MAT6682 - Tópicos de Análise Funcional - 2023 Lista 2

1. Espaços Vetoriais Topológicos

- 1. Sejam X um \mathbb{K} -espaço vetorial, $p: X \to [0, +\infty)$ uma função positivamente homogênea em X e $A = \{x \in X : p(x) < 1\}$.
 - a) Mostre que A é absorvente e que p é o funcional de Minkowski de A.
 - b) Mostre que se p é um funcional sublinear, então A é convexo.
 - c) Mostre que se p é uma seminorma, então A é convexo e equilibrado.
- **2.** Sejam X um \mathbb{R} -espaço vetorial topológico, $\varphi: X \to \mathbb{R}$ um funcional linear e $p: X \to \mathbb{R}$ uma função qualquer. Mostre que se p é contínua em 0 e se $\varphi(x) \le p(x)$ para todo $x \in X$, então φ é contínuo.
- **3.** Sejam X um espaço vetorial topológico e Y um subespaço de X. A *topologia quociente* é a topologia mais fina em X/Y que torna a aplicação quociente $\pi: X \to X/Y$ contínua, isto é, é a topologia $\{V \subset X/Y: \pi^{-1}(V) \text{ é aberto em } X\}$.
 - a) Mostre que π é uma aplicação aberta e que X/Y munido da topologia quociente é um espaço vetorial topológico.
 - b) Mostre que se X é localmente convexo, então X/Y é localmente convexo.
 - c) Mostre que se X é um espaço normado e Y é um subespaço fechado de X, então a topologia quociente em X/Y coincide com a topologia induzida pela norma quociente.

2. A Topologia Fraca

- **1.** Dado um espaço normado X, mostre que $(X, \sigma(X, X^*))$ é um espaço vetorial topológico localmente convexo de Hausdorff.
- **2.** Sejam $X \neq \{0\}$ um espaço normado, $x_1^*, \ldots, x_n^* \in X^*$ e $\varepsilon > 0$. Mostre que existem $y_1^*, \ldots, y_m^* \in X^*$ e $\delta > 0$ tais que $U(0; y_1^*, \ldots, y_m^*; \delta) \subset U(0; x_1^*, \ldots, x_n^*; \varepsilon)$ e $\{y_1^*, \ldots, y_m^*\}$ é linearmente independente.
- **3.** Seja *X* um espaço normado de dimensão infinita. Mostre que toda *w*-vizinhança básica da origem contém um subespaço fechado de dimensão infinita. Conclua que todo *w*-aberto não vazio é ilimitado.
- **4.** Seja *X* um espaço normado de dimensão infinita.
 - a) Mostre que Id: $(X, \sigma(X, X^*)) \rightarrow (X, \|\cdot\|)$ leva limitados em limitados.
 - b) Mostre que existe uma rede $(x_j)_{j \in J}$ em X tal que $x_j \xrightarrow{u} 0$ e $||x_j|| = 1$ para todo $j \in J$. Conclua que as aplicações

Id:
$$(X, \sigma(X, X^*)) \to (X, \|\cdot\|)$$
 e $\|\cdot\| : (X, \sigma(X, X^*)) \to [0, +\infty)$

não são contínuas. (Sugestão: fixe uma base algébrica de X^* e use o Exercício 1.b da Lista 1. Note que X^* também tem dimensão infinita.)

- **5.** Sejam X um espaço normado e Y um subespaço de X.
 - a) Mostre que $(Y, \sigma(Y, Y^*))$ coincide com a topologia induzida por $(X, \sigma(X, X^*))$ em Y.
 - b) Suponha que Y seja fechado. Mostre que a topologia fraca em X/Y coincide com a topologia quociente em X/Y induzida por $(X, \sigma(X, X^*))$.

- **6.** Sejam X um espaço normado e $(x_n)_{n\geq 1}$ uma sequência em X. Prove as seguintes afirmações:
 - a) $(x_n)_{n\geq 1}$ é fracamente de Cauchy se, e somente se, $x_{n_k} x_{m_k} \xrightarrow{w} 0$ para cada par de subsequências $(x_{n_k})_{k\geq 1}$ e $(x_{m_k})_{k\geq 1}$ de $(x_n)_{n\geq 1}$.
 - b) Se $(x_n)_{n\geq 1}$ é fracamente de Cauchy, então $(x_n)_{n\geq 1}$ é limitada.
 - c) Se $(x_n)_{n\geq 1}$ é de Cauchy (em norma) e $x_n \stackrel{w}{\longrightarrow} 0$, então $x_n \stackrel{\|\cdot\|}{\longrightarrow} 0$.
 - d) Se $x_n \xrightarrow{w} x$, então $||x|| \le \liminf ||x_n||$.
 - e) Se $x_n \xrightarrow{w} x$, então existe uma sequência $(y_n)_{n \ge 1}$ em $\operatorname{co}(\{x_n : n \ge 1\})$ tal que $y_n \xrightarrow{\|\cdot\|} x$.
- 7. Mostre que ℓ_p é fracamente sequencialmente completo para todo 1 .
- **8.** Considere o conjunto $K = \{e_n : n \ge 1\} \cup \{0\}$.
 - a) Mostre que K é fracamente compacto mas não é compacto na topologia da norma em c_0 e em ℓ_p , 1 .
 - b) Mostre que K não é fracamente compacto em ℓ_1 .
- **9.** Seja X um espaço normado.
 - a) Mostre que se X é fracamente sequencialmente completo, então X é de Banach.
 - b) Mostre que se X é de Banach e tem a propriedade de Schur, então X é fracamente sequencialmente completo. A recíproca é verdadeira? Justifique.
- **10.** Sejam K um espaço de Hausdorff compacto, $f \in C(K)$ e $(f_n)_{n \ge 1}$ uma sequência em C(K). Mostre que $f_n \stackrel{w}{\longrightarrow} f$ se, e somente se, $(f_n)_{n \ge 1}$ é limitada em C(K) e $f_n(t) \longrightarrow f(t)$ para todo $t \in K$. (Sugestão: para a recíproca, use o Teorema de Representação de Riesz e o Teorema da Convergência Dominada. Veja W. Rudin, Real and Complex Analysis, McGraw-Hill (1987), Teorema 1.34, pg. 26, e Teorema 6.19, pg. 130.)