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ABSTRACT

The progression from gestation into lactation repre-
sents the transition period, and it is accompanied by 
marked physiological, metabolic, and inflammatory ad-
justments. The entire lactation and a cow’s opportunity 
to have an additional lactation are heavily dependent 
on how successfully she adapts during the periparturi-
ent period. Additionally, a disproportionate amount of 
health care and culling occurs early following parturi-
tion. Thus, lactation maladaptation has been a heavily 
researched area of dairy science for more than 50 yr. It 
was traditionally thought that excessive adipose tissue 
mobilization in large part dictated transition period 
success. Further, the magnitude of hypocalcemia has 
also been assumed to partly control whether a cow ef-
fectively navigates the first few months of lactation. 
The canon became that adipose tissue released non-
esterified fatty acids (NEFA) and the resulting hepatic-
derived ketones coupled with hypocalcemia lead to 
immune suppression, which is responsible for transition 
disorders (e.g., mastitis, metritis, retained placenta, 
poor fertility). In other words, the dogma evolved that 
these metabolites and hypocalcemia were causal to 
transition cow problems and that large efforts should 
be enlisted to prevent increased NEFA, hyperketone-
mia, and subclinical hypocalcemia. However, despite 
intensive academic and industry focus, the periparturi-
ent period remains a large hurdle to animal welfare, 
farm profitability, and dairy sustainability. Thus, it 
stands to reason that there are alternative explana-
tions to periparturient failures. Recently, it has become 
firmly established that immune activation and the ipso 
facto inflammatory response are a normal component 
of transition cow biology. The origin of immune acti-
vation likely stems from the mammary gland, tissue 
trauma during parturition, and the gastrointestinal 
tract. If inflammation becomes pathological, it reduces 

feed intake and causes hypocalcemia. Our tenet is that 
immune system utilization of glucose and its induction 
of hypophagia are responsible for the extensive increase 
in NEFA and ketones, and this explains why they (and 
the severity of hypocalcemia) are correlated with poor 
health, production, and reproduction outcomes. In this 
review, we argue that changes in circulating NEFA, 
ketones, and calcium are simply reflective of either (1) 
normal homeorhetic adjustments that healthy, high-
producing cows use to prioritize milk synthesis or (2) 
the consequence of immune activation and its sequelae.
Key words: inflammation, hypocalcemia, ketosis, 
insulin, homeorhesis

THE PERIPARTURIENT PERIOD

Early lactation is a unique physiological state in which 
nutrient consumption often does not meet maintenance 
and milk production costs, creating a negative energy 
balance (NEB; Drackley, 1999). Milk energy output 
increases more rapidly than the increase in consumed 
energy. The magnitude of NEB varies, but nadir usu-
ally occurs within the first 10 DIM, and cows return to 
calculated positive energy balance between 30 and 100 
DIM (Moallem et al., 2000; Coffey et al., 2002). To sup-
port milk synthesis during NEB, significant alterations 
in carbohydrate, lipid, protein, and mineral metabolism 
are implemented.

A thorough appreciation of how important glucose is 
to milk synthesis is required to understand why these 
changes (energetics in particular) occur. Glucose is 
the precursor for lactose synthesis, and lactose is the 
primary osmoregulator driving milk volume (Neville, 
1990). For every 1 kg of milk produced, approximately 
72 g of glucose is required (Kronfeld, 1982). During 
established lactation, hepatic glucose output is exqui-
sitely orchestrated to precisely meet peripheral tissue 
(e.g., mammary, muscle, adipose, central nervous sys-
tem) glucose requirements (Baumgard et al., 2017). 
However, inadequate feed intake during the periparturi-
ent period means that the contribution of diet-derived 
gluconeogenic precursors to hepatic glucose output is 
insufficient to meet the mammary gland’s increasing 
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requirement, as more than 90% of glucose made by the 
liver is utilized by the mammary gland in early lactation 
(Bell, 1995). Consequently, multiple tissues coordinate 
efforts in an attempt to compensate for the dietary 
shortage by becoming insulin resistant, a hormonal sce-
nario that allows for tissue catabolism and mobilization 
of AA and glycerol (gluconeogenic precursors) from 
skeletal muscle and adipose tissue, respectively (Bell, 
1995; Bell and Bauman, 1997).

In addition to providing gluconeogenic building 
blocks, both adipose tissue and skeletal muscle coor-
dinate metabolism during the transition period to in-
crease the supply of and reliance upon lipid fuel. During 
NEB, somatotropin (increased during NEB; Bell, 1995) 
promotes nonesterified fatty acid (NEFA) export from 
adipose tissue by accentuating the lipolytic response to 
β-adrenergic signals and by blunting insulin-mediated li-
pogenesis and glucose utilization (Bauman and Vernon, 
1993). Further, early-lactation hypoglycemia heightens 
the stimulation of lipolysis by catecholamines (Clut-
ter et al., 1981). Reduced systemic insulin sensitivity 
coupled with a decrease in circulating insulin allows 
for adipose lipolysis and NEFA mobilization (Bauman 
and Currie, 1980; Rhoads et al., 2004), which represent 
a substantial energy source for both peripheral tissues 
(skeletal muscle in particular) and the mammary gland. 
However, some tissues (i.e., the brain) and cell types 
are unable to oxidize NEFA and thus require the energy 
within fatty acids to be converted into ketones.

The exact mechanisms regulating all aspects of he-
patic ketogenesis remain unclear, especially in rumi-
nants (Baird, 1982). However, it is likely that 2 bio-
chemical sequences of events partially control ketone 
production simultaneously. First, fatty acid β-oxidation 
generates large quantities of NADH and reduced flavin 
adenine dinucleotide (Berg et al., 2002), a scenario that 
presumably meets (in part) the hepatocyte’s ATP re-
quirements and thus decreases key tricarboxylic acid 
(TCA) enzymes (isocitrate dehydrogenase and keto-
glutarate dehydrogenase). This would slow the cycle 
and create a buildup of acetyl CoA. Second is the 
salient explanation put forth by Sir Hans Krebs more 
than 55 yr ago. Ketone synthesis is enhanced when the 
TCA cycle intermediate oxaloacetate (OAA) supply 
is limited. Increased gluconeogenesis in early lactation 
causes cataplerosis (removal from the TCA cycle) of 
OAA to support phosphoenolpyruvate production (an 
early step in gluconeogenesis). Simultaneously, a large 
amount of acetyl CoA originates from β-oxidation of 
adipose-derived NEFA (Krebs, 1966). When OAA is 
plentiful, it combines with acetyl CoA to make citrate, 
and the TCA cycle progresses. The unavailability of 
OAA is now the metabolic crossroad between carbo-

hydrate and lipid metabolism, and accumulated acetyl 
CoA enters into ketogenesis (Krebs, 1966), an enzy-
matic pathway inhibited by insulin (Sato et al., 1995).

Skeletal muscle oxidation of fatty acids and ketones 
reduces their glucose uptake; this is referred to as the 
Randle effect (Randle, 1998). The aforementioned 
changes effectively partition glucose toward the mam-
mary gland because glucose’s contribution as a fuel 
source to extramammary tissues is markedly decreased 
(Bell, 1995), and the mammary gland’s glucose con-
sumption is insulin independent (Zhao and Keating, 
2007). These metabolic adjustments essentially create 
a coordinated unidirectional glucose flow from the 
liver to the mammary gland. Ultimately, the normal 
homeorhetic adaptations described above empower 
“metabolic flexibility” (Baumgard et al., 2017) to pri-
oritize milk synthesis at the expense of tissue accretion 
(Bauman and Currie, 1980).

In addition to energetic metabolism, Ca homeosta-
sis is substantially altered at lactation onset due to a 
marked increase (>65%; DeGaris and Lean, 2008) in Ca 
requirements to support colostrum and milk synthesis 
(Horst et al., 2005). Eucalcemia is typically under tight 
homeostatic control via the action of the calcitropic 
hormones parathyroid hormone (PTH) and 1,25-dihy-
droxyvitamin D. The parathyroid gland detects hypo-
calcemia and secretes PTH, which increases renal Ca 
reabsorption (i.e., reduces urinary Ca loss), increases 
osteocytic and osteoclastic bone Ca release, and stimu-
lates renal production of 1,25-dihydroxyvitamin D (also 
known as calcitriol). Calcitriol acts synergistically with 
PTH at the kidney and bone and also increases active 
transport of dietary Ca across the intestinal epithelium 
(as reviewed by Horst et al., 1997). It has long been 
hypothesized that the mammary gland’s sudden Ca 
demand is so extensive and acute that it often exceeds 
these homeostatic mechanisms, resulting in clinical or 
subclinical hypocalcemia (SCH; Horst et al., 2005; 
Goff, 2008).

In the 1980s, it was demonstrated that precalving 
metabolic alkalosis predisposed cows to milk fever via 
diminishing tissue responsiveness to PTH, and add-
ing dietary anions markedly reduced the incidence of 
clinical milk fever (Goff et al., 1991). Mechanisms by 
which metabolic acidosis improves Ca homeostasis have 
not been fully elucidated but may include improved 
tissue responsiveness to PTH (Goff et al., 2014) and 
decreased urinary Ca excretion via TRPV5 inhibition 
and a corresponding enhanced gastrointestinal Ca 
absorption via increased TRPV6 (Martín-Tereso and 
Martens, 2014). Other prepartum dietary strategies 
to minimize postpartum clinical hypocalcemia include 
low-Ca diets (Thilsing-Hansen et al., 2002) and Ca-
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chelating compounds (Goff, 2008). Implementing these 
dietary strategies has successfully reduced rates of 
clinical hypocalcemia; however, SCH remains common, 
afflicting ~25% of primiparous and ~50% of multipa-
rous cows (Reinhardt et al., 2011). Thus, the inability 
to strictly maintain Ca homeostasis continues to occur 
in the early postpartum period.

METABOLIC DISORDERS AND INFECTIOUS 
DISEASE: TRADITIONAL DOGMAS

Maintaining cow health and productivity during the 
transition period represents a significant obstacle to the 
dairy industry. Coinciding with the changes mentioned 
above in energetic and Ca homeostasis is an increased 
risk of metabolic disorders and infectious diseases such 
as ketosis, fatty liver, milk fever, displaced abomasum 
(DA), retained placenta (RP), mastitis, and metritis 
(Goff and Horst, 1997; LeBlanc, 2010; Berge and Ver-
tenten, 2014). Approximately 75% of disease typically 
occurs during the first month postpartum (LeBlanc et 
al., 2006), and because they occur within a short win-
dow of time, the disorders are predictably interrelated 
(Curtis et al., 1984; Markusfeld, 1986; Gröhn et al., 
1989). Not surprisingly, a disproportionate amount of 
culling occurs early in lactation. This animal welfare is-
sue has profound implications for farm profitability, the 
social license to operate, and industry sustainability.

Research characterizing periparturient disorders by 
alterations in a single circulating metabolite began as 
early as the 1920s. Milk fever was identified by decreased 
circulating Ca (Hayden and Scholl, 1923; Sjollema and 
Van Der Zande, 1923; Dryerre and Greig, 1925), and 
ketosis was identified by increased circulating acetone 
(Stinson, 1928; Sampson et al., 1933). In the late 1950s 
and 1960s, ketosis was further characterized by changes 
in NEFA (Radloff et al., 1966; Radloff and Schultz, 
1967), and the severity of NEB was proposed as the 
primary cause (Shaw, 1956). Associations between in-
creased NEFA, hyperketonemia, and hypocalcemia and 
the incidence of disease became a topic of intensive in-
vestigation beginning in the 1980s (Curtis et al., 1983; 
Dohoo and Martin, 1984; Markusfeld, 1987; Geishauser 
et al., 1997; Kaneene et al., 1997; Cameron et al., 1998; 
Duffield, 2000; Duffield et al., 2009; Berge and Ver-
tenten, 2014), and hypocalcemia was later considered a 
gateway disorder leading to ketosis, mastitis, metritis, 
DA, impaired reproduction, and decreased milk yield 
(Curtis et al., 1983; DeGaris and Lean, 2008; Goff, 
2008; Chapinal et al., 2012; Martinez et al., 2012; Ri-
beiro et al., 2013; Neves et al., 2018a,b).

A common observational approach in the aforemen-
tioned research is to obtain blood samples from cows 
during the transition period and retrospectively clas-

sify them according to health status. Once retroclas-
sified, differences in circulating metabolites, minerals, 
and hormones can be evaluated between groups (e.g., 
diseased vs. healthy, high vs. low performers, pregnant 
vs. open, high NEFA vs. low NEFA). Another common 
method is to simply correlate circulating variables with 
a performance metric or health variable. Despite not 
using traditional intervening or controlled experimenta-
tion, increased NEFA, hyperketonemia, and hypocal-
cemia are presumed to have a causal relationship with 
poor transition cow success (Figure 1; Cameron et al., 
1998; LeBlanc et al., 2005; Quiroz-Rocha et al., 2009; 
Ospina et al., 2010a; Chapinal et al., 2011; Huzzey et 
al., 2011).

We believe that there are multiple flaws in the the-
ory connecting NEFA, ketones, and Ca with negative 
outcomes in the postpartum dairy cow. In addition to 
not having causal substantiation and having limited 
biological plausibility, many of the theory’s principles 
counter evolutionary adaptations associated with milk 
synthesis, reproduction, and species survival. Below, we 
outline the inadequacies of the rationale for causation 
and provide evidence demonstrating that changes in 
circulating NEFA, ketones, and Ca are not responsible 
for negative outcomes but rather are simply reflec-
tive of either normal metabolic changes that healthy 
cows enlist to achieve high production or the meta-
bolic downstream consequences of immune activation-
induced hypophagia.

Correlation Does Not Equal Causation

Causality and correlation are incorrectly interchanged 
when an observational relationship between 2 events 
is claimed to be inevitable rather than coincidental. 
Dozens of peer-reviewed articles have demonstrated 
an association between metabolites and transition cow 
problems, but importantly numerous inconsistencies 
exist. For example, a variety of papers indicate no 
relationship between NEFA, ketones, and Ca and nega-
tive outcomes (Burke et al., 2010; Bicalho et al., 2014, 
2017; Abdelli et al., 2017; McArt and Neves, 2020). The 
consistency of an effect is crucial when making causal 
inference from observational and field research. Second, 
as already mentioned, these tenets are largely based 
on associations and not cause-and-effect relationships 
garnered from controlled and intervening experimenta-
tion. Even from a relationship perspective, assessing 
the strength or robustness of the associations is difficult 
due to variability in analysis and statistical methods. 
In particular, different metabolite thresholds are set 
for different outcomes and time points (e.g., pre- vs. 
postpartum, wk 1 vs. wk 2) within observational stud-
ies. In addition, inconsistent association metrics (e.g., 

Horst et al.: INVITED REVIEW: IMMUNE ACTIVATION AND TRANSITION COW DISORDERS



8383

Journal of Dairy Science Vol. 104 No. 8, 2021

odds ratio, relative risk, hazard ratio) are used to assess 
the relationship. A partial summary of the association 
studies was recently compiled by McArt et al. (2013) 
and Overton et al. (2017). Although these reports il-
lustrate the large number of studies demonstrating a 
relationship of the metabolites (NEFA, BHB, Ca) with 
health and performance, they also indicate substantial 
variability in metabolite thresholds and association 
strength. For example, the association (as measured by 
odds ratios) between postpartum BHB and DA inci-
dence ranged from 1.1 to 27.6 across studies (McArt et 
al., 2013). Interestingly, several reports demonstrated 
both a negative association of elevated NEFA and ke-
tones with health outcomes and a positive association 
with milk yield (Lean et al., 1994; Duffield et al., 2009; 
Ospina et al., 2010b; Furken et al., 2015; Belay et al., 
2017; Bach et al., 2019). The conflicting relationships 
described above exemplify the dogma’s limitations and 
highlight the boundaries of retrospective classification 
and epidemiology. Additionally, emphasis on associa-
tion metrics (e.g., odds ratios, relative risks) can lead to 
a non sequitur (Davies et al., 1998), epitomized by the 
skewed exegesis of how animal-derived food products 
influence human health (Taubes, 2001).

Immunosuppression Is Complex

Arguably, the best line of evidence in support of 
the dogma is extrapolated from the purported role of 
elevated NEFA, hyperketonemia, and hypocalcemia in 

immunosuppression and its predisposing role in disease 
(Ducusin et al., 2003; Lacetera et al., 2004; Hammon et 
al., 2006; Scalia et al., 2006; Martinez et al., 2012, 2014; 
LeBlanc, 2020). For example, in vitro incubation of 
isolated circulating neutrophils with increasing NEFA 
and BHB concentrations negatively affects leukocyte 
function, such as neutrophil oxidative burst (Hoeben 
et al., 1997; Scalia et al., 2006; Grinberg et al., 2008; 
Ster et al., 2012) and lymphocyte antibody secretion 
(Lacetera et al., 2004). Additionally, chemotaxis and 
myeloperoxidase activity were impaired in neutrophils 
isolated from periparturient cows with elevated NEFA 
and ketones (Suriyasathaporn et al., 1999; Hammon 
et al., 2006). Inducing hypocalcemia via Ca chelators 
reduced neutrophil phagocytosis in vitro (Ducusin et 
al., 2001) and in vivo (Martinez et al., 2014). Further-
more, leukocytes isolated from hypocalcemic cows have 
reduced intracellular Ca stores (Ducusin et al., 2003; 
Kimura et al., 2006), a change that would interfere with 
Ca signaling and impede leukocyte activation (Lewis, 
2001). Consequently, the metabolic and mineral profile 
dominating the periparturient period is presumed to 
adversely affect immune function, and the resulting 
immune suppression predisposes cows to a variety of 
disorders and diseases (Goff and Horst, 1997; Aleri et 
al., 2016; Figure 1). However, there are inconsistencies 
(in vivo and in vitro) in how these metabolites and Ca 
affect leukocyte function (reviewed by LeBlanc, 2020). 
For example, Scalia et al. (2006) reported reduced 
neutrophil reactive oxygen species production but no 
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change in neutrophil phagocytosis when incubated with 
increasing NEFA concentrations in vitro. Incidentally, 
most ex vivo research evaluating increasing NEFA con-
centrations on leukocyte function uses very low levels of 
albumin and thus are not replicating in vivo conditions. 
Similarly, Ster et al. (2012) observed no difference in 
blood mononuclear cell proliferation or interferon-γ 
production with BHB concentrations ≥1.0 mmol/L 
and no effect on oxidative burst up to 10 mmol/L. 
Further, no relationship was observed between BHB 
concentrations and neutrophil killing ability (Hammon 
et al., 2006). Rodent studies have even shown that 
ketone bodies may have a protective effect and limit 
reactive oxygen species-induced damage during bacte-
rial inflammation (Wang et al., 2016). In addition to 
the aforementioned discrepancies, extending in vitro 
results to whole-animal biology has obvious limitations, 
and this is especially pertinent when considering the 
immune system. For example, most leukocyte func-
tion is integrally dependent on an intracellular meta-
bolic shift from oxidative phosphorylation to aerobic 
glycolysis (discussed below; Palsson-McDermott and 
O’Neill, 2013), and it is highly unlikely that in vitro 
conditions can mimic the extracellular endocrine and 
energetic milieu accompanying normal immune ac-
tivation. Additionally, we now realize that almost all 
periparturient dairy cows (even the seemingly healthy 
ones) experience some degree of immune activation 
and inflammation (discussed more below; Humblet 
et al., 2006; Bertoni et al., 2008), and the inflamma-
tory milieu that accompanies it has suppressive effects 
on leukocyte function (Oh et al., 1990; Raju et al., 
2019). This is particularly important when considering 
neutrophils because they continue to mature while in 
circulation, and this aging can affect their functional 
properties (Adrover et al., 2016; Rosales, 2018). Even 
more concerning is that inflammation causes the bone 
marrow to release immature and incompetent neutro-
phils, including neutrophil progenitor cells (Leliefeld et 
al., 2016). Thus, the normal homogeneity of circulating 
neutrophils in a healthy animal becomes increasingly 
heterogeneous during immune activation (Zonneveld 
et al., 2016), and this would very likely influence ex 
vivo neutrophil function metrics. Consequently, it is 
not clear whether ex vivo function assays during the 
transition period reflect immunosuppression or simply 
the pathology and leukocyte footprint associated with 
normal immune activation. In other words, some arms 
may appear immunosuppressed, whereas others are 
activated. Continued research into the immune system 
consistently reveals how little we know, how complex 
the interactions are (especially with metabolism), and 
how oversimplified our interpretation may have been.

NEB and BW Loss During Lactation Are Normal

Adipose tissue mobilization to support lactation is a 
highly conserved response (McNamara, 1997; Oftedal, 
2000). Interestingly, in certain mammals such as bears, 
seals, dolphins, and baleen whales (i.e., the blue whale), 
lactation occurs concurrently with a prolonged fast; 
consequently, these mammals rely almost entirely on 
adipose tissue reserves to meet their energy demands 
(Oftedal, 2000; Crocker et al., 2001; Fowler et al., 
2016, 2018). In fact, baleen whales will sustain a 6- to 
7-mo lactation without eating and will mobilize ~33% 
of their fat stores, which is equivalent to 16 tons of 
BW (Oftedal, 2000). In seals, greater than 90% of the 
energy requirements for lactation are powered by lipid 
stores (Crocker et al., 2001; Fowler et al., 2018), and 
these mammals may lose more than 50% of their body 
fat reserves (Crocker et al., 2001). This is even more 
impressive considering most sea mammals are unable 
to perform ketogenesis (Jebb and Hiller, 2018). Evolu-
tionarily closer to the cow, deer go through periods of 
insufficient intake after parturition and rely on reserves 
to support lactation, even during ad libitum feeding 
(Sadleir, 1982). Regardless, the species-conserved reli-
ance on NEFA to support lactation further exemplifies 
the importance of this strategy. In fact, the extent to 
which cows incorporate adipose tissue mobilization 
during early lactation pales compared with many other 
species (Collier et al., 2005). Consequently, interpreting 
BW loss and tissue mobilization outside the bounds of 
proper biological context could lead to a pessimistic 
judgment.

NEFA and BHB Do Not Directly Inhibit Feed Intake

Regulation of feed intake is an extremely complex 
topic, exemplified by the fact that pharmaceutical in-
terventions to reduce human caloric consumption have 
yet to be successful. Theories attempting to explain 
ruminant appetite control include energy requirements 
(Conrad et al., 1964), gut fill and hepatic oxidation (Al-
len et al., 2009), and endocrine regulation (Ingvartsen 
and Andersen, 2000; Kuhla et al., 2016). Pertinent to 
this review, the detrimental effects of elevated NEFA 
and hyperketonemia on health and performance are 
partially attributed to their alleged suppressive effect 
on feed intake (Baird, 1982; Ingvartsen and Andersen, 
2000; Hayirli et al., 2002; Ingvartsen, 2006; Hammon et 
al., 2009; Allen, 2020). This is an especially prevalent 
mindset in veterinary medicine as clinicians often an-
ecdotally claim that ketones depress periparturient cow 
feed intake. However, this purported effect is largely 
based on association (see above) and is in contrast with 
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the normal biology accompanying a healthy and suc-
cessful transition (high circulating NEFA and BHB). 
Furthermore, results of several infusion studies suggest 
appetite is largely unaffected by ketones and lipids. 
In an elegant series of controlled experiments, it was 
demonstrated that intravenous BHB infusion did not 
affect feed intake (Zarrin et al., 2013, 2014a,b) and that 
infusing propionate, but not lipid, decreased DMI in 
mid-lactation cows (Stocks and Allen, 2014). When ex-
amining different fuel sources infused cerebrally, Davis 
et al. (1981) found that glucose and glycerol reduced 
feed intake, whereas BHB did not. Furthermore, infus-
ing ketones intravenously actually increased feed intake 
(Carneiro et al., 2016a,b). This type of experimentation 
needs to be interpreted within homeostatic and ho-
meorhetic context because administering a fuel would 
intuitively decrease energy consumption when the ani-
mal is in positive energy balance (Conrad et al., 1964), 
and this concept is reinforced by intervening experi-
mentation (Chelikani et al., 2003). Regardless, from an 
evolutionary perspective, it is bioenergetically difficult 
to hypothesize why NEFA and BHB would decrease ap-
petite. Adipose tissue mobilization and partial conver-
sion of NEFA into ketones is a key metabolic strategy 
animals use to conserve skeletal muscle and ultimately 
survive NEB (Sherwin et al., 1975). The importance of 
ketogenesis to surviving malnutrition is highlighted by 
the fact that mutations in the gene regulating ketone 
synthesis (mitochondrial HMG-CoA synthetase) result 
in hypoglycemic-induced coma within days (Thompson 
et al., 1997). Reliance on stored lipid during energy 
insufficiency is so conserved that even microorganisms 
have the capacity to stow and oxidize NEFA (Nunn, 
1986) and convert fatty acid energy into ketones (Wang 
et al., 2014). Thus, even the simplest of life forms have 
been utilizing these basic and uncomplicated ancient 
fuels (NEFA and ketones) since the beginning of time. 
If NEFA and ketones actually blunted the urge to eat, 
a starving animal would be anorexic, a scenario that 
would hasten their demise. In summary, animals have 
ebbed and flowed into and out of NEB (because of, e.g., 
food insecurity, hibernation, migration, and lactation) 
for eons, and oxidizing NEFA and ketones is absolutely 
essential to survival.

High-Producing Cows Are Hypoinsulinemic

A key strategy (maybe the most integral part) to suc-
cessfully initiating lactogenesis and sustaining galacto-
poiesis is the development of insulin resistance in both 
skeletal muscle and adipose tissue and the decrease 
in pancreatic insulin secretion (Bauman and Currie, 
1980; Baumgard et al., 2017). As already mentioned, 

this allows adipose tissue mobilization and the exiting 
NEFA to be used by most cell types and tissues as 
a way to spare glucose for milk synthesis. Thus, it is 
not surprising that (1) higher producing cows are more 
hypoinsulinemic than their lower producing herdmates 
throughout lactation (Koprowski and Tucker, 1973; 
Hart et al., 1975, 1978, 1979; Jordan et al., 1981; Collier 
et al., 1984), (2) periparturient insulin concentrations 
are inversely related to whole lactation performance 
(Zinicola and Bicalho, 2019), (3) insulin clearance (re-
moval from the circulating pool) is increased by genetic 
selection for milk yield (Barnes et al., 1985), and (4) 
administering insulin or insulin-sensitizing agents de-
creases milk yield (Kronfeld et al., 1963; Schmidt, 1966; 
Chang and Young, 1992; Yousefi et al., 2016).

Although not directly focusing on insulin per se, eval-
uating how feeding controlled-energy diets (low-quality 
forage) before calving affects energetic metabolism and 
production provides additional conceptual framing on 
how important metabolic flexibility is to normal lacta-
tion. Prepartum low-energy diets successfully reduced 
postcalving NEFA, ketones, and liver fat content, but 
this was unsurprisingly accompanied by a substantial 
reduction in ECM or FCM yield (Janovick and Drack-
ley, 2010; Silva-del-Río et al., 2010). Additionally, re-
gardless of diet, cows that had increased postcalving 
circulating ketones (1.2–2.9 mmol/L) produced more 
milk (>3 kg/d) than cows whose ketone concentrations 
were considered healthy (<1.2 mmol/L; Lean et al., 
1994; Vanholder et al., 2015; Rathbun et al., 2017). 
Clearly, mobilizing adipose tissue and converting NEFA 
into ketones is a physiological adaptation that mam-
mals utilize to prioritize milk synthesis, and attempts 
to blunt or intervene with this homeorhetic process 
predictably come at the expense of milk yield.

The Confusing Insulin Status of Ketosis

Given insulin’s incredibly potent regulation of inter-
mediary metabolism, high milk production associated 
with associated with excessive adipose tissue mobiliza-
tion-induced ketosis should be accompanied by severe 
hypoinsulinemia (Hove, 1978). Accordingly, most peri-
parturient hyperketonemic cows are simultaneously hy-
poinsulinemic (Hove, 1978; Brockman, 1979), and it has 
been suggested that hypoinsulinemia is a prerequisite 
for ketosis development (Hove, 1974). However, some-
times there are no differences in circulating insulin be-
tween ketotic cows and healthy controls (Oikawa et al., 
2019; L. H. Baumgard, unpublished data), and actually 
ketosis is sometimes accompanied by hyperinsulinemia 
(Kronfeld, 1971; Holtenius and Holtenius, 1996; Herdt, 
2000). Further, hyperinsulinemia is thought to occur be-
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fore clinical signs of ketosis (Rukkwamsuk et al., 1998, 
1999). This is a peculiar pathological endocrine profile 
as insulin would normally prevent ketosis on multiple 
levels: (1) blunting adipose tissue mobilization, (2) 
reducing hepatic gluconeogenesis and thus minimizing 
depletion of the TCA cycle’s OAA pool, (3) decreasing 
fatty acid transport into the mitochondria via carnitine 
palmitoyltransferase 1 (CPT1) downregulation, (4) 
negatively governing the rate-limiting enzyme of ketone 
synthesis (HMG-CoA synthase), and (5) increasing pe-
ripheral tissue ketone utilization (Jarrett et al., 1974). 
Incidentally, despite inappetence, immune activation is 
also characterized by acute hyperinsulinemia (discussed 
below). As a result, there are numerous metabolic and 
endocrine footprints clearly associated with ketosis, a 
controversial concept originally proposed by Holtenius 
and Holtenius (1996) and supported by Herdt (2000).

Inconsistent Success in Treating Ketosis

Given hyperketonemia’s purported crucial role in 
transition cow pathophysiology, it stands to reason 
that clinical intervention should increase productivity. 
In fact, administering propylene glycol to subclinical 
hyperketonemic cows did increase milk yield in some 
instances (Emery et al., 1964; McArt et al., 2011; Lo-
mander et al., 2012) but not in others (Hoedemaker et 
al., 2004; Liu et al., 2009; Bors et al., 2014; Østergaard 
et al., 2020; Capel et al., 2021). Explanations for the 
inconsistencies are not clear; however, one explanation 
for a positive effect may be that the additional endog-
enous glucose produced with propylene glycol adminis-
tration temporarily alleviated the glucose burden of a 
transition dairy cow that is simultaneously inflamed. A 
reason for not observing an effect on milk yield is that 
the cows were healthy and the hyperketonemia was a 
crucial adjustment they were using to prioritize milk 
synthesis. Additionally, ketones blunt adipose tissue 
mobilization (in a negative feedback loop; Björntorp, 
1966); therefore, therapeutically reducing ketones dur-
ing subclinical ketosis could do more harm than good. 
Regardless, the collective body of evidence does not 
fully support the notion that medically treating hyper-
ketonemia benefits milk synthesis. Incidentally, using 
steroids as part of a regimen to remediate ketosis needs 
a thorough re-examination, considering their role in im-
munosuppression.

In summary, transition cow health problems, sub-
optimal milk production, premature culling, and poor 
reproduction remain key hurdles to profitable dairy 
farming. During the last 50 yr, dairy scientists have 
increasingly viewed elevated circulating NEFA and 
ketones and hypocalcemia as pathological and causal 
toward negative outcomes. This tenet is largely based 

on observational studies, epidemiology, correlations, 
and ex vivo immune cell function assays. However, it is 
becoming more evident that periparturient diseases and 
disorders cannot be explained by the severity of changes 
in these simple metabolites. Interpreting biomarkers as 
causal agents of metabolic disorders deviates from the 
purpose of epidemiological studies. We believe that the 
postcalving changes to energetic and Ca metabolism 
reflect normal biological processes that healthy cows 
use to maximize milk synthesis or severe dysregulation 
of these processes arising from inflammation-induced 
changes enlisted to prioritize health (Figure 2).

INFLAMMATION

Regardless of health status (Humblet et al., 2006), 
inflammation is observed in almost all cows during the 
transition period (Ametaj et al., 2005; Bionaz et al., 
2007; Bertoni et al., 2008; Mullins et al., 2012). Im-
mune activation appears to be a double-edged sword, 
as a proper amount is required to healthfully navigate 
the periparturient period. In part, an active immune 
system is a normal constituent of dry-off and parturi-
tion arising from nonpathogenic sources such as tissue 
damage and remodeling (i.e., sterile homeostatic inflam-
mation). Examples include mammary gland involution 
(Atabai et al., 2007), adipose tissue remodeling (Kosteli 
et al., 2010), and placental expulsion (Challis et al., 
2009). In these situations, the immune system is acti-
vated via molecular patterns of nonpathogenic origin 
with the primary goal of remodeling tissue to support 
a new physiological state. It is unclear how much these 
nonpathogenic sources of inflammation contribute to 
systemic inflammation observed in poorly transitioning 
dairy cows. Cows are exposed to a myriad of physiologi-
cal, environmental, and psychological stressors between 
dry-off and the early postpartum period that disrupt 
barrier integrity at epithelial interfaces (e.g., uterine, 
mammary, intestinal, and lung), which are constantly 
exposed to pathogens and colonized by commensal mi-
croorganisms. When microorganisms breach the epithe-
lial barrier, underlying immune cells and tissues react 
quickly to prevent further infection. Immune cells re-
spond after recognizing pathogen-associated molecular 
patterns (PAMP) via pathogen recognition receptors 
(PRR). These PRR are present on leukocytes and other 
cells, including adipocytes (Vailati Riboni et al., 2015), 
skeletal muscle (Frost and Lang, 2005), hepatocytes (Xu 
et al., 2017), endometrial cells (Sheldon and Roberts, 
2010), mammary epithelial cells (Ibeagha-Awemu et 
al., 2008), and intestinal epithelial cells (Malmuthuge et 
al., 2012). Interaction of the PAMP with the PRR trig-
gers a signaling cascade culminating in inflammatory 
cytokine production (Lu et al., 2008). Immune activa-
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tion can be experimentally modeled via administrating 
LPS, the antigenic component of gram-negative bacte-
ria, which is recognized by the toll-like receptors (TLR; 
Kumar et al., 2011) and elicits a well-characterized and 
robust immune response (van Miert and Frens, 1968; 
Waldron et al., 2006; Eckel and Ametaj, 2016). Other 
models utilizing specific pathogens or PAMP also exist 
(i.e., live bacteria, lipoteichoic acid), and much of what 
we know about immune system effects on metabolism 
stem from these well-controlled and repeatable models. 
However, it is important to remember that the source 
of inflammation underlying these responses in practical 
situations arises from a wide variety of immunogenic 
and pathogenic components at 3 prominent sources in 
the transition cow: the uterus, mammary gland, and 
gastrointestinal tract.

Sources of Pathogenic Inflammation  
in the Transition Cow

Uterus. Bacteria present within the uterine lumen 
were originally thought to originate exclusively from 
contamination with environmental pathogens during 

and after parturition (Sheldon et al., 2006); however, 
it is now established that a uterine microbiome exists 
(Karstrup et al., 2017; Moore et al., 2017). Both bacte-
ria adapted to the uterus (part of the existing microbi-
ome before parturition) and bacteria originating from 
the environment contribute to metritis (Sheldon et al., 
2019). Infiltration of environmental microorganisms is 
restricted by anatomical barriers, including the vulva, 
vagina, and cervix; however, dilation of these structures 
during and after parturition reduces their ability to 
prevent pathogen entry. Tight junction (TJ) proteins 
connect adjacent uterine epithelial cells separating the 
apical and basolateral components of the endometrium 
and prevent bacteria from penetrating the underlying 
stroma (Sheldon et al., 2019). Epithelial cells recog-
nize pathogens via PRR, which triggers inflammatory 
cytokine and antimicrobial peptide production (Davies 
et al., 2008). Interestingly, both apical and basolateral 
PRR activation triggers cytokine secretion apically, 
and this aids in immune cell recruitment to the infec-
tion site (Sheldon et al., 2019).

During parturition, the protective uterine epithelium 
is often physically injured. Damaged or dying cells 
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prior immune stimulation. DA = displaced abomasum.
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release damage-associated molecular patterns, which 
activate the immune system (independently of bacte-
rial infiltration) to help clear unhealthy tissue. This 
damaged tissue creates an opportunity for bacteria to 
access the underlying stroma. Bacterial infiltration of 
the stroma induces cell damage and cytolysis, stimu-
lating further release of damage-associated molecular 
patterns (Sheldon et al., 2019); these are recognized 
by epithelial and stromal cells via PRR, which intensi-
fies the inflammatory response (Blander and Sander, 
2012). Despite extensive defense mechanisms, increased 
circulating inflammatory cytokines are frequently 
observed in naturally metritic cows (Barragan et al., 
2018), and increased circulating LPS occurs in severe 
metritis (Mateus et al., 2003). As alluded to above, the 
act of parturition independently triggers inflammation, 
and the severity of dystocia likely predisposes cows to 
a higher risk of pathogen entry into local and systemic 
circulation. In summary, both the act of parturition 
and bacterial contamination can contribute to local and 
systemic inflammation in dairy cows.

Mammary Gland. The mammary gland is highly 
susceptible to bacterial infections, making it a promi-
nent source of pathogen infiltration in the transition 
period. Intramammary infections are most prevalent 
during early involution (i.e., dry-off) and colostrogen-
esis (Ballou, 2012). Abrupt milking cessation at dry-off 
engorges the udder with milk, increasing intramamma-
ry pressure and disrupting physical defense mechanisms 
within the streak canal (i.e., the keratin plug; Tucker 
et al., 2009); allowing microorganisms to colonize the 
mammary gland (Bradley and Green, 2004). Addition-
ally, nonpathogenic inflammation is also involved with 
tissue remodeling and mammary involution (Monks et 
al., 2002). Regardless, bacterial infections often remain 
quiescent throughout the dry period and clinical disease 
is not observed until the periparturient period (Brad-
ley and Green, 2004). Interestingly, a previous report 
estimated that approximately 65% of early-lactation 
clinical coliform mastitis cases originated during the 
dry period (Smith and Schoenberger, 1985).

Bovine mammary epithelial cells synthesize and 
secrete milk while simultaneously maintaining a semi-
permeable barrier between blood and milk components. 
Integrity of the blood–milk barrier is reliant on TJ 
proteins, which connect adjacent epithelial cells (Bur-
ton and Erskine, 2003). Lipopolysaccharide, released 
during gram-negative bacterial proliferation within 
the teat and gland cistern, is recognized by resident 
leukocytes and mammary epithelial cells via TLR4 
(Ibeagha-Awemu et al., 2008). Proinflammatory cyto-
kines, produced in response to TLR4 activation, signal 
recruitment of effector leukocytes into the mammary 

gland and disrupt TJ integrity (Burton and Erskine, 
2003; Xu et al., 2018). Furthermore, leukocyte pathogen 
elimination triggers epithelial cell damage (Wellnitz et 
al., 2016). Altogether, these changes can disrupt the 
blood–milk barrier, resulting in systemic inflammation 
and potentially both endotoxemia and bacteremia; 
this occurs in an alarming number of gram-negative 
bacterial infections (Wenz et al., 2001). Interestingly, 
TJ can also be disrupted by stress events such as feed 
restriction (Stumpf et al., 2013; Kvidera et al., 2017d). 
Consequently, the mammary gland is a likely culprit in 
immune activation both after and before parturition.

Gastrointestinal Tract. The intestinal epithelium 
serves a dual purpose of nutrient absorption and protec-
tion from pathogens and other antigens present within 
the gastrointestinal tract. The importance of proper 
barrier function cannot be overstated as the intestine is 
continuously exposed to potential pathogens and toxins 
and has an enormous surface area (~400 m2 in humans; 
Mani et al., 2012; Murphy, 2012). The gastrointestinal 
tract harbors trillions of microorganisms (Hooper and 
Macpherson, 2010), and it has been estimated that the 
human intestinal tract contains >1 g of LPS (Erridge 
et al., 2007). To put this into context, 1 g is 4,000-fold 
greater than that necessary to cause a >90% decrease 
in milk yield in a 700-kg cow (Kvidera et al., 2017b; 
Horst et al., 2018, 2019). Microbial exposure is cer-
tainly more extensive in ruminants due to pregastric 
fermentation and the relative size of the alimentary 
tract. The stratified squamous epithelium lining the 
reticulorumen and omasum is composed of 4 distinct 
strata that serve both metabolic and barrier integrity 
roles. In contrast to the reticulorumen and omasum, 
the lower gut is composed of a simple columnar epithe-
lium, which consists of both absorptive epithelial cells 
and a myriad of immune-related cells with extensive 
defense mechanisms to protect the epithelial barrier 
(the intricate details of which are reviewed by Steele 
et al., 2016). More than 75% of all lymphocytes are 
located in the gastrointestinal tract of a healthy animal 
(van der Heijden et al., 1987), highlighting the threat in 
its paradoxical absorption and gatekeeping roles.

Dairy cows are exposed to numerous situations that 
can negatively affect intestinal barrier integrity, includ-
ing heat stress (Baumgard and Rhoads, 2013; Koch et 
al., 2019), SARA (Emmanuel et al., 2007; Khafipour 
et al., 2009), and feed restriction (Zhang et al., 2013; 
Kvidera et al., 2017a,d; Horst et al., 2020b). Potential 
mechanisms by which heat stress and rumen acidosis 
may affect barrier integrity have been described in de-
tail elsewhere (Baumgard and Rhoads, 2013; Steele et 
al., 2016). Interestingly, stress alone is associated with 
gastrointestinal hyperpermeability (Pohl et al., 2017) 
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and systemic inflammation (Proudfoot et al., 2018). 
In response to stress, the hypothalamic-pituitary-adre-
nal axis is activated, which in turn stimulates nervous 
system and peripheral tissue production of cortico-
tropin-releasing factor (CRF) and subsequent release 
of adrenocorticotropin hormone from the anterior 
pituitary gland (Charmandari et al., 2005). Receptors 
for CRF are widely expressed in both the central and 
peripheral nervous system, where they interact with 
enteric neurons and epithelial immune cells (Larauche 
et al., 2009; Li et al., 2017). Administering CRF in-
duces intestinal barrier dysfunction (Teitelbaum et al., 
2008) and initiates systemic inflammation (Cooke and 
Bohnert, 2011; Cooke et al., 2012). The negative con-
sequences of CRF on the epithelium seem to be medi-
ated by intestinal resident mast cell degranulation and 
release of histamine, proteases, and cytokines, which 
negatively affect intestinal barrier function (Moeser 
et al., 2007; Overman et al., 2012). Mechanistically, 
the effects of CRF on barrier integrity are not fully 
elucidated but likely are a consequence of disrupted 
TJ complexes (Groschwitz et al., 2013). In addition to 
hypothalamic release, CRF is produced and released by 
intestinal cells (including immune and enterochromaf-
fin cells), and the localized production can also affect 
intestinal epithelial function (Albert-Bayo et al., 2019). 
Stress-mediated effects on the gut barrier may explain 
why so many seemingly unrelated situations (e.g., heat 
stress, cold stress, weaning, acidosis, feed restriction) 
share a common consequence of leaky gut and systemic 
inflammation.

Hepatic Response to Inflammation

The liver is the first organ to filter blood from the 
portal-drained viscera, intimately tying it with any gut-
derived inflammatory challenges. During inflammation, 
the liver shifts priority from metabolism to defense as it 
is a critical organ in the immune response. This change 
is known as the acute phase protein (APP) response, 
and it involves reduced synthesis of proteins integral 
in normal liver metabolism (e.g, albumin, cholesterol, 
retinol-binding protein, transferrin, and paraoxonase) 
and increased synthesis of proteins, which aid in the 
immune and detoxification response (Strnad et al., 
2017). Acute phase proteins are classified as either 
negative or positive based on their directional change 
(Kushner and Mackiewicz, 1987); circulating positive 
APP increase in response to inflammation, whereas 
negative APP concomitantly decrease. In coordina-
tion with APP production, the liver plays a key role in 
detoxifying bacterial components and excreting them 
via bile. Interestingly, more than 60% of intravenously 

infused bacteria are hepatically sequestered within 10 
min of infusion (Yan et al., 2014).

Positive APP aid in pathogen elimination, removal 
of toxic substances, and maintenance of a balanced in-
flammatory response (Ceciliani et al., 2012) and can be 
further classified as minor, moderate, or major depend-
ing on the magnitude of increase observed following 
immune activation. Common positive APP evaluated 
in ruminants include serum amyloid A (SAA), hapto-
globin (Hp), and LPS-binding protein (LBP; Ceciliani 
et al., 2012). The temporal pattern of the APP differs 
such that LBP and SAA typically increase more rapidly, 
whereas the Hp response is delayed. Serum amyloid A 
and Hp are major APP produced primarily by hepato-
cytes but also by various extrahepatic tissues, including 
the mammary gland, pancreas, gastrointestinal tract, 
and ovary, among others (Lecchi et al., 2012). During 
inflammation, SAA displaces ApoA1 from high-density 
lipoproteins and subsequently scavenges cholesterol 
from dying cells (Coetzee et al., 1986; Sato et al., 2016). 
Furthermore, SAA can facilitate bacterial opsonization 
and leukocyte chemotaxis (Shah et al., 2006; De Buck 
et al., 2016) and has antimicrobial activity in the mam-
mary gland (Parés et al., 2020). Haptoglobin’s most 
well-known function is binding hemoglobin released 
during hemolysis, thereby protecting hemoglobin from 
oxidative damage (Buehler et al., 2009) and reducing 
iron availability to bacteria (Eaton et al., 1982). Inter-
estingly, Hp has potent anti-inflammatory actions that 
are crucial for immune tolerance and for maintaining 
a balanced inflammatory response (Raju et al., 2019). 
In particular, Hp inhibits leukocyte activities such as 
respiratory burst by binding to receptor ligand sites 
(Oh et al., 1990; Arredouani et al., 2005). In other 
words, it appears that Hp is a component of a negative 
feedback loop preventing an unchecked proinflamma-
tory cytokine storm or systemic inflammatory response 
syndrome.

Lipopolysaccharide-binding protein is a moderate 
APP produced primarily by hepatocytes but also by 
adipose tissue (Rahman et al., 2015), the gastrointes-
tinal tract, and the mammary gland (Rahman et al., 
2010). Lipopolysaccharide-binding protein facilitates 
LPS presentation to CD14 for TLR4 activation. Al-
though the LPS-CD14-TLR4 interaction can occur 
independently, LBP markedly enhances macrophage re-
sponsiveness (i.e., cytokine production) to LPS (Martin 
et al., 1992). Although classically known for its role in 
LPS recognition, LBP can also recognize other PAMP 
such as lipoteichoic acid (Schröder et al., 2003). Inter-
estingly, constitutive levels of LBP promote immune 
activation, whereas acute phase levels are anti-inflam-
matory and inhibit cytokine production in rodents and 
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humans (Lamping et al., 1998; Zweigner et al., 2001). 
Furthermore, recombinant LBP decreased LPS-induced 
cytokine production in a bovine mammary epithelial 
cell line (Sun et al., 2015). Lipopolysaccharide-binding 
protein exerts its anti-inflammatory action by facilitat-
ing the transfer of LPS to lipoproteins, which are di-
rected to the liver for biliary excretion (Lamping et al., 
1998). As a result, LPS binding to leukocytes is mark-
edly reduced, which in turn attenuates the inflamma-
tory response (Lamping et al., 1998; Eckel and Ametaj, 
2016). In summary, the liver is critical in the immune 
response because it produces APP, which helps remove 
the inflammatory insult without leading to overinflam-
mation. This reprioritization of liver function from a 
metabolic to an immune organ is just one of the many 
whole-body physiological shifts used to support the im-
mune system.

IMMUNOMETABOLISM

During infection, nutrients and energy are redirected 
from profitable purposes to support the immune sys-
tem. Immunological costs contribute to economic con-
sequences, including decreased growth, inefficient feed 
utilization, poor reproduction, and treatment expenses. 
An activated immune system markedly disrupts the 
normal orchestration of metabolism as a strategy used 
to ensure its quick and effective response. Having a 
better appreciation of the shifts in whole-body and 
tissue-specific metabolism that accompany an immune 
response is essential for understanding the potential 
etiology it plays in transition cow disorders.

Warburg Effect

In most nonproliferating, differentiated mammalian 
cells, energy is produced via the combined processes 
of glycolysis, the TCA cycle, and oxidative phosphory-
lation, which generates approximately 36 to 38 ATP 
molecules per molecule of glucose. The fate of pyruvate 
(the end product of glycolysis) is most often dependent 
on oxygen availability. In the presence of oxygen, pyru-
vate continues oxidative degradation through the TCA 
cycle and oxidative phosphorylation. During hypoxia, 
pyruvate is shunted toward lactate production to net 
2 ATP and regenerate NAD+, allowing glycolysis to 
continue (Berg et al., 2002). However, in 1923, Otto 
Warburg demonstrated that highly proliferative cancer 
cells switch to and rely on glycolytic metabolism even 
in the presence of oxygen, a metabolic process known 
as aerobic glycolysis or the Warburg effect (Warburg, 
1923; Palsson-McDermott and O’Neill, 2013). It was 
later noted that this same phenomenon occurred in 
essentially all rapidly proliferating cells, including im-

mune cells (Warburg et al., 1958; Vander Heiden et al., 
2009).

Rapidly proliferating cells use the Warburg effect 
to support growth. Although ATP production from 
aerobic glycolysis is inefficient, it supplies energy at a 
much faster rate compared with oxidative phosphoryla-
tion (Pfeiffer et al., 2001), and this was traditionally 
thought to be the primary advantage of the Warburg 
effect. However, it is unlikely that an enhanced ATP 
requirement is the primary reason cells initiate the 
metabolic switch, as ATP availability is apparently 
not limiting growth in these rapidly proliferating cells 
(Vander Heiden et al., 2009). Rather, glucose oxidation 
by aerobic glycolysis generates intermediates needed to 
support biosynthetic pathways and provides a way to 
maintain cellular redox balance (NAD+/NADH). For 
example, nucleotide, AA, and NADPH production oc-
curs through the pentose phosphate pathway, whereas 
fatty acids needed for membrane lipid production are 
synthesized from citrate in the cytosol. Thus, the in-
tracellular advantages of the Warburg effect are mul-
tifactorial.

Metabolic reprogramming occurs in activated leuko-
cytes of both innate and adaptive immunity and is in-
timately related to the nature of the immune response, 
leading to an extensive increase in glucose utilization 
(Borregaard and Herlin, 1982; O’Neill and Pearce, 2016). 
Activated monocytes, neutrophils, and T- and B-lym-
phocytes express GLUT1, GLUT3, and GLUT4 on the 
plasma membrane, and insulin augments GLUT3 and 
GLUT4 expression (Maratou et al., 2007). The insulin 
receptor is expressed on most activated immune cells 
(Walrand et al., 2006), and insulin increases glucose 
uptake and modulates immunity (Estrada et al., 1994; 
Walrand et al., 2004, 2006; Calder et al., 2007; Ratter 
et al., 2021). Bovine monocytes and polymorphonuclear 
leukocytes also express GLUT1, GLUT3, GLUT4, and 
the insulin receptor on the plasma membrane (Nielsen 
et al., 2003; O’Boyle et al., 2012; Garcia et al., 2015). 
Endotoxin stimulation increases GLUT3 and GLUT4 
expression on bovine monocytes (O’Boyle et al., 2012), 
which may allow for competitive uptake among cells 
when glucose concentrations in the microenvironment 
are low (i.e., early lactation), especially considering 
GLUT3 has a higher affinity for glucose than GLUT1, 
the main glucose transporter in mammary tissue (Zhao 
and Keating, 2007).

Leukocyte Glucose Consumption

Accurately assessing glucose consumption by the im-
mune system in vivo is difficult due to the ubiquitous 
and fluctuating distribution of leukocytes. Early inves-
tigators demonstrated increased whole-body glucose 
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utilization during endotoxin administration (Lang et 
al., 1985). However, interpreting changes in whole-body 
glucose disposal is complicated by the fact that it rep-
resents the net effect of tissues that increase glucose 
uptake and those that decrease their glucose depen-
dence. Mészáros et al. (1987) used tracer technology to 
evaluate tissue-specific differences following endotoxin 
administration and found that glucose utilization was 
increased most significantly in immune-rich tissues 
(i.e., liver, spleen, skin). Additionally, when different 
cell fractions within the liver were examined, glucose 
consumption did not change in parenchymal cells but 
markedly increased in Kupffer cells and neutrophils 
(Mészáros et al., 1991). The aforementioned studies 
clearly demonstrate that endotoxin-mediated changes 
in whole-body glucose disappearance reflect increased 
leukocyte utilization. Better understanding of the ef-
fect of immunoactivation on whole-animal physiologi-
cal glucose consumption has practical implications for 
animal agriculture, as glucose is an incredibly impor-
tant fuel for productive purposes. Therefore, we used 
an LPS-euglycemic clamp as a whole-body proxy of 
quantifying the amount of glucose consumed by an 
activated immune response and discovered that the 
glucose requirement of the immune system was consis-
tent (~1.0 g/kg of BW0.75 per hour) across physiological 
states and species (Kvidera et al., 2016, 2017b,c; Horst 
et al., 2018, 2019); this amount is equivalent to >2 kg 
of glucose/d in lactating cows. The uniformity in the 
glucose requirement across different ages, physiological 
states, and species suggests the extent of fuel utiliza-
tion by activated leukocytes is a conserved response. 
Glucose is an essential fuel for the transition cow in 
particular because the transition-related inflammation 
and onset of milk synthesis occur simultaneously. Thus, 
if a cow is unable to clear an infection or resolve inflam-
mation, shutting down milk synthesis as a means of 
sparing glucose for the immune system takes priority. 
In acute immune challenges, this crucial strategy can 
spare >700 g of glucose within a 12-h period (Kvidera 
et al., 2017b).

COORDINATED SYSTEMIC RESPONSE  
TO IMMUNE ACTIVATION

Considering the enormous importance of an effective 
immune response, it is not surprising that almost every 
tissue and system contributes to the war effort of fight-
ing an infection. The orchestrated control of metabo-
lism during an immune insult is not dissimilar to the 
coordinated adaptations mammals enlist to partition 
nutrients (sparing of glucose) toward the mammary 
gland during healthy lactation. But instead of support-
ing a dominant physiological state, these metabolic 

adjustments are used to spare glucose for the most 
paramount of priorities: an activated immune system.

Carbohydrate Metabolism

Immune activation induces marked alterations in 
whole-body glucose dynamics as a result of increased 
leukocyte glucose requirements. Endotoxemia causes 
whole-body insulin resistance (Lang et al., 1985; Ver-
nay et al., 2012), which specifically reflects a reduc-
tion in insulin-mediated glucose uptake by peripheral 
tissues such as skeletal muscle and adipose (Spitzer 
et al., 1980; Lang et al., 1990). Some reports indicate 
increased adipose tissue glucose uptake (Lang et al., 
1992); however, this is likely explained by the presence 
of resident macrophages that utilize glucose (Weis-
berg et al., 2003). Drastic reductions in milk synthesis 
also occur quickly following endotoxin administration 
and represent an additional method that cows use to 
spare glucose for the immune system (Kvidera et al., 
2017b). Endotoxin administration triggers a biphasic 
response in circulating glucose, with an initial transient 
hyperglycemic period followed by chronic hypoglycemia 
(Blackard et al., 1976; Kvidera et al., 2017b). Hypergly-
cemia results from increased hepatic glucose output via 
glycogenolysis and gluconeogenesis, although the latter 
process is typically delayed (Spitzer et al., 1985; Wal-
dron et al., 2003a, 2006). Increased hepatic glucose out-
put is facilitated by characteristic increases in glucagon 
and cortisol. Epinephrine may also play a role; however, 
the liver becomes less sensitive to epinephrine-mediated 
increases in glucose turnover during immune activation 
(Hargrove et al., 1989) as a result of downregulation of 
adrenergic receptors (Gurr and Ruh, 1980). Interest-
ingly, despite being in a catabolic state and anorexic, 
LPS-infused animals are hyperinsulinemic, a response 
that is conserved across most species. Glucose infusion 
exacerbates hyperinsulinemia (Blackard et al., 1976); 
however, we observed no difference in insulin concentra-
tions between cows infused with LPS alone and those 
infused with LPS in combination with glucose (Kvidera 
et al., 2017b). In addition, hyperinsulinemia persists 
even during hypoglycemia (Kvidera et al., 2017b) and 
when hyperglycemia is prevented by pre-LPS fasting, 
results indicating that hyperglycemia is not the pri-
mary stimulus for increased pancreatic insulin secretion 
during an infection (Hand et al., 1983; Kvidera et al., 
2017c). Immune activation-induced hyperinsulinemia 
may help explain why ketotic cows are sometimes hy-
perinsulinemic relative to their healthy counterparts 
despite being anorexic. The connection between im-
mune activation and ketosis is further discussed below. 
The mechanism by which LPS increases insulin remains 
unclear but likely involves direct effects of LPS on the 
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pancreas (Vives-Pi et al., 2003) or secondary effects by 
the secretagogue glucagon-like peptide 1 (Nguyen et al., 
2014). Together, the peripheral tissue insulin resistance 
and increased hepatic glucose output provide glucose 
at a rate exceeding the immune system’s requirement, 
culminating in transient hyperglycemia. However, once 
the immune system becomes fully engaged, leukocyte 
glucose consumption outpaces these strategies, often 
resulting in substantial hypoglycemia. In fact, if ad-
ministered at a high-enough dose, LPS can cause lethal 
hypoglycemia (Lang et al., 1985, 1993).

Lipid Metabolism

Hypertriglyceridemia, a well-characterized response 
to infection in monogastrics, develops as a result of 
reduced triglyceride (TG) clearance or increased TG 
hepatic production (Takeyama et al., 1990; Memon 
et al., 1992). In response to large LPS doses, hyper-
triglyceridemia occurs as a result of decreased muscle 
and adipose tissue clearance mediated by reduced en-
dothelial lipoprotein lipase (Bagby and Spitzer, 1980). 
In contrast, in response to low LPS doses, it reflects 
increased hepatic production (Feingold et al., 1995). As 
mentioned previously, increased circulating TG likely 
represents a strategy to promote LPS detoxification, 
as lipoproteins can help efficiently detoxify LPS. In 
ruminants, LPS-induced changes in TG concentrations 
are poorly described, as both increased (Ballou et al., 
2008; Graugnard et al., 2013) and decreased (Wang et 
al., 2017) levels have been reported. Discrepancies in 
the response may be explained by sampling time, as the 
increase in TG appears to be short lived (Ballou et al., 
2008; Graugnard et al., 2013). The mode of action for 
transient hypertriglyceridemia in ruminants remains 
unclear, but increased hepatic secretion is unlikely as 
ruminants are thought to have poor capacity to export 
very-low-density lipoprotein (Kleppe et al., 1988).

The lipolytic response to LPS is variable as both in-
creased and decreased NEFA concentrations have been 
reported. In general, administering LPS increases circu-
lating NEFA, but the response is delayed and dampened 
compared with noninflamed animals on the same plane 
of nutrition (Kvidera et al., 2017b). In lactating cows, 
the blunted NEFA response is most likely explained by 
an immediate LPS-induced reduction in milk synthesis, 
which spares energy, whereas feed-restricted cows main-
tain a much higher level of production requiring greater 
adipose mobilization. Other potential factors contribut-
ing to the blunted NEFA response include antilipolytic 
effects of increased insulin (Vernon, 1992) and increased 
circulating lactate, which sensitizes adipocytes to 
insulin action (Ahmed et al., 2010). Increased NEFA 
have also been observed in response to inflammatory 

cytokine infusion (Kushibiki et al., 2003; Yuan et al., 
2013). In immune-activated rodents, NEFA delivered 
to the liver rapidly accumulates into TG, resulting in 
fatty liver (Lanza-Jacoby and Tabares, 1990; Endo et 
al., 2007; Stienstra et al., 2010); the role of LPS in fatty 
liver development is discussed in detail later (see “Fatty 
Liver”). Even though hepatic NEFA uptake and TG 
synthesis are increased, the partial oxidation of NEFA 
via ketogenesis is downregulated in rodents (Takeyama 
et al., 1990; Maitra et al., 2009). Reduced ketogenesis is 
hypothesized to occur via a reduction in gene expression 
of peroxisome proliferator-activated receptor-α (Maitra 
et al., 2009), which regulates enzymes involved in fatty 
acid oxidation, including carnitine palmitoyltransferase 
1, acyl-CoA oxidase, and ATP-citrate lyase (Maitra et 
al., 2009). However, in ruminants administered LPS, 
ketogenesis appears to remain functional (Waldron et 
al., 2003a), yet BHB concentrations markedly decrease. 
In well-fed ruminants, most BHB is produced by the 
rumen epithelium (Pennington, 1952); thus, decreased 
BHB concentrations are at least partially explained by 
LPS-induced reduced feed intake. This explains why 
BHB decreases in feed-restricted animals as well (Horst 
et al., 2018, 2019). Additionally, increased peripheral 
tissue BHB clearance during immune activation in lac-
tating cows likely helps explain decreased BHB (Zarrin 
et al., 2014a; Rodriguez-Jimenez et al., 2020). Most re-
search evaluating how immune activation governs lipid 
metabolism is conducted in mid- and late-lactation 
cows, and it is unclear how accurately these studies can 
model the inflamed periparturient dairy cow.

Protein Metabolism

Administering LPS in rodents markedly increases 
muscle protein degradation (Jepson et al., 1986). Im-
mune activation induces muscle proteolysis as a means 
of providing AA to support gluconeogenesis (Wannem-
acher et al., 1980) and APP synthesis (Iseri and Klas-
ing, 2013, 2014). The extent of skeletal muscle protein 
catabolism to assist APP synthesis far exceeds the true 
requirement due to dissimilarities in the AA composition 
between muscle and APP (Reeds et al., 1994). Amino 
acids not incorporated into APP are deaminated and 
the carbon skeletons are utilized for glucose synthesis, 
whereas the amino groups enter ureagenesis. As a result, 
BUN concentrations consistently increase in monogas-
tric immunoactivation models. In ruminants, changes 
in circulating BUN are more variable as the increase 
may be masked by changes in rumen ammonia flux, 
which is altered due to decreased substrate availability 
and variations in ruminal microbiota composition and 
function (Galyean et al., 1981). In agreement with this, 
we observed no change in circulating BUN within 12 h 
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of LPS administration in lactating cows (Kvidera et al., 
2017b) but did detect increased BUN 18 h postinfusion 
(Horst et al., 2018, 2019). A more reliable marker of 
muscle protein mobilization, 3-methylhistidine (Blum 
et al., 1985), is increased in cows exhibiting a more 
pronounced inflammatory response postpartum (Zhou 
et al., 2017). In addition to supporting glucose and 
APP synthesis, AA released from muscle (particularly 
glutamine and arginine) may also be directly utilized 
as a fuel source for activated leukocytes (Newsholme 
and Newsholme, 1989; Newsholme et al., 1999). In sum-
mary, skeletal muscle catabolism plays a key role in the 
homeorhetic response to immunoactivation.

Ca Homeostasis

In addition to altering energetics, infection mark-
edly reduces circulating Ca. Hypocalcemia is a species-
conserved response to infection in humans (Cardenas-
Rivero et al., 1989; Dias et al., 2013), calves (Tennant 
et al., 1973; Elsasser et al., 1996), dogs (Holowaychuk et 
al., 2012), horses (Toribio et al., 2005), pigs (Carlstedt 
et al., 2000), and sheep (Naylor and Kronfeld, 1986). 
Unsurprisingly, cows administered LPS also become 
hypocalcemic (Griel et al., 1975; Waldron et al., 2003b; 
Kvidera et al., 2017b; Al-Qaisi et al., 2020), as do cows 
challenged with SARA (Minuti et al., 2014; Stefanska 
et al., 2018). Although infection-induced hypocalcemia 
is common and repeatable, the role Ca plays during the 
inflammatory state remains relatively obscure.

Recently, we studied the effects of ameliorating hypo-
calcemia following an LPS challenge in lactating dairy 
cows (Al-Qaisi et al., 2020; Horst et al., 2020a). Admin-
istrating Ca (both orally and intravenously) successfully 
alleviated the severity of LPS-induced hypocalcemia. 
Using the LPS-eucalcemic clamp technique, we calcu-
lated that the total Ca disappearance from the circulat-
ing pool was ~20 g during an acute (12-h) model of 
immune activation (Horst et al., 2020a). Despite both 
models (oral and intravenous Ca) relieving the magni-
tude of hypocalcemia, the ramifications on productivity 
were strikingly different. Providing oral Ca before and 
after LPS administration increased milk yield and feed 
intake (Al-Qaisi et al., 2020). Conversely, maintain-
ing eucalcemia (via intravenous infusion) intensified 
the inflammatory response and had deleterious effects 
on production (Horst et al., 2020a). Coincidentally, 
LPS-induced severe hypocalcemia did not influence 
neutrophil function, nor did rescuing eucalcemia affect 
neutrophil function metrics (Horst et al., 2020a). An 
ostensible explanation for the incongruous results may 
be the administration route. Intravenous Ca appears 
detrimental to hormonal Ca regulation compared with 
oral boluses, and others have suggested that it should 

not be used to treat SCH (Wilms et al., 2019). It is 
likely that secondary signals accompanying alimentary 
Ca absorption might explain why oral Ca improved 
multiple metrics following immunoactivation and the 
intravenous route did not.

Even though the results of the eucalcemic clamp were 
unexpected, they are actually consistent with the lit-
erature on sepsis. Septic humans become hypocalcemic 
(Zaloga, 1992), and Ca administration increases the 
incidence of organ failure and mortality (Malcolm et 
al., 1989). It appears that infection-induced hypocal-
cemia is a protective strategy enlisted to facilitate a 
noninflammatory route to remove circulating endotoxin 
and should not be considered pathologic (Skarnes and 
Chedid, 1964; Collage et al., 2013; Eckel and Ametaj, 
2016). When circulating Ca concentrations are de-
creased, LPS aggregation is inhibited, which allows the 
transfer of LPS to lipoproteins for biliary excretion (a 
noninflammatory route of LPS clearance). In contrast, 
during eucalcemia, LPS disaggregation is inhibited 
(Skarnes and Chedid, 1964), and, consequently, LPS is 
recognized by cells containing TLR4 receptors (result-
ing in a hyperinflammatory response). This mechanism 
may explain why changes in Ca homeostatic regulators 
(i.e., PTH, calcitonin, and vitamin D) favor a hypo-
calcemic state during infection (Nielsen et al., 1997; 
Waldron et al., 2003b; Holowaychuk et al., 2012). The 
relationship between immune activation and hypocal-
cemia has practical relevance for the transition period 
and is further discussed below.

ROLE OF INFLAMMATION IN TRANSITION  
COW PERFORMANCE

We do not believe it is coincidental that immunoac-
tivation-induced disruptions in energetic and Ca me-
tabolism closely resemble changes observed in poorly 
transitioning cows (Figure 1), as hypothesized by 
James Drackley and his colleagues more than 20 yr ago 
(Drackley, 1999; Drackley et al., 2001). Bertoni et al. 
(2008) demonstrated that cows with the most severe in-
flammatory profile were at a substantially higher risk of 
developing transition disorders. In addition, essentially 
all of the major transition cow diseases and disorders 
(i.e., metritis, mastitis, ketosis, milk fever, and RP) 
are preceded by a heightened inflammatory response 
(Huzzey et al., 2009; Dervishi et al., 2015, 2016a,b; 
Zhang et al., 2015, 2016; Abuajamieh et al., 2016).

Appetite

Depressed feed intake before calving is a well-charac-
terized response and is an important determining factor 
in the severity of NEB that ensues (Hayirli et al., 2002). 
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Inflammatory mediators released during an immune 
response have potent anorexic effects (Kushibiki et 
al., 2003) and thus likely contribute to depressed feed 
intake surrounding calving (Kuhla, 2020). Anorexia is 
a universally conserved response to infection (Aubert 
et al., 1997; Wang et al., 2016; Kvidera et al., 2017b,c) 
and occurs even in insects (Adamo, 2005; Shakhar and 
Shakhar, 2015). In support of this, cows exhibiting an 
earlier and larger reduction in feed intake before partu-
rition had a concomitantly more robust increase in Hp 
concentrations (Trevisi et al., 2002; Figures 2 and 3). 
Furthermore, cows with poor liver functionality or ac-
tivity (a proxy of inflammation) had lower feed intake, 
decreased rumination time, an exacerbated NEB, and 
increased NEFA and BHB (Trevisi et al., 2010, 2012; 
Zhou et al., 2016).

Immune activation- and inflammation-induced re-
ductions in feed intake and rumination may increase 
the opportunity for abomasal migration and subsequent 
DA. In fact, endotoxin administration during the peri-
parturient period increases the incidence of DA (Zebeli 
et al., 2011), corroborating inflammation’s role in the 
disorder. In addition to DA, inflammation has also been 
associated with ketosis development. We and others 
have previously demonstrated that cows that develop 
ketosis postpartum (and no other overt health event) 
had higher concentrations of LPS, cytokines, APP, and 
lactate before disease diagnosis (Abuajamieh et al., 
2016; Zhang et al., 2016), and these changes could be 
observed as early as 8 wk before calving (Zhang et al., 
2016). Additional indicators of inflammation such as 
increased markers of liver impairment (e.g., glutamic-
oxaloacetic transaminase and bilirubin), decreased 
negative APP (e.g., retinol), increased neutrophil and 
monocyte activation markers, and decreased circulat-
ing Zn have also been observed in ketotic cows relative 
to their healthy herdmates (Rodriguez-Jimenez et al., 
2018; Mezzetti et al., 2019). Shen et al. (2019) detected 
increased hepatic expression of inflammatory genes 
(e.g., nuclear factor-κβ, proinflammatory cytokines, in-
ducible nitric oxide synthase) and circulating cytokines 
in ketotic cows; however, the authors concluded that 
ketosis caused inflammation rather than vice versa. We 
believe that inflammation before calving accentuates 
the reduction in feed intake, stimulates increased adi-
pose tissue mobilization, creates an additional drain for 
glucose, and thus subsequently promotes ketone syn-
thesis. Evidence suggests that inflammatory cytokines 
may also act directly on the adipocyte to stimulate 
lipolysis (see “Lipid Metabolism”), further increasing 
the opportunity for ketone body production. Therefore, 
decreased feed intake, increased NEFA, and hyperke-
tonemia are likely consequences of immune activation 
and are not themselves causative of transition disorders 

(Figures 2 and 3). It is important to note that increased 
NEFA and ketones in the absence of inflammation and 
poor lactational performance should not be considered 
problematic, as these are necessary mechanisms that 
healthy cows enlist to spare glucose for lactogenesis and 
galactopoiesis.

Fatty Liver

Fatty liver is traditionally thought to occur when 
excessive adipose tissue mobilization and correspond-
ing hepatic NEFA uptake exceed the liver’s capacity 
to fully utilize them (Herdt, 1988). Triglycerides are 
believed to rapidly accumulate because of the ruminant 
liver’s poor capacity to export very-low-density lipo-
protein (Kleppe et al., 1988). In nonruminants, hepatic 
steatosis is commonly observed during intestinal hyper-
permeability pathologies (Ilan, 2012; Hamarneh et al., 
2017) and can be induced by inflammatory cytokine 
infusion (see “Lipid Metabolism”). Inflammatory cyto-
kines produced in response to LPS recognition nega-
tively affect hepatic lipid trafficking (Lanza-Jacoby and 
Tabares, 1990; Endo et al., 2007; Stienstra et al., 2010). 
Inflammation’s role in hepatic lipid metabolism is con-
firmed by LPS and cytokine recognition interference 
experiments that ameliorate liver fat accumulation 
(Endo et al., 2007; Spruss et al., 2009; Jin et al., 2017; 
Jia et al., 2018). It is generally believed that increased 
hepatic NEFA delivery and inflammation must coincide 
for progression of fatty liver disease, which is a concept 
known as the 2-hit hypothesis (Day and James, 1998; 
Csak et al., 2011), a scenario that clearly occurs in 
periparturient diary cows. Therefore, strong evidence 
demonstrates a role of immune activation and inflam-
mation in fatty liver development.

In transition cows, heightened circulating inflam-
matory markers precede fatty liver (Ohtsuka et al., 
2001; Ametaj et al., 2005, 2010), suggesting that the 
same relationship between hepatic inflammation and 
lipid accumulation likely exists in ruminants. Addi-
tionally, daily TNF-α infusion in late-lactation cows 
altered hepatic lipid handling and increased hepatic 
TG storage (Bradford et al., 2009). Graugnard et al. 
(2013) demonstrated an exacerbated increase in liver 
TG content in cows that were overfed prepartum and 
administered intramammary LPS postpartum. How-
ever, no change in liver TG content was observed with 
continuous TNF-α infusion in late lactation (Martel et 
al., 2014) or repeated infusions in early-lactation cows 
(Yuan et al., 2013). Reasons for the inconsistencies are 
not clear, but infusing a single antigen (LPS) or cyto-
kine (TNF-α) likely does not model the complexities 
associated with a natural infection. Regardless, effects 
of immune activation on adipose tissue mobilization 
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Figure 3. Examples of the temporal patterm of inflammation (A and B), feed intake and milk yield (C and D), and metabolism (E and F) 
in healthy and unhealthy (immune-activated) cows. The vertical dashed line represents parturition, and the x-axis represents time. NEFA = 
nonesterified fatty acids.
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(both by direct action on adipocytes and as a result of 
decreased feed intake) and hepatic NEFA delivery cou-
pled with inflammation-induced alterations in hepatic 
lipid handling may culminate in fatty liver in transition 
cows. An additional mechanism by which inflamma-
tion may increase fatty liver is preferential shunting 
of lipoprotein–LPS complexes to hepatocytes at a rate 
exceeding biliary excretion. Collectively, the body of 
evidence strongly suggests that immune activation and 
inflammation are key participators in pariparturient 
hepatic steatosis.

Milk Fever

Clinical hypocalcemia incidence has been markedly 
reduced with the introduction of therapeutic and pro-
phylactic strategies (Charbonneau et al., 2006; Rein-
hardt et al., 2011); however, SCH remains prevalent. It 
has recently been recognized that the temporal pattern 
of circulating Ca differs markedly across SCH cases such 
that it is sometimes transient, whereas other times it is 
persistent or delayed (Caixeta et al., 2017; McArt and 
Neves, 2020). For example, McArt and Neves (2020) 
retroclassified cows into groups based on their post-
calving temporal Ca concentrations: normocalcemia, 
transient SCH, persistent SCH, or delayed SCH. In-
terestingly, cows experiencing transient SCH produced 
more milk and were as healthy as normocalcemic cows, 
whereas the opposite (i.e., higher health risk and hin-
dered productivity) was observed in cows experiencing 
either persistent or delayed SCH. The distinguishing 
feature between these different SCH types may be im-
mune activation.

As previously mentioned (see “Calcium Homeosta-
sis”), hypocalcemia is a well-characterized response 
to LPS, which presumably reflects a nonleukocyte 
strategy of LPS detoxification via lipoprotein seques-
tration. Impressively, early investigators hypothesized 
that immune activation caused milk fever (Thomas, 
1889; Hibbs, 1950), but until recently (Aiumlamai et 
al., 1992; Eckel and Ametaj, 2016) it has rarely been 
considered a contributing factor. It is of interest to 
elucidate whether inflammation can explain the mani-
festation of the different hypocalcemia types, especially 
considering their associations with poor performance. 
Akin to increased NEFA and hyperketonemia, strong 
evidence suggests that some hypocalcemia is a conse-
quence of immune activation and is not itself causative 
of transition disorders.

Immunosuppression

More than 30 yr ago, dairy science pioneers described 
impairments in leukocyte cellular functions during the 

periparturient period (Kehrli et al., 1989); this immu-
nosuppressive state has continued to be a topic of inten-
sive investigation (Goff and Horst, 1997; Kimura et al., 
2002; Lacetera et al., 2004, 2005; LeBlanc, 2020). Cellu-
lar leukocyte functions such as neutrophil phagocytosis, 
the ability of lymphocytes to respond to mitogens and 
produce antibodies, peripheral blood mononuclear cell 
DNA synthesis, immunoglobulin concentration, INFγ, 
complement, and lysozyme are often depressed prepar-
tum (Kehrli et al., 1989; Goff and Horst, 1997; Mallard 
et al., 1998; Lacetera et al., 2005; Trevisi and Minuti, 
2018). In large part, changes in cellular function are 
most evident in the immediate postpartum period (Goff 
and Horst, 1997; Trevisi and Minuti, 2018). In contrast 
to past literature, recent transcriptome analysis reports 
have demonstrated that many leukocyte cellular func-
tions are actually upregulated postpartum (Mann et 
al., 2019; Minuti et al., 2020). Interestingly, Mann et 
al. (2019) demonstrated that leukocyte inflammatory 
pathways were upregulated to a larger extent in cows 
with a greater energy deficit (as determined by NEFA, 
BHB, and glucose concentrations). Although the exact 
sequence of events cannot be confirmed, it could be 
suggested that cows with an exacerbated inflamma-
tory response have a subsequent greater magnitude 
of nutrient deficit and metabolic disease, as suggested 
above. Generalizing that an animal’s entire immune 
system is suppressed based on the ex vivo function of 
one cell type can lead to oversimplification. Recently, 
it has been suggested that the immune system is not 
necessarily suppressed but rather is in an altered and 
dynamic state around parturition (Mor and Cardenas, 
2010; Trevisi and Minuti, 2018; Minuti et al., 2020). 
This involves a disparity between systemic inflamma-
tion and the leukocyte cell function where systemic 
inflammation intensifies simultaneously with decreas-
ing leukocyte function. Although this may hamper the 
ability of some leukocytes to clear pathogens, it also 
may be keeping leukocyte-mediated inflammation in 
check to prevent collateral tissue damage. The immune 
system is extremely complex and requires a coordinated 
effort of hundreds of different cell types to ensure that 
the insult is neutralized without exerting overinflam-
mation. This often involves reduced function of one cell 
type and increased function of another. An increase in 
synthesis and secretion of APP simultaneous with a 
decrease in function in circulating neutrophils may be 
representative of this survival strategy.

RP and Reproductive Performance

Expulsion of fetal membranes necessitates an im-
mune response as leukocytes facilitate the degradation 
of the cotyledon-caruncle attachment that separates 
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the placental membrane from maternal tissue (LeBlanc, 
2008). The importance of inflammation in this response 
is evident by the fact that blocking inflammation (via 
administering nonsteroidal anti-inflammatory drugs, 
NSAID) increases the incidence of RP (Newby et al., 
2017). Interestingly, intermittent endotoxin administra-
tion during the periparturient period also increases the 
incidence of RP (Zebeli et al., 2011). Results of this 
repeated insult model are consistent with decreased 
leukocyte function that may occur as a result of an 
amplified inflammatory response. Retained placenta 
increases the risk of uterine infections, and this appears 
to be at least partially mediated by its effects on the 
elimination of lochia, which contains high concentra-
tions of LPS (Ametaj, 2017).

Both localized and systemic inflammation can nega-
tively affect reproductive performance (Peter and Bosu, 
1988; Williams et al., 2008; Sheldon et al., 2009; Lavon 
et al., 2011; Asaf et al., 2013). For example, uterine in-
fection prolongs the luteal phase (Peter and Bosu, 1988; 
Williams et al., 2008; Sheldon et al., 2009), disrupts 
steroidogenesis (Sheldon et al., 2009), and has deleteri-
ous effects on postpartum folliculogenesis (Huszenicza 
et al., 1999). In addition, distal inflammation (e.g., 
mastitis) affects follicular steroid concentrations and 
impedes oocyte maturation (Lavon et al., 2011; Asaf et 
al., 2013). Early-lactation mastitic cows have delayed 
breeding and increased days open (Barker et al., 1998). 
Endotoxin administration significantly disrupts hypo-
thalamic and pituitary hormone release and ovarian 
responsiveness (Coleman et al., 1993; Battaglia et al., 
2000) and causes abortion (Giri et al., 1990). Thus, 
regardless of the origin, immune activation and the 
resulting inflammation negatively influence immediate 
and future reproduction. The direct effects of LPS and 
the ensuing inflammatory milieu on reproduction likely 
explain the modest correlations that NEFA, ketones, 
and Ca have with fertility (because immune activation 
also directly affects these metabolites).

NSAID

Considering the deleterious effects of excessive in-
flammation and transition cow health, NSAID have 
become an attractive strategy to negate postpartum 
diseases. In fact, administering NSAID to transitioning 
dairy cows increased both immediate and long-term 
milk yield (Farney et al., 2013b; Carpenter et al., 2016). 
However, moderate inflammation is still observed in 
cows that successfully navigate the transition period, 
suggesting that some level of inflammation is tolerable 
and even required. In fact, inhibiting inflammation can 
actually increase the incidence of unfavorable health 
outcomes (i.e., fever, stillbirth, RP, metritis) and de-

crease milk yield (Shwartz et al., 2009; Newby et al., 
2013, 2017). Furthermore, side effects of NSAID may 
include interference with fiber digestion, reduced feed 
intake, hypoglycemia, reduced energy balance, intestinal 
hyperpermeability, and increased inflammatory activity 
in adipose tissue (Farney et al., 2013a; Carpenter et al., 
2016, 2017; Utzeri and Usai, 2017; Takiya et al., 2019). 
Additionally, inconsistencies exist as NSAID can have 
negative or positive effects on milk yield depending on 
parity (Farney et al., 2013b), and fertility outcomes 
are dependent on timing (Spencer et al., 2020). Some 
of the variation in the aforementioned studies may 
be due to the different NSAID used (e.g., salicylate, 
flunixin, meloxicam) and the complexities that may 
exist within each class. Current knowledge regarding 
NSAID effects on cow health and productivity suggests 
that inflammation is a double-edged sword in which a 
moderate amount is needed to ensure a successful tran-
sition and that benefits may favor a particular parity 
or administration timing. Therefore, although modulat-
ing periparturient inflammation to improve cow health 
and performance holds promise, the concept remains in 
its infancy and requires further refinement. As of now, 
management, nutritional, and veterinary efforts should 
be focused on preventing immune activation and thus 
the ensuing inflammatory sequelae.

CONCLUSIONS

Marked adjustments in energetic and mineral 
metabolism that are necessary for lactogenesis and 
galactopoiesis occur during the periparturient period. 
The homeorhetic changes are characterized by in-
creased circulating NEFA, hyperketonemia, and SCH. 
The magnitude of changes in these 3 are mildly cor-
related with suboptimal feed intake and productivity, 
health problems and culling, and poor reproduction. 
The observed association between negative transition 
cow outcomes and high NEFA, hyperketonemia, and 
hypocalcemia has errantly evolved into a causal rela-
tionship. Despite a lack of supportive evidence from 
controlled and intervening experiments, the global 
dogma is that efforts should be made to prevent the 
increase in NEFA and ketones and decrease in circu-
lating Ca. Immune activation is accompanied by large 
changes in whole-body energetic and mineral metabo-
lism to support the nutrient requirements of leukocytes. 
Incidentally, many of these adjustments are similar to 
those observed in a poorly transitioning dairy cow. Of 
particular importance is immune-induced hypophagia 
and the metabolic consequences of this during rapid 
rates of increased milk yield. In transition dairy cows, 
immune activation likely stems from a compromised 
epithelial barrier at the uterus, mammary gland, intes-
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tine, or any combination thereof. Consequently, almost 
all periparturient dairy cows, even overtly healthy ones, 
experience periparturient inflammation. The severity 
of the inflammation dictates the phenotypic outcomes 
and precedes clinical diagnosis of a disorder or disease. 
It is time to re-evaluate the traditional paradigm of the 
periparturient dairy cow. The body of evidence linking 
changes in increased circulating NEFA, hyperketone-
mia, and hypocalcemia with negative outcomes has 
never been overly strong. Further, the doctrine lacks 
biological plausibility as these are natural homeorhetic 
adaptations that healthy cows use to synthesize milk, 
an integral component of the mammalian reproductive 
cycle. A more likely reason for the observed correlation 
is that they are merely signs of immune activation.
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