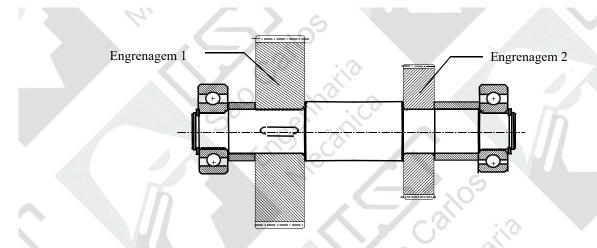
Lista 12

Dimensionamento de rolamentos

12.1 Exercícios propostos


- 1) Dimensione os mancais de rolamentos de um eixo de acordo com os dados abaixo. Foram escolhidos rolamentos rígidos de esferas para ambos os mancais, sendo que o esquerdo é bloqueado e o direito é livre. Pede-se:
 - Dimensionamento dos rolamentos;
 - Escolha do óleo e do método de lubrificação;
 - Verificação de n_{max};
 - Cálculo dos momentos de atrito;
 - Escolha dos vedadores;

Sao Carius necanica

- Determinação das fixações axiais e radiais;
- Execução dos croquis da montagem dos mancais.

Dados:

A CONTRACTOR	Mancal	Mancal	
	Esquerdo	Direito	
Força radial	6000 [<i>N</i>]	8000 [N]	
Força axial (sentido único	3000 [<i>N</i>]	0	
para a esquerda)	O all		
Diâmetro do assento no eixo	40 [mm]	40 [mm]	
Máquina de uso intermitente			
Temperatura de serviço: $T = 60 [^{\circ}C]$			
Direção das forças bem definidas			
Lubrificação e montagem confiáveis			
Não há desbalanceamento			
Eixo em rotação contínua: $n = 200 [rpm]$			
Vibrações médias e choques ocasionais leves			

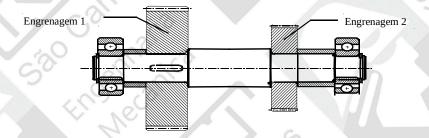
- 2) Dobrando-se as cargas axiais e radiais do exercício 1, como ficará o dimensionamento?
- 3) Dimensionar os mancais de rolamentos dos exercícios 5), 6) e 7) da Lista 5.
- 4) Dimensionar os mancais de rolamentos dos exercícios 4), 5) e 6) da Lista 6.

Sao Carlos Engenharia Engenharia

12.2 Exercício resolvido

Exercício 1)

a) Valor das cargas.


$$F_{calc} = f.F_{tl}$$

Fatores que influenciam na escolha de *f*:

- Existência de incerteza nos valores das cargas (choques);
- Direções das cargas bem definidas;
- Montagem e lubrificação adequadas;
- Não há desbalanceamento e a rotação é baixa;
- Temperatura média (são consideradas temperaturas altas aquelas acima de 100 [°C]).

Por isso se escolhe um valor de f = (1,0 a 3,0) = 1,5 no início da faixa pois existem mais fatores favoráveis do que desfavoráveis. Tem-se, então, os seguintes valores das cargas para fins de cálculo:

		Mancal Esquerdo	Mancal Direito
P		(E)	(D)
	Fr	9000 [<i>N</i>]	12000 [N]
	Fa	4500 [N]	0

b) Dimensionamento estático.

Como existem choques, é necessário fazer-se o dimensionamento estático.

Carga Estática Equivalente

$$P_0 = X_0.F_r + Y_0.F_a$$

Para mancais rígidos de esferas tem-se [SKF, pág. 184]:

Mancal $D \rightarrow P_0 = F_r$, portanto $P_{0D} = 12000 [N]$

Mancal E \rightarrow P₀ = 0,6 x 9000 + 0,5 x 4500 = 7650[N] < F_r, portanto P_{0E} = F_r = 9000 [N]

Na verificação precisa-se ter: $C_0 \geqslant P_0.s_0$. Tem-se as seguintes condições para determinação de s₀ [SKF, tab. 9, pág. 53]:

- Rolamento em rotação contínua;
- Giro silencioso normal;
- Rolamento de esferas com vibração normal

Assim se adota $s_0 = 1,0$

Verificação dos rolamentos pela capacidade estática

Como adotar-se-ão os dois mancais iguais, tomam-se os dados do mais solicitado:

Rolamento rígido de esferas

- $P_0 = P_{0D} = 12000 [N]$ d = 40 [mm]

Encontra-se o rolamento rígido de esferas **6208** [SKF, pág. 190], de características:

.100		15		
d	D	C	C_0	
40 [mm]	80 [mm]	30700 [<i>N</i>]	$19000 [N] > P_0 . S_0 \rightarrow OK$	j
nsionamento din	aâmico direto		Sign anha	
inâmica equivaler	<u>ite</u>		though the contraction of the co	5

c) Dimensionamento dinâmico direto.

Carga dinâmica equivalente

$$P = X.F_r + Y.F_a$$

Para rolamentos rígidos de esferas tem-se:

$$X$$
 e Y são retirados da Tabela da página 185, se $\frac{F_a}{F_r} > e$ $X=1,0$ e $Y=0,0$, se $\frac{F_a}{F_r} \leqslant e$ e é função de $\frac{F_a}{C_0}$ e é obtido na mesma Tabela

 $Mancal\ D$ - Como não se tem força axial $P_{\rm D}$ = $F_{\rm r}$ = 12000 [N]

Mancal E – Tem-se $\frac{F_a}{C_0} = \frac{4500[N]}{19000[N]} = 0,24$. Da tabela da página 185, para rolamentos rígidos de esferas individuais e folga normal, obtém-se e = 0.37.

Como
$$\frac{F_a}{F_r} = \frac{4500[N]}{9000[N]} = 0.5 > e = 0.37$$
, da mesma Tabela $X = 0.56$ e $Y = 1.2$

Portanto:

$$P = 0.56 \times 9000[N] + 1.2 \times 4500[N] = 10440[N]$$

Cálculo da Vida

$$L = a_1.a_2.a_3.\left(\frac{C}{P}\right)^p$$
; com p = 3 para rolamentos rígidos de esferas [SKF, pág. 28].

- Para confiabilidade de 90% $\rightarrow a_1$ = 1,0 [SKF, tab. 6, pág. 35]
- Para temperatura de funcionamento < $150[°C] \rightarrow a_2 = 1,0$ [SKF, pág. 35] e $a_3 = a_{23}$ [SKF, pág. 38]. Para a obtenção de a_{23} , entretanto, é preciso primeiro obter-se o óleo a ser usado.

Escolha do Óleo

Usa-se o diâmetro médio
$$d_m = \frac{d+D}{2} = \frac{40[mm]+80[mm]}{2} = 60[mm]$$
 e tem-se $n = 200$

[rpm]. A viscosidade necessária nas condições de trabalho é v_1 = 70 [mm^2/s] [SKF, Diag. 1, pág. 36]. Mas a temperatura de trabalho é 60 [°C]. Na temperatura de referência (40 [°C]), esta viscosidade será de $v \approx 190$ [mm^2/s], [SKF, Diag. 2, pág. 37]. Portanto, o óleo escolhido deve ter viscosidade aproximada de 190 [mm^2/s] a 40 [°C]. Isto resulta no óleo ISO VG220 [SKF, tab. 7, pág. 38]. Observe-se que na prática, o óleo pode já estar determinado, por exemplo, pelo cálculo das engrenagens. No presente caso, supõe-se que o óleo acima satisfaça a ambas as situações. O óleo escolhido possui v = 220 [mm^2/s], na temperatura de referência e v = 75 [mm^2/s] nas condições de trabalho [SKF, Diag. 2, pág. 37]. Calcula-se então:

$$k = \frac{v}{v_1} = \frac{75[mm^2/s]}{70[mm^2/s]} = 1,07$$
, e pela figura da pág. 39, $a_{23} = 1,05$ [SKF, Diag. 3, pág. 39]

Pode-se, agora, calcular a vida de ambos os mancais:

$$L_{\rm D} = 1.0 \times 1.0 \times 1.05 \times \left(\frac{30700[N]}{12000[N]}\right)^3 = 17.58 [milhões de revoluções]$$

$$L_{\rm Dh} = \frac{L_{\rm D}.10^6}{60.n} = \frac{17.58 \times 10^6 [revoluções]}{60 \times 200 [rpm]} = 1465 [horas]$$

$$L_{\rm E} = 1.0 \times 1.0 \times 1.05 \times \left(\frac{30700[N]}{10440[N]}\right)^3 = 26.70 [milhões de revoluções]$$

$$L_{\rm Eh} = \frac{L_{\rm E}.10^6}{60.n} = \frac{26.70 \times 10^6 [revoluções]}{60 \times 200 [rpm]} = 2225 [horas]$$

Verifica-se, agora, se as durações dos rolamentos 6208 são suficientes:

Para máquina de uso intermitente, a vida L deve ser de 3000 à 8000 [horas] [SKF, tab. 4, pág. 34]. Portanto, os rolamentos <u>não satisfazem.</u> Note-se que se escolheram rolamentos bem acima da necessidade do dimensionamento estático, mas nem assim o dimensionamento dinâmico foi satisfeito. Esta situação pode eventualmente ser contornada, neste caso em particular, adotando-se um óleo mais viscoso e assim subindo um pouco o valor de a_{23} . Entretanto, é muito comum isto não ser suficiente e então se adota repetitivamente vários rolamentos até se chegar ao apropriado. Em vez disso, sugere-se um outro procedimento, dado a seguir, para ser usado na verificação da capacidade de carga dinâmica em substituição ao procedimento utilizado.

d) Dimensionamento dinâmico indireto.

Neste caso, não se escolhe o rolamento baseando-se em C_0 . Determina-se o rolamento *a posteriori*.

d1) Estimativa da Capacidade de Carga Dinâmica necessária.

Como anteriormente:

$$L = a_1.a_2.a_3.\left(\frac{C}{P}\right)^p$$
 [milhões de revoluções] $L_h = \frac{L.10^6}{60.n}$ [horas]

- Para confiabilidade de 90% $\rightarrow a_1 = 1,0$ [SKF, tab 6, pag 35]
- Para temperatura de funcionamento < 150 [°C] $\rightarrow a_2 = 1,0$ [SKF, pág. 35] e $a_2 = a_{23}$ [SKF, pág. 38].

Para que este procedimento seja possível, é necessário assumirem-se hipóteses simplificadoras. Não se tem o rolamento ainda e, portanto, não se sabe o raio médio e, conseqüentemente, também não se sabe qual óleo usar. Assume-se que o óleo usado tenha as características do recomendado e, portanto $a_{23} = 1$.

d2) Relação
$$\left(\frac{C}{P}\right)$$
 necessária.

Se se quiser a vida necessária de 5000 [horas] tem-se:

$$L = \frac{L_h.60.n}{10^6} = \frac{5000[horas] \times 60 \times 200[rpm]}{10^6} = 60 [milhões de revoluções]$$

Da expressão acima obtem-se a relação $\left(\frac{C}{P}\right)$ necessária:

$$\left(\frac{C}{P}\right)_{nec} = \left(\frac{L}{a_1 \cdot a_{23}}\right)^{\frac{1}{p}} = \left(\frac{60 \left[\text{milhões revoluções}\right]}{1,0 \times 1,0}\right)^{\frac{1}{3}} = 3,91[-]$$

d3) Capacidade de carga dinâmica mínima necessária.

Adota-se aqui outra simplificação: a carga dinâmica equivalente P é sempre maior ou igual à força radial F_r . Supõe-se que $P = F_r$ (no mínimo). Então se usa P_{min} para obter C_{min} :

$$C_{min} = \left(\frac{C}{P}\right)_{nec} \times F$$

Mancal Esquerdo	Mancal Direito
$C_{min E} = 3.91 \times 9000[N] = 35190 [N]$	$C_{min D} = 3,91 \times 12000[N] = 46920[N]$

Devido às várias hipóteses simplificadoras, é bom não se escolherem rolamentos com C muito próximo de C_{min} . Uma escolha tal que C > 1,1 . C_{min} é mais segura. Adota-se o rolamento **6408** [SKF, pág 190] para ambos os mancais.

d	D	C	C_0
40 [mm]	110 [mm]	63700 [N]	$36500 [N]] > P_0 . s_0 \rightarrow OK$

(portanto satisfaz-se a verificação estática)

d4) Verificação do rolamento escolhido - Carga dinâmica equivalente.

Agora se tem um rolamento escolhido (com base na carga dinâmica) e pode-se repetir o procedimento dado no item "c", agora com mais segurança.

$$P = X \cdot F_r + Y \cdot F_a$$

Tem-se agora
$$\frac{F_a}{C_0} = \frac{4500[N]}{36500[N]} = 0,12$$
 e, como anteriormente, $e = 0,31; X = 0,56; Y = 1,4$.

Como

$$\frac{F_{aE}}{F_{rE}} = \frac{4500[N]}{9000[N]} = 0.50 \Rightarrow P_E = 0.56 \times 9000[N] + 1.40 \times 4500[N] = 11340[N]$$

Mancal D

Como não se tem, neste caso, força axial $P_D = F_{rD} = 12000[N]$

d5) Escolha do óleo.

Usa-se o mesmo procedimento anterior com d_m = 75 [mm] e n = 200 [rpm]. A viscosidade necessária nas condições de trabalho (60 [°C]) é υ_1 = 60 [mm^2/s] [SKF, Diag. 1, pág. 36] e na temperatura de referência (40 [°C]) tem-se $\upsilon \approx 170$ [mm^2/s] [SKF, Diag. 2, pág. 37].

Isto resulta no mesmo óleo ISO VG220 [SKF, tab. 7, pág. 38], o qual possui υ = 220 [mm^2/s] a 40 [°C] e υ = 75 [mm^2/s] nas condições de trabalho, como já visto.

Então
$$k = \frac{v}{v_1} = \frac{75 \text{ [mm²/s]}}{60 \text{ [mm²/s]}} \text{ e } a_{23} = 1,20 \text{ [SKF, Diag. 3, pág. 39]}$$

d6) Vida dos rolamentos.

a dos rolamentos.
$$L_{\rm D} = 1,0\times1,0\times1,20\times\left(\frac{63700[N]}{12000[N]}\right)^3 = 179,49[\textit{milhões de revoluções}]$$

$$L_{\rm Dh} = \frac{L_{\rm D}.10^6}{60.n} = \frac{179,49\times10^6[\textit{revoluções}]}{60\times200[\textit{rpm}]} = 14957[\textit{horas}]$$

$$L_{\rm E} = 1,0\times1,0\times1,20\times\left(\frac{63700[N]}{11340[N]}\right)^3 = 212,70[\textit{milhões de revoluções}]$$

$$L_{\rm Eh} = \frac{L_{\rm E}.10^6}{60.n} = \frac{212,70\times10^6[\textit{revoluções}]}{60\times200[\textit{rpm}]} = 17725[\textit{horas}]$$

Ambos os rolamentos satisfazem as condições, aliás, superam-nas largamente. Isto ocorreu porque entre os rolamentos **6308** e **6408** há um salto muito grande da capacidade dinâmica de carga *C*, o que não pode ser evitado.

e) Escolha do método de lubrificação.

- Óleo deverá trabalhar com eixo em baixa rotação;
- Temperatura de trabalho baixa (60 [°C]);
- Eixo horizontal.

Estas especificações levam a escolher como método de lubrificação o banho em óleo sem refrigeração forçada [SKF, pág. 157].

f) Rotação máxima permitida.

A rotação máxima permitida é dada por:

$$n_{m\acute{a}x\ perm} = f.n_{ref\ tabela}$$

O valor de f é superior a 0,95 para d_m = 75 [mm] e $L_{10h} \approx 17000$ [horas] [SKF, pág. 65]. A rotação máxima de referência é $n_{ref\ tabela}$ = 8000 [rpm] para o rolamento 6408 com lubrificação por óleo [SKF, pág. 190]. Então:

$$n_{m\acute{a}x\ perm} = 0.95 \times 8000[rpm] = 7600[rpm] \gg 200[rpm] = n_{serviço}$$

g) Estimativa do momento de atrito.

Para casos em que $P \approx 0.1.C$, ou seja, 0.09.C < P < 0.11.C [SKF, pág. 56], o momento de atrito pode ser estimado aproximadamente pela expressão:

$$M_a = 0.5.\mu.P.d [N.m]$$

Para rolamentos rígido de esferas o coeficiente de atrito μ = 0,0015 [-] [SKF, tab. 1, pág. 57]

Isto resultaria em:

Mancal Direito $M_{aD} = 0.5 \times 0.0015 \times 12000[N] \times 0.040[m] = 0.36 [N.m]$ Mancal Esquerdo $M_{aE} = 0.5 \times 0.0015 \times 11340 [N] \times 0.040[m] = 0.34 [N.m]$

Para casos em que $P \neq 0,1.C$, o momento de atrito deve ser calculado pela expressão [SKF, pág. 56]:

$$M_a = M_0 + M_1$$

Os valores e M_0 e M_1 são obtidos das expressões e tabelas correspondentes [SKF, págs. 58 a 61]. Em casos especiais existem também as parcelas M_2 e M_3 a serem consideradas [SKF, pág. 62].

No presente caso um valor mais preciso do momento de atrito deveria ter sido assim calculado. Isto é deixado como proposta de exercício a ser resolvido.

h) Escolha dos vedadores

Existem diversas soluções possíveis. Os vedadores possuem faixa de temperatura e de velocidades periféricas nas quais eles podem ser aplicados. Como regra geral, para baixas séries de fabricação usam-se gachetas, e para altas séries o sistema mais eficiente é o de retentores. Estes, porém, exigem certos valores de dureza e rugosidade da superfície do eixo com a qual eles têm contato. No item seguinte, várias soluções construtivas são apresentadas.

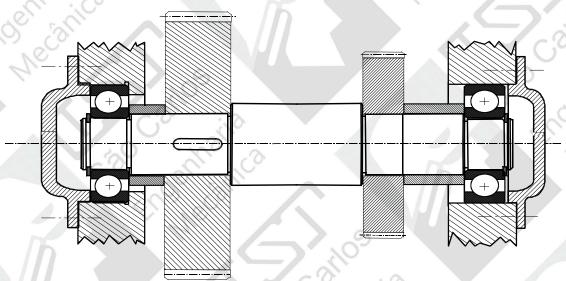
i) Fixação axial e radial

Fixação axial:

É sabido que a força axial atua da direita para a esquerda, sem reversão e apenas no mancal esquerdo. Então ele será bloqueado axialmente (anéis interno e externo) e ficará livre o anel externo

do mancal direito. O anel interno do mancal direito será bloqueado pois faz parte da fixação axial da engrenagem 2.

Fixação (ou ajuste) radial:


As cargas radiais são estacionárias em relação aos anéis externos e rotativas em relação aos anéis internos de ambos os mancais.

O mancal bloqueado (esquerdo) deve ter ajuste indeterminado com tendencia a folga no anel externo e ajuste indeterminado com tendencia a interferência no anel interno.

O mancal livre (direito) deve ter ajuste indeterminado com tendencia a folga no anel externo (com valor maior que no outro mancal) e com tendencia a interferência no anel interno.

j) Croqui

Existem várias soluções construtivas para cada mancal como visto na Lista 11. Optou-se pelas soluções abaixo:

Mancal Esquerdo

Fixação axial anel externo: Travado entre tampa e caixa

Fixação axial anel interno: Travado entre anel elást. e escalonamento do eixo

Fixação / ajuste radial anel externo: Ajuste indet. → folga Fixação / ajuste radial anel interno: Ajuste indet. → interferência

São Carios Anacarica

Vedação: Tampa (eixo não passante)

Mancal Direito

Fixação axial anel externo: Livre

Fixação axial anel interno:Travado entre anel elást. e escalonamento

do eixo

Fixação / ajuste radial anel externo: Ajuste indet. \rightarrow folga(maior)

Fixação / **ajuste radial anel interno**: Ajuste indet. → interferência

tudayyai

Vedação: Tampa

