )
Py +oputas =ptoputag .2

and equilibrium across the turbine gives
T

P2t — P3¢ =z ...(3)

Combining the above three equations gives:

%puz(l—ocz)=§ (&)

We now consider the momentum equation. If the net axial force on the surface of the stream tube
between stations 1 and 4 is X above the force due to ambient pressure, the momentum equation is
simply:

X —T =pq,(ug, —uy,)=pu’doy(ay —1) ..(5)

If we assume that there is no net change of momentum in the by-pass flow, then we can deduce that
X =0. (Strictly we cannot make this deduction as an infinitesimal momentum change of an infinite
volume could occur. However, the finite flow case considered below confirms that, in the limit of
the infinite flow, the X =0 assumption is justifiable.) We can therefore obtain:

T
Z:puzocz(l—ou) (6)

o .
4 and we can express the flow in terms of a

: . : ) 1
Equating (4) and (6) we immediately obtain o, = i

single parameter family as a function of a4 . In particular we can write an expression for the power
absorbed by the turbine (and possibly output as useful power) as:

1 1 1+ 1
P=Toyu =Epu3A(x2(1—0L421)=Epu3A%(l—oc%)=Epu3ACp ..(7)

The maximum power is extracted when the power coefficient Cp is maximised as a function of

o4. Simple differentiation reveals that this occurs when oy =l, o) _2 and Cp _le
3 3

27
Furthermore we can write:
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T:%puzA(l—aﬁ):%puzACT ..(8)

. .. 8 o
And note that at the optimum conditions Cp = 9 For some purposes it might be more useful to

define the thrust in terms of a local velocity, therefore:
1 1
T:EpugACTL =Epu2Aa%CTL ...(9)
and we note that at optimal conditions Cyy =2.

It is worth noting some of the approximations and anomalies in the Betz analysis. Firstly it assumes
that only axial components of velocity are significant — so that radial velocities and tangential
(swirl) velocities are ignored.

Secondly there is clearly an anomaly in the calculation of pressure in the turbine flow region and
the by-pass region. Upstream of the turbine the Bernoulli calculation implies that the pressure in the
turbine region is higher than in the by-pass, and downstream of the turbine the pressure in the
turbine region is lower than in the by-pass. The ambiguity of the pressure along this boundary
means that the unknown force X cannot be derived from the pressure calculations.

Finally note that far downstream from the turbine (even further than station 4) the wake will
eventually mix with the by-pass flow. The infinite boundary condition means that the pressure and
velocity far downstream will be the same as far upstream. At first sight this implies that no energy
has been extracted, but this is of course erroneous — in this case it is clear that the integral of an
infinitesimal change over an infinite area will lead to a finite energy loss. In fact there is an
additional energy loss in the wake mixing process. This issue can only be resolved by considering a
finite flow, as is addressed in section 7 below.

6.4 Calculation sequence

The calculation sequence below includes calculations of the wake energy loss and overall
efficiency, as addressed in section 7.

1. Specify principal dimensioning parameters p, u and A
2. (Optionally specify upstream pressure p , which acts as purely additive term to all pressures)
3. Specity dimensionless velocity factor 0 < ay <1
4. Calculate dimensionless quantities:

8 oy = 1+oy

2
b Cr=(1-a?)
c. Cp = C—g
a2
d. CP = (XzCT

2
e. Cpy =as(l-oy)
C,+C,, P+P,

f. n
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5. Calculate dimensioned quantities:

g. T:%puZACT

h. P:%pu3ACP

) 1 3

1. PW zapu ACPW

T
J. Pressure drop across turbine Apyp = Z



7. LINEAR

(PRESSURE CONSTRAINED)

7.1 Geometry of the flow
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Figure 2: One dimensional linear momentum actuator disc theory in a
finite medium bounded by a constant pressure boundary

7.2 Continuity Relations

©)
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MOMENTUM ACTUATOR DISC THEORY IN A FINITE FLOW

Region Station 1 Station 2| Station 3 Station 4 Station 5
o
Area Ay = Aoy Ay = Az, = A Ay = A=2%
OLg
Turbine | ¥ elocity Uy =u Upp = U3 = UL Ugp = UOLY
Volumetric — 0. = uda _ — uda — uda
Flow q1t =49t 2 | 92t =43t 2 q4¢ 2
Pressure P =pr Py P3¢ Par =Pp
Area Ay, = A(R-a;) Agp = A(R-a1)
Velocity uyp =u Ugp = U
By-pass | Volumetric | 916 = 9b
=uAlR -«
Pressure P =P Pap =P
o
Area Ay = AR Ay = A(R —a, +—2j As
OLg
Total | Velocity Uy =u Varies Varies us
Volumetric
Flow q1 =q =uAdR q4 = uAR qs =u
Pressure P1=D Varies | Varies Pa=Pp pP5=p

Table 2
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7.3 Commentary and derivation

We now consider an equivalent calculation to §6 for a flow of finite dimensions. We assume that
the flow occurs within a region that has a constant pressure boundary condition around the outside
(quite how this could be realised in practical terms is uncertain, but theoretically it is of value). The
main variables are set out in Table 2, and Figure 2 shows the main features of the flow. We now add
consideration of Station 5, which is sufficiently far downstream that mixing has occurred and the
flow is of uniform velocity. The dimension of the flow far upstream is taken as 4; = AR, where R

is a dimensionless ratio. For some applications the blockage factor B=1/R may be more
convenient.

The analysis proceeds much as before. Again the constant pressure condition leads to uy, =uy, =u.
Equations (1), (2), (3) and (4) are unchanged. Consideration of the momentum change (in fact zero)
of the by-pass flow between stations 1 and 4 leads to the conclusion X =0, so that equation (6) still
1+ Oy

applies, and again we deduce o, = . Once more the flow is a function of a single parameter

o 4. The conditions for optimal power extraction are unchanged. All of these are useful results
which indicate that the standard result is an appropriate limiting condition as R — .

The additional analysis that is now possible is consideration of the mixing zone. The momentum
equation between stations 4 and 5 gives (given the fact that there is no net force on this zone):

u?Aayoy +u’ A(R—ay)=udRus ...(10)

(R—0y +0p04)
R

2
. 1- .
From which we deduce that ug5 =u = u[l — 2:4 J The additional energy loss
in the wake mixing process is:

1 1 1
Py = Epug'Aoczoc% +5pu3A(R —OLZ)—EpuARuS2

2
R—
=%pu3A[oczocﬁ+R—oc2—( 22 ;oczou) J ...(11)

_1l 3 (92 1 3 (l+oayg), of, (+oy4)
—2pu Aa2(1 0c4)( Rj—zpuA > (1 oc4) 1 TE

Note we can also write By = P (1-0y) (1 - 2} .
(1+a4s) R

1- : .. .
As R=ow, Py =P El oa4§’ so that at optimal conditions (a4 =1/3), By = P/2. The important
+ 0y
conclusion is that there is an inevitable further power loss in the flow due to wake mixing, over and
above any useful power extracted at the turbine.

As a result we can define an efficiency factor n = , which is the proportion of the total

P+ PW
energy extracted from the flow that can usefully be extracted, the remainder being lost in the wake.
It is straightforward to show that:
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. P _ (1+0,4)
n_P+PW " (1+0y)+(1-o0y)1-Ba,) -+ (12)

7.4 Calculation sequence

1. Specify principal dimensioning parameters p, u and A4
2. (Optionally specify upstream pressure p , which acts as purely additive term to all pressures)
3. Specify area ratio 1 < R < oo and dimensionless velocity factor 0 <oy <1
4. Calculate dimensionless quantities:
4 o = 1+a 4
. 2 2
b Cr=(1-a3)
Cr
C. CTL =—2
a2
d. Cp = (12CT
Cop =ar(1—ay [ 1-22
€. Cpy =dl—0y R
£ o= C, P

C,+C,, P+P,
5. Calculate dimensioned quantities:

1
g. T=Epu2ACT
h. P:%pu3ACp

. 1
1. PW =5pM3ACPW

T
J. Pressure drop across turbine Apy = Z

l_az(l—a4)j

k. Downstream velocity u, = u( 2

10
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8. LINEAR MOMENTUM ACTUATOR DISC THEORY IN A PARALLEL-SIDED
TUBE

8.1 Geometry of the flow

|
|
A

by — —
—_— -
e — —

|
!
| A I |
| o |
e wp i
| L - +— 5= |
| | == |
| A | |
-1 IRl | |
| 1| | |
IRI
:_% Au LA u:mF> A Mixing —
U1_—_U_ N | | Us=u
| | | | |
| = _ |
| T e ——— 1_v |
| | | |
| | | |
| | e :
| | | |
] N 1 ] -

Figure 3: One dimensional linear momentum actuator disc theory in a
finite medium bounded by a parallel-sided tube

11
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8.2 Continuity Relations

Region Station 1 Station 2| Station 3 Station 4 Station 5
o
Area Ay = Aoy Ay, = Ay = A Ay = A=2%
0Ly
Turbine | ¥ ¢locity Uy =u Ups = U3 = U0 Ugy =UOY
Volumetric — 0 = uda _ — udo — udo
flow q1t =4 2 | 92t =43t 2 q4¢ 2
Pressure P =p P2t D3t P4t = P4
o
Area Ay, =A(R—oc2) Ay, =A( __Zj
o4
Velocit u =u u4b = MM
By-pass Y b (R —oy/ay )
Volumetric | 91 = 49b
=uAlR— o
flow =uA(R—oc2) q4p ( 2)
Pressure P =r P4p = P4
Area A4 = AR Ay = AR As = AR
Velocity uy=u Varies Varies us =u
Volumetric
Total |flow q1 =9 =uAR g4 =uAR qs = uAR
_,_ I
Pressure pP1L=P Varies | Varies Pa ps=p AR
=p—Np
Table 3

8.3 Commentary and derivation

We now consider another finite flow, but this time a flow in a confined tube. The main parameters
are defined in Table 3 and shown in Figure 3.
The key difference is that the by-pass flow is no longer at constant velocity and one can deduce

R—
Ugp = u(—aZ) =uf4 . It follows that Bernoulli in the by-pass flow gives:
(R-0y /o)
L ooff a2y 1 2 (R0, )
pa—p=—pull-p3)=—pu?|1-———22 .(13)
2 2 (R—0z/04)
Equations (1) and (3) are unchanged, but (2) becomes
1 1
p3+oputad = py+—pu’aj ..(14)
On combining (1), (3), (13) and (14) one obtains:
2
1 1 R-a T
Lo pi—ad)-Lput| B2l gz T (15)
2 2 ((R-o0p/ay) A

The momentum equation for the entire flow between stations 1 and 4 is written:

12
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R—
PAR — p4 AR —T =u’ Apay (og —1)+u>4p(R —az{&—lj ...(16)
(R-0p/aq)
which can be simplified to
2
r 20y (1-ay)
p—p4 =—+pu R —— (17)
RA oy (R—ay/oy)
Combining (17) with (13) and (15) gives

2 2 2
_ 1—
—lpu2(l—[342;)=lpu2 4”04 +pu2a_2& ...(18)
2 2 R 04 (R—OLz/OL4)

After some manipulation this leads to:
Raﬁ(zocz—1—a4)+a2(2a£+a2—3a4a2)=o ...(19)

Now we can consider two limits:
1+ (O]

2

As R—>1, —ocﬁ —ocjr +0L2(40c%r +ay —3(140(,2)=0, which is consistent with oy =1, o4 =1,

ASR—)O0,0Lz:

and in fact leads to o, =0 4.

For general R, solve the quadratic:
(1-3a4)a3 +2(R+1)ajo, —RoZ(1+ay)=0
The most convenient form of the solution is

oy = R(1+(X.4) _ (1+(X4) (20)

. (R+1)+\/(R—1)2 +R(1-1/ay ) ) (1+B)+\/(1—B)2 +B(1-1/ay )

The power is then given by:

2
P =Tuy; =Tuo, :lpAu3a2 M—aﬁ
2 (R—0p/ay)’

R(1+OL4)—2OL2 1
(Roy — 1 )’ } e

1
= EpAua’Roczocﬁ(l - 0L4)[

:lpAu3oc2(1—oc4 (1+oc4)—23a22 :lpAu3Cp
2 (1-Bay/ay) 2

where the solution for o, from equation (20) should be substituted.

It is found numerically that this is always maximised by o4 :é for which o, = 3 (12€R ) and the
+
power is:
1 s16( R Y1
3 3
P=—pAu’ —| ——= | =—pAu’C .22
2P 27((1{—1)} P r (22

13
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Note, however, that as R — 1 the power extracted becomes infinite. This is because of the drop of
pressure in the tube. Since from simple statics:

Ap :i :lpuzB(l—a4{(1+a4)_2Ba2J

AR 2 (1-Boy fay)

P . Cp
1+ BCy

A more rational measure of the performance might be Cpx = , Where

Epu3A +uAAp

CT:1 d =(1-ay (l+a4)_2Ba22 . Thus:
(1-Boy/ay)

az(l_a4{(l+a4)—23a2]

(1-Bo,y Joy )? ap(l-oy) ...(23)

1+Bﬁ_a4{0+an—2&QJ(U—Bay@4VJ+B@_aO

(1-Bo,y fouy )? (1+04)-2Ba,

After substituting (20), this may be optimised as a function of a4 value for each value of B. Note

Cpw =

that all the above solutions are entirely compatible with the original Betz solution as R — 0.

At this stage we can also reconsider the force X that is acting between the turbine flow and the
bypass flow. Previously this force has been zero, but now with the inclusion of the volume
boundary we can expect that it is finite and positive. Considering momentum across the bypass flow
we can write:

pﬂR—a»—py{R—EZJ—XEuﬁApUbwh{Cg?ZEl——q ..(24)

a,

If we concern ourselves only with pressures above atmospheric we can take p =0, also substituting
for p, from (13), (24) can be rewritten as

ot R 22 |- =l sy 1)

g
so that
XzépuzA(z(R_az)(m_1)+(1_53{ _ED
04
:lpuzA(l—[34{—2(R—oc2)+(1+[34{ _a_zj]
2 o
:lpuzA(l—B4{—2(R—oc2)+[2R_a_2_a2J]
2 o
_lpuzA(l_B4{a2_a_]
2 o

14



Houlsby, Draper and Oldfield

Since oy >agand B4 >1 for all values of R, it follows that X must also be greater than 0 for all
values of R.

The power lost in the wake mixing process may also be determined. First of all it is necessary to
determine the change of pressure from stations 4 to 5:

(P4 —PS)RA=P“2A[R—0€20L4 —(R—az)%) -..(25)

2 0(’2(1_0‘4)2 (26)

DA s T R0y fotg)

By = %Pu3AOt2(X421 +%PM3A(R—0L2)B421 —%P”3AR + ARu(p4 - ps)

3 2
:lpu3A[OL20L42; -I-—(R_az) )2 —RJ—pZﬁAR a2(l_a4)

2 (R—oty /oy ag(R-0y/ay)
=lpu3AOL2R[R(OL£ +2/0L4 —3)+ (12(3—2(14 —1/0(%)—5(1/0(4 —2+0L4)(R—(12/0L4)
2 (R—ay/oy)
2
leu3Aa2(l—a4)2R(R+a2 (1—20‘4)2/0‘4J
2 (R—0z/04)

=lpu3Aoc2(l—oc4)2 1+ Ba2(1_Ba2)2
2 az(l-Boy/og)

.27

Note that as R — oo this gives the same asymptotic solution as for the constant pressure case. We
can also calculate:

P?Wz(l_a4{l+Ba2(l—2a4)/ocﬁ} o8

(1+(14)—ZBO(,2

8.4 Calculation sequence

1. Specify principal dimensioning parameters p, u and A
2. (Optionally specify upstream pressure p , which acts as purely additive term to all pressures)
3. Specity blockage ratio 0 < B <1 and dimensionless velocity factor 0 <o 4 <1
4. Calculate dimensionless quantities:
1
a. o= (1+oy)
(1+B)++(1- B + B1-1/0 )
B _ (1 - BOL2 )
* (1= Bay o)
c. Cp= (Bﬁ - ocﬁ)
C
d Cp=—"%
a2

15



C. Cp :OL2CT
__Cp
1+BCT

£ Cpx

Ba, (1- Ba,)

g Cpy = Ot2(1—0€4)2(1+
aj(1-Boy foy)

_Cc, P
c,+C,, P+B,
5. Calculate dimensioned quantities:

h. n

i T =lpu2ACT
2
ioP :%pzﬁACp
1 3
k. Py zzpu ACpwy
) T
1. Pressure drop across turbine Apy = Z
BT

m. Downstream pressure ps = p—7

|

Houlsby, Draper and Oldfield
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9. LINEAR MOMENTUM ACTUATOR DISC THEORY IN AN OPEN CHANNEL
FLOW

9.1 Geometry of the flow

@ @ G @ ®

Figure 4: One dimensional linear momentum actuator disc theory in an open channel flow

17



9.2 Continuity relations

Houlsby, Draper and Oldfield

Region Station 1 Station 2| Station 3 Station 4 Station 5
Area Ay =bhBoy | Ay = Ay =bhB | Ay =bhBZ
0Ly
.| Velocity U =u Uy = Uz =uo) Uy =UlLy
Turbine : — —
Volumetric q1t =4t 42t =493t G4s = ubhBois
flow = uthOL2 = uthOLZ
Elevation head hy =h hyy h3, hyy = hy
App = (1-Ba,)
A Agp, = bh———=~
rea bh(1- Ba, ) 4 Ba
Velocity up =u Ugp =uPy
By-pass
Volumetric q1b = 9b
=uhb\l — Ba
flow = uhb(1— Bay) 145 ( 2)
Elevation head hyp =h hap = hy
Depth hl = h h4 ]’ls =h—-Ah
Velocit Vari Vari us =1
elocity Uy =u aries aries 5 (h —Ah)
Total | Yolumetric q1 =q =ubh q4 =ubh qs =ubh
flow
Pressure | ) 1 2 s =
=—pgh Varies | Varies =—pgh
force PL=5P8 ba =5 peh %pg(h - Ah)2
Table 4

9.3 Commentary and derivation

The open channel flow calculation follows a similar pattern to before, except that in the Bernoulli
calculation the total head is now employed. We assume that at stations 1, 4, and 5 the pressure can
be treated as hydrostatic. In some senses the calculation is a hybrid between the calculation at
constant pressure and the one in a fixed tube: the downstream dimensions of the flow are not fixed,
but there are relationships between dimension and velocity and between dimension and pressure
force.

We start by noting that in the by-pass flow:

2 202
e g, P .(29)
2g 2g
As before, Bernoulli in the turbine flow upstream and downstream of the turbine gives:
2 2 .2
hall —py, + 222 ...(30)
2g 2g
2 .2 2 .2
By + 222 —p, 4 L 24 .31
2g

And the equilibrium of the turbine gives:
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Houlsby, Draper and Oldfield
pg(hy, —hy, )Bbh =T ...(32)
Combining equations (29), (30), (31) and (32) gives:

2
T  u”(, 2)
o =y = S (33
2= e 2g Bz —ag (33)
2
u“Bbh
T=" 5 b3 -a2) .(34)

Now consider the momentum equation between stations 1 and 4, which gives:

%pgb(hz —hf)—T = pu?bhBay(ay —1)+pu?hb(l—Bo, By —1) ...(35)
Eliminating 7 between (34) and (35) gives
2
%g(hz —h})—Bh%(Bﬁ —a£)= u?hBay(oy —1)+u?h(1- Bay \Bg —1) ...(36)
And we can make use of the continuity relationship
hy _pp%2 , 1= Bas) .(37)
Oy B4
Note also the following forms
By = h(l—Bay)/(hy = Bhoy jog) ..-(38)
oy :O(,_4(h(1—[34)+l34.(h—h4)) ...(39)

Bh (g4 —B4)

To eliminate (in principle) sy and B4 between (29), (36) and (37), leaving, as previously, a
relationship between a, and o4 . First eliminate /4 to give:

[ Bay (1—Ba2) _u2 2
(1( + By D_2gh(l34 1) ...(40)

0Ly

and

{I(Baz N (I—Baz)]z] :%(28(12(“4 —1)+2(1-Bay By —1)+ B(B%; —Ot%))

o
4 Pa g (41
”2 2 2
= 5(2302(0‘4 —Ba)+2(Bg—1)+ 3(54 - OC4))
It is convenient later to write the results in terms of the upstream Froude number F, = u/ \&eh .
Dividing (41) by (40) we obtain
Ba 1 - Ba 2
[1+ 2 +( 2)j= - (2Ba2(a4—B4)+2([34—1)+B(;3§—aﬁ)) ...(42)
0Ly B4 (B4 —1)

which re-arranges to
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2 3
Baz(ﬁ4—a4{4+ B4_1J=23(B421—0t42;)+w ...(43)
4P Bs
leading to the solution:
By —1)°
2(B4 +0uy)- R
o = 12[34(54 —ay) ..(44)
4+ pa-1
4By
Rewriting (40) as
(Ba—0cs) _Ba-1) u” (02
B = - -1 ...(45
*2 4Py B4 2gh (B4 ) )
And dividing (44) and (45) to eliminate o, we obtain after some manipulation:
@a4ﬁ4+@%—1{¢u—4-——@4—db J=2B@%—a%ﬁ4—¢u—4? .(46)

Which is a quartic in 4

2 2
F F,
> BY +204F, B} _(2_2B+Fr2)331 —(4(14 +204F7 —4)34 +(Tr+4a4 ~2Baj —2} =0

...(47)
As B — 0 and B4 — 1 note the limit

B _ 204 1—ﬁ .48
(B4 -1) haﬁ)[ gh} 49

The downstream head drop can be calculated from overall momentum:

1 2 2) uh
—~ b(h —(h—AR)? )-T = pbh - ...(49
S Pgbl” (k=) p u(h_Ah u] (49)
L,an (a1 W s s
250 T h ) | open? e 00
pbgh g
1 an (AN T NN
1 z__(_j I g 51)
2| A h pbgh? 1—Ah/h
2
Where CT=L so that d 3 _ CrBE . This is a cubic in Ah/h:

~ pBbhu> pbgh 2

2

3 2 2 2
LfARY _3fARY g2 CoBE A CrBE ..(52)
2lh ) 20k 2 |k 2

The power lost in the mixing is calculated as:
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2
Py = %pu3bh3a2aﬁ +%pu3bh(1—Ba2)B42; —%pu%h( j + hbu(hy — s )pg

h—Ah
) ...(53)
:}1m3BMza2a%+(l Baz%;_ﬂ_[ 1 J +2@4—h5k
2 1—Ah/h u’B
Alternatively it can be useful simply to calculate the total power taken out of the flow:
1 3. 1 3 oY
P+ By =—pu bh - pu bh(mj + hbu(h — hs )pg
) ...(54)
L o1 —( 1 ] 2O pguth{l F2 1= A2 j
2 1= Ah/h F? (1—Ah/h)?

Therefore the efficiency of the turbine is simply:

-1
= i = P 1_171421_A—h/2h2 ...(55)
P+P,  pgubhAh (1—Ah/h)

For small Froude number flows this may be approximated by N~ ——.
pgubhAh

9.4 Calculation sequence

1. Specify principal dimensioning parameters p, g and 4

2. (Optionally specify width b, which acts as purely scaling term on power and force)

3. Specify upstream Froude number F,. = u/ @ , blockage ratio 0 < B <1 and dimensionless
velocity factor 0 <ay <1

4. Calculate dimensionless quantities:
a. Solve for B4 from:

2 2
F; F,
_54 +204FB) — (2—2B+Fr2)3§ —(4a4 +2a4F? —4ﬁ4 +(TF+40L4 ~2Bo? —2}0

such that B4 >1and1 >0y > 04.

B By -1
b _2@4+a4) BB4(Bs —04)
T L B3-1)
4Py
e. cr=[pi-ol)
_Cr
d Cpmy =
TL o2

e. Solve for Ah/h from:

lA_h3_§A_h2+ \_ g2, CrBE |Ah_CrBE?
2\ 2\ g 2 h 2

f. CP =(12CT
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1 jz 2 Ah/h
+

1
. Cp+Cpy =—| 1-
S TpTEPm Ty (I—Ah/h P2

__Cp P
CP+CPW P+PW

5. Calculate dimensioned quantities:

i. T= %puszhCT

n

j. P= %pu3BthP

k. Py =%pu3BthPW

1. Ah:hA—h
h

T
m. Pressure drop across turbine Apyr = ——
p \PT Bbh

9.5 Solution space of the model

The quartic defined by equation (47) will yield real solutions for 4 only for a subset of input
variables I, B, «, . To determine the range of this subset we can reconsider the equations derived in

§9.3. It is clear that both equation (29) and equation (35) express quantities that will have a
minimum value when plotted against /,. These minimum values indicate that the flow within the

bypass and the far wake, respectively, will be exactly critical. If 4, is specified as less than this

critical point no real solutions will exist for a given upstream discharge rate. More specifically the
turbine will ‘block’ the flow and a hydraulic jump will result.

To determine the critical point consider equation (29). Mathematically the condition of critical flow
can be expressed as

21,2 2
db _ d \BaV= | BT d g2 g ..(56)
dhy  dhy| 2g 2 dh,

Giving the condition

dif) _ 2 (57

dh, hFr?

A similar exercise can be done for equation (35) to determine the minimum momentum. However it
can be shown numerically that in all cases the bypass condition given by (57) is reached at the point
when solutions to the quartic (47) become complex. The far wake will never reach critical
conditions before the bypass flow.

Therefore the solution space of this open channel model is bounded by the requirement that the

2
. .. ) d 2
bypass flow remains sub-critical, or mathematically (ﬁ4 ) < - 5
4 hFr
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