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Preface 

The field of structural optimization is still a relatively new field undergoing rapid 
changes in methods and focus. Until recently there was a severe imbalance between 
the enormous amount of literature on the subject, and the paucity of applications 
to practical design problems. This imbalance is being gradually redressed. There is 
still no shortage of new publications, but there are also exciting applications of the 
methods of structural optimizations in the automotive, aerospace, civil engineering, 
machine design and other engineering fields. As a result of the growing pace of 
applications, research into structural optimization methods is increasingly driven by 
real-life problems. 

t-.Jost engineers who design structures employ complex general-purpose software 
packages for structural analysis. Often they do not have any access to the source 
program, and even more frequently they have only scant knowledge of the details of 
the structural analysis algorithms used in this software packages. Therefore the major 
challenge faced by researchers in structural optimization is to develop methods that 
are suitable for use with such software packages. Another major challenge is the high 
computational cost associated with the analysis of many complex real-life problems. 
In many cases the engineer who has the task of designing a structure cannot afford 
to analyze it more than a handful of times. 

This environment motivates a focus on optimization techniques that call for mini
mal interference with the structural analysis package, and require only a small number 
of stfllctural analysis runs. A class of techniques of this type, pioneered by Lucien 
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Preface 

Schmit, and which are becoming widely used, are referred to in this book as sequen
tial approximate optimization techniques. These techniques use the analysis package 
for the purpose of constructing an approximation to the structural design problem, 
and then employ various mathematical optimization techniques to solve the approx
imate problem. The optimum of the approximate problem is then used as a basis for 
performing one or more structural analyses for the purpose of updating or refining 
the approximate design problem. Most of the approximate design problems are based 
on derivatives of the structural response with respect to design parameters. 

In the new environment the structural designer is typically called upon to provide 
the interface between a commercially available analysis program, and a commercially 
available optimization software package. The three most important ingredients of 
the interface are: sensitivity derivative calculation, construction of an approximate 
problem, and evaluation of results for the purpose of fine-tuning the approximate 
problem or the optimization method for maximum efficiency and reliability. 

This textbook is organized so that its middle part-Chapters 6, 7 and 8 deal with 
the two issues of constructing the approximate problem and obtaining sensitivity 
derivatives. Evaluating the results of the optimization calls for a basic understanding 
of optimality conditions and optimization methods. This is dealt with in Chapters 
1 through 5. The last three chapters deal with the specialized topics of optimality 
criteria methods, multi-level optimization, and applications to composite materials. 

The material in the textbook can be used in various ways in teaching a graduate 
course in structural optimization, depending on the available amount of time, and 
whether students have prior preparation in optimization techniques. 

Without prior preparation in optimization techniques it is suggested that the 
minimum time requirement is one semester. It is suggested to cover Chapter 1, 
sections 2.1, 2.2 and 2.3 of Chapter 2, Sections 3.1 and 3.4 of Chapter 3, some 
material from Chapters 4 and 5 depending on the instructor's favorite optimization 
methods, most of Chapter 6 and the first two sections of Chapter 7. With a two
quarter sequence it is suggested to cover Chapters 1 and 2, selected t.opics of Chapters 
3 to 5 and Chapter 6 in the first quarter, and Chapters 7, 9, 11 and either Chapter 
8 or Chapter 10 in the second quarter. Finally, in a two-semester sequence it is 
recommended to cover Chapters 1 through 6 in the first semester, and Chapters 7 
through 11 in the second semester. 

With a preparatory course in mathematical optimization a one quarter and a 
one semester versions of the course can be considered. A one-quarter version could 
include Chapters 1 and 2, sections 3.1, 3.2, 3.3 and 3.7 of Chapter 3, and Chapters 
6, the first two sections of Chapter 7, and Chapter 9 or 11.. A one-semester version 
could include the same part of Chapters 1 through 7 and then Chapters 9 through 
11. 

The authors gratefully acknowledge the assistance of Drs. H. Adelman, B. 
Barthelemy, J-F. Barthelemy, L. Berke, R. Grandhi, D. Grierson, E. Haug, R. Plaut, 
J. Sobieski, and J. Starnes in reviewing parts of the manuscript and offering critical 
comments. 
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Introd uction 1 

Optimization is concerned with achieving the best outcome of a given operation 
while satisfying certain restrictions. Human beings, guided and influenced by their 
natural surroundings, almost instinctively perform all functions in a manner that 
economizes energy or minimizes discomfort and pain. The motivation is to exploit 
the available limited resources in a manner that maximizes output or profit. The 
early inventions of the lever or the pulley mechanisms are clear manifestations of 
man's desire to maximize mechanical efficiency. Innumerable other such examples 
abound in the saga of human history. Douglas 'Wilde [1] provides an interesting 
account of the origin of the word optimum and the definition of an optimal design. 
We will paraphrase Wilde and offer the definition of an optimal design as being 'the 
best feasible design according to a preselected quantitative measure of effectiveness'. 

As it is beyond the scope of this text to trace the historical development of op
timization, we list a few of the more recent references on the suhject of structural 
optimization. These references [2~ 19] trace the development of the field of structural 
optimization dating back to the eighteenth century. The importance of minimum 
weight design of structures was first recognized hy the aerospace industry where 
aircraft structural designs are often controlled more by weight than hy cost consider
ations. In other industries dealing with civil, mechanical and automotive engineering 
systems, cost may be the primary consideration although the weight of the system 
does affect its cost and performance. A growing realization of the scarcity of raw ma
terials and a rapid depletion of our conventional energy sources is being translated 
into a demand for lightweight, efficient and low cost structures. This demand in turn 
emphasizes the need for engineers to be cognizant of techniques for weight and cost 
optimization of structures. The objective of this text is to acquaint students and 
practicing engineers with these techniques. 

1.1 Function Optimization and Parameter Optimization 

Before the advent of high speed computation most of the solutions of structural 
analysis problems were based on formulations employing differential equations. These 
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Chapter 1: Introduction 

differential equations were solved analytically (e.g., by using infinite series) with oc
casional use of numerical methods at the very end of the solution process. The 
unknowns were functions (representing displacements, stresses, etc.) defined over a 
continuum. 

Figure 1.1.1 Beam example. 

The early beginning of structural optimization followed the same route, in that 
the unknowns were functions defining the optimal structural properties. Consider, 
for example, the beam shown in Figure 1.1.1. Structural analysis is concerned with 
finding the displacement w( x) of the beam by solving the well-known governing equa
tion 

J2 ( J2w) dx2 Ef dx2 = q(x). (1.1.1) 

The structural designer may want to find the optimum distribution of the moment of 
inertia f( x) of the beam along its length. Of course, the notion of optimality requires 
that we have an objective function that we wish to maximize or to minimize. For 
example, the objective function may be the mass of the beam. For many common 
beam cross sections the mass m is given as 

m = c 11 fP(x)dx, (1.1.2) 

where the exponent p is usually between 0.4 and 0.5, and c is a known constant. An 
optimization problem typically involves a number of constraints. Without any con
straint the optimum beam would have zero moment of inertia and zero mass. In the 
design of a beam, a typical constraint would be to limit the maximum displacement 
of the beam to some specified allowable wo, 

lOmax = max lo{x) ~ woo 
0$",9 

(1.1.3) 

It is possible to obtain the necessary conditions for optimality in the form of 
a differential equation in f(x) and w(x). The mathematical discipline that deals 
with this type of problem is called the calculus of variations, and is briefly discussed 
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Section 1.2: Elements of Problem Formulation 

in Chapter 2. The class of structural optimization problems that seeks an optimum 
structural function is called function or distributed parameter structural optimization. 

In the late fifties and early sixties high speed electronic computers had a profound 
effect on structural analysis solution procedures. Techniques that were well suited to 
computer implementation, in particular the finite element method (FEM), became 
dominant. The finite element method discretizes the structure at the very beginning 
of the analysis, so that the unknowns in the analysis are discrete values of displace
ments and stresses at nodes of the finite element model, rather than functions. The 
differential equations solved by earlier analysts are replaced by systems of algebraic 
equations for the variables that describe the discretized system. 

The same transformation began to take hold in the early sixties in the field of 
structural optimization. When optimizing a structure discretized by finite elements 
it is natural to discretize the structural properties which are optimized. Consider 
again the beam example of Figure 1.1.1. A finite element solution for the displace
ments starts by dividing the beam into a number of constant-property segments or 
finite elements. An optimization of the same beam would naturally use the moments 
of inertia of the segments as design parameters. Thus, instead of searching for an 
optimum function, we will be looking for the optimum values of a number of param
eters. The mathematical discipline t.hat deals with parameter optimization is called 
mathematical programming. The bulk of this t.ext (Chapters 3-7, 9-11) is concerned, 
therefore, with mathematical programming techniques and their application to struc
tural optimization problems defined by discretized models. In particular, it is often 
implicitly assumed that the structural analysis is based on the finite element method. 

1.2 Elements of Problem Formulation 

1.2.1 Design Variables 

The notion of improving or optimizing a structure implicitly presupposes some free
dom to change the structure. The potential for change is typically expressed in terms 
of ranges of permissible changes of a group of parameters. Such parameters are usu
ally called design variables in structural optimization terminology and denoted by 
a vector x = (Xl, X2, ... , xn) in this book. Design variables can be cross-sectional 
dimensions or member sizes, they can be parameters controlling the geometry of the 
structure, its material properties, etc. Design variables may take continuous or dis
crete values. Continuous design variables have a range of variation, and can take any 
value in that range. For example, in the design problem of Figure 1.1.1 the moment 
of inertia of any segment of the beam may be considered a continuous design variable. 
Discrete design variables can take only isolated values, typically from a list of permis
sible values. Material design variables are often discrete. If we consider five materials 
in the design of the beam, then we can define a design variable that can take any 
integer value from one to five to represent the material choice. Design variables that 
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Chapter 1.' Introduction 

are commonly treated as continuous are often made discrete due to manufacturing 
considerations. For example, if the beam of Figure 1.1.1 is designed to minimize cost, 
then we may need to limit ourselves to commercially available cross sections. The 
moment of inertia would then cease to be a continuous design variable, and would 
become a discrete one. 

In most structural design problems we tend to disregard the discrete nature of 
the design variables in the solution of the optimization problem. Once the optimum 
design is obtained, we then adjust the values of the design variables to the nearest 
available discrete value. This approach is taken because solving an optimization 
problem with discrete design variables is usually much more difficult than solving a 
similar problem with continuous design variables. However, rounding off the design 
to the closest integer solution works well when the available values of the design 
variables are spaced reasonably close to one another, so that changing the value of a 
design variable to the nearest integer does not change the response of the structure 
substantially. In some cases the discrete values of the design variables are spaced too 
far apart, and we have to solve the problem with discrete variables. This is done by 
employing a branch of mathematical programming called integer programming. In 
this text it is assumed that design variables are continuous unless otherwise stated. 

JI I 

== 

Figure 1.2.1 Optimal thickness distribution of a plate. 

The choice of design variables can be critical to the success of the optimization 
process. In particular it is important to make sure that the choice of design variables is 
consistent with the analysis model. Consider, for example, the process of discretizing 
a structure by a finite element model and applying the optimization procedure to the 
model. If the design variable distribution has a one-to-one correspondence with the 
finite element model we can encounter serious accuracy problems. For example, the 
plate shown in Figure 1.2.1 was analyzed [20] by a 7 X 7 finite element mesh, with 
most design variables specifying the thickness of individual elements. While the 7 x 7 
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Section 1.2: Elements of Problem Formulation 

model was adequate for the initial design which had uniform thickness, it was not 
adequate for the final design shown in the Figure. 

(a) (b) 

Figure 1.2.2 Optimized shape of a hole in a plate, (a) initial design, (b) final design. 

A similar problem may be encountered when the coordinates of nodes of the finite 
element model are used as design variables. For example, the shape of the hole in the 
plate shown in Figure 1.2.2 was optimized [21] to reduce the stress concentration near 
the hole with the coordinates of the boundary nodes serving as design parameters. 
Again, the finite element model was adequate for the analysis of the initial circular 
shape of the hole, but not the "optimal shape" obtained. In general, the distribution 
of design variables should be much coarser than the distribution of finite elements 
(except for skeletal structures where often each element corresponds to a physical 
member of the structure) 

1.2.2 Objective Function 

The notion of optimization also implies that there are some merit function f(x) or 
functions f(x) = [II (x), h(x), ... , fp(x)] that can be improved and can be used as a 
measure of effectiveness of the design. The common terminology for such functions is 
objective functions. Optimization with more than one objective is generally referred 
to as Multicriteria Optimization. For structural optimization problems, weight, dis
placements, stresses, vibration frequencies, buckling loads, and cost or any combina
tion of these can be used as objective functions. Consider, for example, the three-bar 
truss of Figure 1.2.3. Our design problem may be to vary the horizontal locations of 
the three support points so as to minimize the mass of the truss and t.he stresses in 
its members. We have four objective functions: the mass and the three stresses. 

Dealing with multiple objective functions is complicated and is usually avoided. 
There are two intuitive ways commonly used for reducing the number of objective 
functions to one. The first way is to generate a composite objective function that 
replaces all the objectives. For example, if the mass of the structure is denoted m and 
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2 3 

100 in 

P=l0000lb ... . 
x,u 

Y,v 

Figure 1.2.3 Three-bar truss example. 

the stresses in the three bars as ai, i = 1,2,3, then a composite objective function I 
could be 

(1.2.1) 

where the Qi are weighting coefficients selected to reflect the relative importance of 
the four objective functions. 

The second intuitive way to reduce the number of objective functions is to select 
the most important as the only objective function and to impose limits on the others. 
Thus we can formulate the three-bar truss design problem as minimization of mass, 
subject to upper limits on the values of the three stresses. 

When it is not intuitively clear how to weight or choose between the objective 
functions, a systematic approach to the problem is through a branch of mathematical 
programming called Edgeworth-Pareto optimization that deals with multiple objective 
functions [22-24]. Stadler [25,26] was probably the first to apply Edgeworth-Pareto 
optimality to structural design. More recent applications can be found in Refs. 27-31. 

A vector of design variables x' is said to be Edgeworth-Pareto optimal if, for any 
other vector x, either the values of all the objective functions remain the same, or 
at least one of them worsens compared to its value at x*. \Vhen it is not possible to 
specify intuitively the relative importance of the objective functions in an equation 
such as (1.2.1), the values of the weights Qi, i = 0,1,2,3 in Eq. (1.2.1) can be decided 
by studying various Edgeworth-Pareto optimal designs. Thus the design process is an 
interactive process, and the imposition of constraints is postponed until knowledge of 
the optimum performance is gained by studying Edgeworth-Pareto optimal designs. 

One of the approaches for generating a pareto-optimal solution to multiple ob
jective function optimization problems is based on the minimization of the deviation 
of the individual objective functions from their individual minimum values. If the 
independent minimizations of each of the objective functions result in function val
ues of Ii, 12, ... , I; associated with design points xi, x2, ... , x;, then for an arbitrary 
value of the design variable vector x the normalized distance of each of the objective 
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Section 1.2: Elements of Problem Formulation 

functions from its individual optimum is given by 

i=I, ... ,p (1.2.2) 

It is then possible to pose the problem either as the minimization of the largest 
deviation of the objective functions from their individual minima (too norm), 

minimize max [di(x)] , 
l=l, ... ,p (1.2.3) 

or of the distance (i.e., the l2 or Euclidean norm) from the reference point f* = 
(Ji, f;, ... ,f;) to f = (II, 12, ... , fp); 

p 

minimize L dT . 
i=1 

(1.2.4) 

It is also possible to use weighting coefficients in Eq. (1.2.4) for the contributions 
of the individual objective functions. A more detailed discussion of the methods for 
solving multicriteria optimization problems and their design applications is given by 
Eschenauer et al. [31]. 

Example 1.2.1 

Consider the design of cross-sectional dimensions of a rectangular beam so as to 
minimize the area. At the same time it is desired to minimize the maximum shear 
stress in the beam corresponding to a unit shear force. Based on some physical 
constraints, the two variables, wand h, which are the width and height of the 
cross-section are limited to be in the range 0.5 ~ w, h ~ 5 units. 

h 

I" ~I w 
2 w 3 4 5 2 w 3 4 5 

area contours shear stress contours 

Figure 1.2.4 Design of a beam cross-section for minimum area and minimum shear 
stress. 
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The contour lines for the two objective functions, 

II = A = wh, and 
3 

h = T = 2wh ' (a) 

are shown in Figure 1.2.4 . The individual minima for the two functions are at the 
opposite corners of the design space, wi = hi = 0.5 and w2 = h; = 5.0, with 
associated function values of N = 0.25 in2 and f2 = 0.06 Ib/in2 • 

The weighted objective function approach with equal weights results in minimiza
tion of the function 

3 
F=wh+-h · 2w 

(b) 

Since design variables wand h appear everywhere in the form of a product, we 
can treat this product as a single variable. Minimization of Eq. (b) with respect 
to the product results in w"h" = fil2 = 1.225 with objective function values of 
It = 12 = 1.225. If, on the other hand, we use the minimization of the Euclidean 
norm of the distance from the individual minima, the function that needs to be 
minimized is 

F = (hW - 0.25)2 + (~ - 0.06) 2 

0.25 0.06 
( c) 

The resulting design is w"h' = 2.5 with objective function values of Ii = 2.5 and 12 = 
0.6. 

6 w*h* = 0.25 

'""' 5 '" '" ~ 
4 

w*h* = 0.5 
'" ~ w*h* = 1.225 
~ 
~ 3 
'" '-' ~W*h*=2.5 
"'2 ~W*h*=3.0 w*h* = 25.0 ....... 

1 ~ 
5 10 15 20 25 

f 1 (area) 

Figure 1.2.5 Pareto-optimum solutions for the beam design problem. 

The two designs obtained above and the designs corresponding to the minimiza
tion of the individual functions constitute a pareto-optimum. There are other so
lutions that satisfy the condition for pareto-optimality. These solutions can be ob
tained either by varying the weighting coefficients of the individual objectives, or by 
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imposing one of the objectives as a constraint and varying the desired level of this 
constraint. For example, if the second objective function is turned into a constraint 
by imposing a condition that h::; 0.5 while minimizing the area, we would obtain a 
design w*h* = 3.0 with objective function values of fi = 3.0 and I:; = 0.5. Similarly, 
if we minimize h by imposing a constraint that h ::; 0.5, we obtain w* h* = 0.5 with 
Ii = 0.5 and I:; = 3. All of these solutions lie on a curve in the function space that 
connect the two individual minima as shown in Figure 1.2.5 . This curve is usually 
called the efficiency curve. • •• 

1.2.3 Constraints 

The formulation of the three-bar truss example where the stresses are subject to 
upper limits, and the beam cross-section design problem where the height and width 
variables are limited to take values only in a certain range, introduces the notion 
of limits on the design variables. Because of their simplicity, these upper and lower 
limit constraints on the values of the design variables are often treated in a special 
way by solution procedures, and are refereed to as side constraints. Constraints 
which impose upper or lower limits on quantities are by their very nature inequality 
constraints. Sometimes we need eq1tality constraints. For example, the three-bar 
truss may be designed subject to a requirement that the vertical component of the 
displacement at the point of application of the force be zero. Another example of 
equality constraints is provided by the equations of equilibrium that a structure must 
satisfy in terms of its design variables. 

Some strategies for the solution of nonlinear optimization problems are unable 
to handle equality constraints, but are limited to inequality constraints only. In 
such instances it is possible to replace the equality constraint with two inequality 
constraints that form upper and lower bound constraints with a same limiting value. 
However, it is usually undesirable to increase the number of constraints. Another way 
of handling equality constraints in such situations will be discussed later in Chapter 
5. 

1.2.4 Standard Formulation 

The notation adopted in this text for design variables, objective function and con
straints is summarized in the following formulation of the optimization problem. In 
this text we deal only with problems formulated to have a single objective function. 

minimize I (x) 
such that gj(x) ~ 0 , 

hk(x) = 0 , 

j = 1, ... , ng , (1.2.5) 
k = 1, ... , ne , 

where x denotes a vector of design variables with components Xi, i = 1, ... , n. The 
equality constraints hj(x) and the inequality constraints gj(x) are assumed to be 
transformed into the form (1.2.5). The fact that the optimization problem is as
sumed to be a minimization rather than a maximization problem is not restrictive 
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since instead of maximizing a function it is always possible to minimize its negative. 
Similarly, if we have an inequality of opposite type, that is 

(1.2.6) 

we can transform it to a greater-than-zero type by multiplying Eq. (1.2.6) by -1. 
However, while most optimization texts deal with minimization rather than maxi
mization problems, many of them prefer less-than inequalities to greater-than ones. 
This choice affects the sign convention in some of the results obtained in this text
book, and the reader should be alert to this fact when comparing results with texts 
that use the opposite inequality convention. 

An optimization problem is said to be linear when both the objective function 
and the constraints are linear functions of the design variables Xi, i.e., they can be 
expressed in the form 

(1.2.7) 

Linear optimization problems are solved by a branch of mathematical programming 
called linear programming. The optimization problem is said to be nonlinear if ei
ther the objective function or the constraints are nonlinear functions of the design 
variables. 

Example 1.2.2 

Consider the three-bar truss of Figure 1.2.3. Assume that it is made of steel (density 
0.29Ib/in3 ), and that we want to minimize the mass subject to the constraint that the 
stress in any member does not exceed 30,000 psi in tension or compression. \Ve also 
impose a side constraint that the minimum area of any member is 0.1 in2 • The design 
variables are the member cross-sectional areas A l , A2 , and A3 , and the horizontal 
coordinates Xl, x2 and X3 of the support points. The point of application of the 
force is assumed to be fixed. We seek to formulate this optimization problem in the 
standard form of (1.2.5). 

The objective function is easy to write in terms of the design variables. 

where 

L; = J xr + 1002 , i=1,2,3. 

To calculate the stress constraint it is convenient to introduce the displacements u 
and v at the point of application of the force as intermediate variables. It can be 
verified that the equations governing u and v are 

10 

kll(X)U + kl2 (X)V =10,000, 
k12(x)u + k22(X)V =0 , 



where 
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~AiX~ 
kn(x) =E L...J L~ , 

i=1 I 

a 
k ( ) - - E" 100Aix i 

12 X - L...J L~ , 
i=1 I 

3 

k ( ) -E" 10,000Ai 
22 X - L...J L~ , 

i=1 I 

and where E is Young's modulus for steel (30 x 106psi). In terms of u and v, the 
stresses in the members are given as 

(Ii = E( -ux;f L~ + 100v / L~) , i=1,2,3. 

Based on the above analysis, one way of formulating the optimization problem in the 
standard form is to add u and v to the list of design variables. The formulation is 

and 

minimize m =0.29(AILl + A2L2 + AaL3) 
such that hI =knu + k12V - 10 000 = 0 , 

h2 =k12U + k22V = 0 , 

(tension constraints) gi = 30 000 - E( -uXi + 100v) / L~ ~ 0 , 

(compression constraints) gi+3 = E( -UXi + 100v)/ L~ + 30 000 ~ 0 , 
(minimum gage constraints) gi+6 = Ai - 0.1 ~ 0 , i = 1,2,3 . 

We then have a problem with eight design variables (Ai, Xi, i = 1,2,3 and u, v), two 
equality constraints and nine inequality constraints. This formulation including the 
response variables u and v together with the structural dimensions as design variables 
is called simultaneous analysis and design. Most structural optimization formulations 
eliminate the response variables by using the equations of equilibrium. In this problem 
we can solve for u and v from the equality constraints, thus eliminating two equality 
constraints and two design variables. The new formulation, which does not include the 
displacements as design variables, is much more common in structural optimization. 
As a result it is rare to encounter formulations of structural optimization problems 
which include equality constraints.e e e 

While the above formulation of Example 1.2.2 conforms to our standard formu
lation, we may expect to encounter numerical difficulties when we solve this example 
using many standard solution techniques. The reason for the expected numerical 
difficulties is the large discrepancy between the magnitudes of the different design 
variables and constraints. Consider first the design variables. The area design vari
ables may be expected to be of the order of the ratio of the applied force to the 
allowable stress, that is between 0.1 and 1 in2• The coordinate design variables, on 
the other hand, may be expected to be of the order of 100 in. 

11 



Chapter 1: Introduction 

Next consider the constraints. If the displacements u and v are about ten percent 
below or above their optimal values we can expect the equality constraints hI and 
h2 to be of the order of magnitude of ten percent of the applied load. Similarly the 
inequality constraints 91 through 96 will be of the order of ten percent of the allowable 
stress, 30000 psi. However, the minimum gage constraints 97 through 99 will be of 
the order of 0.1 in2 • 

Because many optimization software packages are not numerically robust, it is 
a good idea to eliminate such wide variations in the magnitudes of design variables 
and constraints by normalization. Design variables may be normalized to order 1 
by scaling. In Example 1.2.2 the coordinate design variables may be normalized by 
the given vertical distance (100 in), and the area design variables by a nominal area, 
Ao = 1/3 in2 , which is the ratio of the applied load to the allowable stress. 

The constraints may be similarly normalized. Usually, inequality constraints can 
be normalized by the allowable value which is used to form them. Thus a constraint 
that a stress component {J be smaller than an allowable stress {Jal is often written as 

9 = {Jal - {J ;:::: 0 . (1.2.8) 

The value of the constraint depends on the units used, and can be large or small. 
Instead the constraint can be normalized as 

{J 

g=l--;::::O. 
{Jal 

(1.2.9) 

Now the constraint values are of order one, and do not depend on the units used. 

1.3 The Solution Process 

The optimization methods discussed in this text are mostly numerical search tech
niques. These techniques start from an initial design and proceed in small steps to 
improve the value of the objective function, or the degree of compliance with the 
constraints, or both. The search is terminated when no progress can be made in 
improving the objective function without violating some of the constraints. Some 
optimization methods terminate when progress in improving the objective function 
becomes very slow. Others check for optimality by employing the necessary condi
tions, called the K uhn- Tucker conditions (sec Chapter 5), that must be satisfied at a 
minimum. We will typically use n to denote the number of design variables, so that 
the search for the optimum is carried out in the n-dimensional space of real variables 
Rn. Every point in this space constitutes a possible design. 

In structural optimization problems the constraints imposed on the design, such 
as stress, displacements or frequency constraints, are important. That is, such con
straints will affect the final design and force the objective function to assume a higher 
value than it would take without the constraints. For example, in Example 1.2.2, if 
the stress constraints were removed all the cross-sectional areas would be reduced to 
their minimum-gage values of 0.1 in2, and the coordinates of points 1, 2 and 3, would 
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lie directly above point 4, so that the lengths of all three members would take the 
minimum value, 100 in., corresponding to a total mass of 8. 7 lb. The resulting stresses 
in the members would tend to infinity. Since we cannot tolerate infinite stresses, we 
impose stress constraints, and we may expect that the optimum mass will be heavier 
than 8.7 lb., and that, at the optimum design, the stress in at least one member will 
be equal to the maximum allowable stress of 30,000 psi. 

In general, we divide the space of design variables into a feasible domain and 
infeasible domain. The feasible domain contains all possible design points that sat
isfy all the constraints. The infeasible domain is the collection of all design points 
that violate at least one of the constraints. Because we expect that the constraints 
influence the optimum design, we expect that some constraints will be critical at the 
optimum design. This is equivalent to the optimum being on the boundary between 
the feasible and infeasible domains. Inequality constraints in our standard formu
lation, Eq. (1.2.5), are critical when they are equal to zero. These constraints are 
also called active constraints, while the rest of the constraints are inactive or pas
sive. For example, consider the minimum gage constraint g7 of Example 1.2.2. For 
Al = 0.lin2 the constraint is active, for Al = 0.llin2 the constraint is passive, and 
for Al = 0.09in2 the constraint is violated. 

It may be intuitively assumed that all the constraints which are active at the 
optimum design influence it; that is, if they were removed the objective function 
could be improved. This is not always true. It is possible to have constraints that 
are active and can be removed without any impact on the optimum design. Many 
optimization procedures calculate, along with the optimum design, a set of numbers, 
one for each active constraint, called the Lagrange multipliers (see Chapter 5) which 
measure the sensitivity of the optimum design to changes in each constraint. When 
the Lagrange multiplier associated with a constraint is zero, it indicates that, to 
a first order approximation, removing this constraint will not have any effect on 
the optimum value of the objective function. These multipliers also provide very 
important design information because in many structural optimization applications 
there is some degree of arbitrariness in the choice of parameters that determine the 
constraints such as stress limits or minimum gage values. For example, when we 
impose stress constraints on a steel structure we typically select ahead of time the 
grade of steel to be used. We can use the Lagrange multipliers to estimate the effect 
of a change in the stress limit on the objective function. If we find that the optimum 
design is very sensitive to this value we may consider using a better grade of steel. 

One of the major problems in almost all optimization solution procedures is the 
determination of the set of active constraints. If the solution procedure attempts 
to consider all constraints during the search process the computational cost of the 
optimization may be significantly increased. If, on the other hand, the procedure 
deals only with constraints that are active or near active for the trial design, the 
convergence of the optimization process may be endangered due to oscillation in the 
set of active constraints. Most optimization procedures are usually complemented by 
an active set strategy used to determine the set of constraints to be considered at 
each trial design. 

During the optimization process we move from one design point to another. While 
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there are many optimization techniques, most of them proceed through four basic 
steps in performing the move. The first step is the selection of the active constraint 
set discussed above. The second step is the calculation of a search direction based 
on the objective function and the active constraint set. Some methods (such as 
the gradient projection method) look for a direction which is tangent to the active 
constraint boundaries. Other methods, such as the feasible direction or the interior 
penalty function method seek to move away from the constraint boundaries. The 
third step is to determine how far to go in the direction found in the previous step. 
This is often done by a process called a one dimensional line search because it seeks 
the magnitude of a single scalar which is the distance to be travelled along the given 
direction. The last step is a convergence step which determines whether additional 
moves are required. 

1.4 Analysis and Design Formulations 

In a practical design situation it is not always clear which mathematical formu
lation of the structural design problem should be used. Consider, for example, the 
beam of Figure 1.1.1, and assume that the designer wants to achieve a high-stiffness, 
low-mass design. One option that the designer may elect is to employ a multiple 
objective function formulation where both the mass m in Eq. (1.1.2) and the maxi
mum displacement W max , Eq. (1.1.3), are to be minimized simultaneously. A second 
approach is to assign some weights 01 and 02 to the two objectives and use them to 
form a composite objective function 0lm + 02Wmax' Third, it is possible to set the 
mass as the objective function and constrain the magnitude of W max ' Finally, it is 
possible to prescribe an upper limit on the mass and use the maximum displacement 
as the objective function. 

All of the above formulations may be acceptable for the design goal of producing 
a strong, lightweight design. However, the mathematical formulation and the solution 
difficulties may be quite different. For example, if p = 1 in Eq. (1.1.2), the mass is 
a linear function of the design variable I(x) while the maximum displacement W max 

is not. Some nonlinear optimization procedures work better when the objective is 
linear and the constraints are nonlinear, and others work better when the situation 
is reversed. The choice of the formulation may be decided, therefore, on the basis of 
the optimization software available to the designer. 

The formulation and the solution of the structural optimization problem is also 
important. First, because the analysis has to be repeated many times during the op
timization process it may be crucial to use a solution method that is computationally 
inexpensive. Thus a detailed finite element model that is typically used for a single 
analysis of the structure may not be affordable for optimization, and it may have to 
be replaced with a cruder model. 

The choice of the st.ructural analysis solution process may be similarly influenced 
by the optimization environment. For example, vibration frequencies and modes of a 
structure are typically calculated by an eigenvalue solution procedure. Some of these 
procedures benefit from good initial approximations for the eigenwct.ors and some 
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do not. For applications in structural optimization the former procedure gains an 
advantage because the eigenvectors (vibration modes) change only gradually 11.<; the 
design is modified. Therefore the eigenvectors from an earlier design can serve as 
good initial approximations for the current eigenvectors. 

Finally, in some cases it may be worthwhile to integrate the analysis and design 
procedures. This happens when structural analysis is iterative in nature, as in the 
case of nonlinear structural behavior. The analysis and design iterations may be then 
integrated so that the analysis iteration is only partially converged for each design 
iteration (e.g. [32,33]). In some cases it may be worthwhile to combine the analysis 
and design iterations into a single iterative process. This simultaneous analysis and 
design approach is discussed in Chapter 10. 

1.5 Specific Versus General Methods 

The solution methods commonly used for obtaining optimum designs in structural 
optimization may be divided into different categories. An important classification 
of solution methods considers specific versus general methods. Specific methods are 
used exclusively in structural optimization (even if they could be applicable also in 
other disciplines). General methods apply to optimization problems in several other 
fields. In the early stages of the development of structural optimization, specific 
methods enjoyed great popularity. These included methods tailored to some special 
structural optimization problems which they could solve more efficiently than any 
general method. 

The most successful of these specific methods was the fully stressed design tech
nique described in Chapter 9. It is a method applicable to the design of a structure 
subject to stress constraints only, and it works well for lightly-redundant single
material structures. 

The popularity of specific methods is currently waning as their limitations be
come increasingly apparent. The approach taken in this text is to emphasize general 
methods rather than specific ones. General methods not only have the advantage of 
wider applicability but also a wider base of resources. Researchers in many disciplines 
are constantly improving these methods and developing efficient and reliable software 
implementations. 

Besides playing down the role of specialized methods for structural design we also 
do not discuss some mathematical programming methods applicable to problems of 
specialized form such as dynamic programming, geometric programming and optimal 
control techniques. These methods have been applied successfully to structural design 
problems, but because of space considerations they are not covered here. The reader 
is referred to Refs. 34-36 for information on the application of these methods to 
structural design. 

The important considerations for a structural analyst using general optimization 
methods have to do with providing an interface between structural analysis software 
and optimization software. This interface includes the three major components of 
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formulation, sensitivity and approximation, and is one of the major thrusts of this 
text. 

The formulation of a structural design problem is of crucial importance for the 
success of the design process. A poor formulation can lead to poor results or pro
hibitive computational cost. Chapter 3, for example, describes various structural 
design problems that can be formulated with a linear objective function and lin
ear constraints. The reason for the usefulness of a linear formulation is the highly 
advanced state of methodology and software for solving such linear problems. 

The efficient calculation of derivatives of the constraints and objective function 
with respect to design variables, often referred to as sensitivity derivatives, is dis
cussed in Chapters 7 and 8. Most general purpose optimization algorithms require 
such derivatives, and their calculation is often the major computational expense in 
the optimization of structures modeled by complex finite element models. These 
derivatives can also be used to form constraint approximations which can then be 
employed instead of costly exact constraint evaluations during portions of the op
timization process. The use of constraint approximations is discussed in Chapter 
6. 

The importance of efficient and accurate calculation of sensitivity derivatives 
and of employing constraint approximations is now recognized by most structural 
optimization specialists. We believe that it affects the success and overall computa
tional cost of the optimization process even more than the choice of the optimization 
method. 

1.6 Exercises 

P=25 Kips 

d 
h 

Figure 1.6.1 A tripod under a vertical load. 
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1. A tripod is made from three steel pipes as shown in Figure 1.6.1. The ends of these 
pipes are placed 1200 apart on a circle of radius 6 ft. A vertical downward force of 
25 kips is applied at the top. It is required to minimize the weight of the tripod such 
that the tripod is safe with respect to Euler buckling, local buckling and yielding. 
Assume E = 30 X 106 psi, ayield = 60 X 103 psi and calculate the local buckling stress 
in psi by the formula 

a cr = 36 x 106 (~) • 

Sketch the constraints in the two-dimensional design space of d ( mean diameter of 
pipe) and h. Identify the feasible and infeasible domains; plot the contours of the 
objective function and locate the optimum solution. 

2. A narrow rectangular beam with cross-sectional dimensions band h is cantilevered 
over 20 ft and subjected to an end load p = 10 kips (Figure 1.6.2). In addition to a 
flexural failure such beams can collapse through lateral instability by twisting. The 
critical load for such a beam of length 1 is given by 

1"1---------------1 P = 10 kips 
1 = 20 ft 

Figure 1.6.2 A narrow rectangular cantilever beam. 

where E is Young's modulus, Ileast is the smallest moment of inertia and c is the 
torsional rigidity of the beam given by 0.312hb3G, G being the shear modulus. Design 
a minimum weight beam so as to prevent failure in both flexure and twisting. Assume 
E = 30 X 106 psi, G = 12 X 106 psi and aal = 75 ksi in tension and compression. 
Locate the optimum solution graphically. 

3. Consider the design of the cross-section of an I-beam shown in Figure 1.6.3 with the 
objectives of minimizing the cross-sectional area and minimizing the normal stresses 
resulting from bending about the horizontal neutral axis. The thicknesses of the 
flange and the web of the cross-section are fixed at t = O.lin. The design variables 
are the width wand the height h of the cross-section. Determine graphically the 
designs which minimize the individual objectives if the width and the height are 
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T 
h 

L,-------.,1 

Figure 1.6.3 Cross-sectional design of an I-beam. 

constrained to remain in the range 0.1 ::; w, h ::; 10. Also find the designs by using 
weighting function approach with equal weights, and using Eq. (1.2.4). 

4. The elastic grillage of Figure 1.6.4 consists of two uniform beams with cross
sectional areas Al and A 2 . Both beams are subjected to a uniformly distributed load 
of 1000 IbJin. The minimum weight design of such a structure was first proposed by 
Moses and Onada [371. Develop expressions for the maximum stresses in tension and 
compression at sections 1, 2 and 3 in terms of Al and A 2 . Assume that the section 
modulus z and moment of inertia I are related to the cross-sectional area as 

z = (~)1.82 
1.48 ' 

(
A )2.65 

1=1.007 - . 
1.48 

Figure 1.6.4 An elastic grillage under uniform load. 
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Assuming an allowable stress of 20,000 psi in tension and compression, formulate 
the five constraints and the objective function. Plot the constraints and the objective 
function. Identify the feasible and infeasible domains. Comment on the character
istics of the feasible domain in contrast with those of the previous two problems. 
Determine the best design for the grillage. 
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Classical Tools in Structural Optimization 2 

Classical optimization tools used for finding the maxima and minima of functions 
and functionals have direct applications in the field of structural optimization. The 
words 'classical tools' are implied here to encompass the classical techniques of or
dinary differential calculus and the calculus of variations. Exact solutions to a few 
relatively simple unconstrained or equality constrained problems have been obtained 
in the literature using these two techniques. It must be pointed out, however, that 
such problems are often the result of simplifying assumptions which at times lack 
realism, and result in unreasonable configurations. Still, the consideration of such 
problems is not a purely academic exercise, but is very helpful in the process of 
solving more realistic problems. 

In recent years there has been an increased interest in the application of classical 
tools, especially variational methods, in structural optimization. Mathematical for
mulations of broad classes of structures as optimization problems have been achieved 
by adopting variational methods. In addition, the study of classical problems not only 
serves to portray the underlying principles of the techniques of classical methods, but 
it serves an even more basic need in structural optimization. Closed form exact so
lutions to classical problems serve to validate solutions obtained using more general 
but approximate numerical techniques. More importantly, classical optimization is 
perhaps the best vehicle for letting a student of structural optimization appreciate 
fully the questions of the existence and uniqueness of the optimum designs, and the 
establishment of the necessity and sufficiency of the optimality conditions. Such 
questions can be rigorously answered for only the simplest problems of optimization 
similar to those considered in this chapter. 

2.1 Optimization Using Differential Calculus 

In the absence of constraint equations a continuously differentiable objective function 
f(Xl, X2,· .. , Xn) of n independent design variables attains a maximum or a minimum 
value in the interior of the design space Rn only at those values of the design variables 
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x* for which the n partial derivatives 

...... , (2.1.1) 

vanish simultaneously. This is the necessary condition for the point x' to be a 
stationary point. We will see in later chapters that this property proves to be a 
valuable tool in locating the optimum solution. For a scalar valued function, the 
vector of first derivatives is referred to as the gradient vector V f and is used for 
finding search directions in optimization algorithms. 

Development of a sufficient condition for a stationary point x' to be an extreme 
point requires the evaluation of the matrix of second derivatives H of the objective 
function. The matrix of second derivatives is also referred as the Hessian matrix and 
defined as 

~ ~ 

~l 8x l 8 X l 8x2 

a:" H= (2.1.2) 

~ ~ 
OXnOXl 8xn8x2 8xn 

It can be proved that if the matrix of second derivatives evaluated at x* is positive
definite then the stationary point is a minimum, if it is negative-definite then the 
stationary point is a maximum point [1]. A symmetric matrix H is said to be positive 
(negative)-definite if the quadratic form Q = xTHx is positive (negative) for every 
x, and is equal to zero if and only if x = O. A computational check for the positive 
and negative definiteness of a matrix involves determinants of the principal minors, 
Hi(i = 1, ... , n). A principal minor Hi is a square sub-matrix of H of order i whose 
principal diagonal lies along the principal diagonal of the matrix H . The matrix H 
is positive-definite if the determinants of all the principal minors located at the top 
left corner of the matrix are positive; and negative-definite if -H is positive definite. 
Alternatively, -His positive definite if Hi is negative and the following principal 
minors, H 2 , H 3 , •.. ,Hn , are alternately positive and negative [1]. Another property 
of positive (negative)-definite matrices can be used as a test. A symmetric matrix is 
positive (negative)-definite if and only if all its eigenvalues are positive (negative). 

A symmetric matrix H is called positive semi-definite if the quadratic form Q = 
xTHx is non-negative for every x. This happens when the eigenvalues of the matrix 
are non-negative. Unfortunately, the expected condition that the principal minors 
are non-negative is not sufficient for positive semi-definiteness. If a matrix is positive 
semi-definite but not positive-definite, then there exist at least one x =J. 0 such 
that the quadratic form is zero, at least one of the principal minors is zero, the 
matrix is singular, and at least one of the eigenvalues is zero. In that case higher 
order derivatives of the function f are needed to establish sufficient conditions for 
a minimum. Similarly, when -H is positive semi-definite then H is negative semi
definite. If H is negative semi-definite but not negative-definite, we need higher 
order derivatives to establish sufficient conditions for a maximum. Finally when H 
is neither positive semi-definite nor negative semi-definite, it is called indefinite. In 
that case the stationary point is neither a minimum nor a maximum but a saddle 
point. 
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Two simple examples demonstrate the use of differential calculus in finding opti
mum structural configurations. 

Example 2.1.1 

The symmetric statically determinate truss structure shown in Figure (2.1.1) is 
to be designed for minimum weight by varying the heights hI and h2 of the vertical 
members. Because the truss is statically determinate the forces in the members are 
independent of the cross-sectional area, so that the areas can be reduced until each 
member is fully stressed (its stress is equal to the allowable stress (70). 

Figure 2.1.1 Fully stressed minimu.m weight truss. 

For the loading shown in the figure, the forces in each of the members can be 
expressed in terms of the geometry of the structure as 

P 
F2 = --, 

2 

Fs = 
[(hI - h2)2 + L2)t p . 

2hI 

(2.1.3) 

(2.1.4) 

If each member is to be fully stressed the cross sectional areas of the members Ai 
can be related to the forces carried by the members as 

i = 1, ... ,9. (2.1.5) 

From Eq. (2.1.3) the cross-sectional area A3 of the horizontal members vanishes. 
However, based on stability considerations these members may be assumed to have 
a minimum area of Amin. The contribution of the weight of these members to the 
total weight of the structure is independent of the design variables hI and h2 , and 

25 



Chapter 2: Classical Tools in tructural Optimization 

will be ignored for the mini .zation problem. The total volume of material in the 
remaining truss structure is de sum of the products of the cross sectional areas and 
the member lengths that catt~ expressed in terms of the unknown variables. It can 
be shown that the remaining total volume is 

(2.1.6) 

Differentiating the volume with respect to the unknown variables we obtain 

(2.1.7) 

The resulting optimum values for the heights are 

h~ = ~L, (2.1.8) 

and the cross sectional areas of the members are equal to 

(2.1.9) 

The matrix of second derivatives of the objective function for the problem is 

(2.1.10) 

which, evaluated at the optimum values of the design variables, is 

H* - 2 P J3 [1 -1/2] 
- aD L -1/2 1 . (2.1.11) 

The matrix H* is positive definite (check principal minors), thereby, proving the 
sufficiency condition for the optimality of the design .••• 

Example 2.1.2 

Consider an inextensible structural cable with zero bending stiffness. The cable is 
stretched by applying a horizontal force Fh at the ends of the cable, two points 
separated by a distance L, and carries a vertical distributed load of intensity p(x), 
Figure (2.1.2). 

If the cross-sectional area of the cable is allowed to vary along its length so that 
the axial stress is equal to the allowable stress aD, determine the optimum value of 
the horizontal pull Fh that will minimize the total volume of material of the cable for 
a uniform load of p( x) = PD' 
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F;t ~ 

y 

Figure 2.1.2 Structuml cable design. 

Neglecting the weight of the cable, we obtain the equilibrium equations in the 
horizontal and vertical directions of a cable as 

F cos 0 = Fh = constant, (2.1.12) 

where 0 is the angle between the horizontal coordinate axis x and the tangent to the 
arc length coordinate s such that cosO = dsldx. For a uniform loading, the second 
equilibrium equation can be solved for the vertical displacement along the length of 
the cable by integrating twice and making use of the zero displacement conditions at 
the two ends to yield 

The total volume of material in the cable to be minimized is 
L 

V= / dV, 
o 

where 
dV = A(s)ds . 

(2.1.13) 

(2.1.14) 

(2.1.15) 

With the assumption that the cross-sectional area is to be fully stressed, A(s) = Flam 
the total volume can be expressed as 

(2.1.16) 

Since 

(2.1.17) 

Eq. (2.1.16) can be written as 

L 2 

V = Fh /[1 + (ddy ) Jdx. 
ao x 

(2.1.18) 
o 

27 



Chapter 2: Classical Tools \ Structural Optimization 

Substituting the first derh ive of the displacement function of Eq. (2.1.13) into 
the above equation, we car:"';:'0w that the volume of the material is related to the 
horizontal pull as, 

(2.1.19) 

If the horizontal pull is small, the volume increases because the cable becomes longer. 
If, on the other hand, the horizontal pull is very large the cross-sectional area has 
to be large in order to keep the stress level at ao , although the length of the cable 
approaches the minimum distance between the support points. 

The optimum value of the horizontal pull can be obtained from 

dV 
dFh = 0, (2.1.20) 

which produces 

F' _ PoL 
h -v'12' (2.1.21) 

This corresponds to a minimum total volume of 

(2.1.22) 

and an optimal cross-sectional area distribution of 

dy PoL VII x 2 1+(-)2=- -+(---) 
dx ao 12 2 L 

(2.1.23) 

••• 

Although applications of classical calculus can be demonstrated for many other 
structures such as beams and arches, it is appropriate to mention the aspects and 
assumptions which make these problems tractable using ordinary calculus. The truss 
example discussed above, for example, could be treated by ordinary calculus because 
of several simplifying assumptions. First, some of the potential design variables, such 
as the cross-sectional areas of the truss members, were eliminated by assuming the 
stresses in each member to be equal to the maximum allowable value. Second, the 
analysis was simplified by neglecting the effect of selfweight of the truss members on 
structural response, and by ignoring possible buckling of those members loaded in 
compression. Most realistic structural optimization problems cannot be simplified to 
the point where they can be solved by ordinary calculus. 
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2.2 Optimization Using Variational Calculus 

Some structural design problems, when formulated as optimization problems, 
have an objective function in the form of a definite integral involving an unknown 
function and some of its derivatives. Such forms, called functionals, assume a specific 
numerical value for each function that is substituted into it. The task of the designer is 
to find a suitable function that minimizes the functional. The branch of mathematics 
that deals with the maxima and minima of functionals is called the Calculus of 
Variations. Certain aspects of the methods used in the calculus of variations are 
analogous to procedures used for differential calculus, and are discussed in this section. 

2.2.1 Introduction to the Calculus of Variations 

Consider the problem of determining a function y(x) given at two points, y(a) = 
Ya and y(b) = Yb, for which the integral 

b 

J = J F(x, y, y)dx, (2.2.1 ) 

a 

assumes a minimum or a maximum value (y == dyjdx). The end conditions on y(a) 
and y(b) are referred to as kinematic boundary conditions for the problem. In a more 
general case F can be a function of more than one function (Yl, Y2, .... , Yp), and each 
of these functions can depend on n independent variables (Xl, X2, ... , xn). Also, higher 
order derivatives of these functions with respect to the independent variables may be 
included in F. This brief introduction, however, is limited to a functional expressed in 
terms of a single function with one independent variable. A more general discussion 
of the methods of variational calculus is available in many textbooks (e.g., [2-4]). 

Assuming y*(x) to be the function that minimizes our integral, consider another 
function y(x) obtained by a small variation 8y from y*(x), 

y(x) y*(x) + 8y = y*(x) + f1](X), (2.2.2) 

where f is a small amplitude parameter and 1](x) a shape function. The function 1](x) 
must satisfy the kinematic boundary conditions 

ry(a) = 0, and ry(b) = 0, (2.2.3) 

so that y(a) and y(b) will remain unchanged. We substitute Eq. (2.2.2) into the 
integral (2.2.1), so that J becomes a function of only the perturbation parameter f 

b 

J( f) = J F(x, y* + fry, y.' + fry')dx. (2.2.4) 

a 
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Knowing that the val~e of the integral J attains an extremum for E = 0, one can 
use ordinary calculus to write the necessary condition 

b 

J (OF dy + of dy') dx 
oy dE Oy'dE 

o. (2.2.5) 
a 

Using Eq. (2.2.2) and defining E (dJ / dE 1.=0) to be the first variation of the functional 
J denoted by fjJ we obtain 

b J of of 
fjJ = (oy fjy + Oyfjy')dx = 0 . (2.2.6) 

a 

The variational operator fj is analogous to the differential operator in ordinary 
calculus, and the same rules that apply to the differential operator apply to the 
variational operator. The property of interchangeability of the two operators 

, d'r/ d d (dy ) , 
E'r/ = E- = -E'r/ = -fjy = {j - = {jy , 

dx dx dx dx 
(2.2.7) 

has been used in order to arrive at Eq. (2.2.6). 

In the more general case F depends on more than one function and on higher 
order derivatives of these functions with respect to the independent variable x. For 
example, if 

b 

J= J F{X,Yl,Y2,Yl',Y2',Y2")dx, (2.2.8) 

a 

then the condition that variation of the functional is zero may be written as 

b 

fj J( OFfj of fj' of of, of {j ")d 
J = ~ Yl +"!lI Yl + ~fjY2 + "!lIfjY2 + "?IIi Y2 X = 0 . 

UYl UYl UY2 UY2 UY2 
(2.2.9) 

a 

The necessary condition for extremum expressed in the form of Eq. (2.2.6) or 
(2.2.9) is usually not very useful. The terms that involve variation of derivatives 
can be integrated by parts in order to obtain more useful conditions. For example, 
integrating the second term of Eq. (2.2.6) and rearranging we write 

fjJ = of {jylb + Jb [OF _ ~ (OF)] (jydx = o. 
oy' a oy dx oy' 

(2.2.10) 

a 

For our problem the first term oil the right hand side of Eq. (2.2.10) vanishes due 
to the fact that the arbitrary function 'r/(x) satisfies the boundary conditions, 'r/(a) = 
'r/(b) = o. By the definition of the variation it follows that 

(jy(a) = (jy(b) = o. (2.2.11) 
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Thus, the necessary condition for the extremum of J reduces to 

(2.2.12) 

Finally, since by is arbitrary, we conclude that the coefficient of by in Eq. (2.2.12) 
must vanish identically over the interval of integration. Therefore, if y(x) is to min
imize ( or maximize) J, it must satisfy the following condition, known as the Euler
Lagrange equation, 

aF _~ (aF) =0. 
ay dx ay' (2.2.13) 

If the value of the unknown function is not specified at either or both ends, then 
the variation of y(x) need not vanish at those points. However, the first term on 
the right hand side of Eq. (2.2.lO) must still vanish independently, in order for the 
relation to hold. That is if y(x) is not prescribed at the end points the following 
conditions, often called the natuml boundary conditions, must be satisfied. 

[aF] = 0 
ay' x=a ' 

and [8F] = o. 
ay' x=b 

(2.2.14) 

Example 2.2.1 

A B x 

y 1/2 

Figure 2.2.1 Supported cable under its own weight. 

Consider the problem of determining the equilibrium configuration y(x) of a flex
ible, constant cross-section cable hanging under its own weight between two points, a 
distance 1 apart, as shown in Figure (2.2.1). This is a rather well-known fixed point 
problem of the calculus of variations. 

The cable assumes a position that is consistent with its potential energy being a 
minimum. Hence, to determine the equilibrium shape y(x) we need to minimize the 
potential energy functional which can be expressed in terms of the unknown shape 
function as 

J = J P9yds, (2.2.15) 
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where pg is the weight per unit length and ds is an element of arc length of the cable. 
Relating the arc length to the horizontal coordinate x, with the origin at the center, 
we rewrite Eq. (2.2.15) as 

1/2 

J = pg J YV1 + y,2dx. 

-1/2 

(2.2.16) 

At this point one can either take the variation of Eq. (2.2.16) or, since this is a 
fixed-end-point problem, apply the Euler-Lagrange equation of Eq. (2.2.13) derived 
previously. The resulting necessary condition for the potential energy to be minimum 
reduces to the following ordinary differential equation 

VI + y,2 - ~ ( yy' ) - 0 
dx J1+Y'2 - . (2.2.17) 

Expanding the second term and rearranging terms, we simplify Eq. (2.2.17) to 

" ,2 1 0 yy - y - = . (2.2.18) 

Introducing dy/dx = t and d2y/dx2 = tdt/dy, we rewrite Eq. (2.2.18) as 

tdt dy 

t2 + 1 y 
(2.2.19) 

Integrating Eq. (2.2.19) once we obtain 

t = dy = J y2 - 1 . 
dx CI (2.2.20) 

Finally, one more integration yields 

(2.2.21 ) 

The condition 

dYI = 0 
dx 0 

(2.2.22) 

yields C2 = 0, while Cl can be determined from the condition 

y( -l/2) = y(l/2) = Cl cosh(l/(2cd). (2.2.23) 

Equation (2.2.21) is the equation of a catenary .••• 
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2.3 Classical Methods for Constrained Problems 

Most practical structural optimization problems have constraints on design vari
ables in the form of limits or algebraic relations in terms of these design variables. 
These constraints may be related to the functional requirements of the design, geom
etry, availability of the resources, or appearance and esthetic appeal. In this section 
we will consider problems with equality constraints on the design variables. Although 
these constraints mentioned above appear most often as inequality constraints, they 
can be converted into equivalent equality constraints as will be discussed later on. 

The general form of the equality constrained problem can be expressed in the 
following form. 

Minimize 
subject to 

f(x) , 
hj(x) = 0, 

x = (Xl, ... ,Xn)T, 
j=l, ... ,ne , (2.3.1 ) 

where the number of independent equality constraints ne is less than or equal to the 
number of design variables n. If the number of constraints is larger than the number 
of design variables, then the problem is over constrained and, in general, there is no 
solution. 

There is more than one approach to solving problems posed in the form of Eq. 
(2.3.1). If the equality constraints can be solved explicitly for ne design variables in 
terms of a set of n - ne independent design variables, then the objective function can 
be written in terms of the n - ne independent design variables. The new objective 
function will not be subject to any constraints and can be minimized using techniques 
discussed in the previous section. 

For example, for a minimization problem with two design variables subject to a 
single equality constraint 

Minimize 
subject to 

f(XI,X2) 
h(XI,X2) = 0, 

we can solve for one of the design variables from the constraint relation, 

Xl = hc(X2) , 

(2.3.2) 

(2.3.3) 

and substitute into the objective function. The resulting new objective function, 

(2.3.4 ) 

can be differentiated with respect to the independent design variable X2, and dfr/ dX2 
can be set to zero to determine the optimum value of the X2. The optimum value of 
Xl can then be obtained from Eq. (2.3.3). 

The procedure outlined above is called variable-elimination or direct substitution 
method. For problems in which the constraint equations cannot be solved explicitly, 
for example, when the constraints are defined in terms of integrals, another method 
called the method of Lagrange multipliers is used. 
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2.3.1 Method of Lagrange Multipliers 

In essence, the method of Lagrange multipliers in calculus of variations is a direct 
extension of the method for constrained minimization in differential calculus. We 
start by reviewing the method as used in differential calculus. For an objective 
function f(x) of n design variables to be a minimum, the differential change in the 
objective function must still vanish. 

of of of 
df = ~dXl + ~dX2 + ........... + ~dxn = o. (2.3.5) 

UXl U~ U~ 

However, now the derivative terms can not be set to zero individually because the 
differential changes in the design variables (dXl, dX2, .... , dXn) are dependent on one 
another through the constraint equations. 

For simplicity, assume only a single constraint relation h(x) = 0, the differential 
changes in the design variables are related through 

oh oh oh 
dh = ~dXl + ~dX2 + ........... + ~dxn = O. (2.3.6) 

UXl U~ U~ 

We can multiply Eq. (2.3.6) by an arbitrary (for the time being) constant, A, and 
add to the Eq. (2.3.5) to obtain (see [4]) 

(M M) (M M) (M M) OXl + A OXl dXl + OX2 + A OX2 dX2 + ..... + oXn + A oXn dXn = o. (2.3.7) 

Let A be determined so that the quantities inside each of the parenthesis vanish 
to satisfy the previous equation. This leads to n equations for the n + 1 unknowns, 
the n design variables, and the unknown multiplier A called the Lagrange multiplier. 
The constraint relation h(x) = 0 provides the requisite (n + l)th relation. Equations 
(2.3.7) and (2.3.2) are exactly what one would obtained by an unconstrained mini
mization of an auxiliary function f + Ah with respect to the design variables and the 
Lagrange multiplier A. 

For multiple constraint functions, one has to introduce a Lagrange multiplier for 
each of the constraint functions. Therefore, in general an optimization problem with 
an objective function with n design variables plus ne equality constraints stated in 
Eq. (2.3.1) is equivalent to an unconstrained problem with an auxiliary function 

n. 

C(x, A) = f(x) + L Ajhj . (2.3.8) 
j=l 

The optimum values of the design variables can be obtained by solving a system of 
n + ne equations 

i = 1, ... , n, 
(2.3.9) 

j = 1, ... ,ne , 

for n + ne unknowns. 
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Example 2.3.1 

Figure 2.3.1 Design of trusses with displacement constraint. 

Consider a general truss structure with n members under concentrated loads 
acting at the junctions of the members. The objective of the design is to minimize 
the total volume of material used for the members while specifying the displacement 
6. in a given direction, and at a given point of the truss. In general, displacement 
constraints at more than one location can be imposed, but for simplicity only one 
displacement constraint is considered. Since the overall topology of the structure is 
fixed, the only design variables are the cross-sectional areas A;, (i = 1, ... , n) of the 
members. 

In order to pose the problem as a constrained minimization problem, we need to 
express the displacement constraint in terms of the design variables. The dummy-load 
method (Method of Virtual Load), which is a special case of the principle of virtual 
forces or the principle of complementary virtual work, is used for this purpose. The 
principle of complementary virtual work states that the strains and displacements in 
a deformable body are compatible and consistent with the support conditions if and 
only if the total complementary virtual work is zero [5] 

ow; + oW;; = 0 . (2.3.10) 

Here oW; is the internal complementary virtual work and oWE is the complementary 
virtual work of the external forces. The dummy-load method starts by applying 
a unit virtual load at the point of unknown displacement along the displacement 
component of interest. The internal complementary virtual work under this loading 
can be expressed as 

oW; = -oUO = - J 8r'ijEij dV , 
v 

(2.3.11) 

where OU· is the complementary strain energy, Eij is the strain field under the actual 
loads, and Orrij is the virtual stress field due to the dummy-load. In absence of the 
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body forces the external complementary virtual work is 

8W~ = J u;btjdS, (2.3.12) 

s 
where Ui are the components of the surface displacements and 8tj are the components 
ofthe applied virtual tractions. For a two dimensional truss structure with n constant
cross section members, Eqs. (2.3.10), (2.3.11), and (2.3.12) yield 

n 

6. x 1 = L 8a;€;L;A; , 
;=1 

(2.3.13) 

where L; is the length of the ith member, E; is the strain due to the actual loads, and 
8a; is the dummy stress in the ith member. Relating the stresses and strains to the 
design variables, we can rewrite Eq (2.3.13) as 

6. = ~ j;F; L. 
~AB " 
i=l t t 

(2.3.14) 

where J; and F; are the dummy and actual internal forces in the ith member, respec
tively, and E; is the elastic modulus of the ith member. 

We can now formulate the design problem in the standard form of Eq. (2.3.1) as 

Minimize 

subject to 

n 

;=1 

~ ji F; Li - 6. = o. 
~AB 
i=l 1 1 

(2.3.15) 

Introducing the Lagrange multiplier, we write the auxiliary objective function as 

n (n jF ) £(A A) - " kL· + A "-'-' L· - 6. 
, - ~ I I ~ AB. ' . 

i=1 i=l 1 t 

(2.3.16) 

Then the necessary conditions for extremum are given by the following set of equa
tions. 

3£ j;F; 
3k = L; - AA2EL; = 0, , , , 

(2.3.17) 

3£ = ~ J;p; L; _ 6. = o. 
3A ~ AB 

i=1 1 t 

(2.3.18) 

Solving for the cross-sectional areas from Eq. (2.3.17) in terms of the Lagrange 
multiplier and substituting back into Eq. (2.3.18), we can determine the value of the 
Lagrange multiplier in terms of the specified displacement 6. by 

(2.3.19) 
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Then, the optimum values of the cross-sectional areas are 

(2.3.20) 

Note that the term inside the square brackets is a constant. We determine the 
corresponding total volume of material by substituting Eq. (2.3.20) into the objective 
function to obtain 

(2.3.21 ) 

••• 

2.3.2 Function Subjected to an Integral Constraint 

For problems in which the unknown design variables are functions constrained by 
functionals, variational calculus also employs Lagrange multipliers. Recall that for 
the supported cable problem the Euler-Lagrange equation was obtained by allowing 
the variation of the cable shape function by to be arbitrary, or in other words by 
allowing y(x) to be completely unconstrained except for the kinematic boundary 
conditions. However, if the function y(x) is required to satisfy a subsidiary integral 
constraint of the form 

b J g[y(x)]dx = c, (2.3.22) 

a 

then the extremum of the functional J[y(x)] can be determined by the use of the 
Lagrange multiplier technique. In this case the necessary condition for an extremum 
is the vanishing of the first variation of an auxiliary functional 

(2.3.23) 

In the following example we illustrate the use of this technique for determination 
of the cross-sectional area distribution of minimum weight beams for a specified 
displacement at a point along the span. 
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Example 2.3.2 

p(x) 

w(x) 

Figure 2.3.2 Design of beams for a specified displacement [6}. 

Consider a statically determinate beam of variable cross section A(x) loaded 
by a concentrated and/or distributed loads and moments which produce a moment 
distribution M(x) along the beam. We want to minimize the volume V of the beam 
subject to the requirement that the displacement at a point x = ~ is equal to a 
specified value ~ [6]. This problem, studied by Barnett [6], is formulated as 

I 

Minimize V = J A(x)dx 
o 

subject to w(~) - ~ = O. (2.3.24) 

A convenient expression for the displacement of a beam at a point x = ~ is 
obtained again by using the method of virtual load discussed in the previous example 
problem. That is 

I 

(C) = J M(x)m(x)d w.. EI(x) x, (2.3.25) 

o 

where m(x) is the moment distribution generated by a unit load applied at x =~, E 
is the elastic modulus of the beam material, and lex) is the cross-sectional moment 
of inertia. Since the cross-sectional area distribution function of the beam is the 
design variable, the moment of inertia term has to be expressed in terms of the area. 
Commonly, the beam moment of inertia function is related to the cross-sectional area 
function as 

lex) = a[A(x)t , (2.3.26) 

where a is a constant related to some physical dimension of the cross-section, and 
n is a constant that depends on the physical relation between the two functions. 
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Here we limit the constant n to the integer values of 1,2, or 3. The case of n = 1 
is for a rectangular cross-section beam of constant depth whose width varies along 
the length. Such a beam is sometimes referred to as a plane-tapered beam. The 
case n = 2 is obtained when both the width and the depth of the cross-section vary 
without changing its aspect ratio, and finally the case n = 3 is for a cross-section 
with a variable depth and a constant width. The latter may be referred to as the 
depth-tapered beam. 

The auxiliary functional for the minimization problem, Eq. (2.3.24) takes the 
following form. 

c ~ / A(x)dx + A [/ M~]~~X) dx -,,]. (2.3.27) 

The necessary condition for the constrained minimum is the vanishing of the first 
variation of this auxiliary functional. At this point we sct n = 1 in order to simplify 
the following derivation. The first variation of Eq. (2.3.27) becomes 

I 

8C = J [1 - A M(x)m(x)] 8Adx = O. 
aEA2(x) 

o 

The corresponding Euler-Lagrange equation is 

_ \ M(x)m(x) _ 
1 A aEA2(x) - 0, or 

(2.3.28) 

(2.3.29) 

The unknown Lagrange multiplier in Eq. (2.3.29) must be determined from the 
displacement constraint in Eq. (2.3.24). That is, using Eqs. (2.3.25), (2.3.26), and 
(2.3.29) in Eq. (2.3.24) we can extract 

(2.3.30) 

Then, the optimal area distribution and the corresponding volume are given by 

(2.3.31 ) 

and 

(2.3.32) 

respectively .••• 
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2.3.3 Finite Subsidiary Conditions 

The problems discussed in the previous section involve a rather simple integral 
constraint that require a constant Lagrange multiplier in the auxiliary functional. In 
a more general case, as mentioned earlier, we are interested in extremizing functionals 
of several functions and their derivatives with respect to more than one independent 
variable [see Eq. (2.2.8)]. In addition, there may be m finite subsidiary constraints 
of the form 

i = 1, ... ,m, (2.3.33) 

imposed on the problem. These constraints may range from simple algebraic equa
tions to highly complicated differential equations that must be satisfied at every point 
over the entire domain of the problem. 

The Lagrange multiplier method, in this case, still reduces to extremizing an 
auxiliary functional of the form 

(2.3.34) 

The Lagrange multipliers, however, are no longer constants but functions of the 
coordinates Xl, ... , X n . 

Example 2.3.3 

The problem described above can be best illustrated by a design example of a can
tilever beams of prescribed volume and prescribed loads for minimum deflection. Ex
cept for a slight change of notation, this example is based upon Makky and Ghalib's 
solution [7]. 

x 

w(x) 

-jb(x) ~ 

c=J h(x) 
T 

Figure 2.3.3 Optimum Design of a Beam for Minimum Deflection. 
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Figure 2.3.3 shows an elastic cantilever beam fixed at the end x = 0, free at the 
end x = I, and acted upon by a specified distribution of transverse loading q(x) per 
unit of length. The objective is to minimize some norm of the transverse displacement 
of the beam for a given total volume, Yo. The norm we choose is the integral of the 
transverse displacement w over the length of the beam. The loading q( x) is restricted 
to be unidirectional in order to render the norm appropriate. 

The functional to be minimized, in this case, is an integral of the displacement 
field w(x) which must satisfy the equation of equilibrium of the beam as well as the 
constraint on the total volume of material. The equation of equilibrium is expressed 
as 

with boundary conditions 

at x = 0: 
at x = I: 

[s(x)w"]" - q(x) = 0, 

w = 0, and w' = o. 
sw" = 0, and s'w" + sw'" = 0, 

(2.3.35) 

(2.3.36) 
(2.3.37) 

sex) being the bending stiffness ofthe beam that can be related, through Eq. (2.3.26), 
to the cross-sectional area of the beam by 

sex) = EI(x) = aEAn(x) , n=1,2,or3. (2.3.38) 

In addition to the subsidiary condition of Eq. (2.3.35), we must specify an integral 
constraint on the total volume, namely 

The auxiliary functional is 

I f A(x)dx = Vo. 
o 

C (w(x), ,(x), A(x), A" A,(x)) = / w(x)dx + A. [/ A(x)dx - Vo ] 

I 

(2.3.39) 

-f A2(X) [sw"" + 2s'w'" + s"w" - q]dx, (2.3.40) 
o 

which must be stationary with respect to the functions w(x), sex), A(x), A2(X), and 
the parameter Al. We note, however, that A(x) depends on sex) through Eq. (2.3.38). 
Hence, 

oA = (~~) os. (2.3.41 ) 

The first variation of £, 

6C = /6WdXH. [/ Mdx] HA. [! Adx- Vol 
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1 

1 -J bA2(x) [SWIIll + 2iwlll + SIlWIl - qJdx 

o 

(2.3.42) 

-J A2(X) [15 S Willi + sbwllll + 2biwlll + slbwlll + bsllwll + sllbwllJdx = 0, 

o 

can be simplified by several integrations by parts. Collecting the terms multiplied by 
arbitrary variations bw, bs, OA1, and bA2 and equating them to zero independently we 
obtain the following Euler-Lagrange equations 

bw: 1- (A~St = 0, (2.3.43) 

bs: A dA - All wll = 0 
1 ds 2 , (2.3.44) 

I 

bAl : J A(x)dx-Vo=O, (2.3.45) 

0 

bA2 : SWIlIl + 2SlWlll + SIlWIl - q(x) = 0, (2.3.46) 

together with the associated boundary conditions at x = 0 and x = I 

Either Or 
bs = 0, A2Wlll - A~WIl = 0, (2.3.47) 

OSI = 0, A2Wli = 0, (2.3.48) 
bw = 0, A~IS + A~SI = 0, (2.3.49) 

bwl = 0, A~S = 0, (2.3.50) 
bwll = 0, - A2S1 + A~S = 0 , (2.3.51 ) 
bwlll = 0, A2S = o. (2.3.52) 

Equations (2.3.43) through (2.3.46) together with the associated boundary conditions 
are general enough that they apply to simply supported as well as to clamped beams. 
For the cantilever beam the boundary conditions are Eqs. (2.3.36) and (2.3.37). 
Since the bending moment and the shear force at x = 0 cannot vanish because of the 
unidirectional nature of the applied loading, the above conditions reduce to 

A2(0) = 0, A~(O) = 0, 

A~(l)S(l) = 0, A~I(I)s(l) + A~i(l) = O. 

(2.3.53) 

(2.3.54) 

We can integrate Eqs. (2.3.43) and (2.3.46) twice and make use of both boundary 
conditions of Eqs. (2.3.37) and (2.3.54) to get 
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and 

(2.3.56) 

from which 
).."w" _ ~ (x - 1)2p(x) 

2 - 2 (s(x))2 
(2.3.57) 

Combining the last equation with the second Euler-Lagrange equation (2.3.44), we 
obtain 

2( )dA _ (x -1)2p(x) 
s x ds - 2)..1 . (2.3.58) 

Specialization to Plane- Tapered Beams. The remainder of this problem will be 
specialized to plane-tapered beams, n = 1, under a uniformly distributed load of 
intensity q(x) = qo. Evaluating the distribution of p(x), we find that Eq. (2.3.56) 
becomes 

" (l-x)2 
sw = qo 2 (2.3.59) 

Also, for a plane-tapered beam 

dA 1 - = - = c2 = constant. 
ds erE 

(2.3.60) 

Hence, Eq. (2.3.58) becomes 

( ) = (x - 1)2 jf;0 
S X \ ' 2c Al 

(2.3.61 ) 

and, therefore, the optimum distribution of the cross-sectional area is 

A*(x) = c(x -1)2 f2i. 
2 V).~ 

(2.3.62) 

The unknown Lagrange multiplier can be evaluated from the volume constraint of 
Eq. (2.3.45) to be 

).. _ c2qol6 
1 - 36V? . 

° The resulting optimal area and bending stiffness distributions are 

A*( ) = 3Vo(x - 1)2 
x (3' 

d *() _ 3Vo(x - 1)2 
an s x - c2 [3 

(2.3.63) 

(2.3.64) 

Substituting Eq. (2.3.64) into Eq. (2.3.59) and integrating it twice, we obtain the 
deflection function corresponding to the optimal beam as 

( ) _ c2qol3 2 

W X - 12Vo x , (2.3.65) 
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where the boundary conditions in Eq. (2.3.36) were used. The constant c for a 
rectangular plane-tapered beam with constant thickness h and varying width b(x) is 

2 12 
c = Eh2 . (2.3.66) 

The resulting deflection function is 

(2.3.67) 

For comparison, consider an equivalent uniform beam of the same total volume 
Vo, length l, constant thickness h, but a constant width 

Vo 
bo = hl· 

It is easy to verify that its deflection wo(x) satisfies 

I 

J w(x)dx 
o 
I 

J wo(x)dx 
o 

5 
g. 

(2.3.68) 

(2.3.69) 

That is, the optimal beam is 1.8 times stiffer than the uniform beam of the same 
volume. 

Several other cases of loading with different types of beams, n = 1,2, and 3 may 
be found in Ref. 7. Some of these cases form a part of the exercises at the end of the 
chapter. ••• 

2.4 Local Constraints and the Minmax Approach 

In many problems of structural optimization we have constraints that are local in 
nature, such as stress constraints. In a beam design problem, for example, we may 
require that the stresses do not exceed the yield limit anywhere in the beam. Such 
constraints can be expressed as subsidiary conditions similar to Eq. (2.3.33), except 
that the equalities are replaced by inequalities 

i = 1, ... ,m. (2.4.1) 

We can transform the inequalities back to equalities by subtracting slack functions, 
ti's, and rewrite Eq. (2.4.1) as 

9i (Xl, ... , :::) - t~ (Xl, ... , X n) = 0 , i = 1, ... ,m. (2.4.2) 
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The auxiliary functional of Eq. (2.3.34) becomes 

c = J [t + t Aj(gj - m] dv. 
v 

(2.4.3) 

When we take the variation of C, the variation of tj will contribute -2 Iv Ajt;ot;dv. 
Setting the coefficient of ot; to zero we get 

tj)..j = 0, i = 1, ... ,m. (2.4.4) 

This equation implies that the Lagrange multipliers are equal to zero when the slack 
variables are not zero. That is, the Lagrange multipliers are zero at points in the 
design space where the corresponding constraint is not critical. Equation (2.4.4) may 
also be written as 

i = 1, ... ,m, (2.4.5) 

because tj = 0 if and only if gj = o. It can be shown that if we use Eq. (2.4.5), which 
is called a constraint qualification equation, we can dispense with the slack functions 
in the auxiliary functional. When we do that, we also dispense with the variation 
of the auxiliary functional with respect to the Lagrange multiplier, and instead add 
the inequality constraints to the optimality conditions. This treatment of inequality 
constraints is demonstrated in the following example. 

Example 2.4.1 

x 

w 

Figure 2.4.1 Hanging cable: (a) general cross section; and (b) two constant-area 
segments. 

The cable in Figure 2.4.1(a) is loaded by a hanging weight W plus its own self
weight. The cross-sectional area A( x) of the cable is to be designed for minimum 
volume, subject to the constraint that the stress does not exceed an allowable value 
of 0"0, and the cross-sectional area is not less than a minimum, Ao. We assume that 
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the load W is small enough to be supported by a minimum-area cable if the selfweight 
is neglected. That is 

W ~ Aao. (2.4.6) 

We also assume that the cable is long enough so that selfweight requires the top part 
of the cable to have a cross-sectional area larger than Ao. 

The problem is statically determinate, with the axial load in the cable satisfying 

p' + pA = 0, P(l) = W, 

where p is the weight density. The problem can then be formulated as 

minimize 11 A( x )dx 

such that A(x)ao - P(x) 2: 0, 
A-Ao2:0, 

and p' + pA = 0 . 

The Lagrangian functional is given as 

£(A(x), P(x), >'1 (x), .A2(X), .A3(X)) = 11 Adx + 11 .AI (Aao - P)dx 

(2.4.7) 

(2.4.8) 

+ 11 A2(A - Ao)dx + 11 A3(P' + pA)dx . 

(2.4.9) 
We take the variation of £ to obtain 

We integrate the term including OP' by parts to convert it to oP, and then set the 
coefficients of oA and OP to zero to obtain 

These equations are augmented with the two inequalities 

Aao - P 2: 0, 

A - Ao 2: 0, 

the constraint qualification equations 
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and with Eq. (2.4.7). 

To solve the above equations we note that near x = 0 we assumed that A > Ao, 
so that from Eq. (2.4.16) A2 = O. We can substitute Al from Eq. (2.4.12) into Eq. 
(2.4.11) to get 

(2.4.17) 

This equation is easily solved to yield 

A3 = (ePx/uo -l)/p, (2.4.18) 

and then from Eq. (2.4.12) 
(2.4.19) 

These two equations are valid as long as A > Ao. From Eq. (2.4.19) we see that Al 
is nonzero, so that from Eq. (2.4.15) 

A(x) = P(x)/o-o when A> Ao. (2.4.20) 

We can now construct the entire solution for A(x). At the bottom of the cable 
A = Ao, and from Eq. (2.4.7) 

P=W+p(l-x)Ao. (2.4.21 ) 

This solution becomes invalid when P exceeds Aoo-o, which from Eq. (2.4.21) happens 
at x = Xt, 

Xt = l _ Ao-o - W 
pAo 

(2.4.22) 

For x < Xt we have A > Ao, so that P = Ao-o, and Eq. (2.4.7) can be replaced by 

A' 0-0 + pA = 0 , 

This equation is easily solved to yield 

A{x) = AoeP(x,-x)/uo , 

••• 

(2.4.23) 

x < Xt . (2.4.24 ) 

Another formulation of the problem in Example 2.4.1 is to find a cable with a 
given volume that has the lowest possible stress. The objective function is 

min max 0-( x) . 
A(x) O:O;:x:O;:l 

(2.4.25) 

This is an example of the so-called min-max problems that are common in structural 
optimization. Min-max problems present a difficulty in that the maximum of a func
tion does not have continuous derivatives. This can be seen by considering even the 
simplest case of the maximum of a function at two points. Consider, for example, 
the case when the cross-sectional area of the cable has to be piecewise constant to 
keep down manufacturing cost. Figure 2.4.1(b) shows a case where the number of 
segments is limited to two, and the design variables are the two cross-sectional areas 
Al and A2 . 
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0'2 
~-----

~ __________________ -+A2 

Figure 2.4.2 Discontinuity of maximum function. 

Figure 2.4.2 shows a possible variation of the maximum stresses at each segment 
as a function of A2. Increasing A2 reduces the maximum stress in the bottom segment, 
but increases it in the top segment. It is seen that the maximum of the stress over the 
beam has a discontinuity in slope at the point where the the location ofthe maximum 
jumps from one segment to the other. 

For the cable of Example 2.4.1, the two formulations of minimizing volume or 
minimizing the maximum stress for a given volume Vo are equivalent. That is, we 
can guess a stress allowable and minimize the volume for this stress allowable. If the 
resulting optimal volume is larger than Vo we increase the stress allowable and repeat 
the optimization. Similarly, if the optimal volume is smaller than Vo we reduce the 
stress allowable and reoptimize. However, for many problems it is not possible to find 
an equivalent formulation that does not involve the minimum of a maximum. For 
example, when we optimize the shape of a hole so as to reduce stress concentration, 
we often do not have any constraint on volume. Therefore, we cannot transform the 
problem to one of minimizing volume with a constraint on stress. Taylor and Bends('ie 
[8] suggested an elegant solution to the problem of discontinuous derivatives. They 
suggest replacing the objective function of Eq. (2.4.25) with another objective plus 
a constraint equation 

mill f3 
A(x),!3 

such that a(x):::; f3, 
(2.4.26) 

The additional design variable (J is the unknown stress limit that we want to keep as 
low as possible. Now the objective function is equal to one of the design variables, 
so that it is perfectly smooth. This tactic for converting a min-max problem to a 
smooth problem by using an additional variable is very useful in many applications. 
We demonstrate it for the cable problem of Example 2.4.1. 

Example 2.4.2 

Formulate the problem of designing the cable of Figure 2.4.1(a) for minimum max
imum stress, subject to a limit Va on the available volume, and a lower limit Ao on 
the cross-sectional area. 
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The problem is first formulated as 

minimize max a( x) 
0$"'9 

such that A - Ao ~ 0 , 

11 A(x)dx = YO, 

and pI + pA = O. 

(2.4.27) 

Note that we have formulated the volume constraint as an equality rather than an 
inequality constraint, because common sense tells us that the volume will be fully 
utilized in order to minimize the stress. Next we replace the min-max formulation 
with the Taylor-Bends0e 'beta' formulation 

minimize f3 
such that A(x)f3 - P(x) ~ 0, 

A - Ao ~ 0, 

11 A(x)dx = YO, 

and p' + pA = 0 . 

(2.4.28) 

The solution of this problem is left as an exercise to the reader (Exercise 4) .••• 

2.5 Necessary and Sufficient Conditions for Optimality 

In the absence of inequality constraints, the Euler-Lagrange equations provide 
the necessary conditions for optimality (Optimality Conditions). As opposed to the 
use of Differential Calculus it is, however, not an easy task to verify whether such 
necessary conditions are also sufficient conditions for optimality. 

Sufficiency of optimality conditions can sometimes be established on the basis 
of the variational principles of continuum mechanics. For a discretized model, using 
the techniques of mathematical programming for optimization (Chapter 5), we can 
establish sufficiency of the optimality conditions on the basis of convexity of the 
objective function and the constraints. In general, however, establishing convexity of 
the objective function and the constraints is again not an easy task. A vast majority 
of the optimization problems are non-convex. 

Thus, establishing the sufficiency of the optimality conditions or identifying local 
and global optima is a question that cannot be answered fully for most situations. 
Often we have to rely either upon engineering intuition or upon trial and error tech
niques for answering such questions. 

Using the variational principles of mechanics, we illustrate how the sufficiency of 
the optimality conditions can be established for a select class of classical optimization 
problems. 
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2.5.1 Elastic Structures Maximum Stiffness 

The development in this section is based on the work of Prager and his collaborators 
(see Refs. 9,10). 

Consider an elastic structure being acted upon by a load 2P at a point X. Assume 
the load is such that it produces a unit displacement in its direction. Then by the 
principle of conservation of energy [111 

External work = Internal energy stored, 

or 

~(2P x 1) = P = J s(X)e[Q(X)]dv, (2.5.1) 

v 

where e[Q(X)] is the specific elastic strain energy or the strain energy in a structure of 
unit stiffness due to a strain field Q(X) produced by the prescribed unit displacement 
at X, and s(X) is the specific stiffness of the structure at X. That is, s(X) is the 
stiffness per unit length for one-dimensional structures and stiffness per unit of area 
for two-dimensional structures. 

Thus s(X) specifies the design of the structure while the function e[Q(X)] is inde
pendent of design parameters. For instance s(X) and e[Q(X)1 for a one-dimensional 
beam element would be EI(x) and 1/2(curvature)2, respectively. 

We wish to design a structure of a given total stiffness so as to maximize the 
magnitude P of the load producing the prescribed unit displacement at X. From 
Eq. (2.5.1) it is clear that maximizing P subject to the integral constraint on specific 
stiffness J s(X)dv = so, (2.5.2) 

v 

can be performed by seeking a stationary point of the auxiliary functional 

(2.5.3) 

The necessary condition for C to be stationary is given by 

(2.5.4) 

Since the structure is required to satisfy the equations of equilibrium for every 
structural design, then by the principle of minimum strain energy (which is a special 
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case of the principle of minimum potential energy for prescribed displacements) the 
second term within the first integral vanishes yielding 

j (e[Q(X)] - A) osdv = O. (2.5.5) 

v 

Thus for arbitrary variation Os we have 

e[Q(X)] = A = constant. (2.5.6) 

Equation (2.5.6) is the necessary condition for optimality. That is, the the stiff
ness of an elastic structure is stationary for a given structural design if the specific 
elastic strain energy is constant throughout the structure. We wish to examine if it is 
also sufficient. To answer this question we assume two distinct designs sand s with 
associated specific strain energies e[Q(X)] and e[Q(X)], both satisfying the constant 
total stiffness constraint 

j s(X)dv = j s(X)dv = so. (2.5.7) 

v v 

The loads P and P that correspond to sand s are 

P = j s(X)e[Q(X)]dv , and P = j s(X)e[Q(X)]dv, (2.5.8) 

v v 

respectively. Subtracting P from P, we have 

P - P = j s(X)e[Q(X)]dv - j s(X)e[Q(X)]dv. (2.5.9) 

v v 

Since Q(X) is also a kinematically admissible strain field for the design s, if we replace 
Q(x) in the definition of P with Q(X) we are guaranteed by the principle of minimum 
potential energy that 

j s(X)c[Q(X)]dv ::; j s(X)e[Q(X)]dv . 
v v 

Thus 

P - P ~ j s(X)e[Q(X)]dv - j s(X)e[Q(X)]dv . 
v v 

If the design s satisfies the optimality condition, Eq. (2.5.6), then 

P - P ~ A j[s(X) - s(X)]dv. 
v 

Finally, in view of Eq. (2.5.7) we have 

P-P~O, or P~P. 

(2.5.10) 

(2.5.11) 

(2.5.12) 

(2.5.13) 

This implies that condition (2.5.6) is not only a necessary but also a sufficient 
condition for optimality. 
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2.5.2 Optimal Design of Euler-Bernoulli Columns 

\Ve consider the problem of maximizing the buckling load of an Euler-Bernoulli 
column of a given volume or weight with cross-sections obeying I( x) = a[A( x )]n, n = 
1,2, or 3. It is well known that the buckling load of a structure is given by the min
imum value of the Rayleigh quotient over all kinematically admissible displacement 
fields [11]. For an optimum column we want to maximize this minimum value by vary
ing the distribution of material along the length of the column. Hence the present 
problem can be posed as one of maximizing the minimum value of the Rayleigh 
quotient for the buckling load 

. f~ EI(x)w"2dx . f~ Ea[A(x)]nw"2dx 
p = max mm I = Inax mm / ' 

I(x) w(x) fo w,2dx A(x) w(x) fo W ,2dx 

subject to the constant volume constraint 

/ 

i A(x)dx = Vo. 
a 

Using the Lagrange multiplier technique, we have 

/ 2 [ / 1 Ea[A(x)]nw" dx 
e = max min fo / - A iA(x)dx - Va 

A(x) w(x) r w,2dx 
Ja a 

(2.5.14) 

(2.5.15) 

(2.5.16) 

The necessary conditions for stability and optimality can be determined by requiring 
the first variation of the Lagrangian to vanish, that is 

_ 2 f~ Ea[A(x)tw"bw"dx 2 f~ Ea[A(x)]n w" 2dx [1/ I I ] 
be - 1 - 2 W bw dx 

fa w,2d.T [f~ wl2dx] a 

f~ nEa[A(x)]n-l w"2bAdx [i
l 

() 1 + / - A bA x dx = 0 . 
r w,2dx 

Jo 0 

(2.5.17) 

The terms involving the variations of derivatives of w need to be integrated by parts. 
After a rearrangement of terms, the coefficients of bw and bw' yield the stability 
equation and the associated boundary conditions for every design A(x) while the 
coefficient of bA yields the optimality condition. 

Stability Equation: [EaAn(x)w"J" + pw" = O. (2.5.18) 
Boundary Conditions: bw = 0, or [EaAn(x)w''J' + pw' = 0,(2.5.19) 

I5w' = 0, or EaAn(x)w" = O. (2.5.20) 

Optimality Conditions: nEaAn-1w"2 - A 11 w ,2dx = o. (2.5.21 ) 
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Since the second term in equation (2.5.21) is a constant, the equation can be simplified 
to 

(2.5.22) 

and this can be verified to be a statement of constant strain energy density in the 
buckled mode shape of the optimum column. 

The sufficiency of the optimality condition can be very easily established for the 
case n=l. For this case Eq. (2.5.22) reduces to 

(2.5.23) 

We begin by assuming two distinct designs A( x) and A( x) both of which satisfy the 
constant volume constraint (2.5.15) to yield 

1 

j(A -A)dx = o. (2.5.24) 

o 

The corresponding buckling loads Per and Per with associated buckling modes wand 
ill are given by 

t EaAw"2dx 
P _ ::.;0"--.,..-__ _ 

er - rl 2 ' 
Jo Wi dx 

rl - - 2 
_ Jo EaAw" dx 
Per = rl 2 

JO Wi dx 
(2.5.25) 

Since the buckling mode w is also kinematically admissible for design A(x), by 
the Rayleigh quotient Eq. (2.5.14), the magnitude of the quantity p defined by 

= f~ EaAw"2dx 
P= 1 ' fo w ,2dx 

(2.5.26) 

has the property that 
p ~ Per· (2.5.27) 

Subtracting Per from both sides of Eq. (2.5.27) and rearranging we have 

Per - Per ~ Per - p. (2.5.28) 

Thus, 
_ > f~ Eawl/ 2(A - A)dx 

Per - Per - rl 2 
Jo Wi dx 

(2.5.29) 

If the design A(x) satisfies the optimality condition (2.5.23), then by virtue of Eq. 
(2.5.24) 

Per - Per ~ 0, (2.5.30) 

meaning that of all the designs with different cross-sectional shapes the one that 
satisfies the optimality condition has the largest value of the critical load, thereby 
establishing the sufficiency of the optimality condition. 
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Prager and Taylor [9J provide a similar sufficiency proof for the dual problem 
namely the case of minimizing the volume or weight of an Euler-Bernoulli column for 
a given buckling load. 

Although it is difficult to prove the sufficiency of the optimality condition for 
values of n other than I, explicit solutions for the optimum designs for all classical 
boundary conditions are well known and are available from Refs. 12-16. Approx
imate numerical solutions using the finite element displacement models have also 
been reported by Refs. 17-20 for elastically supported columns with a very general 
distributed axial loading and for portal frames. 

Earlier works, especially those of Tadjbaksh and Keller [13]' assumed unimodal 
behavior and did not allow for discontinuity in the slope and the shear force at places 
where the area of cross-section vanished. Olhoff and Rasmussen [21J have shown that 
the design of Tadjbaksh and Keller [13J for the clamped column is non-optimal and 
have outlined more accurate bimodal numerical solutions with a constraint on the 
minimum cross-sectional area. Olhoff and Rasmussen identify a threshold value for 
the minimum area constraint below which the optimum clamped columns exhibit a 
bimodal behavior. Papers by Masur [22,23]' Olhoff [24], and by Plaut, Johnson, and 
Olhoff [25J outline less approximate and properly formulated multi-modal solutions 
for the elastically supported columns. 

Example 2.5.1 

By way of illustration we outline the solution for one of the classical cases here while 
relegating others to the exercises. Consider maximizing the critical load of a simply
supported column oflength 1 subject to the constant volume constraint, Eq. (2.5.15). 
An explicit solution to this problem was first outlined in [19J. We begin by listing 
the governing equations and boundary conditions of the problem. 

Stability Equation: 
Boundary Conditions: 

Optimality Conditions: 

[EaA3w"J" + pw" . 
w(O) = w(l) = 0, 
A3(0)W"(0) = A3(l)w"(I) = O. 

(2.5.31 ) 
(2.5.32) 

(2.5.33) 

A2w,,2 = c2 , or w" = ±c/A. (2.5.34) 

A consequence of the boundary condition of (2.5.33) and the optimality condition 
(2.5.34) is 

(2.5.35) A(O) = A(l) = O. 

Substituting the optimality condition into the stability equation we obtain 

A,,2 + (32 = 0 
A ' 

(2.5.36) 

where 
(2.5.37) 
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The differential equation of (2.5.36) and the associated boundary conditions can be 
solved by using a change of variables. Letting 

A = u1/ 2 , (2.5.38) 

we can integrate once the differential equation to obtain 

(2.5.39) 

Cl being a constant of integration. The above equation can be integrated once more 
giving 

Ix - c21 = - J du 1 • 

(Cl - 4jJ2u1/ 2)l" 
(2.5.40) 

Using another change of variables with Cl - 4f32U 1/ 2 = t we can integrate the right
hand-side of this equation once more to give 

(2.5.41 ) 

The two constants of integration, namely Cl and C2, can be determined by using the 
boundary condition given in Eq. (2.5.35) which yields 

(2.5.42) 

consequently 
(2.5.43) 

The optimal value of the cross-sectional area at any point along the length of the 
column can, therefore, be determined from Eq. (2.5.41). 

To determine the critical load parameter 13 we use the volume constraint 

1 1/2 1/2 u(I/2) J A(x)dx = 2 J A(x)dx = 2 J U 1/ 2dx = 2 J ul/2~: du = Vo, (2.5.44) 

000 0 

or from Eq. (2.5.39) 

1 uU/~ J J ~~ 
A(x)dx = Vo = 2 (Cl _ 4f32u1/ 2 )1/2du. (2.5.45) 

o 0 

The right-hand side of this equation can be integrated to obtain 

Vr - (Cl - 4f32u1/ 2)1/2 [_2 _ ~C (C _ 4f32U 1/ 2 ) + l(c _ 4f32u1/ 2 )2] uU/2) (2 5 46) o - 8136 CJ: 3 1 1 5 1 0" . 
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Recalling the definition of u, we can find the value of u(I/2) from Eqs. (2.5.41) and 
(2.5.43) as 

(2.5.47) 

Substituting Eq. (2.5.47) and the value of the constant CI from Eq. (2.5.43) into Eq. 
(2.5.46) we determine the optimum value of the load parameter and the critical load 
to be 

Al 
Vo 
1.5 

1.0 

0.5 

0.0 

xll 

Al 
Vo 

2 (15Vo)3 
f30p t = 24315 ' 

125 EaV03 
and (Per )opt = 9 -[5- . (2.5.48) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.7 0.8 0.9 1.0 X 11 

0.0 0.05 0.10 0.20 0.30 0.40 0.50 
1.0 0.95 0.90 0.80 0.70 0.60 

0.0 0.58540 0.78730 1.02345 1.15651 1.22751 1.25000 

Figure 2.5.1 Area distribution for the column. 

In comparison to a constant area beam with Ao = Vo/l and 10 = al~3 /13 

125 EIo 7r2 EIo 
(Pcr)opt = 9r = 1.41-12- = 1.41POcr· (2.5.49) 

That is the optimum depth-tapered column is 41 % stronger than the corresponding 
uniform column of the same volume. With CI, C2, and f3 known, A(x) is completely 
known from Eq. (2.5.41). Figure 2.5.1 shows this area distribution along the length 
of the column. Notice the undesirable feature of zero areas of cross-section at the 
two ends of the column. This is a consequence of not having specified a lower bound 
constraint on the area distribution .••• 

Optimum design of Thin Plates for Stability. For a column, the axial stress
resultant in the pre buckling state is independent of changes in cross-sectional areas 
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along the length of the column. However, this is not true for thin plates. The in
plane stress-resultants in the pre buckled state of a thin plates are indeed functions 
of the thickness distribution. The problem of optimizing thin plates for stability is, 
therefore, significantly more complicated than that for a column. 

The situation is not as bad for thin circular plates, for which the resulting govern
ing equations (stability and optimality) are ordinary nonlinear differential equations 
which can be solved approximately by some numerical schemes like those proposed 
by Frauenthal [26]. 

The problem is more complicated for thin rectangular plates which are gov
erned by nonlinear partial differential equations. For instance, questions about the 
uniqueness of solutions are not as easily answered. Under the assumption of in
extensional prebuckling deformations, which lead to thickness-independent in-plane 
stress-resultants in the pre-buckled state, a condition of uniform strain energy density 
has been established as being the optimality condition for such plates [27]. Even so, 
optimization of plates on the basis of such assumptions have led to unsatisfactory 
solutions for plates with aspect ratios close to unity. 

Armand and Lodier [28] have attempted to explain this difficulty in optimizing 
plates by linking it to the existence of infinitely many local extrema rather than 
a single global optimum. According to this explanation, the solution obtained by 
Frauenthal [26] is only a local optimum in the class of continuous thickness distri
butions. Simitses [29] has shown that for the same volume, stiffened circular plates 
yield much higher buckling loads than Frauenthal's optimum plate. Similarly, Kamat 
[27] who optimized finite element models of rectangular plates, observed discontin
uous thickness distributions that exhibit a tendency toward formation of ribs, and 
suspected that stiffened plates would be superior. Haftka and Prasad [30], in their 
survey paper on optimum structural design with plate bending elements, explain the 
radically different designs obtained for the same problem by different researchers by 
offering the conjecture that rib-stiffened plates are better than optimum plates with 
continuous thickness distributions. Olhoff [31] provides a mathematical justification 
for this behavior and for the questions of singularities and local optima in plates. The 
reader is referred to the monograph by Gajewski and Zyczkowski [32] for additional 
references on this topic. 

2.5.3 Optimum Vibrating Euler-Bernoulli Beams 

The fundamental frequency of free vibration of a beam is given by the minimum 
value of the Rayleigh quotient 

2 . I~ Ea[A(x)]n w" 2dx 
w = max min I ' 

A(x) w(x) Io pA(x)w2dx 
(2.5.50) 

over all kinematically admissible displacement fields [11]. However, even though both 
stability and vibration of Euler-Bernoulli beams are governed by a similar eigenvalue 
system, the criteria for optimization of freely vibrating Euler-Bernoulli beams are 
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different from those for Euler-Bernoulli columns.-.bnlike the case of columns, the de
nominator of the Rayleigh quotient for a freely vibrating beam involves the structural 
mass which is a function of the cross-sectional area. 

Consider the problem of the maximization of the fundamental frequency of a 
freely vibrating Euler-Bernoulli beam of a specified volume YO and specific mass p . 
We again assume that I(x) = a[A(xtJ, n = 1,2, or 3. 

The equation of motion of the beam and the necessary optimality condition are 
then obtained by maximizing the minimum value of the Rayleigh quotient, w2 , subject 
to the constant volume constraint. In other words starting with the Lagrangian 

I 2 [ I ] Ea[A(xWw" dx 
£ = max min fa I - A J A( x )dx - Va , 

A(x) w(x) fa pA(x)w2dx a 
(2.5.51 ) 

which is a functional of the functions w(x) and A(x), and setting its total variation 
with respect to both functions to zero we get 

2 f/ Ea[A(xWwI8w"dx 2 ~l Ea[A(xWw"2dx [11 ] 
8£ = a I - a 2 pA(x)w8wd:r 

fa pA(x)w2dx [f~ pA(x)w2dx] a 

+f~ nEa[A(x)Jn-l w"28Adx _ f~ Ea[A(x)tw"2dx [/1 PW28A(X)dX] 

f~ pA(x)w2dx [f~ PA(x)w2d.rf 

+.1 [j hA(x )dx 1 ~ 0 . (2.5.52) 

Integrating by parts the first term on the right-hand side of the above equation and 
collecting the coefficients of 8w and 8A, we obtain the 

Equation of Motion: 
Boundary Conditions: 

Optimality Condition: 

[EaAnwIJ" - w2pAw = O. 
8w = 0, or [EaAnw"J' = 0, 
8w' = 0, or [EaAnw"J = O. 

nEaAn- 1w"2 - w2 pW2 = constant. 

(2.5.53) 
(2.5.54) 
(2.5.55) 

(2.5.56) 

Equation (2.5.56) can be interpreted to imply that the Lagrangian energy density 
must be uniform in the fundamental mode of an optimum vibrating beam. 

As with columns the sufficiency of this optimality condition can be easily demon
strated for the case n = 1. For this case Eq. (2.5.56) reduces to 

(2.5.57) 
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We begin by assuming two designs A( x) and A( x) both of which satisfy the constant 
volume constraint, Eq. (2.5.15) and hence also Eq. (2.5.24). Assume wand w to be 
the fundamental frequencies and wand ill to be the associated fundamental modes 
corresponding to the two designs A(x) and A(x), respectively. Thus 

(2.5.58) 

Since w is kinematically admissible for w2 , by the Rayleigh quotient [11) we are 
guaranteed that 

rl E A- 112d 
~2 Jo a w x -2 

W = 1 >w 
10 pAw2dx -

(2.5.59) 

But 

(2.5.60) 

and 

w211 pAw2dx = 11 EaAw"2dx. (2.5.61 ) 

Subtracting Eq. (2.5.61) from Eq. (2.5.60) we get 

(2.5.62) 

Now assume that the design A(x) is one that satisfies the optimality condition, Eq. 
(2.5.57). Equation (2.5.62) can then be written as 

[;;211 pAw2 dx - w2 11 pAw2 dx = 11 (A - A) ( c + w2 pw2 )dx , 

which upon simplification and use of Eq. (2.5.25) yields 

In light of Eq. (2.5.59) it follows that 

(2.5.63) 

(2.5.64) 

(2.5.65) 

59 



Chapter 2: Classical Too in Structural Optimization 

thereby establishing the efficiency of the optimality condition of Eq. (2.5.57). 

It should be noted tl t the same optimality condition can be shown to hold for 
the dual problem of the I' imum weight design of the beam for a specified frequency. 
Several similar examples optimization with frequency constraints may be found in 
Refs. 33-38. In particui Turner [34] and Taylor [35] provide exact solutions for 
axially vibrating minimc: _ aass structures at specified natural frequencies. 

As in the case of columns, several approximate numerical solutions using the finite 
element displacement method are available for maximum fundamental frequency of 
elastically supported vibrating beams of fixed weight carrying a combination of con
centrated and distributed non-structural masses and subjected to upper and lower 
bounds on cross-sectional areas. For examples of this kind of approximate designs, 
see Refs. 39 and 40. By comparison, published literature on the more practical dual 
problem of minimizing the weight of beams for specified lower bounds on natural 
frequencies and upper and lower bounds on design variables appear to be limited 
[41]. It is not clear whether the primal and dual problems in this case are always 
equivalent [41,42]. 

In closing this topic of vibrating beams, it is appropriate to point out that the 
same optimality condition, Eq. (2.5.57) also applies to the optimum design of sand
wich beams under the constraint of prescribed deflection at the point of application of 
a single concentrated periodic load (e.g. see Icerman [43]). A more general optimal
ity condition for the constraint of a prescribed deflection at a specified point under 
a general distributed loading has been provided by Plaut [44]. For sandwich beams, 
Plaut has shown that it is possible to establish the sufficiency of the optimality con
dition on the basis of the principle of stationary mutual potential energy introduced 
by Shield and Prager [45]. A mathematically more rigorous study of this problem 
using the dynamic compliance of the structure as a constraint has been provided by 
Mroz [46]. A very extensive bibliography on the topic of optimization for dynamic 
response may be found in the survey papers referenced in Chapter 1. 

Optimum design of Thin Plates for Vibration. The problem of the optimum 
design of thin plates for vibration is not beset with the difficulty (encountered in 
the design for buckling) associated with the dependence of the prebuckling stress
resultants on the thickness distribution. That may explain why the problem of the 
optimum design of thin plates for vibration appears to have received a greater at
tention than the corresponding problem for stability. Haftka and Prasad [30] have 
provided an extensive bibliography on the optimum design of plate bending elements 
for vibration. 

The solution to the problem of the optimum design of a circular plate for vi
bration was first provided by Olhoff [47]. Olhoff showed (sec Exercise 8) that under 
the assumption of a rotationally symmetric lowest mode, the problem reduces to 
an ordinary, fourth-order, nonlinear, singular but homogeneous eigenvalue problem. 
An approximate numerical solution to this problem was generated, but the solution 
so obtained is only a local optimum belonging to the class of continuous thickness 
distributions. For the same volume, it is easy to devise stiffened circular plate con
figurations that possess far higher fundamental vibration frequencies than that of 
Olhoff's original solution [47]. 
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For rectangular plates, the optimum designs of finite element models that allow 
discontinuous thickness distributions again exhibit a tendency to distribute the ma
terial of the plate along discrete ribs [48-50]. For the same volume, a stiffened rectan
gular plate can be expected to have much higher fundamental frequency of vibration 
than that of a plate optimized on the basis of a continuous thickness distribution. 

2.6 Use of Series Solutions in Structural Optimization 

The methods of calculus of variations discussed in the previous sections are ide
ally suited for simple problems where the unknowns are design functions such as 
area distributions. These problems are called distributed parameter optimization 
problems. 

Another approach for solving distributed parameter problems which are not sim
ple enough to be attacked by the methods of Variational Calculus is the use of series 
solutions. The basic idea is to assume a series representation of the unknown design 
function within the domain of the structure along with the assumed response func
tions such as displacements. In general, therefore, the series solution method reduces 
continuous mathematical programming problems to discrete ones with a finite number 
of design variables. These variables are the coefficients of the series representation of 
the unknown design function. This idea was initially presented by Balasubramanyam 
and Spillers [511 who solved various vibration and buckling problems using Fourier 
series representation of the cross-sectional area of beam and column structures. A 
similar procedure was recently used by Parbery [521 to obtain minimum-area shapes 
for desired torsional and flexural rigidity. The method will be demonstrated by the 
following example. 

Example 2.6.1 

The optimum design of a buckling critical simply supported column is repeated in this 
example [51] to demonstrate the use of Fourier series approach. As in the examples 
discussed earlier there is a fixed material volume constraint, see Eq. (2.5.15). The 
objective is to find the cross-sectional area distribution of a plane-tapered column 
that maximizes the buckling load. That is, the cross-sectional area distribution is as
sumed to be related to a change in width (direction perpendicular to the deformation 
direction) of a rectangular section with constant depth. This corresponds to n = 1 
in Eq. (2.3.26). 

We start with the governing stability equation for the problem 

EaA(x)w" + pw = 0 . (2.6.1 ) 

Expanding the unknown quantities in two-term truncated Fourier series we have 

. 7rX • 37rX 
W = a1slllT +a3 s111 L , (2.6.2) 
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27rx 
A(x) = {30 - {32 cos L' (2.6.3) 

Note that the boundary conditions of the column eliminate the need for a constant 
term in Eq. (2.6.2). Because of the expected symmetry of the mode shape and the 
cross-sectional area distribution a2 and {31 terms are omitted from the Fourier series. 
The selection of the cosine representation for the cross-sectional area makes it possible 
to reduce the products of Fourier series (Aw") directly to a single series. 

The key strategy in this application is to reduce the number of unknown terms 
by substituting these assumed forms into the appropriate equations. Equating the 
coefficients of the similar trigonometric functions one obtains algebraic equations that 
must be satisfied by these coefficients. For example, using Eq. (2.4.15) we can show 
that 

{30 = Vo 
L' 

(2.6.4 ) 

Substituting {30 back to Eq. (2.6.3) and then using Eq. (2.6.2) we obtain the following 
product 

" 7r 2 [ aVo a{32 9a{32 . 7rX aA(x)w = -( -) (-al + -al - --a3) sm-
L L 2 2 L 

-a{32 9aVo . 37rX 9a{32 . 57rX] +(--al + --a3)sm- - --a3 sm -
2 L L 2 L' 

(2.6.5 ) 

where the trigonometric identity 

2 cos A sin B = sin(A + B) - sin(A - B) , (2.6.6) 

has also been used. Using Eq. (2.6.5) in the equilibrium equation and equating the 
coefficients of the sine terms we obtain the following algebraic equations. 

(2.6.7) 

7r 2 9a Vo a{32 -E(y) (Ta3-Tal)+pa3=0, (2.6.8) 

E( ~ )2( 9a{32 a3) = O. 
L 2 

(2.6.9) 

For a nontrivial solution, the determinant of the coefficient matrix for the un
known mode shape (aI, a3)Y must vanish. This results in the following quadratic 
relation for the buckling load p in terms of the only unknown coefficient (32 left in 
the problem 

(2.6.10) 
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The expression for the critical load is given by 

= E( {ya [20% + (3 ± (256 vi _ 32 V0(32 + 37(32)t] 
P 4 L 2 £2 L 2 

(2.6.11) 

In order to determine the value of (32 that maximizes the buckling load we take the 
derivative of Eq. (2.6.11) with respect to the unknown parameter (32 and equate it 
to zero. Resulting optimum value of (32 is 

(3* - 32 Vo 
2 - 37 L ' (2.6.12) 

and the corresponding optimum value of the buckling load is 

• 45 1[2 EaVo 45 
Pcr = 37 L3 = 37POcr . (2.6.13) 

where POcr is the buckling load of the constant-cross-section column of volume Vo. 
Although 22% stronger than the constant cross-section column of the same volume, 
this design is inferior to the design obtained in Example 2.5.1. In that example the 
change in area was achieved by varying the depth of the cross section keeping the 
width constant (n = 3). Clearly modifying the depth of the cross section is a more 
effective way of achieving increased buckling resistance. Example 2.5.1 repeated with 
n = 1 results in a quadratic distribution of the cross-sectional area with a critical load 
of P~r = 12/1[2pOcr , which is almost identical to the result obtained in Eq. (2.6.13). 
Moreover, the advantage of this method over other classical methods is in its ability 
to deal with more general structural problems under a variety of load conditions that 
may not be possible to solve using variational calculus .••• 

The success of the series solution in optimization is closely related to the form 
of the series chosen for the representation of the unknown function. In order to keep 
the number of design variables to a minimum, only few terms in the series represen
tation should be used. But, with a small number of terms used in the series, the 
approximation of the solution of the governing differential equations of the problem 
may be poor. Selection of the two-term approximation for the mode shape in the 
example just covered makes it possible to come up with a one parameter solution for 
the maximum buckling load in a closed form. However, it is important to note that 
the two-term solution shown above does not satisfy the equilibrium equation exactly. 
The last term in Eq. (2.6.5), when substituted into the equilibrium equation does 
not vanish. If, on the other hand, one uses too many terms in the series finding the 
optimum values of the coefficients of the terms becomes difficult, and may require 
the use of a formal search technique. A simple way of reducing the number of design 
variables without the loss of accuracy is to use possible symmetry inherent to the 
problem so that only a part of the geometry needs to be modelled. A good example 
of this approach is demonstrated in [52] where three-fold symmetry is used for the 
cross-sectional shape of a bar in torsion. 
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2.7 Exercises 

1. The equations of equilibrium and the associated boundary conditions of an elastic 
structure can be obtained by requiring that the potential energy of the structure be 
a minimum. Illustrate this for a cantilever Euler-Bernoulli beam. Comment on the 
types of boundary conditions at the two ends of the beam. Assume that the potential 
energy of such a beam is given by 

where 

I 

rr=~jaEdv- jq(X)WdX, 
v 0 

rf-w 
E = -y dx2 ' and a = EE, 

and q(x) is the distributed external transverse loading acting along the beam. 

2. Solve Example Problem 2.3.2 for q = qo, ~ = 1/2, assuming n = 2 and n = 3. 

3. Solve Example Problem 2.3.3 for the following cases 

a)n = 1; 

b)n = 1; 

c)n = 2; 

d)n = 2; 

e)n = 3; 

J)n = 3; 

q(x) = qo(l- x)/l. 

q(x) = 4qo(lx - x2)/12. 

q(x) = qo. 

q(x) = qo(l- x)/l. 

q(x) = qo. 

q(x) = qo(l- x )/1. 

4. Solve Example 2.4.2. 

5. Determine the optimum area distribution and corresponding buckling loads of the 
following Euler-Bernoulli columns subject to the constant volume constraint; 

a) cantilever column, n=l, 2, and 3. 

b) simply-supported column, n = 1,2. 

6. The Rayleigh quotient for an axially vibrating bar with an attached non-structural 
mass m at the free end x = I is given by 

2 f~ EA(x)u'2dx 
W = I . 

fo pA(x)u2dx + m[u(l)]2 

a) Derive the equation of motion and the optimality condition for the minimum 
mass design of the bar with a specified fundamental frequency WOo 

64 



Section 2.8: Exercises 

b) Verify Turner's solution [34] that for such a bar 

A{x) =f3m tanh,Bl [COS~:l]2 , 
p cos x 

u{x) =sinhf3x/sinhf3l. 

where f3 = ";wgp/ E. 

and Vo = m sinh2 f3l , 
p 

7. Begin with a Rayleigh quotient similar to that of the previous problem for a 
vibrating cantilever beam of sandwich construction. Assume that the beam carries a 
distributed non-structural mass m(x) »pA(x). Verify Taylor's solution [35] that the 
area distribution A(x) for the optimum beam with a specified fundamental frequency 
Wo is given by 

I 

A(x) = ;~2 J(~ -x)em(~)dC 
x 

where 2c2 = I(x)/A(x), and ~ = x/l. 

8. Show that the fundamental frequency for a thin circular plate of radius a and 
thickness distribution function t( r) is given by 

1 

J h3(~)[wI/2 + 2vw"w' /~ + (w' /02J~d~ 
w2 = min -"-0 _____________ _ 

w(x) 1 J h(~)W2~d~ 
o 

where 
a 

c -!:.. <,- , 
a 

and Vo = J 27rtrdr, 
o 

with primes denoting differentiation with respect to the non-dimensional radial co
ordinate ~. 

Also, show that the optimality condition for maximizing the fundamental fre
quency of such a plate with a specified volume Vo, 

can be reduced to imply a constant Lagrangian density in the fundamental mode. 

9. Solve Example Problem 2.6.1 assuming n = 2. 

10. The governing equation of motion for the steady-state forced vibration of a 
simply-supported Euler-Bernoulli beam is given 

(Elw")" - pAw2w = q(x, t), 
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where the applied transverse load q(x, t) = qo sinwt and the area distribution is 
related to the moment of inertia of the cross-section by I(x) = a[A(x )]n. Determine 
the optimal distribution of the cross-sectional area for n = 1 and 2 such that the 
center displacement, w(l/2) is minimized subject to a specified constant volume, Vo, 
constraint. Assume two-term symmetric solution for the displacement and the area 
distribution. 
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Linear Programming 3 

Mathematical programming is concerned with the extremization of a function f 
defined over an n-dimensional design space R n and bounded by a set S in the de
sign space. The set S may be defined by equality or inequality constraints, and 
these constraints may assume linear or nonlinear forms. The function f together 
with the set S in the domain of f is called a mathematical progmm or a mathemat
ical programming problem. This terminology is in common usage in the context of 
problems which arise in planning and scheduling which are generally studied under 
operations research, the branch of mathematics concerned with decision making pro
cesses. Mathematical programming problems may be classified into several different 
categories depending on the nature and form of the design variables, constraint func
tions, and the objective function. However, only two of these categories are of interest 
to us, namely linear and nonlinear progmmming problems (commonly designated as 
LP and NLP, respectively). 

The term linear programming (LP) describes a particular class of extremization 
problems in which the objective function and the constraint relations are linear func
tions of the design variables. Because the necessary condition for an interior minimum 
is the vanishing of the first derivative of the function with respect to the design vari
ables, linear programming problems have a special feature. That is, the derivatives 
of the objective function with respect to the variables are constants which are not 
necessarily zeroes. This implies that the extremum of a linear programming problem 
cannot be located in the interior of the feasible design space and, therefore, must lie on 
the boundary of the design space described by the constraint relations. Since the con
straint relations are also linear functions of the design variables the optimum design 
must lie at the intersection of two or more constraint functions, unless the bounding 
constraint is parallel to the contours of the objective function. This special feature of 
the linear programming problems makes it possible to devise effective algorithms that 
are suitable for reaching optimum solutions. Linear programming problems involving 
large number of design variables and constraints are usually solved by an extremely 
efficient and reliable method known as the simplex method. 

Unfortunately, however, very few physically meaningful problems in structural 
design, if any, can be formulated directly as LP problems without involving a degree 
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of simplification. Most structural design problems involve highly nonlinear objective 
function and constraint relations. Nevertheless, the category of LP is of interest to 
us because of several reasons. First of all, many nonlinear constrained problems can 
be approximated by linear ones which can be solved efficiently by using standard 
LP algorithms. Using such approximations opens up a possibility for solving NLP 
problems. That is, almost all NLP problems can be solved as a sequence of repetitive 
approximate LP problems which converge to the exact solution of the original NLP 
problem provided that the procedure is repeated enough number of times. This 
powerful procedure is called sequential linear programming (SLP) and is discussed in 
Chapter 6. Also, methods intended for nonlinear constrained problems often utilize 
linear programming as an intermediate step. For example, Zoutendijk's method of 
feasible directions (see Chapter 5) employs a LP to generate a search direction. 

Whether a given nonlinearly constrained problem in structural optimization can 
be replaced by an approximately equivalent linearly constrained problem depends to 
a great extent on the intuition of the designer and his knowledge and experience with 
the given problem. Such approximations must usually be made so as not to alter the 
overall character of the problem radically. The trade-off between a higher value of the 
objective function attained because of the approximation and a lower computational 
cost must be weighted carefully. Fortunately, there are a few classes of problems in 
structural analysis and design in which such approximations have found to be indeed 
reasonable. In the following sections some of those problems will be presented as 
LP problems, and graphical solution of a simple LP problem will be demonstrated. 
Next, the standard formulation of the mathematical LP problems will be presented, 
and solution techniques for LP problems will be discussed. Finally, we would discuss 
a special case of LP problems that require the design variables to assume values from 
a set of discrete or integer values. 

3.1 Limit Analysis and Design of Structures Formulated as LP Problems 

In many structural design problems the initiation of yielding somewhere in the 
structure is considered to be a criterion for failure, but this is not always reasonable. 
In many cases we are not interested in the initiation of failure but in the maximum 
load, called the limit load or the collapse load, that a structure may carry without 
losing its functionality. The collapse load can be defined as the load required to 
generate enough local plastic yield points (referred as plastic hinges for bending type 
members) to cause the structure to become a mechanism and develop excessive de
flections. While the exact calculation of the collapse load of a structure requires the 
solution of a costly nonlinear problem, for ductile materials it is possible to obtain 
a conservative estimate of that load by making the assumption that the material 
behaves as an elastic-perfectly plastic material. That is, the material is assumed 
to follow tlle stress-strain diagram shown in Fig. 3.1.1, yielding at stress level 170 

but functioning as a constant stress carrying medium beyond the elastic limit. It is 
this important assumption that allows the limit analysis and design problems to be 
formulated as LP problems. 
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Strain, E 

Figure 3.1.1 The stress-strain curve for an elastic-perfectly plastic material. 

A simple example of a three bar truss is used in the following example to illustrate 
the difference between the calculation of the load which initiates yielding and the 
estimate of the collapse load. 

Example 3.1.1 

A 

p 

Figure .'1.1.2 Collapse of a three bar truss subject to a single load. 

We perform the collapse analysis of a three bar pin jointed truss under a vertical 
load as shown in Fig. 3.1.2. All three bars have the same cross-sectional area A, and 
are made of material having Young's modulus E and yield stress 0"0' We start by 
calculating the load p at which the first bar yields. Denoting the vertical displacement 
at the common joint D by v, we obtain the strains in the three members 

V 

fB = I' 
The corresponding member forces are 

EA 
nB = -l-v, 

V 
fA = fC = 4l . 

Using the two equations of equilibrium at joint D, we get 

(3.1.1) 

(3.1.2) 

(3.1.3) 
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and the internal forces in the three members are determined as 

nA = nc = 0.2p, nB = 0.8p. (3.1.4) 

Clearly, as the load is increased from zero member B yields first, when 

or p = 1.25Ao-o . (3.1.5) 

The structure does not collapse, however, at p = 1.25Ao-o since members A and 
C can still carry the applied load without experiencing excessive deformations. We 
may increase the load until member A or C yields. Since we have assumed elastic
perfectly plastic material behavior, the stress in member B will remain at 0-0 as we 
increase the load beyond the initial yield load. Due to the symmetry in this problem, 
the next yielding takes place simultaneously in members nA and nco Therefore, at 
collapse all three members will be at the yield point so that 

(3.1.6) 

and from the equations of equilibrium Eq. (3.1.4) we have 

(3.1. 7) 

This is a 60% increase over the load when first yielding starts .••• 

In example 3.1.1 it was easy to identify the sequence of yielding of the members 
and determine the state of stress in the members at collapse. This fact permitted us to 
determine the collapse load without difficulty. In general, it is not easy to determine 
the combination of members that will yield at collapse, and the stress distribution at 
the collapse is not known. Fortunately, it is possible to cast the problem as an LP 
problem in order to determine the collapse load [1] based on a general theorem of 
the theory of plasticity. This theorem is the lower bound theorem, and it is quoted 
below from Calladine Ref. 2. 

The Lower Bound Theorem: If any stress distribution throughout the structure 
can be found which is everywhere in equilibrium internally and balances the external 
loads, and at the same time does not violate the yield conditions, these loads will be 
camed safely by the structure. 

The application of this theorem will now be demonstrated for a problem where 
the choice of stress at collapse is not as trivial as it was in example 3.1.1. We use the 
same structure used in the previous example, but with an added horizontal load at 
point D. 
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Example 3.1.2 

A 

p 

Figure 3.1.3 Limit analysis of a three bar truss subjected to two loads. 

Consider the limit analysis of the three bar truss of Figure 3.1.3 under the com
bined vertical and horizontal loads of equal magnitude, p. The equations of equilib
rium in this case are 

I 
nB + 2{nA + nc) - p = 0, 

y'3 
T (nA - nc) - p = 0 , 

(3.1.8) 

and we have the constraints 

(3.1.9) 

It is no longer easy to know which two of the three bars yield at the collapse. However, 
we may try different combinations of nA, nB, and nc that satisfy the equations of 
equilibrium in order to obtain a lower bound to the collapse load. For example, if we 
try nc = 0, we obtain from the equilibrium relations (3.1.8) 

2 
nA = y'3p = 1.155p, and nB = 0.423p . (3.1.10) 

Clearly in this case nA reaches its yield value of Aao before nB so that 

nA = Aao, nB = 0.366Aao, 
y'3 

and p = TAao = 0.866Aao . (3.1.11) 

Having satisfied all the requirements for the lower bound theorem, we thus know 
that the collapse load is bounded below by 0.866Aao. We can now try different 
combinations of member force distribution until we obtain a higher value of p than 
the one obtained in Eq. (3.1.11). To get the best estimate, we cast the problem as a 
maximization problem 

maximize 
such that 

P 
Eqs. (3.1.8) and Eqs. (3.1.9) are satisfied. (3.1.12) 

This is clearly a LP problem in the variables nA, nB, nc and p , and may be solved 
using any LP algorithm. It is also simple enough to admit a graphical solution if 
required (see Exercise 1) .••• 
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The general formulation of the calculation of the limit load for truss structures 
is similar to the procedure used in example 3.1.2 . It is assumed that no part of the 
truss structure fails by buckling before the plastic collapse load is reached. If we have 
a truss structure with r members loaded by a system of loads AP, where p is a given 
load vector and A is a scalar, the limit load can be determined by finding the largest 
value of A that the structure can support. The equations of equilibrium are written 
as 

r 

L eijnj = APi, 
j=l 

i = 1, ... ,m, (3.1.13) 

where nj (j = 1, ... , r) are the forces in each of the truss members, eij are direction 
cosines, and m is the number of equilibrium equations. The yield constraints are 
written as 

(3.1.14) 

where A j , (lCj, and (lTj are the cross-sectional areas, and the yield stresses in com
pression and tension, respectively. The limit or collapse load is then the solution to 
the following linear programming problem: 

maximize A 
such that Eq. (3.1.13) and Eq. (3.1.14) are satisfied, (3.1.15) 

where A and the member forces nj are treated as the design variables. 

A related problem is the problem of limit design where the collapse load is spec
ified and the optimal cross-sectional areas are sought. Often, the objective is to 
minimize the total mass of the structure 

minimize m = LPjAjlj , 
j=l 

(3.1.16) 

where Pj and lj are the mass density and the length of member j, respectively. The 
minimization problem of Eq. (3.1.16) has the same set of constraints, Eqs. (3.1.13) 
and (3.1.14), that applies to the limit analysis problem, but both nj and Aj are 
treated as design variables. This time, however, the load amplitude A is specified. 

Example 3.1.3 

Formulate the limit analysis and design of the five bar truss shown in Figure (3.1.4) 
as linear programs. Assume that all bars are made of the same material and that 
(lc = -(IT = (10· 

The vertical and horizontal equations of equilibrium at the unrestrained nodes of 
the structure are 

V2 
n13 + Tn23 = 0, 

V2 
n24 + Tn14 = 0, (3.1.17a) 

V2 
n34 + Tn23 = 0, 

V2 
n34 + Tn14 = P . (3.1.17b) 
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4 

P 

Figure 3.1.4 Limit analysis and design of a five bar truss. 

The yield constraints are 

-A130'O ~ n13 ~ A13O'o, - A 230'O ~ n23 ~ A23O'O , 

-A140'O ~ n14 ~ A 140'O, - A 240'O ~ n24 ~ A 24 0'O , 

- A340'O ~ n34 ~ A340'O . 

(3.1.18) 

The limit load problem is specified as defined previously: maximize p, by varying 
the member forces, such that the equations of equilibrium and the yield constraints 
are satisfied. The limit design problem is 

minimize 

such that 

~ = A13 + A24 + A31 + v'2(A14 + A 23 ) 

Eq. (3.1.17) and Eq. (3.1.18) are satisfied. (3.1.19) 

For the limit design problem both the cross-sectional areas and the member forces 
are treated as design variables .••• 

The analysis and design of structures that include members under bending may 
be formulated as LP problems as in Refs. 3-5. Cohn, Ghosh, and Parimi [3] provide 
an excellent unified approach to both the analysis and design of beams, frames, and 
arches of given configurations under fixed, alternating, and variable repeated or shake
down loadings. We focus our attention here only on simple examples in this class of 
problems. 

The basic hypothesis regarding the material is that the beam or frame is elastic
perfectly plastic. The fully plastic moment, m p , of a beam cross-section is defined as 
the bending moment, m, required to make the entire cross-section yield so as to form 
a hinge with constant. bending resistance. 
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Example 3.1.4 

1/2 

Figure 3.1.5 Limit analysis of a two-span beam. 

Limit analysis of bending members is illustrated by using a two-span continuous 
beam under the loading shown in Figure 3.1.5. Following the general formulation 
presented earlier, the limit load is the largest value of >. that the structure can support 
without forming a mechanism. As in the case of Example 3.1.2 the sequence of 
hinge formation to form a beam mechanism and the distribution of the bending 
moments along the span of the beam is not obvious. In fact, there are infinitely 
many statically admissible bending moment distributions that satisfy the equilibrium 
equations. However, there are only two possible collapse mechanisms. The two 
elementary mechanisms and the moment distribution for the beam are presented in 
Figure 3.1.5. 

The LP problem for the plastic analysis is 

maximize >. 
subject to i = 1,2,3, (3.1.20) 

where ml,m2,and ,m3 are the magnitudes of the bending moment at those points 
along the beam which have the potential to form plastic hinges; at these points 
the bending moments have local maxima. These three moments are also unknowns 
for the problem and need to be determined. At the onset of either of the collapse 
mechanisms shown in Figure 3.1.5, we can write down two equations of equilibrium 
by using the principle of virtual displacements. The basic assumption in writing the 
virtual displacements is that the hinges in the figure are not plastic hinges, but are 
introduced to permit the small displacements that are assumed to take place while 
the members between them remain straight. The resulting equilibrium relations are 

(3.1.21) 
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(3.1.22) 

where Oi, O2 are the virtual rotations of the member at the expected plastic joints and 
8i, 82 the virtual displacements of the beam under the load points. The virtual dis
placements and the rotations are related to one another through kinematic relations, 
and can be eliminated from the equations. Furthermore, using the two equilibrium 
equations, we can eliminate the two variables, ml and m3, to reduce the LP problem 
of 3.1.20 to finding the ..\ and m2 such that 

maximize ,\ 
pi 1 

- m < (-..\ - -m2) < m p- 4 2 - p, 
subject to 

- mp ::; m2 ::; mp , (3.1.23) 

- m < (pl,\ - !m2) < m . 
p- 2 2 - p 

This is a simple two variable (m2 and ..\) LP problem that can be solved graphically . 
••• 
Example 3.1.5 

As an illustration of limit design for bending type problems, consider the well-known 
problem of minimizing the weight of a plane frame to resist a given set of ultimate 
loads. A single bay, single story portal frame is loaded by a horizontal and a vertical 
load of magnitude p as shown in Figure 3.1.6. For this design problem the top hori
zontal member is assumed to be different from the two vertical columns. Accordingly, 
we assume the beam and the column cross-sections to have associated fully plastic 
moments mpB and mpC, respectively. These two plastic moments depend on the 
cross-sectional properties of their respective members and, therefore, are the design 
variables for the problem. 

P 
1 

p--,--...--i-------; 

21 

Figure 3.1.6 Portal frame design against plastic collapse. 

In order to pose the problem as a weight minimization design problem, we need 
to relate the design variables and the structural weight. Massonet and Save [6] have 
shown that for beam sections in bending there is an approximate linear relation 
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between the weight per running foot, WI, and the plastic section modulus, mp/(J'o. 
Over the relevant range of sections that may be expected to be used for a given 
frame the error involved in this linearization is of the order of 1 %. It is this single 
assumption which renders the plastic design problem linear. 

We will, therefore, assume that the problem of minimizing the weight of a frame 
for a set of ultimate loads reduces to minimizing a function 

(3.1.24) 

In the interest of non-dimensionalization we divide both sides of Eq. (3.1.24) by 2p{2 
to obtain the weight proportional objective function 

p 

p 
--~,....,--

1.4mb;?: pi 
P 

p--..,.-_.....I..._...., 

4. 4 me;?: 2 pi 

p 

P 
---1~ __ 

2. 2 mb + 2 me ;?: pi 
P 

p-~--...l--

5. 4 mb + 2 me ;?: 3 pi 

(3.1.25) 

p 

p--.,...-----~ 

3. 2 mb + 2 me ;?: 2 pi 

P 

p-~r--_.J __ 

6. 2 mb + 4 me ;?: 3 pi 

Figure 3.1.7 Collapse mechanisms for the portal frame of Figure 3.1.6. 

The equations of equilibrium can be obtained by using the same approach used 
in the previous example. Figure 3.1.7 shows all possible collapse mechanisms for the 
frame. The ultimate load carrying capacity of the structure for any given collapse 
mechanism is obtained by the virtual work equivalence between the external work 
of the applied loads and the internal work of the fully plastic moments experienced 
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while undergoing virtual rotations of the plastic hinges. Thus a permissible design 
is one for which the capacity for internal virtual work is greater than or equal to 
the external work. It is left as an exercise (see Exercise 4) to verify that behavioral 
constraints associated with the collapse mechanism of Figure 3.1.7 reduce to 

4X2 ~ 1, beam mechanism 1 , (3.1.26) 
2XI + 2X2 ~ 1, beam mechanism 2 , (3.1.27) 

Xl + X2 ~ 1, sway mechanism 1 , (3.1.28) 
2XI ~ 1, sway mechanism 2 , (3.1.29) 

2XI + 4X2 ~ 3, combined mechanism 1 , (3.1.30) 
4XI + 2X2 ~ 3, combined mechanism 2 . (3.1.31 ) 

Furthermore since Xl and X2 represent cross-sectional variables it is required that 

and (3.1.32) 

Thus the problem of weight minimization under a set of ultimate load has been 
reduced to the determination of those non-negative values of xland X2 for which I 
as given by Eq. (3.1.25) is minimized subject to constraints Eqs. (3.1.26 - 3.1.32). 
The problem is clearly an LP problem. We will defer the analytical solution of this 
problem until later .••• 

3.2 Prestressed Concrete Design by Linear Programming 

Since concrete is weak in tension, prestressing helps to eliminate undesirable ten
sile stresses in concrete and thereby improve its resistance in bending. A prestressing 
cable or a tendon exerts an eccentrically applied compressive load to the beam cross
section giving rise to an axial load and possibly a bending moment due to an offset in 
the cable. In evaluating the total stresses at any given cross-section we must super
impose the stresses due to dead and live loads on the stresses due to the eccentrically 
applied prestressing forces of the tendons. For a beam of fixed cross-sectional dimen
sions, the total cost of the beam may be assumed to be approximately proportional 
to the cost of building in a desired prestressing force. The optimization problem for 
the design of a prestressed beam thus reduces to minimizing the magnitude of the 
prestressing force 10. 

Consider the following simple problem of the optimum design of the simply
supported beam shown in Figure 3.2.1 . The initial value of the prestressing force 
10 and the eccentricity Ie is to be determined such that 10 is a minimum subject to 
constraints on normal stress, transverse displacement, and upper and lower bound 
constraints on the design variables. Additionally, in designing a prestressed concrete 
beam which is expected to remain in service for a number of years, we must allow for 
the loss of prestressing force through time dependent shrinkage and creep effects in 
concrete. To simplify design considerations it is frequently assumed that the realizable 
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A 

-------------- -.. --I------
.• e=cable 
..•.• eccentricity 

I====:s;~:::::::::~==~ 

'-A Section A-A 

Figure 3.2.1 Simply supported post- tensioned beam. 

prestressing force in service is a constant fraction a of the initial prestressing force fo. 
In calculating the bending moment distribution or the deflected shape of a prestressed 
beam, in addition to the usual dead and live loads, we must allow for the equivalent 
distributed loading (see Exercise 6a) and the end loads resulting from the curved 
profile of the eccentrically placed tendons. It can be shown [7,8] that for parabolic 
profiles of the cables (see Figure 3.2.1) the induced moments and deflections are 
linearly related to the quantity foe with the constant of proportionality k being a 
function of the known material and cross-sectional properties. With this assumption 
maximum stresses and the deflections of a simply supported beam occur at the center 
of the beam. If the maximum positive bending moment and maximum deflection at 
the center of the simply-supported beam of Figure 3.2.1 due to external loads in 
the ith loading condition are denoted by mei and bei, respectively, then the beam 
optimization problem reduces to 

minimize 

subject to 

fUo,e) = fo 
Ii < afo ± mei - afoe < ui a _ -- _a , 

a z 
bli ~ bei + akfoe ::; b" i , 

el ~ e ~ e", 
fo 2: 0, i = 1, ... ,nl. 

(3.2.1 ) 

(3.2.2) 

(3.2.3) 

(3.2.4) 
(3.2.5) 

Here nl denotes the number of different loading conditions; ai, aU, bl , b" , el , and e" 
denote lower and upper bounds on stress, deflections and the tendon eccentricity; 
a and z denote the effective area and the section modulus of the cross-section. 

The problem as formulated by Eqs. (3.2.1) through (3.2.5) is not an LP problem 
because it includes the product foe of the two variables. However, it can be easily 
cast as one by letting 

m = foe, (3.2.6) 

and expressing the problems in terms of the new design variables fo and m. The 
transformed problem thus reduces to the following LP problem 

minimize fUo,m) = fo (3.2.7) 
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subject to Ii alo ± mei - am ui 
(J :::; -- :::; (J , 

a z 
81i :::; 8ei + akm :::; 8ui , 

ml:::; m:::; m U , 

fo 2: 0, i = 1, ... , nl, 

with mt and m U being the upper and lower bounds on foe. 

(3.2.8) 

(3.2.9) 

(3.2.10) 
(3.2.11 ) 

Morris [9] has treated a similar problem, but with additional constrains on ulti
mate moment capacity. He also modified the constraint (3.2.11) to allow the Ameri
can Concrete Institute's limit on the prestressing force intended to prevent premature 
failure of the beam by pure crushing of the concrete. Morris linearizes part of the 
problem by using the reciprocal of the prestressing force as one of the design variables; 
this transformation however fails to linearize the constraint on the ultimate moment 
capacity. In the interest of linearization, this nonlinear constraint is replaced by a 
series of piecewise linear connected chords with true values at chord intersections. 
Kirsch [10] has shown that appropriate transformations can also be used to reduce 
the design of continuous prestressed concrete beams to equivalent linear program
ming problems. These problems involve not only the optimization of the prestressing 
force and the tendon configuration, but also the optimization of the cross-sectional 
dimensions of the beam. 

3.3 Minimum Weight Design of Statically Determinate Trusses 

As another example of the design problems that can be turned into LP problems 
we consider the minimum weight design of statically determinate trusses under stress 
and deflection constraints. The difficulty in these problems arises due to the nonlinear 
nature of the deflections as a function of the design variables which are the cross
sectional areas of the truss members. This type of problem, however, belongs to 
the class of what is known as separable programming [11] problems. In this class of 
programming the objective function and the constraints can be expressed as a sum 
of functions of a single design variable. Each such function can be approximated by 
a piecewise linear function or a set of connected line segments or chords interpolating 
the actual function at the chord intersections. 

A nonlinear separable function of n design variables, 

can be linearized as 
m m m 

I = L r/lk!lk + L 'f/2khk + ... + L 'f/ndnk , 

with 

k=O k=O k=O 

m 

Xl = L 'f/lkXlk, 

k=O 

m 

,Xn = L 'f/nkXnk , 

k=O 

(3.3.1) 

(3.3.2) 

(3.3.3) 
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m m m 

L 'T/lk = L'T/2k = ... = L'T/nk = 1 , (3.3.4) 
k=O k=O k=O 

'T/jk;::: 0, j = 0,1, ... , n, and k = 0,1, ... , m . (3.3.5) 

Here /ik and Xjk are the values of the functions /1,12, ... , in and the design vari
ables Xl, X2, ••• , X n at m + 1 preselected points along each of the design variables, 
and 'T/nk'S are the interpolation functions for the design variables. Note that the 
number, m, of points selected for each design variable can, in general, be different 
(ml, m2, ... , m n , etc. ), but for the sake of simplicity they are taken to be equal here. 

The purpose of using m intervals with m + 1 values of the design variables is to 
cover the entire range of the possible design space accurately. The number of segments 
m decides the degree of approximation to the original problem- the larger the m 
the closer the solution of the linear problem will be to the true solution. However, at 
any given design point, a linear approximation to a nonlinear function requires only 
the value of the function at two values of a design variable. We, therefore, require 
that for every design variable j(j = 1, ... , n), at most two adjacent 'T/jk be positive. 
This implies that if, for example, 'T/pq and 'T/p(q+l) are non-zero with all other 'T/pk zero, 
then the value of xp is in the interval between xpq and xp(q+l) and is given by 

with 'T/pq + 'T/p(q+l) = 1 . (3.3.6) 

The variables, (Xl, ... , xn), of the function have thus been replaced by the interpola
tion functions, 'T/jk, only two of which are constrained to be non-zero for each of the 
design variables. Therefore, we have a linear approximation to the function at every 
design variable. 

Example 3.3.1 

As an illustration we consider a problem similar to the one solved by Majid [12]. The 
objective is the minimum weight design of the four bar statically determinate truss 
shown in Figure 3.3.1 with stress constraints in the members and a displacement 
constraint at the tip joint of the truss. In order to simplify the problem we assume 
members 1 through 3 to have the same cross-sectional area A l , and the member 4 the 
area A2• Under the specified loading, the member forces and the vertical displacement 
at joint 2 can easily verified to be 

(3.3.7) 

(3.3.8) 
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Figure 3.3.1 Four bar statically determinate truss. 

where negative values for the forces denote compression. Allowable stresses in tension 
and compression are assumed to be 7.73 x 1O-4E and 4.833 x 1O-4E, respectively 
and the vertical tip displacement is constrained to be no greater than 3 x 1O-3 l. The 
problem of the minimum weight design subject to stress and displacement constraints 
can be formulated in terms of the non-dimensional variables 

as 

minimize 

subject to 

and 

3 v'3 
f(xt, x2) = - +-

Xl X2 

18xl + 6v'3X2 :::; 3, 
0.05 :::; Xl :::; 0.1546, 

0.05 :::; X2 :::; 0.1395, 

(3.3.9) 

(3.3.10) 

(3.3.11) 
(3.3.12) 

(3.3.13) 

where lower bound limits on Xl and X2 have been assumed to be 0.05. Except for the 
objective function which is a separable nonlinear function, the rest of the problem is 
linear. The objective function can be put in a piecewise linear form by using Eqs. 
(3.3.2) and (3.3.3). For the purpose of demonstration, we divide the design variable 
intervals of Eqs. (3.3.12) and (3.3.13) into two equal segments (m = 2) resulting in 

XIO = 0.05, Xu = 0.1023, X12 = 0.1546, 

and X20 = 0.05, X2l = 0.09475, X22 = 0.1395 . 

Objective function values corresponding to these points are 

flO = 20, fll = 9.76, h2~= 6.47, 

and 120 = 34.64, 121 = 18.28, 122 = 12.42 . 

Therefore, the linearized objective function is 

f(xl, X2) = 207]10 + 9.761]11 + 6.471]12 + 34.641]20 + 18.281]21 + 12.421]22 . 
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After substituting 

Xl = 0.051]10 + 0.10231]11 + 0.15461]12, 

and X2 = 0.051]20 + 0.094751]21 + 0.15461]22, 

into the constraint equations of (3.3.11) through (3.3.13), a standard LP algorithm 
can be applied with the additional stipulation that only two adjacent 1]ik for every 
design variable Xi be positive .••• 

3.4 Graphical Solutions of Simple LP Problems 

For simple problems with no more than two design variables a graphical solution 
technique may be used to find the solution of a LP problem. A graphical method 
not only gives a solution, but also helps us to understand the nature of LP problems. 
The following example is included in order to illustrate the nature of the design space 
and the optimal solution. 

Example 3.4.1 

Consider the portal frame limit design problem of example 3.1.5. The problem was 
reduced to minimizing the objective function 

!(Xl,X2) = 2XI +X2, (3.4.1 ) 

subject to inequality constraints Eqs. (3.1.26) through (3.1.32). 

Since the problem is an LP problem in two-dimensional space it is possible to obtain 
a graphical solution. Constraints (3.1.32) imply that we can restrict ourselves to the 
non-negative quadrant of the XI - X2 plane in Figure 3.4.1. 'Ve plot all the straight 
lines corresponding to Eqs. (3.1.26) through (3.1.31) as strict equalities (these lines 
identify the constraint boundaries). To identify the feasible and the infeasible portions 
on either side of a given constraint line we choose a point on either side and substitute 
its coordinates in the inequality. If the inequality is satisfied then the portion on the 
side of the constraint line which contains this point is the feasible portion, if not it is 
infeasible. For example, if the coordinates XI = 0 and X2 = 0 are substituted into the 
inequality (3.1.27), the inequality is violated, implying that the origin does not belong 
to the feasible domain. If we continue this process for all the inequality constraints we 
will soon end up with a feasible region that is a convex polygon; the corners are called 
extreme points. The feasible region corresponding to the constraints is illustrated in 
Figure 3.4.1. 

Next, we plot the contours of the objective function by setting the function 2xJ + 
X2 equal to a constant and plotting the lines corresponding to various values of this 
constant. The optimum point is obtained by finding the contollf of the objective 
function which just barely touches the feasible region. The direction of decreasing! 
is shown in Figure 3.4.1 with the optimum solution identified as 

XI = X2 = 1/2, (3.4.2) 
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Figure 3.4.1 Graphical solution of the portal frame LP problem. 

with fmin = 1.5 .••• 

3 3.5 

Barring degeneracy, the optimum solution in an LP problem will always lie at a 
corner or an extreme point. The degenerate case may occur when the gradient of the 
objective function is a constant multiple of the gradient of one of the constraints along 
which the optimum solution lies. Then, every point along this constraint including 
the extreme points constitutes an optimum solution. For example if the problem just 
discussed had an objective function of the type 

(3.4.3) 

with c being a constant, then every point along the line [a,bl in Figure 3.4.1 would 
constitute an optimum solution. 

The concept of a convex polygon with corners or vertices in two dimensions 
generalizes to a convex polytope with extreme points in Rn. For example, a convex 
polytope [111 is defined to be the set which is obtained by the intersection of a finite 
number of closed half-spaces. Similarly, an extreme point of a set is defined to be a 
point x in Rn which cannot be expressed as a convex combination OXI + (1 - O)X2 

(0 < a < 1) of two distinct points Xl and X2 belonging to the set. Finally, as in the 
two-dimensional case of Figure 3.4.1, barring degeneracy, a linear objective function 
in Rn achieves its minimum only at an extreme point of a bounded convex polytope. 
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Interested readers are advised to consult either Ref. 11 or 13 for a comprehensive 
treatise on this subject. 

It is obvious that the above graphical procedure cannot be used for linear pro
gramming problems involving more than two variables. We have to look at alternative 
means of solving such problems. The simplex method first proposed by Dantzig [13] 
is an efficient method for solving problems with a large number of variables and con
straints. We will study the simplex method next and to this end we outline a few 
definitions and some very important concepts in linear programming. 

3.5 A Linear Program in a Standard Form 

A linear program is said to be in a standard form if it is posed as 

minimize 
subject to 

f = cTx 

Ax =b, 
x ~ 0, 

(3.5.1 ) 
(3.5.2) 
(3.5.3) 

where c is an n X 1 vector, A is a m X n matrix, and b is a Tn x 1 vector. Any 
linear program including inequality constraints can be put into the standard form by 
the use of what are known as slack and surplus variables. Consider, for example, the 
linear program defined by Eqs. (3.1.26) through (3.1.32). We can transform those 
inequalities into strict equalities as 

4X2 - X3 = 1, 
2Xl + 2X2 - X4 = 1 , 
:7:1 + X2 - X5 = 1 , 

2.rl - X6 = 1, 
2Xl + 4X2 - X7 = 3 , 
4.rl + 2.1:2 - Xs = 3 , 

(3.5.4) 
(3.5.5) 
(3.5.6) 
(3.5.7) 
(3.5.8) 
(3.5.9) 

by the addition of the surplus variables X3 through Xs, provided that these variables 
are restricted to be non-negative, that is 

. ri ~ 0, i=1,oo.,8 . (3.5.10) 

If the inequalities in Eqs. (3.1.26) through (3.1.31) were of the opposite kind we 
would add non-negative variables X3 through .rs to achieve equality constraints. In 
this case the variables X3 through Xs would be referred to as the slack variables. If the 
original values of the design variables are not required to be non-negative we can still 
convert the problem to a standard form of Eqs. (3.5.1) through (3.5.3) by defining 
either 

and (3.5.11) 

where Ul, 1l2, VI, V2 ~ 0, or by adding a large enough positive constant A1 to the design 
variable 

(3.5.12) 
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so that the new variable never becomes negative during the design. Such artificial 
variables are often used in structural design problems where quantities such as stresses 
are used as design variables. Stresses can be both positive or negative depending upon 
the loading condition. It is clear from Eq. (3.5.11) that putting LP program in a 
standard form may cause an increase in the dimension of the design space. Using 
Eq. (3.5.12) does not increase the dimension of the problem but it may be difficult to 
know a priori the value of the constant M that will make the design variable positive 
(the choice of a very large number may result in numerical ill-conditioning). 

Going back to Eq. (3.5.2) we notice that if m = n and all the equations are 
linearly independent, we have a unique solution to the system of equations, whereas 
with m > n we have, in general, an inconsistent system of equations. It is only when 
m < n that we have many possible solutions. Of all these solutions we seek the one 
which satisfies the non-negativity constraints and minimizes the objective function 
f. 

3.5.1 Basic Solution 

We assume the rank of the matrix A to be m and select from the n columns of A a 
set of m linearly independent columns. We denote this m X m matrix by D. Then 
D is non-singular and we can obtain the solution 

Xn = D-1 b n , 

mx1 mxmmx1 
(3.5.13) 

where Xn is the vector of independent variables and b D is the corresponding right
hand vector. Thus it can easily be verified that 

(3.5.14) 

is a solution of the system of Eqs. (3.5.2). Such a solution is known as a basic 
solution, and XD is called the vector of basic variables. A basic solution, however, 
need not satisfy the non-negativity constraints (3.5.3). Those basic solutions which 
do indeed satisfy these constraints are known as basic feasible solutions and can be 
shown to be extreme points. In other words all basic feasible solutions to Eqs. (3.5.2) 
will correspond to corners or extreme points of the convex polytope [13]. 

The total number of possible basic solutions to Eqs. (3.5.2) can be estimated 
by identifying the number of possibilities for selecting m variables arbitrarily from a 
group of n variables. From the theory of permutations and combinations we know 
this number to be 

(~) - m!(n~ m)! . (3.5.15) 

Not all of these possibilities will however be feasible. 
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3.6 The Simplex Method 

The idea of the simplex method is to continuously decrease the value of the 
objective function by going from one basic feasible solution to another until the 
minimum value of the objective function is achieved. We will postpone the discussion 
of how to generate a basic feasible solution and assume that we have a basic feasible 
solution to start the algorithm. Indeed, if we had the following inequality constraints 

ailxI + ai2x2 + ... + ai"Xn ~ bi, 

Xj ~ 0, 
i = l, ... ,m, 
j = 1, ... ,n, 

(3.6.1) 
(3.6.2) 

where bi ~ ° for every constraint, then the process of converting the constraint set 
to the standard form yields the following 

ailxl + ai2X 2 + ... + ainXn + Yi = bi, 
Xj ~ 0, 
Yi ~ 0, 

and we immediately recognize 

i = 1, ... ,m, and Xj = 0, 

i = 1, ... ,m, 
j = 1, ... ,n, 
i = 1, ... ,m, 

j = 1, ... ,n, 

(3.6.3) 
(3.6.4 ) 
(3.6.5) 

(3.6.6) 

as a basic feasible solution. A formal scheme for generating a basic feasible solution 
will be discussed later in this section. The question of immediate interest at this 
point is how to go from one basic feasible solution to another basic feasible solution. 
Without loss of generality let us assume that we have a system of equations in the 
canonical form shown below (such forms can always be obtained through the well
known Gauss elimination scheme for a matrix A with rank m). 

Xl +0 + ... +0 + ... +0 +al,m+l Xm+l + ... +al,n Xn bl 

0 +X2 + ... +0 + ... +0 +a2,m+1 Xm+l + ... +a2,n Xn b2 

0 +0 + ... +xs + ... +0 +as,m+l Xm+l + ... +a.,n Xn = bs 
, 

0 +0 + ... +0 + ... +xm +am,m+l Xm+l + ... +am,n Xn = bm 
(3.6.7) 

with a basic feasible solution 

Xl = bl , X2 = b2 , X. = b., Xm = bm , 

Xm+l = X m +2 = = o. (3.6.8) 

The variables Xl through Xm are called basic and the Xm+l through Xn are called 
non-basic variables. 

90 



Section 3.6: The Simplex Method 

3.6.1 Changing the Basis 

The simplex procedure changes the set of basic variables while improving the ob
jective function at the same time. However, for the purpose of clarity we will first 
demonstrate the approach for going from one basic feasible solution to another. The 
objective function improvement will be discussed in the following section. 

We wish to make one ofthe current non-basic variables of Eq. (3.6.7), say Xt (m < 
t ::; n), basic and in the process cause a basic variable, xs(l :::; s :::; m), to become 
non-basic. At this point we assume that we know the variable Xt which we will bring 
into the basic set. We only need to decide which variable to drop from the basic set. 
Consider the selected terms shown below for the coefficients of the sth equation and 
an additional arbitrary ith equation. 

s t 

1 ° = bi (3.6.9) 

s 0 1 

Since we want to make Xt basic, we need to eliminate it from the rest of the equations 
except the sth one by reducing the coefficients ait (i = 1, ... ,n; i =j:. s) to zeroes, and 
making the coefficient ast unity by dividing the sth equation throughout by ast. We 
can do this only if ast is non-zero. Also, unless asl is positive, the process of dividing 
the sth equation by ast will produce a negative term on the right-hand side since 
bs is positive because the current solution is a basic feasible solution. To eliminate 
the new basic variable Xt from the ith equation (i = 1, ... , n; i =j:. s) we have to 
multiply the 8th equation by the factor (aidasl) and subtract the resulting equation 
from each of these equations. The resulting coefficients on the right-hand side of the 
ith equation will be 

b~ = bi - bs( ail) . (3.6.10) 
asl 

To guarantee that the resulting solution is a basic feasible solution we must require 
that b~ ~ 0, or rearranging Eq. (3.6.10) we have 

(~):::; (~) . (3.6.11) 
asl ail 

Equation (3.6.11) together with the condition 

asl > 0, (3.6.12) 

are the two conditions which identify possible sth rows in changing from one basic 
feasible solution to another. Thus for a given non-basic variable Xt that is to be 
made basic we check the coefficients of all the terms in the tth column. We eliminate 
from consideration all elements in the tth column with non-positive coefficients as 
violating condition (3.6.12). Among those with positive coefficients we compute the 
ratios b;j ail (i = 1, ... , n). We select the row, s, for which the ratio bi / ail has the 
smallest value and call it bs/ast, Eq. (3.6.11). It is the basic variable corresponding 
to that row which will become non-basic in the process of making Xt basic. 
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Example 3.6.1 

vVe illustrate the foregoing discussion with an example. Consider the system of 
equations 

2Xl + 2X2 + X3 = 6 , 

3Xl + 4X2 + X4 = 10, 

Xl + 2X2 + X5 = 4 . 

(3.6.13) 

The system is already in the canonical form with a basic feasible solution being 

(3.6.14) 

The variables Xl and X2 are the non-basic variables, whereas X3, X4, and, X5 are the 
basic variables. Now, let us assume that we want to make Xl basic. Rewriting Eqs. 
(3.6.13) in a matrix form we have 

(3.6.15) 

Since Xl is to made basic we consider the first column. To chose the variable to be 
made non-basic we form the ratios (b;jaid, i = 1,2,3. 

~=3, 
all 

~-3~ 
a21 - 3' 

The smallest ratio is bJ/all and so we pivot on all. Thus the new system of equations 
IS 

[~ 
1 
1 
1 ;~5~ ~ ~ 1 {~j} ~ n} , (3.6.16) 

and the process of making Xl basic has resulted in the variable X3 being non-basic. 
The new feasible solution .is 

Xl = 3, X4 = 1, X5 = 1 . 

It may be verified by the reader that by using a pivot other than all we would end 
up with an infeasible basic solution. For example, if al3 is a pivot we obtain 

Xl = 4, X3 = -2, X4 = -2, 

which is not feasible since X3 < 0 and X4 < O .••• 
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3.6.2 Improving the Objective Function 

In the preceding section we considered making a particular non-basic variable Xt basic 
without losing feasibility. We also need to decide the variable that we make basic. 
We should seek to bring into the basis only that variable which will decrease the 
objective function while yielding at the same time a basic feasible solution. Notice 
that the objective function is a linear equation just like the other equations and hence 
it can be included with the others. The objective function equation may be written 
as 

(3.6.17) 
Assume the system of equations (3.5.2) is in the canonical form, and append Eq. 
(3.6.17) at the end of all other equations. The form of the equations that includes 
the objective function is often referred as the simplex tableau. We now eliminate all 
the basic variables from this last equation by subtracting Ci times each of the equations 
in the canonical form. Then the right-hand of Eq. (3.6.17) becomes (f - clbl - c2b2-
C3b3 - ... - Cm bm ). Thus if we ignore the presence of f, the right-hand side represents 
the negative of the value of the objective function since Xm+l = Xm+2 = ... = Xn = O. 
The left-hand side of this last equation will contain only non-basic variables. Next, 
assume that the coefficient of one of the non-basic variables on the left-hand side of 
the last equation is negative. If we make this variable basic then we will increase 
the value of this variable from its present value of zero to some positive value. Since 
the last equation is just one of the equations, when we pivot on one of the equations 
(sth) and eliminate the corresponding variable (xs) from the basic set we perform 
the operations described in the previous section on all the m + 1 equations. When 
the particular variable with the negative coefficient in the last equation is eliminated, 
the right-hand side of this equation will increase since the variable has increased in 
value from zero to a positive value. Since the right-hand side represents the negative 
of the value of the objective function, a function decrease is therefore guaranteed. 
Thus the criterion for guaranteeing an improvement of the objective function is to 
bring into the basis a variable that has a negative coefficient in the objective function 
equation after it has been cleared of all the basic variables. This can be verified by 
the following example. 

Example 3.6.2 

minimize 
subject to 

f = Xl + X2 + X3 

2XI + 2X2 + X3 = 6 , 
3XI + 4X2 + X4 = 10, 
Xl + 2X2 + X5 = 4 . 

(3.6.18) 
(3.6.19) 
(3.6.20) 
(3.6.21) 

As mentioned above we rewrite the constraint equations (3.6.21) in the matrix form 
together with the objective function appended as the last row of the matrix 

[ J_ ~ ~ ~ 1] {~1} = { ± } (3.6.22) 

1 1 1 0 0 X5 0 
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A basic solution is 

Xl = X2 = 0, X3 = 6, X4 = 10, Xl) = 4 . (3.6.23) 

The variable X3 is a basic variable that appears in the last equation of Eqs. (3.6.22) 
and must be eliminated from it so that its right-hand side yields the negative of the 
current value of the objective function. 

[J_ 
-1 

2 
4 
2 

-1 

1 
o 
o 

o 

o 
1 
o 

o 
J-l {~1} = { ~t } 
o X5 -6 =-f 

(3.6.24) 

We can pivot either on column (1) or column (2). That is to say the objective function 
will decrease in value by bringing either Xl or X2 into the basis. If we pivot on column 
(1) (bringing Xl into the basis) the pivot element is all because it yields the smallest 
(b;jail) ratio. The new simplex tableau becomes 

1 
1 
1 

o 

0.5 0 
-1.5 1 
-0.5 0 

0.5 0 
J-l {~~} = { J_ } 
o X5 -3 =-f 

(3.6.25) 

The value of the objective function has been reduced from 6 to 3. Since the last 
equation contains no non-basic variable with a negative coefficient, it is no longer 
possible to decrease the value of the objective function further. Thus the minimum 
value of the objective function is 3 and corresponds to the basic solution 

Xl = 3, X4 = 1, Xl) = 1 . (3.6.26) 

If we had decided to bring X2 into the basis first, we would have reduced the objective 
function from 6 to 4, and there would have been a negative number in the last equation 
in the first column indicating the need for another round of pivoting to bring Xl into 
the basis .••• 

This would have completed the discussion of the simplex method except for the 
fact that we need a basic feasible solution to start the simplex method and we may 
not have one readily available. This is our next topic. 

3.6.3 Generating a Basic Feasible Solution-Use of Artificial Variables 

In the process of converting an LP problem given in the form of Eqs. (3.6.4) and 
(3.6.5) 

Ax :::; b, where b > 0, and x ;::: 0, (3.6.27) 

into the standard form by adding slack variables we obtained a basic feasible solution 
to start the simplex method. However, when we have a linear program which is 
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already in the standard form of Eqs. (3.5.2) and (3.5.3) we cannot, in general, 
identify a basic feasible solution. The following technique can be used in such cases. 

Consider the following minimization problem 

m 

minimize L Yi 
i=l 

subject to Ax+y = b, 
x ~ 0, and y ~ 0 , 

(3.6.28) 

(3.6.29) 
(3.6.30) 

where y is a vector of artificial variables. There is no loss of generality in assuming 
that b > 0 so that the LP problem (3.6.29) has a known basic feasible solution 

y = b, and x = 0 , (3.6.31) 

so that the simplex method can be easily applied to solve the LP problem of Eqs. 
(3.6.30). Note that if a basic feasible solution to the original LP problem (3.6.28) 
exists then the optimum solution to the modified problem (3.6.30) must have Yi'S 
as non-basic variables (y= 0). However, if no basic feasible solution to the original 
problem exists then the minimum value of Eq (3.6.29) will be greater than zero. 

Example 3.6.3 

We illustrate the use of artificial variables with the following example for which we 
seek a basic feasible solution to the system 

Xl + 2X2 + X3 = 7 , (3.6.32) 

Xi ~ 0, i=I,2,3. 

Introduce the artificial variables Yl and Y2 and pose the following minimization prob
lem. 

minimize 
subject to 

f = Y1 + Y2 

2X1 + X2 + 3X3 + Y1 = 13, 
Xl + 2X2 + X3 + Y2 = 7, 
Xi ~ 0, i = 1,2,3, and 

(3.6.33) 

(3.6.34) 
Yi ~ 0, j = 1,2. 

With the basic feasible solution, Y1 = 13, Y2 = 7, and Xl = X2 = X3 = 0 known, we 
append the objective function (3.6.33) and clear the basic design variables Yl and Y2 

from it to obtain the initial simplex tableau 

1 
2 

-3 

3 
1 

-4 

1 
o 

o 
(3.6.35) 
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Since it has the largest negative number we choose column (3) for pivoting with ala 
as the pivot element since 13/3 < 7/1, 

[ 
2/3 1/3 
1/3 5/3 

-1/3 -5/3 

1 
o 

o 

1/3 
-1/3 

4/3 
}-l {~~} = { 1~3 } 
o Yl -8/3 

Y2 

Next we choose a22 as the pivot element to obtain 

[
9/15 
1/5 

o 

o 
1 

o 

1 
o 

o 
~~~ ~5J{~} = {~} 

The process has converged to the basic feasible solution 

Xl = 0, X2 = 8/5, and Xa = 19/5 . 

to the original problem .••• 

3.7 Duality in Linear Programming 

(3.6.36) 

(3.6.37) 

(3.6.38) 

It was shown by Dantzig [131 that the primal problem of minimization of a linear 
function over a set of linear constraints is equivalent to the dual problem of the 
maximization of another linear function over another set of constraints. Both the 
dual objective function and constraints of the dual problem are obtained from the 
objective function and constraints of the primal problem. Thus if the primal problem 
is defined to be 

minimize 

subject to 
n 

L aijXj ~ b;, i = 1, ... ,m, 

j=l 

Xj ~ 0, j = 1, ... , n, 

(n variables) 

( m constraints) 

(3.7.1) 

then the dual problem is defined to be 

maximize 
m 

subject to L aijA; S Cj, j = 1, ... , n, (n constraints) 
;=1 

Ai ~ 0, j = 1, ... , m . (3.7.2) 

The choice of the primal or dual formulation depends on the number of design vari
ables and the number of constraints. The computational effort in solving an LP 
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problem increases as the number of constraints increases. Therefore, if the number 
of constraint relations is large compared to the number of design variables then it 
may be desirable to solve the dual problem which will require less computational 
effort. The classification of problems into the primal and dual categories is, however, 
arbitrary since if the maximization problem is defined as the primal then the min
imization problem is its dual. It can be shown [13] that the optimal values of the 
basic variables of the primal can be obtained from the solution of the dual and that 
(fp)min = (fd)max. Thus if Xj is a basic variable in the primal problem, then it implies 
that the jth constraint of the dual problem is active and vice versa. 

If the primal problem is stated in its standard form; namely with equality con
straints 

minimize (n variables) 
n 

subject to 2: aijXj = bi , i = 1, ... , m, (m constraints) 
j=l 

Xj ~ 0, j = 1, ... , n, (3.7.3) 
then the corresponding dual problem is 

maximize fd = bl).l + ...... + bm).m = bT.x (m variables) 

subject to 
m 

La;j).; ~ ej, j = 1, ... ,n, 
;=1 

with the variables ).i being unrestricted in sign [11]. 

(n constraints) 

(3.7.4) 

It should be noted that, in practice, it is rare for a LP problem to be solved either 
as a primal or as a dual problem. Most state-of-the-art LP software employ what is 
known as a primal-dual algorithm. This algorithm begins with a feasible solution to 
the dual problem that is successively improved by optimizing an associated restricted 
primal problem. The details of this algorithm are beyond the scope of this book and 
interested readers should consult Ref. [11]. 

Example 3.7.1 

As an example of the simplex method for solving an LP problem via the dual formu
lation we use the portal frame problem formulated in Example 3.1.5 with a slightly 
different loading condition. The new loading condition is assumed to correspond to 
a 25% increase in the magnitude of the horizontal load while keeping the magnitude 
of the vertical load the same. The corresponding constraint equations have different 
right-hand sides than those given in Eqs. (3.5.4) through (3.5.9), namely 

4X2 ~ 1, 
2Xl + 2X2 ~ 1, 

Xl + X2 ~ 1.25, 
2Xl ~ 1.25, 

2Xl + 4X2 ~ 3.5 , 
4Xl + 2X2 ~ 3.5 . 

(3.7.5) 
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However, when put into the standard form, not only does the problem involve a total 
of 8 variables, but also a basic feasible solution to the problem is not immediately 
obvious. Because the objective function (3.1.25) involves only two variables Xl and X2 

the solution of the dual problem may be more efficient. The dual problem is 

maximize 
1 1 1 1 

fd = Al + A2 + 14"A3 + 14" A4 + 3'2A5 + 3'2A6 (3.7.7) 

subject to 2A2 + A3 + 2A4 + 2A5 + 4A6 :::; 2 , 
4Al + 2A2 + A3 + 4A5 + 2A6 :::; 1 , (3.7.8) 
Ai 2 0, i = 1, ... ,6 . 

Maximizing fd is same as minimizing - fd and the process of converting the above 
linear problem to the standard form yields 

minimize 
1 1 1 1 

- fd = -AI - A2 - 14" A3 - 14" A4 - 3'2A5 - 3'2A6 (3.7.9) 

subject to 2A2 + A3 + 2A4 + 2A5 + 4A6 + A7 = 2 , 

4A1 + 2A2 + A3 + 4A5 + 2A6 + A8 = 1, (3.7.10) 
Ai20, i=1, ... ,8, 

with the basic feasible solution 

Ai=O, i=1, ... ,6, and A7 = 2, A8 = 1 . 

We can begin with the initial simplex tableau with the basic variables cleared 
from the last equation which represents the objective function. 

Al 
A2 

[ -~ 
2 1 2 2 4 1 

-:-J 
A3 

= { -:- } 

2 1 0 4 2 0 A4 
A5 

-1 -1 -5/4 -5/4 -7/2 -7/2 0 A6 
A7 
A8 

(3.7.11) 
Although we should perhaps be choosing fifth or sixth column for pivoting, since 
it has the largest negative value, pivoting on third column produces the same final 
answer with one less simplex tableau. Pivoting on element a23 we have 

Al 
A2 

[~ 
0 0 2 -2 2 1 -1] A3 

=UJ 2 1 0 4 2 0 

5;4 
A4 (3.7.12) 
A5 

3/2 0 -5/4 3/2 -1 0 A6 
A7 
A8 
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Because of the presence of negative terms in the last equation, it is clear that the 
objective function can still be decreased further. Pivoting on element a14 we obtain 

Al 
.A2 [ -2 0 0 1 -1 1 1/2 -t] .A3 r2} 3~ 

2 1 0 4 2 0 .A4 

~ 1~/8 (3.7.13) 
.As 

3/2 0 0 1/4 1/4 5/8 5/8 .A6 
.A7 
.As 

Hence we conclude that (Jd)min = -15/8 or (Jd)max = (Jp)min = 15/8 with the 
solution 

(3.7.14) 

The non-zero A's indicate that the active constraints in the primal problem are the 
third and fourth, namely 

2XI = 1.25, and Xl + X2 = 1.25, (3.7.15) 

Solution of Eqs. (3.7.15) yields Xl = X2 = 5/8 .••• 

In closing this section, it is interesting to point out that the dual variables can be 
interpreted as the prices of the constraints. For a given variation on the right hand 
side b of the constraint relations of Eq. (3.7.5), the change in the optimum value of 
the objective function can be determined from 

b.f* = >? b.b . (3.7.16) 

For Eq. (3.7.16) to hold, however, the changes in the b vector must be such that it 
does not result in a change in the active constraint set. The dual problem can also 
be viewed as one of maximization of a profit subject to limitations on availability of 
resources. It is clear then that the non-negative dual variables can be interpreted as 
increased costs which would ensue from a violation of given constraints on resource 
availabilities. Similarly a primal problem can be viewed as one of minimization of 
total cost while satisfying demand. The full significance of dual variables, however, 
can be brought out more clearly only in the context of the Kuhn-Tucker conditions 
and the sensitivity of the optimum solutions to changes in design parameters which 
will be discussed in Chapter 5. The following example demonstrates the use of dual 
variables to find the sensitivity of the optimal solution to a change in a problem 
parameter. 

Example 3.7.2 

Consider the portal frame design problem solved in Example 3.7.1 using dual vari
ables. We will determine the change in the value of the optimum objective function 
1* = 1.875 corresponding to a 25% reduction in the value of the horizontal force, 

99 



Chapter 3: Linear Programming 

keeping the vertical force at p. These loads correspond to the problem formulated in 
Example 3.1.5 and solved graphically in Example 3.4.1 . 

From Eqs. (3.7.5) and (3.1.26) through (3.1.31) the change in the right-hand side 
is b.ba = b.b4 = -i, and b.b5 = b.b6 = -~. Using the values of the dual variables 
from Example 3.7.1 in Eq. (3.7.15) we obtain 

b.j* = - (~) 1 + - (~) (~) = -0.375. 

Therefore the optimum value of the objective function under this new loading config
uration would be 1* = 1.5, of course, assuming that the active constraints (the ones 
associated with non-zero dual variables) remain active. Fortunately, that assumption 
is correct for the present example. However, beside the two constraints that are active 
initially there are two more constraints which become active at the new design point 
(see Fig. 3.4.1). Any reduction larger than 25% in the value of the horizontal load 
would have caused a change in the active constraint set and resulted in an incorrect 
answer. 

We, therefore, emphasize the fact that in applying Eq. (3.7.15) one has to be 
cautious not to perturb the design parameter to an extent that the active constraint 
set changes. This is generally achieved by limiting the parameter perturbations to be 
small. However, if we had used the design in Example 3.4.1 as our nominal design, no 
matter how small the perturbation of the magnitude of the horizontal force, the active 
constraint set would have changed. This is due to the redundancy of the constraints 
at the optimal solution of Example 3.4.1. ••• 

3.8 An Interior Method - Karmarkar's Algorithm 

In using the simplex algorithm discussed in section 3.6, we operate entirely along 
the boundaries of the polytope in Rn moving from one extreme point (vertex) to 
another following the shortest path between them, an edge of the polytope. Of all 
the possible vertices adjacent to the one at which we start, the selection of the next 
vertex is based on the maximum reduction in the objective function. With these 
basic premises, the simplex algorithm is only a systematic approach for identifying 
and examining candidate solutions to the LP problem. The number of operations 
needed for convergence grows exponentially with the number of variables. In the 
worst case, the number of operations for convergence for an n variable problem with 
a set of s constraints can be s!/n!(s - n)!. However, it is possible to choose a move 
direction different from an edge of the polytope, be consistent with the constraint 
relations, and attain larger gains in the objective function. Although such a choice can 
lead to a rapid descent toward the optimal vertex, it will do so through intermediate 
points which are not vertices. 

Interior methods of solving LP problems have drawn serious attention only since 
the dramatic introduction of Karmarkar's algorithm [14J by AT&T Bell Laborato
ries. This new algorithm was originally claimed to be 50 times faster than the simplex 

100 



Section 3.8: An Interior Method - Karmarkar's Algorithm 

method. Since then, much work has been invested in improvements and extensions 
of Karmarkar's algorithm. Developments include demonstration of how dual solu
tions can be generated during the course of this algorithm [15], and extension of 
Karmarkar's algorithm to treat upper and lower bounds more efficiently [16] byelim
inating the slack variables which are commonly used for such bounds in the Simplex 
algorithm. 

Because some of the recent developments of the algorithm are mathematically 
involved and beyond the scope of this book, only a general outline of Karmarkar's 
algorithm are presented in the following sections. At this point we would like to 
warn the reader that the tools used in the algorithm were originally introduced for 
minimization of constrained and unconstrained nonlinear functions which are covered 
in Chapters 4 and 5. Therefore, the reader is advised to read these chapters before 
proceeding to the next section. 

3.8.1 Direction 0/ Move 

The direction of maximum reduction in the objective function is the direction of 
steepest descent, which is the direction of the negative of the gradient of the objective 
function \7/ (see section 4.2.2). For an LP problem posed in its standard form, see 
Eq. (3.5.1), the gradient direction is, 

\7/=c. (3.8.1 ) 

Although we are not limiting the move direction to be an edge of the polytope formed 
by the constraint surfaces, for an LP problem the move direction cannot be selected 
simply as the negative of the gradient direction. The direction must be chosen such 
that the move leads to a point in the feasible region. This can be achieved by using 
the projection matrix P 

(3.8.2) 

derived in section 5.3, where the columns of the matrix N correspond to the gradient 
of the constraint equations. Since the constraints are linear functions of the variables, 
we have N = AT. Operating on the gradient vector -c, P projects the steepest 
descent direction onto the nullspace of the matrix A. That is, if we start with an 
initial design point Xo which satisfies the constraint equation Axo = b, and move in 
a direction -Pc we will remain in the subspace defined by that constraint equation. 
Note that in numerical application of this projection the matrix product AAT may 
not actually be inverted, but rather the linear system AAT y = Ac may be solved 
and then the projected gradient may be calculated by using Pc = c - AT y. A 
more efficient and better conditioned procedure based on QR factorization of the 
matrix A for the solution of the projection matrix is described in section 5.5 . The 
following simple example by Strang from reference [17] illustrates graphically the 
move direction for a three dimensional design space. 

Example 3.8.1 

Consider the following minimization problem in three design variables, 

minimize (3.8.3) 
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subject to Xl + X2 + X3 = 1, 
x~ O. 

(3.8.4) 
(3.8.5) 

Starting at an initial point x(O) = (1/3,1/3, 1/3)T determine the direction of move. 

/-PC=(-1,O,1)T 

:\I_C=(1, 2, 3)T 

Figure 3.8.1 Design space and move direction. 

The design space and the constraint surface for the problem are shown in Figure 
(3.8.1). The direction corresponding to the negative of the gradient vector is marked 
as -c. The projection matrix for the problem can be obtained from Eq. (3.8.2) where 
A = [1 1 1]. The system AA T Y = Ac produces a scalar for y, 

{l 1 l}{l} y~{l 1 l}{=D, (3.8.6) 

Y= -2. 

The projected direction Pc is then given by 

Pc=c-yAT , (3.8.7) 

Pc = { =~ } -{ =~} = { 11 } (3.8.8) 

Moving in a direction -Pc guarantees maximum reduction in the objective func
tion while remaining in the plane PQR formed by the constraint equation. The mini
mum value of the objective function for this problem is achieved at the vertex R which, 
clearly, can not be reached in one iteration. Therefore, the move has to be terminated 
before the non-negativity requirement is violated (which is at x(l) = (2/3,1/3, O)T), 
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and the procedure has to be repeated until a reasonable convergence to the minimum 
point is achieved .••• 

In the preceding example no explanation is provided for the selection of the initial 
design point, and for the distance travelled in the chosen direction. Karmarkar [14] 
stops the move before hitting the polytope boundary, say at x(1) = (19/30,1/3, 1/30)T 
in the previous example, so that there will be room left to move in the next iteration. 
That is, starting either at the polytope or close to it increases the chances of hitting 
another boundary before making real gains in the objective function. The solution 
to this difficulty is accomplished by transforming the design space discussed in the 
next section. 

3.8.2 Transformation of Coordinates 

In order to focus on the ideas which are important for his algorithm, Karmarkar 
[14] makes several assumptions with respect to the form of the LP problem. In his 
canonical representation, the LP problem takes the following form, 

minimize f = cT:x: 

subject to Ax = 0 , 
(3.8.9) 

(3.8.10) 

(3.8.11) 
(3.8.12) 

where e is a 1 X n vector, e = (1, ... , l)T. The variable:x: represents the transformed 
coordinate such that the initial point is the center, x(O) = e/n, of a unit simplex, 
and is a feasible point, Ax(O) = o. A simplex is a generalization to n dimensions of 
a 2-dimensional triangle and 3-dimensional tetrahedron. A unit simplex has edges 
of unit length along each of the coordinate directions. Karmarkar also assumes that 
cT x ~ 0 for every point that belongs to the simplex, and the target minimum value of 
the objective function is zero. Conversion of the standard form of an LP problem into 
this new canonical form can be achieved through a series of operations that involve 
combining the primal and dual forms of the standard formulation, introducing of 
slack and artificial variables, and transforming coordinates. The combination of the 
primal and dual formulations is needed to accommodate the assumption that the 
target minimum value of the objective function be zero. Details of the formation of 
this new canonical form is provided in Ref. [14]. In this section we will demonstrate 
the coordinate transformation which is referred as projective rescaling transformation. 
This is the same transformation that helps to create room for move as we proceed 
from one iteration to another. 

Consider an arbitrary initial point x(a) in the design space, and let 

D - D· «a) (a») ., - lag Xl , ... , Xn • (3.8.13) 

The transformation, T." used by Karmarkar maps each facet of the simplex given by 
Xi = 0 onto the corresponding facet Xi = 0 in the transformed space, and is given by 

• 1 n-l 
x = eTD-lx ., x . 

" 
(3.8.14) 
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While mapping the unit simplex onto itself, this transformation moves the point 
x(a) to the center of the simplex, xeD) = (1/ n )e. Karmarkar showed that repeated 
application of this transformation, in the worst case, leads to convergence to the 
optimal corner in less than O( n f) arithmetic operations. 

Karmarkar's transformation is nonlinear and a simpler form of this transformation 
has been suggested. A linear transformation, 

(3.8.15) 

has been shown to perform as well as Karmarkar's algorithm in practice and to 
converge in theory [18]. 

3.8.3 Move Distance 

Following the transformation, Karmarkar optimizes the transformed objective func
tion over an inscribed sphere of radius l' = 1/( J n( n - 1) centered at x(D). This is the 
largest radius sphere that is contained inside the simplex. For the three dimensional 
design space of Example 3.8.1, for example, where there is one constraint surface, the 
'sphere' is a circle in the plane of the constraint equation. In practice, the step length 
along the projected direction used by Karmarkar is a fraction, 0:, of the radius. Thus, 
the new point at the end of the move is given by 

X(k+l) = x(k) _ O:1'(k)pC(k) , (3.8.16) 

where 0 < 0: < 1. A typical value of 0: used by Karmarkar is 1/4. 

During the course of the algorithm the optimality of the solution is checked 
periodically by converting the interior solution to an extreme point solution at the 
closest vertex. If the extreme point solution is better than the current interior, then, 
it is tested for optimality. 

3.9 Integer Linear Programming 

Solution techniques for the LP problems considered so far have been developed 
under the assumption that the design variables are positive and continuously-valued; 
they can thus assume any value between their lower and upper bounds. In certain 
design situations, some or all of the variables of a LP problem are restricted to take 
discrete values. That is, the standard form of the LP problem of Eq. (3.5.1-3.5.3) 
takes the form 

minimize 
such that 

f(x) = cTx 

Ax=b, 
Xi E X'i = {dil , di2 , . .. ,dil }, 

(3.9.1) 

where Id is the set of design variables that can take only discrete values, and Xi is 
the set of allowable discrete values. Design variables such as cross-sectional areas of 
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trusses and ply thicknesses of laminated composite plates often fall in this category. 
Those problems with discrete-valued design variables are called discrete programming 
problems. 

In general, a discrete programming problem can be converted to a form where 
design variables can assume only integer values. This conversion can be achieved by 
having the design variable Xi to represent the index j of the dij,j = 1, ... , I, Eq. 
(3.9.1). If the values in the discrete set are uniformly spaced, it is possible to scale 
the set to form a set of integer values only. The problem is then called an integer 
linear programming (ILP) problem, 

minimize 
such that 

f(x) = ci x + cry 
AIx+A2y = b, 
Xi ~ 0 integer, 
Yj ~ 0 . 

(3.9.2) 

This form, where certain design variables are allowed to be continuous, is referred to 
as mixed integer linear programming (MILP) problem. Problems where all variables 
are integer are called pure ILP problems or in short ILP problems. It is also common 
to have problems where design variables are used to indicate a 0/1 type decision 
making situation. Such problems are referred to as zer%ne or binary ILP problems. 
For example, a truss design problem where the presence of a particular member or 
the lack of it is represented by a binary variable falls into this category. Any ILP 
problem with an upper bound on the design variable Xi of 2K - 1 can be posed as 
binary ILP problem by replacing the variable with f{ binary variables XiI, ... ,XiK 

such that 
K-I 

Xi = XiI + 2Xi2 + ... + 2 XiK· (3.9.3) 

It is also possible to convert the linear discrete programming problem to a binary 
ILP by using binary variables (Xij E {O, I}, j = 1, ... ,I) such that 

(3.9.4) 

and XiI + Xi2 + ... + Xii = 1 . (3.9.5) 

Most of the following discussion assumes problems to be pure ILP. 

A practical approach to solving ILP problems is to round-off the optimum val
ues of the variables, obtained by assuming them to be continuous, to the nearest 
acceptable integer value. For problems with n design variables there are 2n possible 
rounded-off designs, and the problem of choosing the best one is formidable for large 
n. Furthermore, for some problems the optimum design may not even be one of these 
rounded-off designs, and for others none of the rounded-off designs may be feasible. 
A more systematic way of trying possible combinations of variables that will satisfy 
the requirements of a given problem can be explained by using the enumeration tree 
example of Garfinkel and Nemhauser [19J. 
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Example 3.9.1 

Consider the binary ILP problem of choosing a combination of five variables such 
that the following summation is satisfied 

5 

f = Lixi = 5. 
;=1 

A decision tree representing the progression of solution of this problem is composed 
of nodes and branches that represent the solutions and the combinations of variables 
that lead the those solutions, respectively (Figure 3.9.1). The top node of the tree 
corresponds to a solution which all the variables are turned off (Xi = 0, i = 1, ... ,5) 
with a function value of f = O. Branching off from this solution are two paths 
corresponding to the two alternatives for the first variable. The branch which has 
Xl = 1 has a function value of f = 1 and tolerates turning additional variables on 
without running into the risk of exceeding the required function value of 5. Of course 
the other branch is same as the initial solution, and can be branched further. Next, 
these two nodes are branched by considering the on and off alternatives for the second 
variable. The node arrived by taking Xl = X2 = 1 has f = 3 and is terminated as 
indicated by a vertical line. Such a vertex is said to be fathomed, because further 
branching would mean adding a number that would cause f to exceed its required 
value of 5. The other three vertices are said to be live, and can be branched further by 
considering the alternatives for the remaining variables in a sequential manner until 
either the created nodes are fathomed or the branches arrive at feasible solutions to 
the problem. 

Figure 3.9.1 Enumeration tree for binary ILP problem of f = L:~=l iXi = 5. 
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For the present problem, after considering 19 possible combinations of variables, 
we identified 3 feasible solutions which are marked by an asterisk. This is a 40% 
reduction in the total number of possible trials, namely 25 = 32, needed to identify 
all feasible solutions. For a structural design problem in which trials with different 
combinations of variables would possibly require expensive analysis an enumeration 
tree can yield substantial savings .••• 

3.9.1 Bmnch-and-Bound Algorithm 

The basic concept behind the enumeration technique forms the basis for this powerful 
algorithm suitable for MILP problems as well as nonlinear mixed integer problems 
[20,21]. The original algorithm developed by Land and Doig [22] relies on calculating 
upper and lower bounds on the objective function so that nodes that result in designs 
with objective functions outside the bounds can be fathomed and, therefore, the 
number of analyses required can be cut back. Consider the mixed ILP problem of 
Eq. (3.9.4). The first step of the algorithm is to solve the LP problem obtained from 
the MILP problem by assuming the variables to be continuous valued. If all the x 
variables for the resulting solution have integer values, there is no need to continue, 
the problem is solved. Suppose several of the variables assume noninteger values and 
the objective function value is h. The h value will form a lower bound h = h for the 
MILP since imposing conditions that require any of the noninteger valued variables 
to take integer values can only cause the objective function to increase. This initial 
problem is labeled as LP-1 and is placed in the top node of the enumeration tree as 
shown in Figure (3.9.2). For the purpose of illustration, it is assumed that only two 
variables Xk and Xk+l violate the integer requirement with Xk = 4.3 and Xk+1 = 2.8 . 

, .. .. 

.. .. .. 

Figure 3.9.2 Bmnch-and-bound decision tree for ILP problems. 

, 
... .. 

.. .. ... ... 

The second step of the algorithm is to branch from the node into two new LP 
problems by adding a new constraint to the LP-1 that would involve only one of the 
noninteger variables, say Xk. One of the problems, LP-2, will require the value of the 
branched variable, Xk to be less than or equal to the largest integer smaller than Xk, 
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and the other, LP-3, will have a constraint that Xk is larger than the smallest integer 
larger than Xk. As will be demonstrated later in Example 3.9.2, these two problems 
actually do branch the feasible design space of the LP-l into two segments. There 
are several possibilities for the solution of these two new problems. One of these 
possibilities is to have no feasible solution for the new problem. In that case the new 
node will be fathomed. Another possibility is to reach an all integer feasible solution 
(see LP-3 of Figure 3.9.2) in which case the node will again be fathomed but the value 
of the objective function will become an upper bound lu for the MILP problem. That 
is, beyond this solution point, any node that has an LP solution with a larger value 
of the objective function will be fathomed, and only those solutions that have the 
potential of producing an objective function between h and lu will be pursued. If 
there are no solutions with an objective function smaller than lu, then the node is 
an optimum solution. If there are other solutions with an objective function smaller 
than lu, they may still include noninteger valued variables (LP-2 of Figure 3.9.2), 
and are labeled as live nodes. Live nodes are then branched again by considering one 
of the remaining noninteger values and resulting solutions are analyzed until all the 
nodes are fathomed. 

Example 3.9.2 

Consider the portal frame problem problem of Example 3.1.5 (see Eqs. (3.1.25) 
through (3.1.31)) with the requirement that Xi E {O.O, 0.2, 0.4, 0.6, 0.8, 1.0}, i = 1,2. 
We rescale the design variables by a factor of 5 to pose the problem as an integer 
linear programming problem, 

minimize 

such that 

1 
I = "5(2XI + X2) 

X2 ~ 1.25, 
Xl + X2 ~ 2.5, 
Xl + X2 ~ 5, 
Xl ~ 2.5, 
Xl + 2X2 ~ 7.5, 
2XI + X2 ~ 7.5, 
Xi ~ 0 integer, i = 1,2 . 

Graphical solution of this scaled problem (presented in Example 3.4.1 without the 
integer design variable requirement before scaling) is 

Xl = X2 = 2.5, I = 7.5, 
and forms a lower bound for the objective function, h = 7.5. That is, the optimal 
integer solution cannot have an objective function smaller than h = 7.5. Next, we 
choose Xl and investigate solutions for which Xl s:; 2 and Xl ~ 3 by forming two new 
LP's by adding each one of these constraints to the original set of constraints. Since 
the original set has a constraint that requires Xl ~ 2.5, the first LP problem with 
Xl s:; 2 has no solution. The solution of the second LP is shown graphically in Figure 
(3.9.3). The active constraints at the optimum are, Xl ~ 3 and Xl + 2X2 ~ 7.5, and 
the solution is, 

X2 = 2.25, 1= 8.25. 
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Figure 3.9.3 Branch-and-bound solution for Xl ::; 2 and Xl ~ 3 of Example 3.9.2 . 

Since X2 is still non integer, we create two more LP's, this time by imposing 
X2 ::; 2 and X2 ~ 3, respectively. Graphical solutions of the new LP's are shown in 
Figure (3.9.4). The solution for the case X2 ~ 3 is at the vertex Xl = 3 and X2 = 3, 
and is a feasible solution for the integer problem with an objective function value of 
I = 9. This value of the objective function, therefore, establishes an upper bound, 
Iv = 9 for the problem. The solution for the case X2 ::; 2, on the other hand is at the 
intersection of X2 = 2 and Xl + 2X2 = 5 leading to 

Xl = 3.5, X2 = 2, and I = 9 . 

Figure 3.9.4 Branch-and-bound solution for X2 ::; 2 and X2 ~ 3 of Example 3.9.2 . 
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This solution is not discrete and can be interrogated further by branching on Xl (that 
is creating new LP's by adding Xl ~ 3 and Xl ~ 4). However, since its objective 
function is equal to the upper bound, we cannot improve the objective function any 
further. To do so would necessitate introducing a further constraint which could 
only increase the objective function. Therefore, the optimal solution is the one with 
Xl = X2 = 3, and f = 9 .••• 

As can be observed from the example, performance of the Branch-and-Bound 
algorithm relies heavily on the choice of noninteger variable to be used for branching, 
and the selection of node to be branched. If a selected node and branching variable 
leads to an upper bound close to the objective function of the LP-l early in the 
enumeration scheme, then substantial computational savings can be obtained because 
of the elimination of branches that would not be capable of generating solutions lower 
than the upper bound. A rule of thumb for choosing the noninteger variable to be 
branched is to take the variable with the largest fraction. For the selection of the 
node to be branched, we choose, among all the live nodes, the LP problem which has 
the smallest value of the objective function; that node is most likely to generate a 
feasible design with a tighter upper bound. 

Branch-and-Bound is only one of the algorithms for the solution of ILP or MILP 
problems. However, because of its simplicity it is incorporated into many commer
cially available computer programs [23, 241. There are a number of other techniques 
which are capable of handling general discrete-valued problems (see, for example, 
Ref. [25]). Some of these algorithms are good not only for ILP problems but also 
for NLP problems with integer variables. Particularly, methods based on proba
bilistic search algorithms are emerging for many applications, including structural 
design applications, that involve linear and nonlinear programming problems. Two 
of such techniques, namely simulated annealing and genetic algorithms, are discussed 
in Chapter 4. Another approach, which is based on an extension of the penalty 
function approach for constrained NLP problems, is presented in Chapter 5. Finally, 
the use of dual variables (which are presented to be useful as prices of constraints in 
section 7.3) in ILP problems are discussed in Chapter 9. 

One of the interesting design applications of the ILP was introduced by Haftka 
and Walsh [261 for the stacking sequence design of laminated composite plates for 
improved buckling response. Since the formulation of this problem involves mate
rial introduced in Chapter 11, discussion and demonstration of this application is 
presented in that chapter. 

3.10 Exercises 

1. Estimate the limit load for the three bar truss example 3.1.2 using a graphical 
approach. Verify your solution using the simplex method. 
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Figure 3.10.1 Platform support system 

2. Consider the platform support system shown in Figure 3.10.1 in which cables 1 
and 2 can support loads up to 400 lb each; cables 3 and 4 up to 150 lb each and 
cables 5 and 6 up to 75 lb each. Neglect the weight of the platforms and cables, 
and assume the weights WI, w2, and W3 at the positions indicated in the figure. Also 
neglect the bending failure of the platforms. Using linear programming determine 
the the maximum total load that the system can support. 

3. Solve the limit design problem for the truss of Figure 3.1.4 using the sim
plex algorithm. Assume Al3 = A24 = A 34 , Al4 = A 23 , and use appropriate non
dimensionalization. 

4. Using the method of virtual displacements verify that the collapse mechanisms for 
the portal frame of Figure 3.1.6 lead to Eqs. (3.1.26) through (3.1.31) in terms of the 
non dimensional variables Xl and X2. 

5. The single bay, two story portal frame shown in Figure (3.10.2) is subjected 
to a single loading condition consisting of 4 concentrated loads as shown. Following 
Example 3.1.5 formulate the LP problem for the minimum weight design of the frame 
against plastic collapse. 

6. Consider the continuous prestressed concrete beam shown in Figure (3.10.3), 

a) Verify that the equivalent uniformly distributed upward force exerted on the 
concrete beam by a prestressing cable with a force f and a parabolic profile defined 
by eccentricities YI, Y2, and Y3 at the three points X = 0, x = 1/2, and x = I 
respectively is given by 

b) The beam in the figure is subjected to two loading conditions: the first con
sisting of a dead load of 1 kip/ft together with an equivalent load due to a parabolic 
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Figure 3.10.2 Two story portal frame 
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Figure 3.10.3 A continuous prestressed concrete beam 

prestressing cable with a force f, and the second due to an additional live load of 2.5 
kips/ft in service. It is assumed, however, that in service a 15% loss of prestressing 
force is to be expected. Formulate the LP problem for the minimum cost design 
of beam assuming f, Yl, and Y2 as design variables. Assume the allowable stress 
for the two loading conditions to be (11 = 200 psi, (1i = -3000 psi, (12 = 0 psi, 
(1~ = -2000 psi and the upper and lower bound limits on the eccentricities Yl and Y2 
to be OAft ~ Yi ~ 2.6ft, i = 1,2. 

c) Solve the LP problem by the simplex algorithm and obtain the solution for the 
minimum prestressing force and the tendon profile. 

7. Consider the statically determinate truss of Figure 3.3.1 and its minimum weight 
design formulation as described by Eqs. (3.3.9) through (3.3.13). Use the linearization 
scheme implied by Eqs. (3.3.2) through (3.3.5) to formulate the LP prohlem for m=3. 
Solve the LP by the simplex algorithm and compare the approximate solution with 
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the graphical or an exact solution to the problem. 

8. Use Branch-and-Bound algorithm to solve the limit design problem of Exercise 3 
by assuming the cross-sections of the members to take values from the following sets 

a) {O.O, 0.25, 0.5, 0.75,1.0,1.25,1.5,1.75, 2.0}. 

b) {O.O, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8,2.1}. 

3.11 References 

[1] Charnes, A. and Greenberg, H. J., "Plastic Collapse and Linear Programming," 
Bull. Am. Math. Soc., 57, 480, 1951. 

[2] Calladine, C.R., Engineering Plasticity. Pergamon Press, 1969. 

[3] Cohn, M.Z., Ghosh, S.K. and Parimi, S.R., "Unified Approach to Theory of Plas
tic Structures," Journal of the EM Division, 98 (EM5), pp. 1133-1158, 1972. 

[4] Neal, B. G., The Plastic Methods of Structural Analysis, 3rd edition, Chapman 
and Hall Ltd., London, 1977. 

[5] Zeman, P. and Irvine, H. M., Plastic Design, An Imposed Hinge-Rotation Ap
proach, Allen and Unwin, Boston, 1986. 

[6] Massonet, C.E. and Save, M.A., Plastic Analysis and Design, Beams and Frames, 
Vol. 1. Blaisdell Publishing Co., 1965. 

[7] Lin, T.Y. and Burns, N.H., Design of Prestressed Concrete Structures, 3rd ed. 
John Wiley and Sons, New York, 1981. 

[8] Parme, A.L. and Paris, G.H., "Designing for Continuity in Prestressed Concrete 
Structures," J. Am. Concr. Inst., 23 (1), pp. 45-64, 1951. 

[9] Morris, D., "Prestressed Concrete Design by Linear Programming," J. Struct. 
Div., 104 (ST3), pp. 439-452, 1978. 

[10] Kirsch, U., "Optimum Design of Prestressed Beams," Computers and Structures 
2, pp. 573-583, 1972. 

[11] Luenberger, D. G., Introduction to Linear and Nonlinear Programming, Addison
Wesley, Reading, Mass., 1973. 

[12] Majid, K.I., Nonlinear Structures, London, Butterworths, 1972. 

[13] Dantzig, G., Linear Programming and Extensions, Princeton University Press, 
Princeton, NJ, 1963. 

[14] Karmarkar, N., "A New Polynomial-Time Algorithm for Linear Programming," 
Combinatorica,4 (4), pp. 373-395, 1984. 

113 



Chapter 3: Linear Programming 

[15] Todd, M. J. and Burrell, B. P., "An Extension of Karmarkar's Algorithm for 
Linear Programming Using Dual Variables," Algorithmica, 1, pp. 409-424, 1986. 

[16] Rinaldi, G., "A Projective Method for Linear Programming with Box-type Con
straints," Algorithmica, 1, pp. 517-527, 1986. 

[17] Strang, G., "Karmarkar's Algorithm and its Place in Applied Mathematics," The 
Mathematical Intelligencer, 9, 2, pp. 4-10, 1987. 

[18] Vanderbei, R. F., Meketon, M. S., and Freedman, B. A., "A Modification of Kar
markar's Linear Programming Algorithm," Algorithmica, 1, pp. 395-407, 1986. 

[19] Garfinkel, R. S., and Nemhauser, G. L., Integer Programming, John Wiley & 
Sons, Inc., New York, 1972. 

[20] Lawler, E. L., and Wood, D. E., "Branch-and-Bound Methods-A Survey," Op
erations research, 14, pp. 699-719,1966. 

[21] Tomlin, J. A., "Branch-and-Bound Methods for Integer and Non-convex Pro
gramming," in Integer and Nonlinear Programming, J. Abadie (cd.), pp. 437-450, 
Elsevier Publishing Co., New York, 1970. 

[22] Land, A. H., and Doig, A. G., "An Automatic Method for Solving Discrete Pro
gramming Problems," Econometrica, 28, pp. 497-520, 1960. 

[23] Johnson, E. L., and Powell, S., "Integer Programming Codes," in Design and 
Implementation of Optimization Software, Greenberg, H. J. (ed.), pp. 225-240, 
1978. 

[24] Schrage, L., Linear, Integer, and Quadratic Programming with LINDO, 4th Edi
tion, The Scientific Press, Redwood City CA., 1989. 

[25] Kovacs, 1. B., Combinatorial Methods of Discrete Programming, Mathematical 
Methods of Operations Research Series, Vol. 2, Akademiai Kiad6, I3udapest, 1980. 

[26] Haftka, R. T., and Walsh, J. L., "Stacking-sequence Optimization for Buckling 
of Laminated Plates by Integer Programming," AIAA J. (in press). 

114 



Unconstrained Optimization 4 

In this chapter we study mathematical programming techniques that are commonly 
used to extremize nonlinear functions of single and multiple (n) design variables 
subject to no constraints. Although most structural optimization problems involve 
constraints that bound the design space, study of the methods of unconstrained op
timization is important for several reasons. First of all, if the design is at a stage 
where no constraints are active then the process of determining a search direction and 
travel distance for minimizing the objective function involves an unconstrained func
tion minimization algorithm. Of course in such a case one has constantly to watch 
for constraint violations during the move in design space. Secondly, a constrained 
optimization problem can be cast as an unconstrained minimization problem even if 
the constraints are active. The penalty function and multiplier methods discussed in 
Chapter 5 are examples of such indirect methods that transform the constrained min
imization problem into an equivalent unconstrained problem. Finally, unconstrained 
minimization strategies are becoming increasingly popular as techniques suitable for 
linear and nonlinear structural analysis problems (see Kamat and Hayduk[l]) which 
involve solution of a system of linear or nonlinear equations. The solution of such 
systems may be posed as finding the minimum of the potential energy of the system 
or the minimum of the residuals of the equations in a least squared sense. 

4.1 Minimization of Functions of One Variable 

In most structural design problems the objective is to minimize a function with 
many design variables, but the study of minimization of functions of a single de
sign variable is important for several reasons. First, some of the theoretical and 
numerical aspects of minimization of functions of n variables can be best illustrated, 
especially graphically, in a one dimensional space. Secondly, most methods for un
constrained minimization of functions f(x) of n variables rely on sequential one
dimensional minimization of the function along a set of prescribed directions, Sk, in 
the multi-dimensional design space R n. That is, for a given design point Xo and a 
specified search direction at that point so, all points located along that direction can 
be expressed in terms of a single variable Q by 

x=xo+nso, (4.1.1) 
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where a is usually referred to as the step length. The function f(x) to be minimized 
can, therefore, be expressed as 

f(x) = f(xo + aso) = f(a) . (4.1.2) 

Thus, the minimization problem reduces to finding the value a* that minimizes the 
function, f(a). In fact, one of the simplest methods used in minimizing functions 
of n variables is to seek the minimum of the objective function by changing only 
one variable at a time, while keeping all other variables fixed, and performing a one
dimensional minimization along each of the coordinate directions of an n-dimensional 
design space. This procedure is called the univariate search technique. 

In classifying the minimization algorithms for both the one-dimensional and 
multi-dimensional problems we generally use three distinct categories. These cat
egories are the zeroth, first, and second order methods. Zeroth order methods use 
only the value of the function during the minimization process. First order methods 
employ values of the function and its first derivatives with respect to the variables. 
Finally, second order methods use the values of the function and its first and sec
ond derivatives. In the following discussion of one-variable function minimizations, 
the function is assumed to be in the form f = f(a). However, the methods to be 
discussed are equally applicable for minimization of multivariable problems along a 
preselected direction, s, using Eq. (4.1.1). 

4.1.1 Zeroth Order Methods 

Bracketing Method. As the name suggests, this method brackets the minimum of the 
function to be minimized between two points, through a series of function evaluations. 
The method begins with an initial point ao, a function value f(ao), a step size /30, 
and a step expansion parameter, > 1. The steps of the algorithm [2] are outlined as 

1. Evaluate f(ao) and f(ao + /30). 

2. If f(ao + /30) < f(ao), let a1 ao + /30 and /31 = ,/30, and evaluate 
/(a1 + /3d. Otherwise go to step 4. 

3. If f(a1 + /3d < f(a1), let a2 = a1 + /31 and /32 = ,/31, and continue 
incrementing the subscripts this way until f(ak + /3k) > f(ak). Then, go to step 8. 

4. Let a1 = ao and /31 = -~/30, where ~ is a constant that satisfies 0 < ~ < 1/" 
and evaluate f(a1 + /31). 

5. If f( a1 + /3d > f( ad go to step 7. 

6. Let a2 = a1 + /31 and /32 = ,/3h and continue incrementing the subscripts 
this way until f(ak + /3k) > f(ak). Then, go to step 8. 

7. The minimum has been bracketed between points (ao - ~/30) and (ao + /30). 
Go to step 9. 

8. The last three points satisfy the relations f(ak-2) > f(ak-d and f(ak-d < 
f(ak), and hence, the minimum is bracketed. 
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9. Use either one of the two end points of the bracket as the initial point. Begin 
with a reduced step size and repeat steps 1 through 8 to locate the minimum to a 
desired degree of accuracy. 

Quadratic Interpolation. The method known as quadratic interpolation was first 
proposed by Powell [3] and uses the values of the function f to be minimized at three 
points to fit a parabola 

p( a) = a + ba + ca2 , ( 4.1.3) 

through those points. The method starts with an initial point, say, a = 0 with 
a function value Po = f(xo), and a step size fJ. Two more function evaluations 
are performed as described in the following steps to determine the points for the 
polynomial fit. In general, however, we start with a situation where we have already 
bracketed the minimum between al = al and a2 = au by using the bracketing 
method described earlier. In that case we will only need an intermediate point ao in 
the interval (ai, au). 

1. Evaluate PI = p(fJ) = f(xo + fJs) 

2. If PI < Po, then evaluate P2 = p(2fJ) = f(xo + 2fJs). Otherwise evaluate 
P2=p(-fJ)=f(xo-fJs). Theconstantsa,b, and cinequationEq. (4.1.3) can now 
be uniquely expressed in terms of the function values Po, PI, and P2 as 

a =Po, 

b = 4PI - 3po - P2 and 
2fJ ' 

P2 + Po - 2PI 
C = 2fJ2 if P2 = f(xo + 2fJs), (4.1.4) 

or 

b = PI - P2 and 
2fJ ' 

PI - 2po + P2 
C = 2fJ2 ' if P2 = f(xo - fJs) . ( 4.1.5) 

3. The value of a = a* at which pea) is extremized for the current cycle is then 
given by 

* b a =--2c . ( 4.1.6) 

4. a* corresponds to a minimum of P if c > 0, and the prediction based on 
Eq. (4.1.3) is repeated using (xo + a*s) as the initial point for the next cycle with 
Po = f(xo + a*s) until the desired accuracy is obtained. 

5. If the point a = a* corresponds to a maximum of P rather than a minimum, or 
if it corresponds to a minimum of P which is at a distance greater than a prescribed 
maximum fJmax (possibly meaning a* is outside the bracket points), then the max
imum allowed step is taken in the direction of decreasing f and the point furthest 
away from this new point is discarded in order to repeat the process. 

In step 4, instead of starting with (xo + a*s) as the initial point and repeating 
the previous steps, there is a cheaper alternative in terms of the number of function 
evaluations. The point (xo + a*s) and the two points closest to it from the left and 
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right can be used in another quadratic interpolation to give a better value of a'. 
Other strategies for improving the accuracy of the prediction will be discussed later 
in Section 4.1.4. 

Fibonacci and the Golden Section Search. Like bracketing, the Fibonacci and 
the golden section search techniques are very reliable, if not the most efficient, line 
search techniques for locating the unconstrained minimum of a function f(a) within 
the interval ao :::: a :::: boo It is assumed that the function f is unimodal, or that it 
has only one minimum within the interval. Unimodal functions are not necessarily 
continuous or differentiable, nor convex (see Figure 4.1.1). A function is said to be 
unimodal [3] in the interval To if there exist an a* E To such that a* minimizes! on 
To, and for any two points all a2 E To such that a1 < a2 we have 

f(a) 

implies that !(ad > !(a2) , 

implies that !(a2) > f(at) . 

a* 

Figure 4.1.1 A typical unimodal function. 

a 

(4.1. 7) 

( 4.1.8) 

The assumption of unimodality is central to the Fibonacci search technique which 
seeks to reduce the interval of uncertainty within which the minimum of the function 
! lies. 

The underlying idea behind the Fibonacci and the golden section search tech
niques can be explained as follows. Consider the minimization of f in the interval 
(ao, bo). Let us choose two points in the interval (ao, bo) at a = a1 and at a = a2 
such that a1 < a2, and evaluate the function! at these two points. If f(ad > !(a2), 
then since the function is unimodal the minimum cannot lie in the interval (ao, ad. 
The new interval is (aI, bo) which is smaller than the original interval. Similarly, if 
f(a2) > !(a1), then the new interval will be (ao, a2)' The process can be repeated to 
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reduce the interval to any desired level of accuracy. Only one function evaluation is 
required in each iteration after the first one, but we have not specified how to choose 
the locations where f is evaluated. The best placement of these points will minimize 
the number of function evaluations for a prescribed accuracy requirement (i.e., re
duction of the interval of uncertainty to a prescribed size). If the number of function 
evaluations is n the most efficient process is provided by a symmetric placement of 
the points provided by the relations [4] 

and 

= 

In-Ii 
(\(1 = ao + -f 0, 

n+l 

b fn-li 
(\(2 = 0 - -- 0, 

In+l 

+ In-(Hl) I 
ak k 

In-(k-l) 

( 4.1.9) 

(4.1.lO) 

b fn-(k+1) I 
k - k, 

fn-(k-l) 
(4.1.11) 

where In are Fibonacci numbers defined by the sequence 10 = 1, II = 1, In = 
In-2 + In-I, and lk is the length of the kth interval (ak,bk). The total number of 
required function evaluations n may be determined from the desired level of accuracy. 
It can be shown that the interval of uncertainty after n function evaluations is 2do 
where 

1 
E=--. 

In+l 
(4.1.12) 

A disadvantage of the technique is that the number of function evaluations has 
to be specified in advance in order to start the Fibonacci search. To eliminate this 
undesirable feature a quasi-optimal technique known as the golden section search 
technique has been developed. The golden section search technique is based on the 
finding that for sufficiently large n, the ratio 

fn-l --+ 0.382 . 
In+l 

(4.1.13) 

Thus, it is possible to approximate the optimal location of the points given by Eqs. 
(4.1.9 - 4.1.11) by the following relations 

(\(1 = ao + 0.382io , (4.1.14) 

(\(2 = bo - 0.38210, (4.1.15) 

and 
(4.1.16) 
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Example 4.1.1 

Determine the value of a, to within t = ±0.1, that minimizes the function f(a) = 
a(a - 3) on the interval 0 ~ a ~ 2 using the golden section search technique. 

From Eqs. (4.1.14) and (4.1.15) we can calculate 
al = 0 + 0.382(2) = 0.764, f(ad = -1.708, 
a2 = 2 - 0.382(2) = 1.236, f(a2) = -2.180 . 

Since f(a2) < f(al) we retain (al, 2). Thus, the next point is located at 
a3 = 2 - 0.382(2 - 0.764) = 1.5278, f(a3) = -2.249 . 

Since f(a3) < f(a2) we reject the interval (al, (2). The new interval is (a2,2). The 
next point is located at 

a4 = 2 - 0.382(2 - 1.236) = 1.7082, f(a4) = -2.207 . 

f (a) 
a 

0.0 

-0.5 

-1.0 

-1.5 

-2.0 

-2.5 

Figure 4.1.2 Iteration history for the function minimization f(a) = a(a - 3). 

Since f(a4) < f(a2) < f(2) we reject the interval (a4,2) and retain (a2, (4) as 
the next interval and locate the point a5 at 

a5 = 1.236 + 0.382(1.7082 - 1.236) = 1.4164, f(a5) = -2.243 . 

Since f(a5) < f(a4) < f(a2) we retain the interval (a5,a4). The next point is 
located at 

a6 = 1.7082 + 0.382(1.7082 - 1.4164) = 1.5967, f(a6) = -2.241 . 
Since f(a6) < f(a4) we reject the interval (a6, (4) and retain the interval (a5, (6) 
of length 0.18, which is less than the interval of specified accuracy, 2£ = 0.2. The 
iteration history for the problem is shown in Figure 4.1.2. I-Ience, the minimum has 
been bracketed to within a resolution of ±0.1. That is, the minimum lies between 
a5 = 1.4164 and a6 = 1.5967. We can take the middle of the interval, a = 1.5066 ± 
0.0902 as the solution. The exact location of the minimum is at a = 1.5 where the 
function has the value -2.25 .••• 
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4.l.2 First Order Methods 

Bisection Method. Like the bracketing and the golden section search techniques 
which progressively reduce the interval where the minimum is known to lie, the 
bisection technique locates the zero of the function f' by reducing the interval of 
uncertainty. Beginning with the known interval (a,b) for which 1'(a)1'(b) < 0, an 
approximation to the root of l' is obtained from 

* a + b 
a =-2-' (4.l.17) 

which is the point midway between a and b. The value of l' is then evaluated at 
00*. If l' (00*) agrees in sign with l' (a) then the point a is replaced by 00* and the new 
interval of uncertainty is given by (00*, b). If on the other hand 1'( 00*) agrees in sign 
with 1'(b) then the point b is replaced by 00* and the new interval of uncertainty is 
( a, 00*). The process is then repeated using Eq. (4.1.17). 

Davidon's Cubic Interpolation Method. This is a polynomial approximation 
method which uses both the function values and its derivatives for locating its min
imum. It is especially useful in those multivariable minimization techniques which 
require the evaluation of the function and its gradients. 

We begin by assuming the function to be minimized f(xo + 0080) to be approxi
mated by a polynomial in the form 

p( a) = a + boo + ca2 + da3 , (4.1.18) 

with constants a, b, c, and d to be determined from the values of the function, 
Po and PI, and its derivatives, go and gl, at two points, one located at a = 0 and 
the other at a = (3. 

Po = p(O) = f(xo), Pl = p((3) = f(xo + (38), 

and 

dp( T go = da 0) = 8 'V f(xo), 
dp T 

gl = -((3) = 8 'V f(xo + (38) . 
da 

After substitutions, Eq. (4.l.18) takes the following form 

( ) _ go + e 2 go + gl + 2e 3 
P a - Po + goa - -(3-00 + 3(32 a, 

where 

(4.1.19) 

(4.1.20) 

(4.l.21) 

( 4.l.22) 

We can now locate the minimum, a = am, of Eq. (4.1.21) by setting its derivative 
with respect to a to be zero. This results in 

(3 ( go + c ± h ) 
am = go + gl + 2e ' (4.1.23) 
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where 
( 4.1.24) 

It can be easily verified, by checking d2p/da2 , that the positive sign must be retained 
in Eq. (4.1.23) for am to be a minimum rather than a maximum. Thus, the algorithm 
for Davidon's cubic interpolation [5] may be summarized as follows. 

1. Evaluate Po = f(xo) and go = sTV f(xo) and make sure that go < O. 

2. In the absence of an estimate of the initial step length {3, we may calculate it 
on the basis of a quadratic interpolation derived using Po, go and an estimate of Pmin. 
Thus, 

{3 = 2(Pmin - Po) . 
go 

3. Evaluate PI = f(xo + {3s) and gl = df(xat {3s) 

4. If gl > 0 or if PI > Po go to step 6, or else go to step 5. 

5. Replace {3 by 2{3 and go to step 3. 

6. Calculate am using Eq. (4.1.23) with a positive sign. 

7. Use the interval (0, am) if 

or else use the interval (am' {3) and return to step 4. 

(4.1.25) 

(4.1.26) 

8. If am corresponds to a maximum, restart the algorithm by using new points. 
Selection of the new points may be performed by using a strategy similar to that 
described for the quadratic interpolation technique. 

4.1.3 Second Order Method 

The problem of minimizing the function f( a) is equivalent to obtaining the root of 
the nonlinear equation 

!,(a) =0, (4.1.27) 

because this is the necessary condition for the extremum of f. A convenient method 
for solving (4.1.27) is Newton's method. This method consists of linearizing f'(a) 
about a point a = aj and then determining the point ai+l at which the linear 
approximation 

vanishes. This point 
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serves as a new approximation for a repeated application of Eq. (4.1.29) with i re
placed by i + 1. For a successful convergence to the minimum it is necessary that the 
second derivative of the function f be greater than zero. Even so the method may 
diverge depending on the starting point. Several strategies exist [6] which modify 
Newton's method to make it globally convergent (that is, it will converge to a mini
mum regardless of the starting point) for multi variable functions; some of these will 
be covered in the next section. 

The reason this method is known as a second order method is not only because 
it uses second derivative information about the function f, but also because it has 
a rate of convergence to the minimum that is quadratic. In other words, Newton's 
algorithm converges to the minimum a* such that 

1· la;+l - a* 1 (3 
1m 2 = , 

;--->00 (a; - a*) 
( 4.1.30) 

where a; and a;+l are the ith and the (i + 1 )st estimates of the minimum value of 
the a*, (3 is a non-zero constant. 

4.1.4 Safeguarded Polynomial Interpolation [7], p. 92 

Polynomial interpolations such as the Quadratic interpolation and the Davidon's 
cubic interpolation are sometimes found to be quite inefficient and unreliable for 
locating the minimum of a function along a line. If the interpolation function is not 
representative of the behavior of the function to be minimized within the interval 
of uncertainty, the minimum may fall outside the interval, or become unbounded 
below, or the successive iterations may be too close to one another without achieving 
a significant improvement in the function value. In such cases, we use what are 
known as safeguarded procedures. These procedures consist of combining polynomial 
interpolations with a simple bisection technique or the golden section search technique 
described earlier. At the end of the polynomial interpolation, the bisection technique 
would be used to find the zero of the derivative of the function f. The golden 
section search, on the other hand, would work with the function f itself using the 
known interval of uncertainty (a, b) and locate the point a* which corresponds to the 
minimum of f within the interval. 

4.2 Minimization of Functions of Several Variables 

4.2.1 Zeroth Order Methods 

Several methods exist for minimizing a function of several variables using only func
tion values. However, only two of these methods may be regarded as being useful. 
These are the sequential simplex method of Spendley, Hext and Himsworth [8] and 
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Powell's conjugate direction method [3]. Both of these methods require that the 
function f(x),x ERn, be unimodal; that is the function f has only one minimum. 
The sequential simplex does not require that the function f be differentiable, while 
the differentiability requirement on f is implicit in the exact line searches of Powell's 
method. It appears from tests by NeIder and Mead [9] that for most problems the 
performance of the sequential simplex method is comparable to if not better than 
Powell's method. Both of these methods are considered inefficient for n :2: 10; Pow
ell's method may fail to converge for n :2: 30. A more recent modification of the 
simplex method by Chen, et al. [10] extends the applicability of this algorithm for 
high dimensional cases. If the function is differentiable, it is usually more efficient 
to use the more powerful first and second order methods with derivatives obtained 
explicitly or from finite difference formulae. 

Sequential Simplex Method. The sequential simplex method was originally pro
posed by Spendley, Hext and Himsworth [8] and was subsequently improved by NeIder 
and Mead [9]. The method begins with a regular geometric figure called the simplex 
consisting of n + 1 vertices in an n-dimensional space. These vertices may be defined 
by the origin and by points along each of the n coordinate directions. Such a simplex 
may not be geometrically regular. The following equations are suggested in Ref. 8 
for the calculation of the positions of the vertices of a regular simplex of size a in the 
n-dimensional design space 

with 

n 

Xj = Xo + pej + Lqek, 

p = arnCVn+1 + n -1), 
ny2 

k=l 
k¢i 

and 

j=l, ... ,n, 

q= alO(Vn+1-1), 
ny2 

(4.2.1) 

( 4.2.2) 

where ek is the unit base vector along the kth coordinate direction, and Xo is the 
initial base point. For example, for a problem in two-dimensional design space Eqs. 
(4.2.1) and (4.2.2) lead to an equilateral triangle of side a. 

Once the simplex is defined, the function f is evaluated at each of the n+ 1 vertices 
XO,xl, ... ,xn' Let Xh and XI denote the vertices where the function f assumes its 
maximum and minimum values, respectively, and Xs the vertex where it assumes the 
second highest value. The simplex method discards the vertex Xh and replaces it 
by a point where f has a lower value. This is achieved by three operations namely 
reflection, contraction, and expansion. 

The reflection operation creates a new point Xr along the line joining Xh to the 
centroid x of the remaining points defined as 

1 n 

X=-LXi' 
n ;=0 

i ¥ h . 

The vertex at the end of the reflection is calculated by 

Xr = X + a(x - Xh) , 
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with 0: being a positive constant called the reflection coefficient which is usually 
assumed to be unity. Any positive value of the reflection coefficient in Eq. (4.2.4) 
guarantees that Xr is on the other side of the x from Xh. If the value of the function 
at this new point, Ir = I(xr ), satisfies the condition II < Ir ~ Is, then Xh is replaced 
by Xr and the process is repeated with this new simplex. If, on the other hand, the 
value of the function Ir at the end of the reflection is less than the lowest value of the 
function II = l(xl), then there is a possibility that we can still decrease the function 
by going further along the same direction. We seek an improved point Xe by the 
expansion technique using the relation 

Xe = X + (3(xr - x), (4.2.5) 

with the expansion coefficient {3 often being chosen to be 2. If the value of the function 
Ie is smaller than the value at the end of the reflection step, then we replace Xh by 
Xe and repeat the process with the new simplex. However, if the expansion leads to a 
function value equal to or larger than fr, then we form the new simplex by replacing 
Xh by Xr and continue. 

Finally, if the process of reflection leads to a point Xr such that, fr < fh, then 
we replace Xh by Xr and perform contraction. Otherwise (lr ~ fh)' we perform 
contraction without any replacement using 

( 4.2.6) 

with the contraction coefficient /, ° < / < 1, usually chosen to be 1/2. If fe = f(xe) 
is greater than Ih, then we replace all the points by a new set of points 

1 
x· = X· + -(Xl - x·) , '2 ' , i=O,I, ... ,n, (4.2.7) 

and restart the process with this new simplex. Otherwise, we simply replace Xh by 
Xc and restart the process with this simplex. The operation in Eq. (4.2.7) causes the 
distance between the points of the old simplex and the point with the lowest function 
value to be halved and is therefore referred to as the shrinkage operation. The flow 
chart of the complete method is given in Figure 4.2.1. For the convergence criterion 
to terminate the algorithm NeIder and Mead [9] proposed the following 

{ In }t 
1 + n ~ [fi - f( X W < f, ( 4.2.8) 

where f is some specified accuracy requirement. 

An improvement in the performance of the simplex algorithm for those cases with 
large number of design variables, n, is achieved by Chen, Saleem, and Grace [10]. A 
modified simplex search procedure proposed in Ref. [10] executes the reflection, 
expansion, contraction, and, shrinkage operations on more than one vertex of the 
simplex at a given step. This is achieved by first separating the vertices of the simplex 
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Initialize a simplex 

Detennine 
r----~ xh. xs' xl. and x 

fh. fs• fl 

Reflection: xr = x + a(x - xh) 

Expansion: xe= x + ~(xr - x) 

Figure 4.2.1 Flow chari of the Sequential Simplex Algorithm. 

into two groups by defining a cutting value (CV) of the function. fev. 
value is defined by the relation 

f, - (/h + fi) + 
ev - 2 "Is, 

The cutting 

(4.2.9) 

where s is the standard deviation of the values of the function corresponding to the 
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vertices of the simplex, 

1 

S = [~(Ji -])2/(n + l)r ' (4.2.10) 

and 'I} is a parame!er (discussed below) that controls the number of vertices to be 
operated on. The f value in Eg. (4.2.10) is the average of the function values over 
the entire current simplex. 

The vertices with function values higher than the cutting value form the group 
to be reflected (and to be dropped). The other vertices serve as reference points. 
If the parameter 'I} is sufficiently large, all the vertices of the simplex except the Xh 

stay in the group to be used as the reference points and, therefore, the algorithm is 
equivalent to the original form. For sufficiently small values of the parameter 'I} , all 
points except the Xn are dropped. The selection of the parameter 17 depends on the 
difficulty of the problem as well as the number of variables. Recommended values 
for 'I} are given in Table II of Ref. [10]. Among the n + 1 vertices of the current 
simplex, we rearrange and number the vertices from largest to smallest function 
values as Xo, Xl, ... ,Xcv, ... ,Xn where i = 0, ... ,ncv are the elements of the group to 
be reflected next. The centroid of the vertices in the reference group is defined as 

n 
1 

X= LXi. 
n - ncv . 

l=n cv +l 

(4.2.11) 

The performance of this modified simplex method has been compared [10] with the 
simplex method proposed by NeIder and Mead, and also with more powerful meth
ods such as the second order Davidon-Fletcher-Powell (DFP) method which will be 
discussed later in this chapter. For high dimensional problems the modified simplex 
algorithm was found to be more efficient and robust than the DFP algorithm. Nclder 
and Mead [9] have also provided several illustrations of the use of their algorithm 
in minimizing classical test functions and compared its performance with Powell's 
conjugate directions method which will be discussed next. 

Powell's Conjugate Directions Method and its Subsequent Modification. Al-
though most problems have functions which are not quadratic, many unconstrained 
minimization algorithms are developed to minimize a quadratic function. This is be
cause a function can be approximated well by a quadratic function near a minimum. 
Powell's conjugate directions algorithm is a typical example. A quadratic function in 
Rn may be written (l.') 

1 
f(x) = 2xTQx+bTx+c. (4.2.12) 

A set of directions Si, i = 1,2 ... are said to be Q-conjugate if 

for i =f. j . (4.2.13) 

Furthermore, it can be shown that if the function f is minimized once along each 
direction of a set s of linearly independent Q-conjugate directions then the minimum 
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of f will be located at or before the nth step regardless of the starting point provided 
that no round-off errors are accumulated. This property is commonly referred to as 
the quadratic termination property. Powell provided a convenient method for gen
erating such conjugate directions by a suitable combination of the simple univariate 
search and a pattern search technique [3]. However, in certain cases Powell's algo
rithm generates directions which are linearly dependent and thereby fails to converge 
to the minimum. Hence, Powell modified his algorithm to make it robust but at the 
expense of its quadratic termination property. 

Powell's strategy for generating conjugate directions is based on the following 
property (see Ref. 3 for proof). If Xl and X2 are any two points and s a specified 
direction, and XIs corresponds to the minimum point of a quadratic function f on 
a line starting at Xl along sand X2s is the minimum point on a line starting at X2 

along s, then the directions sand (X2s - XIs) are Q-conjugate. The basic steps of 
Powell's modified method are based on a cycle of univariate minimizations. For each 
cycle we use the following steps. 

1. Minimize f along each of the coordinate directions (univariate search) starting 
at x~ and generating the points x}, ... ,x~ where k is the cycle number. 

2. After completing the univariate cycle find the index m corresponding to the 
direction of the univariate search which yields the largest function decrease in going 
from X~_l to x~. 

3. Calculate the "pattern" direction s~ = x~ - x~ (which is the sum of all the 
univariate moves) and determine the value of a from x~ along s~ that minimizes f. 
Denote this new point by X~+l. 

4. If 

(4.2.14) 

then use the same old directions again for the next univariate cycle (that is do not 
discard any of the directions of the previous cycle in preference to the pattern direction 
s~). If Eq. (4.2.14) is not satisfied then replace the mth direction by the pattern 
direction s~. 

5. Begin the next univariate cycle with the directions decided in step 4, and 
repeat the steps 2 through 4 until convergence to a specified accuracy. Convergence 
is assumed to be achieved when the Euclidean norm Ilxk- 1 - xkll is less than a prc
specified quantity E. 

Although Powell's original method does possess a quadratic termination property, 
his modified algorithm does not [3]. The modified method will now be illustrated on 
the following simple example from structural analysis. 
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Example 4.2.1 

The problem of determination of the maximum deflection and tip-rotation of a can
tilever beam oflength l shown in Figure (4.2.2) loaded at its tip is considered. Solution 
of this problem is formulated as a minimization of the total potential energy of the 
beam which is modelled using a single cubic beam finite element. For a two-noded 
beam element with two degrees of freedom at each node, the displacement field is 
assumed to be 

~~.. ~ .. x ===(a) ~~! 
1, EI 

(b) 

=&' CD 

Figure 4.2.2 Tip loaded cantilever beam and its finite element model. 

v(€) ~ [(1- 3<' + ~') I(€ - 2<' H') (3<' - 2<') 1(-<' +e')] nn ' 
(4.2.15) 

where ~ = x/l. The corresponding potential energy of the beam model is given by 

(4.2.Hi) 

Because of the cantilever end condition at ~ = 0, the first two degrees of freedom 
in Eq. (4.2.15) are zero. Therefore, substituting Eq. (4.2.15) into Eq. (4.2.16) we 
obtain 

( 4.2.17) 

Defining f = 2rrP / El, Xl = V2, X2 = 02l, and choosing pl3 / El = 1, the problem 
of determining the tip deflection and rotation of the beam reduces to an unconstrained 
minimization of 

(4.2.18) 

Starting with an initial point of x6 = (-1, _2)T and f(x6) = 2 we will minimize 
f using Powell's conjugate directions method. The exact solution of this problem is 
at x* = (-1/3, -1/2)T. 
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Since we have an explicit relation for the objective function I, the one dimensional 
minimizations along a given direction will be performed exactly without resorting to 
any of the numerical techniques discussed in the previous section. However, if these 
minimizations were done numerically, one of the zeroth order techniques would be 
sufficient. We use superscripts to denote the univariate cycle number and subscripts 
to denote the iteration number within a cycle. 

First, we perform the univariate search along the Xl and X2 directions. Choosing 
sf = (1, Of we have 

1 {-I} {I} {-1+0} Xl = -2 + 0 0 = -2 ' (4.2.19) 

and 

1(0) = 12( -1 + o? + 4( _2)2 - 12( -1 + 0)( -2) + 2( -1 + 0) . (4.2.20) 

Taking the derivative of Eq. (4.2.20) with respect to 0, we obtain the value of 0 
which minimizes 1 to be 0 = -1/12. Hence, 

{ 
-13 } 

x~ = ..2~ and l(xD = 1.916666667 . 

Choosing s~ = (0, If, we obtain 

1_ 12 - 12 { -13 } { 0 } { -13 } 
x2 - -2 + 0 1 - -2 + 0 ' 

(4.2.21) 

and 

( _13)2 (-13) (-13) 1(0)=12 12 +4(-2+0?-12 12 (-2+0)+2 12 ' (4.2.22) 

which is minimum at 0 = 3/8. Therefore, at the end of the univariate search we have 

xi = { -11; } 
-13 
-8 

and I(x~) = 1.354166667 . 

At this point we construct a pattern direction as 

(4.2.23) 

and minimize the function along this direction by 

2 -1 12 12 { } { -I} { -1 _ ~ } 
Xo = -2 + 0 ~ = -2 + 3: ' 

(4.2.24) 
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which attains its minimum value for a = 40/49 at 

{ 
-157 } 

2 147 
Xo = 

-83 
49 

and f(x~) = 1.319727891 . 

The direction that corresponds to the largest decrease in the objective function f 
during the first cycle of the univariate search is associated with the second variable. 
We can now decide whether we want to replace the second (m = 2) univariate search 
direction by the pattern direction or not by checking the condition stated in step 4 
of the algorithm, Eq. (4.2.24). That is, Powell's criterion 

1 

40 [ 2 - 1.319727891 ] 2" 

lal = 49 < 1.916666667 - 1.354166667 . 
( 4.2.25) 

is satisfied, therefore, we retain the old univariate search directions for the second 
cycle and restart the procedure by going back to step 2 of the algorithm. The results 
of the second cycle are tabulated in Table 4.2.1. 

Table 4.2.1. Solution of the beam problem using Powell's conjugate directions method 

CycleNo. 
o 
1 
1 
2 
2 
2 

-1.0 
-1.083334 
-1.083334 
-0.895834 
-0.895834 
-0.33334 

-2.0 
-2.0 
-1.625 
-1.625 
-1.34375 
-0.499999 

f 
2.0 
1.916667 
1.354167 
0.9322967 
0.6158854 

-0.333333 

The effectiveness of Powell's modified method can be seen to be much more 
pronounced on the minimization of the following function considered by A vriel [2], 

f = (Xl + X2 - x3f + (Xl - X2 + X3)2 + (-Xl + X2 + X3?, 

and left as an exercise for the reader (see Exercise 2) .••• 

Before we proceed to the discussion of first order methods, it is worthwhile to 
consider when zeroth order method should be used. The sequential simplex method 
can be used for non differentiable functions where first order methods are not appro
priate. For those unconstrained minimization problems with differentiable functions, 
it is preferable to calculate the exact derivatives, or generate such derivatives by 
using finite differences and subsequently use a first order method for minimization 
when these derivatives can be calculated accurately. Zeroth order methods such as 
Powell's conjugate directions algorithm may still have a place for problems with a 
highly nonlinear objective functions where the accuracy of the function evaluations 
may be poor. The poor accuracy in function evaluations may call for high order 
finite difference formulae to be used for derivative calculations, therefore, the use of 
a zeroth order method for minimization may be a prudent alternative. 
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4.2.2 First Order Methods 

First order methods for unconstrained minimization of a function / in Rn use the 
gradient of the function as well as its value in calculating the move direction for 
the function minimization. These methods possess a linear or a superlinear rate of 
convergence. A sequence Xb k = 0,1,2, ... , is said to be q-superlinear convergent to 
X* of order at least p if 

(4.2.26) 

where Ck converges to zero. If Ck in Eq.( 4.2.26) is a constant then the convergence is 
said to be a simple q-order convergence of order at least p. Thus, if p = 1 with Ck 

equal to a constant then we have a linear convergence rate, whereas if p = 1 and Ck is 
a sequence that converges to zero then the convergence is said to be superlinear (see 
Ref. 6 for additional definitions). 

Perhaps the oldest known method for minimizing a function of n variables is the 
steepest descent method first proposed by Cauchy [11] for solving a system of linear 
equations. It can be used for function minimization as follows. The direction of move 
is obtained by minimizing the directional derivative of / 

n a/ 
VPs= La.Si' 

i=1 x, 
( 4.2.27) 

subject to the condition that s be a unit vector in Rn in the Euclidean sense. 

ST S = 1 . ( 4.2.28) 

It can easily be verified (see Exercise 6) that the steepest descent direction is given 
by 

V/ 
s = -IIV/II' ( 4.2.29) 

where II II denotes the Euclidean norm, and it provides the largest decrease in the 
function /. Starting with a point Xk at the kth iteration of the minimization process, 
we obtain the next point Xk+! as 

( 4.2.30) 

Here s is given by Eq. (4.2.29) and a is determined such that. / is minimized along 
the chosen direction by using anyone of the one-dimensional minimization techniques 
covered in the previous section. If the function to be minimized is quadratic in Rn 
and expressed as 

1 l' l' / = 2"x Qx + b x + c, (4.2.31 ) 

the step length can be determined directly by substituting Eq. (4.2.30) into Eq. 
(4.2.31) for the (k + 1 )st iteration followed by a minimization of / with respect to a 
which yields 

(4.2.32) 
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In obtaining Eq. (4.2.32) we assume that the Hessian matrix Q of the quadratic form 
is available explicitly, and we make use of the symmetry of Q. 

The performance of the steepest descent method depends on the condition number 
of the Hessian matrix Q. The condition number of a matrix is the ratio of the largest 
to the smallest eigenvalue. A large condition number implies that the contours of 
the function to be minimized form an elongated design space, and therefore the 
progress made by the steepest descent method is very slow and proceeds in a zigzag 
pattern known as hemstitching. This is even true for quadratic functions, and can 
be improved by re-scaling the variables. 

Example 4.2.2 

12x12_12xl x2+4x22+2xl = constant 

Conjugate 
Gradient 

/ 

Figure 4.2.3 Contours of the cantilever beam potential energy function. 

The cantilever problem discussed in the previous example illustrates this behavior 
most vividly. The steepest descent method when applied to this problem may exhibit 
the typical hemstitching phenomenon as shown in Figure 4.2.3 for certain initial 
starting points. However, a simple transformation of variables to improve the scaling 
of the variables causes the steepest descent method to converge to the minimum in a 
single step. For example, consider the following transformation 

( 4.2.33) 

The function f may now be expressed in terms of the new variables Yl and Y2 as 

(4.2.34) 
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As a result of the scaling and elimination of the cross-product term, the condition 
number of the Hessian of f is unity. Contours of the function f in the YI - Y2 plane 
will appear as circles. Beginning with any arbitrary starting point Yo and applying 
the steepest descent method we have 

{ 2Ylo + i } 
YI = Yo + a 2 y'3. 

Y20 +""6 
(4.2.35) 

It can be easily verified that the value of a* that minimizes f is 0.5. Therefore, 

YI = { _~~ } , 
at which the gradient of f is zero, implying that it is a minimum point. The corre
sponding values of the original variables xi, and x2 are -1/3 and -1/2, respectively. 
This simple demonstration clearly shows the effectiveness of scaling in convergence 
of the steepest descent algorithm to the minimum of a function in R n. It can be 
shown [6] that the steepest descent method has only a linear rate of convergence in 
the absence of an appropriate scaling .••• 

Unfortunately, in most multivariable function minimizations it is not easy to de
termine the appropriate scaling transformation that leads to a one step convergence 
to the minimum of a general quadratic form in R n using the steepest descent algo
rithm. This would require calculating the Hessian matrix and then performing an 
expensive eigenvalue analysis of the matrix. Hence, we are forced to look at other 
alternatives for rapid convergence to the minimum of a quadratic form. One such 
alternative is provided by minimizing along a set of conjugate gradient directions 
which guarantees a quadratic termination property. Hestenes and Stiefel [12] and 
later Fletcher and Reeves [13] offered such an algorithm which will be covered next. 

Fletcher-Reeves' Conjugate Gradient Algorithm. This algorithm begins from 
an initial point Xo by first minimizing f along the steepest descent direction, 
So = - '\l f(xo) = go, to the new iterate XI. The direction for the next iteration 
SI must be constructed so that it is Q-conjugate to 80 where Q is the Hessian of 
the quadratic f. The function is then minimized along Sl to yield the next iterate 
X2. The next direction 82 from X2 is constructed to be Q-conjugate to the previous 
directions 80 and 81, and the process is continued until convergence to the mini
mum is achieved. By virtue of Powell's theorem on conjugate directions for quadratic 
functions, convergence to the minimum is theoretically guaranteed at the end of the 
minimization of the function f along the conjugate direction 8 n -1. For functions 
which are not quadratic, conjugacy of the directions s;, i = 1, ... , n loses its mean
ing since the Hessian of the functions is not a matrix of constants. However, it is a 
common practice to use this algorithm for non-quadratic functions. Since, for such 
functions, convergence to the minimum will rarely be achieved in n steps or less, the 
algorithm is restarted after every n steps. The basic steps of the algorithm at the 
(k + 1 )th iterate is as follows 
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1. Calculate Xk+1 = Xk + ak+18k where ak+1 is determined such that 

df(ak+d = 0 . 
daHl 

( 4.2.36) 
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2. Let Sk = gk = -V f(Xk) if k = 0; and Sk = gk + fhsk-l if k > 0 with 

( 4.2.37) 

3. If IlgHll1 or If(XHd - f(Xk)1 is sufficiently small, then stop. Otherwise 

4. If k < n go to step number 1, or else restart 

Example 4.2.3 

We will show the effectiveness of this method on the cantilever beam problem for 
which we minimize 

f = 12xi + 4x~ - 12xIX2 + 2Xl , 

starting with the initial design point xT; = (-1, -2). The initial move direction is 
calculated from the gradient 

V f(xo) = { 24x1 - 12x2 + 2 } , 
8X2 - 12x1 

x=xo 

So = - V f(xo) = { ~2} , 
and at the end of the first step we have 

f(ad = 12( -1 - 2a1? + 4( -1 + 4ad2 - 12( -1 - 2ad( -2 + 4ad + 2( -1- 2a1) . 

The value of a1 for which the function f is a minimum is obtained from the condition 
df Ida1 = 0, or a1 = 0.048077. The new design point and the gradient at that point 
are 

{ -1.0961} 
Xl = -1.8077 ' { -2.6154} 

and V f(xt} = -1.3077 

Next, let 81 = - V f(xt} + /3180 with /31 from Eq. (4.2.37), or 

/3 - (-2.6154)2+(-1.3077)2 
1- (_2)2+(4)2 = 0.4275, 

The new move direction is 

{ -2.6154} {-2} { 1.76036} 
81 = - -1.3077 + 0.4275 4 = 3.0178 ' 

and 

{ -1.0961} {1.76036} 
X2 = -1.8077 + a2 3.0178 . 
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Again setting dl(0:2)/d(0:2) = 0 we obtain 0:2 = 0.4334, 

_ {-0.3334} 
X2 - -0.50 ' 

Finally, since 

{ _2}T [24 -12] { 1.76036} '" 0 
4 -12 8 3.0178 - . 

we have verified the Q-conjugacy of the two directions So and S1' The progress of 
minimization using this method is illustrated in Figure (4.2.3) .••• 

Beale's Restarted Conjugate Gradient Technique. In minimizing non-quadratic 
functions using the conjugate gradient method, restarting the method after every 
n steps is not always a good strategy. Such a strategy seems to be insensitive to 
the nonlinear character of the function being minimized. Beale [14] and latcr Powcll 
[15] have proposed restart techniques that take the nonlinearity of the function into 
account in deciding when to restart the algorithm. Numerical experiments with 
minimization of several general functions have led to the following algorithm by Powell 
[15]. 

1. Given Xo, define So to be the steepest descent direction, 

So = -V!(xo) = go, 

let k = t = 0, and begin iterations by incrementing k. 

2. For k ~ 1 the direction Sk is defined by Beale's formula [14] 

Sk = -gk + (3kSk-1 + 'YkSt, and gk = -V!(Xk), 

where 

and 
gf[gH1 - gtl 

'Yk = T[ ] , St gt+1 - gt 
if k > t + 1, 

'Yk = 0, if k = t + 1 . 

3. For k ~ 1 test the inequality 

IgLlgkl ~ 0.211gk1l 2 • 

(4.2.38) 

( 4.2.39) 

( 4.2.40) 

(4.2.41 ) 

( 4.2.42) 

If this inequality holds, then it is taken to be an indication that enough orthogonality 
between gk_1and gk has been lost to warrant a restart. Accordingly, t is reset 
t = k - 1 to imply restart. 

4. For k > t + 1 the direction Sk is also checked to guarantee a sufficiently large 
gradient by testing the inequalities 

(4.2.43) 
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If these inequalities are not satisfied, the algorithm is restarted by setting t = k - 1. 

5. Finally, the algorithm is also restarted by setting t = k - 1, if k - t ~ n as in 
the case of the Fletcher-Reeves method. 

6. The process is terminated if Ilgk-lli or If(xk+d - f(Xk)1 is sufficiently small. 
If not, k is incremented by one and the process is repeated by going to step 2. 

Powell [15] has examined in great detail the effectiveness of the new restart proce
dure using Beale's basic algorithm on a variety of problems. These experiments clearly 
establish the superiority of the new procedure over the algorithms of Fletcher-Reeves 
and Polak-Ribiere [16]. The only disadvantage of this new algorithm appears to be its 
slightly increased storage requirements arising from the need for storing the vectors 
Sl and (gHl - gt) after a restart. More recent enhancement for the first order con
jugate gradient type algorithms [17, 18] involve inclusion of certain preconditioning 
schemes to improve the rate of convergence. 

4.2.3 Second Order Methods 

The oldest second order method for minimizing a nonlinear multivariable function 
in Rn is Newton's method. The motivation behind Newton's method is identical 
to the steepest descent method. In arriving at the steepest descent direction, s, we 
minimized the directional derivative, Eq. (4.2.27), subject to the condition that the 
Euclidean norm ofs was unity, Eq. (4.2.28). The Euclidean norm, however, does not 
consider the curvature of the surface. Hence, it motivates the definition of a different 
norm or a metric of the surface. Thus, we pose the problem as finding the direction 
s that minimizes 

(4.2.44) 

subject to the condition that 
(4.2.45) 

The solution of this problem is provided by Newton direction (see Exercise 6) to 
within a multiplicative constant, namely 

s = -Q-1V'f, ( 4.2.46) 

where Q is the Hessian of the objective function. The general form of the update 
equation of Newton's method for minimizing a function in Rn is given by 

( 4.2.47) 

where <lk+l is determined by minimizing f along the Newton direction. For Q = I, 
Eq. (4.2.47) yields the steepest descent solution since the norm in Eq. (4.2.45) 
reduces to the Euclidean norm. For quadratic functions it can be shown that the 
update equation reaches the optimum solution in one step with <l = 1 

( 4.2.48) 
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regardless of the initial p .nt Xo. 

Newton's method can also shown to have a quadratic rate of convergence (see 
for example [4] or [8]), by.t the serious disadvantages of the method are the need to 
evaluate the Hessian Q ~-d then solve the system of equations 

Qs=-Vf, ( 4.2.49) 

to obtain the direction vector s. For every iteration (if Q is non-sparse), Newton's 
method involves the calculation of n(n + 1)/2 elements of the symmetric Q matrix, 
and n3 operations for obtaining s from the solution of Eqs. (4.2.49). It is this feature 
of Newton's method that has led to the development of methods known as quasi
Newton or variable-metric methods which seek to use the gradient information to 
construct approximations for the Hessian matrix or its inverse. 

Quasi-Newton or Variable Metric Algorithms. Consider the Taylor series expan
sion of the gradient of f around Xk+l 

(4.2.50) 

where Q is the actual Hessian of the function f. Assuming Ak(Ak == A(Xk)) to be 
an approximation to the Hessian at the kth iteration, we may write equation (4.2.50) 
in a more compact form as 

where 

and 

Similarly, the solution of Eq. (4.2.51) for Pk can be written as 

Bk+lYk = Pk, 

(4.2.51) 

(4.2.52) 

(4.2.53) 

with Bk+l being an approximate inverse of the Hessian Q. If Bk+l is to behave 
eventually as Q-l then Bk+l A k = I. Equation (4.2.53) is known as the quasi-Newton 
or the secant relation. The basis for all variable-metric or quasi-Newton methods is 
that, the formulae which update the matrix Ak or its inverse Bk must satisfy Eq. 
(4.2.53) and, in addition, maintain the symmetry and positive definiteness properties. 
In other words, if Ak or Bk are positive definite then Ak+l or Bk+l must remain so. 

A typical variable-metric algorithm with an inverse Hessian update may be stated 
as 

(4.2.54) 

where 
(4.2.55) 

with Bk being a positive definite symmetric matrix. 

Rank-One Updates. In the class of rank-one updates we have the well-known 
symmetric Broyden's update [19] for Bk+l given as 

B - B + (Pk - BkYk)(Pk - BkYkf k+l - k )T (4.2.56) 
(Pk - BkYk Yk 
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To start the algorithm, an initial positive definite symmetric matrix Bo is assumed 
and the next point Xl is calculated from Eq. (4.2.54). Then, Eq. (4.2.56) is used 
to calculate the updated approximate inverse Hessian matrix. It is easy to verify 
that the columns of the second matrix on the right-hand side of Eq. (4.2.56) are 
multiples of each other. In other words, the update matrix has a single independent 
column and, hence is rank-one. Furthermore, if Bk is symmetric then Bk+l will also 
be symmetric. It is, however, not guaranteed that B k+l will remain positive definite 
even if Bk is. This fact can lead to a breakdown of the algorithm especially when 
applied to general non-quadratic functions. Broyden [19] suggests choosing the step 
lengths Ok+l in Eq. (4.2.54) by either (i) an exact line search, or by (ii) 0k+l = 1 for 
all steps, or by (iii) choosing 0k+l such that IIV' fll is minimized or reduced. 

Irrespective of the type of line search used, Broyden's update guarantees a 
quadratic termination property. However, because of the lack of robustness in min
imizing general non-quadratic functions, rank-one updates have been superseded by 
rank-t.wo updates which guarantee both symmetry and positive definiteness of the 
updated matrices. 

Rank- Two Updates. Rank-two updates for the inverse Hessian approximation 
may generally be written as 

[ BkYkyIBk T] PkPr 
Bk+l = Bk - TB + fhvkVk Pk + -T-' 

Yk kYk PkYk 
(4.2.57) 

where 

(4.2.58) 

and fh and Pk are scalar parameters that are chosen appropriately. Updates given 
by Eqs. (4.2.57) and (4.2.58) are subsets of Huang's family of updates [20] which 
guarantee that Bk+IYk = Pk for all choices of Ok and Pk. If we set Ok = ° and 
Pk = 1 for all k we obtain the Davidon-Fletcher-Powell's (DFP) update formula [21, 
22] which is given as 

B - B BkYkyIBk + PkPI 
k+l - k - TB -T- . 

Yk kYk PkYk 
( 4.2.59) 

The DFP update formula preserves the positive definiteness and symmetry of the 
matrices B k , and has some other interesting properties as well. \Vhen used for mini
mizing quadratic functions, it generates Q-conjugate directions and, therefore, at the 
nth iteration Bn becomes the exact inverse of the Hessian Q. Thus, it has the features 
of the conjugate gradient as well as the Newton-type algorithms. The DFP algorithm 
can be used without an exact line search in determining Ok+l in Eq. (4.2.54). How
ever, the step length must guarantee a reduction in the function value, and must 
be such that prYk > ° in order to maintain positive definiteness of B k . The perfor
mance of the algorithm, however, was shown to deteriorate as the accuracy of the line 
search decreases [20]. In most cases the DFP formula works quite successfully. In a 
few cases the algorithm has been known to break down because Bk became singular. 
This has led to the introduction of another update formula developed simultaneously 
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by Broyden [19]' Fletcher [23], Goldfarb [24], and Shanno [25] and known known as 
BFGS formula. This formula can be obtained by putting fh = 1 and Pk = 1 in Eq. 
(4.2.57) which reduces to 

B = B + [1 + YkBkYk] PkPk _ PkYkBk _ BkYkPk 
k+1 k T T T T· 

PkYk PkYk PkYk PkYk 
(4.2.60) 

Equation (4.2.60) can also be written in a more compact manner as 

Bk+1 = [I - p~Yr] Bk [I _ Y~r] + p~pr . 
PkYk PkYk PkYk 

(4.2.61 ) 

Using Ak+l = Bk~l and Ak = Bkl we can invert the above formula to arrive at an 
update for the Hessian approximations. It is found that this update formula reduces 
to 

A -A AkPkPk Ak + YkYk 
k+l - k - TA -T- , 

Pk kPk YkPk 
(4.2.62) 

which is the analog of the DFP formula (4.2.59) with Bk replaced by A k, and 
Pk and Yk interchanged. Conversely, if the inverse Hessian Bk is updated by the DFP 
formula then the Hessian Ak is updated according to an analog of the DFP formula. 
It is for this reason that the BFGS formula is often called the complementary DFP 
formula. Numerical experiments with BFGS algorithm [26J suggest that it is superior 
to all known variable-metric algorithms. We will illustrate its use by minimizing the 
potential energy function of the cantilever beam problem. 

Example 4.2.4 

Minimize f(XI, X2) = 12xy + 4x~ -12xIX2 + 2XI by using the BFGS update algorithm 
with exact line searches starting with the initial guess xij = (-1, -2). 

We initiate the algorithm with a line search along the steepest descent direction. 
This is associated with the assumption that Bo = 1 which is symmetric and positive 
definite. The resulting point is previously calculated in example 4.2.3 to be 

{ -1.0961} 
Xl = -1.8077 ' { -2.6154} 

and "f(xd = -1.3077 . 

From Eq. (4.2.52) we calculate 

{ -1.0961} { -1 } { -0.0961} 
Po = -1.8077 - -2 = 0.1923 ' 

{ -2.6154} {2} { -4.6154 } 
Yo = -1.3077 - -4 = 2.6923 

Substituting the terms 

P5 Yo = (-0.0961)( -4.6154) + (0.1923)(2.6923) = 0.96127, 
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T _ { -0.0961} [-4.6154 2.6923] _ [0.44354 -0.25873] 
POYo - 0.1923 - -0.88754 0.51773 ' 

into Eq. (4.2.61), we obtain 

B _ ([ 1 0] _ 1 [0.44354 
1 - 0 1 0.96127 -0.88754 

-0.25873]) [1 0] 
0.51773 0 1 

( [ 1 0] 1 [0.44354 
X 0 1 - 0.96127 -0.25873 

-0.88754]) 1 [0.00923 -0.01848] 
0.51773 + 0.96127 -0.01848 0.03698 ' 

_ [0.37213 0.60225] 
- 0.60225 1.10385 . 

Next, we calculate the new move direction from Eq. (4.2.55) 

__ [0.37213 0.60225] {-2.6154} _ {1.7608} 
81 - 0.60225 1.10385 -1.3077 - 3.0186 ' 

and obtain 

{ -1.0961 } { 1. 7608 } 
X2 = -1.8077 + 0'2 3.0186 . 

Setting the derivative of f(x2) with respect to 0:2 to 0 yields the value CY2 = 0.4332055, 
and 

{ -0.3333} 
X2 = -0.5000 ' with 

This implies convergence to the exact solution. It is left to the reader to verify that 
if Bl is updated once more we obtain 

B - [0.1667 0.25] 
2 - 0.25 0.5 ' 

which is the exact inverse of the Hessian matrix 

It can also be verified that, as expected, the directions 80 and 81 are Q-conjugate . 
••• 

Q-conjugacy of the directions of travel has meaning only for quadratic functions, 
and is guaranteed for such problems in the case of variable-metric algorithms be
longing to Huang's family only if the line searches are exact. In fact, Q-conjugacy 
of the directions is not necessary for ensuring a quadratic termination property [26]. 
This realization has led to the development of methods based on the DFP and I3FGS 
formulae that abandon the computationally expensive exact line searches. The line 
searches must be such that they guarantee positive definiteness of the Ak or Bk 
matrices while reducing the function value appropriately. Positive definiteness is 
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guaranteed as long as pIYk > O. To ensure a wide radius of convergence for a quasi
Newton method, it is also necessary to satisfy the following two criteria. First, a 
sufficiently large decrease in the function f must be achieved for the step taken and, 
second, the rate of decrease of f in the direction Sk at Xk+l must be smaller than the 
rate of decrease of f at Xk [26]. In view of this observations, most algorithms with 
inexact line searches require the satisfaction of the following two conditions. 

( 4.2.63) 

and 

(4.2.64 ) 

The convergence of the BFGS algorithm under these conditions has been studied by 
Powell [27]. Similar convergence studies with Beale's restarted conjugate gradient 
method under the same two conditions have been carried out by Shanno [28]. 

4.2.4 Applications to Analysis 

Several of the algorithms for unconstrained minimization of functions in Rn can also 
be used for solving a system of linear or nonlinear equations. In some cases, like the 
problems of nonlinear structural analysis, the necessary condition for the potential 
energy to be stationary is that its gradient vanish. The latter can be construed as 
solving a system of equations of the type 

v f(x) = g(x) = 0, (4.2.65) 

where the Hessian of f and the Jacobian of g are the same. In cases where the 
problems are posed directly as 

g(x) = 0, ( 4.2.66) 

Dennis and Schnabel [6] and others solve Eq. (4.4.2) by minimizing the nonlinear 
least squares function 

(4.2.67) 

In this case, however, the Hessian of f and the Jacobian of g are not identical but a 
positive definite approximation to the Hessian of f appropriate for most minimiza
tion schemes can be easily generated from the Jacobian of g [6]. Minimization of f 
then permits the determination of not only stable but also unstable equilibrium con
figurations provided the minimization does not converge to a local minimum. In the 
case of convergence to a local minimum, certain restart [6] or deflation and tunnelling 
techniques [29, 30] can be invoked to force convergence to the global minimum of f 
at which Ilgll = O. 
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4.3 Specialized Quasi-Newton Methods 

4.3.1 Exploiting Sparsity 

The rank-one and rank-two updates that we discussed in the previous section yield 
updates which are symmetric but not necessarily sparse. In other words the Hessian 
or Hessian inverse updates lead to symmetric matrices which are fully populated. In 
most structural analysis problems using the finite element method it is well known 
that the Hessian of the potential energy (the tangent stiffness matrix) is sparse. This 
may be also true of many structural optimization problems. For such sparse systems 
the solution phase for finite element models exploits the triple LDLT factorization. 
Thus the Hessian or the Hessian inverse updates discussed previously are not ap
propriate for solving large-scale structural analysis problems which involve sparse 
Hessians. 

In applying the BFGS method for solving large-scale nonlinear problems of struc
tural analysis Matthies and Strang [31] have proposed an alternate implementation 
of the method suitable for handling large sparse problems by storing the vectors 

(4.3.1) 

and 
(4.3.2) 

and reintroducing them to compute the new search directions. After a sequence of 
five to ten iterations during which the BFGS updates are used, the stiffness matrix 
is recomputed and the update information is deleted. 

Sparse updates for solving large-scale problems were perhaps first proposed by 
Schubert [32], who proposed a modification of Broyden's method [33] according to 
which the ith row of the Hessian Ak+l is updated by using 

(4.3.3) 

with Pk obtained from Pk by setting to zero those components corresponding to 
known zeros in A~i). The method has the drawback, however, that it cannot retain 
symmetry of the resulting matrix even when starting with a symmetric, positive 
definite matrix. Not only does this result in slightly increased demands on storage, 
but it also requires special sparse linear equation solvers. Toint [34] and Shanno 
[35] have recently proposed algorithms which find updating formulae for symmetric 
Hessian matrices that preserve known sparsity conditions. The update is obtained 
by calculating the smallest correction subject to linear constraints that include the 
sparsity conditions. This involves the solution of a system of equations with the same 
sparsity pattern as the Hessian. 
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Curtis, Powell and Reid [36], and Powell and Toint [37] have proposed finite 
difference strategies for the direct evaluation of sparse Hessians of functions. In 
addition to using the finite difference operations, they used concepts from graph 
theory that minimize the number of gradient evaluations required for computing the 
few non-zero entries of a sparse Hessian. By using these strategies, we can exploit 
the sparsity not only in the computation of the Newton direction but also in the 
formation of Hessians [38, 39] 

The Curtis-Powell-Reid (CPR) strategy exploits sparsity, but not the symmetry 
of the Hessian. It divides the columns of the Hessian into groups, so that in each 
group the row numbers of the unknown elements of the column vectors are all dif
ferent. After the formation of the first group, other groups are formed successively 
by applying the same strategy to columns not included in the previous groups. The 
number of such groups for sparse or banded matrices is usually very small by compar
ison with n. To evaluate the Hessian of f at Xo we evaluate the gradient of f at Xo. 
After this initial gradient evaluation, only as many more gradient evaluations as the 
number of groups are needed to evaluate all the non-zero elements of the Hessian 
using forward difference approximation. Thus 

()gi gi(XO + hjej) - gi(XO) 
aij = -;-- = h ' 

uXj j 
(4.3.4) 

where ej is the jth coordinate vector and hj is a suitable step size. Each step size may 
be adjusted such that the greatest ratio of the round-off to truncation error for any 
column of the Hessian falls within a specified range. However, such an adjustment of 
step sizes would require a significantly large number of gradient evaluations. Hence, 
to economize on the number of gradient evaluations the step sizes are not allowed to 
leave the range 

( 4.3.5) 

where f is the greatest relative round-off in a single operation, 1] is the relative machine 
precision, and huj is an upper bound on hj [36]. 

Powell and Toint [37] extended the CPR strategy to exploit symmetry of the 
Hessian. They proposed two methods, one of which is known as the substitution 
method. According to this, the CPR strategy is first applied to the lower triangular 
part, L, of the symmetric Hessian, A. Because, all the elements of A computed this 
way will not be correct, the incorrect elements are corrected by a back-substitution 
scheme. Details of this back-substitution schcme may be found in Ref. 37. 

The Powell-Toint (PT) strategy of estimating sparse Hessians directly appears 
to be a much bettcr alternative to Toint's sparse update algorithm [38]. One major 
drawback of Toint's update algorithm is that the updated Hessian approximation is 
not guaranteed to remain positive definite even if the initial Hessian approximation 
was positive definite. 

4.3.2 Coercion of Hessians for Suitability with Quasi-Newton Methods 

In minimizing a multivariable function f using a discrete Newton method or the 
Toint's update algorithm we must ensure that the Hessian approximation is positive 
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definite. If this is not so, then Newton's direction is not guaranteed to be a descent 
direction. There are several strategies for coercing an indefinite Hessian to a positive 
definite form. Prominent among these strategies is the one proposed by Gill and 
Murray [40]. The most impressive feature of this strategy is that the coercion of 
the Hessian takes place during its LDLT decomposition for the computation of the 
Newton direction. The diagonal elements of the D matrix are forced to be sufficiently 
positive to avoid numerical difficulties while the off-diagonal terms of LDl/2 are lim
ited by a quantity designed to guarantee positive definiteness of the resulting matrix. 
This is equivalent to modifying the original non-positive definite Hessian matrix by 
the addition of an appropriate diagonal matrix. Because this matrix modification 
is carried out during its LDLT decomposition, the strategy for the computation of 
Newton's descent direction does not entail a great deal of additional computations. 

4.3.3 Making Quasi-Newton Methods Globally Convergent 

It is well known that despite a positive definite Hessian approximation, New
ton's method can diverge for some starting points. Standard backtracking along 
the Newton direction by choosing shorter step lengths can achieve convergence to 
the minimum. However, backtracking along the Newton direction fails to use the 
n-dimensional quadratic model of the function f. Dennis and Schnabel [7] have pro
posed a strategy called the double-dogleg strategy which uses the full n-dimensional 
quadratic model to choose a new direction obtained by a linear combination of the 
steepest descent and the Newton direction. This new direction is a function of the 
radius of the trust region within which the n-dimensional quadratic model of the 
function approximates the true function well. The double-dogleg strategy not only 
makes Newton's method globally convergent (that is converge to the minimum of the 
function irrespective of the starting point) but also makes it significantly more effi
cient for certain poorly scaled problems. For details about the double-dogleg strategy 
readers are advised to consult Ref. 7. More recent attempts to widen the domain of 
convergence of the quasi-Newton method or make it globally convergent for a wide 
class of problems are studied in Refs. [41, 42]. 

4.4 Probabilistic Search Algorithms 

A common disadvantage of most of the algorithms discussed so far is their inability 
to distinguish local and global minima. Many structural design problems have more 
than one local minimum, and depending on the starting point, these algorithms 
may converge to one of these local minima. The simplest way to check for a better 
local solution is to restart the optimization from randomly selected initial points to 
check if other solutions are possible. However, for problems with a large number of 
variables the possibility of missing the global minimum is large unless unpractically 
large number of optimization runs are performed. The topic of global optimization 
is an area of active research where new algorithms are emerging and old algorithms 
are constantly being improved [43-45]. 
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Dealing with the problem of local minima becomes even worse if the design vari
ables are required to take discrete values. First of all, for such problems the design 
space is discontinuous and disjointed, therefore derivative information is either useless 
or is not defined. Secondly, the use of discrete values for the design variables intro
duces multiple minima corresponding to various combinations of the variables, even if 
the objective function for the problem ha.'l a single minimum for continuous variables. 
A methodical way of dealing with multiple minima for discrete optimization prob
lems is to use either random search techniques that would sample the design space 
for a global minimum or to employ enumerative type algorithms. In either case, the 
efficiency of the solution process deteriorates dramatically as the number of variables 
is increa.'led. 

Two algorithms, Simulated Annealing and Genetic Algorithms (see, Lam'hoven 
[46] and Goldberg [47], respectively), have emerged more recently as tools ideally 
suited for optimization problems where a global minimum is sought. In addition to 
being able to locate near global solutions, these two algorithms arc also powerful tools 
for problems with discrete-valued design variables. Both algorithms rely on naturally 
observed phenomena and their implementation calls for the useu£a random selection 
process which is guided by probabilistic decisions. In the following sections brief 
descriptions of the two algorithms are presented. Application of the algorithms to 
structural design will be demonstrated for laminated composites in Chapter 11. 

4.4.1 Simulated Annealing 

The development of the simulated annealing algorithm was motivated by studies in 
statistical mechanics which deal with the equilibrium of large number of atoms in 
solids and liquids at a given temperature. During solidification of metals or forma
tion of crystals, for example, a number of solid states with different internal atomic 
or crystalline structure that correspond to different energy levels can be achieved 
depending on the rate of cooling. If the system is cooled too rapidly, it is likely that 
the resulting solid state would have a small margin of stability because the atoms will 
assume relative positions in the lattice structure to reach an energy state \vhich is 
only locally minimal. In order to reach a more stable, globally minimum energy state, 
the process of annealing is used in which the metal is reheated to a high temperature 
and cooled slowly, allowing the atoms enough time to find positions that minimize 
a steady state potential energy. It is observed in the natural annealing process that 
during the time spent at a given temperature it is possible to have the system jump 
to a higher energy state temporarily before the steady state is reached. As will be 
explained in the following paragraphs, it is this characteristic of the annealing process 
which makes it possible to achieve near global minimum energy states. 

A computational algorithm that simulates the annealing process wa.'l proposed 
by Metropolis et al. [48], and is referred to as the Metropolis algorithm. At a given 
temperature, T, the algorithm perturbs the position of an atom randomly and com
putes the resulting change in the energy of the system, f:,.E. If the new energy state 
is lower than the initial state, then the new configuration of the atoms is accepted. 
If, on the other hand f:,.E ~ 0, the perturbed state causes an increase in the energy, 
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the new state might be accepted or rejected based on a random probabilistic decision. 
The probability of acceptance, P(~E), of a higher energy state is computed as 

(4.4.1) 

where kB is the Boltzmann's constant. If the temperature of the system is high, then 
the probability of acceptance of a higher energy state is close to one. If, on the other 
hand, the temperature is close to zero, then the probability of acceptance becomes 
very small. 

The decision to accept or reject is made by randomly selecting a number in an 
interval (0,1) and comparing it with P(~E). If the number is less than P(~E), then 
the perturbed state is accepted, if it is greater than P(~E), the state is rejected. 
At each temperature, a pool of atomic structures would be generated by randomly 
perturbing positions until a steady state energy level is reached (commonly referred 
to as thermal equilibrium). Then the temperature is reduced to start the iterations 
again. These steps are repeated iteratively while reducing the temperature slowly to 
achieve the minimal energy state. 

The analogy between the simulated annealing and the optimization of functions 
with many variables was established recently by Kirkpatrick et al. [49], and Cerny 
[50]. By replacing the energy state with an objective function J, and using variables 
x for the the configurations of the particles, we can apply the Metropolis algorithm 
to optimization problems. The method requires only function values. The moves in 
the design space from one point, Xi to another xi causes a change in the objective 
function, ~Jij. The temperature T now becomes a control parameter that regulates 
the convergence of the process. Important elements that affect the performance of 
the algorithm are the selection of the initial value of the "temperature", To, and 
how to update it. In addition, the number of iterations (or combinations of design 
variables) needed to achieve "thermal equilibrium" must be decided before the T can 
be reduced. These parameters are collectively referred to as the "cooling schedule" . 

A flow chart of a typical simulated annealing algorithm is shown in Figure 4.4.l. 
The definition of the cooling schedule begins with the selection of the initial temper
ature. If a low value of To is used, the algorithm would have a low probability of 
reaching a global minimum. The initial value of To must be high enough to permit vir
tually all moves in the design space to be acceptable so that almost a random search 
is performed. Typically, To is selected such that the acceptance ratio X (defined as 
the ratio of the number of accepted moves to total number of proposed moves) is 
approximately Xo = 0.95 [51]. Johnson et al. [52] determined To by calculating the 

average increase in the objective function, z;:t+), over a predetermined number of 
moves and solved 

( 4.4.2) 

leading to 

( 4.4.3) 
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Figure 4.4.1 Flow chart of the simulated annealing algorithm. 

Once the temperature is set, a number of moves in the variable space is performed 

by perturbing the design. The number of moves at a given temperature must be large 

enough to allow the solution to escape from a local minimum. One possibility is to 

move until the value of the objective function does not change for a specified number, 

M, of successive iterations. Another possibility suggested by Aarts [53) for discrete 

valued design variables is to make sure that every possible combinations of design 

variables in the neighborhood of a steady state design is visited at least once with a 
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probability of P. That is, if there are S neighboring designs, then 

M = SIn (_1_) , 
1-P 

( 4.4.4) 

where P = 0.99 for S > 100, and P = 0.995 for S < 100. For discrete valued 
variables there are often many options for defining the neighborhood of the design. 
One possibility is to define it as all the designs that can be obtained by changing one 
design variable to its next higher or lower value. A broader immediate neighborhood 
can be defined by changing more than one design variables to their next higher or 
lower values. For an n variable problem, the immediate neighborhood has 

S = 3n - 1 . ( 4.4.5) 

Once convergence is achieved at a given temperature, generally referred to as thermal 
equilibrium, the temperature is reduced and the process is repeated. 

Many different schemes have been proposed for updating the temperature. A 
frequently used rule is a constant cooling update 

k = 0,1,2, ... ,J(, ( 4.4.6) 

where 0.5 ::; a ::; 0.95. Nahar [54) fixes the number of decrement steps J(, and 
suggests determination of the values of the Tk experimentally. It is also possible to 
divide the interval [0, To) into a fixed J( number of steps and use 

J( - k 
TK=~To, k= 1,2, ... ,J(. 

The number of intervals typically ranges from 5 to 20. 

(4.4.7) 

The use of simulated annealing for structural optimization has been quite recent. 
Elperin [55) applied the method to the design of a ten-bar truss problem where 
member cross-sectional dimensions were to be selected from a set of discrete values. 
Kincaid and Padula [56] used it for minimizing the distortion and internal forces in a 
truss structure. A 6-story 156 member frame structure with discrete valued variables 
was considered by Balling and May [57). Optimal placement of active and passive 
members in a truss structure was investigated by Chen et al. [58) to maximize the 
finite-time energy dissipation to achieve increased damping properties. 

4.4.2 Genetic Algorithms 

Genetic algorithms use techniques derived from biology, and rely on the principle of 
Darwin's theory of survival of the fittest. When a population of biological creatures 
is allowed to evolve over generations, individual characteristics that are useful for 
survival tend to be passed on to the future generations, because individuals carry
ing them get more chances to breed. Those individual characteristics in biological 
populations are stored in chromosomal strings. The mechanics of natural genetics 
is based on operations that result in structured yet randomized exchange of genetic 
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information (i.e., useful traits) between the chromosomal strings of the reproducing 
parents, and consists of reproduction, crossover, occasional mutation, and inversion 
of the chromosomal strings. 

Genetic algorithms, developed by Holland [59], simulate the mechanics of natural 
genetics for artificial systems based on operations which are the counterparts of the 
natural ones (even called by the same names), and are extensively used as multi
variable search algorithms. As will be described in the following paragraphs, these 
operations involve simple, easy to program, random exchanges of location of num
bers in a string, and, therefore, at the outset look like a completely random search 
of extremum in the parameter space based on function values only. However, ge
netic algorithms are experimentally proven to be robust, and the reader is referred to 
Goldberg [47] for further discussion of the theoretical properties of genetic algorithms. 
Here we discuss the genetic representation of a minimization problem, and focus on 
the mechanics of three commonly used genetic operations, namely; reproduction, 
crossover, and mutation. 

Application of the operators of the genetic algorithm to a search problem first 
requires the representation of the possible combinations of the variables in terms 
of bit strings that are counterparts of the chromosomes. Naturally, the measure of 
goodness of a specific combination of genes is represented in an artificial system by 
the objective function of the search problem. For example, if we have a minimization 
problem 

minimize f(x), ( 4.4.8) 

a binary string representation of the variable space could be of the form 

( 4.4.9) 

where string equivalents of the individual variables are connected head-to-tail, and, 
in this example, base 10 values of the variables are Xl = 6, X2 = 5, X3 = 3, X4 = 11, 
and their ranges correspond to {15 ~ XI,X4 ~ 0},{7 ~ X2 ~ O},and {3 ~ X3 ~ 
O}. Because of the bit string representation of the variables, genetic algorithms are 
ideally suited for problems where the variables are required to take discrete or integer 
variables. For problems where the design variables are continuous values within a 
range xf ~ Xi ~ xf, one may need to use a large number of bits to represent the 
variables to high accuracy. The number of bits that are needed depends on the 
accuracy required for the final solution. For example, if a variable is defined in a 
range {0.01 ~ Xi ~ l.81} and the accuracy needed for the final value is x incr = 0.001, 
then the number of binary digits needed for an appropriate representation can be 
calculated from 

( 4.4.10) 

where m is the number of digits. In this example, the smallest number of digits that 
satisfy the requirement would bem = 11, which actually produces increments of 
0.00087 in the value of the variable, instead of the required value of 0.00l. 

Unlike the search algorithms discussed earlier that move from one point to another 
in the design variable space, genetic algorithms work with a population of strings 
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(chromosomes). This aspect of the genetic algorithms is responsible for capturing 
near global solutions, by keeping many solution points that may have the potential 
of being close to minima (local or global) in the pool during the search process rather 
than singling out a point early in the process and running the risk of getting stuck at 
a local minimum. Working on a population of designs also suggests the possibility of 
implementation on parallel computers. However, the concept of parallelism is even 
more basic to genetic algorithms in that evolutionary selection can improve in parallel 
many different characteristics of the design. Also, the outcome of a genetic search is 
a population of good designs rather than a single design. This aspect can be very 
useful to the designer. 

Initially the size of the population is chosen and the values of the variables in 
each string are decided by randomly assigning O's and 1 's to the bits. The next 
important step in the process is reproduction, in which individual strings with good 
objective function values are copied to form a new population, an artificial version 
of the survival of the fittest. The bias towards strings with better performance can 
be achieved by increasing the probability of their selection in relation to the rest of 
the population. One way to achieve this is to create a biased roulette wheel where 
individual strings occupy areas proportional to their function values in relation to 
the cumulative function value of the entire population. Therefore, the population 
resulting from the reproduction operation would have multiple copies of the highly 
fit individuals. 

Once the new population is generated, the members are paired off randomly for 
crossover. The mating of the pair also involves a random process. A random integer 
k between 1 and L - 1, where L is the string length, is selected and two new strings 
are generated by exchanging the O's and 1 's that comes after the kth location in the 
first parent with the corresponding locations of the second parent. For example, the 
two strings of length L = 9 

parent 1: 
parent 2: 

o 1 1 0 1110 1 1 1 
o 1 0 0 1110 0 0 1 ' 

(4.4.11 ) 

are mated with a crossover point of k = 5, the offsprings will have the following 
composition, 

offspring 1: 
offspring 2: 

011010001 
o 1 001 0 1 1 1 

( 4.4.12) 

Multiple point crossovers in which information between the two parents are swapped 
among more string segments are also possible, but because of the mixing of the strings 
the crossover becomes a more random process and the performance of the algorithm 
might degrade, De Jong [60J. Exception to this is the two-point crossover. In fact, 
the one point crossover can be viewed as a special case of the two point crossover in 
which the end of the string is the second crossover point. Booker [61] showed that 
by choosing the end-point of the segment to be crossed randomly, the performance 
of the algorithm can actually be improved. 

Mutation serves an important task of preventing premature loss of important 
genetic information by occasional introduction of random alteration of a string. As 
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mentioned earlier, at the end of reproduction it is possible to have populations with 
multiple copies of the same string. In the worst scenario, it is possible to have the 
entire pool to be made of the same string. In such a case, the algorithm would 
be unable to explore the possibility of a better solution. Mutation prevents this 
uniformity, and is implemented by randomly selecting a string location and changing 
its value from 0 to 1 or vice versa. Based on small rate of occurrence in biological 
systems and on numerical experiments, the role of the mutation operation on the 
performance of a genetic algorithm is considered to be a secondary effect. Goldberg 
[49] suggests a rate of mutation of one in one thousand bit operations. 

Application of genetic algorithms in optimal structural design has started only 
recently. The first application of the algorithm to a structural design was presented by 
Goldberg and Samtani [62] who used the 10-bar truss weight minimization problem. 
More recently, Hajela [63] used genetic search for several structural design problems 
for which the design space is known to be either nonconvex or disjoint. Rao et al. 
[64] address the optimal selection of discrete actuator locations in actively controlled 
structures via genetic algorithms. 

In closing, the basic ideas behind the simulation of a natural phenomena is find
ing a more mathematically sound foundation in the area of probabilistic search al
gorithms, especially for discrete variables. Improvements in the performance of the 
algorithms are constantly being made. For example, modifications in the cooling 
schedule proposed by Szu [65] led to the development of a new algorithm know as 
the fast simulated annealing. Applications and analysis of other operations that 
mimic the natural biological genetics (such as inversion, dominance, niches, etc.) are 
currently being evaluated for genetic algorithms. 

4.5 Exercises 

1. Solve the problem of the cantilever beam problem of example 4.2.1 by 

(a) Nelder-Mead's simplex algorithm, and 

(b) Davidon- Fletcher-Powell's algorithm. 

Begin with X6 = (-1, -2). For the simplex algorithm assume an initial simplex 
of size a=2.0. Assume an initial base point Xo with the coordinates of the other 
vertices to be given by Eqs. (4.2.1) and (4.2.1). 

2. Find the minimum of the function 

using Powell's conjugate directions method, starting with Xo = (0,0, of. 
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Figure 4.5.1 Two bar unsymmetric shallow truss. 

3. Determine the minimum of 

f(x) = 100(X2 - xi)2 + (1 - xd2 , 

using steepest descent method, starting with Xo = (1.2, 1.0f. 

4. The stable equilibrium configuration of the two bar unsymmetric shallow truss of 
Figure 4.5.1 can be obtained by minimizing the potential energy function f of the 
non-dimensional displacement variables Xl, X2 as 

1 1 2 2 1 ( 1 2 X2) 4 _ f(XI, X2) = 2" m 'Y( -O'IXI + 2"X1 + X2) + 2" -0'1 X1 + 2"X1 - -:y 'Y - P'Y X1 , 

where m, 'Y, 0'1,15 are nondimensional quantities defined as 

- P 
P = EA2 ' 

and E is the elastic modulus, Al and A2 are the cross-sectional areas of the bars. Us
ing the BFGS algorithm determine the equilibrium configuration in terms of Xl and X2 

for m = 5, 'Y = 4,0'1 = 0.02,15 = 2 x 10-5. Use X6 = (0,0). 

5. Continuing the analysis of the problem 4 it can be shown that the critical load Per 
at which the shallow truss is unstable (snap-through instability) is given by 

EAIA2'Yb + 1? O'r 

Per = (AI + A2'Y) 3V3· 
Suppose now that Per as given above is to be maximized subject to the condition that 

AlII + A2l2 = Vo = constant. 

The exterior penalty formulation of Chapter 5 reduces the above problem to the 
unconstrained minimization of 

153 



Chapter 4: Unconstrained Optimization 

where r is a penalty parameter. Carry out the minimization of an appropriately 
nondimensionalized form of po. for II = 200 in, l2 = 50 in, h = 2.50 in, Vo = 
200 in3 , E = 106 psi, r = Wi to determine an approximate solution for the op
timum truss configuration and the corresponding value of Pc.. Use the BFGS al
gorithm for unconstrained minimization beginning with an initial feasible guess of 
A1 = 0.952381in2 and A2 = 0.190476in2 . 

6. a) Minimize the directional derivative of / in the direction s 

subject to the condition 
n 

'" 82 = 1 ~, , 
;=1 

to show that the steepest descent direction is given by 

\1/ 
s = -11\1/11 . 

b) Repeat the above with the constraint condition on s replaced by 

STQS = 1, 

to show that the Newton direction is given by 

Q being the Hessian of the quadratic function /. 
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Constrained Optimization 5 

Most problems in structural optimization must be formulated as constrained min
imization problems. In a typical structural design problem the objective function 
is a fairly simple function of the design variables (e.g., weight), but the design has 
to satisfy a host of stress, displacement, buckling, and frequency constraints. These 
constraints are usually complex functions of the design variables available only from 
an analysis of a finite element model of the structure. This chapter offers a review of 
methods that are commonly used to solve such constrained problems. 

The methods described in this chapter are for use when the computational cost of 
evaluating the objective function and constraints is small or moderate. In these meth
ods the objective function or constraints these are calculated exactly (e.g., by a finite 
element program) whenever they are required by the optimization algorithm. This 
approach can require hundreds of evaluations of objective function and constraints, 
and is not practical for problems where a single evaluation is computationally ex
pensive. For these more expensive problems we go through an intermediate stage of 
constructing approximations for the objective function and constraints, or at least 
for the more expensive functions. The optimization is then performed on the approx
imate problem. This approximation process is described in the next chapter. 

The basic problem that we consider in this chapter is the minimization of a 
function subject to equality and inequality constraints 

minimize 
such that 

f(x) 
hj(x) = 0, 
gj(x) ~ 0, 

i = 1, ... , ne , (5.1 ) 
j = 1, ... ,ng . 

The constraints divide the design space into two domains, the feasible domain 
where the constraints are satisfied, and the infeasible domain where at least one of 
the constraints is violated. In most practical problems the minimum is found on 
the boundary between the feasible and infeasible domains, that is at a point where 
gj(x) = 0 for at least one j. Otherwise, the inequality constraints may be removed 
without altering the solution. In most structural optimization problems the inequality 
constraints prescribe limits on sizes, stresses, displacements, etc. These limits have 
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great impact on the design, so that typically several of the inequality constraints are 
active at the minimum. . 

While the methods described in this section are powerful, they can often per
form poorly when design variables and constraints are scaled improperly. To prevent 
ill-conditioning, all the design variables should have similar magnitudes, and all con
straints should have similar values when they are at similar levels of criticality. A 
common practice is to normalize constraints such that g(x) = 0.1 correspond to a 
ten percent margin in a response quantity. For example, if the constraint is an upper 
limit aa on a stress measure a, then the constraint may be written as 

a 
g=1--2:0. 

aa 
(5.2) 

Some of the numerical techniques offered in this chapter for the solution of con
strained nonlinear optimization problems are not able to handle equality constraints, 
but are limited to inequality constraints. In such instances it is possible to re
place the equality constraint of the form h;(x) = 0 with two inequality constraints 
h;(x) ~ 0 and hi(x) 2: O. However, it is usually undesirable to increase the number of 
constraints. For problems with large numbers of inequality constraints, it is possible 
to construct an equivalent constraint to replace them. One of the ways to replace a 
family of inequality constraints (g;(x) 2: 0, i = 1 ... m) by an equivalent constraint is 
to use the Kreisselmeier-Steinhauser function [1] (KS-function) defined as 

(5.3) 

where p is a parameter which determines the closeness of the KS-function to the 
smallest inequality min[g;(x)]. For any positive value of the p, the KS-function 
is always more negative than the most negative constraint, forming a lower bound 
envelope to the inequalities. As the value of p is increased the KS-functions conforms 
with the minimum value of the functions more closely. The value of the K S-function 
is always bounded by 

, ~(m) 
gmin ~ K S[g;(x)] ~ gmin - -- . 

p 
(5.4) 

For an equality constraint represented by a pair of inequalities, h;(x) ~ 0 and -
h;(x) ~ 0, the solution is at a point where both inequalities are active, h;(x) = 
-h;(x) = 0, Figure 5.1. Sobieski [2] shows that for a KS-function defined by such 
a positive and negative pair of hi, the gradient of the KS-function at the solution 
point h;(x) = 0 vanishes regardless of the p value, and its value approaches to zero 
as the value of p tends to infinity, Figure 5.1 Indeed, from Eq. (5.4) at x where 
hi = 0, the KS-function has the property 
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Figure 5.1 Kreisselmeier-Steinhauser Junction Jor replacing hex) = o. 
Consequently, an optimization problem 

minimize J(x) 
such that hk(x) = 0, k = 1, ... , ne , 

may be reformulated as 

minimize J(x) 
such that KS(hI, -hI, h2' -h2, ... , hne' -hnJ ~ -10 • 

where 10 is a small tolerance. 

5.1 The Kuhn-Tucker Conditions 

5.1.1 General Case 

16 

(5.6) 

(5.7) 

In general, problem (5.1) may have several local minima. Only under special circum
stances are sure of the existence of single global minimum. The necessary conditions 
for a minimum of the constrained problem are obtained by using the Lagrange mul
tiplier method. We start by considering the special case of equality constraints only. 
Using the Lagrange multiplier technique, we define the Lagrangian function 

n • 

.c(x,.\) = J(x) - L >.; h; (x) , (5.1.1) 
;=1 
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where Aj are unknown Lagrange multipliers. The necessary conditions for a stationary 
point are 

ac aj ne ahj 
-=--~Aj-=O ax· ax ~ ax ' 

, 'j=l • 

i = 1, ... ,n, (5.1.2) 

ac 
aA' = hj(x) = 0, 

J 

j = 1, ... , ne . (5.1.3) 

These conditions, however, apply only at a regular point, that is at a point where the 
gradients of the constraints are linearly independent. If we have constraint gradients 
that are linearly dependent, it means that we can remove some constraints without 
affecting the solution. At a regular point, Eqs. (5.1.2) and (5.1.3) represent n + ne 
equations for the ne Lagrange multipliers and the n coordinates of the stationary 
point. 

The situation is somewhat more complicated when inequality constraints are 
present. To be able to apply the Lagrange multiplier method we first transform the 
inequality constraints to equality constraints by adding slack variables. That is, the 
inequality constraints are written as 

j = 1, ... , ng , (5.1.4) 

where tj is a slack variable which measures how far the jth constraint is from being 
critical. We can now form a Lagrangian function 

ng 

C(x,t,'x)=j- LAj(gj-t;). 
j=l 

Differentiating the Lagrangian function with respect to x, ,X and t we obtain 

ac = Of _ I:>-j agj = 0, 
aXi aXi . aXi 

)=1 

ac 2 
aA' = -gj + tj = 0, 

J 

ac 
-;::;- = 2Ajtj = 0, 
utj 

i=l, ... ,n, 

j=l, ... ,ng , 

j = 1, ... , ng . 

(5.1.5) 

(5.1.6) 

(5.1.7) 

(5.1.8) 

Equations (5.1.7) and (5.1.8) imply that when an inequality constraint is not critical 
(so that the corresponding slack variable is non-zero) then the Lagrange multiplier 
associated with the constraint is zero. Equations (5.1.6) to (5.1.8) are the necessary 
conditions for a stationary regular point. Note that for inequality constraints a regular 
point is one where the gradients of the active constraints are linearly independent. 
These conditions are modified slightly to yield the necessary conditions for a minimum 
and are known as the Kuhn-Tucker conditions. The Kuhn-Tucker conditions may be 
summarized as follows: 
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A point x is a local minimum of an inequality constrained problem only if a set 
of nonnegative ).,j'S may be found such that: 

1. Equation (5.1.6) is satisfied 

2. The corresponding ).,j is zero if a constraint is not active. 

Vf 

Figure 5.1.1 A geometrical interpretation of Kuhn-Tucker condition for the case of 
two constraints. 

A geometrical interpretation of the Kuhn-Tucker conditions is illustrated in Fig. 
(5.1.1) for the case of two constraints. '\191 and '\1g2 denote the gradients of the two 
constraints which are orthogonal to the respective constraint surfaces. The vector s 
shows a typical feasible direction which does not lead immediately to any constraint 
violation. For the two-constraint case Eq. (5.1.6) may be written as 

(5.1.9) 

Assume that we want to determine whether point A is a minimum or not. To improve 
the design we need to proceed from point A in a direction s that is usable and feasible. 
For the direction to be usable, a small move along this direction should decrease the 
objective function. To be feasible, s should form an obtuse angle with -'\1 gl and 
- '\192. To be a direction of decreasing f it must form an acute angle with - '\1 f. 
Clearly from Figure (5.1.1), any vector which forms an acute angle with - '\1 f will also 
form and acute angle with either - '\191 or -'\192. Thus the Kuhn-Tucker conditions 
mean that no feasible design with reduced objective function is to be found in the 
neighborhood of A. Mathematically, the condition that a direction s be feasible is 
written as 

(5.1.10) 
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, 

where fA is the set of active constraints Equality in Eq. (5.1.10) is permitted only 
for linear or concave constraints (see Section 5.1.2 for definition of concavity). The 
condition for a usable direction (one that decreases the objective function) is 

sT'\1 f < ° . 
Multiplying Eq. (5.1.6) by Sj and summing over i we obtain 

ng 

sT'\1 f = L AjST'\1 gj . 
j=l 

(5.1.11) 

(5.1.12) 

In view of Eqs. (5.1.10) and (5.1.11), Eq. (5.1.12) is impossible if the A/S are positive. 

If the Kuhn-Tucker conditions are satisfied at a point it is impossible to find a 
direction with a negative slope for the objective function that does not violate the 
constraints. In some cases, though, it is possible to move in a direction which is 
tangent to the active constraints and perpendicular to the gradient (that is, has zero 
slope), that is 

(5.1.13) 

The effect of such a move on the objective function and constraints can be determined 
only from higher derivatives. In some cases a move in this direction could reduce the 
objective function without violating the constraints even though the Kuhn-Tucker 
conditions are met. Therefore, the Kuhn-Tucker conditions are necessary but not 
sufficient for optimality. 

The Kuhn-Tucker conditions are sufficient when the number of active constraints 
is equal to the number of design variables. In this case Eq. (5.1.13) cannot be satisfied 
with s t- ° because '\1 gj includes n linearly independent directions (in n dimensional 
space a vector cannot be orthogonal to n linearly independent vectors). 

When the number of active constraints is not equal to the number of design 
variables sufficient conditions for optimality require the second derivatives of the 
objective function and constraints. A sufficient condition for optimality is that the 
Hessian matrix of the Lagrangian function is positive definite in the subspace tangent 
to the active constraints. If we take, for example, the case of equality constraints, 
the Hessian matrix of the Lagrangian is 

n, 

'\12 £ = '\12 f - L Aj'\12hj (5.1.14) 
j=l 

The sufficient condition for optimality is that 

ST('\12 £)s > 0, for all s for which sThj = 0, j = 1 ... , ne . (5.1.15) 

When inequality constraints are present, the vector s also needs to be orthogonal to 
the active constraints with positive Lagrange multipliers. For active constraints with 
zero Lagrange multipliers, s must satisfy 

sT'\1gj ?: 0, when gj = ° and Aj = 0 . (5.1.16) 
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Example 5.1.1 

Find the minimum of 

subject to 

f = -xr - 2x~ + 10Xl - 6 - 2xL 

gl = 10 - XIX2 ;::: 0, 
g2 = Xl ;::: 0, 
g3 = 10 - X2 ;::: 0 . 

The Kuhn-Tucker conditions are 

- 3xi + 10 + )qX2 - .\2 = 0, 

- 4X2 - 6x~ + AIXI + A3 = 0 . 

We have to check for all possibilities of active constraints. 

The simplest case is when no constraints are active, Al = A2 = A3 = O. \Ve get 
Xl = 1.826, X2 = 0, f = 6.17. The Hessian matrix of the Lagrangian, 

is clearly negative definite, so that this point is a maximum. We next assume that the 
first constraint is active, XIX2 = 10, so that Xl i 0 and g2 is inactive and therefore 
A2 = O. We have two possibilities for the third constraint. If it is active we get .Tl = 1, 
X2 = 10, Al = -0.7, and A3 = 639.3, so that this point is neither a minimum nor a 
maximum. If the third constraint is not active A3 = 0 and we obtain the following 
three equations 

-3xi + 10 + AIX2 = 0, 

-4X2 - 6x~ + Al Xl = 0, 

XjX2 = 10 . 

The only solution for these equations that satisfies the constraints on Xl and X2 is 

Xl = 3.847, X2 = 2.599, Al = 13.24, f = -73.08. 

This point satisfies the Kuhn-Tucker conditions for a minimum. However, the Hessian 
of the Lagrangian at that point 

\72.c _ [-23.08 
- 13.24 

13.24 ] 
-35.19 ' 

is negative definite, so that it cannot satisfy the sufficiency condition. In fact, an 
examination of the function f at neighboring points along XlX2 = 10 reveals that the 
point is not a minimum. 
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Next we consider the possibility that gl is not active, so that )'1 = 0, and 

-3xI + 10 - A2 = 0, 

-4X2 - 6x~ + A3 = ° . 
We have already considered the possibility of both A'S being zero, so we need to 
consider only three possibilities of one of these Lagrange multipliers being nonzero, 
or both being nonzero. The first case is A2 f:. 0, A3 = 0, then g2 = ° and we get Xl = 0, 
X2 = 0, A2 = 10, and f = -6, or Xl = 0, X2 = -2/3, A2 = 10, and f = -6.99. Both 
points satisfy the Kuhn-Tucker conditions for a minimum, but not the sufficiency 
condition. In fact, the vectors tangent to the active constraints ~XI = ° is the only 
one) have the form ST = (0, a), and it is easy to check that sT'1 £'s < 0. It is also 
easy to check that these points are indeed no minima by reducing X2 slightly. 

The next case is A2 = 0, A3 f:. 0, so that g3 = O. We get Xl = 1.826, X2 = 10, 
A3 = 640 and f = -2194. this point satisfies the Kuhn-Tucker conditions, but it is 
not a minimum either. It is easy to check that '12 £, is negative definite in this case 
so that the sufficiency condition could not be satisfied. Finally, we consider the case 
Xl = 0, x2 = 10, A2 = 10, A3 = 640, f = -2206. Now the Kuhn-Tucker conditions 
are satisfied, and the number of active constraints is equal to the number of design 
variables, so that this point is a minimum .••• 

5.1.2 Convex Problems 

There is a class of problems, namely convex problems, for which the Kuhn-Tucker 
conditions are not only necessary but also sufficient for a global minimum. To define 
convex problems we need the notions of convexity for a set of points and for a function. 
A set of points S is convex whenever the entire line segment connecting two points 
that are in S is also in S. That is 

ifxI,X2ES, theno:xI+(1-0:)X2ES, 0<0:<1. (5.1.l7) 

A function is convex if 

0<0:<1. (5.1.18) 

This is shown pictorially for a function of a single variable in Figure (5.1.2). The 
straight segment connecting any two points on the curve must lie above the curve. 
Alternatively we note that the second derivative of f is non-negative J"(x) ;::: O. It 
can be shown that a function of n variables is convex if its matrix of second derivatives 
is positive semi-definite. 

A convex optimization problem has a convex objective function and a convex 
feasible domain. It can be shown that the feasible domain is convex if all the inequality 
constraints gj are concave (that is, -gj are convex) and the equality constraints are 
linear. A convex optimization problem has only one minimum, and the Kuhn-Tucker 
conditions are sufficient to establish it. Most optimization problems encountered in 
practice cannot be shown to be convex. However, the theory of convex programming is 
still very important in structural optimization, as we often approximat.e optimization 
problems by a series of convex approximations (see Chapter 9). The simplest such 
approximation is a linear approximation for the objective function and constraints
this produces a linear programming problem. 
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f 

x 

Figure 5.1.2 Convex function. 

Example 5.1.2 

Figure 5.1.3 Four bar statically determinate truss. 

Consider the minimum weight design of the four bar truss shown in Figure (5.1.3). 
For the sake of simplicity we assume that members 1 through 3 have the same area 
A1 and member 4 has an area A2. The constraints are limits on the stresses in the 
members and on the vertical displacement at the right end of the truss. Under the 
specified loading the member forces and the vertical displacement /) at the end are 
found to be 

f1 = 5p, 12 = -p, h = 4p, f4 = -2V3p, 

/) = 6pl (~+ v'3) 
E A1 A2 

We assume the allowable stresses in tension and compression to be 8.74 X 10-4 E and 
4.83 x 10-4 E, respectively, and limit the vertical displacement to be no greater than 
3 x 10-31. The minimum weight design subject to stress and displacement constraints 
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can be formulated in terms of nondimensional design variables 

_ 10-3AIE 
Xl - --, 

P 

as 

minimize f = 3XI + V3X2 

subject to 18 613 
gl = 3 - - - - ~ 0, 

Xl X2 

g2 = Xl - 5. 73 ~ 0, 
g3 = X2 - 7.17 ~ ° . 

The Kuhn-Tucker conditions are 

or 

3 

() f _ "'" A ,ogj - ° 
~ ~]~ - , 
UXi . 1 UXi 

]= 

i = 1,2, 

Consider first the possibility that Al = 0. Then clearly A2 = 3, A3 = 13 so that 
g2 = ° and g3 = 0, and then Xl = 5.73, X2 = 7.17, gl = -1.59, so that this solution 
is not feasible. We conclude that Al f:. 0, and the first constraint must be active 
at the minimum. Consider now the possibility that A2 = A3 = 0. We have the two 
Kuhn-Tucker equations and the equation gl = ° for the unknowns AI, Xl, X2. The 
solution is 

Xl = x2 = 9.464, Al = 14.93, f = 44.78 . 

The Kuhn-Tucker conditions for a minimum are satisfied. If the problem is convex 
the Kuhn-Tucker conditions are sufficient to guarantee that this point is the global 
minimum. The objective function and the constraint functions g2 and g3 are linear, 
so that we need to check only gl. For convexity gl has to be concave or - gl convex; 
this holds if the second derivative matrix -AI of -gl is positive semi-definite 

-AI = [360/X~ 0] 
12v'3x~ . 

Clearly, for Xl > ° and X2 > 0, -AI is positive definite so that the minimum that we 
found is a global minimum .••• 
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5.2 Quadratic Programming Problems 

One of the simplest form of nonlinear constrained optimization problems is in 
the form of Quadratic Programming (QP) problem. A general QP problem has a 
quadratic objective function with linear equality and inequality constraints. For the 
sake of simplicity we consider only an inequality problem with ng constraints stated 
as 

minimize 
1 

f(x) = cT X + 2xTQX 

Ax;:::b, (5.2.1) such that 
Xi;::: 0, i = 1, ... ,n. 

The linear constraints form a convex feasible domain. If the objective function is 
also convex, then we have a convex optimization problem in which, as discussed in 
the previous section, the Kuhn-Tucker conditions become sufficient for the optimality 
of the problem. Hence, having a positive semi-definite or positive definite Q matrix 
assures a global minimum for the solution of the problem, if one exists. For many 
optimization problems the quadratic form xT Qx is either positive definite or positive 
semi-definite. Therefore, one of the methods for solving QP problems relies on solving 
the Kuhn-Tucker conditions. 

We start by writing the Lagrange function for the Problem (5.2.1) 

where>. and I' are the vectors of Lagrange multipliers for the inequality constraints 
and the nonnegativity constraints, respectively, and {tn and {sn are the vectors of 
positive slack variables for the same. The necessary conditions for a stationary point 
are obtained by differentiating the Lagrangian with respect to the x, >., 1', t, and s, 

~~ =c-Qx-AT>.-I'=O, 

ac { 2} a>. = Ax - tj - b = ° , 
ac 
al'=x-{sn=o, 
ac -a = 2>'jtj = 0, j = 1, ... , ng , 

tj 
ac -a = 2j.Li S i = 0, i = 1, ... ,n . 

Si 

(5.2.3) 

(5.2.4) 

(5.2.5) 

(5.2.6) 

(5.2.7) 

where ng is the number of inequality constraints, and n is the number of design 
variables. We define a new vector {qj} - {tn, j = 1, ... , ng (q;::: 0). After 
multiplying Eqs. (5.2.6) and (5.2.7) by {tj} and {Si}, respectively, and eliminating 
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is;} from the last equation by using Eq. (5.2.5), we can rewrite the Kuhn-Tucker 
conditions 

Qx + AT ,\ + p. = c , 
Ax-q=b, 

j=l, ... ,ng , 

J.liXi = 0, i = 1, ... ,n, 
x ~ 0, ,\ ~ 0, and p. ~ ° . 

(5.2.8) 
(5.2.9) 

(5.2.10) 
(5.2.11) 
(5.2.12) 

Equations (5.2.8) and (5.2.9) form a set of n + ng linear equations for the solution 
of unknowns Xi,Aj,J.l;, and qj which also need to satisfy Eqs. (5.2.10) and (5.2.11). 
Despite the nonlinearity of the Eqs. (5.2.10) and (5.2.11), this problem can be solved 
as proposed by Wolfe [3] by using the procedure described in 3.6.3 for generating 
a basic feasible solution through the use of artificial variables. Introducing a set 
of artificial variables, y;, i = 1, ... , n, we define an artificial cost function to be 
minimized, 

n 

minimize L y; 
;=1 

subject to Qx + AT ,\ + p. + y = c , 
Ax-q=b, 
x ~ 0, ,\ ~ 0, p. ~ 0, and y ~ ° . 

(5.2.13) 

(5.2.14) 
(5.2.15) 
(5.2.16) 

Equations (5.2.13) through (5.2.16) can be solved by using the standard simplex 
method with the additional requirement that (5.2.10) and (5.2.11) be satisfied. These 
requirements can be implemented during the simplex algorithm by simply enforcing 
that the variables Aj and qj (and J.li and Xi) not be included in the basic solution 
simultaneously. That is, we restrict a non-basic variable J.li from entering the basis if 
the corresponding Xi is already among the basic variables. 

Other methods for solving the quadratic programming problem are also available, 
and the reader is referred to Gill et al. ([4], pp. 177-180) for additional details. 

5.3 Computing the Lagrange Multipliers 

As may be seen from example 5.1.1, trying to find the minimum directly from 
the Kuhn-Tucker conditions may be difficult because we need to consider many com
binations of active and inactive constraints, and this would in general involve the 
solution of highly nonlinear equations. The Kuhn-Tucker conditions are, however, 
often used to check whether a candidate minimum point satisfies the necessary con
ditions. In such a case we need to calculate the Lagrange multipliers (also called the 
Kuhn-Tucker multipliers) at a given point x. As we will see in the next section, we 
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may also want to calculate the Lagrange multipliers for the purpose of estimating the 
sensitivity of the optimum solution to small changes in the problem definition. To 
calculate the Lagrange multipliers we start by writing Eq. (5.1.6) in matrix notation 
as 

Vj-N,x=O, 

where the matrix N is defined by 

agj 
nij =-, 

aXi 
j = 1, ... , r, and 

(5.3.1) 

i=1, ... ,n. (5.3.2) 

We consider only the active constraints and associated lagrange multipliers, and as
sume that there are r of them. 

Typically, the number, r, of active constraints is less than n, so that with n 
equations in terms of r unknowns, Eq. (5.3.1) is an overdetermined system. We 
assume that the gradients of the constraints are linearly independent so that N has 
rank r. If the Kuhn-'TUcker conditions are satisfied the equations are consistent and 
we have an exact solution. We could therefore use a subset of r equations to solve for 
the Lagrange multipliers. However, this approach may be susceptible to amplification 
of errors. Instead we can use a least-squares approach to solve the equations. We 
define a residual vector u 

u=N,x-Vj, (5.3.3) 

A least squares solution ofEq. (5.3.1) will minimize the square of the Euclidean norm 
of the residual with respect to ,x 

To minimize lIull2 we differentiate it with respect to each one of the Lagrange multi
pliers and get 

{5.3.5} 

or 
(5.3.6) 

This is the best solution in the least square sense. However, if the Kuhn-'TUcker 
conditions are satisfied it should be the exact solution of Eq. (5.3.1). Substituting 
from Eq. (5.3.6) into Eq. (5.3.1) we obtain 

PVj = 0, (5.3.7) 

where 
(5.3.8) 

P is called the projection matrix. It will be shown in Section 5.5 that it projects a 
vector into the subspace tangent to the active constraints. Equation (5.3.7) implies 
that for the Kuhn-'TUcker conditions to be satisfied the gradient of the objective 
function has to be orthogonal to that subspace. 

In practice Eq. (5.3.6) is no longer popular for the calculation of the Lagrange 
multipliers. One reason is that the method is ill-conditioned and another is that it is 

171 



Chapter 5: Constmined Optimization 

not efficient. An efficient and better conditioned method for least squares calculations 
is based on the QR factorization of the matrix N. The QR factorization of the matrix 
N consists of an r x r upper triangular matrix R and an n x n orthogonal matrix Q 
such that 

(5.3.9) 

Here Q1 is a matrix consisting of the first r rows of Q, Q2 includes the last n - r 
rows of Q, and the zero represents an (n - r) x r zero matrix (for details of the QR 
factorization see most texts on numerical analysis, e.g., Dahlquist and Bjorck [5]). 
Because Q is an orthogonal matrix, the Euclidean norm of Qu is the same as that of 
u, or 

lIuII2 = IIQul1 2 = IIQN)' - QV/1l2 = II (~)). - QV/I1 2 = II (R~Q~;/) Ir . 
(5.3.10) 

From this form it can be seen that lIull2 is minimized by choosing). so that 

(5.3.11) 

The last n - r rows of the matrix Q denoted Q2 are also im/ortant in the following. 
They are orthogonal vectors which span the null space of N . That is NT times each 
one of these vectors is zero. 

Example 5.3.1 

Check whether the point (-2, -2,4) is a local minimum of the problem 

1 = Xl + X2 + x3, 

91 = 8 - X~ - X~ ;::: 0, 
92 = x3 - 4;::: 0, 

93 = X2 + 8;::: ° . 
Only the first two constraints are critical at (-2, -2,4) 

So 
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NTN = [302 n, NTV I = { ~} , 

A = (NTN)-lNTVI = {1{4} , 
also 

[I - N(NTNt1NT] VI = 0 . 

Equation (5.3.7) is satisfied, and all the Lagrange multipliers are positive, so the 
Kuhn-Tucker conditions for a minimum are satisfied .••• 

5.4 Sensitivity of Optimum Solution to Problem Parameters 

The Lagrange multipliers are not only useful for checking optimality, but they 
also provide information about the sensitivity of the optimal solution to problem 
parameters. In this role they are extremely valuable in practical applications. In 
most engineering design optimization problems we have a host of parameters such as 
material properties, dimensions and load levels that are fixed during the optimization. 
We often need the sensitivity of the optimum solution to these problem parameters, 
either because we do not know them accurately, or because we have some freedom to 
change them if we find that they have a large effect on the optimum design. 

We assume now that the objective function and constraints depend on a param
eter p so that the optimization problem is defined as 

minimize 
such that 

I(x,p) 
gj(x,p) ;::: 0, j = 1, ... ,ng . 

(5.4.1) 

The solution of the problem is denoted x*(p) and the corresponding objective function 
f*(p) = I(x*(p),p). We want to find the derivatives of x* and f* with respect to 
p. The equations that govern the optimum solution are the Kuhn-Tucker conditions, 
Eq. (5.3.1), and the set of active constraints 

(5.4.2) 

where ga denotes the vector of r active constraint functions. Equations (5.3.1) and 
(5.4.2) are satisfied by x*(p) for all values of p that do not change the set of active 
constraints. Therefore, the derivatives of these equations with respect to p are zero, 
provided we consider the implicit dependence of x and A on p. Differentiating Eq. 
(5.3.1) and (5.4.2) with respect to p we obtain 

dx* dA a (ON) (A-Z)--N-+-(Vf)- - A=O, 
dp dp op op 

(5.4.3) 

N Tdx* oga = 0 
dp + op , (5.4.4) 
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where A is the Hessian matrix of the objective function f, aij = eJ2 f jox/)Xj, and Z 
is a matrix whose elements are 

( 5.4.5) 

Equations (5.4.3) and (5.4.4) are a system of simultaneous equations for the deriva
tives of the design variables and of the Lagrange multipliers. Different special cases 
of this system are discussed by Sobieski et al. [6]. 

Often we do not need the derivatives of the design variables or of the Lagrange 
multipliers, but only the derivatives of the objective function. In this case the sensi
tivity analysis can be greatly simplified. We can write 

( 5.4.6) 

Using Eq. (5.3.1) and (5.4.4) we get 

df _ of >.70ga 
dp - op - op' (5.4.7) 

Equation (5.4.7) shows that the Lagrange multipliers are a measure of the effect 
of a change in the constraints on the objective function. Consider, for example, 
a constraint of the form gj(x) = Gj(x) - p ~ O. By increasing p we make the 
constraint more difficult to satisfy. Assume that many constraints are critical, but 
that p affects only this single constraint. We see that ogjjop = -1, and from Eq. 
(5.4.7) df j dp = Aj, that is Aj is the 'marginal price' that we pay in terms of an 
increase in the objective function for making gj more difficult to satisfy. 

The interpretation of Lagrange multipliers as the marginal prices of the con
straints also explains why at the optimum all the Lagrange multipliers have to be 
non-negative. A negative Lagrange multiplier would indicate that we can reduce the 
objective function by making a constraint more difficult to satisfy- an absurdity. 

Example 5.4.1 

Consider the optimization problem 

f = Xl + X2 + X3, 

gl = P - xi - x~ ~ 0, 
g2 = X3 - 4 ~ 0, 

g3 = X2 + P ~ 0 . 

This problem was analyzed for p = 8 in Example 5.3.1, and the optimal solution was 
found to be (-2, -2,4). We want to find the derivative of this optimal solution with 
respect to p. At the optimal point we have f = 0 and >.7 = (0.25,1.0), with the 
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first two constraints being critical. We can calculate the derivative of the objective 
function from Eq. (5.4.7) 

so 

of = 0 op , oga = {I} 
op 0' 

df 
dp = -0.25. 

To calculate the derivatives of the design variables and constraints we need to set up 
Eqs. (5.4.3) and (5.4.4). We get 

A=O, oVf =0 
op , 

oN 
op =0. 

Only gl has nonzero second derivatives o2gdoxi = f.J2gdox~ = -2 so from Eq. 
(5.4.5 ) 

Z11 = -2A2 = -2, Z22 = -2A2 = -2, 

With N from Example 5.3.1, Eq. (5.4.3) gives us 

2Xl - 4Al = 0, 

2X2 - 4~1 = 0, 

~2 = 0, 

[
-2 

Z = ~ 
o 

-2 
o 

where a dot denotes derivative with respect to p. From Eq. (5.4.4) we get 

4Xl + 4X2 + 1 = 0 , 
X3 = 0 . 

The solution of these five coupled equations is 

Xl = X2 = -0.125, X3 = 0, ~1 = -0.0625, ~2 = 0 . 

We can check the derivatives of the objective function and design variables by chang
ing p from 8 to 9 and re-optimizing. It is easy to check that we get Xl = X2 = -2.121, 
X3 = 4, f = -0.242. These values compare well with linear extrapolation based on 
the derivatives which gives Xl = X2 = -2.125, X3 = 4, f = -0.25.e •• 
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5.5 Gradient Projecti. 

rnization 

I.lld Reduced Gradient Methods 

Rosen's gradient projection method is based on projecting the search dirt'ction into 
the subspace tangent to the active constraints. Let us first examine the method for 
the case of linear constraints [7]. We define the constrained problem as 

minimize f (x) 
n 

such that gj(X) = L ajiXi - bj 2: 0, j = 1, ... , ng . 
(5.5.1) 

i=1 

In vector form 
(5.5.2) 

If we select only the r active constraints (j E fA), we may write the constraint 
equations as 

(5.5.3) 

where ga is the vector of active constraints and the columns of the matrix N are 
the gradients of these constraints. The basic assumption of the gradient projection 
method is that x lies in the subspace tangent to the active constraints. If 

X;+1 = Xi + O'S , 

and both Xi and X;+1 satisfy Eq. (5.5.3), then 

NTs = o. 

(5.5.4) 

(5.5.5) 

If we want the steepest descent direction satisfying Eq. (5.5.5), we can pose the 
problem as 

minimize 

such that ( 5.5.6) 

and sTs = 1 . 

That is, we want to find the direction with the most negative directional deriva
tive which satisfies Eq. (5.5.5). We use Lagrange multipliers oX and f.1 to form the 
Lagrangian 

The condition for £ to be stationary is 

a12 as = V' f - NoX - 2f.18 = 0 . 

Premultiplying Eq. (5.5.8) by NT and using Eq. (5.5.5) we obtain 

NTV' f - NTNoX = 0, 

or 
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So that from Eq. (5.5.8) 

s = L[I - N(NTN)-INT)Vf = LpVf . (5.5.11) 

P is the projection matrix defined in Eq. (5.3.8). The factor of 1/2f.1, is not significant 
because s defines only the direction of search, so in general we use s = -PV f. To 
show that P indeed has the projection property, we need to prove that if w is an 
arbitrary vector, then Pw is in the subspace tangent to the active constraints, that 
is Pw satisfies 

NTpw=O. (5.5.12) 

We can easily verify this by using the definition of P. 

Equation (5.3.8) which defines the projection matrix P does not provide the most 
efficient way for calculating it. Instead it can be shown that 

(5.5.13) 

where the matrix Q2 consists of the last n - r rows of the Q factor in the QR 
factorization of N (see Eq. (5.3.9)). 

A version of the gradient projection method known as the generalized reduced 
gradient method was developed by Abadie and Carpentier [8). As a first step we 
select r linearly independent rows of N, denote their transpose as NI and partition 
NT as 

(5.5.14) 

Next we consider Eq. (5.5.5) for the components Si of the direction vector. The r 
equations corresponding to N I are then used to eliminate r components of sand 
obtain a reduced order problem for the direction vector. 

Once we have identified N I we can easily obtain Q2 which is given as 

(5.5.15) 

Equation (5.5.15) can be verified by checking that NTQI = 0, so that Q2N = 0, 
which is the requirement that Q2 has to satisfy (see discussion following Eq. (5.3.11)). 

After obtaining s from Eq. (5.5.11) we can continue the search with a one di
mensional minimization, Eq. (5.5.4), unless s = O. When s = 0 Eq. (5.3.7) indicates 
that the Kuhn-Tucker conditions may be satisfied. We then calculate the Lagrange 
multipliers from Eq. (5.3.6) or Eq. (5.3.11). If all the components of A are non
negative, the Kuhn-Tucker conditions are indeed satisfied and the optimization can 
be terminated. If some of the Lagrange multipliers are negative, it is an indication 
that while no progress is possible with the current set of active constraints, it may 
be possible to proceed by removing some of the constraints associated with negative 
Lagrange multipliers. A common strategy is to remove the constraint associated with 
the most negative Lagrange multiplier and repeat the calculation of P and s. If s 
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is now non-zero, a one-dimensional search m.::.y be started. If s remains zero and 
there are still negative Lagrange multipliers, we remove another constraint until all 
Lagrange multipliers become positive and we satisfy the Kuhn-Tucker conditions. 

After a search direction has been determined, a one dimensional search must be 
carried out to determine the value of a in Eq. (5.5.4). Unlike the unconstrained case, 
there is an upper limit on a set by the inactive constraints. As a increases, some 
of them may become active and then violated. Substituting x = Xi + as into Eq. 
(5.5.2) we obtain 

(5.5.16) 

or 

(5.5.17) 

Equation (5.5.17) is valid if aJ s < O. Otherwise, there is no upper limit on a due to 
the jth constraint. From Eq. (5.5.17) we get a different a, say aj for each constraint. 
The upper limit on a is the minimum 

0: = min aj. 
<>j>O, ]3IA 

(5.5.18) 

At the end of the move, new constraints may become active, so that the set of active 
constraints may need to be updated before the next move is undertaken. 

The version of the gradient projection method presented so far is an extension 
of the steepest descent method. Like the steepest descent method, it may have slow 
convergence. The method may be extended to correspond to Newton or quasi-Newton 
methods. In the unconstrained case, these methods use a search direction defined as 

s=-BV'j, (5.5.19) 

where B is the inverse of the Hessian matrix of j or an approximation thereof. The 
direction that corresponds to such a method in the subspace tangent to the active 
constraints can be shown [4] to be 

(5.5.20) 

where AL is the Hessian of the Lagrangian function or an approximation thereof. 

The gradient projection method has been generalized by Rosen to nonlinear con
straints [9]. The method is based on linearizing the constraints about Xi so that 

(5.5.21) 
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projection 
move -----..,. 

restoration 
move 

Figure 5.5.1 Projection and restoration moves. 

The main difficulty caused by the nonlinearity of the constraints is that the 
one-dimensional search typically moves away from the constraint boundary. This 
is because we move in the tangent subspace which no longer follows exactly the 
constraint boundaries. After the one-dimensional search is over, Rosen prescribes a 
restoration move to bring x back to the constraint boundaries, see Figure 5.5.L 

To obtain the equation for the restoration move, we note that instead of Eq. 
(5.5.2) we now use the linear approximation 

gj ~ gj(Xi) + VgJ(Xi - Xi) . 

We want to find a correction Xi - Xi in the tangent subspace (i.e. 
that would reduce gj to zero. It is easy to check that 

Xi - Xi = -N(NTN)-lga(Xi) , 

(5.5.22) 

P(Xi - Xi) = 0) 

(5.5.23) 
is the desired correction, where ga is the vector of active constraints. Equation 
(5.5.23) is based on a linear approximation, and may therefore have to be applied 
repeatedly until ga is small enough. 

In addition to the need for a restoration move, the nonlinearity of the constraints 
requires the re-evaluation of N at each point. It also complicates the choice of an 
upper limit for a which guarantees that we will not violate the presently inactive 
constraints. Haug and Arora [10] suggest a procedure which is better suited for the 
nonlinear case. The first advantage of their procedure is that it does not require 
a one-dimensional search. Instead, a in Eq. (5.5.4) is determined by specifying a 
desired specified reduction 'Y in the objective function. That is, we specify 

J(Xi) - J(xi+d ~ 'YJ(Xi) . (5.5.24) 
Using a linear approximation with Eq. (5.5.4) we get 

* 'Y J(Xi) 
a = - STVJ . (5.5.25) 

The second feature of Haug and Arora's procedure is the combination of the projection 
and the restoration moves as 

Xi+l = Xi + a*s - N(NTN)-lga , (5.5.26) 
where Eqs. (5.5.4), (5.5.23) and (5.5.25) are used. 
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Example 5.5.1 

Use the gradient projection method to solve the following problem 

minimize f = xi + x~ + x~ + x~ - 2Xl - 3X4 

subject to 91 = 2Xl + X2 + X3 + 4X4 - 7 ~ 0, 

92 = xl + X2 + x~ + X4 - 5.1 ~ 0, 
Xi ~ 0, i = 1, ... ,4. 

Assume that as a result of previous moves we start at the point x6 = (2,2,1,0), 
f(xo) = 5.0, where the nonlinear constraint 92 is slightly violated. The first constraint 
is active as well as the constraint on X4. We start with a combined projection and 
restoration move, with a target improvement of 10% in the objective function. At Xo 

[2 1 0] [22 9 !j, 1 1 0 
N= 1 2 0 ' NTN = 9 7 

4 1 1 4 1 

(NTNt l = ~ [ -~ -5 -19] 
6 14 

l1 -19 14 73 

[1 -3 1 

!] , Vf={j}. P = I _ N(NTN)-lNT = ~ -3 9 -3 
l1 1 -3 1 

o 0 0 

The projection move direction is s = -PVf = [8/11,-24/l1,8/11,0]T. Since the 
magnitude of a direction vector is unimportant we scale s to ST = [1, -3, 1, OJ. For a 
10% improvement in the objective function 'Y = 0.1 and from Eq. (5.5.25) 

• = _ O.lf = _ 0.1 x 5 = 0 0625 
a sTVf -8 . . 

For the correction move we need the vector ga of constraint values, gr = (0, -0.1,0), 
so the correction is 

T -1 -1 { -i } -N(N N) ga = l10 _; . 

Combining the projection and restoration moves, Eq. (5.5.26) 

x, = H } + 00625 { -t } -1 :0 { =} } = F~~} , 
we get f(xt} = 4.64, 9l(Xl) = 0, g2(Xt} = 0.016. Note that instead of lO% reduction 
we got only 7% due to the nonlinearity of the objective function. However, we did 
satisfy the nonlinear constraint.e e e 
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Example 5.5.2 

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum 
weight design subject to stress and displacement constraints was formulated as 

minimize 

subject to 

f = 3XI + ..j3x2 
18 6v'3 

gl = 3 - - - -- ~ 0, 
Xl X2 

g2 = Xl - 5. 73 ~ ° , 
g3 = X2 - 7.17 ~ 0, 

where the Xi are non-dimensional areas 

AiE 
x·---

• - lOOOP' 
i = 1,2 . 

The first constraint represents a limit on the vertical displacement, and the other two 
represent stress constraints. 

Assume that we start the search at the intersection of gl = ° and g3 = 0, where 
Xl = 11.61, X2 = 7.17, and f = 47.25. The gradients of the objective function and 
two active constraints are 

{ 0.1335} 
VgI = 0.2021 ' 

N _ [0.1335 0] 
- 0.2021 1 . 

Because N is nonsingular, Eq. (5.3.8) shows that P = 0. Also since the number of 
linearly independent active constraints is equal to the number of design variables the 
tangent subspace is a single point, so that there is no more room for progress. Using 
Eqs. (5.3.6) or (5.3.11) we obtain 

,\ _ { 22.47 } 
- -2.798 . 

The negative multiplier associated with g3 indicates that this constraint can be 
dropped from the active set. Now 

N _ [0.1335] 
- 0.2021 . 

The projection matrix is calculated from Eq. (5.3.8) 

[ 0.6962 -0.4600] { -1.29} 
P = -0.4600 0.3036' s = -PV f = 0.854 

We attempt a 5% reduction in the objective function, and from Eq. (5.5.25) 

0.* = 0.05 x 47.25 = 0.988 . 

[-1.290.854) { ~ } 
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Since there was no constraint violation at Xo we do not need a combined projection 
and correction step, and 

• {11.61} 8{-1.29} {10.34} Xl = Xo + as = 7.17 + 0.98 0.854 = 8.01 . 

At Xl we have f(xJ) = 44.89, gl(XJ) = -0.0382. Obviously g2 is not violated. If there 
were a danger of that we would have to limit a* using Eq. (5.5.17). The violation of 
the nonlinear constraint is not surprising, and its size indicates that we should reduce 
the attempted reduction in f in the next move. At Xl, only gl is active so 

{ 0.1684} 
N = Vg l = 0.1620 

The projection matrix is calculated to be 

P _ [0.4806 -0.4996] 
- -0.4996 0.5194 ' { -0.5764} 

s = -PVf = 0.5991 . 

Because of the violation we reduce the attempted reduction in f to 2.5%, so 

a* = _ 0.025 X 44.89 = 1.62 . 

[-0.5670.599) { ~} 

We need also a correction due to the constraint violation (ga = -0.0382) 

Altogether 

-N(NTN)-l _ { 0.118} ga - 0.113 . 

* N(NTN)-l { 1O.34} 162 { 0.576} + {0.118} {9.52} X2 = Xl +a s- ga = 8.01 -. -0.599 0.113 = 9.10 

We obtain f(X2) = 44.32, gl (X2) = -0.0328. 

The optimum design is actually XT = (9.464,9.464), f(x) = 44.78, so after two 
iterations we are quite close to the optimum design .••• 

5.6 The Feasible Directions Method 

The feasible directions method (11) has the opposite philosophy to that of the 
gradient projection method. Instead of following the constraint boundaries, we try to 
stay as far away as possible from them. The typical iteration of the feasible direction 
method starts at the boundary of the feasible domain (unconstrained minimization 
techniques are used to generate a direction if no constraint is active). 
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Figure 5.6.1 Selection of search direction using the feasible directions method. 

Consider Figure 5.6.1. As a result of a previous move the design is at point x 
and we look for a direction s which keeps x in the feasible domain and improves the 
objective function. A vector s is defined as a feasible direction if at least a small step 
can be taken along it that does not immediately leave the feasible domain. If the 
constraints are smooth, this is satisfied if 

(5.6.1) 

where fA is the set of critical constraints at x. The direction s is called a usable 
direction at the point x if in addition 

(5.6.2) 

That is, s is a direction which reduces the objective function. 

Among all possible choices of usable feasible directions we seek the direction 
which is best in some sense. We have two criteria for selecting a direction. On the 
one hand we want to reduce the objective function as much as possible. On the other 
hand we want to keep away from the constraint boundary as much as possible. A 
compromise is defined by the following maximization problem 

maximize j3 

such that - sTVg· + O·j3 < 0 3 3 - , 

sTVf + j3 ~ 0, 

Isd ~ 1 . 

(5.6.3) 

The OJ are positive numbers called "push-off' factors because their magnitude deter
mines how far x will move from the constraint boundaries. A value of OJ = 0 will 
result in a move tangent to the boundary of the the jth constraint, and so may be 
appropriate for a linear constraint. A large value of OJ will result in a large angle 
between the constraint boundary and the move direction, and so is appropriate for a 
highly nonlinear constraint. 
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The optimization problem defined by Eq. (5.6.3) is linear and can be solved using 
the simplex algorithm. If (3max > 0, we have found a usable feasible direction. If we 
get (3max = 0 it can be shown that the Kuhn-Tucker conditions are satisfied. 

Once a direction of search has been found, the choice of step length is typically 
based on a prescribed reduction in the objective function (using Eq. (5.5.25». If 
at the end of the step no constraints are active, we continue in the same direction 
as long as sT"V f is negative. We start the next iteration when x hits the constraint 
boundaries, or use a direction based on unconstrained technique if x is inside the 
feasible domain. Finally, if some constraints are violated after the initial step we 
make x retreat based on the value of the violated constraints. The method of fea.<;ible 
directions is implemented in the popular CONMIN program [12]. 

Example 5.6.1 

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum 
weight design subject to stress and displacement constraints was formulated as 

minimize 

subject to 

f = 3X1 + -/3x2 

18 6-/3 
gl = 3 - - - -- ~ 0 , 

Xl X2 

g2 = Xl - 5.73 ~ 0, 

g3=x2-7.17~0, 

where the Xi are non-dimensional areas 

A;E 
. T; = 1000P , i = 1,2 . 

The first constraint represents a limit on the vertical displacement, and the other two 
constraints represent stress constraints. 

Assume that we start the search at the intersection of gl = 0 and g3 = 0 where 
x'{; = (11.61,7.17) and f = 47.25. The gradient of the objective function and two 
active constraints are 

{ 0.1335} 
"V gl = 0.2021 ' 

Selecting fh = ()2 = 1, we find that Eq. (5.6.3) becomes 
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maximize (3 

subject to - 0.1335s 1 - 0.2021s2 + (3 :::; 0, 
- S2 + (3 :::; 0, 

3s1 + -/3S2 + (3 :::; 0 , 
- 1 :::; Sl :::; 1 , 

- 1 :::; S2 :::; 1 . 
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The solution of this linear program is Sl = -0.6172, S2 = 1, and we now need to 
execute the one dimensional search 

_ {11.61} + {-0.6172} 
X1- 7.17 (\' 1 . 

Because the objective function is linear, this direction will remain a descent direction 
indefinitely, and (\' will be limited only by the constraints. The requirement that g2 

is not violated will lead to (\' = 9.527, Xl = 5.73, X2 = 16.7 which violates gl. We 
see that because gl is nonlinear, even though we start the search by moving away 
from it we still bump into it again (see Figure 5.6.2). It can be easily checked that 
for (\' > 5.385 we violate gl. So we take (\' = 5.385 and obtain Xl = 8.29, X2 = 12.56, 
f = 46.62. 

5 6 7 8 9 10 11 12 Xl 

Figure 5.6.2 Feasible direction solution of 4. bar truss example. 

For the next iteration we have only one active constraint 

{ 0.2619} 
V gl = 0.0659 ' 

The linear program for obtaining s is 

maximize {3 

Vf={~} . 

subject to - 0.2619s1 - 0.0659s2 + {3 ~ 0, 

3S1 + v'3s2 + {3 ~ 0, 
- 1 ~ Sl ~ 1, 
-1 ~ S2 ~ 1 . 
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The solution of the linear program is Sl = 0.5512, S2 = -1, so that the one
dimensional search is 

_ { 8.29 } + {0.5512 } 
x - 12.56 Q -1 . 

Again Q is limited only by the constraints. The lower limit on X2 dictates Q :::; 5.35. 
However, the constraint gl is again more critical. It can be verified that for Q > 4.957 
it is violated, so we take Q = 4.957, Xl = 11.02, X2 = 7.60, f = 46.22. The optimum 
design found in Example 5.1.2 is Xl = X2 = 9.464, f = 44.78. The design space and 
the two iterations are shown in Figure 5.6.2 .••• 

5.7 Penalty Function Methods 

\Vhen the energy crisis erupted in the middle seventies, the United States Congress 
passed legislation intended to reduce the fuel consumption of American cars. The 
target was an average fuel consumption of 27.5 miles per gallon for new cars in 1985. 
Rather than simply legislate this limit Congress took a gradual approach, with a 
different limit set each year to bring up the average from about 14 miles per gallon 
to the target value. Thus the limit was set at 26 for 1984, 25 for 1983, 24 for 1982, 
and so on. Furthermore, the limit was not absolute, but there was a fine of $50 per 
0.1 miles per gallon violation per car. 

This approach to constraining the automobile companies to produce fuel efficient 
cars has two important aspects. First, by legislating a penalty proportional to the 
violation rather than an absolute limit, the government allowed the auto companies 
more flexibility. That meant they could follow a time schedule that approximated 
the government schedule without having to adhere to it rigidly. Second, the gradual 
approach made enforcement easier politically. Had the government simply set the ul
timate limit for 1985 only, nobody would have paid attention to the law in the 1970's. 
Then as 1985 moved closer there would have been a rush to develop fuel efficient cars. 
The hurried effort could mean both non-optimal car designs and political pressure to 
delay the enforcement of the law. 

The fuel efficiency law is an example in which constraints on behavior or eco
nomic activities are imposed via penalties whose magnitude depends on the degree of 
violation of the constraints. It is no wonder that this simple and appealing approach 
has found application in constrained optimization. Instead of applying constraints 
we replace them by penalties which depend on the degree of constraint violations. 
This approach is attractive because it replaces a constrained optimization problem 
by an unconstrained one. 

The penalties associated with constraint violation have to be high enough so 
that the constraints are only slightly violated. However, just as there are political 
problems associated with imposing abrupt high penalties in real life, so there are 
numerical difficulties associated with such a practice in numerical optimization. For 
this reason we opt for a gradual approach where we start with small penalties and 
increase them gradually. 
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5.7.1 Exterior Penalty Function 

The exterior penalty function associates a penalty with a violation of a constraint. 
The term 'exterior' refers to the fact that penalties are applied only in the exterior 
of the feasible domain. The most common exterior penalty function is one which 
associates a penalty which is proportional to the square of a violation. That is, the 
constrained minimization problem, Eq. (5.1) 

is replaced by 

minimize 

minimize f(x) 
such that h;(x) = 0, 

gi(x) ~ 0, 
i = 1, ... , ne , 

j = 1, ... ,ng , 

Re n, 

¢(x, r) = f(x) + r L h~(x) + r L < -gj >2 
;=1 j=1 

ri -+ 00, 

(5.7.1) 

(5.7.2) 

where < a > denote the positive part of a or max(a,O). The inequality terms are 
treated differently from the equality terms because the penalty applies only for con
straint violation. The positive multiplier r controls the magnitude of the penalty 
terms. It may seem logical to choose a very high value of r to ensure that no con
straints are violated. However, as noted before, this approach leads to numerical 
difficulties illustrated later in an example. Instead the minimization is started with 
a relatively small value of r, and then r is gradually increased. A typical value for 
ri+1/r; is 5. A typical plot of ¢(x, r) as a function of r is shown in Figure 5.7.1 for a 
simple example. 

¢(x,r) x=4 

r=2.5 ~ 
f(x) = 0.5 x 

x 

Figure 5.7.1 Exterior penalty function for f = 0.5x subject to x - 4 ~ O. 

We see that as r is increased, the minimum of ¢ moves closer to the constraint 
boundary. However, the curvature of ¢ near the minimum also increases. It is 
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the high values of the curvature associated with large values of r which often lead 
to numerical difficulties. By using a sequence of values of r, we use the minima 
obtained for small values of r as starting points for the search with higher r values. 
Thus the ill-conditioning associated with the large curvature is counterbalanced by 
the availability of a good starting point. 

Based on the type of constraint normalization given by Eq. (5.2) we can select 
a reasonable starting value for the penalty multiplier r. A rule of thumb is that 
one should start with the total penalty being about equal to the objective function 
for typical constraint violation of 50% of the response limits. In most optimization 
problems the total number of active constraints is about the same as or just slightly 
lower than the number of design variables. Assuming we start with one quarter of 
the eventual active constraints being violated by about 50% (or g = -0.5) then we 
have 

f(xo) 
or 1'0 = 16--. 

n 
(5.7.3) 

It is also important to obtain a good starting point for restarting the optimization 
as l' is increased. The minimum of the optimization for the previous value of l' is a 
reasonable starting point, but one can do better. Fiacco and McCormick [13] show 
that the position of the minimum of ¢(x, 1') has the asymptotic form 

x*(1') = a + bl1', as l' ---+ 00 . (5.7.4) 

Once the optimum has been found for two values of 1', say 1'i-1, and 1'i, the vectors a 
and b may be estimated, and the value of x*(r) predicted for subsequent values of 1'. 
It is easy to check that in order to satisfy Eq. (5.7.4), a and b are given as 

cx*(1'i-d - x*(1'i) 
a= , 

c-1 (5.7.5) 
b = [x*(ri-d - a] 1'i-1 , 

where 
(5.7.6) 

In addition to predicting a good value of the design variables for restarting the op
timization for the next value of 1', Eq. (5.7.4) provides us with a useful convergence 
criterion, namely 

Ilx* - all:::; 1'1 , (5.7.7) 

where a is estimated from the last two values of 1', and 1'1 is a specified tolerance 
chosen to be small compared to a typical value of Ilxll. 

A second convergence criterion is based on the magnitude of the penalty terms, 
which, as shown in Example 5.7.1, go to zero as l' goes to infinity. Therefore, a 
reasonable convergence criterion is 

(5.7.8) 
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Finally, a criterion based on the change in the value of the objective function at the 
minimum !* is also used 

I !*(r;) - !*(r;-d I < 0 . 
f*(r;) -

A typical value for f2 or f3 is 0.001. 

Example 5.7.1 

Minimize f = xi + 10x~ such that Xl + X2 = 4. We have 

<p = xI + 10x~ + r( 4 - Xl - X2)2 • 

The gradient V' ¢ is given as 

_ { 2XI (1 + r) + 2rx2 - 8r } 
g - 2x2(10 + r) + 2rxi - 8r 

Setting the gradient to zero we obtain 

40r 4 
X ----
1-1O+11r' X ----

2 - 10 + llr . 

The solution as a function of r is shown in Table 5.7.1. 

Table 5.7.1 Minimization of ¢ for different penalty multipliers. 

r \ Xl X2 f 
1 1.905 0.1905 3.992 

10 3.333 0.3333 12.220 
100 3.604 0.3604 14.288 

1000 3.633 0.3633 14.518 

(5.7.9) 

¢ 
7.619 

13.333 
14.144 
14.532 

It can be seen that as r is increased the solution converges to the exact solution 
of xT = (3.636,0.3636), f = 14.54. The convergence is indicated by the shrinking 
difference between the objective function and the augmented function ¢. The Hessian 
of ¢ is given as 

H _ [2 + 2r 2r] 
- 2r 20 + 2r . 

As r increases this matrix becomes more and more ill-conditioned, as all four compo
nents become approximately 2r. This ill-conditioning of the Hessian matrix for large 
values of r often occurs when the exterior penalty function is used, and can cause 
numerical difficulties for large problems. 

We can use Table 5.7.1 to test the extrapolation procedure, Eq. (5.7.4). For 
example, with the values of r = 1 and r = 10, Eq. (5.7.5) gives 

_ O.lx*(l) - x*(lO) _ { 3.492 } 
a - -0.9 - 0.3492 ' 
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h *(1) { -0.159 } = x - a = -0.0159 

We can now use Eq. (5.7.4) to find a starting point for the optimization for r = 100 
to get 

a + h/lDO = (3.490, 0.3490f , 

which is substantially closer to x*(100) = (3.604,0.3604f than to x*(IO) = (3.333, 
0.3333f· ••• 

5.7.2 Interior and Extended Interior Penalty Functions 

\Vith the exterior penalty function, constraints contribute penalty terms only when 
they are violated. As a result, the design typically moves in the infeasible domain. 
If the minimization is terminated before r becomes very large (for example, because 
of shortage of computer resources) the resulting designs may be useless. \Vhen only 
inequality constraints are present, it is possible to define an interior penalty function 
that keeps the design in the feasible domain. The common form of the interior penalty 
method replaces the inequality constrained problem 

by 

minimize f (x) 
such that gj(x);::: 0, j = 1, ... , ng , 

ng 

minimize ¢(x, r) = f(x) + r L Ilgj(X) , 

¢(x, r) 

x=4 

j=1 

ri -+ 0, ri > 0 . 

r 
x-4 

x 

Figure 5.7.2 Interior penalty function for f(x) = 0.5.T subject to x - 4 ;::: o. 
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The penalty term is proportional to 1/ gj and becomes infinitely large at the 
boundary of the feasible domain creating a barrier there (interior penalty function 
methods are sometimes called barrier methods). It is assumed that the search is 
confined to the feasible domain. Otherwise, the penalty becomes negative which 
does not make any sense. Figure 5.7.2 shows the application of the interior penalty 
function to the simple example used for the exterior penalty function in Figure 5.7.l. 
Besides the inverse penalty function defined in Eq. (5.7.11), there has been some use 
of a logarithmic interior penalty function 

n. 

4>(x, r) = f(x) - r L log(gj(x)) . (5.7.12) 
j=l 

While the interior penalty function has the advantage over the exterior one in 
that it produces a series of feasible designs, it also requires a feasible starting point. 
Unfortunately, it is often difficult to find such a feasible starting design. Also, because 
of the use of approximation (see Chapter 6), it is quite common for the optimization 
process to stray occasionally into the infeasible domain. For these reasons it may be 
advantageous to use a combination of interior and exterior penalty functions called 
an extended interior penalty function. An example is the quadratic extended interior 
penalty function of Haftka and Starnes [14] 

n. 

4>(x, r) = f(x) + r LP(gj) , 
j=l (5.7.13) 

rj -0, 

where 

(5.7.14) 

It is easy to check that p(gj) has continuity up to second derivatives. The transi
tion parameter go which defines the boundary between the interior and exterior parts 
of the penalty terms must be chosen so that the penalty associated with the con
straint, rp(gj), becomes infinite for negative gj as r tends to zero. This results in the 
requirement that 

(5.7.15) 

This can be achieved by selecting go as 

go = cr1/ 2 , (5.7.16) 

where c is a constant. 

It is also possible to include equality constraints with interior and extended in
terior penalty functions. For example, the interior penalty function Eq. (5.7.11) is 
augmented as 

n, ne 

4>(x, r) = f(x) + r L l/gj(x) + r-1/ 2 L h~(x), 
j=l 

r=r1,r2,···, ri - o. 
i=l (5.7.17) 
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ct>(x, r) 
\ 

\ \ 

"I\-\ " 
\ " \ 

\ 
\ 

" 

x=4 

--- interior P. F. 

- - - quadratic extension 

x 

Figure 5.7.3 Extended interior penalty function for f(x) = 0.5x subject to g(x) = 
x - 4 2:: O. 

The considerations for the choice of an initial value of r are similar to those for 
the exterior penalty function. A reasonable choice for the interior penalty function 
would require that n/4 active constraints at g = 0.5 (that is 50% margin for properly 
normalized constraints) would result in a total penalty equal to the objective function. 
Using Eq. (5.7.3) we obtain 

n l' 

f(x) = 4" 0.5' or r = 2f(x)/n . 

For the extended interior penalty function it is more reasonable to assume that the 
n/4 constraints are critical (g = 0), so that from Eq. (5.7.13) 

n 3 4 
f(x) = r--, or l' = -gof(x)/n . 

4 go 3 

A reasonable starting value for go is 0.1. As for the exterior penalty function, it is 
possible to obtain an expression for the asymptotic (as r --+ 0) coordinates of the 
minimum of 1> as [10] 

x*(r) = a+ br 1/ 2 , as l' --+ 0, (5.7.18) 

and 
/*(1') = a + br1/ 2 , as r --+ 0 . 

a, b, a and b may be estimated once the minimization has been carried out for two 
values of r. For example, the estimates for a and bare 

c1/ 2x*(ri_d - x*(ri) 
a = c1/2 _ 1 ' 

b = x*(ri-d - a 
1/2 ' r i - 1 

(5.7.19) 

where c = r;j ri-1. As in the case of exterior penalty function, these expressions may 
be used for convergence tests and extrapolation. 
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5.7.3 Unconstrained Minimization with Penalty Functions 

Penalty functions convert a constrained minimization problem into an unconstrained 
one. It may seem that we should now use the best available methods for uncon
strained minimization, such as quasi-Newton methods. This may not necessarily be 
the case. The penalty terms cause the function ¢ to have large curvatures near the 
constraint boundary even if the curvatures of the objective function and constraints 
are small. This effect permits an inexpensive approximate calculation of the Hessian 
matrix, so that we can use Newton's method without incurring the high cost of cal
culating second derivatives of constraints. This may be more attractive than using 
quasi-Newton methods (where the Hessian is also approximated on the basis of first 
derivatives) because a good approximation is obtained with a single analysis rather 
than with the n moves typically required for a quasi-Newton method. Consider, for 
example, an exterior penalty function applied to equality constraints 

ne 

¢(x, r) = f(x) + r L h;(x) . (5.7.20) 
;=1 

The second derivatives of ¢ are given as 

(5.7.21) 

Because of the equality constraint, h; is close to zero, especially for the later stages 
of the optimization (large r), and we can neglect the last term in Eq. (5.7.21). For 
large values of r we can also neglect the first term, so that we can calculate second 
derivatives of ¢ based on first derivatives of the constraints. The availability of 
inexpensive second derivatives permits the use of Newton's method where the number 
of iterations is typically independent of the number of design variables. Qua.<;i-Newton 
and conjugate gradient methods, on the other hand, require a number of iterations 
proportional to the number of design variables. Thus the use of Newton's method 
becomes attractive when the number of design variables is large. The application of 
Newton's method with the above approximation of second derivatives is known as 
the Gauss-Newton method. 

For the interior penalty function we have a similar situation. The augmented 
objective function ¢ is given as 

ng 

¢(x, r) = f(x) + r L l/gj (x), 
j=l 

and the second derivatives are 

(5.7.22) 

(5.7.23) 
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Now the argument for neglecting the first and last terms in Eq. (5.7.23) is somewhat 
lengthier. First we observe that because of the 1/ g] term, the second derivatives 
are dominated by the critical constraints (gj small). For these constraints the last 
term in Eq. (5.7.23) is negligible compared to the first-derivative term because gj is 
small. Finally, from Eq. (5.7.18) it can be shown that rig] goes to infinity for active 
constraints as r goes to zero, so that the first term in Eq. (5. 7.23) can be neglected 
compared to the second. The same argument can also be used for extended interior 
penalty functions [14]. 

The power of the Gauss-Newton method is shown in [14] for a high- aspect-ratio 
wing made of composite materials (see Figure 5.7.4) designed subject to stress and 
displacement constraints. 

1803 All Dimensions are in Centimeters 

1872 

_L ___ .J~_¥i 1;-..,=-l'T--
Figure 5.7.4 Aerodynamic planform and structural box for high-aspect ratio wing, 
from [14}. 

Table 5.7.2 Results of high-aspect-ratio wing study 

Number of CDC 6600 Total number of 
design CPU time unconstrained Total number Final 
variables sec minimizations of analyses mass, kg 

13 142 4 21 887.3 
25 217 4 19 869.1 
32 293 5 22 661.7 
50 460 5 25 658.2 
74 777 5 28 648.6 

146 1708 5 26 513.0 

The structural box of the wing was modeled with a finite element model with 
67 nodes and 290 finite elements. The number of design variables controlling the 
thickness of the various elements was varied from 13 to 146. The effect of the number 
of design variables on the number of iterations (analyses) is shown in Table 5.7.2. 
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It is seen that the number of iterations per unconstrained minimization is almost 
constant (about five). With a quasi-Newton method that number may be expected 
to be similar to the number of design variables. 

Because of the sharp curvature of ¢ near the constraint boundary, it may also be 
appropriate to use specialized line searches with penalty functions [15]. 

5.7.4 Integer Progmmming with Penalty Functions 

An extension of the penalty function approach has been implemented by Shin et 
al. [16] for problems with discrete-valued design variables. The extension is based 
on introduction of additional penalty terms into the augmented-objective function 
¢(x, r) to reflect the requirement that the design variables take discrete values, 

(5.7.24) 

where Id is the set of design variables that can take only discrete values, and Xi is 
the set of allowable discrete values. Note that several variables may have the same 
allowable set of discrete values. In this case the augmented objective function which 
includes the penalty terms due to constraints and the non-discrete values of the design 
variables is defined as 

ng 

¢(x, r, s) = f(x) + r LP(gj) + s L 1fJd(Xi) , (5.7.25) 
j=l 

where s is a penalty multiplier for non-discrete values of the design variables, and 
1fJd(Xi) the penalty term for non-discrete values of the ith design variable. Different 
forms for the discrete penalty function are possible. The penalty terms 1fJd(Xi) are 
assumed to take the following sine-function form in Ref. [16], 

./. () 1 (. 21l'[Xi - ~(di(j+l) + 3dij )] + 1) 
'f/d Xi = - SIn , 

2 dii+l - dij 
dij ::; Xi::; diCi+l)' (5.7.26) 

While penalizing the non-discrete valued design variables, the functions 1fJd(Xi) as
sure the continuity of the first derivatives of the augmented function at the discrete 
values of the design variables. The response surfaces generated by Eq. (5.7.25) are 
determined according to the values of the penalty multipliers rand s. In contrast 
to the multiplier r, which initially has a large value and decreases as we move from 
one iteration to another, the value of the multiplier s is initially zero and increases 
gradually. 

One of the important factors in the application of the proposed method is to 
determine when to activate s, and how fast to increase it to obtain discrete optimum 
design. Clearly, if the initial value of s is too big and introduced too early in the 
design process, the design variables will be trapped away from the global minimum, 
resulting in a sub-optimal solution. To avoid this problem, the multiplier s has to be 
activated after optimization of several response surfaces which include only constraint 
penalty terms. In fact, since sometimes the optimum design with discrete values is 
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in the neighborhood of the c( tinuous optimum, it may be desirable not to activate 
the penalty for the non-disc~ .,.; design variables until reasonable convergence to the 
continuous solution is achieved. This is especially true for problems in which the 
intervals between discrete values are very small. 

A criterion for the activation of the non-discrete penalty multiplier s is the same 
as the convergence criterion of Eq. (5.7.6), that is 

I ¢ 7 f I ~ Ec . (5.7.27) 

A typical value for fc is 0.01. The magnitude of the non-discrete penalty multiplier, 
s, at the first discrete iteration is calculated such that the penalty associated with 
the discrete-valued design variables that are not at their allowed values is of the order 
of 10 percent of the constraint penalty. 

s ::::: O.lrp(g) . (5.7.28) 

As the iteration for discrete optimization proceeds, the non-discrete penalty multiplier 
for the new iteration is increased by a factor of the order of 10. It is also important to 
decide how to control the penalty multiplier for the constraints, r, during the discrete 
optimization process. If r is decreased for each discrete optimization iteration as in 
the continuous optimization process, the design can be stalled due to high penalties 
for constraint violation. Thus, it is suggested that the penalty multiplier r be frozen at 
the end of the continuous optimization process. However, the nearest discrete solution 
at this response surface may not be a feasible design, in which case the design must 
move away from the continuous optimum by moving back to the previous response 
surface. This can be achieved by increasing the penalty multiplier, r, by a factor of 
10. 

The solution process for the discrete optimization is terminated if the design 
variables are sufficiently close to the prescribed discrete values. The convergence 
criterion for discrete optimization is 

(5.7.29) 

where a typical value of the convergence tolerance Ed is 0.001. 

Example 5.7.2 

Cross-sectional areas of members of a two-bar truss shown in the Figure 5.7.5 are 
to be selected from a discrete set of values, Ai E {1.0, 1.5, 2.0}, i = 1,2. Determine 
the minimum weight structure using the modified penalty function approach such 
that the horizontal displacement u at the point of application of the force does not 
exceed 2/3(FI/ E). Use a tolerance Ec = 0.1 for the activation of the penalty terms 
for non-discrete valued design variables, and a convergence tolerance for the design 
variables fd = 0.001. 
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Figure 5.7.5 Two-bar truss. 

Upon normalization, the design problem is posed as 
W 

minimize f = - = Xl + X2 
pi 
uE 

subject to g = Ft = 1.5 - l/XI - 1/x2 ~ 0, 

Xi = Ai E {1.0, 1.5, 2.0}, i = 1, ... ,2 . 

Using an initial design of Xl = X2 = 5 and transition parameter go = 0.1, we have 
g = 1.1 > go, therefore, from Eq. (5.7.14) the penalty terms for the constraints are 
in the form of peg) = 1/ g. The augmented function for the extended interior penalty 
function approach is 

r 
¢=XI+X2+1.5_1/XI_1/X2· 

Setting the gradient to zero, we can show that the minimum of the augmented func
tion as a function of the penalty multiplier r is 

24 + ";=57=6---::3'-::-6 =(1"7"6 ---:-4r'") 
Xl = x2 = 18 . 

The initial value of the penalty multiplier r is chosen so that the penalty introduced 
for the constraint is equal to the objective function value, 

1 
r-( -) = f(xo), 

g Xo 
r = 11 . 

The minima of the augmented function as functions of the penalty multiplier rare 
shown in Table 5.7.3 . After four iterations the constraint penalty (¢ - f) is within 
the desired range of the objective function to activate the penalty terms for the 
non-discrete values of the design variables. 

From Eq. (5.7.25) the augmented function for the modified penalty function 
approach has the form 

A.. r s{l +sin[41r(xl -1.125)]} 
'f' =XI + X2 + + ~----..!..-~'----~ 

1.5 - l/XI - 1/x2 2 
+(s/2) {I + sin[41r (X2 - 1.125)]} . 
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Table 5.7.3 Minimization of ¢ without the discrete penalty 

r Xl X2 f g ¢ 
5.000 5.000 10.00 1.100 

11 3.544 3.544 7.089 0.9357 18.844 
1.1 2.033 2.033 4.065 0.5160 6.197 

0.11 1.554 1.554 3.109 0.2134 3.624 
0.011 1.403 1.403 2.807 0.0747 2.954 

The minimum of the augmented function can again be obtained by setting the gra
dient to zero 

r 
1 - 2 + 27fS cos[47f (Xl - 1.125)J = 0, 

(1.5 - 2/XI) Xl 2 

which can be solved numerically. The initial value of the penalty multiplier s is 
calculated from Eq. (5.7.28) 

1 
s = 0.1 (0.011) 0.0747 = 0.0147 . 

The minima of the augmented function (which includes the penalty for the non
discrete valued variables) are shown in Table 5.7.4 as a function of s. 

Table 5.7.4 Minimization of ¢ with the discrete penalty 

r s Xl X2 f ¢ 
0.011 0.0147 1.406 1.406 2.813 2.963 

0.1472 1.432 1.432 2.864 3.021 
1.472 1.493 1.493 2.986 3.060 
14.72 1.499 1.499 2.999 3.065 
147.2 1.500 1.500 3.000 3.066 

After four discrete iterations we obtain a minimum at Xl = X2 = 3/2. There are 
two more minima, x = (2,1) and x = (1,2), with the same value of the objective 
function of f = 3.0 .••• 

5.8 Multiplier Methods 

Multiplier methods combine the use of Lagrange multipliers with penalty functions. 
\Vhen only Lagrange multipliers are employed the optimum is a stationary point 
rather than a minimum of the Lagrangian function. When only penalty functions 
are employed we have a minimum but also ill-conditioning. By using both we may 
hope to get an unconstrained problem where the function to be minimized does not 
suffer from ill-conditioning. A good survey of multiplier methods was conducted by 
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Bertsekas [17]. We study first the use of multiplier methods for equality constrained 
problems. 

minimize f (x) 
such that hj(x) = 0, j = 1, ... , ne . 

(5.8.1) 

We define the augmented Lagrangian function 

ne ne 

C(x, A, r) = f(x) - L Ajhj(x) + r L h;(x) . (5.8.2) 
j=1 j=1 

If all the Lagrange multipliers are set to zero, we get the usual exterior penalty 
function. On the other hand, if we use the correct values of the Lagrange multipliers, 
A;, it can be shown that we get the correct minimum of problem (5.8.1) for any 
positive value of r. Then there is no need to use the large value of r required for the 
exterior penalty function. Of course, we do not know what are the correct values of 
the Lagrange multipliers. 

Multiplier methods are based on estimating the Lagrange multipliers. When the 
estimates are good, it is possible to approach the optimum without using large r 
values. The value of r needs to be only large enough so that C has a minimum rather 
than a stationary point at the optimum. To obtain an estimate for the Lagrange 
multipliers we compare the stationarity conditions for C, 

(5.8.3) 

with the exact conditions for the Lagrange multipliers 

of _ t A/hj = 0 . 
OXi . O.ri 

)=1 

(5.8.4) 

Comparing Eqs. (5.8.3) and (5.8.4) we expect that 

(5.8.5) 

as the minimum is approached. Based on this relation, Hestenes [18] suggested using 
Eq. (5.8.5) as an estimate for A;. That is 

( 5.8.6) 

where k is an iteration number. 
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Example 5.8.1 

We repeat Example 5.7.1 using Hestenes' multiplier method. 

f(x) = xi + 10x~ , 
hex) = Xl + X2 - 4 = 0 . 

The augmented Lagrangian is 

To find the stationary points of the augmented Lagrangian we differentiate with 
respect to Xl and X2 to get 

which yield 

2Xl - >. + 2r(x1 + X2 - 4) = 0, 
20X2 - >. + 2r(xl + X2 - 4) = 0, 

5>' + 40r 
Xl = 10x2 = . 

10 + llT 

We want to compare the results with those of Example 5.7.1, so we start with the 
same initial r value ro = 1, the initial estimate of >. = 0 and get 

Xl = (1.905, 0.1905f, h = -1.905 . 

So, using Eq. (5.8.6) we estimate >.(1) as 

>.(1) = -2 x 1 x (-1.905) = 3.81 . 

We next repeat the optimization with r(l) = 10, >.(1) = 3.81 and get 

X2 = (3.492,0.3492f, h = -0.1587 . 

For the same value of r, we obtained in Example 5.7.1 X2 = (3.333, 0.3333f, so that 
we are now closer to the exact solution of x = (3.636,0, 3636)T. Now we estimate a 
new>. from Eq. (5.8.6) 

>.(2) = 3.81 - 2 x 10 x (-0.1587) = 6.984 . 

For the next iteration we may, for example, fix the value of r at 10 and change only 
>.. For>. = 6.984 we obtain 

X3 = (3.624,0.3624), h = -0.0136, 

which shows that good convergence can be obtained without increasing r.e e e 
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There are several ways to extend the multiplier method to deal with inequality 
constraints. The formulation below is based on Fletcher's work [19J. The constrained 
problem that we examine is 

minimize f (x) 
such that gj(x) ~ 0, 

The augmented Lagrangian function is 

j = 1, ... ,ng . 

where < a >= max(a, 0). The condition of stationarity of £ is 

The exact stationarity condition is 

of _ ~ AJJgj = 0 
ax· ~ J ax· ' 

• j=l • 

(5.8.7) 

(5.8.8) 

(5.8.9) 

(5.8.10) 

where it is also required that A;gj = o. Comparing Eqs (5.8.9) and (5.8.10) we expect 
an estimate for A; of the form 

(5.8.11) 

5.9 Projected Lagrangian Methods (Sequential Quadratic Programming) 

The addition of penalty terms to the Lagrangian function by multiplier methods 
converts the optimum from a stationary point of the Lagrangian function to a min
imum point of the augmented Lagrangian. Projected Lagrangian methods achieve 
the same result by a different method. They are based on a theorem that states that 
the optimum is a minimum of the Lagrangian function in the subspace of vectors 
orthogonal to the gradients of the active constraints (the tangent subspace). Pro
jected Lagrangian methods employ a quadratic approximation to the Lagrangian in 
this subspace. The direction seeking algorithm is more complex than for the methods 
considered so far. It requires the solution of a quadratic programming problem, that 
is an optimization problem with a quadratic objective function and linear constraints. 
Projected Lagrangian methods are part of a class of methods known as sequential 
quadratic programming (SQP)methods. The extra work associated with the solution 
of the quadratic programming direction seeking problem is often rewarded by faster 
convergence. 
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The present discussion is a simplified version of Powell's projected Lagrangian 
method [20]. In particular we consider only the case of inequality constraints 

minimize f (x) 
such that gj(x) ~ 0, j = 1, ... , ng . 

(5.9.1 ) 

Assume that at the ith iteration the design is at Xi, and we seek a move direction s. 
The direction s is the solution of the following quadratic programming problem 

minimize 
1 

¢(s) = f(Xi) + ST g(Xi) + 2sT A(Xi' Ai)S 
(5.9.2) 

such that gj(Xi) + sT\7gj(Xi) ~ 0, j = 1, ... , ng , 

where g is the gradient of f, and A is a positive definite approximation to the Hessian 
of the Lagrangian function discussed below. This quadratic programming problem 
can be solved by a variety of methods which take advantage of its special nature. The 
solution of the quadratic programming problem yields sand Ai+l' vVe then have 

Xi+l = Xi + as, 

where a is found by minimizing the function 

ng 

1j;(a) = f(x) + Lf-ljlmin(O,gj(x))I, 
j=1 

(5.9.3) 

(5.9.4) 

and the f-lj are equal to the absolute values of the Lagrange multipliers for the first 
iteration, i.e. 

. = [I,(i). ~( (i-I) + Idi-lll)] f-lJ rnax A J '2 f-lJ A J ' (5.9.5) 

with the superscript i denoting iteration number. The matrix A is initialized to some 
positive definite matrix (e.g the identity matrix) and then updated using a I3FGS type 
equation (see Chapter 4). 

A~X~XT A ~l~lT 
Anew = A - ~xTA~x + ~XT ~X ' (5.9.6) 

where 
~X = Xi+l - Xi , (5.9.7) 

where L is the Lagrangian function and \7 x denotes the gradient of the Lagrangian 
function with respect to x. To guarantee the positive definiteness of A, ~l is modified 
if ~XT ~l :::; 0.2~xT A~x and replaced by 

~l' = 6~1 + (1 - 6)A~x, ( 5.9.8) 

where 
0.8~XTA~x 

e = ~XT A~x _ ~xT~1 (5.9.9) 
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Example 5.9.1 

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum 
weight design subject to stress and displacement constraints was formulated as 

minimize 

subject to 

f = 3X1 + V3X2 

18 6V3 
gl = 3 - - - - ;:: 0 , 

Xl X2 

g2 = XI - 5.73 ;:: 0, 
g3 = X2 - 7.17 ;:: 0 . 

Assume that we start the search at the intersection of gl = 0 and g3 = 0 where 
Xl = 11.61, X2 = 7.17 and f = 47.25. The gradient of the objective function and two 
active constraints are 

{ 0.1335} 
V gl = 0.2021 ' 

We start with A set to the unit matrix so that 

4>(s) = 47.25 + 3s 1 + V382 + 0.5si + 0.58~, 

and the linearized constraints are 

gl(S) = 0.133581 + 0.202182;:: 0, 
g2(S) = 5.88 + 81 ;:: 0, 
g3(S) = 82 ;:: 0 . 

N _ [0.1335 0] 
- 0.2021 1 . 

vVe solve this quadratic programming problem directly with the use of the Kuhn
Tucker conditions 

3 + 81 - 0.1335).1 - ).2 = ° , 
V3 + 82 - 0.2021).1 - ).3 = 0 . 

A consideration of all possibilities for active constraints shows that the optimum is 
obtained when only gl is active, so that ).2 = ).3 = 0 and ).1 = 12.8, 81 = -1.29, 
82 = 0.855. The next design is 

{ 11.61} {-1.29} 
Xl = 7.17 + 0: 0.855 ' 

where 0: is found by minimizing 1jJ(0:) of Eq. (5.9.4). For the first iteration Jlj = I).jl 
so 

1jJ = 3(I1.61-1.290:)+V3(7.17+0.8550:)+12.8 3 - - . I 18 6V3 I 
11.61 - 1.290: 7.17 + 0.8550: 
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By changing a systematically we find that 1j; is a minimum near a = 2.2, so that 

Xl = (8.77, 9.05f, f(xd = 41.98, gl(xd = -0.201 . 

To update A we need ~x and ~l. We have 

so that 
VxL = (3 - 230.4jxI, V3 - 133.0jx~f, 

and 

{ -2.84} ~x = Xl - Xo = 1.88 ' 

With A being the identity matrix we have ~XT A~x = 11.6, ~XT ~l = 5.53. Because 
~xT ~l > 0.2~XT A~x we can use Eq. (5.9.5) to update A 

~X~XT ~l~lT [0.453 0.352] 
Anew = I - ~XT ~x + ~XT ~x = 0.352 0.775 . 

For the second iteration 

¢(s) = 41.98 + 3s1 + V3S2 + 0.5(0.453sI + 0.775s~ + 0.704s 1S2) , 
gl(S) = -0.201 + 0.234s 1 + 0.127s2 ~ 0, 
g2(S) = 3.04 + Sl ~ 0, 
g3(S) = 1.88+ S2 ~ O. 

We can again solve the quadratic programming directly with the use of the Kuhn
Tucker conditions 

3 + 0.453s1 + 0.352s2 - 0.234A1 - A2 = 0, 

V3 + 0.352s1 + 0.775s2 - 0.127,\1 - A3 = 0 . 

The solution is 

Al = 14.31, A2 = A3 = 0, Sl = 1.059, 82 = -0.376 . 

The one dimensional search seeks to minimize 

where 

fJ1 = max(A1' ~(IAll + fJ~ld)) = 14.31 . 

The one-dimensional search yields approximately a = 0.5, so that 

X2 = (9.30, 8.86f, f(X2) = 43.25, gl(X2) = -0.108, 

so that we have made good progress towards the optimum x· = (9.46, 9.46)T . ••• 

204 



Section 5.11: References 

5.10 Exercises 

1. Check the nature of the stationary points of the constrained problem 

2. For the problem 

minimize f(x) = xi + 4x~ + 9x~ 
such that Xl + 2X2 + 3X3 ~ 30 , 

X2X3 ~ 2, 
X3 ~ 4, 

XIX2 ~ 0 . 

minimize f(x) = 3xi - 2XI - 5x~ + 30X2 
such that 2XI + 3X2 ~ 8 , 

3XI + 2X2 S; 15, 
X2 S; 5 . 

Check for a minimum at the following points: (a) (5/3, 5.00) (b) (1/3, 5.00) (c) 
(3.97,1.55). 

3. Calculate the derivative of the solution of Example 5.1.2 with respect to a change in 
the allowable displacement. First use the Lagrange multiplier to obtain the derivative 
of the objective function, and then calculate the derivatives of the design variables 
and Lagrange multipliers and verify the derivative of the objective function. Finally, 
estimate from the derivatives of the solution how much we can change the allowable 
displacement without changing the set of active constraints. 

4. Solve for the minimum of problem 1 using the gradient projection method from 
the point (17, 1/2, 4). 

5. Complete two additional moves in Example 5.5.2. 

6. Find a feasible usable direction for problem 1 at the point (17, 1/2,4). 

7. Use an exterior penalty function to solve Example 5.1.2. 

8. Use an interior penalty function to solve Example 5.1.2. 

9. Consider the design of a box of maximum volume such that the surface area is 
equal to S and there is one face with an area of S /4. Use the method of multipliers 
to solve this problem, employing three design variables. 

10. Complete two more iterations in Example 5.9.1. 
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Aspects of The Optimization Process in Practice 6 

Occasionally, a structural analyst will write a design program that includes the 
calculation of structural response as well as an implementation of a constrained opti
mization algorithm, such as those discussed in Chapter 5. More often, however, the 
analyst will have a structural analysis package, such as a finite-element program, as 
well as an optimization software package available to him. The task of the analyst 
is to combine the two so as to bring them to bear on the structural design problem 
that he wishes to solve. 

Two major difficulties are associated with the process of interfacing a structural 
analysis package with an optimization program. The first is a programming difficulty. 
Optimization packages typically expect subroutines that evaluate the objective func
tion and constraints. When the structural analysis program is large, or if the analyst 
does not have access to the source code of the program (a common situation), it 
is very difficult to transform the analysis package into a subroutine called by the 
optimization program. 

The second serious problem is the high computational cost required for many 
applications. For many structural optimization problems the evaluation of objective 
function and constraints requires the execution of costly finite element analyses for 
displacements, stresses or other structural response quantities. The optimization pro
cess may require evaluating objective function and constraints hundreds or thousands 
of times. The cost of repeating the finite element analysis so many times is usually 
prohibitive. 

Fortunately, there is an approach to interfacing an optimization program with 
an analysis program that solves both problems. This increasingly popular approach, 
called sequential approximate optimization, was suggested by Schmit and Farshi [1]. 
The computational cost problem is addressed by the use of approximate analyses 
during portions of the optimization process. The structural analysis package is first 
used to analyze an initial design, and then to generate information that allows the 
construction of constraint approximations. For example, when the number of design 
variables is small it is practical to analyze the structure at a number of points in 
the design space, and use the response at those points to construct a polynomial 
approximation to the response at other points. The optimization package is then 
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applied to the approximate problem represented by the polynomial approximation. 
Since the polynomial approximation is typically easy to program, it is straight-forward 
to interface it to the optimization package. 

The simple approximations generated by repeated use of the analysis package 
are often referred to as low-cost explicit approximations, in contrast to the implicit 
dependence of the response on the structural design variables via a finite element 
solution. The polynomial approximation obtained by analyzing the structure at a 
number of design points is a global approximation. Obtaining such a global approxi
mation can be quite expensive for a large number of design variables. For example, if 
we want to fit the structural response by a quadratic polynomial, we need to analyze 
the structure for at least n(n + 1)/2 design points (typically many more to ensure a 
robust approximation), where n is the number of design variables. This will result 
in thousands of analyses when the number of design variables is larger than, say 40. 
Therefore, it is more common to use local approximations based on ch'rivatives of the 
objective function and constraints with respect to the design variables. The simplest 
approach is to replace the objective function and constraints with linear approxima
tions based on these derivatives. However, these approximations are useful only in a 
neighborhood of the design space. Therefore, it is necessary to impose limits, called 
move limits, on the magnitudes of changes in the design that are permitted while the 
approximate analysis is used. 

Following an optimization based on approximate analysis and move limits, an ex
act analysis is performed at the design point obtained by the approximate optimiza
tion, and new derivatives are calculated so that a new approximation for objective 
function and constraints can be constructed. The process is repeated until conver
gence is achieved, typically measured by the magnitude of changes in the objective 
function or the degree of satisfaction of the optimality conditions (e.g., the Kuhn
Tucker conditions). Because each approximate optimization is only one cycle in the 
overall optimization process, it is usually possible to employ lax convergence criteria 
for these approximate problems, except for the last one. To distinguish them from 
the iterations inside approximate optimizations, each such optimization is referred to 
as a cycle rather than as an iteration. 

When linear approximations are used, and the move limits are posed as linear in
equalities, this process is called sequential linear progmmming (SLP), and was known 
for many years before Schmit and Farshi proposed the use of approximations for 
structural optimization. However, there is no need to limit the process to linear ap
proximations, as long as the approximations are substantially cheaper to calculate 
than the exact analyses. For example, Schmit and Farshi demonstrated the use of in
expensive nonlinear approximations by using the reciprocal approximation, discussed 
in Section 6.1. 

The use of sequential approximate optimization in the design process is the key 
step in interfacing a structural analysis program with an optimization program, and 
so it is the major topic discussed in this chapter. However, there are other aspects of 
the practical use of the optimization process in design that deserve consideration. For 
shape optimization problems, it is important to be able to modify the discretization of 
the structure (e.g., the finite-element model) as the design is changed. This requires 
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sophisticated mesh generators, and is discussed in Section 6.5. Other topics discussed 
in this chapter include optimization packages, and test problems that are often used 
to check on the performance of these packages. One important topic which is not 
discussed in this chapter is the calculation of the derivatives of the response of the 
structure needed for constructing the approximation. This topic requires a more 
detailed study and is the subject of Chapters 7 and 8. 

The use of sequential approximate optimization is by no means universally ac
cepted as the only way to deal with the optimization of complex structures. Many 
analysts prefer to use their judgement so as to produce a design model of the problem 
which employs a much coarser discretization than they would accept for the final 
analysis of the structure. They hope that the design trends revealed by optimizing 
the coarse model will hold for the more refined model. While this approach is quite 
legitimate, it will not be discussed here, because it requires a great deal of experi
ence on the part of the analyst, and is highly problem dependent. As such it is very 
difficult to codify in a textbook. 

6.1 Generic Approximations 

The most commonly used approximations to objective functions and constraints 
are based on the value of the function and its derivatives at one or several points. 
Most of these approximations are applicable to any function, regardless of whether it 
describes structural response or not. For this reason we refer to such approximations 
as generic. Approximations that are specific to the form of analysis that is used to 
generate the function are dealt with in the next section. Generic approximations can 
be divided into local approximations, that are sufficiently accurate only in a limited 
region of the design space, and global approximations that attempt to approximate 
the function in the entire design space. Midrange approximations offer a compromise 
between the two. 

6.1.1 Local Approximations 

The simplest local approximation is the linear approximation based on the Taylor 
senes. Given a function g(x), the linear approximation gL(X) is 

(6.1.1) 

For many applications the linear approximation is inaccurate even for design 
points x that are close to Xo. Accuracy can be increased by retaining additional 
terms in the Taylor series expansion. This, however, requires the costly calculation of 
higher-order derivatives. A more attractive alternative is to find intervening variables 
that would make the approximated function behave more linearly. That is, define 

i = 1, ... ,m, ( 6.1.2) 
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where Yi are m functions of the design variables called intervening variables. The 
linear approximation, gI, in terms of the intervening variables is 

(6.1.3) 

where YOi = Yi(XO), and the derivatives of g with respect to the Vi'S can be calculated 
from the derivatives with respect to the Xi'S. 

Example 6.1.1 

p 

Figure 6.1.1 Beam example. 

The beam shown in Fig. (6.1.1) has a rectangular cross section of width b; and 
height hi, i = 1,2. The tip displacement is constrained not to exceed Wall; with 
elementary beam theory this constraint can be written as 

g = Wall _ (23) ~ _ (~) ~ . 
6 EJr 6 Eh 

If the design variables are the width and height of each section, we can express g in 
terms of these design variables as 

46pl3 lOpl3 
g = Wall - Eb1hf - Eb2h~ 

This expression is a highly non-linear function of the design variables, but it can be 
linearized by using the intervening variables 

1 12 
Yl = Ii = b1hf ' and 

1 12 
Y2 = 12 = b2h~ . 

The constraint function can then be written as a linear function 

g = W II _ (23) pl3 Yl _ (~) pt3 Y2 . 
a 6 E 6 E 

••• 
212 



Section 6.1: Generic Approximations 

The cases where intervening variables can exactly linearize the constraint are 
rather rare. Example (6.1.1) is typical of statically determinate structures where 
such linearization is often possible. However, as shown by Mills-Curran et al. [2], 
even in the case of statically indeterminate beam and frame structures, the reciprocals 
of moments of inertia are good intervening variables for displacement constraints. 

In many applications the intervening variables are functions of a single design 
variable, that is 

Yi = Yi(Xi) i = 1, ... ,n . (6.1.4) 

In this case it is often convenient to write gr, Eq. (6.1.3), in terms of the original 
variables 

~ ( ) (Og dYi ) gr(x) = g(xo) + L...J Yi(Xi) - Yi(XOi) ~/ d- . 
i=l uX, X, Xo 

(6.1.5) 

Note that while gr is a linear function of y it is, in general, a nonlinear function of x. 

One of the more popular intervening variables is the reciprocal of Xi 

1 
Yi=- . 

Xi 
(6.1.6) 

This popularity reflects the fact that many of the early structural optimization studies 
were performed on structures consisting of truss or plane-stress elements. The design 
variables in these studies were usually the cross-sectional areas of the truss elements 
and the thicknesses of the plane-stress elements. For statically determinate structures 
stress and displacements constraints are linear functions of the reciprocals of these 
design variables. For statically indeterminate structures, using the reciprocals of the 
design variables still proved to be a useful device in making the constraints more 
linear (see, for example, Storaasli and Sobieszczanski [3], and Noor and Lowder [4]). 
For the reciprocal approximation Eq. (6.1.5) becomes 

~ XOi (Og) gR(X) = g(xo) + L...J(Xi - XOi)-. ~ 
i=l X, uX, Xo 

(6.1.7) 

One of the attractive features of the reciprocal approximation, even for statically in
determinate structures, is that it preserves the property of scaling. That is, when the 
stiffness matrix is a homogeneous function of order h in the components of x, the dis
placements are homogeneous functions of order -h in the components ofx. For truss 
and membrane elements, h = 1 so that the displacements are homogeneous functions 
of the reciprocals of the design variables. If all the design variables are scaled by a 
factor, the displacement vector is scaled by the reciprocal of that factor. Therefore 
the reciprocal approximation is exact for scaling the design. Fuchs [5] has investi
gated the importance of the homogeneity property, and Fuchs and Haj Ali [6] have 
proposed a family of approximations that generalizes the reciprocal approximation 
to any order of homogeneity. 

Another approximation, called the conservative approximation [7], is a hybrid 
form of the linear and reciprocal approximations which is more conservative than 
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either. It is particularly suitable for interior and extended interior penalty function 
methods (see Section 5.7) which do not tolerate well constraint violations. To obtain 
the conservative approximation we start by subtracting the reciprocal approximation 
from the linear approximation 

() () ~ (Xi - XOi)2 (Og) gL X - gR X = ~ ~. 
i=1 Xi VXi Xo 

(6.1.8) 

The sign of each term in the sum is determined by the sign of the ratio (Og/OXi)/Xi 
which is also the sign of the product Xi(Og/OXi). Contributions from design vari
ables for which this product is negative make the reciprocal approximation larger 
(more positive) than the linear approximation, and vice versa. Since the constraint 
is expressed as g(x) ;::: 0, a more positive approximation is less conservative. The 
conservative approximation, ge, is, therefore, created by selecting for each design 
variable the smaller (less positive) contribution 

where 

gc(x) = g(xo) + t Gi(Xi - XOi) (:9) , 
i=1 X, Xo 

G;= { I 
XO;/Xi 

if XOi(Og/OXi) :::; 0, 
otherwise. 

(6.1.9) 

(6.1.10) 

Note that G; = 1 corresponds to a linear approximation, and Gi = xo;/Xj corresponds 
to a reciprocal approximation in Xj. 

The conservative approximation is not the only hybrid linear-reciprocal approx
imation possible. Sometimes physical considerations may dictate the use of linear 
approximation for some variables and the reciprocal for others, (see Haftka and Shore 
[8]' and Prasad [9]). The conservative approximation, however, has the advantage of 
being concave (Exercise 1). If all the constraints are approximated by the conserva
tive approximation, the feasible domain of the approximate optimization problem is 
convex (see Section 5.1.2). If we also approximate the objective function by a convex 
function, the approximate optimization problem is convex. Convex problems are 
guaranteed to have only a single optimum, and they are amenable to treatment by 
dual methods (see Section 9.2.2). In fact, a convex approximation fc(x) to the objec
tive function, f(x), is obtained by reversing the process for obtaining the conservative 
concave approximation. That is (Exercise 1), 

where 

n (Of) fc(x) = f(xo) + L Fi(xj - XOi) f). , 
;=1 X, Xo 

F; = {~O;/Xi if xOi(of /OXi) :::; 0, 
otherwise. 

(6.1.11) 

(6.1.12) 

This process of using the conservative approximation for the constraints and the 
convex approximation for the objective function has been introduced by Braibant and 
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Fleury [10], and is known as convex linearization. In many papers and textbooks, the 
constraints are posed as g(x) ~ 0 rather than g(x) ~ O. In this case, the conservative 
approximation is convex rather than concave (that is we use the form of Eqs. (6.1.11) 
and (6.1.12) also for the constraints). There are other conservative approximations 
(for example, see Prasad [11] or Woo [12]), but it is important to note that the one 
presented here, as well as the others, are not guaranteed to be conservative in an 
absolute sense (that is, we do not know that the approximation is more conservative 
than the exact constraint, gc(x) ~ g(x) ). The approximation presented here is only 
more conservative than either the linear and reciprocal approximations. 

Higher order approximations are also used occasionally. For example, the 
quadratic approximation, gQ is obtained by including the quadratic terms in the 
Taylor series expansion 

n ( ag ) 1 n n ( a2g ) gQ(x) = g(xo) + L:)Xi - XOi) - + - L L(Xi - XOi)(Xj - XOj) -- . 
;=1 aXi Xo 2 ;=1 j=1 ax/hj Xo 

(6.1.13) 
The reciprocal quadratic approximation gQR is obtained by using the quadratic ap
proximation in terms of the reciprocal design variables (Exercise 2), 

~ (XOi) (XOi) (ag ) gQR(XO) = g(xo) + L.J -. 2 - -. (Xi - XOi) -a' 
i=1 X, X, x, Xo 

I nn ( ) ( ) (02 ) XO' XO' 9 + - L L -.' ~ (X; - XOi)(Xj - XOj) -.-. 
2 ;=1 i=1 X, X, aX, ax] Xo 

(6.1.14) 

Example 6.1.2 

Comparison of various approximations is demonstrated through the use of a simple 

f 
I 

1 

Figure 6.1.2 Three bar truss. 

three bar truss shown in Figure 6.1.2. The horizontal force p can act either to the right 
(as shown) or to the left. The truss is designed subject to stress and displacement 
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constraints with the design variables being the cross-sectional areas AA, A B, and Ac. 
Because of the symmetry of the truss and the arbitrary direction of the horizontal 
load we must have AA = Ac. We examine the approximations to the constraint on 
the stress in member C, which requires that stress to be less than 110 both in tension 
and compression. 

The stresses in the three members can be expressed in terms of the displacement 
components at the tip of the truss as 

I1A = E(v + V3u)/41, I1B = Ev/l, and I1c = E(v - V3u)/41 . 

From the horizontal equation of equilibrium 

3EAA 
or -----;u-U = P . 

Similarly, from the vertical equation of equilibrium 

or Ev (A AA) - B+-
I 4 

= 8p, 

so that 
v = 8pl/ E(AB + O.25AA ) , 

and 

( V3 2) I1c =p --- + . 
3AA AB + O.25AA 

Assuming that member C is in tension, we may write the constraint function as 

I1c P (J3 2) 
g = 1 - 110 = 1 - 110 - 3AA + AB + O.25A.4 

We now define normalized design variables 

so that 
J3 2 

g=1+------
3Xl X2 + 0.25xl 

We approximate g about the point X6 = (1,1). The first derivatives are 

ag = (_ J3 + 0.5 ) = -0.2574 
aXl 3xi (X2 + O.25xd2 Xo 

ag = 2 I = 1.28 . 
aX2 (X2 + O.25xd2 Xo 
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and the second derivatives are 

829 _ (2.;3 _ 0.25 ) _ 1 0267 
8xr - 3x~ (X2 + 0.25xI)3 Xo -. , 

829 = 1 I = -0.512 , 
8XIX2 (X2 + 0. 25xI)3 Xo 

829 4 I - = -2.048. 
8x~ - (X2 + 0.25xI)3 Xo 

Using these derivatives and 9(Xo) = -0.0227 we can construct the following approx
imations 

9L = -0.0227 - 0.2574(XI - 1) + 1.28(X2 - 1) , 

9R = -0.0227 - 0.2574 (1 - :J + 1.28 (1 - :J = 1 + .2574/XI - 1.28/X2 , 

9c = -0.0227 - 0.2574(XI - 1) + 1.28 (1 - :J ' 
9Q = 9L + 0.5134(XI - 1)2 - 0.512(XI - 1)(x2 - 1) - 1.024(X2 - 1)2 , 

9QR = -0.0227 - 0.2574 (2 - :J (1- :J + 1.28 (2 - :J (1 - :J 
+ 0.5134 (1 - :J 2 - 0.512 (1 - :J (1 - :J -1.024 (1 - :J 2 

All of these approximations have the correct value and correct derivatives at Xo = 
(1, If. The two quadratic approximations also have the correct second derivatives 
at that point. The reciprocal approximations tend to one as the design variables 
tend to infinity. This corresponds to the stress in member C tending to zero a.'l the 
cross-sectional areas tend to infinity. This correct physical behavior is not shared by 
the other approximations. Table 6.1.1 compares the predictions of the five approxi
mations to the exact values when Xl and X2 vary between 0.75 and 1.25. 

Table 6.1.1 
Xl X2 9 9L 9R 9c 9Q 9QR 
0.75 0.75 -0.3635 -0.2783 -0.3635 -0.3850 -0.3422 -0.3635 
1.00 0.75 -0.4227 -0.3426 -0.4493 -0.4493 -0.4066 -0.4209 
1.25 0.75 -0.4205 -0.4070 -0.5008 -0.5137 -0.4070 -0.4280 
0.75 1.00 0.0856 0.0417 0.0631 0.0417 0.0738 0.0915 
1.25 1.00 -0.0619 -0.0870 -0.0741 -0.0871 -0.0549 -0.0639 
0.75 1.25 0.3786 0.3617 0.3191 0.2977 0.3617 0.3919 
1.00 1.25 0.2440 0.2974 0.2334 0.2334 0.2334 0.2435 
1.25 1.25 0.1819 0.2330 0.1819 0.1690 0.1691 0.1819 

The Table shows that the approximations based on reciprocal variables are more 
accurate than the approximations based on the actual variables, and in particular, 
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they are exact when the two variables are scaled by the same factor (that is x is 
replaced by o:x where 0: is a scalar). The quadratic approximations are substan
tially more accurate than the three first-order approximations. The conservative 
approximation is not guaranteed to be more conservative than the second-order ap
proximations, but usually, as in this example, it is. We see, however, that the price 
of this extra conservativeness is that it is the least accurate approximation. 

0.4 
0 gL 

0.3 D gQR 

0.2 gQ 
gc 

0.1 gR 0:: 
0 0.0 0:: 
0:: 
t.1l -0.1 

-0.2 

-0.3 

-0.4 +---+--4----...-+---+--4----...-01---+-_ 

0.00.1 0.20.3 0.4 0.5 0.60.7 0.8 0.9 1.0 

Figure 6.1.3 Comparison of constraint approximation errors. 

The constraint approximations can also be used to check for errors in the deriva
tives used to construct them. This is done by calculating the exact constraint along 
a line in design space and plotting the error in the approximation along that line. A 
first order approximation must have a zero slope for the error curve at the nominal 
design, while a second-order approximation must also have zero curvature there. For 
example, let us compare the various approximations along the line 

Xl = 1.25 - 0.5t, X2 = 0.5 + LOt, O:::;t:::;l, 

where t = 0.5 represents the nominal design. Figure 6.1.3 shows the error as a 
function of t. It is seen that the first-order approximations indeed have zero slope 
at t = 0.5, while the second-order approximations also have zero curvature there. 
For this example, the reciprocal approximation is quite conservative, so that the 
conservative approximation is almost identical to it.e e e 

The approximations covered so far are obtained by algebraically manipulating the 
constraint functions. In an effort to improve the quality of the approximations recent 
research efforts have concentrated on the extension of the concept of intermediate 
design variables to the concept of intermediate response quantities. The concept was 
introduced by Schmit and Miura [13J in 1976, but it was not applied until about ten 
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years later (e.g., [14]). The approach seeks intermediate response quantities that are 
well approximated linearly. If the response quantities appearing in the constraint 
can be calculated inexpensively from the intermediate response, than we can have a 
nonlinear inexpensive and accurate approximation. 

One of the most successful intermediate response approximation was proposed for 
stress constraints in structural design by Vanderplaats and coworkers (e.g., [15-17]). 
Vanderplaats argued that an approximation for member forces will be more accurate 
than the corresponding approximation for member stresses. This is expected because 
member forces change more slowly than member stresses when cross-sectional areas 
are changed. In particular, for a statically determinate truss, force in each of the 
members is constant, while member stresses are inversely proportional to member ar
eas. This motivates the use of the member forces as intermediate response quantities. 

Consider, for example, a typical stress constraint for a truss member of the form 

a· 
gi = 1- -' ~ O. 

aall 
(6.1.15) 

A common approximation for member stresses uses the reciprocal design variables, 
Xi = I/Ai , where Ai is the cross-sectional area of the ith member. Using a linear 
approximation for the member forces, and then dividing by the cross-sectional area 
to obtain an approximation to the stress, as suggested by Vanderplaats, we obtain a 
constraint of the form 

gLFi = Ai _ [Fi(Ao) + 'VT Fi(Ao)(A - Ao)] ~ 0 . 
aall 

(6.1.16) 

This is linear in the cross-sectional area design variables. Note that for a statically 
determinate truss, where the gradient of the member forces with respect to the cross
sectional areas is zero, the approximation of Eq. (6.l.16) is a constant. Equation 
(6.l.16) has the dimension of area, and it should be nondimensionalized by dividing 
it by a reference area. A comparison of the performance of this linear force approxi
mation with other approximations is given in Section 6.4. 

6.1.2 Global and Midrange Approximations 

The most common global approximation is the response surface approach. With 
this approach the function is sampled at a number of points, and then an analytical 
expression called the response surface (typically a polynomial) is fitted to the data. 
Construction of response surface often relies heavily on the theory of experiments [18] 
and is an iterative process that begins with the assumption of the analytical form 
of the response surface, for example, a quadratic polynomial. The approximation 
contains a number of unknown parameters (such as polynomial coefficients) that 
must be adjusted to match the function to be approximated. To do so, analyses are 
performed at a number of carefully selected design points, and a least square solution 
is typically used to extract the parameter values from the analysis results. Then the 
approximate model (the response surface) is used to predict the function at a number 
of selected test points, and statistical measures are used to assess the goodness-of-fit, 
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or the accuracy of the response surface. If the fit is not satisfactory, the process is 
restarted, and further experiments are made, or the postulated model is improved by 
removing and/or adding terms. 

Response surface techniques have not been used extensively in structural opti
mization (see Barthelemy and Haftka [19J for applications). This may be due to the 
fact that the technique is practical only for problems with a small number of design 
variables (less than 20 ). The number of analyses required to construct the response 
surface increases dramatically with the number of design variables. 

Example 6.1.3 

To demonstrate the use of response surfaces we fit a linear response surface to the 
stress constraint of Example 6.1.2 

The response surface is assumed to be a linear polynomial 

(a) 
\Ve assume that the design space is 

To find 0" b, and c we need to evaluate 9 at 3 or more points. For robustness we use 
more points, so we select the following 4 points: 

xi :;:; (0.5,0.5), x~ = (1.5,0.5), xI = (0.5,1.5), xI = (1.5,1.5) . 

Substituting each of these points into Eq. (a) we get 4 equations 

[! 
0.5 0.5] { } { -1.0453} 1.5 0.5 ~ = -0.9008 
0.5 1.5 0.9239 . 
1.5 1.5 c 0.3182 

To get a least-square solution of these 4 equations in 3 unknowns, we multiply both 
sides by the transpose of the coefficient matrix and solve the resulting 3 X 3 system. 
We obtain a = -1.5395, b = -0.2306, c = 1.5941, or 

g,. .. = -1.5395 - 0.2306.T1 + 1.5941x2· 

vVe compare this with the linear approximation about (1,1) that we found ill Example 
6.1.2 

gL = -0.0227 - O.2574(.Tl - 1) + 1.28(X2 - 1). 

As expected, gL is more accurate near (1,1), and g,., further away. For example at 
(0.75,0.75) we get 9 :;:; -0.3635, gL = -0.2783, gr8 = -0.5169. While at (0.5,0.5) we 
get 9 = -1.0453, gL = -0.5340, gr. = -0.8578 .••• 
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In response surface techniques the design space is sampled ahead of the opti
mization process. However, because the optimization process requires the calculation 
of constraints and their derivatives at more than one point, it makes sense to use 
the information from previous calculations to construct wide ranging approximations 
rather than approximations based on information at a single point. This leads to the 
concept of multipoint approximations that qualify for the label midrange approxima
tions. Haftka et al. [20] examined approximations based on two and three points. 
Their experience was that the approximation worked well when it represented inter
polation (for example, at points inside the triangle formed by three data points in 
a three-point approximation), but gave only marginal improvement in accuracy for 
extrapolation. 

A two-point approximation that shows more promise was proposed by Fadel et 
al. [21]. The approximation is a linear approximation in the variahles Yi = Xfi, where 
the exponentials are selected to match the data. \Ve start by constructing a linear 
approximation in Yi at the first point Xo. The approximation may he written in terms 
of the original variables as 

gtp = g(xo) + t [(:i.)Pi _ 1] (.TOi) (%:.) . 
i=l 0, P, I Xo 

(6.1.17) 

Then the exponentials Pi are found from the condition that the derivatives of 9 match 
those of gtp at a second point, Xl. It is easy to show that this leads to 

log { ( 8g ) / (~) } 8Xi Xl 8Xi Xo 

Pi = 1 + ---'----,---:----:----=--10g(XIi/XOi) (6.1.18) 

When Pi is larger in magnitude than 1 it is set to sign{pi) so as to avoid large 
exponents. Special provisions need to be made when the ratios in the numerator or 
denominator in Eq. (6.1.18) are negative or if Pi is zero. In the first case Pi is taken 
to be 1, while in the second case it can be shown by the use of Taylor series expansion 
that 

1· [(~ri-1] I (Xi) 
1m = og - . 

Pi-+O Pi XOi (6.1.19) 

Another midrange approximation is the scaling or local-glohal approximation [22]. 
It is intended to improve a global approximation, available from a response surface 
approach or from a simpler model of the prohlem, by injecting some local information 
into it. The simplest approach for doing that is to use a scale factor based on the 
value of the function at a point Xo. That is, the scale factor Be is given as 

sc(X) = g(x)/gc{x) , (6.1.20) 

where gc is the global approximation. Then the scaled global approximation, g.o, is 
given as 

(6.1.21) 
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An improvement on this scale factor can be obtained by using the derivative of 
g to construct a linear scale factor Sel given as 

(6.1.22) 

where the derivative of the scale factor is 

(6.1.23) 

The local-global approximation was applied by Chang et al. [23] for approximating 
displacements, stresses and frequencies of a supersonic wing structure obtained by a 
finite element model. The global approximation used was a plate model of the wing. 

6.2 Fast Reanalysis Techniques 

Fast reanalysis techniques take advantage of the computations performed at one 
design point to reduce the computational cost of the analysis at another design point. 
They are often approximate in nature, working well when the latter design point is 
close to the former. In this section we assume that the exact structural response is 
available at a design point xo, and that we want to calculate the effect of a small to 
moderate perturbation ~x on the response. We will denote the structural properties 
and response at Xo by a subscript zero, and the perturbations in properties and 
response by~. For example, Uo = u(xo) denotes the displacement field for the 
nominal design, and Uo + ~u = u(xo + ~x) denotes the displacement field for the 
perturbed design. 

6.2.1 Linear Static Response 

The discrete equations of equilibrium for linear static response (obtained, for example, 
from a finite element analysis) at a design point Xo are 

Kouo = fo , (6.2.1) 

where K o, Uo and fo are the stiffness matrix, the displacement vector and the load 
vector at xo, respectively. Consider now a change ~x in the design which results in 
a change ~K in the stiffness matrix, and ~f in the load vector. The equations of 
equilibrium at Xo + ~x are 

(Ko + ~K)(uo + ~u) = fo + ~f . (6.2.2) 

Subtracting Eq. (6.2.1) from Eq. (6.2.2) we obtain 

(Ko + ~K)~u = ~f - ~KUo , (6.2.3) 
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and we can obtain a first approximation ~Ul to ~u by neglecting the ~K~u term 

(6.2.4) 

This approximation will be quite good when ~x is small in magnitude. Furthermore, 
usually we have Ko factored or inverted in the solution for Uo. Therefore, it is 
relatively inexpensive to solve Eq. (6.2.4). When ~K is a linear function of x the 
approximation is in fact identical with the linear approximation of u based on the 
Taylor series. We can further improve the approximation by repeating the same 
process to obtain higher-order approximations to ~u. Subtracting Eq. (6.2.4) from 
Eq. (6.2.3) we get 

(6.2.5) 

and again we can neglect the ~K(~u - ~ud on the left hand side of the equation 
to get and approximation ~U2 to ~u - ~Ul by solving 

The process can be continued indefinitely to obtain 

00 

~u= L~Uj, 
;=1 

(6.2.6) 

(6.2.7) 

where the terms ~ Uj in the series are obtained through the iterative process of solving 

(6.2.8) 

Of course, the series is not guaranteed to converge, especially when ~x is not small. 

Another approach for improving on ~Ul was suggested by Kirsch and Taye [24]. 
Their idea is that changes in the structure can be divided into overall scaling and 
redistribution of material. That is, we write the perturbed stiffness matrix as 

Ko + ~K = sKo + ~K8 , (6.2.9) 

where s is a scaling factor. Overall scaling can be dealt with in a simple manner, so 
that we need to analyse only the redistribution part. We choose s so as to minimize 
~K •. That is, s is chosen so that sKo is as close as possible to K + LlK. Kirsch and 
Taye suggested minimizing the sum of the squares of the elements of ~K.. Then it 
can be shown (Exercise 7), that s is given as 

l:i j kOij~kij 
S - 1 + -='::---,,----

- " .. k 02 •• 
L.J'l,} lJ 

(6.2.10) 

Now we consider our nominal design to be the one with the matrix sKo instead of 
Ko. For this design the displacement field is 

Us = (l/s)uo. (6.2.11) 
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We consider only the case v here there is no change in the force, ~f = 0. Then Eq. 
(6.2.4) for this scaled design is 

SKO~Us1 = -~Ksus = -[~K - (s - l)Koluo/s, (6.2.12) 

where we used Eq. (6.2.9). Comparing this Equation to Eq. (6.2.4) we get 

The total change in u predicted by this approach, ~ u, is 

lIs - 1 1 (1 - S)2 
~us = Us-UO+~Us1 = (--1)UO+2~U1 +-2-uo = 2~U1- 2 Uo· (6.2.13) 

s s s s s 

Example 6.2.1 

Apply a first term correction, without and with scaling, to approximate the stress 
constraint in member C of Example (6.1.2) when the area of member B is increased by 
25 percent (Xl = 1, and X2 is increased from 1 to 1.25, in terms of the nondimensional 
areas defined in Example 6.1.2). 

The stiffness matrix for the three-bar truss is easily verified to be 

K _ E [0.75A A ° ] _ Ep [0.75X 1 ° ] 
- I ° AB + 0.25AB - l(Jo ° (X2 + 0.25x d ' 

so that 
Ep [0.75 0] 

Ko = l(Jo ° 1.25' 
Ep [0 0] 

~Ko = l(Jo ° 0.25 . 

Also, from Example (6.1.2) we have 

_ pi { 4/3AA } _ l(Jo { 1.333} 
Uo - E 8/(AB + 0.25AA) - E 6.400 . 

With ~f = 0, Eq.(6.2.4) yields 

-1 l(Jo { ° } ~U1 = -Ko ~Kuo = E -1.28 . 

From Example (6.1.2) we also had 

so that 
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(Jc = E(v - V3u)/41, and g = 1 - (Jc/(Jo, 

E 
~g = --(~v - V3~u). 

41(Jo 
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Substituting the components of ~Ul we get 

E 10'0 
~g = --l--E (-1.28) = 0.32. 

40'0 

Since for the nominal design 9 = -0.0227, for the perturbed design 9 is predicted to 
be 

9 ~ go + ~g = -0.0227 + 0.32 = 0.2973, 
which, as expected, is the same as the linear approximation (see Table 6.1.1). For 
the scaled approximation we use Eq. (6.2.10), to get 

1 0.25 x 1.25 1 147 
s = + 0.752 + 1.252 =. . 

Equation (6.2.13) becomes 

10'0 { 0 } 0.147210'0 { 1.333 } 10'0 { 0.0218} 
~us = 1.1472E -1.28 - 1.1472E 6.400 = Ii -1.0780 

Substituting into Eq. (a) we get 

~gs = -0.25( -1.078 - v'3 x 0.0218) = 0.2789, 

and 
g. = go + ~g. = -0.0227 + 0.2789 = 0.2562. 

This approximation is substantially closer to the exact result (see Table 6.1.1) of 
9 = 0.2440.e e e 

It is well known (e.g., Haley [25]) that when the matrix of a system of equations 
is modified by adding a matrix of low rank it is relatively inexpensive to find the 
effect on the solution of the system. The computational effort is roughly equal to 
finding r solutions to the original system, where r is the rank of the modification 
matrix. When r is small, and the order of the system of equations is large, finding 
r solutions of the original system is much cheaper than a new factorization of the 
modified system. 

This situation often occurs when we modify a small part of a structure. For 
example, when the stiffness of a single truss member is modified, the modification 
matrix is of rank one, and the solution can be found by a single solution of the original 
problem. Furthermore, it can be shown [25] that once this single solution was found, 
the exact solution is available for an arbitrary magnitude of the modification. Fuchs 
and Steinberg [26] showed that this single solution is the same needed for obtaining 
the derivative of the displacement with respect to the change in stiffness. Thus 
they were able to derive an approximation to the displacement field which is exact 
if a single truss member is modified. Similarly, Holnicki-Szulc [27] has developed 
a method, based on virtual distortions, which permits arbitrary modifications of r 
members of a truss at the cost of r displacement solutions for the original truss. These 
approaches are particularly useful for optimization, because once the displacement 
solutions have been obtained, the truss elements can be modified again and again 
with very little additional computational cost. For finite elements with higher-rank 
stiffness matrices, the same approach is still applicable, but the advantages tend to 
be diminished. 
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6.2.2 Eigenvalue Problems 

Vibration or buckling response is typically modeled as a symmetric eigenvalue prob
lem. At the nominal design the vibration eigenproblem may be written as 

Kouo - PoMouo = 0 , (6.2.14) 

where Ko and Mo are the stiffness and mass matrices, respectively, and Po and Uo are 
the eigenvalue (square of frequency) and eigenvector (vibration mode), respectively, 
all evaluated at a nominal design point Xo. When Po is a nonrepeated eigenvalue, 
the effect of perturbing the design can be easily estimated. Rewriting the eigenvalue 
problem at Xo + ~x we have 

(Ko + ~K)(uo + ~u) - (Po + ~p)(Mo + ~M)(uo + ~u) = 0 . (6.2.15) 

We subtract Eq. (6.2.14) from Eq. (6.2.15) and neglect quadratic and cubic terms 
in the perturbation such as ~K~u to get 

(Ko - PoMo)~u + (~K - Po~M)uo - ~JlMouo ~ 0 . (6.2.16) 

Premultiplying by uZ' and using Eq. (6.2.14) and the symmetry of Ko and of Mo we 
get 

(6.2.17) 

Alternatively, we can premultiply Eq. (6.2.15) by (UO+~U)T and neglect some higher 
order terms in the perturbation to get 

A u6(Ko + ~K)uo Po + up ~ -,;;-,'-----'-:--
u6(Mo + ~M)uo (6.2.18) 

Equations (6.2.17) and Eq. (6.2.18) have been obtained by neglecting quadratic and 
cubic terms, and it can be shown that their errors (which are not the same) are 
proportional to the square of the perturbation in the design ~x, or that they are first 
order approximations. 

Another first-order approximation was suggested by Pritchard and Adelman [28]. 
It is based on integrating the derivative of the eigenvalue P with respect to a design 
variable x. Equation (7.3.5) for the eigenvalue derivative may be written as 

where 
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T dK u -u 
a = dx 

uTMu' 

dp 
dx = a - Jlb , 

and 

dM 
uT-u 

b = dx . 
uTMu 

(6.2.19) 

(6.2.20) 
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Assuming that a and b do not change and a i- 0, we obtain the solution of the 
differential equation as a function of the design variable x as 

(6.2.21) 

As a -+ 0 Eq. (6.2.21) tends to the standard linear approximation. When several 
variables are changed simultaneously, x can be taken to be the distance along the 
path from Xo to xo+Llx (see [28]). This approximation is called the DEB (Differential 
Equation Based) approximation in [281. 

The first order approximation of Equation (6.2.18) is the Rayleigh quotient ap
proximation to the perturbed eigenvalue based on the nominal eigenvector Uo. If we 
can calculate a linear approximation UL to the eigenvector (e.g., using first derivative 
information), then we can use Rayleigh's quotient to get a superior approximation to 
the perturbed eigenvalue, namely 

.6. uHKo + .6.K)UL 
J.to + J.t ~ uHMo + LlM)UL (6.2.22) 

This time the error in Eq. (6.2.22) is proportional to lI.6.xI14 , see Murthy and Haftka 
[29]' so that Eq. (6.2.22) is a third-order approximation. 

Example 6.2.2 

k k 

m m 

Figure 6.2.1 Mass-spring system. 

Consider the two-degrees-of-freedom system shown in Fig. (6.2.1). Estimate the 
effect on the lowest frequency caused by doubling the left mass. The stiffness and 
mass matrices for this system are 

-1] 
1 ' 

The lowest eigenvalue and corresponding eigenvector are 

J.to = O.382k/m , U6 = (1, 1.618). 
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For the perturbed system there is no change in the stiffness matrix, and 

M+~M=m[~ n ' or ~M = [~ ~] . 

From Eq. (6.2.20) we get 

[1 1.618](-0.382k/m) [r; ~] {1.~18} 
~Jl ~ --------;:----=:;---.,.---='--...!..----~ = -0.106k/m 

[1 1.618] [r; ~] { 1.~18 } , 

or 
Jlo + ~Jl ~ 0.276k/m . 

Similarly, from Eq. (6.2.21) we get 

[ 1 1.618] [.:t -t] { 1.~18 } 
Jlo + ~Jl ~ ------=.:[,.....---O~] """";{C--1- T} = 0.299k / m . 

[ 1 1.618] 20m 
m 1.618 

We now consider the DEB approximation of Eq. (6.2.21) with x being the change 
in left mass 

and a = O. 

For the nominal design x = 0, and for the perturbed design x = m so that 

Jl = 0.382(k/m)e-O.276 = 0.290(k/m) . 

The exact result is 
Jlo + ~Jl = 0.293k/m . 

We see that the errors associated with the three first-order approximations, 5.8%, 
2.0%, and 1.0%, are small compared to the 30.4% difference between the nominal 
(0.382k/m) and perturbed (0.293k/m) eigenvalues .••• 

6.3 Sequential Linear Programming 

The constraint approximations and approximate analysis procedures described in 
the previous sections are particularly useful when the computational cost of a single 
evaluation of the objective function, the constraints, and their derivatives is very large 
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compared to the computational cost associated with the optimization operations, such 
as the calculation of search directions. This is a typical situation when we employ 
a finite element model with thousands of degrees of freedom to analyze a structural 
design which is defined in terms of a handful of design variables. It then pays to reduce 
the number of exact structural analyses required for the design process by applying 
optimization algorithms to a model of the structure based on approximations. 

The simplest and most popular approximation approach is that of sequential 
linear programming (SLP). Consider an optimization problem of the form 

minimize I(x), 
subject to gj(x) 2: 0, j = 1, ... ,ng . 

(6.3.1) 

The SLP approach starts with a trial design Xo, and replaces the objective function 
and constraints by linear approximations obtained from a Taylor series expansion 
about Xo 

minimize n (al ) I(xo} + ~)Xi - XOi) -. ' 
;=1 ax, Xo 

subject to gj(Xo) + t(Xi - XOi) (a~) 2: 0 
;=1 a. Xo 

j = 1, ... , ng , 
(6.3.2) 

The last set of constraints are called move limits, with a,i and aui being the lower 
and upper bounds, respectively, on the allowed change in Xi. 

Because of the approximation involved, and the move limits, it is rare that the 
final design of the linearized problem, XL, is acceptably close to the optimum design. 
However, if the move limits are small enough to guarantee a good approximation 
within these move limits, XL will be closer to the optimum than Xo. We can, therefore, 
replace Xo by XL, and repeat the linear optimization with Eq. (6.3.1) linearized about 
the new starting point. This process is repeated, so that we replace the original 
optimization problem by a sequence of linear programming (LP) problems (hence 
the name SLP). Each linear optimization is called an optimization cycle. The nature 
of the linearization of a nonlinear problem and the application of move limits are 
demonstrated in the following example. 

Example 6.3.1 

Consider the problem 

minimize I(x) = -2X1 - X2 , 

subject to gl = 25 - x~ - x~ 2: 0 , 

g2 = 7 - xi + x~ 2: 0 , 
Xl, X2 2: 0 . 

229 



Chapter 6: Aspects of The Optimization Process in Practice 

Linearize the constraint functions about the starting point ofx~ = (1.0,1.0), and use 
move limits of 1.0xo;. 

Evaluating the constraint functions and derivatives at the initial point we have 

g2(XO) = 7 - 1 + 1 = 7, 

(Vgdxo = {=~} , 
(Vg2 )xo = { -;} 

Therefore, the linear approximations take the form 

gIL(X) = 23 + [-2 - 2] { ~~ = i } = 27 - 2Xl - 2X2 ~ 0, 

g2L(x) = 7 + [-2 2] { ~~ = i } = 7 - 2Xl + 2X2 ~ 0 . 

10.00 

8.00 

6.00 

4.00 

2.00 

0.00 
0.00 2.00 4.00 6.00 8.00 10.00 

Xl 

Figure 6.3.1 Constraint linearization and move limits. 

These linear approximations are shown in Figure (6.3.1) together with the original 
constraints represented by the dashed lines. Also shown in the figure are the move 
limits which form a rectangular boundary around the initial design point. 
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The solution of this new linear programming problem is xf = (2.0 2.0) with 
an objective function of f = -6 which corresponds to a 100% improvement in the 
objective function. If there were no move limits, the solution of the problem would 
have been at xf = (8.5 5.0) and the resulting value of the objective function would 
be f = -22 (see Figure 6.3.1). 

Although without move limits we achieve a much larger gain in the objective 
function, the exact constraints are violated substantially, as shown in Figure (6.3.1). 
A procedure for evaluating the acceptability of constraint violations is discussed later 
in this section. __ _ 

SLP is attractive because reliable LP packages are readily available to most com
puter users through system library packages, while reliable nonlinear programming 
packages are not so readily available. However, the SLP strategy has several problems 
associated with it. First, it greatly increases the computational cost associated with 
optimization operations, because the optimization process is repeated several times 
(typically five to forty times). Thus, this strategy is reasonable only when the cost 
of these optimization computations is small compared to the cost of analysis plus 
the cost of sensitivity derivatives. The efficiency of the LP package used for the SLP 
approach can, therefore, become an important consideration. 

Second, without a proper choice of move limits, the process may never converge. 
In general, move limits should be gradually shrunk as the design approaches the 
optimum. Part of the reason for the need to shrink the move limits is that the 
accuracy of the approximation is required to be higher when we get close to the 
optimum. When we are far from the optimum design, the gains that are made during 
each cycle are large, and we can tolerate significant errors and still make progress 
towards the optimum. When we get close to the optimum, the gains are small and 
can be swamped by approximation errors. However, reduction of the move limits 
early in the process may unnecessarily slow down the convergence too, especially if 
the initial design is far from the actual optimum. The need to reduce move limits is 
indicated when the final design of a cycle proves, upon exact analysis, to be inferior 
to the initial design of that cycle (which is the final design of the previous cycle), or 
provides no gain in the function f. The move limits are typically shrunk by ten to 
fifty percent of their previous values until the improvement in the objective function 
for a given set of move limits becomes smaller than a given tolerance. Popular choices 
for starting values of the move limits are in the range of ten to thirty percent of the 
design variables. However, this choice is reasonable only if a design variable is not 
exceedingly small because it may be on its way to changing its sign. In such a case, 
it may be reasonable for the move limits to be ten to thirty percent of a typical value 
(as opposed to the instantaneous value) of that design variable. 

A third difficulty associated with SLP arises occasionally when the starting design 
is infeasible. The combined effects of approximation and move limits can then result 
in a situation where the linearized optimization problem does not have a feasible 
solution. That is, if the initial point of a problem is infeasible with respect to the 
normalized constraints and the move limits are small, the region formed by the move 
limits may remain entirely inside the infeasible linearized design space leading to an 
infeasible problem. In this case it is advisable to relax the constraints during the first 
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few cycles. This can be done, for example, by replacing the optimization problem 
Eq. (6.3.2) by 

n (8f ) minimize f(xo) + ~)Xi - XOi) -8. + k/3 , 
;=1 x, xo 

subject to gj (xo) + f)Xi - XOi) (89~) + /3 2 0, 
i=l 8x, Xo 

j = 1, ... , ng , (6.3.3) 

ali ~ Xi - XOi ~ aui , 

and /3 20, 

where /3 is an additional design variable, representing the allowed margin of original 
constraint violation, and k is a number chosen to make the contribution of fJ to 
the objective function large enough, so that the optimization cycle will emphasize 
reducing /3 over reducing f. 

Finally, if the solution of the original problem is not at a vertex of the constraint 
set it is possible that the iterations can cycle between two points. For example, if the 
actual optimum is at the boundary of a nonlinear constraint, solution of the linearized 
problem may take the design back to the initial point of the previous linear problem. 
An appropriate move limits reduction strategy can resolve this difficulty easily. 

The following example demonstrates some of the considerations in the choice of 
move limits. 

Example 6.3.2 

2p 

Figure 6.3.2 Four bar statically determinate truss. 

We consider the minimum weight design of a four bar statically determinate truss 
shown in Figure (6.3.2). In the interest of simplicity we assume members 1 through 
3 to have the same area A1 and member 4 an area A2 . Under the specified loading 
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the member forces and the vertical displacement at joint 2 can be easily verified to 
be 

II = 5p, h = -p, fa = 4p, 14 = -2V3p , 

b = 6pl (~ v'3) 
2 E Al + A2 ' 

where a negative sign denotes compression. We assume the allowable stresses in 
tension and compression to be 7.73 X 1O-4E and 4.833 X 1O-4E, respectively, and 
limit the vertical displacement to be no larger than 3 X 1O-31. The problem of 
the minimum weight design subject to stress and displacement constraints can be 
formulated in terms of nondimensional variables 

as 

Xl = 103 (A~E)' X2 = 103 (A:E) , 
minimize 

subject to 

3 v'3 
I(XI,X2) = - + - , 

Xl X2 

18xI + 6V3x2 ::; 3 , 
0.05 ~ Xl ~ 0.1546 , 
0.05 ~ X2 ::; 0.1395 , 

where lower bound limits on Xl and X2 have been assumed to be 0.05. 

We start the first cycle with an initial guess of xij = (0.1,0.1) which satisfies the 
constraints and gives 1 = 47.32. The LP problem is started with ten percent move 
limits, au; = ali = 0.01, i = 1,2. Only the objective function is nonlinear, and its 
derivatives at Xo are 

so that the first LP is 

01 = -300, 
OXI 

01 
~ = -173.2, 
U X 2 

minimize h = 47.32 - 300(XI - 0.1) - 173.2(x2 - 0.1) , 

subject to 18xI + 6V3x2 ~ 3, 
0.09 ~ Xl ::; 0.11, 
0.09 ::; X2 ::; 0.11 . 

This problem is solved to yield Xl = 0.10316, X2 = 0.11, and h = 44.6410. How
ever, 1(0.10316,0.11) = 44.8274, so that the linear approximation exaggerated the 
improvement in I. We next linearize 1 about (0.10316, o.l1f, and keeping same-size 
move limits, we get for the second cycle the following LP: 

minimize h = 44.8274 - 281.9(XI - 0.10316) - 143.1(X2 - 0.11), 

subject to 18xI + 6V3x2 ~ 3, 
0.09316 ::; Xl ::; 0.11316, 
0.1 ~ X2 ::; 0.12 . 
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The solution for this problem is Xl = 0.10893, X2 = 0.1, h = 44.63126, f = 44.86069. 
That is, this move resulted in apparent gain (in terms of h), but actual loss (in terms 
of 1). This is an indication that we need to reduce the move limits. 

We reduce the move limits to 0.005 and perform two additional cycles starting 
from the best design so far, X5 = (0.10316,0.11). The first cycle yields Xl = 0.10604, 
X2 = 0.105, h = 44.72937, f = 44.78560. With the second cycle we get back 
Xl = 0.10316, X2 = 0.11, and this oscillation again indicates the need for reducing 
move limits for further improvements. However, with the last set of move limits we 
reduced f from 44.8274 to 44.78560 which is by less than 0.1 percent. Thus, it may 
be reasonable to quit. Indeed, for each one of the LP's the nonlinear displacement 
constraint was active, so that we can find the exact solution by setting 

and substituting into f to get 

or 
3 - 18xl 

X2 = 6v3 

f= ~+ 6 
Xl 3 - 18.rl 

It is easy to check that the minimum of f is at Xl = X2 = 0.105662, f = 44.7846. 

The design space for this problem is shown in Figure 6.3.3 ••• 

It is possible that the optimum design obtained for a linearized problem at any 
cycle of the iterative SLP process may violate the constraints of the original problem. 
\Ve have seen in Example 6.3.1 that if the move limits in that example were not 
imposed or they were large enough, the solution of the linear problem would have 
caused a significant violation of the original constraint set. Such constraint violations 
are generally associated with objective function improvements. It is also possible 
that, from the solution of one linear problem to the next, the objective function may 
deteriorate and the constraint violations be reduced. These events can be prevented 
by altering the imposed move limits. However, neither of the two events is necessarily 
objectionable for the overall convergence of the SLP. Following is a discussion of how 
to judge whether a new design obtained by the LP is an improvement when a better 
objective function is accompanied by constraint violation, or a better satisfaction of 
the constraint set is accompanied by an increase in the objective function. 

Suppose the optimum of the LP during the ith cycle, XiL' leads to a set of active 
or violated constraints gj(Xi'L)' j E J, where J is the set of active constraints. \Ve 
can view the solution of the linearized problem as the exact solution of the following 
modified nonlinear problem 

minimize: 
subject to: 

f(x), 
gj(x) ~ pgj(xirJ, (6.3.4) 

for p = 1. The actual problem we want to solve is for p = O. Using Eq. (5.4.7) we 
can estimate that the optimum value of the objective function for the unmodified 
problem is 

.c = f(xirJ - L Ajgj(x7rJ , (6.3.5) 
j=l 
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0.25 

0.20 

0.15 

0.10 

0.05 

(18x1+6f"3x2 ::;;: 3) 

I xl =0.05 Xl ::;;:0.1546 

t------I" ........ """""+--'t---+-----x2 = 0.1395 

--__ f*=4O 

f* = 44.784 

+---~~It'""r" ........ ~ ___ ...... ~+_--- x2 = 0.05 
~-.;:!~-f* = 60 

0.05 0.10 0.15 0.20 

Figure 6.9.9 Design space for four-bar truss problem. 

where C is the Lagrangian function. This suggests the following procedure: If the 
objective function and the most critical constraints both improve, always accept the 
new design. If the objective function improves and the constraints deteriorate or vice 
versa, compare the values of the Lagrangians. If the Lagrangian at the end of a cycle 
is smaller than its value at the beginning of the cycle, then accept the new design. If, 
on the other hand, the Lagrangian increases, modify the move limits. We recommend 
using only critical and violated constraints in the Lagrangians. 

Example 6.3.3 

Consider example 6.3.2 with variables Yi = Ilx; (proportional to the cross-sectional 
areas). The problem takes the following form 

minimize: 

subject to: 

fey) = 3Yl + v3Y2 , 
18 6V3 

g=3---->0 
Yl Y2 - , 
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8.0 S YI S 20, 
8.0 S Y2 S 20 , 

where lower bound for the variables are increased to 8.0 for convenience. An initial 
guess of YI = 12, and Y2 = 8 results in f = 49.856. 

Linearizing the problem with 30% move limits leads us to the problem 

minimize: 
subject to: 

3YI + V3Y2 , 
0.125YI + 0.1624Y2 ~ 2.598, 

804 S YI S 15.6, 
8.0 S Y2 S lOA . 

Solution of this LP yields YI = 804, Y2 = 9.534, and f = 41.713. Reanalysis reveals 
g = -0.2329. Also from the solution of the LP problem we obtain Al = 10.667 
(corresponding to g) and A2 = 1.667 (corresponding to move limit). Therefore the 
Lagrangian is 

L = 41.713 - 10.667( -0.2329) = 44.197 , 

which, compared to the initial objective function of f = 49.856, is a smaller improve
ment than the solution of the LP, 41. 713, but still acceptable. 

Linearizing the constraint function about the last design point and formulating 
the LP problem with 30% move limits we find the problem 

minimize: 
subject to : 

3YI + V3Y2 , 
0.2551YI + 0.1l43Y2 ~ 304658, 

8.0 S YI S 10.92, 
8.0 S Y2 S 12.3938 , 

which h3.'> a solution of YI = 10.000, Y2 = 8.0, and f = 43.858, with constraint 
function multiplier of Al = 11. 76 and a lower bound multiplier of A2 = 0.38. Although 
the objective function increased roughly by 5%, evaluation of the actual constraint 
shows a smaller constraint violation, g = -0.09896 compared to the initial design of 
this LP problem. Therefore, we must calculate the Lagrangian in order to accept or 
reject this design. At the end of this step the Lagrangian is 

L = 43.858 - 11. 76( -0.09896) = 45.022 , 

which is larger than the value of the Lagrangian calculated at the end of the previous 
LP problem. We, therefore, reject the design and reconstruct the LP problem with 
smaller move limits.e e e 

6.4 Sequential Nonlinear Approximate Optimization 

\Ve can generalize SLP by using nonlinear approximations for some of the con
straints and objective function. For the application of SLP we need to linearize even 
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simple nonlinear functions. With the more general procedure we approximate only 
expensive-to-calculate functions using either linear or nonlinear (such as quadratic) 
approximations. Inexpensive constraints need not be approximated at all. \Ve start 
by identifying those constraints (and possibly the objective function) which require 
large computational resources for evaluation. These constraints are singled out for 
approximation, while the cheaper constraints are evaluated exactly. Given a trial 
solution Xo to the structural design problem, we construct approximations to the 
expensive constraints about Xo. As in the case of SLP, we need to augment the ap
proximate problem with move limits to guard against large changes in design variables 
that can result in poor approximations. 

The solution of the approximate problem with the move limits, obtained by any 
optimization procedure is denoted as Xl. We perform a new exact structural analy
sis at Xl, use it to construct new approximations to the expensive constraints, and 
perform a new optimization of the approximate problem. That is, the original opti
mization problem Eq. (6.3.1) is replaced by 

minimize 

subject to 

and 
for i = 0,1,2, ... , 

(6.4.1) 

where fa and gaj denote the approximate objective function and constraints, respec
tively, X~i) is the solution of the ith minimization, and aj is a suitably chosen move 
limit. 

Because most of the cost of the optimization is associated with the exact analysis 
and sensitivity calculations, it is often not important what optimization procedure 
is used for obtaining the optimum of approximate problems. In general, it is more 
important to emphasize reliability and robustness in the choice of the optimization 
procedure rather than computational efficiency. 

The following example demonstrates the use of sequential nonlinear approximate 
optimization with the standard approximations discussed in section 6.1 as well as one 
which was tailored more to the problem at hand. 

Example 6.4.1 

The ten-bar truss shown in Figure (6.4.1) is a standard example used by many 
authors. The minimum weight design obtained by changing the cross-sectional ar
eas of the truss members is sought subject to stress constraints and minimum gage 
constraints of 0.lin2 . The maximum allowable stress in each member is the same 
in tension and compression. This allowable is set to 25 ksi for all members except 
member 9. For member 9 the stress allowable is 75 ksi. The density of the truss 
material is 0.llb/in3• 
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Figure 6.4.1 lO-bar truss. 

Table 6.4.1 Ten-bar truss designs 

Member Initial area Optimum area Stress 
(in2 ) (in2 ) (ksi) 

1 5.0 7.90 25.0 
2 5.0 0.10 25.0 
3 5.0 8.10 -25.0 
4 5.0 3.90 -25.0 
5 5.0 0.10 -0.07 
6 5.0 0.10 25.0 
7 5.0 5.80 25.0 
8 5.0 5.51 -25.0 
9 5.0 3.68 37.5 

10 5.0 0.14 -25.0 

The five generic local approximations described in section 6.1 were used here, 
together with the linear force approximation proposed by Vanderplaats and coworkers 
[e.g., 15J. Table 6.4.1 shows the initial and optimum designs and the stresses in the 
optimum truss members. 

Table 6.4.2 compares the convergence history of twelve cycles of approximate op
timization using the six approximations. To compare the performance of the various 
approximations in Table 6.4.2 a useful measure of performance is the number of cycles 
required to get to within one percent of the optimum weight (that is to 1514 lb). The 
linear, reciprocal-quadratic, and linear force approximations required six cycles, the 
quadratic approximation seven, the reciprocal approximation ten, and the conserva
tive approximation never made it. The difference between the linear and reciprocal 
approximations turns out to be an idiosyncrasy of this problem. For many truss 
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Table 6.4.2 Convergence of optimum weight (lb) using different approximations 

Cycle Linear Reciprocal Conservative Quadratic Recip-quadratic Linear force 

1 1845 1774 2361 2002 1931 1891 
2 1637 1673 1960 1741 1684 1688 
3 1601 1593 1722 1650 1595 1589 
4 1558 1566 1641 1586 1548 1549 
5 1531 1548 1587 1547 1522 1526 
6 1514 1537 1566 1525 1509 1511 
7 1507 1528 1555 1514 1506 1504 
8 1502 1522 1546 1507 1502 1501 
9 1500 1518 1540 1503 1500 1500 

10 1500 1511 1538 1501 1500 1499 
11 1500 1511 1535 1500 1499 1499 
12 1499 1508 1532 1499 1499 1499 

problems the reciprocal approximation does better than the linear one. As a group, 
the second order approximations are slightly better than the first order ones, but the 
difference does not appear to be significant enough to justify the cost of computing 
second derivatives (see Section 7.2.2 for discussion of the cost of calculating second 
derivatives ). 

The dismal performance of the conservative approximation is explained by the 
fact that it is typically less accurate than either the linear or reciprocal approxima
tion. It is useful in situations where we need the conservativeness (such as when it is 
employed with interior penalty function algorithms), or the convexity (such as with 
dual algorithms, see Chapter 9). However, for sequential approximate optimization 
it is of little use. Finally, the linear force approximation due to Vanderplaats is com
parable in performance to the second-order approximations even though it employs 
only first derivatives. This is due to the fact that it approximates a "more linear" 
quantity than the stress. In using this approximation we approximate an interme
diate quantity-the member force, and compute the stress exactly from the force. 
Similar physical insight leading to identification of quantities that are approximately 
linear can afford comparable gains in other problems. ,., 

6.5 Special Problems Associated with Shape Optimization 

The term shape optimization is employed here in a very broad sense. In terms 
of a finite element model we consider as shape optimization any problem where we 
need to change the position of the nodes of the finite-clement model or the element 
connectivity (e.g remove elements). Shape optimization problems are contrasted 
with sizing optimization problems where we change only element stiffness properties, 
such as bar cross-sectional areas or plate thicknesses. The term shape optimization 
is often used in a narrow sense referring only to the optimal design of the shape 
of the boundary of two- and three-dimensional structural components. The broad 
usage includes also geometrical optimization of skeletal structures, and topological 
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optimization which decides the connectivity of the structure (for example, ,vhich 
nodes are connected by clements). 

Shape optimization problems are typically more difficult to tackle than sizing opti
mization problems. Consider first the optimization of the boundary shape of two- and 
three-dimensional bodies. The calculation of sensitivity derivatives for these shape 
optimization problems is associated with accuracy problems discussed in Chapters 7 
and 8. Another serious problems is mesh deformation. As the shape of the structure 
changes we need to change the finite-element mesh. Simple remeshing rules that 
translate node positions as the boundary changes, usually lead to highly deformed 
finite elements and concomitant loss of accuracy. This problem can be addressed by 
manually remeshing during the optimization process (which is time consuming), or 
employing sophisticated mesh generators. \Vork in shape optimization has indeed 
spurred the development and usage of such mesh generators (e.g., [30,31]). 

Another problem associated with boundary shape optimization is that of the 
existence or creation of internal boundaries or holes. In many problems the optimal 
design will have internal cavities. It is impossible to generate these cavities with a 
standard optimization approach without prior knowledge of their existence. That 
is, an optimization procedure can easily find for llS the optimum shape of a cavity 
once we assume there is one, but it cannot tell liS that there should be one, two, 
or three cavities. One approach for dealing wit h this problem is to aSS11me that the 
material is not homogeneous, but instead has an underlying microstructure. This 
underlying microstructure can be of fibers and matrix composite material. However, 
typically the assumed microstructure is more general than that of the fiber and matrix 
components of a laminated plate, and includes micro cavities in the material. This 
type of microstructure was devised so as to probe the theoretical limits of strength 
and stiffness that can be attained by a structure (see, e.g., Kohn and Strang [32], 
or Rozvany et al. [33]). Bends0e and Kikuchi [34] showed that it can be used to 
determine the need for introducing cavities into the structure. Figure 6.5.1 shows 
the type of structure obtained by Bends0e and Kikuchi by permitting microcavities. 
The structure under consideration is a bar in tension where the cross sections at the 
two ends are given (solid areas in figure), and the cross section on the left is larger 
than the that on the right. The objective is to maximize the stiffness of the bar for a 
given volume. The result shown in the figure, while not practical in itself, permits us 
to identify regions where cavities exist. Standard optimization techniques can then 
be used to find the optimal shape of these cavities. 

An example of the application of this technique was reported by Rasmussen 
[35] for the design of a floor beam design in a civil transport. Figure 6.5.2 shows 
the topology that was assumed by the designers and the topology identified by the 
homogenization approach which led to a suhstantially lighter design. 

The problem of finding the cavities in two- and there-dimensional bodies belongs 
to the realm of topological optimization. Topological optimization is a difficult prob
lem which has received more attention in applications to skeletal structures such as 
trusses and frames. There the optimum topology is typically defined by decisions as 
to which joints are connected to each other by members. The basic approach followed 
by most researchers is to create a ground structure where every joint is connected to 
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Figure 6.5.1 Optimal shapes for a fillet problem using microstructure. 

000000 

Figure 6.5.2 Shape design of floor beam for a civil transport aircraft: initial and final 
geometries. 

every other joint. If the design problem is minimum weight with constraints on the 
plastic collapse load, then as shown in Chapter 3, the optimization problem is linear, 
and the simplex method may be used to find the optimum design. The algorithm 
also automatically removes all unnecessary members. This approach was first taken 
by Dorn and co-workers [361. 

When the structure is designed subject to stress and displacement constraints 
rather than plastic collapse, it may be impossible to start with a ground structure 
and rely on a standard optimization algorithm to remove unnecessary members. One 
problem is that the members that need to be removed may experience large strains 
as their areas are reduced, so that the optimization algorithm will tend to reinforce 
them rather than eliminate them. Because this problem is related to the compatibility 
conditions, it is possible to relax these during part of the optimization process for 
the purpose of eliminating members (e.g., Sheu and Schmit [371, or Reinschmidt and 
Russel [38]). Another problem is that the stiffness matrix may become singular due 
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to the removal of members. This problem may be overcome by using simultaneous
analysis-and-design techniques which do not require the inversion or factorization of 
the stiffness matrix (see Section 10.6). The reader is referred to two survey papers by 
Topping [39], and Kirsch [40J for additional information on topological optimization. 

Geometrical optimization of skeletal structures refers to the search for the opti
mum locations of the joints of the structures. The problem can be solved by standard 
techniques, but there are often numerical advantages to treating the geometry vari
ables differently from the sizing variables and employing a two-level optimization 
approach. This topic is discussed in Chapter 10 in Section 10.5. 

6.6 Optimization Packages 

During the first few years of the development of structural optimization most an
alysts developed special purpose finite-element programs with built-in optimization 
procedures for their own use. When these programs were used by other analysts they 
found them to be insufficiently documented and difficult to modify. In recent years it 
has become more common to employ general purpose constrained optimization pack
ages and interface them with general purpose structural analysis codes. Additionally, 
the growing popularity of structural optimization as a tool for industrial applications 
is generating demand for the introduction of optimization capabilities into general
purpose analysis packages. The purpose of this section is to provide the reader with 
brief description of some of the more popular packages. 

First consider integrated packages which combine structural analysis and opti
mization procedures. One of the more popular programs of this class was the TSO 
program (originally called WASP [41,42]) developed for the preliminary design of 
aircraft wing and tail structures subject to aeroelastic constraints. The program 
models the wing or tail structure as an orthotropic plate and employs simplified 
plate analysis rather than a finite element model. Design variables are coefficients 
of polynomials that describe the thickness distribution and ply orientations over the 
surface. The optimization procedure is based on an interior penalty function formu
lation (see Chapter 5). The program has been used extensively for design studies and 
for some actual aircraft design problems (see [43]). 

Many integrated structural optimization packages are based on special purpose 
finite element programs. One of the better known is the ACCESS program developed 
by Schmit and co-workers [44,45J. Other programs of this type include FASTOP 
[46]' OPSTAT [47], OPTCOMP [48], OPTIMUM [49], ASOP [50], STARS [51] and 
DESAP [52]. 

Because of the lack of generality associated with special purpose finite-element 
programs, there has been interest in structural optimization packages built around 
a general purpose finite element program. Two early examples of this type are 
PARS[53] and PROSSS [54]. These programs are based on the SPAR finite-element 
package and its commercial derivative EAL. However, because the optimization soft
ware was not supported by the developer of the finite-element package, the use of 
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PARS and PROSSS has been limited. The EAL program, however, lends itself to in
terfacing with other programs, and has been used with optimization software; Walsh 
[55] reports on the use of EAL together with the CONMIN [56] program. 

Other finite-element programs have also been recently used to form structural op
timization packages. The OPTSYS package [57] is based on the ASKA and ABAQUS 
finite-element programs, the ASTROS system [58] evolved from the public domain 
version of NASTRAN, and the NISAOPT package (including the programs SHAPE 
[59] and STROPT [60]) is based on NISA II. 

The demand for structural optimization is pushing finite-element software devel
opers to include optimization capabilities in their programs. The N ASTRAN program 
[61] and the I-DEAS program [621 now have sensitivity and optimization capabilities, 
and ANSYS has a built in rudimentary optimizer. A recently developed program, 
GENESIS [63], has gone one step further in that it is a general finite element program 
developed together with sensitivity, approximation and optimization capabilities. In 
the not too distant future we can expect that most commercial structural analysis 
packages will offer built-in optimization capabilities. 

Until that day, and probably even after, there will be a continuing demand for 
general purpose optimization software that can be coupled to structural analysis pro
grams. Most finite-element packages lend themselves to the calculation of sensitivities 
via finite-differences (see Section 7.1), so that the analyst can construct constraint 
approximations based on these derivatives (see Section 6.1) and use the optimization 
package on this approximation in a sequential-approximate-optimization mode. The 
most commonly available general-purpose optimization packages are linear program
ming (LP) solvers. These are usually available at most computer centers as part of 
IMSL or similar subroutine libraries. While in some cases there are advantages to 
using more general optimization algorithms, LP packages seem to work well in the 
majority of applications. 

At the other extreme of generality we find the ADS [64]' DOT [65] and DOC [66] 
packages from VMA Engineering which allow the user a wide menu of optimization 
algorithms and strategies. These programs evolved from the very popular CONMIN 
[56] package which was used extensively for structural optimization. DOT (Design 
Optimization Tool) is a collection of fortran subroutines for optimization, and DOC 
(Design Optimization Control) is a control program that simplifies the use of opti
mization (calling DOT subroutines). Another general-purpose optimization package, 
commonly used in structural optimization, is NEWSUMT [67] developed by Miura 
and Schmit which is based on a penalty function procedure (see Chapter 5), and 
an updated version of the program NEWSUMT-A which incorporates constraint ap
proximations [68]. Other packages of this type include OPT based on the reduced 
gradient algorithm (see Chapter 5), and IDESIGN [69] based on sequential quadratic 
programming (see Chapter 5). There are also several packages available from math
ematical programming specialists. However, these programs do not enjoy as much 
popularity in structural optimization applications as the aforementioned programs 
which were developed by engineers. 
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6.7 Test Problems 

Standard test problems are useful for the purpose of checking optimization algo
rithms and software. The three test problems given in this section have been widely 
used for this purpose. 

6.7.1 Ten-bar Truss 

The ten bar truss shown in Figure 6.4.1 is a classical example used to show the dif
ference between a fully stressed design (FSD) and an optimum design. The material 
properties and the minimum area are given in Table 6.7.1. When the truss is de
signed subject to stress constraints only, the optimum and FSD designs are identical. 
However, when the stress allowable for member 9 is increased above 37,500 psi the 
optimum design and the FSD design are different. The three designs are given in 
Table 6.7.2. The truss has also been optimized with displacement constraints (Table 
6.7.3) and the final design is given in Table 6.7.4. For additional information, see 
Ref. [70J. 

Material: 
Young's modulus: 
Minimum area: 

Table 6.7.1 Data for ten bar truss 

aluminum 
107 psi 
0.1 in2 

Specific mass: 
Allowable stress: 

0.1 Ibm/in3 

±25 000 psi 

Table 6.7.2 Final designs for ten bar truss with stress constraints only 

Member 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mass (Ibm) 

FSD and optimum 
areas(in2 ) 

7.94 
0.10 
8.06 
3.94 
0.10 
0.10 
5.74 
5.57 
5.57 
0.10 

1593.2 

Increased allowable, member 9 
FSD optimum design 
areas(in2 ) areas(in2 ) 

4.11 7.90 
3.89 0.10 

11.89 8.10 
0.11 3.90 
0.10 0.10 
3.89 0.10 

11.16 5.80 
0.15 5.51 
0.10 3.68 
5.51 0.14 

1725.2 1497.6 

Table 6.7.3 Displacement allowables for ten bar truss 

Case 
A 

B 
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Node 
1 
3 
1-4 

Direction 
Y 
Y 
Y 

Displacement limits 
lower upper 
-2.0 -2.0 
-1.0 -2.0 
-2.0 +2.0 
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Table 6.7.4 Optimum designs for ten bar truss with displacement constraints 

Member 

1 
2 
3 
4 
5 

Mass(lbm) 

Cross-sectional areas (in2 ) 

Case A Case B 

22.66 30.52 
1.40 0.10 

21.58 23.20 
8.43 15.22 
0.10 0.10 

4048.96 5060.85 

6.7.2 Twenty-jive-bar Truss 

Member 

6 
7 
8 
9 

10 

Case A Case B 

0.10 
12.69 
14.54 
11.93 
1.98 

0.55 
7.46 

21.04 
21.53 
0.10 

The twenty-five-bar truss is shown in Figure 6.7.1. The loading, material properties 
and allowables are shown in Tables 6.7.5,6.7.6,6.7.7, and 6.7.8, and the final design 
is shown in Table 6.7.9. For additional details see Ref. [70]. 

a • 63.; em (25 in) 

Figure 6.7.1 Twenty-jive-bar truss. 

Table 6.7.5 Data for twenty-five-bar truss 

Material: 
Young's modulus: 
Specific mass: 
Minimum area: 

aluminum 
107 psi 
0.1lbm/in3 

0.01 in2 

z 
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Table 6.7.6 Allowable stresses for twenty-five-bar truss (psi) 

Members Tension Compression Members Tension 
1 40000 -35092 12,13 40000 
2-5 40000 -11590 14-17 40000 
6-9 40000 -17305 18-21 40000 
10,11 40000 -35092 22-25 40000 

Table 6.7.7 Nodal load components (lbf) for twenty-five-bar truss 

Load case N ode x y z 

1 1 1000 10000 -5000 
2 0 10000 -5000 
3 500 0 0 
6 500 0 0 

2 5 
6 

o 
o 

20000 
-20000 

-5000 
-5000 

Table 6.7.8 Displacement allowables for twenty-fIve-bar truss 

Displacement limits (in) 
Node x y z 

1 ±0.35 ±0.35 ±0.35 
2 ±0.35 ±0.35 ±0.35 

Table 6.7.9 Optimum design for twenty-five-bar truss 

Design variable 

1 
2 
3 
4 
5 
6 
7 
8 

Mass(lbm) 

Members 

1 
2-5 
6-9 
10,11 
12,13 
14-17 
18-21 
22-25 

6.7.3 Seventy-two-bar Truss 

0.010 
1.987 
2.991 
0.010 
0.012 
0.683 
1.679 
2.664 
545.22 

Compression 
-35092 
-6759 
-6959 

-11082 

The seventy-two-bar truss is shown in Figure 6.7.2. The loadings, material properties 
and allowables are shown in Tables 6.7.10, 6.7.11, and 6.7.12, and the optimum design 
is shown in Table 6.7.13. For additional details see Ref. [70J. 
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Table 6.7.10 Data for seventy-two-bar truss 

Material: 
Young's modulus: 
Specific mass: 
Allowable stress: 
Minimum area: 

Note: 

aluminum 
107 psi 
0.llbm/in3 

±25 000 psi 
0.01 in2 

Fo. the ub of da,i,v. n01 Otll Piement' ,,,. drawn in this figur •. 

Figure 6.7.2 Seventy-two-bar truss. 

Table 6.7.11 Nodal load components (lbf) for seventy-two-bar truss 

Load case Node x y z 

1 1 5000 5000 -5000 
2 1 0 0 -5000 

2 0 0 -5000 
3 0 0 -5000 
4 0 0 -5000 

2 5 0 20000 -5000 
6 0 -20000 -5000 
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Table 6.7.12 Displacement allowables for seventy-two-bar truss 

Displacement limits (in) 
Node x y z 

1 ±0.25 ±0.25 
2 ±0.25 ±0.25 
3 ±0.25 ±0.25 
4 ±0.25 ±0.25 

Table 6.7.13 Optimum design for seventy-two-bar truss 

Design variable Members Areas (in2 ) 

1 1-4 0.1571 
2 5-12 0.5356 
3 13-16 0.4099 
4 17,18 0.5690 
5 19-22 0.5067 
6 23-30 0.5200 
7 31-34 0.1 
8 35,36 0.1 
9 37-40 1.280 

10 41-48 0.5148 
11 49-52 0.1 
12 53,54 0.1 
13 55-58 1.897 
14 59-66 0.5158 
15 67-70 0.1 
16 71,72 0.1 

Mass(lbm) 379.66 

6.8 Exercises 

1. Show that the conservative approximation, Eq. (6.1.9) is concave, and the ap
proximation of Eq. (6.1.11) is convex as long as the design variables do not change 
their sign. 

2. Derive Eq. (6.1.14). 

3. Add to Table 6.1.1 a column representing an approximation to the constraint based 
on a linear approximation of the force in member C (This linear-force approximation 
is due to Vanderplaats and coworkers [15-17]). 
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A c 

p 

Figure 6.8.1 Asymmetric three-bar truss. 

4. The three-bar truss in Figure 6.8.1 has members with equal cross-sectional areas. 
Calculate the five approximations discussed in Section 6.1 as well as the Linear-force 
approximation discussed in the previous problem for the stress in member A. Compare 
the accuracy and conservativeness of the approximations for changes of ±25% in the 
area of member C. 

5. Obtain a good approximation to the stress in member A in the previous problem 
in terms of the two angles of the truss. 

6. The beam in Figure 6.1.1 has a mass density p, and cross-sectional area propor
tional to the square root of the moment of inertia A = a..,fj. Use the global-local 
approximation to obtain the lowest vibration frequency as 12/11 is varied from 1 to 
2. Use a two-element model as the exact solution, and a 1 element model as a global 
approximation. Note that this requires you to derive the stiffness matrix of a beam 
with a variable cross section. 

7. Prove Eq. (6.2.10). 

8. Repeat Example 6.2.1 doubling the left spring constant instead of the mass. 

8. Use sequential linear programming to design the three-bar truss of Figure 6.1.2 
subject to a yield stress constraint of ao and a minimum gage constraint on all 
members of O.lp/ao. 

9. Repeat the previous problem with the reciprocal approximation. 

6.9 References 

[1] Schmit, L.A. Jr., and Farshi, B., "Some Approximation Concepts for Structural 
Synthesis," AIAA Journal, 12, 5, 692-699, 1974. 

[2] Mills-Curran, W.C., Lust, R.V., and Schmit, L.A. Jr., "Approximation Methods 
for Space Frame Synthesis," AIAA Journal, 21 (11),1571-1580,1983. 

[3] Storaasli, 0.0., and Sobieszczanski, J., "On the Accuracy of the Taylor Approx
imation for Structure Resizing," AIAA Journal, 12 (2), 231-233, 1974. 

249 



Chapter 6: Aspects of The Optimization Process in Pmctice 

[4J Noor, A.K., and Lowder, H.E., "Structural Reanalysis via a Mixed Method," 
Computers and Structures, 5, 9-12,1975. 

[5J Fuchs, M.B., "Linearized Homogeneous Constraints in Structural Design," Int. 
J. Mech. Sci., 22, pp. 33-40, 1980. 

[6J Fuchs, M.B., and Haj Ali, R.M., "A Family of Homogeneous Analysis Models 
for the Design of Scalable Structures," Structural Optimization, 2, pp. 143-152, 
1990. 

[7J Starnes, J.H. Jr., and Haftka, R.T., "Preliminary Design of Composite Wings for 
Buckling, Stress and Displacement Constraints," Journal of Aircraft, 16,564-570, 
1979. 

[8J Haftka, R.T., and Shore, C.P., "Approximate Methods for Combined Thermal
Structural Analysis," NASA TP-1428, 1979. 

[9J Prasad, B., "Explicit Constraint Approximation Forms in Structural Optimiza
tion-Part l:Analyses and Projections," Computer Methods in Applied Mechan
ics and Engineering, 40 (1), 1-26, 1983. 

[10J Braibant, V., and Fleury, C., "An Approximation Concept Approach to Shape 
Optimal Design," Computer Methods in Applied Mechanics and Engineering, 53, 
pp. 119-148,1985. 

[11] Prasad, B., "Novel Concepts for Constraint Treatments and Approximations in 
Efficient Structural Synthesis," AIAA J., 22, 7, pp. 957-966, 1984. 

[12J Woo, T.H., "Space Frame Optimization Subject to Frequency Constraints," 
AIAA J. 25, 10, pp. 1396-1404,1987. 

[13J Schmit, L.A., Jr., and Miura, H., "Approximation Concepts for Efficient Struc
tural Synthesis," NASA CR-2552, 1976. 

[14J Lust, R.V., and Schmit, L.A., Jr., "Alternative Approximation Concepts for Space 
Frame Synthesis," AIAA J., 24, 10, pp. 1676-1684,1986. 

[15J Salajeghah, E., and Vanderplaats G.N., "An Efficient Approximation Method for 
Structural Synthesis with Reference to Space Structures," Space Struct. J., 2, pp. 
165-175, 1986/7. 

[16J Kodiyalam, S., and Vanderplaats G.N., "Shape Optimization of 3D Continuum 
Structures Via Force Approximation Technique," AIAA J., 27 (9), pp. 1256-1263, 
1989. 

[17J Hansen, S. R., and Vanderplaats G.N., "Approximation Method for Configuration 
Optimization of Trusses," AIAA J., 28 (1), pp. 161-168, 1990. 

[18J Box, G.E.P., and Draper, N.R., Empirical Model-Building and Response Surface, 
Wiley, New York, 1987. 

[19J Barthelemy, J.-F., and Haftka, R.T., "Recent Advances in Approximation Con
cepts for Optimum Structural Design," NASA TM 104032, 1991. 

250 



Section 6.9: References 

[20] Haftka, RT., Nachlas, J.A., Watson, L.T., Rizzo, T., and Desai, R, "Two-Point 
Constraint Approximation in Structural Optimization," Computer Methods in 
Applied Mechanics and Engineering, 60, pp. 289-301, 1989. 

[21] Fadel, G.M., Riley, M.F., and Barthelemy, J.-F.M., "Two Point Exponential Ap
proximation Method for Structural Optimization," Structural Optimization, 2, 
pp. 117-124,1990. 

[22] Haftka, RT., "Combining Local and Global Approximations," AIAA Journal, 
Vol. 29 (9), pp. 1523-1525, 1991. 

[23] Chang, K.-J., Haftka, RT., Giles, G.L., and Kao, P.-J., "Sensitivity Based Scaling 
for Correlating Structural Response from Different Analytical Models," AIAA 
Paper 91-0925, Proceedings of AIAA/ ASME/ ASCE/ AHS/ ASC 32nd Structures, 
Structural Dynamics and Materials Conference, Baltimore, MD, April 8-10, 1991. 

[24] Kirsch, U., and Taye, S., "High Quality Approximations of Forces for Optimum 
Structural Design," Computers and Structures, 30,3, pp. 519-527, 1988. 

[25] Haley, S.B., "Solution of Modified Matrix Equations," SIAM J. Numer. Anal., 24 
(4), pp. 946-951, 1987. 

[26] Fuchs, M.B., and Steinberg, Y., "An Efficient Approximate Analysis Method 
Based on an Exact Univariate Model for the Element Loads", Structural Opti
mization,3 (1), 1991. 

[27] Holnicki-Szulc, J., Virtual Distortion Method, Springer Verlag, Berlin, pp. 30-40, 
1991. 

[28] Pritchard, J.I., and Adelman, H.M., "Differential Equation Based Method for 
Accurate Approximation in Optimization," AIAA/ ASME/ ASCE/ AHS/ ASC 31st 
Structures, Structural Dynamics and Materials Conference, Long Beach, CA, 
April 2-4, Part I, pp. 414-424, 1990. 

[29] Murthy, D.V., and Haftka, RT., "Approximations to Eigenvalues of Modified 
General Matrices," Computers and Structures, 29, pp. 903-917, 1988. 

[30] Shephard, M.S., and Yerry, M.A., "Automatic Finite Element Modeling for Use 
with Three-Dimensional Shape Optimization," in The Optimum Shape (Bennett, 
J.A., and Botkin M.E., eds.), Plenum Press, N.Y. 1986, pp. 113-135. 

[31] Yang, RJ., and Botkin, M.E., "A Modular Approach for Three-Dimensional 
Shape Optimization of Structures," AlA A J., 25 (3), pp. 492-497, 1987. 

[32] Kohn, RV., and Strang, G., "Optimal Design and Relaxation of Variational 
Problems," Comm. Pure Appl. Math., 39, pp. 113-137 (Part I), pp. 139-182 
(Part II), and pp. 353-377 (Part III), 1986. 

[33] Rozvany, G.I.N., Ong, T.G., Szeto, W.T., Olhoff, N., and Bends~e, M.P., "Least
Weight Design of Perforated Plates," Int. J. Solids Struct., 23, pp. 521-536 (Part 
I), and pp. 537-550 (Part II), 1987. 

251 



Chapter 6: Aspects of The Optimization Process in Practice 

[34] Bends0e, M.P., and Kikuchi, N., "Generating Optimal Topologies in Structural 
Design using a Homogeneization Method," Compo Meth. Appl. Mech. Engng., 
71, pp.197-224, 1988. 

[35] Rasmussen, J., "Shape Optimization and CAD," SARA, 1,33-45, 1991. 

[36] Dorn, W.S., Gomory, R.E., and Greenberg, H.J., "Automatic Design of Optimal 
Structures," J. Mecanique, 3, pp. 25-52, 1964. 

[37] Sheu, C.Y., and Schmit, L.A., "Minimum Weight Design of Elastic Redundant 
Trusses under Multiple Static Loading Conditions," AIAA, J., 10 (2), pp. 155-
162, 1972. 

[38] Reinschmidt, K.F., and Russel, A.D., "Applications of Linear Programming in 
Structural Layout and Optimization," Comput. Struct., 4, pp. 855-869, 1974. 

[39] Topping, B.H.V., "Shape Optimization of Skeletal Structures-a Review," ASCE 
J. Struct. Enging., 109 (8), pp. 1933-1951,1983. 

[40] Kirsch, U., "Optimal Topologies of Structures," Appl. Mech. Rev., 42 (8), pp. 
223-239, 1989. 

[41] McCullers, L.A., and Lynch, R.W., "Composite Wing Design for Aeroelastic Tai
loring Requirements," Air Force Conference on Fibrous Composites in Flight 
Vehicle Design, Dayton, Ohio, September, 1972. 

[42] McCullers, L.A., and Lynch, R.W., "Dynamic Characteristics of Advanced Fila
mentary Composites Structures," AFFDL-TR-73-111, Vol. II, 1974. 

[43] Haftka, R.T., "Structural Optimization with Aeroelastic Constraints-A Survey 
of US Applications," Int. J. Vehicle Design, 7, pp. 381-392, 1986. 

[44] Schmit, L.A., and lvIiura, H., "A New Structural Analysis / Synthesis Capability 
- Access I, AIAA J., 14 (5), pp. 661-671,1976. 

[45] Fleury, C., and Schmit, L.A., "ACCESS 3-Approximation Concepts Code for Ef
ficient Structural Synthesis--User's Guide," NASA CR-159260, September 1980. 

[46] Wilkinson, K., et al., "An Automated Procedure for Flutter and Strength Anal
ysis and Optimization of Aerospace Vehicles, Vol. I-Theory, Vol. II-Program 
User's Manual," AFFDL-TR-75-137, 1975. 

[47] Venkayya, V.B., and Tischler, V.A., "OPSTAT-A Computer Program for Opti
mal Design of Structures Subjected to Static Loads," AFFDL-TR-79-67,1979. 

[48] Khot, N.S., "Computer Program (OPTCOMP) for Optimization of Composite 
Structures for Minimum Weight Design," AFFDL-TR-76-149, 1977. 

[49] Gellatly, R.A., Dupree, D.M., and Berke, L., "OPTIMUM II: A ~vIAGIC Com
patible Large Scale Automated Minimum Weight Design Program," AFFDL-TR-
74-97, Vols. I and II, 1974. 

252 



Section 6.9: References 

[50] Isakson, G., and Pardo, H., "ASOP-3: A Program for the Minimum Weight Design 
of Structures Subjected to Strength and Deflection Constraints," AFFDL-TR-76-
157, 1976. 

[51] Bartholomew, P., and Wellen, H.K., "Computer Aided Optimization of Aircraft 
Structures," J. Aircraft, 27 (12), pp. 1079-1086,1990. 

[52] Kiusalaas, J., and Reddy, G.B., "DESAP 2-A Structural Design Program with 
Stress and Buckling Constraints," NASA CR-2797 to 2799, 1977. 

[53] Haftka, R.T., and Prasad, B., "Programs for Analysis and Resizing of Complex 
Structures," Comput. Struct., 10, pp. 323-330, 1979. 

[54] Sobieszczanski-Sobieski, J., and Rogers, J.L., Jr., "A Programming System for 
Research and Applications in Structural Optimization," Int. Symposium on Op
timum Structural Design, Tucson, Arizona, pp. 11-9-11-21, 1981. 

[55] Walsh, J.L., "Application of Mathematical Optimization Procedures to a Struc
tural Model of a Large Finite-Element Wing," NASA TM-87597, 1986. 

[56] Vanderplaats, G.N., "CONMIN- A Fortran Program for Constrained Function 
Minimization: User's manual," NASA TM X-62282, 1973. 

[57] Brama, T., "Applications of Structural Optimization Software in the Design Pro
cess," in Computer Aided Optimum Design of Structures: Applications, (Eds, C. 
A. Brebbia and S. Hernandez), Computational Mechanics Publications, Springer
Verlag, 1989, pp. 13-21. 

[58] Neill, D.J., Johnson, E.H., and Canfield, R., "ASTROS-A Multidisciplinary Au
tomated Structural Design Tool," J. Aircraft, 27,12, pp. 1021-1027,1990. 

[59] Atrek, E., "SHAPE: A Program for Shape Optimization of Continuum Struc
tures," in Computer Aided Optimum Design of Structures: Applications, (Eds, C. 
A. Brebbia and S. Hernandez), Computational Mechanics PubliC"ations, Springer
Verlag, 1989, pp. 135-144. 

[60] Hariran, M., Paeng, J.K., and Belsare, S., "STROPT-the Structural Optimiza
tion System," Proceedings of the 7th International Conference on Vehicle Struc
tural Mechanics, Detroit, MI, April 11-13, 1988, SAE, pp. 27-38. 

[61] Vanderplaats, G.N., Miura, H., Nagendra, G., and Wallerstein, D., "Optimization 
of Large Scale Structures using MSCjNASTRAN," in Computer Aided Optimum 
Design of Structures: Applications, (Eds, C. A. Brebbia and S. H('rnand('z), Com
putational Mechanics Publications, Springer-Verlag, 1989, pp. 51-68. 

[62] Ward, P. and Cobb, W.G.C., "Application of I-DEAS Optimization for the Static 
and Dynamic Optimization of Engineering Structures," in Computer Aid('d Opti
mum Design of Structures: Applications, (Eds, C. A. Brebbia and S. Hernandez), 
Computational Mechanics Publications, Springer-Verlag, 1989, pp. 33-50. 

63] GENESIS User's Manual (version 1.00), VMA Engineering, Goleta, California, 
September, 1991. 

253 



Chapter 6: Aspects of The Optimization Process in Practice 

[64J Vanderplaats, G.N., "ADS: A FORTRAN Program for Automated Design Syn
thesis", VMA Engineering, Inc. Goleta, California, May 1985. 

[65] DOT User's Manual (version 2.0B), VMA Engineering, Inc. Goleta, California, 
Sept. 1990. 

[66] DOC User's manual (version 1.00), VMA Engineering, Inc. Goleta, California, 
March 1991. 

[67] Miura, H., and Schmit, L.A., Jr., "NEWSUMT-A Fortran Program for Inequal
ity Constrained Function Minimization-User's Guide," NASA CR-159070, June, 
1979. 

[68] Grandhi, R.V., Thareja, R., and Haftka, R.T., "NEWSUMT-A: A General Pur
pose Program for Constrained Optimization Using Constraint Approximations," 
ASME Journal of Mechanisms, Transmissions and Automation in Design, 107, 
pp. 94-99, 1985. 

[69] Arora, J.S. and Tseng, C.H., "User Manual for IDESIGN: Version 3.5, Optimal 
Design Laboratory, College of Engineering, The University of Iowa, Iowa City, 
1987. 

[70] Fleury, C., and Schmit, L.A. Jr., "Dual Methods and Approximation Concepts 
in Structural Synthesis," NASA CR-3226, December, 1980. 

254 



Sensitivity of Discrete Systems 7 

The first step in the analysis of a complex structure is spatial discretization of the 
continuum equations into a finite element, finite difference or a similar model. The 
analysis problem then requires the solution of algebraic equations (static response), 
algebraic eigenvalue problems (buckling or vibration) or ordinary differential equa
tions (transient response). The sensitivity calculation is then equivalent to the math
ematical problem of obtaining the derivatives of the solutions of those equations with 
respect to their coefficients. This is the main subject of the present chapter. 

In some cases it is advantageous to differentiate the continuum equations govern
ing the structure with respect to design variables before the process of discretization. 
One advantage is that the resulting sensitivity equations are equally applicable to 
various analysis techniques, whether finite element, Ritz solution, collocation, etc. 
This approach is discussed in the next chapter. 

As noted in chapter 6, the calculation of the sensitivity of structural response to 
changes in design variables is often the major computational cost of the optimization 
process. Therefore, it is important to have efficient algorithms for evaluating these 
sensitivity derivatives. 

The sensitivity of structural response to problem parameters also has other ap
plications. For example, it is usually impossible to know all the parameters of a 
structural model, such as material properties, loads and dimensions exactly. The 
sensitivity of the response to small variations in these parameters is essential for 
calculating the statistical variation in the response of the structure. 

The simplest technique for calculating derivatives of response with respect to a 
design variable is the finite-difference approximation. This technique is often com
putationally expensive, but is easy to implement and very popular. The efficiency of 
the analytical methods discussed in the present chapter is measured by comparison 
to the finite-difference alternative. Unfortunately, finite-difference approximations 
often have accuracy problems. We begin this chapter with a discussion of these 
approximations to sensitivity derivatives. 
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7.1 Finite Difference Approximations 

The simplest finite difference approximation is the first-order forward-difference 
approximation. Given a function u(x) of a design variable x, the forward-difference 
approximation 6.u/6.x to the derivative du/dx is given as 

6.u u(x + 6.x) - u(x) 
6.x 6.x 

(7.1.1) 

Another commonly used finite-difference approximation is the second-order central
difference approximation 

6.1l u(x + 6.x) - u(x - 6.x) 
6.x 26.x 

(7.1.2) 

It is also possible to employ higher-order finite-difference approximations, but they 
are rarely used in structural optimization applications because of the associated high 
computational cost. If we need to find the derivatives of the structural response 
with respect to n design variables the forward-difference approximation requires n 
additional analyses, the central-difference approximation 2n additional analyses, and 
higher order approximations are even more expensive. 

The key to the selection of the approximation and the step size 6.x is an estimate 
of the required accuracy. This topic is discussed in [1] and [2], and is summarized in 
the following section. 

7.1.1 Accuracy and Step Size Selection 

\Vhenever finite-difference formulae are used to approximate derivatives, there are 
two sources of error: truncation and condition errors. The truncation error eT(6.x) 
is a result of the neglected terms in the Taylor series expansion of the perturbed 
function. For cxample, the Taylor series expansion of u(x + 6.x) can be writ.t.en as 

du (6.x)2J2'u 
u(:r + 6.x) = u(x) + 6.x-(x) + ---1 2(x + (6.x), 

dx 2 C:f 
OS;(S;1. (7.1.3) 

From Eq. (7.1.3) it follows that the truncation error for the forward-difference ap
proximation is 

(7.1.4) 

Similarly, by including one more term in the Taylor series expansion we find that the 
truncation error for the central difference approximation is 

-1 S;(:::; 1. (7.1.5) 

Thc condition error is the difference between the numerical evaluation of the function 
and its exact value. One contribution to the condition error is round-off error in 
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calculating du / dx from the original and perturbed values of u. This contribution 
is comparatively small for most computers unless ~x is extremely small. However 
if u(x) is computed by a lengthy or ill-conditioned numerical process, the round-off 
contribution to the condition error can be substantial. Additional condition errors 
may occur if u(x) is calculated by an iterative process which is terminated early. 
If we have a bound Eu on the absolute error in the computed function u, we can 
estimate the condition error. For example, for the forward-difference approximation 
the condition error ec(6.x) is (very!) conservatively estimated from Eq. (7.1.1) &<; 

2 
ec(6.x) = ~x Eu· (7.1.6) 

Equations (7.1.4) and (7.1.6) present us with the so called "step-size dilemma." If we 
select the step size to be small, so as to reduce the truncation error, we may have an 
excessive condition error. In some cases there may not be any step size which yields 
an acceptable error! 

Example 7.1.1 

Suppose the function u(x) is defined as the solution of the following two equations 

101u+xv=10, 
xu + 100v = 10, 

and let us consider the derivative du/ dx evaluated at x = 100. 

0.0 

-0.1 

du/dx 

-0.2 Central difference 
o Forward difference 

-0.3 

0.00001 0.0001 0.001 
Step Size 

Figure 7.1.1 Effect of step size on derivative. 

0.01 0.1 

o 

o 

o 

1 

257 



Chapter 7: Sensitivity '7 . ..Jiscrete Systems 

The solution for u is 
-lOx + 1000 

u= 
10100 - x 2 ' 

and the exact value of du/dx at x = 100 is -0.10. The forward-difference and central
difference derivatives are plotted in Figure 7.1.1 for a range of step sizes. Note that 
for the very small step sizes the error oscillates because the condition error is not a 
continuous function. For the higher step sizes the total error is dominated by the 
truncation error which is a smooth function of the step size. We can change the 
problem slightly to make it more ill-conditioned, and increase the condition error as 
follows 

10001u + xv = 1000, 
xu + 10000v = 1000 . 

The values of the forward- and central-difference approximations at x = 10000 are 
shown in Figure 7.1.2. Now the range of acceptable step sizes is narrowed and we have 
to use the central-difference approximation if we want to have a reasonable range .••• 

0.2 

0.0 

du/dx 

-0.2 

-0.4 

0.001 

o 
Central difference 
Forward difference 

0.01 
Step Size 

Figure 7.1.2 Effect of step size on derivative. 

o 

o 

0.1 1 

A bound e on the total error- the sum of the truncation and condition errors
for the forward-difference approximation is obtained from Eqs. (7.1.4) and (7.1.6) 
as 

(7.1.7) 
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where Sb is a bound on the second derivative in the interval [x, x + Ax). When IOu and 
Sb are available it is possible to calculate an optimum step-size that minimizes e as 

~ 
AXopt =2V~. 

Procedures for estimating Sb and IOu are given in [1) and [2). 

7.1.2 Iterative Methods 

(7.1.8) 

Condition errors can become important when iterative methods are used for per
forming some of the calculations. Consider a simple example of a single displacement 
component u which is obtained by solving a nonlinear algebraic equation which de
pends on one design variable x 

f(x,u)=O. (7.1.9) 
The solution of Eq. (7.1.9) is obtained by an iterative process which starts with 
some initial guess of u and terminates when the iterate u is estimated to be within 
some tolerance 10 of the exact u (Note that 10 is a bound on the condition error in 
u). To calculate the derivative du/dx, assume that we use the forward-difference 
approximation. That is, we perturb x by Ax and solve Eq. (7.1.9) for U6 

f(x + Ax, U6) = O. (7.1.10) 

The iterative solution of Eq.(7.1.10) yields an approximation U6, and then du/dx is 
approximated as 

(7.1.11) 

To start the iterative process for obtaining U6, we can use either of two initial guesses. 
The first is the same initial guess that was used to solve for u. If the convergence 
of the iterative process is monotonic there is a good chance that when we use Eq. 
(7.1.11) the errors in u and U6 will almost cancel out, and we will get a very small 
condition error. The other logical initial guess for U6 is u. This initial guess is good if 
Ax is small, and so we may get fast convergence. Unfortunately, this time we cannot 
expect the condition errors to cancel. As we iterate on U6, the original error (the 
difference between u and u) will be reduced at the same time that the change due to 
Ax is taking effect. (Consider, for example, what happens if Ax is set to zero, or an 
extremely small number). 

Reference [3) suggests a strategy which allows us to start the iteration for U6 from 
u without worrying about excessive condition errors. The approach is to pretend that 
u is the exact rather than approximate solution by changing the problem that we want 
to solve. Indeed, u is the exact solution of 

f(x,u) - f(x,u) = 0, (7.1.12) 
which is only slightly different from our original problem (because f(x, u) is almost 
zero). We now find the derivative du/dx from Eq.(7.1.12), by obtaining U6 as the 
solution of 

f(x + Ax, U6) - f(x, u) = o. (7.1.13) 
Because u is the exact solution of this equation for Ax = 0 the iterative process will 
only reflect the effect of Ax . 
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Example 7.1.2 

Consider the nonlinear equation 

f(u,x)=u 2 -x=0, 

and the iterative solution process 

Urn = 0.5(Um _l + xjurn-d, 

which is an application of Newton's method to the square-root problem and therefore 
has quadratic convergence properties. 

Table 7.1.1 Iteration history starting with u = x 

x = 1000 x +.6.x = 1000.1 x +.6.x = 1100 
Iter. U f u~ f .6.u/ .6. x u~ f .6.uj .6. x 

0 1000.00 999,000 1000.10 999,000 0.99850 1100.00 1,208,000 1.00000 
1 500.500 250,000 500.550 250,000 0.49800 550.500 302,000 0.50000 
2 251.249 62,100 251.274 62,100 0.24900 276.249 75,200 0.25000 
3 127.615 15,300 127.627 15,300 0.12450 140.115 18,500 0.12500 
4 67.7253 3,590 67.7315 3,590 0.06225 73.9380 4,370 0.06258 
5 41.2454 701.2 41.2486 701.3 0.03174 44.4256 873.6 0.03180 
6 32.7453 72.25 32.7471 72.27 0.01862 34.5930 96.68 0.01848 
7 31.6420 1.216 31.6436 1.217 0.01587 33.1957 1.954 0.01553 
8 31.6228 -0.005 31.6244 0.000 0.01587 33.1663 0.0007 0.01543 

Exact values u(x = 1000) = 31.6228; du/dx = 0.01581 

Table 7.1.1 shows the convergence of u for x = 1000, x = 1000.1 and x = 1100, 
and the estimate of the derivative duj dx at x = 1000. The first guess for u is taken to 
be x in all three cases. Note that far from the solution the convergence is slow with 
the error being halved at each iteration. As the error gets smaller the convergence 
rate increases. It is seen that the convergence of the derivative is slightly slower than 
that of u. Also, we do not see that the small .6.x leads to any large condition errors 
as compared to the large .6.x. This is due to the monotonic convergence and the 
resulting cancellation of condition errors. 

Now we switch the first guess ofthe perturbed solution to an iterate of the nominal 
one. Starting the perturbed solution from a good approximation to the nominal 
solution we obtain fast convergence; usually we need only one or two iterations. 
Therefore, the value of the finite-difference derivative remains virtually constant after 
the first two iterations. Table 7.1.2 shows the second iterate U2 obtained when the 
perturbed solution is started from each ofthe last four iterates of the nominal solution 
given in Table 7.1.1. 

Inspection of Table 7.1.2 shows that, because the perturbed solution is more ac
curate than the nominal one, the derivative obtained by finite differences is erroneous, 
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Table 7.1.2 Effect of starting Ut., from Uo 

x + ~x = 1000.1 x + ~x = 1100 

31.6436 
31.6244 
31.6243 
31.6243 

~u/ ~x U2 ~u/ ~x 

-96.0181 33.1755 -0.08070 
-11.2093 33.1662 0.00421 
- 0.1772 33.1663 0.01524 
0.01572 33.1663 0.01543 

tuo are iterates from Table 7.1.1. 

except at very high accuracies (low c:). The effect of the finite difference increment 
~x is also evident. The errors for the small ~x are larger than for the larger ~x, 
except when uo has fully converged (so that there is no condition error). 

We now use the approach of 7.1.13, replacing the original equation by 

u2 - X - f = 0, 

where 1 is the residual of the last iterate of the nominal solution. That is, for the 
perturbed solution we try to calculate the root of x + f instead of x. The results 
of the modified calculation are shown in Table 7.1.3. We can now get a reasonable 
approximation to the derivative in two iterations .••• 

Table 7.1.3 Modified derivative calculation 

uo 
41.2454 
32.7453 
31.6420 
31.6228 

x + ~x = 1100 
~u/~x 

42.4404 
34.2382 
33.1846 
33.1663 

0.01195 
0.01493 
0.01543 
0.01543 

x + ~x = 1000.1 
~u/~x 

41.2466 
32.7468 
31.6436 
31.6243 

0.01205 
0.01511 
0.01572 
0.01572 

Cost and accuracy considerations often dictate that we avoid the use of finite
difference derivatives. For static displacement and stress constraints analytical deriva
tives are fairly easy to get, as discussed in the next section. 

7.1.3 Effect of Derivative Magnitude on Accuracy 

It is well known that small displacements and stresses are not calculated as accurately 
as large stresses and displacements. The same applies to derivatives. When both the 
function u and the variable x are positive, the relative magnitUde of the derivative 
can be estimated from the logarithmic derivative 

diU d(logu) du/u 
= = dx d(logx) dx/x' 

(7.1.14) 

The logarithmic derivative gives the percentage change in u due to a percent change in 
x. Therefore, when the logarithmic derivative is larger than unity the relative change 
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in u is larger than the relative change in x and the derivative can be considered to 
be large. When the logarithmic derivative is much smaller than unity, the relative 
change in u is much smaller than the relative change in x. In this case the derivative 
is considered to be small, and in general, it would be difficult to evaluate it accmately 
using finite-difference differentiation (or any other procedure subject to condition or 
truncation errors). Fortunately, when the logarithmic derivative is small it is usually 
not important to evaluate it accurately, because its influence on the optimization 
process is small. 

The logarithmic derivative can be misleading when a variable is about to change 
sign so that it is very small in magnitude. In that case we recommend using typical 
values of u and x instead of local values. That is, we define a modified logarithmic 
derivative dim U / dx as 

dlmu 
dx 

dU/Ut 
dx/xt' 

(7.1.15) 

where Xt and Ut are representative values of the variable and the function, respectively. 

Example 7.1.3 

The increased error associated with small derivatives is demonstrated in the following 
simple design problem. We consider the design of a submerged beam of rectangular 
cross section so as to minimize the perimeter of the cross section (so as to reduce 
corrosion damage). The beam is subject to a bending moment M and we require the 
maximum bending stress to be less than the allowable stress ao. The design variables 
are the width b and height h of the rectangular cross-section. The problem can be 
formulated as 

minimize 

such that 

2(b + h), 
6M 
bh2 :::; ao· 

We nondimensionalize the problem by defining a characteristic length I and using it 
to define new design variables Xl and X2 as 

Xl = b/l, X2 = h/I. 

In terms of the new variables the problem can be reformulated as 

minimize 

such that 

U = Xl + X2, 

1 
--2=1, 
xlx2 

where the inequality has been replaced by an equality because it is clear that the 
stress constraint will be active (otherwise the solution is b = h = 0). The equality 
can be used to eliminate Xl, so that the objective function can be written as 

U = 1 / X~ + .1:2 • 
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We now consider the calculation of the derivative by finite differences at two points; 
at an initial design where X2 = 1, and near the optimum, at X2 = 1.29. In both cases 
we use forward differences with ~X2 = 0.01. At X2 = 1 we get 

~U = 1/1.012 + 1.01 - 2 = -0.970, 
~X2 0.01 

which is 3 percent off the exact value of the derivative du/ dX2 = -1.0. However, at 
X2 = 1.29 we get 

~u 1/1.302 + 1.30 - (1/1.292 + 1.29) 
~ = 0 = 0.0791 , 
~X2 .01 

which is 16 percent off the exact value of 0.0683. The logarithmic derivative can 
warn us that we should expect the large relative error in the second case. Indeed, for 
X2 = 1, we have u = 2.0, and the logarithmic derivative is estimated from the finite 
difference derivative to be 

diU ~IU ~u X2 
- ~ - = -- = -0.97 x 1/2 = -0.485. 
dX2 ~X2 ~X2 U 

At X2 = 1.29 we have u = 1.891 and 

diU ~IU ~u X2 
-d ~ ~ = ~- = 0.0791 x 1.29/1.891 = 0.054, 

X2 ~X2 ~X2 U 

so that the logarithmic derivative is indeed quite small. ••• 

7.2 Sensitivity Derivatives of Static Displacement and Stress Constraints 

7.2.1 Analytical First Derivatives 

The equations of equilibrium in terms of the nodal displacement vector u are gener
ated from a finite element model in the form 

Ku=f, (7.2.1 ) 

where K is the stiffness matrix and f is a load vector. A typical constraint, involving 
a limit on a displacement or a stress component, may be written as 

g(u,x)~O, (7.2.2) 

where, for the sake of simplified notation, it is assumed that g depends on only a 
single design variable x. Using the chain rule of differentiation, we obtain 

(7.2.3) 
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where z is a vector with components 

ag 
Z;=-. 

au; 
(7.2.4) 

Note that we use the notation dg/dx to denote the total derivative of 9 with respect 
to x. This total derivative includes the explicit part ag/ax plus the implicit part 
through the dependence on u. The explicit part of the derivative is usually zero or 
easy to obtain, so we discuss only the computation of the implicit part. Differentiating 
Eq. (7.2.1) with respect to x we obtain 

K du = df _ dK u . 
dx dx dx 

(7.2.5) 

Premultiplying Eq. (7.2.5) by zTK-l obtain 

zT du = zTK-1(df _ dK u }. 
dx dx dx 

(7.2.6) 

Numerically, the calculation of ZT du/dx may be performed in two ways. The 
first, called the direct method, consists of solving Eq. (7.2.5) for du/dx and then 
taking the scalar product with z. The second approach, called the adjoint method, 
defines an adjoint vector A which is the solution of the system 

KA=Z, (7.2.7) 

and then we write Eq. (7.2.3)as 

(7.2.8) 

where we have used the symmetry of K. 

The solution of Eq. (7.2.7) for A is similar to a solution for displacement under a 
load vector z. The adjoint method is also known as the dummy-load method because 
z is often described as a dummy load. When 9 in Eq. (7.2.2) is an upper limit on a 
single displacement component, the dummy load also has a single nonzero component 
corresponding to the constrained displacement component. Similarly, when 9 is an 
upper limit on the stress in a truss member, the dummy load is composed of a pair 
of equal and opposite forces acting on the two ends of the member. 

For this case of static response the derivation of the adjoint technique is very 
simple. However the technique will be used in many other cases where we will want to 
calculate the derivative of a constraint without having to calculate first the derivative 
of the response u. We repeat the derivation of the adjoint method in a procedure that 
is applicable to the general case. This procedure consists of adding the derivative of 
the equations of equilibrium multiplied by a Lagrange multiplier to the derivative of 
the constraint. The Lagrange multiplier, which is equal to the adjoint vector, is then 
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selected to satisfy equations that lead to elimination of the derivative of the response. 
For the present case we rewrite Eq. (7.2.3) as 

dg _ og + ZT du + oXT(df _ dK u _ Kdu) 
dx - ox dx dx dx dx ' 

(7.2.9) 

where the additional term is the adjoint vector times the derivative of the equations 
of equilibrium. Rearranging the terms in Eq. (7.2.9) we have 

dg = og + (zT _ oXTK)du + oXT(df _ dKu ). 
dx ox dx dx dx 

(7.2.10) 

If we want to eliminate du/ dx from this expression we need to select oX so as to 
eliminate its coefficient, which gives us Eq. (7.2.7) for oX. The remaining terms are 
the same as Eq. (7.2.8) for the derivative of the constraint. 

Example 7.2.1 

In this example, we calculate the sensitivity derivative of a constraint on the tip 
displacement of a stepped cantilever beam with respect to the moment of inertia II 
and the length II. 

Figure 7.2.1 Beam example for derivatives of static response. 

The constraint on the tip displacement is posed as 

9 = c - Wtip ~ 0 . 

p 

The problem is simple and has an analytical solution based on elementary beam 
theory, namely 

P (Z3 Z2Z [ [2) pl~ 
Wtip = 3EI1 1 + 3 1 2 + 3 1 2 + 3EI2 ' 

so that 

:~ = 3:I?(I~ + 31rl2 + 3111~), 
;~ = - 3;11 (31r + 61112 + 31~) = - ;It (II + 12)2 . 
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The finite element solution is based on a standard cubic beam element, with one 
element used for each section. We denote the displacement and rotation at the ith 
node by Wi and 8i , respectively. The element stiffness matrix is 

[ 
12 61 

K e _ EI 61 412 
- [3 -12 -61 

61 212 

-12 
-61 
12 

-61 

so that the global stiffness matrix, corresponding to degrees of freedom W2, 82 , w3, 

83 , is 

[ 
12(h/lt + 12/m -6(h/li - 12/1~) -12h/~ 6/2/1~ 1 

K = E 4(Idh + h/12) -6/2/1? 212/122 
1212/12 -612 /1 2 • 

sym 4/2/12 

The load vector f = [0, O,p, OJT, and the solution for the displacement vector is 

oK = (E) -611 [ 

12 

oh U IT 0 
o 

~(;,)a} , 

-6/1 
4/i 
o 
o 

where the solution for W2 and 82 was used. Similarly, 
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[
-36 12h 0 oK = (Eh) 1211 -41i 0 

&11 U It 0 0 0 
o 0 0 

{ 
-6(1 + 12/1d } 

= (E) 2(11 + 12 ) 
11 0 

o 

In the direct method 
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or 

~ {~:} _ K-1 {;:tfI1} __ ...L. {~i:~/; q~~/3 3 } 
ah W3 - 0 - Ell 1112 +lt12 +11/3 ' 

03 0 1112 + It/2 

so that ag/aI1 = -aw3/ah, which agrees with the beam-theory result. 

Similarly 

In the adjoint method, ZT = -aWtip/ au = [0,0, -1,0]' and we can solve for the 
adjoint vector 

so that from Eq. (7.2.8) 

ag = _,xTaK = ~(Jl 1?12 m2 ltl~) = ...L.(12[ [Z2 [3/3) 
ah ah u Eh 3h + 2h + 211 + 11 Elf 1 2 + 1 2 + 1 , 

and 

••• 
The difference between the computational effort associated with the direct 

method and with the adjoint method depends on the relative number of constraints 
and design variables. The direct method requires the solution of Eq. (7.2.5) once for 
each design variable, while the adjoint method requires the solution of Eq. (7.2.7) 
once for each constraint. Thus the direct method is the more efficient when the 
number of design variables is smaller than the number of displacement and stress 
constraints that need to be differentiated. The adjoint method is more efficient when 
the number of design variables is larger than the number of these constraints. 

In practical design situations we usually have to consider several load cases. The 
effort associated with the direct method is approximately proportional to the number 
of load cases. The number of critical constraints at the optimum design, on the other 
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hand, is usually less than the number of design variables. Therefore, in a multiple
load-case situation the adjoint method becomes more attractive. 

Both the direct and adjoint methods require the solution of a system of equations 
as the major part of the computational effort. However, the factored form of the 
matrix K of the equations is usually available from the solution of Eq. (7.2.1) for 
the displacements. The solution for du/dx or A is therefore much cheaper than the 
original solution of Eq. (7.2.1). This provides the major computational advantage of 
these two analytical methods over the finite-difference calculation of the derivatives. 
For example, the forward difference approximation to du/ dx 

du u(x + ~x) - u(x) 
dx ~ ~x (7.2.11) 

requires the evaluation of u(x + ~x) by re-assembling the stiffness matrix and load 
vector at the perturbed design and solving 

K(x + ~x)u(x + ~x) = f(x + ~x). (7.2.12) 

The required factorization of K( x + ~x) is typically much more expensive than a 
solution for another right hand side with the already factored K(x) in Eqs. (7.2.5) 
and (7.2.7). The advantage of the analytical methods over the finite-difference ap
proximation becomes very pronounced for a large number of design variables. 

7.2.2 Second Derivatives 

In some applications (e.g., calculation of sensitivity of optimum solutions, see Section 
5.4) we also need second derivatives of constraint functions with respect to the design 
variables. In the following we obtain expressions for evaluating d2g/dxdy where x 
and yare design variables. For the sake of simplicity we assume that the constraint 
function 9 is not an explicit function of the design variables, so that og / ax and og / oy 
are zero. More general expressions are to be found in [41. 

As in the case of first derivatives we have a direct method and an adjoint method 
for obtaining second derivatives. The direct method starts by differentiating Eq. 
(7.2.3) with respect to y 

~g _ zT ~u + du TR du 
dxdy - dxdy ( dx ) dy , 

where R is the matrix of second derivatives of 9 with respect to u, that is 

02g 
Tij=-O a . 

Uj Uj 

(7.2.13) 

(7.2.14) 

We obtain the second derivative of the displacement field by differentiating Eq. (7.2.5) 

K d2u = ~f _ ~K u _ dK du _ dK du . 
dxdy dxdy dxdy dx dy dy dx 

(7.2.15) 
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Solving Eq. (7.2.5) for du/dx, a similar equation for du/dy, and Eq. (7.2.15) for 
d2u/dxdy we finally substitute into Eq. (7.2.13). 

The adjoint method starts by differentiating Eq. (7.2.8) with respect to y 

~g _(dA f (8f _dKu)+AT( ~f _ ~Ku_dKdU) 
dxdy - dy 8x dx dxdy dxdy dx dy . 

(7.2.16) 

To evaluate the first term we differentiate Eq. (7.2.7) with respect to y 

K dA = R du _ dK A . 
dy dy dy 

(7.2.17) 

Using Eqs. (7.2.5) and (7.2.17), Eq. (7.2.13) becomes 

~g = (du)TRdu _AT(dKdu + dKdu _ ~f + d2K u ). 
dxdy dy dx dy dx dx dy dxdy dxdy 

(7.2.18) 

In this case the adjoint method is always more efficient than the direct method. 
Assume that we have n design variables and m constraint functions. The direct 
method requires as its major computational effort the solution of Eq. (7.2.5) n times, 
and the solution of Eq. (7.2.15) n(n + 1)/2 times. The adjoint method, on the other 
hand, requires the solution of Eq. (7.2.5) n times for the first derivatives, and the 
solution of Eq. (7.2.7) m times for the adjoint vectors. 

7.2.3 The Semi-Analytical Method 

Both the direct and adjoint methods require the derivatives of the stiffness matrix 
and load vectors with respect to design variables. These derivatives are often difficult 
to calculate analytically, especially for shape design variables which change element 
geometry. For this reason a semi-analytical approach, where the derivatives of the 
stiffness matrix and load vector are approximated by finite differences, is popular. 
Typically, these derivatives are calculated by the first-order forward difference ap
proximation, so that dK/dx is approximated as 

dK K(x + ~x) - K(x) 
dx ~ ~x . (7.2.19) 

However, while the semi-analytical method is as efficient as the analytical direct 
or adjoint methods, it is based on finite-difference approximations, and may have 
accuracy problems. Such accuracy problems can be particularly serious for derivatives 
of beam and plate structures response with respect to geometrical parameters. 

The accuracy problem was observed first in Ref. [5] for the car model shown in 
Fig. (7.2.2) made of beam elements. The semi-analytical method was used success
fully for all section size and most geometrical design variables. However, for some of 
the derivatives with respect to the overall length dimensions of the car, there were 
serious accuracy problems. 
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Figure 7.2.2 Stick model of a Car. 
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Figure 7.2.3 Errors in the derivative of the strain energy with respect to a length 
variable of the stick model for overall-finite-differences (OFD) and semi-analytical 
(SA) methods. 

Figure (7.2.3) shows the dependence of the relative error of the derivative of the 
strain energy of the model with respect to one length variable in the semi-analytical 
(SA) method and the overall finite difference (OFD) approach. For large step sizes, 
the OFD method has smaller error (mostly truncation error) than the SA method. 
The step-size range for which the approximate derivative has an error less than 1% 
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is much larger for the OFD than for the SA approximation. For small step sizes the 
OFD method has a larger error (mostly condition error) than the SA method. Figure 
(7.2.3) shows that, for a relative step size of 10-7, the SA method approximates well 
the derivative. For some variables, however, there was no step size giving accurate 
derivatives! To solve the accuracy problem the central difference approximation to 
the derivative of the stiffness matrix had to be used, which increased substantially 
the computational cost. 

~ 
'" ... 

IOOOOOr-------------------------~ 

O.I~--~--_r--~----r_--~--~ 
1.(-10 1.£-1 1.(-1 1.1-1 I.E-I 1.(-5 1.1-' 

RELA11vE STEP SIZE 

Figure 7.2.4 Forward- and central-difference SA approximation of the derivative of 
the strain energy with respect to a second length variable of car stick model. 

Figure (7.2.4) compares the forward- and central-difference approximations of 
the derivative with respect to a second length variable. We can clarify the cause of 
the high truncation errors associated with the semi-analytical method by considering 
Eq. (7.2.5) carefully. The right hand side of the equation, sometimes referred to 
as the pseudo load, is the 'load' that has to be applied to the structure to produce 
a displacement field du/dx. For beam and plate structures the derivative of the 
displacement field with respect to geometrical variables is usually not a legitimate 
displacement field (for example, it may grossly violate the Kirchhoff assumption). 
The finite element approximation to this illegitimate field is a valid, though highly 
unusual, displacement field, which requires large self-cancelling components in the 
pseudo load. As the finite-element mesh is refined, the pseudo load required to 
generate du/ dx acquires ever larger self-cancelling components. Thus the errors in 
the pseudo load due to the finite difference derivative of the stiffness matrix can be 
greatly magnified. 
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Figure 7.2.5 Errors in the semi-analytical (SA) and overall-finite-difference (OFD) 
approximations to the derivative of tip displacement with respect to cantilever beam 
length (one percent step size). 

This phenomenon is demonstrated in Fig. (7.2.5) which shows that the error in 
the derivative of the tip displacement of a cantilever beam with respect to the length 
of the beam greatly increases as the finite-element mesh is refined. 

When a beam or a plate structure is modeled by more general elements, such as 
three dimensional elements, mesh refinement is no problem. However, as the beam 
becomes more slender or the plate thinner, the displacement-derivative field becomes 
more and more incompatible with the geometry, and the same accuracy problems 
ensue. Reference [6] reports very large errors for beams modeled by truss, plane
stress and solid elements for slenderness ratios larger than ten. 

Example 7.2.2 

We repeat the calculation of derivatives in Example 7.2.1 to compare the errors 
associated with the finite-difference and semi-analytical methods. Using forward 
differences we find 

8g ~ wtip(h + !lId - Wtip(Il) 
8h ~ - !lIl ' 

the truncation error, eT, given by Eq. (7.1.4) is approximately 
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and the relative truncation error is 

Therefore, it is enough to take D.ld h = 10-3 to get a negligible truncation error. 
Similarly, the truncation error for the derivative with respect to II is approximately 

eT D.it 

~ - 11 + 12 ' 

and it is enough to take a perturbation in 11 to be 0.001l1' The error analysis for 
the semi-analytical method is more complicated. The derivative with respect to the 
moment of inertia is approximated as 

8g ~ ,\TK(II + D.h) - K(Id u , 
811 D.ll 

and the truncation error vanishes 

because K is a linear function of II' The situation is not as good for the truncation 
error 8g / 8it which is approximately 

D.ll T 82K pD.ll ( 2 2) 
eT = -,\ 812 U= -E 1 311 +7l112+4'2 , 

2 1 h 1 

so that the relative error is 

31i + 7lt12 + 41~ D.11 
(l1 + [2)2 11' 

Comparing the semi-analytical error to the one obtained by the finite difference ap
proach, we note that it is seven times larger when II = 12 . As shown in Ref. [7], this 
larger error for the semi-analytical method increases a..'i the mesh is refined .••• 

7.2.4 Nonlinear Analysis 

For nonlinear analysis, the equations of equilibrium may be written as 

f( u, x) = f.lp( x ) , (7.2.20) 
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where f is the internal force generated by the deformation of the structure, and J.1p 
is the external applied load. The load scaling factor J.1 is used in nonlinear analysis 
procedures for tracking the evolution of the solution as the load is increased. This is 
useful because the equations of equilibrium may have several solutions for the same 
applied loads. By increasing J.1 gradually we make sure that we obtain the solution 
that corresponds to the structure being loaded from zero. 

Differentiating Eq. (7.2.20) with respect to the design variable x we obtain 

Jdu _ J.1dp _ af 
dx - dx ax' (7.2.21) 

where J is the Jacobian of f at u, 

(7.2.22) 

often called the tangential stiffness matrix. 

The direct method for obtaining dgjd.r is to solve Eq. (7.2.21) for dujd.r and 
substitute into Eq. (7.2.3). The matrix J is often available from the solution of the 
equations of equilibrium when these are solved by using Newton's method. Newton's 
method is based on a linear approximation of the equations of equilibrium about a 
trial solution u 

f(u, x) + J(u, .r)(u - u) ;:::: IIp(X). (7.2.23) 

Equation (7.2.23), solved for u, typically provides a better approximation to u than 
U. This new approximation replaces u in Eq. (7.2.23) for the next iteration, either 
with an updated value of J (Newton's method) or with the old value ( modified 
Newton's method). The iteration continues until convergence to a desired accuracy 
is achieved. If the last iterate U, for which J was calculated, is close enough to u, 
then that J can be used for calculating the derivative of u. 

The adjoint approach is very similar to that used in the linear case. The adjoint 
vector A is the solution of the equation 

(7.2.24) 

where again z is the vector of derivatives of the constraint with respect to the dis
placement components, Zi = agjaui. It is easy to check that we obtain 

dg = ag + AT (pdp _ of). 
dx ox dx ax 

(7.2.25) 

7.2.5 Sensitivity of Limit Loads 

At a critical point with the load value denoted as J.1*, the tangential stiffness matrix J 
becomes singular, and we can have either a bifurcation point or a limit load. \Ve can 
distinguish between the two by differentiating Eq. (7.2.20) with respect to a loading 
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parameter that increases monotonically throughout the loading history. The load 
parameter J.l is not a good choice, because at a limit point it reaches a maximum and 
is not monotonic. Instead we often use a displacement component, known to increase 
monotonically, or the arc length in the (u, /J) space. We denote such a monotonic load 
parameter by a, and denote a derivative with respect to a by a prime. Differentiating 
Eq. (7.2.20) with respect to a we get 

Ju'=J.l'p. (7.2.26) 

At a critical point, J is singular, and we denote the left eigenvector associated with 
the zero eigenvalue of J by v, that is 

v T J* = 0, (7.2.27) 

where the asterisk denotes quantities evaluated at the critical point. Premultiplying 
Eq. (7.2.26) by v T , we get 

/J'vT P = o. (7.2.28) 
At a limit point this equation is satisfied because the load reaches a maximum, and 
then J.l' = o. In that case, Eq. (7.2.26) indicates that the buckling mode, which is 
the right eigenvector of the tangential stiffness matrix J, is equal to the derivative of 
u with respect to the loading parameter. At a bifurcation point J.l' =I- 0, and instead 

vT p = O. (7.2.29) 

For a symmetric tangential stiffness matrix v is also the buckling mode, and Eq. 
(7.2.29) indicates that the buckling mode is orthogonal to the load vector. 

To calculate sensitivity of limit loads we need to consider a more general response 
path parameter v which can be a load parameter, a design variable, or a combination 
of both-a parameter that controls both structural design and loading simultaneously. 
We denote differentiation with respect to v by a dot and differentiate Eq. (7.2.20) 
with respect to v to get 

J . af .. dp. 
u + ax x = /Jp + /J dx x . (7.2.30) 

We now want a parameter v that controls the design variable x and the load parameter 
J.l so that we remain at a limit load, J.l = J.l*. We select v = x, and then Eq. (7.2.30) 
becomes 

J* . ( af)* _ d/J* * dp 
u + ax - dx p + J.l dx ' (7.2.31 ) 

where we used the fact that for our choice of parameter x = 1. Premultiplying Eq. 
(7.2.31) by the left eigenvector, v T , and rearranging we get 

vT [( af)* _ J.l* dP ] 
d/J* ax dx = --~~~--~~ 
dx vTp 

(7.2.32) 

The quantity in brackets in the numerator of Eq. (7.2.32) is the derivative of the 
residual of the equations of equilibrium at the limit point. Thus we can use the 
semi-analytical method to evaluate the limit load sensitivity as follows: We perturb 
the design variable, calculate the change in the residual (for fixed displacements) and 
take the dot product with the buckling mode to get the numerator. The denominator 
is the dot product of the buckling mode with the load vector. 
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7.3 Sensitivity Calculations for Eigenvalue Problems 

Eigenvalue problems arc commonly encountered in structural stability and vihration 
analysis. When forces are conservative, and no damping is considered, these prohlems 
lead to real eigenvalues which represent buckling loads or vibration frequencies. In 
the more general case the eigenvalues are complex. Our discussion starts with the 
simpler case of real eigenvalues. 

7.3.1 Sensitivity Derivatives of Vibration and Buckling Constraints 

Undamped vibration and linear buckling analysis lead to eigenvalue problems of the 
type 

KU-JiMu=O, (7.3.1) 

where K is the stiffness matrix, M is the mass matrix (vibration) or the geometric 
stiffness matrix (buckling) and u is the mode shape. For vibration problems JI is the 
square of the frequency of free vibration, and for buckling problems it is the buckling 
load factor. Both K and M are symmetric, and K is positive semidefinite. The mode 
shape is often normalized with a symmetric positive definite matrix W such that 

uTWu = 1, (7.3.2) 

where, for vibration problems, W is usually the mass matrix M. Equations (7.3.1) 
and (7.3.2) hold for all eigenpairs (Jik, uk). Differentiating these equations with re
spect to a design variable x we obtain 

du dJ1 dK dM 
(K - JiM)- - -Mu = -(- - J1-)u, 

dx dx dx dx 
(7.3.3) 

and 

(7.3.4) 

where we have used of the symmetry of W. Equations (7.3.3) and (7.3.4) are valid 
only for the case of distinct eigenvalues (repeated eigenvalues are, in general, not 
differentiable, and only directional derivatives may be obtained, see Haug et al. [8]). 
In most applications we are interested only in the derivatives of the eigenvalues. 
These derivatives may be obtained by premultiplying Eq. (7.3.3) by uT to obtain 

dJ1 
dx 

T dK dM 
u (- -Jl-)u 

dx dx (7.3.5) 

In some applications the derivatives of the eigenvectors are also required. For ex
ample, in automobile design we often require that critical vibration modes have low 
amplitudes at the front seats. For this design problem we need derivatives of the 
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mode shape. To obtain eigenvector derivatives we can use the direct approach and 
combine Eqs. (7.3.3) and (7.3.4) as 

[
K - pM -MU] { ;: } = { -(: - P :)u} . (7.3.6) 
_ TW 0 -1:!:. !uTaw u 

u dx 2 (IX 

The system (7.3.6) may be solved for the derivatives of the eigenvalue and the eigen
vector. However, care must be taken in the solution process because the principal 
minor K -I-lM is singular. Cardani and Mantegazza [9] and Murthy and Haftka [10] 
discuss several solution strategies which address this problem. 

One of the more popular solution techniques is due to Nelson[l1]. Nelson's 
method temporarily replaces the normalization condition, Eq. (7.3.2), by the re
quirement that the largest component of the eigenvector be equal to one. Denoting 
this re-normalized vector ii, and assuming that its largest component is the mth one, 
we replace Eq. (7.3.2) by 

(7.3.7) 

and Eq.(7.3.4) by 

d;; = 0 . (7.3.8) 

Equation (7.3.3) is valid with u replaced by ii, but Eq. (7.3.8) is used to reduce its 
order by deleting the mth row and the mth column. When the eigenvalue P is distinct, 
the reduced system is not singular, and may be solved by standard techniques. 

To retrieve the derivative of the eigenvector with the original normalization of 
Eq. (7.3.2) we note that u = umii, so that 

du dUm _ dii 
dx = dx u + Urn dx ' (7.3.9) 

and dUm/dx may be obtained by substituting Eq. (7.3.9) into Eq. (7.3.4) to obtain 

dUm = _u2 uTWdii _ umuTaw U . () 
dx m dx 2 dx 7.3.10 

We can also use an adjoint or modal technique for calculating the derivatives of 
the eigenvector by expanding that derivative as a linear combination of eigenvectors. 
That is, denoting the ith eigenpair of Eq. (7.3.1) by (Pi, u i ) we assume 

dUk L:1 . - = CkjU), 
dx . 

)=1 

(7.3.11) 

and the coefficients Ckj can be shown to be (see, for example, Rogers [12]) 

'T dK dM k 
uJ (~-Pk~)U 

Ckj = 'T' 
(I-lk - Pj)u) MuJ 

k #j. (7.3.12) 
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Using the normalization condition of Eq. (7.3.7) we find 

Ckk = - L CkjU::n . 

j# 

(7.3.13) 

On the other 111md, if we use the normalization condition of Eq. (7.3.2) with W = M, 
we get 

1 k T dM k 
Ckk = --(u ) -u . 

2 dx 
(7.3.14) 

If all the eigenvectors are included in the sum, Eq. (7.3.11) is exact. For most 
problems it is not practical to calelllate all the eigenvectors, so that only a few of the 
eigenvectors associated with the lowest eigenvalues are included. Wang [13J developed 
a modified modal method that accelerates the convergence. Instead of Eq. (7.3.11) 
we use 

1 k I 
eu _ k ""' j 
-d - u 8 + ~dkjU , 

X j=1 

(7.3.15) 

where 

(7.3.16) 

is a static correction term, and 

k i- j. (7.3.17) 

The coefficient dkk is still given by Eq. (7.3.14) for the normalization condition of 
uTMu = 1. For the normalization condition of (7.3.7) 

d - k ""'d j kk - -11 8m - ~kjVm . (7.3.18) 
j# 

Sutter et al. [14J present a study of the convergence of the derivative with increasing 
number of modes using both the modal method and the modified modal method and 
demonstrate the improved convergence of the modified modal method. 

Example 7.3.1 

The spring-mass-dashpot system shown in Fig. (7.3.1) is analysed here for the case 
that the dash pot is inactivated, that is c = O. Initially the two masses and the 
three springs have values of 1, and we want to calculate the derivatives of the lowest 
vibration frequency and the lowest vibration mode with respect to k for two possible 
normalization conditions: one of the form Eq. (7.3.2) with W = M, and one of the 
form Eq. (7.3.7) with the second component of the mode set to 1. 
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~ - 1 2 't' ''t' 

Of 

Figure 7.3.1 Spring-mass-dashpot example for eigenvalue derivatives. 

Denoting the motions of the two masses as UI and U2, we find the elastic energy, 
E, and the kinetic energy, T, to be 

E = 0.5 [kui + (U2 - UI)2 + u~] , 
This gives us the stiffness and mass matrices as 

T = 0.5( iti + it~) . 

-1] 
2 ' M=[~ ~]. 

For k = 1, the eigenvalue problem, Eq. (7.3.1) becomes 

[ 2 - w2 

-1 
-1 ]{UI} 2 - w2 U2 = O. (a) 

Setting the determinant of the system to zero we get the two frequencies, WI = 1, 
and W2 = v'3. Substituting back the lowest frequency into Eq. (a) we get for the first 
vibration mode UI - U2 = 0, 

-UI + U2 = O. 

As expected, the system is singular at a natural frequency, so that we need the nor
malization condition to determine the eigenvector. For the normalization condition 
(7.3.2) the additional equation is 

uTMu = ui + u~ = 1 . 

For the normalization condition Eq. (7.3.7), the condition is 

where we use the bar to denote the vibration mode with the second normalization 
condition. The solutions with the normalization conditions are 
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Next we calculate the derivative of the lowest frequency from Eq. (7.3.5) using primes 
to denote derivatives with respect to k. For our example 

K' = [1 0] 00' M'=O. 

We use the mode normalized by the mass matrix in Eq. (7.3.5), so that the denomi
nator is equal to 1, and then 

\Ve can also get the derivative of the frequency and the mode together by using Eq. 
(7.3.6). We note that 

K - pM = [~1 11], Mu = Wu = u = ~ {~} , 

-(K' - p.M')u = -K'u = ~ { -r} }, ~UTW'U = O. 

Equation (7.3.6) is then 

[ 
1 

-1 

-J2/2 

-1 
1 

-J2/2 
\Ve solve this equation to get 

11~ = -/2/8, u; = /2/8, ,/ = 1/2. 

In order to solve for fl' from Eq. (7.3.3), with the additional condition fl~ = 0, we 
need to evaluate the expressions: 

'M- 0 5- { 0.5 } J1 u = . u = 0.5 ' -(K' - ItM')ii = -K'ii = { ~1 } . 

Then Eq. (7.3.3), with ii replacing u, and the additional condition yield 

The solution is 

u~ -fl~ = -0.5, 

-fl~ +fl; = 0.5, 
fl; = O. 

u~ = -0.5, u; = O. 

We can show that u can indeed be retrieved from ii' by using Eqs. (7.3.9) and 
(7.3.10). Equation (7.3.10) becomes 

11; = -u~uTii' = -0.5( /2/2)[ 1 1 J { -~.5 } = /2/8, 
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which agrees with our previous result. Equation (7.3.9) becomes 

which also agrees with our previous result.e e • 

When the eigenvalue f.l is repeated with a multiplicity of m, there are m linearly 
independent eigenvectors associated with it. Furthermore, any linear combination 
of these eigenvectors is also an eigenvector, so that the choice of eigenvectors is not 
unique. In this case the eigenvectors that are obtained from a structural analysis 
program will be determined by the idiosyncrasies of the computational procedure 
used for the solution of the eigenproblem. Assuming that u 1, ..• , urn is a set of 
linearly independent eigenvectors associated with f.l, we may write any eigenvector 
associated with f.l as 

rn 
u= Lq;ui =Uq, 

;=1 

(7.3.19) 

where q is a vector of coefficients and U a matrix with columns equal to u i , i = 
1, ... , m. As the design variable x is changed, the eigenvalues usually separate, and 
the eigenvectors become unique again. We obtain these eigenvectors by substituting 
Eq. (7.3.19) into Eq. (7.3.3) and premultiplying by UT to obtain 

(7.3.20) 

where 

(7.3.21) 

and 
(7.3.22) 

Equation (7.3.20) is an m X m eigenvalue problem for df.l/dx. The m solutions 
correspond to the derivatives of the m eigenvalues derived from f.l as x is changed, and 
the eigenvectors q give us, through Eq. (7.3.19), the eigenvectors associated with the 
perturbed eigenvalues. A generalization of Nelson's method to obtain derivatives of 
the eigenvectors was suggested by Ojalvo [15] and amended by Mills-Curran [16] and 
Dailey [17]. Their procedure seems to contradict the earlier assertion that repeated 
eigenvalues are not differentiable. However, while we can find derivatives with respect 
to any individual variable, these are only good as directional derivatives, in that 
derivatives with respect to x and y cannot be combined in a linear fashion. That is 

Of.l Of.l 
df.l= -dx+-dy ax oy (7.3.23) 

will not hold in general. This is demonstrated in the following example. 
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Example 7.3.2 

Let us consider a simple, two variable system 

K= [ 2 + Y x] 
x 2' 

The two eigenvalues are 

W=M=1. 

(a) 

The two eigenvalues are identical for x = y = 0, and we will first demonstrate that 
the eigenvectors are discontinuous at the origin. In fact for x = 0 the two eigenvectors 
are 

and for y = 0 

1 {I} 2 {-I} u=l'u= l' 

Obviously, we can get either set of eigenvectors as close to the origin as we wish by 
approaching it either along the x axis or along the y axis. 

Next we calculate the derivatives of the two eigenvalues with respect to x and y 
at the origin. At (0,0) any vector is an eigenvector, and we select the two coordinate 
unit vectors as a basis, that is 

u = [~ n. 
We first calculate derivatives with respect to x, and using Eqs. (7.3.21) and (7.3.22) 
we get 

B = [~ ~] 
The solution of the eigenvalue problem, Eq. (7.3.20) is 

and the corresponding eigenvectors are 
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and because U is the unit matrix, from Eq. (7.3.19) u i = qi. It is easy to check that 
these are indeed the eigenvectors along the y axis (x, 0). Similarly, for derivatives 
with respect to y we have 

A = [~ ~], B = [~ ~], 
and the two eigenvalues of Eq. (7.3.20) are 

The corresponding eigenvectors are 

To see that the above derivatives cannot be used to calculate the change in I-l due to 
a simultaneous change in x and y, consider an infinitesimal change dy = 2dx = 2dt. 
From the solution for the two eigenvalues, Eq. (a), we have 

dl-l = dt ± V2dt . 

On the other hand, Eq. (7.3.23) yields four values depending on which of two values 
we use for the x and y derivatives. These are 3dt, dt, dt, and -dt .••• 

The implications of the failure of calculating a derivative in an arbitrary direction 
from derivatives in the coordinate directions are quite serious. Most optimization al
gorithms rely on these calculations to choose move directions or to estimate objective 
function and constraints. Therefore, these algorithms could experience serious dif
ficulties for problems with repeated eigenvalues. On the bright side, computational 
experience shows that even minute differences between eigenvalues are often sufficient 
to prevent such difficulties. Furthermore, the coalescence of eigenvalues often has an 
adverse effect on structural performance. In buckling problems it is associated with 
imperfection sensitivity, and for structural control problems coalescence of vibration 
frequencies can lead to control difficulties. Therefore, constraints are often used to 
separate the eigenvalues in design problems. 

7.3.2 Sensitivity Derivatives/or Non-Hermitian Eigenvalue Problems 

When structural damping is important or when damping is supplied by aerodynamic 
forces or active control systems, the damped motion ft is governed by 

Mil + eli + Kft = 0, (7.3.24) 
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where C is the damping matrix, assumed to be symmetric, and a dot denotes differ
entiation with respect to time. Setting 

(7.3.25) 

we get 
[f1?M + pC + KJu = o. (7.3.26) 

Note that we have not defined the eigenvalue p in the way we did for the undamped 
vibration problem. There p was the square of the frequency, while here, when C = 0, 
we get p = iw where w is the vibration frequency. The derivative of the eigenvalue 
p with respect to a design variable x is obtained by differentiating Eq. (7.3.26) with 
respect to x and premultiplying by uT 

dp 
= dx 

(7.3.27) 

This equation can be used for estimating the effect of adding a small amount of 
damping to an undamped system. For the undamped system C = 0, the eigenvalue 
is p = iw, and the eigenvector is the vibration mode that we will denote here as 41 to 
distinguish it from the damped mode u. Then Eq. (7.3.27) becomes 

Example 7.3.3 

dp 
dx 

(7.3.28) 

Use linear extrapolation to estimate the effect ofthe dashpot in Figure (7.3.1) on the 
first vibration mode, and then compare with the exact effect for c = 0.2, and c = 1.0. 

For this example we take x = c and then (using K, and M from Example 7.3.1) 

dM dK 
-=-=0, 
dx dx 

dC _ [1 0] 
dx- 00' 

Using the first vibration mode from Example (7.3.1) which is normalized so that the 
denominator of Eq. (7.3.28) is 1, (411 f = (v'2/2)[1 ,1]' we get 

dp _ dp, TdC 
dc = dx = -0.541 dx 41 = -0.25. 

From Example (7.3.1), the frequency of the first natural mode is W1 = 1 (which 
corresponds to p = i in the notation of this section). Then using linear extrapolation 
to calculate an approximate eigenvalue Pa we get 

I dp . 
P,a = P + -d c = -0.25c + z . 

c=O C 
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For the two given values of c = 0.2, and c = 1.0, the approximate eigenvalues are 
-0.05 + i, and -0.25 + i, respectively. We compare this approximation to the exact 
result obtained by solving Eq. (7.3.26); this yields 

[ /12 + C/1 + 2 -1] {u1 } = O. 
-1 /12 + 2 U2 

(a) 

The eigenvalue /1 is obtained by setting the determinant of this equation to zero. For 
the two values of c we get 

C = 0.2 : /1 = -0.05025 + 1.0013i . 

c = 1.0: /1 = -0.29178 + 1.0326i . 
We see that the prediction that C changes only the damping and not the frequency 
is quite good, and that linear extrapolation worked quite well for predicting the 
damping .••• 

The order of the damped eigenproblem is commonly reduced by approximating 
the damped mode as a linear combination of a small number of natural vibration 
modes u i , i = 1 ... ,m. This may be written as 

u=Uq, (7.3.29) 

where U is a matrix with u i as columns, and q is a vector of modal amplitudes. 
Substituting Eq. (7.3.29) into Eq. (7.3.26) and premultiplying by U T we get 

[/12M R + /1C R + KRlq = 0, (7.3.30) 

where 
(7.3.31) 

After we solve for the reduced eigenvector q from Eq. (7.3.30), we can calculate 
the derivative of the eigenvalue using two approaches. The first approach, called the 
fixed-mode approach, employs Eq. (7.3.27) with It calculated from Eq. (7.3.30) and 
u given by Eq. (7.3.29). The second approach, called the updated-mode approach, 
uses Eq. (7.3.27) for the reduced problem, that is 

2 TdMR TdCR TdK R 
/1 q --q+/1q -q+q --q 

dx dx dx d/1 = (7.3.32) 
dx 

The derivative of KR is given as 

dKR = UTdKU + dUT KU + UTK dU 
dx dx dx dx 

(7.3.33) 

with similar expressions for the derivatives of MR and CR. The names of the two 
approaches are associated with the fact that the corresponding derivatives will agree 
with a finite-difference derivative calculations with the modes being fixed or updated, 
respectively. Also, it can be shown that if we omit the terms with dU / dx from the 
updated-mode expression we will recover the fixed-mode result. The calculation 
of derivatives of vibration modes is expensive, and for this reason the fixed-mode 
approach is more appealing. However, as the following example demonstrates, the 
updated-mode approach can, occasionally, be substantially more accurate. 
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Example 7.3.4 

For the spring-mass-dashpot example shown in Fig. (7.3.1) construct a reduced model 
based only on the first vibration mode. Calculate the fixed-mode and updated-mode 
derivatives of the eigenvalue associated with the lowest frequency with respect to the 
constant k of the leftmost spring. Compare with the exact derivatives for c = 0.2 
and c = 1.0. 

Full-model analysis: 

The eigenvalue problem for this example is given by Eq. (a) of Example (7.3.3), 
and the exact eigenvalue is solved in that example for the two required values of c. 
For the eigenvector we use a normalization condition that the second component, U2, 

is equal to 1, and employ the second equation of the eigenproblem to obtain 

_ {p2 + I} u- 1 . 

To calculate the derivative of p with respect to the stiffness k of the leftmost spring 
we use Eq. (7.3.27) with matrices calculated in Examples 7.3.1 and 7.3.3 

C=[~~], -1] 
2 ' 

M/=O, C/=O, K' = [~ 
where a prime is used to denote a derivative with respect to k. Then from Eq. (7.3.27) 
we get 

I uTK/u _(p2 + 2)2 

P = - uT (C+2pM)u = C(p2 +2)2 + 2p[(p2+ 2)2 + 1] . 

For the two values of c we get (see Example 7.3.3 for values of p) 

For c = 0.2 : p = -0.05025 + 1.0013i, p' = 0.02525 + 0.2522i 

For c = 1.0 : p = -0.29178 + 1.0326i, p' = 0.1544 + 0.3460i 

Reduced-basis analysis: 

The vibration frequencies and first vibration mode were calculated in Example 
(7.3.1). Since the normalization condition for the full-model eigenvector was that 
the second component be equal to 1, we take the vibration mode with the same 
normalization. This mode was denoted with an overbar in Example (7.3.1), but we 
drop this overbar since it is the only mode used here 
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Since we use only one mode for the reduced basis, U = u, and using Eq. (7.3.31) 
with k = 1 we get 

MR = 2, C R = C, KR = 2. 

Equation (7.3.30) for the reduced system becomes 

(2Jt2 + CJt + 2)q = 0, 

so that 
JtR = -0.25c + i,h - 0.0625c2 , 

where the subscript R is used to denote the fact that this is the eigenvalue obtained 
from the reduced system. The eigenvector, which has only one component, we select 
as q = 1. For the two values of c we get 

c=0.2: JtR = -0.05 + 0.9987i , 

c=l.O: JtR = -0.25 + 0.9682i . 

It appears that the reduced model gives excellent results for the low-damping case, 
and moderate errors for the high damping case. 

Fixed mode derivative: 

For the fixed-mode derivative ,,,.e still use Eq. (7.3.27), but with Jt replaced by 
JtR and u replaced by its approximation in term of the vibration modes. Since the 
eigenvect.or q = 1, this approximation is equal to the first vibration mode, so 

tt'= 
-1 

~~~~~~-= ------
uT(C + 2JtRM)u c + 4JtR ' 

For the two values of c we get 

c=0.2: Jt~f = 0.2503i , 

c=l.O: Jt'Rf = 0.2582i , 

where the subscript f was used to denote derivatives calculated with the fixed-mode 
approach. We note that the derivative of the imaginary part (frequency) is good only 
in the low-damping case, and that the fixed-mode derivative misses out altogether 
the effect on the real part (damping). Large errors of this type can happen when 
the derivative is small. Recall that the size of a derivative is best estimated by the 
logarithmic derivative. However, here the logarithmic derivative of the real part, say 
for the low damping case is 

dJtT / itT 
dk/k = 0.02525/( -0.05025) = -0.5025, 

so that it is quite substantial. 
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Updated-mode derivative: 

In this case we need the derivative of the vibration mode with respect to k. This 
was calculated in Example (7.3.1) as (remember that we use fi. from that example) 

,_ {-0.5} u - 0 . 

Then from Eq. (7.3.33) 

K~ = uT[K'u+ 2Ku'l = [1 11[ [6 ~] {~} +2 [!1 -;1] { -~.5}] = O. 

Similarly 

M~ = 2u™u' = 2[ 1 1] [6 n { -~.5 } = -1, 

C~=2uTCu'=2[1 1][~ ~]{-~.5}=_c. 
Finally, from Eq. (7.3.32) 

For the two values of c we get 

c=0.2: /l~u = 0.025 + 0.2513i , 

c=l.O: /l~u = 0.125 + 0.2843i , 

which is a much better approximation to the exact derivative than /l~f .• •• 

In many applications the damping matrix is not symmetric, and then it is con
venient to transform the equations of motion Eq. (7.3.24) to a first order system 

Bw+Aw=O, (7.3.34) 

where 

(7.3.35) 

Setting 
w=wel-'t, (7.3.36) 

we get a first-order eigenvalue problem 

AW+/lBw = O. (7.3.37) 

For calculating the derivatives of the eigenvalues it is convenient to use the left eigen
vector v which is the solution of the associated eigenproblem 

(7.3.38) 
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The two eigenproblems defined in Eqs. (7.3.38) and (7.3.37) are easily shown to have 
the same eigenvalues (e.g., [18]). Differentiating (7.3.37) with respect to a design 
variable x 

dw dA dB dJl 
(A + JlB) dx + ( dx + Jl dx )w + dx Bw = 0 , (7.3.39) 

and premultiplying by yT we get 

dJl = dx 

T dA dB) 
y (-+Jl- w 

dx dx (7.3.40) 

To obtain derivatives of the eigenvector we need a normalization condition. A 
quadratic condition such as Eq. (7.3.2) is inappropriate because the eigenvector is 
complex and wTWw can be zero. Even if we eliminate this possibility by replacing 
the transpose with the hermitian transpose, the condition 

wHWw = 1 (7.3.41) 

does not define the eigenvector uniquely because we can still multiply the eigenvector 
by any complex number of modulus one without changing the product in Eq. (7.3.41). 
Therefore, it is more reasonable to normalize the eigenvector by requiring that 

yTBw = 1, Wm = Vm = 1, (7.3.42) 

where m is chosen so that both Wm and Vm are not small compared to other compo
nents of wand y. The derivative of the normalization condition gives us 

dWm 
dx = 0, 

dVm = 0 
dx ' 

(7.3.43) 

and together with Eq. (7.3.39) we can solve for the derivative of the eigenvector. This 
is the direct method for calculating the eigenvector derivatives. As in the symmetric 
case, the adjoint method for calculating the same derivatives is based on expressing 
the derivative of the eigenvector in terms of all the eigenvectors of the problem. 
Denoting the ith eigenvalue as Jli and the corresponding eigenvectors as Wi and Vi 

we assume 

(7.3.44) 

and the coefficients Ckj are 

"T dA dB k 
v 3 (-+Jl-)w 

dx dx Ckj = --:---'::::::...---:----,.,;"T~---:"- , 
(Jlk - Jlj )y3 Bw3 

(7.3.45) 

and 
Ckk = - L Ckjw!,.. (7.3.46) 

j# 

The upper limit in the sum, l, is the order of the matrices A and B. As in the 
symmetric case, it is possible to truncate the series without taking all the eigenvectors 
for the purpose of reducing the cost of the derivative calculation. This introduces an 
error which, in general, is problem dependent. Additional information on the various 
options for derivative calculation can be found in [10]. 
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7.3.3 Sensitivity Derivatives lor Nonlinear Eigenvalue Problems 

In flutter and nonlinear vibration problems, we encounter eigenvalue problems 
where the dependence on the eigenvalue is not linear. For example, Bindolino and 
Mantegazza [19] consider an aeroelastic response problem which produces a transcen
dental eigenvalue problem of the form 

A(p, x)u = 0 (7.3.47) 
Differentiating Eq. (7.3.47) we get 

A du + dpoA = _ oA u 
dx dx op ox 

(7.3.48) 

Using the normalizing condition Urn = 1 we can solve Eq. (7.3.48) for du/dx and 
dp/dx. Instead, it is also possible to use the adjoint method, employing the left 
eigenvector y satisfying 

to obtain 
dp 

= dx 

vrn = 1 

yTdAU 
dx 

yTdAU 
([ji 

(7.3.49) 

(7.3.50) 

A common treatment of flutter problems is to have two real parameters representing 
the frequency and speed as an eigenpair instead of one complex eigenvalue. For 
example Murthy [20] replaces Eq. (7.3.47) by 

A(M,w)u = 0, (7.3.51) 
where the Mach number, M, and the frequency, w, are real parameters. Using this 
approach, differentiate Eq. (7.3.51), premultiply by yT, and use Eq. (7.3.49) to get 

dM dw 
1M dx + Iw dx = - Ix, (7.3.52) 

where 
T aA TaA TaA 1M = y aM u , Iw = y ow u, Ix = y ax u. (7.3.53) 

Multiplying Eq. (7.3.52) by lw (the complex conjugate of Iw) we get 
- dM 2 dw -

IMlw dx + I Iw I dx = -Iwlx (7.3.54) 

The second term in Eq. (7.3.54) as well as dM/dx are real, so by taking the imaginary 
part of Eq. (7.3.54) we get 

dM 
-= 
dx 

ImUwlx) 
Im(JMlw) = 

1m [(yT¥XU) (yT¥Wii )] 

1m [(yTg~U) (yT~~ii)] . 
(7.3.55) 

Next, multiplying Eq. (7.3.52) by 1M and following a similar procedure we find 

dw 1m [ (yT ~~ u) (yT g! ii) ] 
= 

dx 1m [(yTZ~U) (yT~~ii)] 
(7.3.56) 
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7.4 Sensitivity of Constraints on Transient Response 

Compared to constraints on steady-state response, constraints on transient response 
depend on one additional parameter--time. That is, a typical constraint may be 
written as 

g( u, x, t) ~ 0, (7.4.1) 

where for simplicity we assume that the constraint must be satisfied from t = 0 to 
some final time t f. For actual computation the constraint must be discretized at a 
series of nt time points as 

i = 1, ... , nt. (7.4.2) 

The distribution of time points has to be dense enough to preclude the possibility 
of significant constraint violation between time points. This type of constraint dis
crctization can greatly increase the number of constraints, and thereby the cost of the 
optimization. Therefore it is desirable to find ways to remove the time dependence 
without substantially increasing the number of constraints. 

7.4.1 Equivalent Constraints 

One way of removing the time dependence of the constraint is to replace it with an 
equivalent integrated constraint which averages the Reverity of the constraint over the 
time interval. An example is the equivalent exterior constraint 

g(u,x) = [t~ It! < -g(u,x,t) >2 dtf /
2 , (7.4.3) 

where < a > denotes max(a, 0). The equivalent constraint g is violated if the original 
constraint is violated for any finite period oftimc. If, however, g(u, x, t) is not violated 
anywhere, g( u, x) is zero. The equivalent exterior constraint is identically zero in 
the feasible domain, and so no indication is provided when the conRtraint is almost 
critical. An equivalent constraint which is nonzero when the constraint is satisfied is 
based on the Kresselmeier-Steinhauser function, [21, 22], and Eq. (7.4.2) 

-1 [ n, 1 g(u, x) = -in L e-pgidt , 
p ;=1 

(7.4.4) 

where p is a parameter which determines the relation between g and the most critical 
value of g, gmin. Indeed, we can write Eq. (7.4.4) as 

1 [ n, 1 11 = 9mill - -in L e-P(gi-9minldt 
p ;=1 

And from Eq. (7.4.5) we get 

_ In(nt) 
gmin ~ 9 ~ gmin - -- , 

p 

(7.4.5) 

(7.4.6) 
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so that 9 is an envelope constraint in that it is always more critical than g. The 
parameter p determines how much more critical 9 is. However, if p is made too 
large for the purpose of reducing the difference between 9 and gmin, the problem can 
become ill conditioned. 

The savings obtained by replacing the discretized constraint, Eq. (7.4.2), by an 
equivalent one may seem illusory because the integral in Eq. (7.4.3) or the sum in 
Eq. (7.4.4) usually require the evaluation of g(u, x, t) at many time points. The 
savings are realized in the optimization effort and in the computation of constraint 
derivatives discussed later. 

g 

Constraint 
function 

nominal design 

- - - - - perturbed design 

Figure 7.4.1 Critical points. 

time 

The disadvantage of equivalent constraints is that they may tend to blur design 
trends. Consider, for example a change in design which moves the constraint 9 from 
the solid to the dashed line in Fig. (7.4.1). An equivalent constraint 9 may become 
more positive, indicating a beneficial effect, while the situation has become more 
critical because we have moved closer to the constraint boundary (g = 0), at least at 
some time point tml' To avoid this blurring effect we use the critical point constraint 
replacing the original constraint by 

g(U,X,tmi) 2:: 0, i = 1,2 ... , (7.4.7) 

where tmi are time points where the constraint has a local minimum. Figure (7.4.1) 
shows a typical situation where the constraint function has two local minima: an 
interior one at t m1 , and a boundary minimum at tm2' The local minima are critical 
points in the sense that they represent time points likely to be involved first in 
constraint violations. 

One attractive feature of the critical point constraint is that, for the purpose of 
obtaining first derivatives, the location of the critical point may be assumed to be 
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fixed in time. This is shown by differentiating Eq. (7.4.7) with respect to the design 
variable x 

dg( tmi) 8g 8g du 8g dtmi 
-"-d'-x---'- = 8x + -8u- -dx + at -d-x- . (7.4.8) 

The last term in Eq. (7.4.8) is always zero. At an interior minimum such as tml in 
Fig. (7.4.1) 8gj8t is zero. We get a boundary minimum when 8gj8t is positive at 
the left boundary or negative at the right boundary. This boundary minimum cannot 
move away from the boundary unless the slope, 8gj8t becomes zero. This means that 
as long as 8g j at is nonzero at a boundary minimum, the minimum cannot move, so 
thatdtm ;/ dx is zero. 

7.4.2 Derivatives of Constraints 

For the purpose of calculating derivatives of constraints we assume that the constraint 
is of the form t, 

g(u, x) = Jo p(u, x, t)dt ~ o. (7.4.9) 

This form represents most equivalent constraints, as well as the critical-point con
straint, which can be obtained by defining 

p(u, x, t) = g(u, x, t)6(t - tmi). (7.4.10) 

The derivative of the constraint with respect to a design variable x is 

(7.4.11) 

To evaluate the integral we need to differentiate the equations of motion with respect 
to x. These equations are written in a general first-order form 

AiI = f(u,x,t), u(O) = Uo, (7.4.12) 

where u is a vector of generalized degrees of freedom, and f is a vector which includes 
contributions of external and internal loads. 

We now discuss several methods for calculating the constraint derivative starting 
with the simplest-the direct method. As in the steady-state case, the direct method 
proceeds by differentiating Eq. (7.4.12) to obtain an equation for dujdx 

A diI = J du _ dA iI + 8f 
dx dx dx 8x' ~:(O) = 0, (7.4.13) 

where J is the Jacobian of f 

(7.4.14) 

The direct method consists of solving for dujdx from Eq. (7.4.13), and then substi
tuting into Eq. (7.4.11). The disadvantage ofthis method is that each design variable 
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requires the solution of a system of differential equations, Eq.(7.4.13). When we have 
many design variables and few constraint functions we can, as in the static case, 
use a vector of adjoint variables which depends only on the constraint functions and 
not on the design variables. To obtain the adjoint method, we pursue the standard 
procedure of multiplying the derivatives of the response equations, Eq. (7.4.13), by 
an adjoint vector and adding them to the derivatives of the constraint 

dg = ('(oP + opdu)dt+ (, AT(A dit _J du _ of + dAit)dt 
dx io ax audx io dx dx ax dx 

(7.4.15) 

We want to group together all the terms involving duj dx and define the adjoint 
variable so that the coefficient of duj dx will vanish. To do that, we need to integrate 
the term involving ditjdx. Integrating by parts and rearranging we obtain 

dg = {t, {ap _ AT (Of _ dA it) + [op _ AT (.A + J) _ O. f A] dU} dt 
dx io ox ox dx AU dx 

ATAdult, 
+ dxlo . 

Equation (7.4.16) indicates that the adjoint variable should satisfy 

A T.:\ + (JT + AT)A = (;~f, 

Then from Eq. (7.4.16) we get 

dg = (, [op _ >.7 (af _ dA it)] dt , 
dx io ax ax dx 

(7.4.16) 

(7.4.17) 

(7.4.18) 

where we used the fact that dujdx is zero at t = O. Equation (7.4.17) is a system of 
ordinary differential equations for A which are integrated backwards (from t J to 0). 
This system has to be solved once for each constraint rather than once for each design 
variable. As in the static case, the direct method is preferable when the number of 
design variable is smaller than the number of constraints, and the adjoint method 
is preferable otherwise. Equation (7.4.17) takes a simpler form for the critical-point 
constraint 

(7.4.19) 

By integrating Eq. (7.4.19) from tmi - f to tmi + f for an infinitesimal f, we can easily 
show that Eq. (7.4.19) is equivalent to 

(7.4.20) 

A third method available for derivative calculation is the Green's function ap
proach [23]. This method is useful when the number of degrees of freedom in Eq. 
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(7.4.12) is smaller than either the number of design variables or the number of con
straints. This can happen when the order of Eq. (7.4.12) has been reduced by 
employing modal analysis. The Green's function method will be discussed for the 
case of A = I in Eq. (7.4.12) so that Eq. (7.4.13) becomes 

du 
dx (0) = o. (7.4.21) 

The solution of Eq. (7.4.21) may be written [23] in terms of Green's function K(t, T) 
as 

where K(t, T) satisfies 

K(t, T) - J(t)K(t, T) = 8(t - T)I, 
K(D, T) = 0, 

(7.4.22) 

(7.4.23) 

and where 8(t - T) is the Dirac delta function. It is easy to check, by direct substi
tution, that du/dx defined by Eq. (7.4.22), indeed satisfies Eq. (7.4.21). 

If the elements of J are bounded then it can be shown that Eq. (7.4.23) is 
equivalent to 

K(t,T) =0, 
K(T, T) = I, 

K(t, T) - J(t)K(t, T) = 0, 

t < T, 

(7.4.24) 

t > T. 

Therefore, the integration of Eq. (7.4.22) needs to be carried out only up to T = t. To 
see how du/dx is evaluated with the aid of Eq. (7.4.24), assume that we divide the 
interval 0 ~ t ~ t f into n subintervals with end points at TO = 0 < t[ < ... < tn = t f. 
The end points T; are dense enough to evaluate Eq. (7.4.22) by numerical integration 
and to interpolate du/ dx to other time points of interest with sufficient accuracy. \Ve 
now define the initial value problem 

K(t, Tk) - J(t)K(t, Tk) = 0, 
K(Tk,Tk) = I, k=O,l, ... ,n-l. 

(7.4.25) 

Each of the equations in (7.4.25) is integrated from Tk to Tk+l to yield K(Tk+l' Tk)' 
The value of K for any other pair of points is given by (sec [23] for proof) 

j > k. (7.4.26) 

The solution for K is equivalent to solving nm systems of the type of Eq. (7.4.13) 
or (7.4.20) where nm is the order of the vector u. Therefore, the Green's function 
method should be considered for cases where the number of design variables and 
constraints both exceed n m • This is likely to happen when the order of the system 
has been reduced by using some type of modal or reduced-basis approximation. 
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Example 7.4.1 

We consider a single degree-of-freedom system governed by the differential equation 

u(O) = 0, 

and a constraint on the response u in the form 

g(u)=c-u(t)~O, 

The response has been calculated and found to be monotonically increasing, so that 
the critical-point constraint takes the form 

\Ve want to use the direct, adjoint, and Green's function methods to calculate the 
derivative of !J with respect to a and b. 

The problem may be integrated directly to yield 

b2t 
U=--. 

bt + a 

In our notation 

A =a, 
of 

J= au =2(u-b). 

Direct Method. The direct method requires us to write Eq. (7.4.13) for x = a and 
x = b. For x = a we obtain 

dit du 
a- - 2(u - b)- - it 

da - da' ~~ (0) = O. 

In general the values for u and it would be available only numerically, so that the 
equation for duj da will also be integrated numerically. Here, however, we have the 
closed-form solution for u, so that we can substitute it into the derivative equation 

dit 2ab du ab2 
a-=---- , 

da bt + a da (bt + a)2 
du 
da (0) = 0, 

and solve analytically to obtain 

du b2t 
da (bt + a)2 . 

Then 
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We now repeat the process for x = b. Equation (7.4.13) becomes 

dit du 
a- = 2(u - b)- - 2(u - b) 

db db ' 

Solving for dujdb we obtain 
du b2t2 + 2abt 
db (bt + a)2 , 

and then 
dg du b2t} + 2abt I 
db = - db (t/) = - (btl+a)2 . 

Adjoint Method. The adjoint method requires the solution of Eq. (7.4.20) which 
becomes 

a)..+2(u-b) .. =O, 

or 
. 2ab 

a)..---)..=O 
bt + a ' 

which can be integrated to yield 

).. = ~( bt + a )2. 
a btl + a 

Then dg j do, is obtained from Eq. (7.4.18) which becomes 

dg = t, )..itdt = (' ~( bt + a? ab2 dt = b2tl 
da Jo Jo a btl + a (bt + 0,)2 (bt I + 0,)2 . 

Similarly, dg j db is 

dg t, 2 (, bt + a 2 ab b2tj + 2abt I 
db = Jo 2)..(u-b)dt=-~Jo (btl+) bt+a dt =- (btl+a)2 . 

Green's Function Method. We recast the problem as 

it=(u-b?ja, 

so that the Jacobian J is 
J=2(u-b)ja. 

Equation (7.4.24) becomes 

k(t, T) - [2(u - b)ja]k(t, T) = 0, k(T,T) = 1, 

or 
. 2b 
k(t, T) + --k(t, T) = O. 

bt + a 
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The solution for k is 

k = (bT+ a)2 
bt +a ' 

so that from Eq. (7.4.22) 

t ~ T, 

du= tJ8fkdT=_ t'(bT+a) (u-b)2 dT = 
da Jo 8a Jo bt + a a2 

Similarly 

(bt + a)2 . 

du = t J 8F kdT = _ t J 2 (bT + a)2 (u - b) dT = _ b2t2 + 2abt . 
db Jo 8b Jo bt + a a (bt + a)2 

••• 
7.4.3 Linear Structural Dynamics 

For the case of linear structural dynamics it may be advantageous to retain the second
order equations of motion rather than reduce them to a set of first-order equations. 
It is also common to use modal reduction for this case. In this section we discuss the 
application of the direct and adjoint methods to this special case. The equations of 
motion are written as 

Mii + Cu+Ku = f(t). (7.4.27) 

Most often the problem is reduced in size by expressing u in terms of m basis functions 
u i, i = 1, ... m, where m is usually much less than the number of degrees of freedom 
of the original system, Eq.(7.4.27) 

u=Uq, (7.4.28) 

where U is a matrix with u i as columns. Then a reduced set of equations can be 
written as 

(7.4.29) 

where 

(7.4.30) 

When the basis functions are the first m natural vibration modes of the structure 
scaled to unit modal masses, U satisfies the equation 

KU-MU02 =0, (7.4.31) 

where 0 is a diagonal matrix with the ith natural frequency Wi in the ith row. In that 
case KR = 0 2 and MR = I are diagonal matrices. For special forms of damping, the 
damping matrix C R is also diagonal so that the system Eq. (7.4.29) is uncoupled. 
After q is calculated from Eq. (7.4.29) we can use Eq. (7.4.28) to calculate u. This 
modal reduction method is known as the mode-displacement method. 

298 



Section 7.4: Sensitivity of Constraints on Transient Response 

When the load f has spatial discontinuities the convergence of the modal approx
imation, Eq. (7.4.29) can be very slow [24, 25]. The convergence can be dramatically 
accelerated by using the mode acceleration method, originally proposed by Williams 
[26]. The mode acceleration method can be derived by rewriting Eq. (7.4.27) as 

u = K-1f - K-1Cu - K-1Mii. (7.4.32) 

The first term in Eq. (7.4.32) is called the quasi-static solution because it represents 
the response of the structure if the loads are applied very slowly. The second term 
and third terms are approximated in terms of the modal solution. It can be shown 
(e.g., Greene [27]) that K-1 can be approximated as 

K- 1 = U9-2U T (7.4.33) . 

Using this approximation for the second and third terms of Eq. (7.4.32) we get 

(7.4.34) 

This approximation is exact when U contains the full set of vibration modes. Note 
that q and q in Eq. (7.4.34) are obtained from the mode-displacement solution, Eq. 
(7.4.29). Therefore, there is no difference in velocities and accelerations between the 
mode-displacement and the mode acceleration methods. 

In considering the calculation of sensitivities we treat first the mode-displacement 
method. The direct method of calculating the response sensitivity is obtained by 
differentiating Eq. (7.4.29) to obtain 

dq dq dq 
M R - +CR - +KR - = r, 

dx dx dx 
(7.4.35) 

where 
dfR dM R .. dM R . dK R 

r= - - --q- --q - --q. 
dx dx dx dx 

(7.4.36) 

The derivative of KR with respect to x is given by Eq. (7.3.33), and similar expres
sions are used for the derivatives of M R , C R , and fRo The calculation is simplified 
considerably by using a fixed set of basis functions U or neglecting the effect of the 
change in the modes. In some cases (e.g., [28]) the error associated with neglecting 
the effect of changing modes is small. When this error is unacceptable we have to 
face the costly calculation of the derivatives of the modes needed for calculating the 
derivatives of the reduced matrices, such as Eq. (7.3.33). Fortunately it was found 
by Greene [27] that the cost of calculating the derivatives of the modes can be sub
stantially reduced by using the modified modal method Eq. (7.3.15) keeping only the 
first term in this equation. This approximation to the derivatives of the modes may 
not always be accurate, but it appears to be sufficient for calculating the sensitivity 
of the dynamic response. 

For the adjoint method we consider a constraint in the form of Eq. (7.4.9) 

t, 
g(q,x) = Jo p(q,x,t)dt~O, (7.4.37) 
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so that 

(7.4.38) 

To avoid the calculation of dqj dx we multiply the response derivative equation, Eq. 
(7.4.35), by an adjoint vector, A, and add to the derivative of the constraint 

dg ltl op op dq ltl T dq dq dq 
-= (-+--)dt+ A (-MR--CR--KR-+r)dt. (7.4.39) 
dx 0 ox oq dx 0 dx dx dx 

We want to get rid of the response derivative terms by selecting A appropriately. 
We use integration by parts to get rid of time derivatives in the response derivative 
terms. We obtain 

dg = (I {op _ AT r + [OP _ .\TMR + ~TCR _ ATKR] dq } dt 
dx Jo ox oq dx () 7.4.40 

-ATMR dqltl +~TMR dqltf _ ATCR dqltl. 
dx 0 dx 0 dx 0 

If the initial conditions do not depend on the design variable x, Eq. (7.4.40) suggests 
the following definition for A 

... op T . 
MRA-CRA+KRA=(oq) ' A(t,)=A(t,)=O, (7.4.41) 

and then Eq. (7.4.40) becomes 

dg = (I(OP _ ATr)dt. 
dx Jo ox 

(7.4.42) 

For the mode-acceleration method we consider only the direct method. We start 
by differentiating Eq. (7.4.27) and rearranging it as 

du = K-1 [df _ dK u _ C du _ dC u _ M du _ dM u] . (7.4.43) 
dx dx dx dx dx dx dx 

Next we use Eq. (7.4.34) to approximate the second term, and the modal expansion 
Eq. (7.4.28) to approximate the other terms to get 

du ~ K-1 [df _ dK [K-1f _ UO-2CRq _ UO-2q]-
dx dx dx 

CU dq _ dC Uq _ MU dq _ dMUq] . 
dx dx dx dx 

Finally we use the modal approximation to K-1, Eq. (7.4.33) to obtain 

du ~ K-1 [df _ dK K - 1f] + 
dx dx dx 

UO-2UT [dKUO-2CRq _ dC Uq _ Cu dq ] + 
dx dx dx 

K-1 [dK UO- 2 _ dM U ] q _ UO-2dq . 
dx dx dx 
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Note that the calculation involves the solution of Eqs. (7.4.29) and (7.4.35) for q and 
dq/dx, followed by Eq. (7.4.45) for retrieving the du/dx. Additional details can be 
found in [27]. 

7.5 Exercises 

rx'u 
y,v o ~p 

Figure 7.5.1 Three-bar truss. 

1. Write a program using the finite-element method to calculate the displacements 
and stresses in the three-bar truss shown in Fig. (7.5.1). Also calculate the derivative 
of the stress in member A with respect to AA by the forward- and central-difference 
techniques. Consider the case AA = AB = kAc. (a)Take k = lO-m where m is the 
number of decimal digits you use in the computation minus two. Find the optimum 
step size. (b )Find the smallest value of k that allows an error of less than 10 percent. 

2. Calculate the derivatives of the stress in member A of the three bar truss of Fig. 
(7.5.1) at a design point where all three cross-sectional areas have the same value 
A. First calculate the derivative with respect to the cross-sectional area of A using 
the direct and adjoint method. Next calculate the derivative with respect to the 
cross-sectional areas of members Band C using one method only. 

3. Calculate all the second derivatives of the stress in member A of problem 2 with 
respect to the three cross-sectional areas. 

4. Obtain a method for calculating third derivatives of constraints on displacement 
and stresses (static case). 

5. Obtain a finite-element approximation to the first vibration frequency of the truss 
of problem 1 in terms of A, I, Young's modulus E and the mass density p. Assume 
that there is no bending. Then calculate the derivative of the frequency with respect 
to the cross-sectional area of the three members. 

6. Calculate the derivative of the lowest (in absolute magnitude) eigenvalue of prob
lem 5 with respect to the strength c of a horizontal dashpot at joint D: (i) when 
c = 0; (ii) when c is selected (by linear extrapolation on the basis of part (i)) to make 
the damping ratio (negative of real part over the absolute value of the eigenvalue) be 
0.05. 
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1 21 0 

P---~~~~=~~===21=0==);~---P 

Figure 7.5.2 Two-span beam. 

7. The beam shown in Fig. (7.5.2) needs to be stiffened to increase its buckling load. 
Calculate the derivative of the buckling load with respect to the moment of inertia of 
the left and right segments, and decide what is the most economical way of stiffening 
the beam. Assume that the cost is proportional to the mass, and the cross-sectional 
area is proportional to the square root of the moment of inertia. 

8. Obtain an expression for the second derivatives of the buckling load with respect 
to structural parameters. 

9. Repeat Example 7.3.4 for the derivative with respect to c instead of k. 

10. Consider the equation of motion for a mass-spring-damper system 

mill + cw + kw = I(t) 

where I(t) = 10H(t) is a step function, and w(O) = w(O) = O. Calculate the derivative 
of the maximum displacement with respect to c for the case kIm = 4., elm = 0.05, 
101m = 2. using the direct method. 

11. Obtain the derivatives of the maximum displacement in Problem 10 with respect 
to c, m, 10 and k using the adjoint method. 

12. Solve problem 10 using Green's function method. 

13. Solve problem 10 using the mode-displacement method and mode-acceleration 
methods with a single mode. 
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Introduction to Variational Sensitivity Analysis 8 

The methods for discrete sensitivity analysis discussed in the previous chapter 
are very general in that they may be applied to a variety of nonstructural sensitivity 
analyses involving systems of linear equations, eigenvalue problems, etc. However, for 
structural applications they have two disadvantages. First, not all methods of struc
tural analysis lead to the type of discretized equations that are discussed in Chapter 
7. For example, shell-of-revolution codes such as FASOR [11 directly integrate the 
equations of equilibrium without first converting them to systems of algebraic equa
tions. Second, operating on the discretized equations often requires access to the 
source code of the structural analysis program which implements these equations. 
Unfortunately, many of the popular structural analysis programs do not provide such 
access to most users. It is desirable, therefore, to have sensitivity analysis methods 
that are more generally applicable and can be implemented without extensive access 
to and knowledge of the insides of structural analysis programs. Variational methods 
of sensitivity analysis achieve this goal by differentiating the equations governing the 
structure before they are discretized. The resulting sensitivity equations can then be 
solved with the aid of a structural analysis program. It is not even essential that the 
same program be used for the analysis and the sensitivity calculations. 

As an example of this approach consider the Euler-Bernoulli plane beam governed 
by the differential equation 

(8.1) 

where w denotes the transverse displacement, EI is the flexural rigidity and q is the 
load. Equation (8.1) is supplemented by appropriate boundary conditions. Imagine 
that we have to design a class of structures that are modeled well by this beam equa
tion with complex loading and boundary conditions corresponding to intermediate 
supports. We have an old computer program, written to solve this problem, for which 
we do not have any programming documentation. We now want to use this program 
to calculate the sensitivity of the response to changes in the stiffness properties of the 
beam. Finite difference sensitivity calculations are, of course, the first choice in this 
type of situation. However, difficulties in finding good step-sizes for accurate deriva
tives (see Section 7.1) force us to consider the calculation of analytical derivatives. 
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We start by differentiating Eq. (8.1) with respect to a parameter p (since x is used in 
this chapter to denote a coordinate variable, we use p for the generic design variable) 
which affects the moment of inertia of the beam over part of the span 

(8.2) 

where a comma subscript followed by p denotes differentiation with respect to p. 
Comparing Eqs. (8.1) and (8.2) we note that both have the same left-hand side in 
the unknown functions, wand w,p, respectively. If we treat the right-hand side of Eq. 
(8.2) as a load, the similarity is complete. As in Chapter 7, we call this right-hand 
side a pseudo load. If that pseudo load is applied to the beam, the response to the 
pseudo load will be the derivative of the original response with respect to p. We now 
have a prescription for using our beam analysis program for calculating sensitivity. 
We need to write a postprocessor that will take the solution wand the derivative of 
the moment of inertia l,p, construct the pseudo load, and output it in a form required 
by our program for the load definition. 

There are many approaches to sensitivity calculations using variational methods. 
Reference [2] provides an excellent exposition of the methods, as well as a sound 
mathematical basis. The present chapter has the more modest aim of introducing 
some of the basic methods with a few examples. The discussion is based on the 
principle of virtual work which provides a good foundation for both discrete and 
continuum based sensitivity analysis. Most of the material in this chapter is limited 
to the calculation of sensitivity with respect to stiffness (sizing) parameters, with the 
last section introducing sensitivity with respect to shape. 

The results obtained in this chapter depend often on the differentiability of the 
structural response with respect to the sizing or shape parameter. Throughout the 
chapter it is assumed that the structural response is differentiable with respect to 
the parameter in question, and that the sensitivity field has the same differentiability 
properties with respect to space coordinates as the original response. 

Finally, the material in this chapter is rather abstract, and many readers may 
want to skip the derivations and focus only on the implementation of the final results 
of the derivations. It is suggested that the introductory part of Section 8.1 be read 
to understand the notation, and then the implementation notes at the end of each 
section be read to obtain information on how to implement sensitivity calculations 
using structural analysis programs without the need for access to the source code of 
the program. 

8.1 Linear Static Analysis 

The equations governing static structural response include the strain-displacement 
relation, the constitutive equations, and the equations of equilibrium. These equa
tions take different forms depending on whether we consider the full three-dimensional 
problem or special cases such as plane-stress, plate bending analysis or beam analysis. 
For the sake of obtaining results that are generally applicable, we adopt Budiansky's 
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operator notation for these equations. The notation is compact and allows for ease in 
algebraic manipulations. However, it is abstract, and it is not always easy to grasp. 
The reader who has trouble with the notation may want to translate the abstract 
equations for a specific case such as plane-stress or beam analysis. For linear analysis, 
the strain displacement relation is written as 

(8.1.1 ) 

where e is the generalized strain tensor, and u the displacement vector, and Ll is a 
linear differential operator. For example, for Euler-Bernoulli beam analysis the gen
eralized strain tensor has one component, the curvature Ii, and Eq. (8.1.1) translates 
into 

Ii = w,,,,,. (8.1.2) 

The strain is obtained from the generalized strain Ii as f = -yli where y is the distance 
from the neutral axis of the beam. However, in using the principle of virtual work 
it is convenient to use the generalized strain and stress tensors rather than actual 
strains and stresses. 

For plane-stress analysis e has actual strain components f", fy, and f"y, while Ll 
is given as 

(8.1.3) 

However, the constitutive equations are written in terms of generalized stresses which 
are the stress resultants. 

The linear constitutive equations are the appropriate version of Hooke's law, and 
may be written as 

(8.1.4) 

where (T is the generalized stress tensor, D is the material stiffness matrix, and e i 

is the initial strain (e.g. due to an applied temperature field). For example, for the 
plane-stress problem, (T includes the stress resultant components N", Ny, and N"y, 
while for a beam bending the stress resultant is the section bending moment M, and 
the constitutive equation is 

M = EI(Ii _ Iii) , (8.1.5) 

where E is Young's modulus and I is the section moment of inertia. 

The equations of equilibrium are written via the principle of virtual work as 

(T • be = f • bu , (8.1.6) 

where f is the applied load field, and a bullet denotes a scalar product followed by 
integration over the structural domain. For example, for the plane stress case 
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and 

f • ou = J f . oudA = J (fx ou + fyov)dA + J (Txou + Tyov)drT , (8.1.7) 

where fx and fy are body forces per unit area, and Tx, Ty are tractions on the loaded 
boundary rT 

The virtual displacement field OU must be differentiable and satisfy the kinematic 
boundary conditions, but is otherwise arbitrary. The virtual strain field oe is obtained 
from the virtual displacement field via Eq. (8.1.1) as 

(8.1.8) 

This operator notation for the equations is quite general, in that it is equally ap
plicable to continuum problems as well as to discrete formulations. It is also very 
convenient for sensitivity calculations. In this section we consider only sensitivities 
with respect to a stiffness parameter appearing in the material stiffness matrix D. 
For one or two dimensional problems the parameter can include sizing variables, such 
as rod cross-sectional areas or plate thicknesses, since these variables are incorporated 
in D (as is the beam section moment of inertia in Eq. (8.1.5)). 

8.1.1 The Direct Method 

The direct method for sensitivity calculation is obtained by differentiating the equa
tions defining the response of the structure with respect to p. We then obtain a set 
of equations for the response sensitivity u,p, e,p, and (T,p' The governing equations 
for the sensitivity fields are shown to be the same as the equations for the response 
itself, albeit with a different loading terms, that are called pseudo loads. The impli
cation is that if we replace the loading in the original problem by the pseudo loads 
our structural analysis package will compute the response sensitivities instead of the 
response. We start by differentiating the strain-displacement relation 

Similarly, differentiating the constitutive equations we obtain 

(T,p = De,p + D,p(e - ei ), 

and the differentiated equations of equilibrium are 

(T,p.oe = 0, 

(8.1.9) 

(8.1.10) 

(8.1.11) 

where oe, given by Eq. (8.1.8), is not a function of p because ou is an arbitrary field. 
Note that all the sensitivity fields have units of the original fields divided by units of 
p. For example, if p represents the cross-sectional area of a truss member then (T,p 
has units of stress divided by area. 

We now compare the differentiated equations, Eq. (8.1.9), (8.1.10), and (8.1.11) 
to the original governing equations, Eq. (8.1.1), (8.1.4), and (8.1.6). We see that the 
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sensitivity field u,P' e,p, u,p can be viewed as the solution of the original structure 
under a different set of loads called the pseudo loads. These loads do not include any 
mechanical components, but just an initial strain field eP• This initial strain field is 
obtained by rearranging Eq. (8.1.lO)as 

U,p = D(e,p - eP ), (8.1.12) 

For example, for truss members the relation between the generalized stress (member 
force N) and the strain is 

N=EA(€-€i). (8.1.13) 

Differentiating this equation with respect to A we get 

N,A = EA[€,A + (€ - €i)jA], (8.1.14) 

so that to implement the direct method we need to apply an initial strain of magnitude 
-(€ - (i)jA instead of the actual loads. 

As another example consider the isotropic plane-stress case, where the constitu
tive equations are 

{ Nx } Eh [1 v 
Ny = -- v 1 
N xy 1- v 2 0 0 l~vl { :: } . 

2 txy 

(8.1.15) 

By differentiating Eq. (8.1.15) with respect to the thickness h we can show that to 
find the sensitivity with respect to change in thickness we need to apply a pseudo 
initial strain of eP = -ejh. To obtain sensitivity with respect to Poisson's ratio v we 
note that 

o ,Dv= l+v o 1 Eh [2V 2 

2(1 + v) , (1 - v2 )2 0 

so that we need to apply a pseudo initial strain of 

1 {-V€ - € } 
... P- -- -v/-/ '"" - 2 y x 

1 - v (1 - vh"y 

1 + v2 

2v 
o 

o 1 o . 
_ (1_;)2 

(8.1.16) 

(8.1.17) 

When we analyze the structure using a finite-element model, the pseudo initial 
strain is converted to a pseudo nodal force fP such that 

DeP • De = fP • DU . (8.1.18) 

With other solution techniques the pseudo load is obtained from the initial strain 
in a different manner. For example, in a three dimensional continuum formulation 
the pseudo initial strain, eP , can be replaced by pseudo body forces with components 
Ii = (DeP)ij,j and surface tractions with components Ti = (DeP)ijnj. Where nj are 
the components of the vector normal to the boundary S, and a comma followed by 
an index j denotes derivative with respect to the coordinate Xj. 
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c 

x,u 1- I 
y,v 

Figure 8.1.1 Three bar truss. 

Example 8.1.1 

Calculate the derivative of the stress in members A, Band C of the truss in Fig. 
(8.1.1) with respect to the area of member B. At the nominal configurat.ion all three 
members have the same area A. 

\Ve assume that the areas of members A and C remain the same, AA, and denote 
the area of member B as A B . Due to symmetry, the vertical force contributes only 
to the vertical displacement, and the horizontal force only to the horizontal displace
ment. Furthermore, member B does not influence the horizontal displacements. It 
is easy then to check that the two displacements at the point of load application are 
given as 

v = Pv1/[(AB + 0.25AA )E] . (a) 
The forces in members A, I3 and C are then calculated to be 

, ~ ~ 0.25PVA A ~ 
NA = 0.5{730PH + 4 A = 0.97730P, 

• B + 0.25 A 

T _ PVAB _ 
AB - A 25A - 1.6P, B+O. A 

(b) 

Ne = -0.57735PH + AO.25Pv;4~ = -O.17735P. 
B + O. 5 A 

\Ve can calculate the derivatives of these forces with respect to AB analytically for the 
purpose of comparing it later with the derivatives we obtain using the direct method. 

310 

dNe dNA 
= 

dAB dAB 
-0.25PVA A = -O.32P/A. 

(AB + 0.25A A F 

dNB O. 25PVA A .. = O.32P/A. 
dAB (AB + 0.25AA F 



Section 8.1: Linear Static Analysis 

For our problem, we need to apply to member B a pseudo initial strain 

fP = -fB/AB = -NB/EA1 = -1.6P/EA2 , 

while for other members the pseudo initial strain is zero. Note that as with all 
sensitivity fields the units of the pseudo initial strain are units of strain divided 
by units of p (area here). The displacement field generated by this initial strain is 
obtained by applying to member B a pair of opposite forces, with the force at the 
bottom joint (having units of force over area) being (see Eq. (8.1.18)) 

f P8v = 11 EABfP8f.dy = EABfP(8v/l)1 = -1.6P/A8v. 

We can get the corresponding displacements by setting the horizontal force PH to 
zero and replacing the vertical force Pv in Eq. (a) with fP. These displacements are 
the derivatives of the original displacements. Thus 

du dv (-1.6P/A)l -1.28Pl 
dAB = 0, dAB = (AB + O.25AA)E = EA2 

The derivative of NA and Nc can be similarly obtained from Eq. (b) 

dNc = dNA = 0.25( -1.6P/A)AA = -0.32P . 
dAB dAB AB + 0.25AA A 

However, the internal load in member B due to the pseudo initial strain, which 
corresponds to the derivative of N B cannot be obtained in a similar way from Eq. 
(b) because member B has now initial strain. Instead we use Eq. (8.1.14), which 
requires the derivative of fB 

and then 
dNB = EA (dfB _ P) = -1.28P 1.6P = 0 32 P 
dAB B dAB f A + A . A· 

We note that both derivatives agree with the expressions we obtained by explicit 
differentiation. 

To calculate the derivatives of the stresses from the derivatives of the loads we 
note that 

NA NB Nc 
O"A =-, O"B = AB' O"C =-, 

AA AA 
and therefore 

dO"A 1 dNA -0.32P 
= --- = dAB AAdAB A2 

dO"c 1 dNc -0.32P 
= ---

dAB AAdAB A2 
and 

••• 
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8.1.2 The Adjoint Method 

Often we do not need the derivatives of the entire displacement or stress fields, but 
only a few quantities such as the derivative of the vertical displacement at a point, or 
the Von Mises stress at another point. In such cases it may be more economical to use 
the adjoint method to calculate these derivatives. We therefore consider the adjoint 
method for calculating derivatives of displacement and stress functionals. Consider 
first a displacement functional defined by an integral over the structural domain V 

H = J h(u,p)dV. (8.1.19) 

This could also be used to represent the value of a displacement component at a point 
by employing the Dirac delta function as part of h. The derivative of H with respect 
to a design parameter p is 

H,p = J h,pdV + h,u e u,p , (8.1.20) 

where h,u is a load-like vector field (recall that a bullet denotes scalar product followed 
by integration over the structure). For example, in a plane-stress case if h = u2 + v2 , 

then 

(8.1.21) 

The calculation of h,p and h,u is typically easy, and the main difficulty is to obtain the 
derivative of the displacement field, u,p' We can use the direct method to calculate 
u,p, but instead, as shown below, we can define an adjoint problem with h,u as 
the load, and use it to eliminate u,p' Since we want the derivative of H with the 
requirement that Eqs. (8.1.1), (8.1.4) and (8.1.6) are satisfied, we multiply these 
equations by some appropriate Lagrange multipliers (called adjoint variables) and 
add them to H. The Lagrange multipliers for Eqs. (8.1.1) and (8.1.4) are an adjoint 
stress field and an adjoint strain field, respectively. Equation (8.1.6) represents the 
equations of equilibrium written as the work done on a virtual displacement field bu, 
and the corresponding virtual strain field be = Ll(bu). Multiplying the eqnations of 
equilibrium by a Lagrange multiplier is equivalent to calculating the work done when 
this Lagrange multiplier is treated as a virtual displacement field. So we replace the 
bu by the adjoint displacement field. Denoting the adjoint fields by a superscript a 
we get 

H*=H+uae(e-Ll(u))+eae(u-D(e-ei))+feua-ueLl(ua). (8.1.22) 

Because Eqs. (8.1.1), (8.1.4) and (8.1.6) have to be satisfied for all values of p, we 
have H* = H, and H~ = H,p' We will now differentiate Eq. (8.1.21), and then define 
the adjoint fields so as to get rid of the terms involving the (expensive) derivatives of 
the response. The derivative of Eq. (8.1.21) with respect to p is 
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We can get rid of the terms involving u,p and e,p by requiring the adjoint fields to 
satisfy the linear strain displacement relationship and Hooke's law 

(8.1.24) 

(8.1.25) 

The terms involving u,p can be removed by requiring the adjoint field to satisfy the 
equilibrium equations with a body force equal to h,u, so that from the principle of 
virtual work 

u a • De = h,u • DU. (8.1.26) 

Indeed, if we choose DU = u,p in Eq. (8.1.26) we get the desired elimination of the 
u,p terms. Altogether we get 

H,p = J h,pdV - D,p(e - e i ) • ea . (8.1.27) 

Using Eqs. (8.1.12), and (8.1.25) we can write this as 

(8.1.28) 

When we use the finite element method for the analysis we can transform the second 
term further. To this end we set De = ea, Du = ua in Eq. (8.1.18) to obtain 

(8.1.29) 

so that Eq. (8.1.28) becomes 

H,p = J h,pdV + fP • u a . (8.1.30) 

The treatment of a generalized stress functional is similar. \Ve limit the treatment 
to the case where there is no initial strain in the structure (that is, mechanical loads 
are allowed, but no temperature loading, dislocations, etc.) and consider the stress 
functional 

G = J g(u,p)dV (8.1.31 ) 

and its derivative 

G,p = J g,pdV + g,IT. u,p, (8.1.32) 

where g,CT is a strain-like tensor. Again, to get rid of the expensive derivative of 
the response, u,p, we add the adjoint terms as Lagrange multipliers on Eqs. (8.1.1), 
(8.104) and (8.1.6) 

G* = G + u a • (e - Ll(u)) + ea. (u - De) + f. ua - u. L1(ua ). (8.1.33) 
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We differentiate Eq. (8.1.33) with respect to p to obtain 

G,p = G~p = / g,pdV + g,O". u,p + (u a - Dea ). e,p - u a • L1(u,p) 

+ea • u,p - e a • D,pe - e,p. Ll(Ua ). 

We use Eq. (8.1.10) and rearrange terms to get 

G,p = / g,pdV + (ua + Dg,O" - Dea). e,p - u a • LI(U,p) 

+(g,O" - e a) • D,pe + (ea - L1(ua )) • u,p' 

(8.1.34) 

(8.1.35) 

From Eq. (8.1.35) we can see that we can eliminate the terms including derivatives 
of the response by using an adjoint strain-displacement relation in the form of Eq. 
(8.1.24), and setting Hooke's law for the adjoint field as 

(8.1.36) 

and equilibrium as 
(8.1.37) 

That is, in this case the adjoint loading is an initial strain g,O" with no mechanical 
load. Then 

(8.1.38) 

While Eq. (8.1..38) gives us G,p without the need to calculate first the design sensi
tivity field, its second term involves calculations of stiffness matrix derivatives at the 
element level, and may require some knowledge of the details of the finite-element 
analysis. To overcome this problem we note that by using Eq. (8.1.36) we can 
transform the second term of Eq. (8.1.38) into 

(8.1.39) 

so that using Eq. (8.1.12), which with e i = 0 reduces to eP = -D-1D,p, we can also 
write G,p as 

(8.1.40) 

In obtaining Eq. (8.1.40) we used the fact that if UI and U2 are two stress tensors, 
then UI.n-1u2 = D-1uI.u2. As with the displacement functional we can also write 
G,p in terms of the pseudo load. We use Eq. (8.1.18) with (8u,8e) set to (ua,ea) and 
Eq. (8.1.12) to obtain 

(8.1.41) 

and then Eq. (8.1.38) becomes 

G,p = / g,pdV + f P • u a + D,pe. g,O", (8.1.42) 
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The last term in Eq. (8.1.42) still involves computations with displacements and 
strains which may not be easy to implement in a general structural analysis code. 
However, when G is simply the average stress (not generalized stress!) in an element, 
the first and last terms often cancel. Consider, for example, the average stress in the 
ith element of a truss. In a truss element the generalized stress is the member force 
N, so 

G = .!. J N dl· 
Ii A' 

and (8.1.43) 

When we need the derivative of G with respect to a design variable which does not 
affect the ith element both the first and third terms in Eq. (8.1.42) are zero. For the 
derivative of G with respect to the area of the ith element we have from Eq. (8.1.42) 
(using D,p = E and f = N/AE) 

G,p = ~ J (-N/A2 )dl; + f P • u a + J (N/A)(l/Ali)dl; = f P • u a • (8.1.44) 

Note that, as in the discrete case, both the direct and adjoint methods use the pseudo 
load fP. In the direct method fP is applied to the structure to stand for the pseudo 
initial strain eP of Eq. (8.1.12), and the response to that load is u,P' In the adjoint 
method fP is used to form a scalar product with the adjoint displacement field u a , as 
in Eq. (8.1.42). 

Example 8.1.2 

We solve Example (8.1.1) again using the adjoint method to obtain the derivatives 
of the stresses in members A and B with respect to the cross-sectional areas of both 
members. 

Consider first the stress in member B written in terms of the generalized stress 
(member force) N B 

G=aB = -.!..JNBdlB . 
IB AB 

The adjoint load is an initial strain g,O" which is denoted here as g,N because the 
member force N is the only component of (T. 

1 1 
g,N = lBAB = lA . 

Note that adjoint initial strain is measured in units of l/(volume) in contrast to the 
dimensionless physical strains. As a result, all the units of the adjoint field will be 
the original ones divided by volume. As in Example (8.1.1), the effect of this initial 
strain is obtained by applying a pair of opposite forces to member B, with the force 
at the bottom being EABg,N = E/l. Using Eq. (a) of Example (8.1.1) we get 

va = (E/I)l/[(AB + O.25AA)E] = O.8/A. 
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Following Eq. (8.1.44) we multiply this by the pseudo load fP of -1.6P I A obtained 
in Example (8.1.1) to get 

d~B P 
dAB = G,AB = -1.28 A2 ' 

which agrees with the result obtained in Example (8.1.1). 

Next we calculate the derivative of ~B with respect to AA. As in Example (8.1.1) 
we need to calculate the pseudo load due to a change in AA. This change affects 
both members A and C, leading to pseudo initial strains of -fAIAA and -fcIAA, 
respectively. This in turn leads to pseudo loads of - N AI AA in the direction of member 
A and -NcIAA in the direction of member C. The components of the pseudo load 
are 

p (NA Nc). 0 P P (NA Nc) 0 P PH = - - - - sm60 = --, Pv = - - + - cos60 = -O.4 A ' 
AA AA A' A,1 AA 

where the values of NA and Nc are substituted from Eq. (b) of Example (8.1.1). 
Multiplying the adjoint displacement by the pseudo load we obtain 

d~B _ G _ ,app _ P 
-- - 4. - 1. V - -0.32-dAA ,. A A2' 

which can be easily checked directly. 

N ext we calculate the derivatives of ~ A by considering the functional 

G= ~JNAdIA' 
1.4. AA 

\Ve need to impose an adjoint initial strain of 
1 1 

g,N = lAAA = 2/A . 

This is implemented by applying a pair of opposite forces at the two nodes of member 
A of magnitude EAAg,N = E 121 collinear with member A. The horizontal and vertical 
component of the adjoint force at the bottom node are 

a _ 0.433E a _ 0.25E 
PH - --Z-, Pv - -1-' 

Using Eq.(a) of Example 8.1.1 we get 

(0.25E It)Z 0.2 va = -;----'--__ '---'---.,.-_ 
(As + 0.25A,1 )E A' 

4(0.433E Il)i 0.57735 
u a = 3EAA = A . 

To get the derivative of the stress with respect to AB we multiply the adjoint dis
placements by the pseudo load associated with AB to obtain 

d~A = -1.6PO.2 = -0.32~. 
dAB A A A2 

Similarly, to obtain the derivative with respect to AA we multiply the adjoint dis
placements by the pseudo loads associated with AA 

d~A -P 0.57735 O.4P 0.2 06 - P -- - ---- = - .5(352 , 
dA A A A A A A 

This last result can be checked directly by using the expression for N A in Eq. (b) of 
Example (8.1.1) ••• 
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S.1.3 Implementation Notes 

In general, the direct method is easier to implement than the adjoint method, par
ticularly if the implementation is outside the structural analysis program. The direct 
method will require a postprocessor that calculates the value of the pseudo initial 
strain from the values of the actual strains based on Eq. (S.1.12). The derivative of 
the material stiffness matrix D,p which needs to be evaluated in this postprocessor 
requires knowledge of the form of Hooke's law used in the analysis program, but not 
of any finite element implementation. Then the values of the pseudo strain can be 
used as initial strain input to the same structural analysis package. The output of 
the package will be the sensitivity field, instead of the response. If the structural 
analysis package docs not have the capability of accepting initial strain input it is 
often possible to use a combination of a temperature field and anisotropic coefficients 
of thermal expansion to get the required initial strains. 

The implementation of the adjoint method with the displacement functional H 
of Eq. (S.1.19) is very simple. We need to perform the structural analysis with the 
actual loading replaced by the adjoint load h,u. Note that the adjoint load h,u is 
similar to the adjoint load used in the discrete case; that was the derivative of the 
constraint with respect to the displacement vector (sec Section 7.2.1). Its units are 
the units of It divided by the units of il, and in general these will not be the units 
of force per unit volume. As a result, the units of the adjoint field will not be the 
normal units associated with displacement, strain and stress fields. vVe also need to 
add a postprocessor that will perform the calculations indicated in Eqs.(S.1.2S) or 
Eqs. (S.1.30). The former involves the pseudo initial strain of Eq. (8.1.12) and the 
latter the pseudo load associated with this strain, Eq. (S.1.1S). Equation (S.1.30) 
is typically easier to implement than Eq. (8.1.2S) because it requires only a scalar 
product of the pseudo-load with the adjoint displacement field. It is complctely 
analogous to Eq. (7.2.8), except that the pseudo-load is not obtained in terms of 
derivatives of stiffness matrices, and so does not require intimate knowledge of the 
finite-element package. 

The implementation of the adjoint method for a stress functional, Eq. (S.1.31) 
is more complicated. First we need to implement the calculation of an initial strain 
field g,(7, which is usually fairly simple. We then need to implement Eq. (S.1.42), 
which requires calculations at the element level for a finite element program. The 
discussion following Eq. (S.1.42) shows that when the stress functional is just the 
stress itself this difficulty can be in many cases bypassed. 
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8.2 Nonlinear Static Analysis and Limit Loads 

8.2.1 Static Analysis 

In this section we generalize the results of the previous section to the case of geo
metric nonlinearity. We consider only the case where the nonlinearity is adequately 
represented by replacing Eq. (8.1.1) by 

(8.2.1) 

where L2 is a second order homogeneous operator. For example, for the nonlinear 
deformation of a beam under lateral and axial loads, the generalized strain has one 
component of axial strain Ex and one component of curvature K, and Eq.(8.2.1) is 
written as 

(8.2.2) 

The variation of the strain is specified in terms of displacement variation as 

De = L1(DU) + Lll(u, DU), (8.2.3) 

where Lll is a symmetric bilinear operator, i.e. Lll(u, v) = Lll(v, u), defined by 

L2(u + v) = L2(U) + L2(v) + 2Lll (u, v). (8.2.4) 

In particular Eq. (8.2.4) yields 

(8.2.5) 

In solving nonlinear analysis problems it is customary to increase the load gradually 
from zero to its final value. To accommodate this practice we assume that the load 
f and the initial strain e i depend on a load amplitude parameter It, that is 

(8.2.6) 

The structural response can then be obtained by solving Eqs. (8.2.1), (8.1.4) and 
(8.1.6) as a function of the load parameter ft. 

Unfortunately, in the nonlinear regime the response is not always a single-valued 
function of the load parameter ft. Figure (8.2.1) shows a typical load displacement 
curve for two values of the stiffness parameter p. At load levels near the maximum 
(limit load), there are two solutions for each value of J1. Structural analysis packages 
that solve for nonlinear response often use more general parameters for tracing the 
response curve. A typical parameter is the arc length in the (u, Il) space. We call 
any parameter that is used to trace an equilibrium path (that is, a path of solutions 
to Eqs. (8.2.1), (8.1.4) and (8.6)) a path parameter. 
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Figure 8.2.1 Load displacement diagram. 

In considering changes in the structure we want to have the freedom to change 
both the load parameter and the stiffness simultaneously. Such simultaneous changes 
will be needed in the calculation of derivatives of limit loads. Figure (8.2.1) shows 
one example of the curve traced by such a more general path parameter. The dashed 
curve in the Figure connects all the limit points for configurations with different 
stiffnesses. We denote derivatives with respect to general path parameters by a dot. 
Differentiating Eqs. (8.2.1), (8.1.4) and (8.1.6) with respect to such a parameter we 
get 

e = Ll(U) + Lll(u, u), 

iT = D(e - e i ) + D(e - jJ,ei/ ) , 

iT. {je + (7. Lu(u, (ju) = f-tf' • {ju, 

(8.2.7) 

(8.2.8) 

(8.2.9) 

where a prime denotes differentiation with respect to f.1. The second term in Eq. 
(8.2.9) is due to the dependence of (jg on u, Eq. (8.2.3). 

Most solution algorithms used for nonlinear analysis are based. on gradually in
crementing the load parameter f.1. Quite often the solution requires the calculation 
of the sensitivity of the response with respect to f.1. Specializing Eqs. (8.2.7)-(8.2.9) 
to this case, and denoting load sensitivities by primes, we obtain 

g' = L1(u') + Lll(u, u'), 

(7' = D(g' _ gil), 

(7' • {je + (7. Lll(u', (ju) = f' • {ju, 

(8.2.10) 

(8.2.11) 

(8.2.12) 

where D is assumed to be independent of the load. We will refer to the calculations 
required for solving Eqs. (8.2.10)-(8.2.12) as the load sensitivity module. These equa
tions for the derivatives with respect to the load parameter are quite similar to the 
equations governing the sensitivity to a stiffness parameter obtained by specializing 
Eqs. (8.2.7)-(8.2.9) to the case of a stiffness parameter p: 

(8.2.13) 
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(7',p = D,p(e - e i ) + De,p = D(e,p - eP ), 

(7',p • be + (7' • Lll (u,p, bu) = O. 

(8.2.14) 

(8.2.15) 

Comparing the two sets of equations we note that the load term in Eq. (8.2.12) is 
missing from Eq. (8.2.15), and that the constitutive relation Eq. (8.2.14) includes 
a different initial strain which is equal to eP defined by Eq. (8.1.12). Consequently, 
in terms of implementing the calculation of design sensitivity in a structural analysis 
package, we use the load sensitivity module with the actual load and initial strain 
replaced by the pseudo initial strain eP with zero mechanical load. 

In terms of a finite element analysis, the load sensitivity equations are governed by 
the tangent stiffness matrix. So the only difference between the linear and nonlinear 
sensitivity calculation is that the pseudo initial strain is applied to the "tangent" 
structure instead of the original structure. Finally, let us note that both the load 
sensitivity equations and the design sensitivity equations are linear, even though the 
analysis problem is nonlinear. This is a general property of sensitivity analysis of 
nonlinear problems. 

It can be shown that the effect of nonlinearity on the adjoint method is similar 
to its effect on the direct method. That is, in the case of a displacement functional 
H of Eq. (8.1.19) the adjoint structure satisfies 

(8.2.16) 

(8.2.17) 

(8.2.18) 

The adjoint structure is therefore the tangent structure with h,u as the applied load 
[see also [3J). To implement the calculation of the adjoint field in a structural analysis 
package, we need only to replace the actual load by h,u in the load sensitivity module. 
It can be shown (Exercise 5) that Eq. (8.1.28) is still applicable. Similarly, in the 
case of a stress functional G of Eq. (8.1.31) we apply an initial strain g,O" to the 
tangent structure, and we can still obtain Eq. (8.1.42). 

Example 8.2.1 

The beam shown in Figure (8.2.2) has a cross sectional area Ao, a moment of inertia 
I = 0.00IAoL2, and is subject to a constant applied temperature, T (measured 
from the stress-free temperature), and a variable transverse load, I1P. The applied 
temperature T is selected so that the resulting axial load is close to the buckling load 
limit, that is, EAo€i = EAoo:T = 7.5EIo/ L2, where 0: is the coefficient of thermal 
expansion, and the applied load is P = 1.2 x 1O-4EAo. We want to calculate the 
derivative of the displacement under the load, Wm, with respect to the cross sectional 
area A (assuming that P and I remain constant). 
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p 

x 

2L 

Figure 8.2.2 Beam subject to initial strain and normal load. 

For a beam under combined axial and bending actions the generalized strain 
tensor has two components fx and "', and the generalized stress tensor includes the 
axial load N and the bending moment M. The nonlinear strain-displacement relation 
for the beam is given by Eq. (8.2.2), and Hooke's law is 

M=EI"" 

where fi = aT. The virtual work equation is 

where 
8", = 8w,xx. 

First we solve the analysis problem in closed form based on a simple finite-element 
model. Because of the symmetry we need analyze only the left half of the beam, 
using half of the force, and symmetry conditions of u = 0, and w,>: = 0 in the middle. 
We approximate the left half of the beam by a single beam finite element with linear 
variation of u and cubic variation of w. Using the boundary conditions, and the 
finite-element shape functions we have 

u = 0, where x = x/L, W = wm / L. 

The expressions for the strains and generalized stresses are 

fx = 18w2(x - X2 )2, '" = (6w/L)(1- 2x), 

8fx = 36w8w(x - X2)2, 8", = (68w/L)(1- 2x), 

N = 18EAw2(x - :£2)2 - EAfi , M = (6Elw/ L)(l - 2x). 

Integrating the virtual work equation over the element (with a load O.P at the end) 
we obtain 

(a) 
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Dividing Eq. (a) by EA and using the relations between the values of I, (i and P for 
A = Ao we get 

1.02857w3 + 0.003w = 6 x 1O-5p. 

For p = 1 we get W = 0.01800. 

Before applying the direct and adjoint methods to calculate W,A, we consider the 
tangent state of derivatives with respect to p. Equations (8.2.10) - (8.2.12) become 

(' = u' + W w' = 36ww'(i; - i;2)2 if: ,x ,x ,x , r/ = w~xx = 6w'(1 - 2i;)/ L, 

N' = EA(~, M' = ElK', 

1L (N'bE", + M'{YK + Nw:x6w,x)dx = 0.5P6wm . 

This last equation can be integrated to yield 

(b) 

This equation can be verified by differentiating Eq. (a) with respect to p. 

Direct method: Equations (8.2.13)- (8.2.15) become (remember that I is constant) 

(x,p = u,xp + w,xw,xp, K,p = w,xxp, 

N,p = EA[(x,p + ((x - (i)/AJ, M,p = EIK,p, 

1L (N,pbEz + M,p8K + N w,zp8w,x )dx = 0 . 

We note that the sensitivity equations are identical to the tangent state equations 
except that instead of the load P we have the pseudo initial strain (p = -((x - (i)/ A. 
Using Eq. (8.1.18), we find that the initial strain gives rise to a pseudo load defined 
by 

PP6wm = -1L E(fx - fi)&",dx = -E 1L[18w2(i; - i;2)2 - fi]36iv6w(i; - i;2)2dx 

= -1.02857Ew36wm + 1.2EfiW6wm . 

(c) 
The design sensitivity equation is obtained from the load sensitivity equation, Eq. 
(b), by replacing the actual load (0.5P) with the pseudo load, pp and replacing w' 
with W,A, so that the equation for W,A is 

3.08571EAw2w,A + 12(El/ L2)W,A - 1.2EA(iW,A = -1.02857 Efv3 + 1.2EfiW. (d) 

This result can be verified by differentiating Eq. (a) with respect to A. Solving for 
W,A we obtain 

-1.02857w3 + 0.096w 0.6888 
W - ---

,A - (3.08571w2 + 0.024)A - A . 
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Adjoint method: To use the adjoint method we define w as 

r2L 
w=H= Jo (w/L)8(x-L)dx, 

where 8(x - L) is the Dirac delta function. For this case h,u is a vertical unit con
centrated load of magnitude 1/ L in the middle of the beam. Since the adjoint field is 
obtained from the load sensitivity module by replacing the actual load with h,u, the 
equation for the adjoint state w R can be obtained by replacing w' by wa and 0.5P by 
I/L in Eq. (b) 

Then we obtain W,A from Eq.(8.1.30) as 

W,A = H,A = PPw(I/2) = LpPwa 

which is identical to the result obtained from the direct method .••• 

8.2.2 Limit Loads 

Next we consider the calculation of a limit load; here the load sensitivity equations, 
Eqs. (8.2.10)-(8.2.12), become singular. To circumvent the problem associated with 
this singularity it is customary to define the response path in term of a parameter 
other than the load (e.g., a displacement component or an arc length parameter). 
We specialize Eqs. (8.2.7)-(8.2.9) to that case, where the parameter controls the 
response and ft, but not the stiffness (that is D = 0). At the limit point, jt = 0, 
and we denote the derivative of the response with respect to the path parameter by 
a subscript 1. That is Eqs. (8.2.7)-(8.2.9) become 

O'j = Dej, 

O'j • 8e + 0'*. Lll (uj, 8u) = 0, 

(8.2.19) 

(8.2.20) 

(8.2.21) 

where an asterisk denotes the response at the limit point. Note that Eqs. (8.2.19)
(8.2.21) are similar to the homogenous part of equations for the load sensitivities, 
Eqs. (8.2.10)-(8.2.12). The fact that the homogenous equations have a nontrivial 
solution indicates that the load sensitivity equations are singular (as expected at 
a limit point). The singularity can occur not only at a limit point, but also at a 
bifurcation point; here the solution of Eqs. (8.2.1)-(8.2.12) is not unique. At a 
bifurcation point we have Eqs. (8.2.19)-(8.2.21) even though jt =I- O. Whether a limit 
load or a bifurcation buckling, we call Uj the buckling mode. 

To calculate the derivative of the limit load ft* with respect to a stiffness param
eter p we need to specialize Eqs. (8.2.7)-(8.2.9) so that we can change the stiffness 
and the load simultaneously, but have the load remain at its limit value as we change 
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the stiffness. This path is denoted by v and shown as a dashed line in Fig. (8.2.1). 
Along that path we have 

p= v, !l = !l*(p), u=u*(p). (8.2.22) 

To denote the simultaneous change of p and the load we use both the p subscript for 
derivative and the asterisk for critical load, so that Eqs. (8.2.7)-(8.2.9) become 

<p = L1(U~p) + Ll1(U*, u~p), 

oo~ = D,p(e* - ei ) + D«p _ !l~pei'), 

oo~. fle + 00* • Ll1(U~p' flu) = !l~pf' • flu. 

(8.2.23) 

(8.2.24) 

(8.2.25) 

We can now get an expression for the derivative of the limit load by substituting 
flu = U1 into Eq. (8.2.25) 

* _ oo~. e1 + 00* • Lll(U~p' U1) 

!l,p - fl. U1 . (8.2.26) 

This equation requires the derivatives of the pre buckling response. We can elimi
nate these derivatives without using an adjoint field by noting the similarity of the 
numerator to what we get by substituting flu = u~p into Eq. (8.2.21) 

(8.2.27) 

To make Eqs. (8.2.27) more similar to the numerator of Eq. (8.2.26) we use Eqs. 
(8.2.21) and (8.2.24) to rewrite Eq. (8.2.27) as 

* D (* i) + * D i' * L ( * ) 0 OO,p. e1 - ,p e - e • e1 !l,p e • e1 + 00 • 11 UI, u,p = . (8.2.28) 

Finally, combining Eqs. (8.2.26) and (8.2.28) we get a form of the derivative of the 
limit load with respect to a stiffness parameter 

* _ D,p(e* - e i ) • e1 

!l,p - fl. U1 + Dei' • e1 
(8.2.29) 

that does not require derivatives of prebuckling response. This expression can be 
simplified further for the case of finite-element calculation. Using Eqs. (8.1.12) and 
(8.1.18) we get 

* -fP*. U1 
!l,p = (fl + fi') • U1 ' 

(8.2.30) 

where f P* is the pseudo load of Eq. (8.1.18) evaluated at the limit point, and fi' is 
the equivalent nodal load due to the initial strain eil . 

The above calculation appears to be applicable also to bifurcation buckling. How
ever, for bifurcation buckling jJ, in Eq. (8.2.9) is not zero. The consistency condition 
for this equation is for the right-hand side to be orthogonal to the nonzero solution of 
the homogeneous problem U1. That is, for the bifurcation problem (fl + fi'). U1 = 0, 
and we cannot use Eqs. (8.2.29) and (8.2.30). The sensitivity of bifurcation buckling 
loads is discussed in the next section. 
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Example 8.2.2 

The two-bar truss shown in Figure 8.2.3 is subject to a constant load P and variable 
negative applied temperature -pT. As the truss is cooled the displacement h under 
the load will increase until a limit point is reached and the truss collapses. We want to 
calculate the derivative of the limit load factor pM with respect to the cross-sectional 
area A for A = Ao. The other parameters of the problem are PI EAo = 0.001, 
aT = 0.01, and B = 10°, where E is Young's modulus, and a is the coefficient of 
thermal expansion. 

Figure B. 2. 3 Two-bar truss under combined mechanical and thermal loading 

Because of symmetry we need analyze only one half of the truss, applying to 
it one half of the mechanical load. We select a coordinate x that runs along the 
truss member. The strain-displacement relation, Hooke's law, and the virtual work 
equation are given as 

N = EA(E + paT), lL N &dx = 0.5P8h, 

where 
bE = bu,,,, + u,,,,bu,x + v,xbv,,,, 

Since we are dealing with a truss, we can assume linear variation of u and vasa 
function of x and get 

u,x = -hsinB, v,x = -hcosB, where h = hi L, 

so that 
E = -hsinB + 0.5h2 , & = -bhsinB + h8h , 

and 
N = EA( -hsinB + 0.5h2 + /l.aT) . 
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Substituting into the virtual work equation we obtain 

EA( -JisinO + 0.5Ji2 + fJaT) ( -sinO + Ji)oJi = 0.5P8Ji. 

Dividing by 0.5EA, rearranging the equation, and using the data for the problem 
gives us 

Ji3 - 0.5209Ji2 + 0.02(3.015 + fJ)h = O.OOlAo/A + 0.003473fJ. (a) 

Equation (a) can be used to trace the response of the truss as the temperature is 
increased. For a given load parameter fJ this requires the solution of a cubic equation. 
However, it is possible instead to gradually increase Ji and calculate the resultant fJ. 
Tracing the curve we find that the limit load factor is fJ' = 0.56274 corresponding to 
a displacement Ji = 0.09424. Since this problem has only one degree of freedom, the 
buckling mode has only one component, Ji, and we can take it to have a unit value. 

To calculate the sensitivity of fJ* using Eq. (8.2.30) w~ also need ( - (i at the 
limit point. Using the expression for the strain in terms of h we get 

f* - fi* = -Ji'sinO + 0.5(h*? + fJ* aT = -0.006297. 

The pseudo initial strain for a truss element is -(f - fi)/A (see Eq. (8.1.14)), so that 
the magnitude of the pseudo load is 

f P' = -E{E* - (i') = 0.006297E. 

The pseudo load consists of two forces collinear with the truss element and acting at 
its two ends. We also need to calculate the pseudo load associated with fi' = -aT. 
The magnitude of this force is 

t' = -EAaT = -O.OlEA. 

This force is also collinear with the element. We now use Eq. (8.2.30), noting that 
for our case f' = 0 

, -0.006297 Ecos{900 + 0) 0.6297 
fJ,A = -0.01EAcos(900 + 0) = A;;- . 

We check this result by finite differences. We increase the area by one percent, and 
substitute A = 1.01Ao into Eq. (a). Solving again we get fJ* = 0.56899 so that the 
finite-difference approximation to the derivative is 

, 0.56899 - 0.56274 0.625 
fJ,A ~ O.OlAo = ~ , 

which is in reasonable agreement with the analytical derivative .••• 
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8.2.3 Implementation Notes 

A structural analysis package for nonlinear analysis will typically have facilities for 
generating the derivatives of the applied loads with respect to the loading parameter 
IJ, and for solving the tangent equations of equilibrium at any value of that load. 
For the sensitivity of static response using the direct method only the second is 
needed. The procedure is identical to that used in the linear case (see Section 8.1.3). 
The actual load is replaced by the initial strains associated with the stiffness change 
(Eq. (8.1.12), and the tangent equations of equilibrium are solved by the structural 
analysis package. The output of the package will then be the sensitivity to the stiffness 
variable. 

The adjoint method is similar to that used in the linear case. The same adjoint 
load is used, but it is applied to the tangent system. Equations. (8.1.28) and (8.1.42) 
are still applicable. However, for nonlinear analysis there is even less of a reason to 
use the adjoint method than in the linear case. In nonlinear analysis the cost of the 
analysis is much larger than the cost of sensitivity calculations (which are always 
linear). Therefore, even when the number ofresponse functionals to be differentiated 
is much smaller than the number of design variables, the direct method is still a 
reasonable choice. 

For sensitivity of limit loads, Eq. (8.2.30) is easy to implement. It requires 
calculation of the pseudo load associated with the stiffness change, and the compu
tation of two scalar products: of the pseudo load and the actual load (including both 
mechanical and initial strain components) with the buckling mode. 

8.3 Vibration and Buckling 

We first consider small free harmonic vibrations with frequency w superimposed on 
the nonlinear equilibrium state (u(IJ), c(IJ), O"(p,)) associated with load parameter 
IJ. \Ve denote the vibration amplitude fields by Ul, Cl and 0"1. These vibration 
amplitude fields can be viewed as small perturbations off the nonlinear equilibrium 
state. Therefore, the equations satisfied by these fields are obtained by adding a 
small perturbation to the nonlinear field equations, Eqs. (8.2.1), (8.1.4) and (8.1.6) 
and replacing the body force f with a D'Alembert inertia force. Assuming that there 
is no initial strain we obtain 

Cl = L 1(Ul) + L l1 (u, ud, 

0"1 = DCl , 

0"1. bc + 0". L l1 (Ul, bu) = w2Mu1 • ou, 

(8.3.1) 

(8.3.2) 

(8.3.3) 

where M denotes the mass tensor and Dc is given by Eq. (8.2.3). Note that these 
equations are identical to the load sensitivity equations, Eqs. (8.2.10)-(8.2.12) except 
that f' is replaced by the inertia load. Setting bu = Ul in Eq. (8.3.3) we obtain the 
Rayleigh quotient for the vibration frequency 

(8.3.4) 
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Under static loading tl1t.,cructure buckles at a load IL' corresponding to a pre
buckling state U* = U('L*), e' = e(J.L'), {T' = (T(J.L*). The buckling load corresponds 
to a zero vibration frequency. Therefore the bucking mode UI, el, {TI satisfies Egs. 
(8.3.1), (8.3.2), and (8.3.3) with w = 0 and U = u*, {T = {T'. 

8.3.1 The Direct Method 

To calculate the derivative of the frequency with respect to a stiffnpss parameter p 
we start by differentiating Eqs. (8.3.1), (8.3.2), and (8.3.3) with respect to p, then 
set bu equal to the mode shape UI, and use Eg. (8.2.5) to obtain 

{TI,p = D,pel + Del,p, 

{TI,p. el + {TI • L ll (u,p, ud + {T,p. L2(ud + (T. Lll(UI,p, UI) 

= (w2),pMul • UI + w2M,pUI • UI + w2MuI,p. UI . 

(8.3.5) 

(8.3.6) 

(8.3.7) 

The derivatives of the vibration mode UI,p, {TI,p can be eliminated from Eq. (8.3.7) 
by first setting bu = UI,p in Eq. (8.3.3), and using Eq. (8.2.3); this gives 

(8.3.8) 

Then subtracting Eq. (8.3.8) from Eq. (8.3.7) and using Eqs. (8.3.5) and (8.3.6) we 
can get (Exercise 7) 

(w2) = D,pel • el + 2{TI • Lll(u,p, UI) + {T,p. L2(ud - w2M,pUI • UI . 
p (8.3.9) 
, MUI. UI 

The first and last terms in the numerator of Eq. (8.3.9) correspond to the derivatives 
of the stiffness matrix and mass matrix, respectively, in Eq. (7.3.5). \\'hen we 
calculate derivatives of natural frequencies the other terms in the numerator vanish. 
However, for the vibration frequencies of a loaded structure we need the other term 
which contain derivatives of the static field u, (T with respect to p. These derivatives 
need to be calculated by solving Eqs. (8.2.13) - (8.2.15). 

The derivative of the buckling load is ohtained from the condition that w2 = 0 
at buckling. As p changes, J.L' must change with it so that w2 remains zero, that is 
d(w2 ) = O. Thus 

(8.3.10) 

where a prime denotes derivative with respect to p. The first term in Eq. (8.3.10) is 
the change in w2 at a fixed load level, and the second is the change in w2 due to a 
change in load level. These two changes add up to zero, so that the frequency remains 
zero at the buckling load. Equation (8.3.10) gives 

(8.3.11) 
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To calculate the derivative of the frequency with respect to the load parameter J.l we 
start by differentiating Eqs. (8.3.1) - (8.3.3) with respect to J.l and then set bu = Ul 

(8.3.12) 

(8.3.13) 

O"~ eel +O"leLn(u', ul)+O"'eL2(ut)+O"eLn(u~, ut) = (w2)'MuleUI +w2Mu~ eUl. 
(8.3.14) 

Next, we eliminate the derivatives of the vibration field with respect to J.l by setting 
bu = u~ in Eq. (8.3.3) and using Eq. (8.2.3) 

(8.3.15) 

and then subtracting Eq. (8.3.15) from Eq.(8.3.14) and using Eqs. (8.3.2), (8.3.12), 
and (8.3.13) to get 

(w2 )' = 20"1 e Ln(u', Ul) + 0"' e L2(Ut} . 
MUle Ul 

(8.3.16) 

Finally, substituting Eqs. (8.3.9) and (8.3.16) evaluated at the buckling load into Eq. 
(8.3.11) gives 

* D,pel eel + 20"1 e Ln(u~p, Ul) + O"~ e L2(Ut) 
!-l,p = - 20"1 e Ln(u'·, ut) + 0"'* e L2(Ul) , (8.3.17) 

where the asterisk denotes prebuckling quantities evaluated at the buckling load. 
Note that the field Ul, 0"1 now denotes the zero-frequency or buckling mode. 

Example 8.3.1 

The beam in Example (8.2.1) has a mass density p. Calculate the derivative of the 
lowest frequency of lateral vibration with respect to the cross-sectional area A with 
the applied load parameter !-l = 1 (assuming again that I and P do not change). 

We use the same single finite-element approximation for half the beam that we 
used in Example (8.2.1). Assuming a symmetric mode shape, we find the vibration 
mode 

To calculate the vibration frequency we use the Rayleigh quotient Eq. (8.3.4). The 
first term in the numerator is 

0"1 eel = 1L (Nlf.xl + J\,11Kt}dx. 

Using Eqs (8.3.1) and (8.3.2) and expressions from Example (8.2.1) we have 

36 -(- -2)2 f. x l = W,xWl,x = W x - x , 
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So 

KI = WI,.,., = 6{1 - 2x)/ L, 

0'1 • el = IoL [1296EAw(x - X2)4 + 36EI{1 - 2x)2 / L2]dx 

= 2.05714EAwL + 12EI / L. 

The other terms in the Rayleigh quotient are 

0'. L2{UI) = IoL Nwtxdx = 1.02857EAw2L - 1.2EAL€i, 

MUI • UI = IoL Apw~dx = 0.3714pAL3 , 

so that 
w2 = 3.08571EAw2 + 12EI/L2 -1.2EA€i = 0 01077~ 

0.3714pAL2 . p£2 . 

Note that for the unloaded beam, w = 0, €i = 0 we get 

{EI 
w = 5.68y p;:iJ , 

which is about 1.5% above the exact answer. We can differentiate w2 with respect to 
A, for an analytical derivative that we can use later for comparison 

( 2) _ 3.08571E( w2 + 2Aww,A) - 1.2E€i w2 
W ,A - 0.3714pA£2 - 11 . 

For the direct method to calculate the same derivative we use Eq. (8.3.9). The 
individual terms in this equation are calculated as follows: 

where 

So 

and 
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Altogether 

(W2) = 3.08571Ew2 + 6.17142EAww,A - 1.2Efi _ w2 

,A 0.3714pAP A ' 

which agrees with the analytical result. Using the values for wand W,A from Example 
(8.2.1) we get 

2) E (w ,A = 0.1788 pAP' 

••• 
8.3.2 The Adjoint Method 

The direct sensitivity approach requires the calculation of sensitivities of the static 
field (prebuckling state), Eqs.(8.2.13) - (8.2.15). This calculation can become expen
sive when we need sensitivities with respect to a large number of structural parame
ters. In that case an adjoint technique that eliminates the need for static sensitivities 
is appropriate. As usual, we multiply the equations that govern static equilibrium by 
Lagrange multipliers (that we call the adjoint fields) and add them to to w2 ; thus 

(w2)* =mow2 + (Ta. [e - LI(U) - ~L2(U)] + ea. [(T - D(e - e i )] + f. u a (8.3.18) 

-(T. [LI(ua ) + Lll(U, u a )], 

where mo is the value of MUI • UI for the nominal value of p (that is mo does not 
change with p). The constant mo is included to simplify the final expressions for the 
adjoint field. We differentiate Eq. (8.3.18) and use Eq. (8.3.9) to get 

mo(w2),p = (w2)~ = D,pel • el + 2(Tl • Ln(u,p, ut} + (T,p. L2(ud - w2M,pUl • Ul 

+ (Ta. [e,p - L1(u,p) - Lll(U, u,p)] + ea. [(T,p - D,p(e - e i ) - De,p] 

- (T,p. [LI(Ua ) + Lll(u, ua)] - (T. L l1 (u,p, u a ). 

(8.3.19) 
Grouping together terms that involve displacement derivatives, strain derivatives and 
stress derivatives we get 

mo(w2),p = D,pel • el - w2M,pUl • Ul - ea. D,p(e - e i ) 

- (Ta. [L1(u,p) + Lll(U, u,p)]- (T. Ln(u,p, ua ) + 2(Tl • Lu(u,p, Ul) 
+ e,p. [(Ta - Dea] + (T,p. lea - L1(uO) - Lll(u, ua) + L2(ud] . 

(8.3.20) 
From Eq. (8.3.20) it is clear that in order to eliminate of derivatives of the static 
equilibrium state the adjoint state should satisfy the following equations 

(8.3.21 ) 

(8.3.22) 
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(1'a. [Ll(6u) + L l1 (u, 6u)] + (1'. L1l (ua , 6u) - 2(1'1. L 1l (Ul, 6u) = O. (8.3.23) 

Then the derivative of the frequency is given as 

(w 2 ) = D,pc i • Cl - w2M,pU1 • UI - ea. D,p(c - e i ) . 

,p MUI. Ul 
(8.3.24) 

The adjoint equations, which have a homogeneous part identical to that of Eqs. 
(8.3.1) - (8.3.3) for w = 0, may be considered to be the field equations of an adjoint 
structure for which the term L 2(Ul) in Eq. (8.3.21) is an initial strain term, and the 
last term in Eq. (8.3.23) corresponds to body-force loading. In a buckling problem 
(w = 0) the homogeneous part is singular, the adjoint fields are not unique, and 
any multiple of the buckling mode Ul can be added. Any convenient orthogonality 
relation can be used to make the adjoint fields unique. 

The derivative of the buckling eigenvalue is similarly given as 

* D pel • Cl - D pc' • c a 
fl = -' , 

,p 2(1'1 • Lll (U'*, Ul) + (1"* • L2 ( UI) 
(8.3.25) 

Equation (8.3.25) is based on the buckling mode and the prebuckling state calculated 
at fl = fl'. The usual practice, however, is to estimate the buckling load by solving a 
linearized eigenvalue problem based on a load {t < fl*. It is shown in [4J that the error 
introduced in the derivative Ii,; due to this approximation is of the order of ({t* - p)2. 

Example 8.3.2 

We repeat Example (8.3.1) using the adjoint approach. We need to recalculate the 
two terms that depend on the derivative of the static solution. From that example 
these are 

Using the adjoint method these two terms are replaced by the term 

in Eq. (8.3.24). 

The adjoint state, defined by Eqs. (8.3.21)-(8.3.23), has an initial strain and a 
body force. The initial strain is L 2 ( UI) = wi,x' The corresponding equivalent nodal 
force, if, is 

if L6w = 1£ wi,xEA6Exdx. 

Using expressions from Examples (8.2.1) and (8.3.1) for bEx and WI we get 

EAiiJ 1£ if = 1296-- (x - X2)4dx = 2.05714EAw. 
L 0 
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The body force is 

f~LbiiJ =20"1. L 1l (uI,bu) = 21L NxIWI.xbw,xdx = 2EA lL wi.xw,xbw,xdx 

=2592EAiiJbiiJ lL (x - x 2 )4dx = 4. 11428EALiiJbiiJ . 

Altogether, the total nodal force is 

r = If + f~ = 6. 17142EAiiJ . 

This force has to be applied to the tangent structure. This means that if we use it to 
replace the right-hand side of the tangent state equation, Eq. (b) of Example (8.2.1) 
then we must use iiJa to replace Wi on the left side. That is 

For later use we compare Eq. (b) to Eq. (d) of Example (8.2.1) and note that 

-a 6.17142AiiJ,A 
W = -1.02857iiJ2 + 1.2fi . 

Once we have iiJa from Eq. (a) we can calculate A as 

From Eq. (8.3.21) 

so that 

fa = wa W x - w2 = 36(x - x2)2(iiJuiiJ - 1) x ,x, 1,x , 

A =36(1 - iiJaiiJ) l\x - X2 )2 [18(x - x 2f - fi] dx 

=(1 - iiJaiiJ)EL(l.02857iiJ2 - 1.2fi). 

(c) 

(d) 

We can now calculate w a from Eq. (b) and A from Eq. (d) to get the derivative of 
w2 without calculating W,A' To check that Eq. (d) gives the same result as Eq.(a) we 
use Eq. (c) to obtain 

(1 _ iiJaiiJ) = 6.17142AiiJ,A + 1.02857iiJ2 -1.2fi 
1.02857w2 - 1.210' 

Substituting this expression into Eq. (d) we find Eq. (a) .••• 
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8.4 Static Shape Sensi rity 

The calculation of sensitivity with respect to shape variation is more complicated 
than that for stiffness variation. The present section is limited to shape sensitivity of 
static response in the linear elastic range, and is based on Refs. [5-11J. Furthermore, 
the discussion is limited to formulations which do not have curvature (such as arch 
and shell formulations). The reader is also referred to Ref. [2J for proofs of many of 
the results presented here. 

Two general approaches have been used for variational shape sensitivity. The 
first and more popular is the material derivative approach, and the second one is the 
domain parametrization approach, also known as the control volume approach. While 
both methods are very general, the domain parametrization approach is simpler, and 
is particularly powerful for finite element analysis with isoparametric elements. We 
start this section with a discussion of these two methods, and then see how they can 
be applied with the direct and adjoint methods. 

SA.l The Material Derivative 

Consider a shape variation field ¢ such that the a material particle located at x is 
moved to x¢ 

x¢ = x + ¢(x,p) , (8.4.1 ) 

where p is a shape design variable. The coordinate x is typically referred to as the 
material or Lagrangian coordinate in that it is associated with a material particle. 

The variation changes the domain V and the boundary S of the structure as 
shown in Figure 8.4.1. 
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Figure 8.4.1 Shape variation of structural domain. 
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Consider a function f(x,p) defined on the changing structural domain V. We 
denote the partial derivative a f / ap of f with respect to p by f,p. This derivative 
measures the change in f at a fixed position in the structure, and is often referred 
to as the local derivative. The derivative that measures the change in f at a fixed 
material point needs to take into account also the change in x as p changes. This 
derivative is called the material derivative or the total derivative of j, and is denoted 
here by jp 

jp = f,p + V' fT xc/>,p = f,p + V' P v , 

where V' j denotes the gradient of j in space, and 

v = xc/>,p = ¢,p 

(8.4.2) 

(8.4.3) 

is often referred to as the shape velocity field. This terminology is based on viewing 
p as a time-like variable, so that xc/>,p is a velocity field. The components of v are 
denoted by Vk where k runs from 1 to the dimension of the problem, and VI = V"" 

V2 = vy, V3 = Vz · 

Consider now a vector function such as the displacement field u. For each com
ponent Ui of U we can use Eq. (8.4.1) to obtain the material derivative as 

Uip = Ui,p + (V'uif v. (8.4.4) 

This equation is abbreviated as 

Up = u,p + (V'u)v, (8.4.5) 

where V'u is a matrix called the deformation gradient with components given by 

au; 
(V'u);j = u;J == -a . 

Xj 
(8.4.6) 

Note that a comma followed by an index subscript j denotes differentiation with 
respect to Xj. From this definition we get that 

(V'U)v = U,jVj , (8.4.7) 

with repeated indices summed over the dimension of the problem, so that for the 
two-dimensional case 

(8.4.8) 

Similarly for a tensor such as the strain tensor e the material derivative is given by 

e p = e,p + (Ve)v = e,p + e,;vi. (8.4.9) 

Typically the material derivative is more physically interesting than the local 
derivative. For example, if we change the shape of a hole boundary to relieve stress 
concentration at that boundary, we would want the derivative of the stress at the 
boundary rather than at a point with fixed coordinates. Mathematically, the material 
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derivative is more complicated to handle than the local derivative. For example, 
the local derivative commutes with differentiation with respect to coordinates while 
the material derivative does not. Consider, for example, the strain field associated 
with a displacement field u, and denote it as e(u). The strain is obtained from the 
displacements by differentiation, and since we can change the order of differentiation 
for local derivatives 

e,p(u) = e(u,p), (8.4.10) 

while we cannot write a similar equation for the material derivative ep • 

In order to differentiate the virtual work equation with respect to p we need to 
calculate derivatives of integrals over the volume and over the surface of the structure. 
Let Iv denote an integral over the domain of the structure 

Iv = l f(x,p)dV . (8.4.11) 

The derivative of Iv with respect to p is 

(8.4.12) 

where lip is the relative change in volume. It can be shown (e.g., [2]) that 

(8.4.13) 

Recall that repeated indices are summed over the dimensionality of the problem, so 
that in the three-dimensional case 

Vk,k = VI,1 + V2,2 + V3,3 = vx,x + Vy,y + vz,z = div v . (8.4.14) 

The derivative of the surface integral 

Is = is f(x,p)dS (8.4.15) 

is handled in a similar manner; thus 

(8.4.16) 

The derivative of the surface element is given as 

- T (dS)p = SpdS = -Hn vdS, (8.4.17) 

where n is the vector normal to the boundary S, and H is the curvature of S in two 
dimensions and twice the mean curvature in three dimensions. 
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8.4.2 Domain Parametrization 

The discussion of the domain parametrization is based on the work of Haber and 
coworkers, and in particular [111. With this approach the material coordinate vector 
x is given in terms of some reference domain as 

x = x(r,p), (8.4.18) 

where r is a coordinate vector in the reference domain n with boundary r, and p is 
a shape parameter (see Figure 8.4.2). When isoparametric elements are used, it is 
convenient to use the parent element as the reference domain for the actual element. 
Specifically, for isoparametric elements the coordinate vector x in the element is 
written as 

# nodes 

x = L h;(r)d;(p), (8.4.19) 
;=1 

where hi are shape functions for the element, r is a vector of intrinsic coordinates, 
and d i are vectors of nodal coordinates. Variations in geometry are represented by 
variations of the nodal coordinates, with the shape functions held fixed. 

material configuration 
Po and actual finite 

elements 

r 

---+ 

Q 

referenc,e configuration 
With Pflrent 

finite elements 

Figure 8.4.2 Domain parametrization approach 

n r 

material 
configuration 

P 

The transformation between the reference domain and material domain is char
acterized by the Jacobian of the transformation JE, known as the Eulerian Jacobian, 
and its inverse J-E 

8r; 
J .. - - -r" 'J - 8 - J,J' 

Xj 

-E 8x; 
andJ. . = - = xij . 

'J 8rj . (8.4.20) 

Note that a comma followed by an index subscript (such as i or j) denotes differentia
tion with respect to a material coordinate, while a dot followed by an index subscript 
denotes differentiation with respect to a reference coordinate. The differential vol
ume and area in the material configuration are expressed in terms of the reference 
configuration using the determinant of the Eulerian Jacobian 

(8.4.21 ) 
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where K-E is a Jacobian of the transformation between the surface coordinates in 
the reference and material configurations. Its determinant is given as 

(8.4.22) 

where ni are the components of the unit outward normal to the surface area r of 
the reference domain, and repeated indices are summed. The derivative of J- E with 
respect to p is obtained from its definition 

(8.4.23) 

while the derivative of JE requires using the formula for the derivative of an inverse 

(8.4.24) 

to get 
(8.4.25) 

With the domain parametrization approach the displacements, strains and 
stresses are considered to be functions of the reference coordinates r. Therefore, 
when we evaluate their derivatives with respect to p we get derivatives for a con
stant position r which are essentially the material derivatives of these quantities. A 
function f(x,p) is first rewritten in terms of the reference coordinates as ](r,p) and 
then 

(8.4.26) 

Derivatives with respect to material coordinates have to be transformed to derivatives 
with respect to reference coordinates using the chain rule of differentiation. Thus, 
the linear strain displacement relationship becomes 

(8.4.27) 

This produces an explicit dependence of the strain on the shape parameter, and to 
reflect that we rewrite Eq. (8.1.1) as 

(8.4.28) 

Derivatives of integrals are handled in a similar way to the material derivative ap
proach. A volume integral is written in terms of the reference coordinates 

Iv = Iv f(x,p)dV = In f(r,p)det(rE)dn, (8.4.29) 

where] is the new form of the function when it is written in terms of the reference 
coordinates. Then 

(8.4.30) 
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where 
Vp= (det(J-E))/det(J- E). (8.4.31) 

Similarly, for a surface integral Is, Eq. (8.4.15), we get 

(8.4.32) 

where 
(8.4.33) 

8.4.3 The Direct Method 

To apply the direct method to shape sensitivity calculation we need to differentiate the 
strain displacement relation, Eq. (8.1.1), Hooke's law, Eq. (8.1.4) and the equilibrium 
equations, Eq. (8.1.6) with respect to p. We start with the strain displacement 
relation and with the material derivative approach. Using Eqs. (8.4.9) and (8.4.10) 
the differentiated strain-displacement relation is 

ep = e,p + (V'e)V = L1(u,p) + (V'e)V. 

Using Eq. (8.4.5) we can write this as 

ep=L1(up)-e, 

where 
e = Ll [(V'u)v] - (V'e)V 

(8.4.34) 

(8.4.35) 

(8.4.36) 

is an initial-strain associated with the sensitivity field. Even though Eq. (8.4.36) 
appears to include strain gradients, these gradients cancel out and e includes only 
first derivatives of the displacement and shape velocity fields. For example, for the 
three-dimensional case we obtain 

(8.4.37) 

We can get another form of e by using the domain parametrization approach. 
Differentiating Eq. (8.4.27) we get 

(fij)p = ~(UPi.kJt; + Upj.kJ{i) + ~(Ui.kJt;,p + Uj.kJ{i,p) = [L1(up)]ij - fij, (8.4.38) 

where 
(8.4.39) 

We assume that the elastic coefficients do not change with shape change, and 
that there is no initial strain. Then the derivative of Hooke's law is 

(8.4.40) 
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The derivative of the equations of equilibrium is 

(0". 6e)p = (f. 6u)p. (8.4.41) 
The term on the left side of Eq. (8.4.41) is a volume integral which according to Eqs. 
(8.4.12) and (8.4.30) is the volume integral of the derivative of the integrand plus a 
term which accounts for the change in the volume element. This translates to 

(0" • 6e)p = O"p. 6e + 0". 6ep + 0". (~6e). (8.4.42) 
The derivative of the virtual strain 6ep is obtained in a similar manner to Eq. (8.4.35) 
as 

6ep = Ll(6up) - 6e, 
where with the material derivative approach 

6e = LdV(6u)v]- (V6e)v, 
while for the domain parametrization approach 

(8.4.43) 

(8.4.44) 

6Eij = -~(6ui.kJfi,p + 6uj.kJ{i,p)' (8.4.45) 
The derivative of the virtual work of the applied loads is more complicated because 
this work is composed of volume and surface integrals 

f. 6u = fb • 6u + T. 6u, (8.4.46) 
where fb denotes the body load vector, and T denotes the vector of applied tractions. 
The first term on the right hand side of Eq. (8.4.46) is a volume integral, while the 
second term is a surface integral. Differentiating the body force integral is straight 
forward. However, the traction term can be a problem if there are corners on the 
boundary or if the loaded boundary is changing. We will assume that there are no 
corners or changes in loaded boundary. Then we can differentiate Eq. (8.4.46) to get 

(f.6u)p = f bp • 6u+fb • 6up+ fb• (Vp6u) + Tp. 6u + T .6up + T. (SpC'iu). (8.4.47) 
The virtual displacement 6u is arbitrary except that it needs to satisfy the kinematic 
boundary conditions, which are assumed to be independent of p. \Ve make sure that 
6u satisfies these boundary conditions as the shape changes by requiring that 

6up = O. (8.4.48) 

Using Eq. (8.4.48), Eq. (8.4.43) becomes 
6ep = -6e . (8.4.49) 

Finally, using Eqs. (8.4.41), (8.4.42), (8.4.47) and (8.4.49) we get 

O"p.6e=fbp.6u+fb.(~6u)+Tp.6u+T.(Sp6u)+0".6e-O"Vp.6e. (8.4.50) 
The right hand side of Eq. (8.4.50) represents the body forces that need to be 
applied to the structure (along with the initial strain e) in order for the solution to 
be the sensitivity field. The pseudo load fP that needs to be applied to the original 
structure to produce the sensitivity field includes the terms on the right hand side of 
Eq. (8.4.50) as well as a pseudo force due to the initial strain e 
f P .6u = fbp.6u+fb~.6u+Tp.6u+TSp.6u+0".6e-0"~.6e+De.6e. (8.4.51) 

When the curve separating the loaded and unloaded boundaries is changing, and 
when the boundary has corners, there are additional terms (see [6]). By using Eq. 
(8.4.51), we may write Eq. (8.4.50) as 

0" p • 6e = fP • 6u - De • 6e (8.4.52) 
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Example 8.4.1 

(a) 
material 

L 

COnfigu,"ti°l L.... __ ....I 

Figure 8.4.3 Bar under self-weight loading. 

x 

~ b) 
re eren.ce 

omam 

The bar shown in Figure (8.4.3) is loaded under its own weight. Calculate the 
sensitivity of the solution to changes in the length of the bar (approximated by a 
single finite element) using the direct method. 

The loading in this case is a body force of constant magnitude f = pAg. The 
exact solution for the displacement u and the member force N is given in terms of 
the density p, the area A and the acceleration due to gravity g as 

N = pAgeL - x), u = (pg/ E)(Lx - x 2 /2). 

Using a single linear finite element we concentrate half of the body force at each node, 
so that each node is loaded by pAgL/2. The finite-element solution is 

U2 = pgL2/2E, € = pgL/2E, N = pAgL/2, 

so that the maximum displacement is correct, but the maximum member force is off 
by a factor of 2. The derivatives of these two quantities with respect to L are 

U2L = pgL/E, NL = pAg/2. (a) 

To calculate the sensitivity field with the material derivative approach we need 
to assume a shape variation field ¢. We assume that as the length of the bar changes, 
all points in the bar are moved proportionately. Denoting the new length of the bar 
by p we find 

x'" = x(p/ L), 
and the shape velocity field 

or ¢ = x(p/L - 1), 

v = ¢,p = x/L. 

We now have 

Vp = Vk,k = v,x = I/L, 
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For the domain parametrization method we use a parent element of length one, 
so that 

where in our case Xl = 0, X2 = p. The Jacobian of the transformation is a single 
number 

-E ax 
J = ar = -Xl + X2 = p. 

Then JE = lip, so that from Eq. (8.4.39) 

_ E au -1 U2 
E = -ulIJ = --- =-

. ,p ar p2 p2 ' 

which is the same as E obtained from the material derivative approach. The relative 
volume change, ~, is 

which also agrees with the material derivative result. The first term in the pseudo 
load expression Eq. (8.4.52) is zero, because the body load is constant. The second 
term introduces a body force of f I L = pAgl L which accounts for the effect of change 
in volume element on the resultant of the original body force. This is equivalent to 
an end load of pAg/2. The two terms associated with the tractions vanish because 
we have no applied surface tractions. The next term two terms are evaluated using 
the fact that for the finite-element model the member force N and the strain E are 
constant in the element 

The last term is 

Altogether 
fP • 8u = pAg8u2 

which indicates that fP is equal to a force of pAg. Under this force we get 

U2p = pgLI E 

which agrees with the results in Eq. (a) abo\'('. To calculate the derivative of the 
member force, Np we first calculate Ep from Eq. (8.4.19). 

Ep = LI(Up ) - E = up,x - ElL = u2plL - ElL 

so that 
Ep = pgl2E, Np = EAEp = pAg/2 

which agrees with the result in Eq. (a) above .••• 
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8.4.4 The Adjoint Method 

Consider now the sensitivity of a displacement functional H given by Eq. (8.1.19). 
Using Eq. (8.4.12) to obtain the derivative with respect to the first argument, we 
differentiate H to obtain 

(8.4.53) 

To eliminate of the displacement derivative term, we multiply the derivatives of the 
governing equations, Eqs (8.4.35), (8.4.40), and (8.4.53) by adjoint fields as Lagrange 
multipliers and add them to Hp to obtain 

Hp= j(hp+hVp)dV+h,ueup+uae [€p-L1(UP)+e] 

+€a e (up - D€p) - up e L1(ua ) + fP e ua - De e L1(ua) 

= j(hp + hVp)dV + h,u e up - u a e Ll(Up) + €p e (ua - D€a) 

+up e [€a - L1(ua)] + [ua -IDL1(ua)] e e + fP. 

(8.4.54) 

From Eq. (8.4.54) we see that we can eliminate of the response sensitivity terms by 
defining the adjoint as we did in the stiffness variable case, Eqs. (8.1.24)-(8.1.26). 
Then we get 

Hp = j(hp + hVp)dV + fP e u a • (8.4.55) 

Equation (8.4.55) requires the evaluation of fP from the volume integrals in Eq. 
(8.4.51). It is possible to transform fPeua to surface integrals (e.g., [6), [7]). However, 
there has been unfavorable computational experience with the surface version of the 
adjoint method (e.g., [12]). Unfortunately, it is not always possible to tell which 
method gives more accurate results as demonstrated in the following Example. 

Example 8.4.2 

The cantilever beam shown in Figure (8.4.4) is modeled with rectangular plane 
stress elements. The beam is composed of two materials with different Young's mod
ulus, and the position of the interface between the two is the design parameter p. The 
sensitivity of the tip displacement with respect to the position of the interface was cal
culated using six methods: (i)Overall finite-differences (OFD); (ii) the semi-analytical 
method (SA); (iii)the discrete direct method (DD); (iv) the direct variational method 
(DV); (v) the adjoint variational domain method (AVD); and (vi) the adjoint vari
ational surface method (AVS). The first three methods are discussed in Chapter 7, 
the next two in this chapter, and the last method in [6]. 
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P = 11 b 

T 
W=2" 

~ _______ E_1_= __ 1_04 __ P_Si _____________ Y_b_=L-1. ________ ~ 

I. '"1 
L = 20" ·1 

nx = number of elements along x 

nys = number of elements along y under interface 

nyh = number of elements along y above intetrface 

Figure 8.4.4 Geometry, loading and mesh definition of cantilever beam modeled by 
plane stress elements (from [13].) 

0.3 ~-------------

9 
: 

... 0.2 f- i 
z 

a ~ 

DO - Direct discrete 
OV - Direc. variational 
AVO - Adjoint _0,10110001 domain 
AVS - Adjolnl _o,loli_I ,u,fac • 

SA - Semi- analyllcol 

~ \ I OD.DV.AVD 

e; ~~.. 6;: Of"O 

25 0.1 l(»::a;;::-it:·:·::t:~~::-::~:::'=::::::-:-:::~ 

0.030 

0.024 

0.0111 

0.012 

~- AVS _ 0.0011 

o~---~-------~----~o o 100 200 300 

NUMBER OF ELEMENTS IN X DIRECTION 

." ... 
> 
~ 
<I 
> a: ... 
0 

Figure 8.4.5 Convergence of the tip displacement and its derivative for ny = 8. 
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The convergence of the the displacement and its derivative as the number of 
elements along the axis of the beam is increased, is shown in Figure (8.4.5). It is 
clear that the derivatives converge more slowly than the displacement, which is to be 
expected. It is also seen, that though several methods including the direct methods 
and the adjoint variational domain method agree very well with the overall finite 
difference method, they are not more accurate than the adjoint variational surface 
method. They just converge to the correct value from a different direction .••• 

8.5 Exercises 

1. The three-bar truss of Example 8.1.1 is loaded by heating member A by t::.T 
degrees instead of by mechanical loads. Use the direct method to calculate the 
derivatives of the stresses in the three members with respect to t.he cross-sectional 
area of member A in terms of A, I, E, t::.T and the coefficient of thermal expansion 
Lt. 2. Derive the expression for t.he adjoint. loading in t.he case of linear structural 
analysis for a functional g(Ti), where Ti are the components of the traction on the 
boundary. 

3. Derive the expression for G,p of section 8.1.2 for the case of nonzero init.ial strain. 

4. Using t.he results obtained in the previous prohlem calculat.e the derivatives of 
the stress in member A of the three-bar truss of Prohlem 1 with respect to the two 
cross-sectional areas using the adjoint method. 

5. Show that Eqs. (8.1.27) and (8.1.40) arc applicahle also for the nonlinear case. 

6. Calculate the derivative of the axial strain ax in Example 8.2.1 with respect to A 
using the direct and adjoint methods. 

7. Derive Eq. (8.3.9) 

8. Repeat Example 8.4.1 using the adjoint method. 
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Dual and Optimality Criteria Methods 9 

In most of the analytically solved examples in Chapter 2, the key to the solution 
is the use of an algebraic or a differential equation which forms the optimality con
dition. For an unconstrained algebraic problem the simple optimality condition is 
the requirement that the first derivatives of the objective function vanish. When the 
objective function is a functional the optimality conditions are the Euler-Lagrange 
equations (e.g., Eq. (2.2.13)). On the other hand, the numerical solution methods 
discussed in chapters 4 and 5 (known as direct search methods) do not use the opti
mality conditions to arrive at the optimum design. The reader may have wondered 
why we do not have numerical methods that mimic the solution process for the prob
lems described in Chapter 2. In fact, such numerical methods do exist, and they 
are known as optimality criteria methods. One reason that the treatment of these 
methods is delayed until this chapter is their limited acceptance in the optimization 
community. While the direct search methods discussed in Chapters 4 and 5 are widely 
used in many fields of engineering, science and management science, optimality crite
ria method have been used mostly for structural optimization, and even in this field 
there are many practitioners that dispute their usefulness. 

The usefulness of optimality criteria methods, however, becomes apparent when 
we realize their close relationship with duality and dual solution methods (see Section 
3.7). This relationship, established by Fleury, helps us understand that these methods 
can be very efficient when the number of constraints is small compared to the number 
of design variables. This chapter attempts to demonstrate the power of optimality 
criteria methods and dual methods for the case where the number of constraints is 
small. In particular, when there is only one constraint (plus possibly lower and upper 
limits on the variables) there is little doubt that dual methods and optimality criteria 
methods are the best solution approaches. The chapter begins with the discussion of 
intuitive optimality criteria methods. These have motivated the development of the 
more rigorous methods in use today. Then we discuss dual methods, and finally we 
show that optimality criteria methods are closely related to dual methods. 
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9.1 Intuitive Optimality Criteria Methods 

Optimality criteria methods consist of two complementary ingredients. The first is 
the stipulation of the optimality criteria, which can be rigorous mathematical state
ments such as the Kuhn-Tucker conditions, or an intuitive one such as the stipulation 
that the strain energy density in the structure is uniform. The second ingredient is 
the algorithm used to resize the structure for the purpose of satisfying the optimal
ity criterion. Again, a rigorous mathematical method may be used to achieve the 
satisfaction of the optimality criterion, or one may devise an ad-hoc method which 
sometimes works and sometimes does not. The division into intuitive and rigorous 
methods is usually made on the basis of the chosen optimality criterion rather than 
of the resizing algorithm. This convention will be employed in the following sections. 

9.1.1 Fully Stressed Design 

The Fully Stressed Design (FSD) technique is probably the most successful optimality 
criteria method, and has motivated much of the initial interest in these methods. The 
FSD technique is applicable to structures that are subject only to stress and minimum 
gage constraints. The FSD optimality criterion can be stated as follows: 

For the optimum design each member of the structure that is not at its minimum 
gage is fully stressed under at least one of the design load conditions. 

This optimality criterion implies that we should remove material from members 
that are not fully stressed unless prevented by minimum gage constraints. This 
appears reasonable, but it is based on an implicit assumption that the primary effect 
of adding or removing material from a structural member is to change the stresses in 
that member. If this assumption is violated, that is if adding material to one part of 
the structure can have large effects on the stresses in other parts of the structure, we 
may want to have members that are not fully stressed because they help to relieve 
stresses in other members. 

For statically determinate structures the assumption that adding material to a 
member influences primarily the stresses in that member is correct. In fact, without 
inertia or thermal loads there is no effect at all on stresses in other members. There
fore, we can expect that the FSD criterion holds at the minimum weight design for 
such structures, and this has been proven [1,2]. However, for statically indeterminate 
structures the minimum weight design may not be fully stressed [3-6]. In most cases 
of a structure made of a single material, there is a fully stressed design near the 
optimum design, and so the method has been extensively used for metal structures, 
especially in the aerospace industry (see for example, [7,8]). As illustrated by the 
following example, the FSD method may not do as well when several materials are 
employed. 
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Example 9.1.1 

1 
I 

1 
p 

Figure 9.1.1 Two-bar structure. 

A load p is transmitted by a rigid platform A-A to two axial members as shown 
in Figure 9.1.1. The platform is kept perfectly horizontal so that the vertical displace
ments of point C and of point D are identical. This may be accomplished by moving 
the force p horizontally as the cross sections of members 1 and 2 are changed. The 
two members are made from different steel alloys having the same Young's modulus 
E but different densities PI and P2, and different yield stresses 0'01 and 0'02, respec
tively. The alloy with higher yield stress is also more brittle, and for this reason we 
cannot use it in both members. We want to select the two cross-sectional areas Al 
and A2 so as to obtain the minimum-mass design without exceeding the yield stress 
in either member. Additionally, the cross-sectional areas are required to be larger 
than a minimum gage value of Ao. 

The mass, which is the objective function to be minimized, is 

The stresses in the two members (based on the assumption that the platform remains 
horizontal) are easily shown to be 

P 
0'1 = 0'2 = . 

Al +A2 

Now assume that member one is made of a high-strength low-density alloy such that 
0'01 = 20'02 and PI = O.9P2' In this case the critical constraint is 
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so that At + A2 = P/(T02' The minimum mass design obviously will make maximum 
use of the superior alloy by reducing the area of the second member to its minimum 
gage value A2 = Ao, so that At = P/(T02 - Ao, provided that P/(T02 is larger tlli1n 
2Ao. This optimum design is not fully stressed as the stress in member 1 is only half 
of the allowable and member 1 is not at minimum gage. The fully stressed desigll 
(obtained by the stress-ratio technique which is described below) is: At = Ao and 
A2 = P/(T02 - A l . In this design, member 2 is fully stressed and member 1 is at. 
minimum gage. This is, of course, an absurd design because we make minimal \lS(~ 
of the superior alloy and maximum use of the inferior one. For an illustration of the 
effect on mass assume that 

P/(T02 = 20Ao· 

For this case the optimal design has At = 19Ao, A2 = Ao and m = 18.1p2Aol. The 
fully stressed design, on the other hand, has At = Ao, A2 = 19Ao and m = 19.9p2J1oi . 
• •• 

Beside the use of two materials, another essential feature of Example 9.1.1 is it 

structure which is highly redundant, so that changing the area of one member has 
a large effect on the stress in the other member. This example is simple enough so 
that the optimum and fully-stressed designs can be found by inspection. 

100 

Minimum 
size 

100 

(a) Optimum design 

Figure 9.1.2 Ten-bar truss. 

Minimum 

100 100 

(b) Fully stresses design 

A more complex classical example (developed by Berke and Khot [9]) often used tf) 
demonstrate the weakness of the FSD is the ten-bar truss shown in Figure 9.1.2. Th(' 
truss is made of aluminum (Young's modulus E = 107psi and density p = O.llb/in~l 
with all members having a minimum gage of 0.1 in2 . The yield stress is ±25000 psi 
for all members except member 9. Berke and Khot have shown that for (109::; 3750() 
psi the optimum and FSD designs are identical, but for (T09 ~ 37500 psi the optimum 
design weighs 1497.6 lb and member 9 is neither fully stressed nor at minimum gage. 
The FSD design weighs 1725.2 lb, 15% heavier than the optimum, with member D at. 
minimum gage. The two designs are shown in Figure 9.1.2. 
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The FSD technique is usually complemented by a resizing algorithm based on 
the assumption that the load distribution in the structure is independent of member 
sizes. That is, the stress in each member is calculated, and then the member is 
resized to bring the stresses to their allowable values assuming that the loads carried 
by members remained constant ( this is logical since the FSD criterion is based on a 
similar assumption). For example, for truss structures, where the design variables are 
often cross-sectional areas, the force in any member is a A where a is the axial stress 
and A the cross-sectional area. Assuming that a A is constant leads to the stress ratio 
resizing technique 

a 
Anew = Ao1d-, (9.1.1) 

ao 
which gives the resized area Anew in terms of the current area A old , the current stress 
a, and the allowable stress ao. For a statically determinate truss, the assumption 
that member forces are constant is exact, and Eq. (9.1.1) will bring the stress in 
each member to its allowable value. If the structure is not statically determinate 
Eq. (9.1.1) has to be applied repeatedly until convergence to any desired tolerance is 
achieved. Also, if Anew obtained by Eq. (9.1.1) is smaller than the minimum gage, 
the minimum gage is selected rather than the value given by Eq. (9.1.1). This so 
called stress-ratio technique is illustrated by the following example. 

Example 9.1.2 

For the structure of Example 9.1.1 we use the stress ratio formula and follow the 
iteration history. We assume that the initial design has Al = A2 = A o, and that the 
applied load is p = 20Aoa02. The iteration history is given in Table 9.1.1. 

Table 9.1.1 

Iteration AI/Ao AdAo aI/aol a2/ao2 
1 1.00 1.00 5.00 10.00 
2 5.00 10.00 0.67 1.33 
3 3.33 13.33 0.60 1.2 
4 2.00 16.00 0.56 1.11 
5 1.11 17.78 0.56 1.059 
6 1.00 18.82 0.504 1.009 
7 1.00 18.99 0.500 1.0005 

Convergence is fast, and if material 2 were lighter this would be the optimum 
design .••• 

As can be seen from Example 9.1.2 the convergence of the stress ratio technique 
can be quite rapid, and this is a major attraction of the method. A more attrac
tive feature is that it does not require derivatives of stresses with respect to design 
variables. When we have a structure with hundreds or thousands of members which 
need to be individually sized, the cost of obtaining derivatives of all critical stresses 
with respect to all design variables could be prohibitive. Practically all mathemati
cal programming algorithms require such derivatives, while the stress ratio technique 
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does not. The FSD method is, therefore, very efficient for designing truss structures 
subject only to stress constraints. 

For other types of structures the stress ratio technique can be generalized by 
pursuing the assumption that member forces are independent of member sizes. For 
example, in thin wall construction, where only membrane stresses are important, 
we would assume that uijt are constant, where t is the local thickness and Uij are 
the membrane stress components. In such situations the stress constraint is often 
expressed in terms of an equivalent stress Ue as 

(9.1.2) 

For example, in a plane-stress problem the Von-Mises stress constraint for an isotropic 
material is 

2 2 2 32 < 2 Ue=Ux+Uy-UxUy+ Txy_UO ' (9.1.3) 

In such a case the stress ratio technique becomes 

(9.1.4) 

In the presence of bending stresses the resizing equation is more complicated. This 
is the subject of Exercise 3. 

'When the assumption that member forces remain constant is unwarranted the 
stress ratio technique may converge slowly, and the FSD design may not be optimal. 
This may happen when the structure is highly redundant (see Adelman et al. [10], 
for example), or when loads depend on sizes (e.g., thermal loads or inertia loads). 
The method can be generalized to deal with size-dependent loads (see, for example, 
Adelman and Narayanaswami [11] for treatment of thermal loads), but not much can 
be done to resolve the problems associated with redundancy. The combination of FSD 
with the stress ratio technique is particularly inappropriate for designing structures 
made of composite materials. Because composite materials are not isotropic the FSD 
design may be far from optimum, and because of the redundancy inherent in the use 
of composite materials, convergence can be very slow. 

The success of FSD prompted extensions to optimization under displacement 
constraints which became the basis of modern optimality criteria methods. Venkayya 
[12] proposed a rigorous optimality criterion based on the strain energy density in the 
structure. The criterion states that at the optimum design the strain energy of each 
element bears a constant ratio to the strain energy capacity of the element. This was 
the beginning of the more general optimality criteria methods discussed later. 

The strain energy density criterion is rigorous under some conditions, but it has 
also been applied to problems where it is not the exact optimality criterion. For 
example, Siegel [13] used it for design subject to flutter constraints. Siegel proposed 
that the strain energy density associated with the flutter mode should be constant 
over the structure. In both [12] and [13] the optimality criterion was accompanied 
by a simple resizing rule similar to the stress ratio technique. 
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9.1.2 Other Intuitive Methods 

The simultaneous failure mode approach was an early design technique similar to 
FSD in that it assumed that the lightest design is obtained when two or more modes 
of failure occur simultaneously. It is also assumed that the failure modes that are 
active at the optimum (lightest) design are known in advance. 

N 
t} //// LI- b} "I 

:r 2 

1 
--l r-- t2 

Figure 9.1.3 Metal blade-stiffened panel with four design variables. 

Consider, for example (from Stroud [14]) how this procedure is used to design 
a metal blade-stiffened panel having the cross section shown in Figure 9.1.3. There 
are four design variables b1 , b2 , t1 , t2 • Rules of thumb based on considerable experi
ence are first used to establish proportions, such as plate width-to-thickness ratios. 
The establishment of these proportions eliminates two of the design variables. The 
remaining two variables are then calculated by setting the overall buckling load and 
local buckling load equal to the applied load. This approach results in two equa
tions for the two unknown design variables. The success of the method hinges on 
the experience and insight of the engineer who sets the proportions and identifies 
the resulting failure modes. For metal structures having conventional configurations, 
insight has been gained through many tests. Limiting the proportions accomplishes 
two goals: it reduces the number of design variables, and it prevents failure modes 
that are difficult to analyze. This simplified design approach is, therefore, compatible 
with simplified analysis capability. 

9.2 Dual Methods 

As noted in the introduction to this chapter, dual methods have been used to 
examine the theoretical basis of some of the popular optimality criteria methods. 
Historically optimality criteria methods preceded dual methods in their application 
to optimum structural design. However, because of their theoretical significance we 
will reverse the historical order and discuss dual methods first. 
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9.2.1 General Formulation 

The Lagrange multipliers are often called the dual variables of the constrained opti
mization problem. For linear problems the primal and dual formulations have been 
presented in Chapter 3, and the role of dual variables as Lagrange multipliers is not 
difficult to establish (See Exercise 1). If the primal problem is written as 

minimize cT x 
subject to Ax - b ~ 0 , 

x ~ o. 
Then the dual formulation in terms of the Lagrange multipliers is 

maximize ATb 

subject to AT A - c ~ 0, 
A ~ o. 

There are several ways of generalizing the linear dual formulation to nonlinear 
problems. In applications to structural optimization, the most successful has been 
one due to Falk [15) as specialized to separable problems by Fleury [16). 

The original optimization problem is called the primal problem and is of the form 

minimize f(x) 
subject to gj(x) ~ 0, j = 1, ... , ng . 

(9.2.1 ) 

The necessary conditions for a local minimum of problem (9.2.1) at a point x* is that 
there exist a vector A * (with components Ai, ... , A~ ) such that 

9 

gj(x*) ~ 0, 
Ajgj(X*) = 0, 

Aj ~ 0, 

of _ ~ A~agj = 0 
aXi ~) 8.1:; , 

)=1 

j = 1, ... , n g , 

j = 1, ... , n g , 

j = 1, ... , ng , 

i = 1, ... , n, 

(9.2.2) 
(9.2.3) 

(9.2.4 ) 

(9.2.5) 

Equations (9.2.3)-(9.2.5) are the Kuhn-Tucker conditions (see Chapter 5). They 
naturally motivate the definition of a function .£ called the Lagrangian function 

ng 

.£(x, A) = f(x) - L Aj9j(X). 
j=l 

(9.2.6) 

Equations (9.2.5) can then be viewed as stationarity conditions with respect to x for 
the Lagrangian function. Falk's dual formulation is 
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where 
Cm(,x) = minC(x,,x), 

xEC 
(9.2.8) 

and where C is some closed convex set introduced to insure the well conditioning of 
the problem. For example, if we know that the solution is bounded, we may select C 
to be 

c = {x: -r::; Xi::; r , i=l, ... ,n}, (9.2.9) 

where r is a suitably large number. Under some restrictive conditions the solution of 
(9.2.7) is identical to the solution of the original problem (9.2.1), and the optimum 
value of Cm is identical to the optimum value of f. One set of conditions is for the 
optimization problem to be convex (that is, f(x) bounded and convex, and gj(x) 
concave), f and gj to be twice continuously differentiable, and the matrix of second 
derivatives of C(x,,x) with respect to x to be nonsingular at x*. 

Under these conditions the convexity requirement also guarantees that we have 
only one minimum. For the linear case the Falk dual leads to the dual formulation 
discussed in Section 3.7 (Exercise 1). 

In general, it does not make sense to solve (9.2.7), which is a nested optimization 
problem, instead of (9.2.1) which is a single optimization problem. However, both the 
maximization of (9.2.7) and the minimization of (9.2.8) are virtually unconstrained. 
Under some circumstances these optimizations become very simple to execute. This 
is the case when the objective function and the constraints are separable functions. 

9.2.2 Application to Separable Problems 

The optimization problem is called separable when both the objective function and 
constraints are separable, that is 

n 

(9.2.10) 

n 

gj(x) = L gji(Xi) , j = 1, ... ,ng. (9.2.11) 
i=l 

The primal formulation does not benefit much from the separability. However, the 
dual formulation does because C(x,,x) is also a separable function and can, therefore, 
be minimized by a series of one-dimensional minimizations, and Cm (,x) is therefore 
easy to calculate. 

Example 9.2.1 

Find the minimum of f(x) = x~ + x~ + x~ subject to the two constraints 

gl(X) = Xl +X2 -10 ~ 0, 
g2(X) = X2 + 2X3 - 8 ~ o. 
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Solution via dual method: 

where 
Lj(Xd = xi - )'1 X j , 

L.AX2) = x~ - (Aj + A2)X2, 

L3 (X3) = X~ - 2A2X3, 
La = 10Aj + 8A2 . 

(a) 

(b) 

Each one of the functions L1 , L 2 , L3 can be minimized separately to get the minimum 
of L(X, A) with respect to x. The minimum of L j is found by setting its first derivative 
to zero 

2Xl - Al = 0, 

so that Xj = A1/2. Similarly we obtain X2 = (Aj + A2)/2 and X3 = A2. Substituting 
back into L(X, A) we get 

Lm(A) = -0.5Ai - 1.25A§ - 0.5A1A2 + 10Aj + 8A2. 

We now need to find the maximum of Lm(A) subject to the constraints Aj :::: 0, 
A2 :::: O. Differentiating Lm(A) we obtain 

or 
1 1 

Aj=93, A2=1 3, Lm(A)=52. 

vVe also have to check for a maximum along the boundary A1 = 0 or A2 = o. If A1 = 0 

and this function attains its maximum for A2 = 3.2, Lm(A) = 12.8. For A2 = 0 we 
get 

with the maximum attained at Al = 10, Lm = 50. \Ve conclude that the maximum 
is inside the domain. From the expressions for XI, X2, X3 above we obtain 

2 
Xj = 4-

3' 
1 

X2 = 5-
3' 

1 
X3 = 13 , f(x) = 52. 

The equality of the maximum of Lm(A) and the minimum of f(x) is a useful check 
that we obtained the correct solution .••• 
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9.2.3 Discrete Design Variables 

Because the dual method requires only one-dimensional minimization in the design 
variable space, it has been used for cases where some of the design variables are 
discrete (see, Schmit and Fleury [17]). To demonstrate this approach we suppose all 
the design variables are discrete. That is, the optimization problem may be written 
as 

n 

minimize f(x) = L fi(Xi) 
i=l 

such that gj(x) = L gji(Xi) ~ 0, j = 1, ... ,ng, 
(9.2.12) n 

i=l 

and XiEXi , i=l, ... ,n. 

The set Xi = {di1 , di2 , •.. , } is a set of discrete values that the ith design variable can 
take. The Lagrangian function is 

where 

n 

£(X, >.) = L Li(Xi, >.), 
i=l 

n. 
Li(Xi, >.) = !;(Xi) - L Ajgji(Xi), 

j=l 

(9.2.13) 

i=l, ... ,n. (9.2.14) 

For a given>. we obtain £m(>') by minimizing each Li with respect to Xi by running 
through all the discrete values in the set Xi 

n 

(9.2.15) 

Note that for a given Xi, Li is a linear function of >.. The minimum over Xi of Li is 
a piecewise linear function, with the pieces joined along lines where Li has the same 
value for two different values of Xi. If the set Xi is ordered monotonically, and the 
discrete values of Xi are close, we can expect that these lines will be at intersections 
where 

(9.2.16) 

Equation (9.2.16) defines boundaries in >.-space, which divide this space into regions 
where x is fixed to a particular choice of the discrete values. The use of these bound
aries in the solution of the dual problem is demonstrated in the following example 
from Ref. [181. 
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Example 9.2.2 

Figure 9.2.1 Two-bar truss 

For the two bar truss shown in Figure 9.2.1, it is required to find the minimum 
weight structure by selecting each of the cross-sectional areas Ai, i = 1,2, from the 
discrete set of areas 

A={1,1.5,2}, 

while at the same time satisfying the displacement constraints 

u::; 0.75(FL/E), v ::; 0.25(F L/ E) . 

The truss is statically determinate, and the displacements are found to be 

FL ( 1 1 ) 
u = 2E Al + A2 ' 

It is convenient to use Yi = l/Ai as design variables. Denoting the weight by TV, and 
the weight density by p, we can formulate the optimization problem as 

minimize 

such that 

and 

W 1 1 
-=-+
pL YI Y2 
1.5 - YI - Y2 2 0 , 
0.5 - YI + Y2 2 0 , 

YI,Y2E {~,~,1}. 
The Lagrangian function is 

and 
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The boundaries for changes in values of Y1, from Eq. (9.2.16) are 

1 1 1 2 
1/2 + 2(A1 + A2) = 2/3 + 3(A1 + A2), 

1 2 1 
2/3 + 3(A1 + A2) = 1 + A1 + A2· 

This yields 

Similarly, we obtain the boundaries for changes in Y2 as 

2 --? 

1 

(112,1) 

x 

~~ 
,f 

and A1 - A2 = 1.5. 

Figure 9.2.2 Regions in (A1' A2) space for two-bar truss problem 

These lines divide the positive quadrant of the (A1' A2) plane into 6 regions with 
the values of YI and yz in each region shown in Figure (9.2.2). \Ve start the search for 
the maximum of Lm at the origin, ,x = (0,0). At this point L(x,,x) = l/YI + 1/Y2, 
so that L(x,,x) is minimized by selecting the discrete values YI = Yz = 1, as also 
indicated by the figure. For the region where these values are fixed 

Obviously, to maximize Lm we increase A1 (we cannot reduce A2) until we get to the 
boundary of the region at (1.5,0) with Lm = 2.75. \Ve can now move into the region 
where the values of (YI, Y2) are (2/3,1), or into the region where these values are 
(2/3,2/3). In the former region 

Lm = 2.5 + A1/6 - 5A2/6 , 

and in the latter region 
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In either region we cannot increase Lm. Because the maximum of Lm is reached at a 
point (1.5,0) that belongs to three regions, we have three possibilities for the values of 
the y's. However, only one selection yT = (2/3,2/3) does not violate the constraints. 
For this selection the value of the objective function is 3, which is different from the 
maximum of Lrn, which was 2.75. This difference, which is called the duality gap, is 
a reminder that the discrete problem is not convex, so that we are not sure that we 
obtained a minimum of the objective function. For the present example we did find 
one of the minima, the other being (1/2,1) .••• 

To demonstrate that the procedure can occasionally provide a solution which is 
not the minimum we repeat Example (9.2.1) with the condition that the variables 
must be integers. 

Example 9.2.3 

The problem formulation is now 

• •• f() ? 2 2 mInImIze x = Xi + .1: 2 + X3 

subject to gl (x) = Xl + ·1:2 - 10 :2: 0, 

g2(X) = X2 + 2X3 - 8 :2: o. 
and Xi are integers, i = 1,2,3. 

The Lagrangian is given by Eqs. (a) and (b) of Problem (9.2.1), and the continuous 
solution was obtained as 

2 
1:1 = 4-. 3 ' 

1 
A1 = 9-

3' 

1 
X3 = 1-, 3' f(x) = 52. 

Lm(A) = 52. 

\Ve will look for the integer solution in the neighborhood of the continuous solution. 
Therefore, we need the boundaries given by Eq. (9.2.16) for integer values of :ri near 
the continuous optimum. For :r1 we consider transition between 3 and 4, and uet\,,Teen 
4 and 5. For these transitions Eq. (9.2.16), applied to L 1 , yields 

and 16 - 4A1 = 25 - 5A1 , 

or 
Al = 7, Al = 9. 

For X2 we consider transitions between 4 and 5 and between 5 and 6. Equa
tion(9.2.16), applied to L2 yields 

Similarly, for X3, Eq. (9.2.16) applied to L3 for transitions between 0 and 1 and 
between 1 and 2, gives 

and A2 = l.5. 
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L = 65 - A.) - 2A.z 
(5,6,2) 

L = 62 - A.) 
(5,6, 1) 

10 11 

These boundaries, and the values of .e(x, A) in some of the regions near the 
continuous optimum are shown in Figure 9.2.3. We start the search for the optimum 
at the continuous optimum values of Al = 9~, A2 = I!. For this region the values 
of the x;'s that maximize .em are (5,5,1), and .em = 51 + A2. This indicates that 
A2 should be increa.'3ed. For A2 = 1.5 we reach the boundary of the region and 
.em = 52.5. That value is attained for the entire boundary of the region marked 
in heavy line in Figure 9.2.3. There are six adjacent regions to that boundary, and 
using the expressions for .em given in the figure we can check that .em = 52.5 is the 
maximum. \Ve now have six possible choices for the values of the Xi'S, as indicated 
by the six regions that touch on the segment where .em is maximal. The two leftmost 
regions violate the first constraint, and the three bottom regions violate the second 
constraint. Of the two regions that correspond to feasible designs (5,5,2) has lower 
objective function f = 54. The optimum, however, is at (4,6,1) with f = 53 .••• 

\Vhile this example demonstrates that the method is not guaranteed to converge 
to the optimum, it has been found useful in many applications. In particular, the 
method has been applied extensively by Grierson and coworkers to the design of steel 
frameworks using standard sections [1921J. The reader is directed to Ref. [18J for 
additional information on the implementation of automatic searches in A-space for 
the maximum, and for the case of mixed discrete and continuous variables. 

9.2.4 Application with First Order Approximations 

Many of the first order approximations discussed in chapter 6 are separable. The 
linear and the conservative approximations are also concave, and the reciprocal ap
proximation is concave in some ca.'3es. Therefore, if the objective function is convex 
and separable the dual approach is attractive for the optimization of the approxi
mate problem. Assume, for example, that the reciprocal approximation is employed 
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for the constraints, and the objective function is approximated linearly. That is, the 
approximate optimization problem is 

n 

minimize f(x) = fo + L /;Xi 
;=1 

(9.2.17) n 

subject to gj(x) = COj - L Cij/Xi ~ 0, j = 1, ... ,ng , 

i=1 

where the constants Cij in (9.2.17) are calculated from the values of f and gj and 
their derivatives at a point Xo. That is 

n of 
fo = f(xo) - L XOi~(XO) , 

i=1 x, 

of 
fi = "!l(xo), 

UXi 
(9.2.18) 

and from Eq. (6.1.7) 

(9.2.19) 

This approximate problem is convex if all the Ci/S are positive. Alternatively, the 
problem is convex in terms of the reciprocals of the design variables if all the fi'S are 
positive. In either case we have a unique optimum. The Lagrangian function is now 

C(x, >.) ~ 10+ t I;x; - ~ ~j (COj - t C;j/ x) . (9.2.20) 

The first step in the dual method is to find Cm(A) by minimizing C(x, A) over x. 
Differentiating C(x, A) with respect to x, we obtain 

n. 
fi - L >"jCij/X~ = 0, (9.2.21) 

j=l 

so that 

x; ~ U; ~ ~jC;j r (9.2.22) 

Substituting Eq. (9.2.22) into Eq. (9.2.20) we obtain 

(9.2.23) 
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where x;(oX) is given by Eq. (9.2.22). 

The maximization of .em(oX) may be performed numerically, and then we need 
the derivatives of .em(oX). Using Eq. (9.2.21) we find 

a.em n 

a>.. = -COj + L C;j/Xi(oX), 
1 ;=1 

(9.2.24) 

and 
a2 .em ~(/ 2) aXi 

a>. ·a>. = - L...J Cij X; a>. ' 
1 k ;=1 k 

(9.2.25) 

or, using Eq.(9.2.22) 

(9.2.26) 

With second derivatives so readily available it is reasonable to use Newton's method 
for the maximization. 

In general, when some of the Cij'S are negative, Eq. (9.2.22) may yield imaginary 
values. It is, therefore, safer to employ the conservative-convex approximation. This 
is, indeed, the more common practice when the dual method is used [22]. 

Example 9.2.4 

The three-bar truss in Figure 9.2.4 is subjected to a combination of a horizontal and a 
vertical load. For this example we assume that the vertical load is twice the horizontal 
load, PH = p, Pv = 2p. The horizontal load could be acting either to the right or to 
the left, and for this reason we are seeking a symmetric design. The truss is to be 
designed subject to a constraint that the displacement at the point of load application 
does not exceed a value d in either the horizontal or vertical directions. The design 
variables are the cross-sectional areas AA, AB and Ac of the truss members. Because 
of symmetry we assume that AA = Ac. The objective h selected for this example is 
somewhat artificial, and is given as 

,x.u 
Y,v 

Figure 9.2.4 Three-bar truss. 
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h = AA + 2AB , 

which is based on the assumption that the cost of member B is high. The constraints 
are 

gl = 1 - u/d ?: 0, 

g2=I-v/d?:0, 

where 11 and v are the horizontal and vertical displacements, respectively. Assuming 
that all three members have the same Young's modulus E, we may check that 

4pl 
u=--

3EAA ' 

2pl 
v = -=-:----------,-

E(AB + 0.25AA) . 

vVe define a reference area Ao = 4pl/3Ed and normalized design variables Xl 
AA/Ao, X2 = AR/Ao, and we may now write the optimization problem as 

minimize f(x) = Xl + 2.T2 
subject to gl(X) = 1 - I/Xl ?: 0, 

g2(X) = 1 - 1.5/(X2 + 0.25xl) ?: O. 

vVe now use the reciprocal approximation for g2(X) about an initial design point 
X6=(I,I) 

g2(XO) = -0.2, 

Og2 (xo) = 0.375 
OXI (.T2 + 0.25xl)2 I = 0.24, 

Xo 

Og2 (xo) = 1.5 . 
OX2 (X2 + 0.25xd 2 I = 0.96. 

Xo 

so the reciprocal approximation g2R is 

g2R(X) = -0.2 + 0.24(Xl - I)/Xl + 0.96(X2 - 1)/x2 
= 1 - 0.24/ Xl - 0.96/ X2· 

The approximate problem is 

minimize f = Xl + 2X2 
subject to gl(X) = 1 - I/x] ?: 0, 

g2R(X) = 1 - 0.24/x] - 0.96/.7:2 ?: O. 

In the notation of Eq. (9.2.17) 

fl = 1, 12 = 2, Cll = 1, C21 = 0, C12 = 0.24, C22 = 0.96, COl = C02 = 1. 
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Cm(oX) is maximized here using Newton's method, starting with an initial guess of 
Xr; = (1,1). Then from Eq.(9.2.22) 

Xl = (1.24)1/2 = 1.113, 

From Eq.(9.2.24) 

X2 = (0.48)1/2 = 0.693. 

aCm 1 - = -1 + -- = -0.1015, a)' 1 1.113 
aCm _ 0.24 0.96 _ 6 
a),2 - -1 + 1.113 + 0.693 - O. 0, 

and from Eq.(9.2.26) 

a2cm 1( 1)3 
8),r = -2" 1.113 = -0.3626, 

a2Cm = _~ ( 0.24 ) = -0.0870 
a)' 1 8),2 2 1.1133 ' 

82Cm = _~ ( 0.242 0.962 ) = -0.7132. 
8)'~ 2 1.1133 + 2 X 0.6933 

Using Newton's method for maximizing Cm, we have 

oX _ { 1 } _ [-0.3626 -0.0870] -I { -0.1015 } _ { 0.503 } 
1 - 1 -0.0870 -0.7132 0.60 - 1.903 ' 

so that 

Xl = (0.503 + 0.24 x 1.903)1/2 = 0.980, X2 = (0.48 X 1.903)1/2 = 0.956. 

One additional iteration of Newton's method yields ),1 = 0.356, ),2 = 2.05, Xl = 1.02, 
X2 = 1.17. We can check on the convergence by noting that the two Lagrange 
multipliers are positive, so that we expect both constraints to be critical. Setting 
gl(X) = 0 and g2R(X) = 0, we obtain Xl = l,x2 = 1.263,1 = 3.526 as the optimum 
design for the approximate problem. Newton's method appears to converge quite 
rapidly. The optimum of the original problem can be found by setting gl (x) = 0 and 
g2(X) = 0 to obtain Xl = 1, X2 = 1.25, f = 3.5 .••• 

Because dual methods operate in the space of Lagrange mUltipliers they are par
ticularly powerful when the number of constraints is small compared to the number 
of design variables. The same is true for optimality criteria methods which are dis
cussed next. These methods are indeed exceptional when we have only a single critical 
constraint. 

9.3 Optimality Criteria Methods for a Single Constraint 

Optimality criteria methods originated with the work of Prager and his co-workers 
(e.g., [23]) for distributed parameter systems, and in the work of Venkayya, Khot, 
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and Reddy ([24] for discf( /stems. They formulated optimality criteria such as the 
uniform energy distributi. riterion discussed earlier. Later the discrete optimality 
criteria were generalized 't1J'"i3erke, Venkayya, Khot, and others ( e.g., [25]-[27]) to 
deal with general displacement constraints. The discussion here is limited to discrete 
optimality criteria, and it is based to large extent on Refs [28] and [29]. The reader 
interested in distributed optimality criteria is referred to a textbook by Rozvany [30] 
who has contributed extensively to this field. 

Optimality criteria methods are typically based on a rigorous optimality criterion 
derived from the Kuhn-Tucker conditions, and a resizing rule which is heuristic. Usu
ally the resizing rule can be shown to be based on an assumption that the internal 
loads in the structure are insensitive to the resizing process. This is the same assump
tion that underlies the FSD approach and the accompanying stress-ratio resizing rule. 
This assumption turns out to be equivalent in many cases to the assumption that the 
reciprocal approximation is a good approximation for displacement constraints. This 
connection between optimality criteria methods and the reciprocal approximation is 
useful for a better understanding of the relationship between optimality criteria meth
ods and mathematical programming methods, and is discussed in the next section. 

9.3.1 The Reciprocal Approximation for a Displacement Constraint 

We start by showing that for some structural design problems the assumption of 
constant internal loads is equivalent to the use of the reciprocal approximation for 
the displacements. The equations of equilibrium of the structure are written as 

Ku=f, (9.3.1) 

where K is the stiffness matrix of the structure, u is the displacement vector, and f 
is the load vector. 

Because the reciprocal approximation is used extensively in the following, we 
introduce a vector y of reciprocal variables, y; = llx;, i = 1, ... , n. The displacement 
constraint is written in terms of the reciprocal design variables as 

g( u, y) = z - ZT U ;::: 0, (9.3.2) 

where z is a displacement allowable, and zT u is a linear combination of the displace
ment components. The reciprocal approximation is particularly appropriate for a 
special class of structures defined by a stiffness matrix which is a linear homogeneous 
function of the design variables Xi (e.g., truss structures with cross-sectional areas 
being design variables) 

n n 

(9.3.3) 
i=1 i=1 

We also assume that the load is independent of the design variables. Under the above 
conditions we will show that 
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That is, what appears to be a first order approximation of 9 is actually exact. Equa
tion (9.3.4) does not imply that the constraint is a linear function of the design 
variables because 8gj8Yi depends on the design variables. To prove Eq. (9.3.4) we 
use Eq. (7.2.8) for the derivative of a constraint, replacing x by Yi. As the load vector 
is independent of the design variables, Eq. (7.2.8) yields 

8g = -),7 (8K) U, 
8Yi 8Yi 

(9.3.5) 

where A is obtained by solving Eq. (7.2.7) (Note, however, that in Eq. (7.2.7) z is a 
vector with components equal to 8gj8uj, while here, z is the negative of this vector, 
see Eq. (9.3.2), so we have to replace z by -z in the solution for A). Also from Eq. 
(9.3.3) 

8K Ki 
(9.3.6) 

Using Eqs. (7.2.7), (9.3.4), (9.3.5) and (9.3.6) and the symmetry of K we get 

t ;g.Yi = tAT~iUYi = AT (tKdYi) U = ATKu = -zTu. (9.3.7) 
i=1 y, i=1 y, i=1 

From Eqs. (9.3.7) and (9.3.2) we can see that Eq. (9.3.4) is indeed correct. 

Equation (9.3.4) motivates the use of the reciprocal approximation for displace
ment constraints. For statically determinate structures, under the assumptions used 
to prove Eq. (9.3.4), we have even a stronger result that the derivatives 8gj8Yi are 
constant, so that the reciprocal approximation is exact. We prove this assertion by 
showing that if internal loads in the structure are independent of the design variables 
then 8g j 8Yi are constant. The internal loads in a statically determinate structure are, 
of course, independent of design variables which control stiffness but not geometry 
or loads. 

We consider K;jYi in Eq.(9.3.3) to be the contribution of the part ofthe structure 
controlled by the ith design variable to the total stiffness matrix K. The forces acting 
on that part of the structure are fi 

K 
fi=-'u. 

Yi 
(9.3.8) 

If the ith part of the structure is constrained against rigid body motion, the same 
forces will be obtained from a reduced stiffness matrix K~ and a reduced displacement 
vector u~ 

K~ , ( ) fi = -ui , 9.3.9 
Yi 

where K~ is obtained from Ki by enforcing rigid body motion constraints, and u~ is 
obtained from u by removing the components of rigid body motion from the part 
of u which pertains to the ith part of the structure. Under these conditions K~ is 
invertible, so that u: = YiUj, (9.3.10) 
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where 
Ui = (K~t1fi . (9.3.11) 

Using Eqs. (9.3.6), (9.3.8) and (9.3.9), we now write Eq. (9.3.5) as 

(9.3.12) 

The vector ATK:!Yi is the internal force vector due to the (dummy) load z (see Eq. 
(7.2.7», and is constant if we assume that internal forces are independent of design 
variables. Also fi in Eq. (9.3.9) is constant, and so is Ui from Eq. (9.3.11). Therefore, 
finally, from Eq. (9.3.12) 8g18y; is constant. 

We will now consider the use of optimality criteria methods for a single displace
ment constraint, based on the reciprocal approximation. 

9.3.2 A Single Displacement Constraint 

Because of the special properties of the reciprocal approximation for displacement 
constraints, we pose the optimization problem in terms of reciprocal variables as 

minimize 
subject to 

f(y) 
g(y) 2:: o. 

For this problem, the Kuhn-Tucker condition is 

of _ >. 8g _ 0 
oy; OYi - , i = 1, ... ,n. 

(9.3.13) 

(9.3.14) 

In many cases the objective function is linear or almost linear in terms of the original 
design variables Xi, and since Yi = 1lxi, Eq. (9.3.14) is rewritten as 

28f 8g 
Xi-O + >.~ = 0, 

Xi VYi 
(9.3.15) 

so that 

( Og/OYi) 1/2 
Xi = ->. of 18x; , i = 1, ... ,no (9.3.16) 

The Lagrange multiplier>. is obtained from the requirement that the constraint re
mains active (with a single inequality displacement constraint we can usually assume 
that it is active). Setting the reciprocal approximation of the constraint to zero we 
have 

n 8g n og 1 
gR = g(yo) + L "i):(Yi - YOi) = Co + L "i):;: = 0, 

;=1 y, i=l y, , 
(9.3.17) 

where 

(9.3.18) 
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Substituting from Eq.(9.3.16) into Eq. (9.3.17) we obtain 

A ~ [~ t. (-::;:rr (9.3.19) 

Equations (9.3.19) and (9.3.16) can now be used as an iterative resizing algorithm 
for the structure. 

The process starts with the calculation of the displacement constraint and its 
derivatives, then A is calculated from Eq. (9.3.19) and the new sizes from Eq. (9.3.16). 
The iteration is repeated, and if fJf /fJxi and fJg/fJYi are not too volatile the process 
converges. 

In most practical design situations we also have lower and upper limits on design 
variables besides the displacement constraint, and the resizing algorithm must be 
modified slightly. First, Eq. (9.3.16) is supplemented by the lower and upper bounds, 
so that if it violates these limits the offending design variable is set at its limit. Second, 
the set of design variables which are at their lower or upper limits is called the passive 
set and denoted lp, while the set including the rest of the variables is called the active 
set and denoted la. Equation (9.3.17) is now written as 

* "fJg 1 Co + L...J ~- = 0, 
iEI. UYi Xi 

(9.3.20) 

where 
* L fJg 1 Co=CO+ --. 

fJy· X· iElp •• 

(9.3.21 ) 

Equation (9.3.19) for A is similarly modified to 

1 fJf fJg 1/2 [ ]
2 

A- - ---
- Co ~ ( fJXj fJyJ 

(9.3.22) 

The resizing process described in this section does not have step-size control. That 
is, Eq. (9.3.16) could possibly result in a very large change in the design variables 
from the initial values used to calculate the derivatives of f and g. The process 
can be modified to have control on the amount of change in the design variables, as 
discussed in the following sections. Including such control, Khot [28] showed that the 
optimality criterion method discussed here can be made completely equivalent to the 
gradient projection method applied together with the reciprocal approximation. 

Example 9.3.1 

We repeat example 9.2.2 with only a single displacement constraint on the verti
cal displacement. Using the normalized design variables, we pose the mathematical 
formulation of the problem as 

minimize 
subject to 

f(x) = Xl + 2X2 
g(x) = 1 - 1.5/(X2 + 0.25xd ~ O. 

369 



Chapter 9: Dual and Optimality Criteria Methods 

We also add minimum gage requirements that Xl ;::: 0.5 and X2 ;::: 0.5. 

The derivatives required for the resizing process are 

of 
OXI = 1, 

of 
OX2 = 2, 

og 2 og 0.375xi 
-=-XI-=-
0YI OXl (X2 + 0.25xt}2 ' 

og 20g 1.5x~ 
-=-X2-= . 
0Y2 OX2 (X2 + 0.25xt}2' 

og og 
Co = g(y) + -;;-Yl + -;;-Y2 

UYl UY2 
1 1.5 0.375xl 1.5x2 

= - + + =1 
(X2 + 0.25xd (X2 + 0.25xl)2 (X2 + 0.25xl)2 . 

We start with an initial design Xo = (1, If, and the iterative process is summarized 
in Table 9.3.1. 

Table 9.3.1 

Eq.(9.3.16) 
Xl X2 OgjOYl OgjOY2 c* 0 .\. Xl X2 
1.0 1.0 -0.24 -0.96 1.0 3.518 0.92 1.30 
0.92 1.30 -0.136 -1.083 1.0 3.387 0.68 l.35 
0.68 1.35 -0.0751 -1.183 1.0 3.284 0.496 l.39 
0.50 1.39 -0.0408 -1.263 0.918 2.997 0.350 l.376 
0.50 1.376 -0.0416 -l.261 0.917 2.999 0.353 1.375 

The design converged fast to Xl = 0.5 (lower bound) and X2 = 1.375 even though 
the derivative of the constraint with respect to Yl is far from constant. The large 
variation in the derivative with respect to Yl is due to the fact that the three bar 
truss is highly redundant. This statement that one extra member constitutes high 
redundancy may seem curious, but what we have here is a structure with 50% more 
members than needed .••• 

As can be seen from the example, the optimality criteria approach to the single 
constraint problem works beautifully. Indeed, it is difficult to find It more suitable 
method for dealing with this class of problems. 

9.3.3 Generalization for Other Constraints 

The optimality criteria approach discussed in the previous section is very similar to 
the dual method. In particular, Eq. (9.2.22) is a special case of Eq. (9.3.16). While 
the derivations in the previous section were motivated by the match between displace
ment constraints and the reciprocal approximation, they arc clearly suitable for any 
constraint that is reasonably approximated by the reciprocal approximation. In the 
present section we generalize the approach of the previous section, and demonstrate 
its application to more general constraints. 
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The optimality criterion for a single constraint 

i = 1, ... ,n, (9.3.23) 

may be written as 
A _ of / og 

- ox; ax;' i = 1, ... ,no (9.3.24) 

The right-hand-side of Eq. (9.3.24) is a measure of the cost effectiveness of the ith 
design variable in affecting the constraint. The denominator measures the effect of x; 
on the constraint, and the numerator measures the cost associated with it. Equation 
(9.3.24) tells us that at the optimum all design variables are equally cost effective in 
changing the constraint. Away from the optimum some design variables may be more 
effective than others. A reasonable resizing technique is to increase the utilization of 
the more effective variables and decrease that of the less effective ones. For example, 
in the simple case where Xi, of/ax; and og/ox; are all positive, a possible resizing 
rule is 

x~ew = x~d(Ae.)l/'1 
Itt , (9.3.25) 

where 
ei = (og/oxi)/(of /OXi) , (9.3.26) 

is the effectiveness of the ith variable and 'T] is a step size parameter. A large value of 
'T] results in small changes to the design variables, which is appropriate for problems 
where derivatives change fast. A small value of 'T] can accelerate convergence when 
derivatives are almost constant, but can cause divergence otherwise. To estimate the 
Lagrange multiplier we can require the constraint to be critical at the resized design. 
Using the reciprocal approximation, Eq. (9.3.17), and substituting into it Xi from 
Eq. (9.3.25), we get 

[ 
n l'1 1 og _l. 

A= - Lx;~ei' , 
Co i=l uX, 

(9.3.27) 

with Co obtained from Eq. (9.3.18). A resizing rule of this type is used in the FASTOP 
program [31] for the design of wing structures subject to a flutter constraint. 

Example 9.3.2 

A container with an open top needs to have a minimum volume of 125m3. The cost 
of the sides of the container is $10/m2, while the ends and the bottom cost $15/m2• 

Find the optimum dimensions of the container. 

We denote the width, length and height of the container as Xl, X2, and X3, re
spectively. The design problem can be formulated then as 

minimize f = 20X2X3 + 30XIX3 + 15x IX2 

such that 9 = XIX2X3 - 125 ~ O. 
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The e;'s for the three variables are given as 

e1 = X2X3/(30X3 + 15x2) , 
e2 = XIX3/(20X3 + 15xI) , 
e3 = xlx2/(20X2 + 30xd . 

We start with an initial design of a cube Xl = X2 = X3 = 5m, f = $1625, and obtain 
Og/OX1 = Og/OX2 = ag/aX3 = 25, Co = 375 and e1 = 1/9, e2 = 1/7, e3 = 1/10. 
Selecting "1 = 2 we obtain from Eq. (9.3.27) .A = 8.62, and using Eq. (9.3.25) we get 

Xl =5(8.62/9)1/2 = 4.893, 

X2 =5(8.62/7)1/2 = 5.549, 

X3 =5(8.62/10)1/2 = 4.642. 

For the new values of the design variables we obtain f = 1604, g = 1.04, e1 = 0.l158, 
e2 = 0.1366, e3 = 0.1053, and .A = 8.413. The next iteration is then 

Xl =4.893(8.413 X 0.l158)1/2 = 4.829, 

X2 =5.549(8.413 X 0.1366)1/2 = 5.949, 

X3 =4.642(8.413 X 0.1053)1/2 = 4.370. 

Finally, for these values of the design variables the effectivenesses are e1 = 0.l180, 
e2 = 0.1320 and e3 = 0.1089, g = 0.54, and f = 1584. We see that the maximum dif
ference between the e;'s which started at 43 percent is now 21 percent. By continuing 
the iterative process we find that the optimum design is Xl = 4.8075, X2 = 7.2l12, 
X3 = 3.6056 and f = 1560. At the optimum e1 = €2 = €3 = 0.120. Even though the 
design variables change much from the values we obtained after two iterations, the 
objective function changed by less than two percent, which was expected in view of 
the close initial values of the ei's . ••• 

9.3.4 Scaling-based Resizing 

As noted in the previous section, Eq. (9.3.24) indicates that at the optimum all design 
variables (which are not at their lower or upper bounds) are equally cost effective, 
and that their cost effectiveness is equal to 1/.A. It is possible, therefore, to estimate 
.A as an average of the reciprocal of the cost effectivenesses. Venkayya [291 proposed 
to estimate .A as 

.A = 2:~=1 ai 
'C"'n , 
L.."i=l aiei 

(9.3.28) 

where the ai represent some suitable weights (such as af /aXi). Equation (9.3.28) can 
then be used in conjunction with a resizing rule, such as Eq. (9.3.25). 

Unfortunately, the combination of Eq. (9.3.28) with a resizing rule does not 
contain any mechanism for keeping the constraint active, and so the iterative process 
will tend to drift either into the feasible or infeasible domains. Therefore, an estimate 
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of oX from Eq. (9.3.28) must be accompanied by an additional step to insure that the 
design remains at the constraint boundary. One simple mechanism, used extensively 
with optimality criteria formulations is that of design variable scaling. One reason 
for the popularity of scaling is that for the simple case represented by Eq. (9.3.3) 
it is very easy to accomplish. It is easy to check from Eqs. (9.3.1) and (9.3.3) that 
scaling the design variable vector by a scalar a to ax scales the displacement vector 
to (1/0' )u. Venkayya [291 proposed the following procedure for the more general case. 
Consider a constraint g of the form 

g(x) = z - z(x) ~ 0, (9.3.29) 

where z(x) represents some response quantity such as a displacement component, 
and z is an upper bound for z. If at the current design g ~ 0, we would like to find 
a so that 

z(ax) = z. (9.3.30) 

Approximating z(ax) linearly about x we get 

~oz' z(ax) ~ z(x) + ~ ax', (a - l)Xi = z, 
;=1 • 

(9.3.31) 

or z-z g 
a = 1 + n az = 1 - n a . 

~i=1 ax; Xi ~i=1 ';;;Xi 
(9.3.32) 

If we use the reciprocal approximation in Eq. (9.3.31) we get instead 

",n E1L . 
L."i=1 ax; x, 

0'= n a . 
g + ~i=1 ';;;Xi 

(9.3.33) 

For the simple case represented by Eq. (9.3.3) and if the response quantity z is 
a stress or displacement component, the reciprocal scaling is exact. Furthermore, 
z(ax) = (l/a)z(x), so that Eq. (9.3.33) can be replaced by 

0'= z/z = 1 - g/z. 
Venkayya suggests that Eq. (9.3.32) be used when 

1 n oz 
-LaXi~O, 
z ;=1 Xi 

(9.3.34) 

(9.3.35) 

otherwise Eq. (9.3.33) is to be used. It can be readily checked that the scaling 
equations for a in terms of g are valid also for lower bound constraints of the form 
z - z ~ O. 

In combining the resizing step, Eq. (9.3.25), with the scaling step we must con
sider whether we calculate new derivatives for each of these two operations. If we 
do, then the number of derivative calculation will increase to two per iteration. In 
most cases this is unnecessary. Unless the scaling step results in large changes in the 
design variables we can calculate the Lagrange multiplier using derivatives obtained 
before scaling. 
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Example 9.3.3 

Consider again the container problem of Example (9.3.2). We will solve it again using 
Eq. (9.3.28) for estimating ,x, and also employ scaling. 

vVe start with the same initial design as in Example (9.3.2) of Xl = X2 = X3 = 5m. 
For this design 9 = 0, so that we do not need any scaling. We have e1 = 1/9, e2 = 1/7, 
e3 = 1/10, so that Eq. (9.3.28) with all the weights set to one gives us 

3 
,x = = 8475 

1/9 + 1/7 + 1/10 . , 

Then, using Eq. (9.3.25) with." = 2, we have 

Xl =5(8.475/9)1/2 = 4.852, 

X2 =5(8.475/7)1/2 = 5.502, 

X3 =5(8.475/10)1/2 = 4.603. 

For the new values of the design variables 9 = -2.12, f = 1577, 8g/8xl = 25.325, 
8g/8x2 = 22.334, 8g/8x3 = 26.695, el = 0.1148, e2 = 0.1355, ea = 0.1044. In our 
case z = X1X2.Ta and it is easy to check that Eq. (9.3.35) is satisfied, so that we use 
Eq. (9.3.32) for scaling. 

a = 1 - -2.12 = 1.00576. 
25.325 X 4.852 + 22.334 X 5.502 + 26.695 X 4.603 

Scaling the design variables we get Xl = 4.880, X2 = 5.533, and X3 = 4.630. For these 
scaled variables 9 = 0.015, indicating that the scaling worked. For this scaled design 
f = 1595 which is a truer measure of improvement than the f = 1577 of the unsealed 
design, because the constraint is not violated. \Ve next obtain 

3 
,x = 0.1148 + 0.1355 + 0.1044 = 8.457, 

and resize to obtain 

X'1 = 4.880(8.457 X 0.1148)1/2 = 4.808, 

X2 = 5.533(8.457 X 0.1355)1/2 = 5.923, 

Xa = 4.628(8.457 X 0.1044)1/2 = 4.351. 

For this design 9 = -1.08, f = 1570, 8g/8xI = 25.772, 8g/8x2 = 20.921, 8g/8x3 = 
28.481, el = 0.1175, e2 = 0.1315, e3 = 0.1084. The scaling factor a is 

-1.08 
a = 1 - = 1.0029. 

25.772 X 4.808 + 20.921 X 5.923 + 28.481 X 4.351 

Scaling the design variables we get Xl = 4.822, .7:2 = 5.941, and X3 = 4.364. For these 
values 9 = 0.018 and f = 1579. Note that convergence is faster than in Example 
(9.3.2). 
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9.4 Several Constraints 

9.4.1 Reciprocal-Approximation Based Approach 

We start again by posing the optimization problem in terms of the reciprocal variables 

minimize f(y) 
subject to 9j(y)?= 0, 

so that the Kuhn-Tucker conditions are 

j = 1, ... ,ng, 
(9.4.1) 

i = 1, ... ,n. (9.4.2) 

As in the case of a single constraint we assume that f is approximately linear in x, 
so we replace the derivative with respect to y by a derivative with respect to x to get 

where 

ng 

X%fk - L CkjAj = 0, 
j=l 

k = 1, ... ,n. 

This equation can be used to obtain Xk as 

k = 1, . .. ,n. 

(9.4.3) 

(9.4.4) 

(9.4.5) 

However, several other possibilities for using Eq. (9.4.3) have been proposed and 
used. One resizing rule, called the exponential rule, is based on rewriting Eq. (9.4.3) 
as 

(
In. ) 1/1/ 

X kEW = Xk --:r; L AjCkj , 
XkJk j=1 

k = 1, ... ,n, (9.4.6) 

where the old value of Xk is used on the right-hand side to produce a new estimate for 
Xk. A linearized form of Eq. (9.4.6) can be obtained by using the binomial expansion 
as 

k = 1, ... ,n, (9.4.7) 

where 

k = 1, ... ,n. (9.4.8) 
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It is clear from the form of the last two equations that 17 is a damping or step-size 
parameter. A high value of 17 reduces the correction to the present design, prevents 
oscillations, but can slow down progress towards the final design. A value of 17 = 2 
corrC'sponds to Eq.(9.4.5). 

The main difficulty in the case of multiple constraints is the calculation of the 
Lagrange multipliers. It is possible to use the dual method and calculate the Lagrange 
multipliers using Newton's method. A second approach is to calculate them from the 
condition that the critical constraints remain critical, similar to Eq. (9.3.17). Assume, 
for example, that the ng constraints are all critical. Then the Lagrange multipliers 
arc fonnd from the condition that 

I = 1, ... , ng , (9.4.9) 

or 

(9.4.10) 

Using Eq.(9.4.8) for !::;,J.:k we have 

"fl g n 1l 

I: I: CklClej, - I: C"I ( ) 
--A· - - - 1791 X , 
x3 f J X 

j=l k=l . k· k k=l k 

I = 1, ... , 71 g • (9.4.11) 

Equation (9.4.11) is a system of linear equations for A. Often the solution will yield 
negative values for some of the Lagrange multipliers which may indicate that the 
corresponding constraints should not be considered active. Several iterations with 
revised sets of active constraints may be needed before a set of positive Lagrange 
multipliers is found. Equation (9.4.11) may also be used to find starting values for a 
solution with the dual approach. 

Stress constraints can be dealt \vith using the above approach. However, in 
many optimality criteria procedures they are handled instead by using the stress 
ratio technique. Member sizes obtained by the stress ratio technique are then used 
as minimum gages for the next optimality criteria iteration. The two approaches are 
compared in the following example. 

Example 9.4.1 

Find the minimum-mass design of the truss in Figure 9.4.1 subject to a limit 
of d = O.OOll on the vertical displacement and a limit of au on the stresses. The 
design variables are the cross-sectional areas of the members, AA, An and A c , and 
because of symmetry it is required that AA = Ac. All members arc made from the 
same material having Young's modulus E, density p and yield stress ao = O.002E. 
After finding the optimum design we also want to estimate the effect of increasing 
t he displacement allowable to 1.25d. 
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I 
x,u 

I 
p 

y,v 8p 

Figure 9.4.1 Three-bar truss. 

The truss was analyzed in example 6.1.2, and the vertical displacement and 
stresses in the members were found to be 

8pl 
v = =c:-:---=--:::----::-:-:--:-~ 

E(AB + 0.25AA ) , 

aA = P (_v'3_3_ + 2 ) , 
3AA AB + 0.25A A 

8p 
aB = , 

AB + O.25AA 

ae = p ( __ v'3_3_ + 2 ) 
3AA All + O.25AA 

The design problem may be written as 

minimize m = pl(AB + 4AA ) 

v 
subJ'ect to 91 = 1 - -- > 0 . 0.0011 - , 

aA 
g2 = 1- -;::: 0, 

ao 
ae 

g4 = 1- -;::: 0, 
ao 

aB 
93=1--;:::0, 

aD 
ae 

g5 = 1 + -;::: O. 
ao 

where the second constraint on ae is needed because rYe could be negative. Defining 
nondimensional design variables 
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we may rewrite the problem as 

minimize f(x) = 4Xl + X2 

such that 
16 

gl(X) = 1 - (X2 + O.25xd ;::: 0, 

v'3 2 
g2(X) = 1 - - - > 0, 

3Xl (X2 + O.25xl) -
8 

g3(X) = 1 - (X2 + O.25xI) ;::: 0, 

v'3 2 
g4(X) = 1 + - - > 0, 

3Xl (X2 + O.25xl) -

v'3 2 
g5(X) = 1 - - + > O. 

3Xl (X2 + O.25xl) -

Obviously, gl is always more critical than g3, and g2 is always more critical than either 
g4 or g5, so that we need consider only gl and g2. We solve the problem first by using 
the stress ratio technique coupled with the optimality criterion for the displacement 
constraint. 

Using the stress-ratio technique we resize the areas as 

(AA)new = (::) (AA)oId, 

(AB)new = (::) (AB)oId, 

or in terms of the nondimensional variables 

(xdnew = [1 - g2(X)]XI , 

(X2)new = [1 - g3(X)JX2 . 
These values are now employed as minimum gage values for the optimality criteria 
method applied to gl only, using Eqs. (9.3.19) and (9.3.16). For the calculations we 
need the following derivatives 

Ogl 2og1 4xi 
-=-x1-= 
OYI OXI (X2 + O.25xt}2 ' 
Ogl 2og1 16x~ 
-=-x2-= , 
OY2 OX2 (X2 + O.25xd2 

of _ 4 of = 1 
OXI - 'OX2 ' 

og og 
Co = g(y) - -Yl - -Y2 

OYI OY2 
16x~ 4XI 16x~ 1 

=1- + + = . 
(X2 + O.25xI) (X2 + O.25xl)2 (X2 + O.25xd 
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We start at x~ = (1,10) and obtain 

92 = 0.2275, 93 = 0.2195, ~9l = -0.03807, 
UYI 

091 = -15.23. 
OY2 

Applying the stress ratio technique we get (Xl)new = 0.7725, (X2)new = 7.805. Because 
of the large difference in the derivatives of 91 with respect to Yl and Y2 we expect the 
optimality criteria approach to try and reduce Xl further, so that the value obtained 
from the stress ratio technique will end up as a minimum gage constraint. Therefore, 
we consider Xl to be a passive design variable (i.e Xl E Ip). Then from Eqs.(9.3.20) 
and (9.3.21) we have 

c~ = 1 - 0.03807 = 0.9619, A = (VI5.23)2 = 16.46. 
0.9619 

Finally from Eq. (9.3.16) we obtain Xl = 0.356, X2 = 15.83, confirming the assump
tion that Xl is controlled by the stress constraints. The iteration is continned in Table 
9.4.1. 

Table 9.4.1 

Iteration Xl X2 (xdnew (X2)new c* 0 A Xl X2 

1 1. 10. 0.7725 7.805 0.9619 16.46 0.356 15.83 
2 0.7725 15.83 0.6738 7.904 0.9880 16.00 0.193 15.81 
3 0.6738 15.81 0.6617 7.916 0.9894 16.00 0.169 15.83 

We next solve the same problem using the optimality criteria technique for both 
constraints. We use Eq. (9.4.11) for calculating the Lagrange multipliers, and Eq. 
(9.4.8) with TJ = 2 for updating the design variables. The iteration history is given in 
Table 9.4.2. 

Table 9.4.2 

Iteration Xl x2 91 92 Al A2 6.x l 6.x 2 

1 1. 10. -0.5610 0.2275 11.70 O. -0.4443 3.906 
2 0.5557 13.906 -0.1392 -0.1814 15.00 2.648 0.0897 1.694 
3 0.6434 15.600 -0.0152 -0.0243 15.63 2.826 0.0160 0.231 

Note that Tables 9.4.1 and 9.4.2 indicate convergence to the same design, with 
A in Table 9.4.1 and Al in Table 9.4.2 converging to 16.00. this value is the 'price' 
of 91. At the optimum design 91 = 0 or v = d. If we increase that allowable 
displacement to 1.25d, then 91 = 0.2, and the expected decrease in the objective 
function is approximately 0.2 x 16 = 3.2 .••• 
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9.4.2 Scaling-based Approach 

The Kuhn-Tucker conditions, Eqs. (9.2.5), can be written as 

where 

ng 

L)..jejj = 1, 
j=l 

i = 1, ... ,n, 

e .. _ ogj/ of 
'J - OXj OXj 

i = 1, ... , n , j = 1, ... , ng , 

(9.4.12) 

(9.4.13) 

is the effectiveness parameter of the ith design variable with respect to the jth con
straint. Equation (9.4.12) indicates that at the optimum the effectivenesses of all 
design variables, weighted by the Lagrange multipliers, are the same. This form of 
weighting makes sense, since the Lagrange multipliers measure the importance of the 
constraints in terms of their effect on the optimum value of the objective function. 
Venkayya [29] suggests the generalization of Eq. (9.3.25) as 

i = 1, ... ,n, (9.4.14) 

for resizing the design variables. For the Lagrange multiplier evaluation he proposes 
using estimates based on a single constraint, that is Eq. (9.3.28), which gives 

)... = l:~l aj 
J ",n , 

L.....i=l ajeij 
j = 1, ... , ng • (9.4.15) 

However, Lagrange multipliers are calculated only for the most critical constraints, 
and are set to zero for the other constraints. Finally, scaling is used, based on the most 
critical design constraint. This approach is demonstrated by repeating the previous 
example. 

Example 9.4.2 

The minimization problem that we consider is 

minimize f(x) = 4Xl + X2 

16 
9l(X) = 1- ;?: 0, 

(X2 + 0.25xl) 
such that 

v'3 2 g2(X) = 1 - - - > O. 
3Xl (X2 + 0.25xd -

We solve this problem assuming that a constraint is critical if after scaling its value 
is less than 0.15. Starting with Xl = 1, X2 = 10, we get gl = -0.5610,92 = 0.2275, 
so that we need to scale based on the first constraint. For this constraint we have 

4 
( 2 )2 = 0.03807, 

X2 + O. 5Xl 
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agd aXl agd aX2 
ell = af/aXl = 0.009518, e21 = af/aX2 = 0.1523. 

For this case z = 1 - g so that the scaling test, Eq. (9.3.35) yields 

1 ~ az -1 ~ ag -1 
~ f;;r aXi Xi = 1 _ g f;;r aXi Xi = 1.561 (0.03807 x 1 + 0.1523 x 10) ~ O. 

Therefore we use the reciprocal scaling, Eq. (9.3.33) 

Q = 0.03807 x 1 + 0.1523 x 10 = 1.561. 
-0.561 + 0.03807 x 1 + 0.1523 x 10 

The scaled variables are Xl = 1.561, X2 = 15.61. If we check the constraints we find 
that gl = 0., g2 = 0.5051 so that the scaling is exact. This is because the structure 
satisfies Eq. (9.3.3) so that we can use Eq. (9.3.34) which simplifies here to (f = 1-g. 
We now estimate A from Eq. (9.3.28) using al = a2 = 1 to get 

A = 2 = 12.36. 
0.009518 + 0.1523 

Next we resize the design variables using Eq. (9.3.24) with "l = 2 to get 

Xl = 1.561(12.36 X '0.009518)1/2 = 0.5354, X2 = 15.61(12.36 X 0.1523)1/2 = 21.42. 
The large change in the design variables indicates that the value of "l = 2 that we 
used is to low, so we increase it to 4 and repeat the resizing 

Xl = 1.561(12.36 X 0.009518)1/4 = 0.9142, X2 = 15.61(12.36 X 0.1523)1/4 = 18.28. 
For these new values of the design variables we have gl = 0.1357, g2 = 0.2604. 
vVe expect that after scaling g2 will be under 0.15, so that both constraints will be 
considered critical. Therefore we calculate derivatives for both constraints. 

~gl = 0.01167, ~gl = 0.04669, ell = 0.00292, e21 = 0.04669, 
UXI UX2 

and 

ag2 = J3 + 0.5 = 0 6923 ag2 _ 2 = 0 00584 
aXI 3xI (X2 + 0.25xI)2 . , aX2 (X2 + 0.25xt}2 . , 

el2 = 0.1731, e22 = 0.00584. 
We first resize to obtain 

Q = 1 - gl = 0.8643, Xl = 0.7901, X2 = 15.80. 
We then calculate the Lagrange multipliers 

Al = 2/(0.00292 + 0.04669) = 40.32, A2 = 2/(0.1731 + 0.00584) = 11.18, 

and resize using Eq. (9.4.14) with "l = 4 (based on the experience of the previous 
iteration) 

Xl =0.7901 (0.00292 x 40.32 + 0.1731 x 11.18)1/4 = 0.9457, 

X2 =15.80(0.04669 x 40.32 + 0.00584 x 11.18)1/4 = 18.67. 
The first few iterations are summarized in Table 9.4.3. The solution oscillates more 
than in Example 9.4.1, and seems to drift away once it gets close to the optimum 
of Xl = 0.6598, X2 = 15.83. The Lagrange multipliers are not converging to their 
correct values because they are based on a single-constraint approximation .••• 
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Table 9.4.3 

Scaled Resized 
Xl X2 g1 g2 >'1 >'2 Xl x2 

1.5610 15.61 0 0.5051 12.36 0 0.9142 18.28 
0.7901 15.80 0 0.1443 40.32 11.18 0.9457 18.67 
0.8004 15.80 0 0.1537 42.04 0 0.4688 18.51 
0.6277 24.78 0.3584 0 0 3.017 0.7448 9.000 
1.2974 15.68 0 0.4300 9.927 0 0.7598 18.36 
0.6593 15.93 0.006 0 40.49 7.807 0.7910 18.77 
0.6672 15.83 0 0.0096 42.34 8.453 0.8003 18.66 
0.6789 15.83 0 0.0246 41.85 8.646 0.8143 18.66 

9.4.3 Other Formulations 

There are several other formulations of optimality criteria methods. These are of
ten tailored to treat specific constraints. An example is the treatment of stability 
constraints by Khot in [32]. The stability eigenvalue problem is typically written as 

(9.4.16) 

where K is the stiffness matrix, KG is the geometric stiffness matrix, ILk is the buckling 
eigenvalue, and Uk is the corresponding eigenvector or buckling mode. We assume 
that the modes are normalized so that 

uIKGUk = 1, 

and then the eigenvalue ILk is given by 

ILk = uIKuk. 

The constraints on eigenvalues considered in [32] are of the form 

j = 1, ... ,ng. 

(9.4.17) 

(9.4.18) 

(9.4.19) 

The derivative of gj with respect to a design variable Xi is obtained from Eq. (7.3.5) 
as 

(9.4.20) 

The second term of the right-hand side of Eq. (9.4.20) is zero if the pre buckling 
internal loads, and therefore KG, do not depend on the design variables. Even when 
the second term is not zero, there are many situations where it can be neglected. 
Khot defines 

2aILj 2 T aK 
bij = Xi -a = Xi U j -a Uj. 

Xi Xi 
(9.4.21 ) 

If the stiffness matrix is a linear combination of the design variables 

n aK 
K = 2: ax.Xi. 

i=1 • 

(9.4.22) 
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then from Eqs. (9.4.18) and (9.4.21) 

and from Eq. (9.4.21) 

L:n b·· 
1/. - ..21. r"J - , 

X· 
j=1 I 

og· OW bj • _J __ J_....!... 

OXj - OXi - x~ . 
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(9.4.23) 

(9.4.24) 

Equations (9.4.23) and (9.4.24) together indicate that bij could not be approximately 
constant (if it were we should have a minus sign in one of these equations). However, 
we can still proceed in the same manner as for displacement constraints, with the 
optimality conditions written as 

of _ ~ >.. agj _ of _ ~ >... bij _ 0 
!1 L...J J!1 -!1 L...J J 2- , 
UXj . 1 UXj UXi . 1 X,' 

J= J= 

(9.4.25) 

so that 

x, ~ (;. ~ Ajb,j) 'I' , (9.4.26) 

where fi = of loxi' We can use the more general form corresponding to Eq. (9.4.6) 

(9.4.27) 

The calculation of the Lagrange multipliers then follows one of the methods suggested 
in this section. In [32] the method leading to Eq. (9.4.11) was employed. The method 
converged well for the truss examples in [32] even though the coefficients bjj can be 
expected to change substantially with changes in the design. 

To conclude this chapter we should note that it emphasized the relationship be
tween optimality criteria methods, dual methods and approximation concepts. There 
are other treatments of optimality criteria both for specific and for general constraints. 
The reader is directed to Refs. [33-34] for survey of other works on optimality criteria 
methods. 

9.5 Exercises 

1. Show that for the linear case the Falk dual leads to the dual formulation discussed 
in Chapter 3. 

2. The truss of Figure 9.2.4 is to be designed subject to stress and Euler b1lckling 
constraints for two load conditions: a horizontal load of magnitude p; and a vertical 
load of magnitude 2p. The yield stress is ao = fiE where E is Young's modulus and 
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0: a proportionality constant. Assume that the moment of inertia of each member is 
I = fJA2 where fJ is a constant and A the cross-sectional area. Write a program to 
obtain a fully-stressed design of the truss, assuming that member A and member C 
are identical, for various 0:, {J, p, E, and t. What is the design for 0: = 10-3 , {J = 1.0 
and (Jol2/p = 105 . . 

3. Obtain the FSD resizing rule for a panel of thickness t subject to in-plane loads 
n x, ny, nxy and bending moments m x, my, m xy (all per unit length) using the Tresca 
(maximum shear stress) yield criterion. 

4. Using the dual method find the minimum of f = Xl + X2X3 + x~ subject to the 
constraint 10 - I/XI - 2X2X3 -1/x4 ~ 0 and Xi ~ 0, i = 1, ... ,4. 

5. Write a computer program to solve Example 9.2.4. Perform enough iterations to 
obtain the optimum design to three significant digits. 

6. Repeat Example 9.2.3 when Xl and X2 can take only even integer values, and X3 
can vary continuously. 

7. \\Trite a program to repeat Example 9.3.1 when the design is not symmetric, so 
that we have three design variables. Member C is not subject to minimum gage 
constraints, but members A and Bare. 

8. Find how small we can make 'T] in Example 9.3.2 without causing divergence of 
the solution. 

9. Solve Example 9.4.1 with the additional constraint that the horizontal displace
ment does not exceed d = 0.0005l. 

10. Complete Tables 9.4.1 and 9.4.2 for Example 9.4.1. 

11. Use an optimality criteria method to design the truss of Figure 9.2.4 so that the 
fundamental frequency is about 1 Hertz, and the second frequency above 3 Hertz. 
Assume that all members have the same material properties. 
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Decomposition and Multilevel Optimization 10 

10.1 The Relation between Decomposition and Multilevel Formulation 

The resources required for the solution of an optimization problem typically increase 
with the dimensionality of the problem at a rate which is more than linear. That is, if 
we double the number of design variables in a problem, the cost of solution will typi
cally more than double. Large problems may also require excessive computer memory 
allocations. For these reasons we often seek ways of breaking a large optimization 
problem into a series of smaller problems. 

One of the more popular methods for achieving such a break-up is decomposition. 
The process of decomposition consists of identifying relationships between design 
variables and constraints that permit us to separate them into groups that are only 
weakly interconnected. Once we have accomplished the process of decomposition we 
need to identify an optimization method that would take advantage of the grouping 
and replace the overall design with a series of optimizations of the individual groups, 
coordinated so as to optimize the entire system. 

The coordination process is often achieved by an optimization algorithm, and then 
the overall optimization becomes a two-level optimization process. The coordination 
level is usually referred to as the top level, and the small optimization problems are 
called the subordinate level. Of course, it may be possible to break each one of the 
groups in the subordinate level to further subgroups, so that we obtain a three-level 
optimization, and so on. The multilevel structure generated through the process of 
decomposition is usually characterized by a large number of daughter subproblems 
in successive levels. \\Then the decomposition process is depictcd schematically (see 
Figure lO.1.1a), the diagram has a wide-tree (or multiple branching) structure. 

2.65 FiglO.l.lE Multilevel-problem structures Multilevel optimization is not only 
generated through decomposition. Some problems have natural multilevel structure 
with only one or few daughter sublevels, that is they have a narrow-tree structure (see 
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(a) wide-tree structure (b) narrow-tree structure 

Figure 10.1.1 Multilevel-problem structures 

cases it is possible to formulate the structural analysis as an optimization process 
by minimizing the total potential energy of the structure. In this case the design 
problem can be viewed as a two-level optimization problem, analysis being a single 
daughter sublevel. Another example, is optimization with different types of design 
variables, such as sizing and shape variables, where it may be advantageous to deal 
with them at different levels. Finally, in multidisciplinary optimization we may have 
cases where it is advantageous to have sublevels corresponding to individual disci
plinary optimizations coordinated at an upper level. 

Because multilevel optimization techniques also have some drawbacks (discussed 
below), we may seek to transform some multilevel problems (especially narrow-tree 
problems) to a single-level structure. For example, for design problems where the 
analysis is performed as a second-level optimization, it may be advantageous to use a 
single level formulation. This single-level formulation is called simultaneous analysis 
and design, and is discussed along with other narrow-tree multilevel problems in 
Section 10.5. 

10.2 Decomposition 

The process of decomposition begins by the identification of groups of design vari
ables, so that variables in each group interact closely, but interact weakly with the 
rest of the design variables (the strength of interaction between variables will be de
fined shortly). Assuming that there are s such groups, the design variable vector x 
is written as 

X T =(X1, ... ,xs f. (10.2.1) 
The groups of design variables do not interact at all when the objective function is 
separable in terms of the groups, that is 

f(x) = L f(Xi}, ( 10.2.2) 
;=1 
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and each constraint depends only on variables from a single group. That is, if we 
denote the vector of constraints associated with Xi as gi, the constraints may be 
written as 

gi(Xi) 2:: 0, i = 1, ... , s. (10.2.3) 

f x X X X f X X X X 

X X 

X X X 

X X X 

X X X 

Figure 10.2.1 Block-diagonal and block-angular structures 

This simple problem structure is diagrammed in Figure 10.2.1a. The rows in the 
diagram represent the objective function and constraints, and the columns represent 
the design variables. An 'x' in a block indicates that the objective function or the 
constraint corresponding to the row of the block depends on the vector of design 
variables associated with the column of that block. For a block-diagonal problem the 
solution naturally breaks down to a series of problems 

minimize J; (Xi) 

such that gi(Xi) 2:: 0, 
(10.2.4) 

which can be solved independently for i = 1, ... ,s (that is, the problem is separable, 
see Section 9.2.2). This is an ideal situation because we replace the solution of the 
large problem with a series of smaller problems without the need for any coordination 
between subproblems. This is also the simplest example of problem decomposition. 

It is extremely rare to encounter problems that have a simple block-diagonal 
structure, but in many cases we have optimization problems where the coupling be
tween groups of variables is very weak. The coupling between groups of variables 
means that some of the blank off-diagonal squares in Fig. (10.2.1) fill up. A weak 
coupling means that the derivatives in these off-diagonal squares are small compared 
with the derivatives in the diagonal squares. In cases of weak coupling it may be 
possible to proceed as if the problem form were block diagonal. However, instead of 
optimizing each group of variables only once, ,ve have to repeat the process several 
times to account for the weak coupling between groups. For example, consider the 
design of truss structures subject to stress and local buckling constraints. 'vVe can 
design the cross-sectional parameter of each member of the truss separately to sat
isfy the stress and local buckling constraints, assuming that member forces remain 
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constant. Of course, in a statically indeterminate truss, member forces will change, 
so that we will need to iterate the process. This approach is a generalization of 
the stress-ratio sizing technique to fully stressed design discussed in Chapter 9; it 
can be applied to individual members as well as to substructures (see Giles [1] and 
Sobieszczanski and Loenclorf[2]). Furthermore, as for the stress-ratio technique, it is 
possible for the process to converge to a nOll-optimal (though usually near-optimal) 
design. 

A more common situation is where the subproblems are iuterconnected through 
a small number of design variables. \Ve denote the coupling design variable vector, 
involved in the interaction behveen groups, as y. Then the minimization problem is 
written as 

minimize fo(Y) + I:J;(Xi'Y) 
i=1 

such that go(Y) 2 0, 

and gi(X"y) 20, i=1, ... ,8, 

(10.2.5) 

where go is a vector of global cOllstraiuts. The connC'ctivity matrix is ctiagrammed in 
Figure 10.2.1b, and is said to have a block-angular form. The subsystem variables, 
Xi, are often called local variables, while the coupling variahles, yare called global 
variables. Beside the block-diagonal and block-angular problem structures there are 
other cases that are suited to decomposition. The reader is referred to Barthelemy 
[3] for a more complete discussion of problem structures which favor decomposition. 

One case where the block-angular problem structure is obtained naturally is in 
the limit design of structures subject to several load cases (see Section 3.1). Consider 
a truss with T members made from a single material and suhject to s load cases, given 
in terms of the nodal load vectors pi ,i = 1, ... ,8. The equations of equilibrium under 
these loads may be written as 

i=l, ... ,s, (10.2.6) 

where ni denotes the member force vector for the ith load case, and E is a matrix 
of direction cosines. For the limit design problem of the truss we need to enforce the 
yield constraints under each load casc as 

j=l, ... ,7', i=1, ... ,8, (10.2.7) 

where (JT, and (Jc denote the yield stress ill tension and compression, rcspecti\'ely, Aj 
is the cross sectional area of the jth member, and I1j denotes the force in member j 
under the ith load casco The limit design problem for minimum weight design of the 
truss can then be formulated as 
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Section 10.2: Decomposition 

where p and L j denote the density and length of the jth member, respectively. In 
this problem the member forces and cross-sectional areas are the design variables. In 
this case the member forces for the ith load case, ni play the role of the local variable 
vectors Xi since ni appears only in the constraints associated with the ith load case. 
The cross-sectional areas play the role of the coupling vector y since they appear in 
the objective function and in the constraints for all load conditions. 

Example 10.2.1 

The three-bar truss in Figure 10.2.2 is to be designed for minimum mass so as not to 
collapse, under two load systems: a vertical load of magnitude 8p and a horizontal 
load of magnitude p. We assume that the truss can collapse not only due to yield, but 
also due to Euler buckling of the compression members. The post-buckling behavior 
is assumed to be fiat (that is constant load with increasing deformation), so that the 
buckling stress can be substituted for the yield stress in Eq. (10.2.7) for members 
in compression. The design variables are the cross-sectional areas and moments of 
inertia of the members (assumed to be independent). 

c 

r-x'u 
Y,v 

t~ 
section a-a 

overall geometry 

Figure 10.2.2 Three-bar tubular truss in compression 

The horizontal load can act either to the right or to the left, and so we require a 
symmetric design, AA = Ae and IA = Ie. We assume that the material properties 
of the members are identical, and that under the horizontal load member B will not 
be critical in tension. Denoting the two load cases by superscripts H and V, we 
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formulate the limit design problem as 

minimize m = pl( 4.4.1 + An) 

such that (l8G6(n:{ -ng) =p, 

nZ + 0,5(11;[ + ng) = (), 

and Ii \' 0.8GG(n'l - 1!(') = 0, 
\. h.I".F_ lin + O.o(nct + nel - -8]), 

7[2 EfA 
_nV < 

C - 4[2 

The block diagram for the problem is shown in Figure 10.2.3 , with a detailed 
variahle-by-variable diagram in (a), and a variable-group diagram in (b). The dia
gram shows that the optimization problem has a block angular form, with the cross
sectional properties heing the cOllpling \'ariables, and the member fOlT(,S for each load 
case heing the local variables .••• 

A block angular form can be used in various ways, discussed later, to [(>place 
the overall optimization problem by a series of smaller problems. Aside from its 
value in decompositioll, a block angular form also has other complltational benefits. 
The lllaill advantage is that derivative calculation is inexpellsive because constraints 
depend only on a lilllited number of design variables. Therefore, it is wortll\vhilc to try 
and induce such a block angular structure by proper choice of desigll yariables, even 
if we use a standard optimization algorithm to solye the problem. This is illustrated 
in the following example. 

Example 10.2.2 

The three-bar truss in figure 10.2.2 is now to be designed for minimum weight in the 
clastic range by varying the radius anel the thickness of the members, The two loads 
are now assumed to act simultaneously, so that wc consider only a single load case. 
Because of symmetry we assume that membns A and C are identical so that the 
design variables are r.I, (I, 1'lJ, and tlJ. \Ve assume that the thicknesses of the tubes 
are small compared to the radii, so that the cross-sectional areas are approximated 
as 

Displacement, stress anel huckling constraints are applied, The vertical displacement 
/' is restricted to be less than 0.0011. The stress in each membcr should be less than 
(To = 0.002E, where E is YOllng's modulus, and (To is the yield stress in tension 
and compression, (To = lOspl z2. Additionally, tlie members should not huckle. This 
means that the stress in (>aeh member is limited to be below the shell-buckling stress 
of O.G05Etl]' where r is the radius of the member and t its thickness, and the stress 
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AA IA AB IB 
H H H V V V nA nB ne nA nB ne 

mass x x 

horizontal eql. X X 

"0 
vertical eql. ~ X X X 0 

....J 
c:a yielding A X X 
C 
0 
N buckling B ·c X X X 
0 ::r: 

buckling C X X 
(a) 

horizontal eql. X X 

"0 vertical eql. X X ~ X 0 
....J 
c:a buckling A X X u 
·B 

buckling B (l) X X X > 
buckling C X X 

Cross 
Sectional 
Variables 

nH nH nH 
ABe 

V V V 
nA nB ne 

mass X 

(b) 
Horizontal 
load X X 
constraints 
Vertical 
load X X 
constraints 

Fignre 10.2.3 Block diagmm for· Example 10.2.1 

must also be below the Euler buckling stress of 7f2 £,.2 /2L2 where L is the length of 
the member. 

The truss was analyzed in Example 6.1.2 for a vertical tensile force, and it is easy 
to change the sign of that force and obtain 
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8pl 
v = - , 

E(AB + O.25AA) 

aA _ P (_J3_3_ _ 2 ) 
- 3AA AB + O.25AA ' 

8p 
aB = - , 

AB + 0.25AA 

ac = _p (_J3_3_ + ___ 2 ___ ) 
3AA AB + 0.25AA 

We assume that the yield stress is the same in compression and in tension, and then 
member C will always be more critical than member A, so that the design problem 
may be written as 

minimize m = pl(AB + 4AA ) 

such that 
v 

1 + 0.0011 ~ 0, 

0.605EtB aB 0 -----=-+-> 
rBaO ao -

1 + ac ~ 0, 
ao 

1r2 Er2 a 
__ A +--2>0. 
8l2ao ao-

I + aB ~ 0, 
ao 

1r2Er~ aB 
-212 +-,~O, ao ao 
0.605EtA ac 0 ----+-> 

rAaO ao -

As posed the problem is fully coupled in that each constraint depends on all four 
design variables (note that the stresses in each member depend on the area and 
hence on the thickness and radius of the other member). However, it is simple to 
decouple the members and construct a block angular problem structure by changing 
design variables. We select the cross-sectional areas as the coupling variables (y), 
and then either the radii or the thicknesses of the members can be the local or 
subsystem variables. In this example, let us use the two radii as the local variables. 
The thicknesses may then be obtained from the radius and cross-sectional areas. \Ve 
define nondimensional area variables as 

and then the mass, the displacement, and the stresses may be written in terms of Yl 
and Y2 only. The buckling constraints also require the radii. Defining the nonclimen
sional radii as 

we can write the buckling stress limits for member B as 
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and 
1f2 Er2 1f2 E 
~ = - -aox~ = 2467 aox~ . 

2l 2 ao 

Using similar expressions for member C, we can now write the design problem as 

minimize 

such that 

and 

m = (plpjao)(4YI + Y2) 
16 

gl(Y) = 1 - + 0 25 ~ 0, (displacement) 
Y2 . YI 

8 
g2(Y) - 1 - > 0 (stress in B) 

- Y2 + 0.25YI - , 

v'3 2 
g3(Y) = 1- - - ~ 0, (stress in C) 

3YI Y2 + 0.25YI 

-4YI v'3 2 gll(XI,Y) = 4.814 x 10 2 - - - ~ 0, (shell buc. C) 
Xl 3YI Y2 + 0.25YI 

2v'3 2 ( ) gI2(XI,Y) = 616.9x I - -3 - + 0 25 ~ 0, Euler buckling C 
YI Y2 . YI 
4Y2 8 g21(X2,Y) = 4.814 x 10- 2 - 25 ~ 0, (shell buckling B) 

x 2 Y2 + O. YI 
2 8 

g22(X2,Y) = 2467x2- 025 ~O. (Euler buckling B) 
Y2 + . YI 

The problem now has the requisite block angular structure.e e e 

Now consider the case of a more complex truss structure composed of s tubular 
members, designed for minimum mass and subject to stress, displacement, and local 
buckling constraints. The stresses will be calculated from a finite element model. 
For optimization we will need the derivatives of the stresses with respect to design 
variables, and this derivative calculation can be the major cost in the optimization 
process, especially if derivatives are calculated by finite differences. If the radii and 
thicknesses of the members are used as design variables, then the problem is fully 
coupled, in that a change in each design variable may affect the stresses in all mem
bers. \Ve will need to calculate derivatives of the stresses in the members with respect 
to 28 design variables. If, on the other hand, we use the decomposition approach em
ployed for the three-bar truss, the cross-sectional areas and the radii are the design 
variables. The partial derivatives of the stresses with respect to the member radii are 
taken for fixed values of the corresponding areas (this is, of course, possible because 
the thicknesses are not specified). So these derivatives of stresses with respect to 
radii are zero, and we need to calculate only the s partial derivatives of stresses with 
respect to areas. 

A similar approach may be used for frame type structures. The portal frame shown 
in Figure 10.2.4 , for example, was introduced by Sohieski et al. [4] for demonstrating 
multilevel optimization concepts. Each one of the three beams has an I cross-section 
defined by 6 design variables. Constraints are imposed on stresses and displacements 
under the loads shown in the figure. If the detail (local) design variables are used, 
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Figure 10.2.4 Decomposit'ion of portal frame 

the stress and displacement constraints are fully coupled, in that they are affected by 
each one of the 18 design variables. However, if we choose the cross-sectional area A 
and the moment of inertia I of each beam as design variables, we can eliminate 2 of 
the local design variables for each beam. Now all the constraints depend on the Il.reas 
and moments of inertia, but the other four variables for each beam influence only the 
stresses in that same beam. It is possible to apply the same approach to a planar 
frame with s members, and have 2s coupling (y) design variables, and s subsystems. 

For both truss and frame problems decomposition is achieved by recognizing thll.t 
the effect of one member on the rest of the structure can be expressed in terms of 
a small number of parameters (areas for a truss, areas and moments of inertill. for 
a planar frame). These parameters become "global" or coupling variables, and are 
used to eliminate an equal number of local variables. 

Thareja and Haftka [5] employed a similar approach for composite panels, using 
panel membrane stiffnesses as global variables. However, for more general structures, 
it may not be easy to select global variables that decompose the design problem. 

Another difficulty associated \vith the decomposition is the elimination of the lo
cal variables in terms of global variables. For panel problems, as well as for complex 
truss and frame cross-sectional forms, it is impossible to find analytical expressions 
for eliminating local variables and replacing them with global variables. It is possible 
to keep both local and global variables, and supplement the problem with equality 
constraints that guarantee the consistency of the global variables with the local vari
ables, However, this approach often tends to make the optimization problem more 
ill-conditioned as well as increase the number of design variables (e.g., [6]). In many 
cases it is possible, instead, to eliminate local design variables in terms of global ones 
even if analytical expressions for the elimination are not available. 
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Consider, for example, a generalization of the truss and frame cases where each 
subsystem has a set of global variables that are used to eliminate a number of the 
subsystem variables. For the sake of simplicity we will consider a single subsystem, 
and omit the subscript associated with it. That is, let x be the vector of subsystem 
variables (such as the radius and thickness for the truss tube member), and let y be 
the part of the global variable vector associated with that subsystem (such as the 
cross-sectional area for that truss member). 

\Ve assume that \ve can identify a subset of x that can he eliminated in terms of 
y and denote it as XE, and denote the rest of the local variables (to be ret.ained ) as 
XR. The relationship between y, XE, and XR is given as 

h(y,XE,XR) = O. (10.2.9) 
This relationship cannot always be solved analytically to yield an expression for XE 
in terms of y and xu, but it can be solved numerically (e.g., Newton's method). 
The numerical solution for XE is usually inexpensive, because Eq. (10.2.9) is a small 
system of algebraic equations. It is important, however, to choose XE such that the 
system has a solution, that is the Jacobian ah/ aXE must be nonsingular. 

If we replace x by y and Xu as design variables without having an analytical 
expression for the eliminated variables, our main difficulty will be in calculating 
derivatives of objective function and constraints with respect to the new set of design 
variables. Consider, for example, a constraint function 

g(x) = g(XR,XE) = Y(XR'Y). (10.2.10) 

\Ve need to calculate the derivatives of Y without having an explicit expression for 
it. This is easily accommodated using implieit differentiation. Differentiating Eq. 
(10.2.10) we get 

ay ag ag aXE -=-+--
aXIl DXIl aXE aXR ' 

ay ag aXE 
(10.2.11) 

ay aXE ay . 
Note the difference between ag/aXR and a!J/axn. The first is a derivative of the 
constraint with XE h(,ld constant, while the second is a derivative of the constraint 
with y held constant. 

To be able to evaluate the derivatives from Eq. (10.2.11) we need the derivatives 
aXE/aXR and axE/Dy. These arc obtained by differentiating Eq. (10.2.9) as 

which can be solved to yield 

ah + ah aXE = 0 
ay ax E ay , 
ah ah aXE 
-+---0 
aXIl aXE aXR - , 

aXE _ [ah ] -1 Dh 
ay - - aXE ay , 

aXE [ ah ] -1 ah 
aXn = - aXE DXR . 

(10.2.12) 

(10.2.13) 
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This process is illustrated in the following example. 

Example 10.2.3 

Consider again the portal frame of Figure 10.2.4. The natural global variables are the 
cross-sectional areas and moments of inertia. Denoting the area and moment of inertia 
of a typical member by A and I, respectively, and assuming that the thicknesses are 
much smaller than the other dimensions we have for Eq. (10.2.9) 

hI = blt l + b2t2 + HiJ - A = 0, 

h2 = t3H3/12 + (bltl + b2t2)H2/4 - (blh - b2t2? H2 /4A - I = O. 
(a) 

Assume that we have a local constraint which requires (say, to avoid unreasonable 
geometries) that the web accounts for at least 20 percent of the total area, that is 

(b) 

Assume further that \VC use the area and moment of inertia to eliminate the variables 
tl and t3. That is, here tj and t3 are the components of XE and bl , b2, t2 and Hare 
the components of XR. After the elimination of the two local variables the constraint 
may be written as 

g(A,I,b l ,b2 ,t2,H) ~ O. 

\Ve want to demonstrate that we do not need to have an explicit form for !J to be 
able to evaluate it and its derivatives. To evaluate !J for a given set of its arguments 
we first solve Eqs. (a) for tl and t3, and then we evaluate 9 from (b) and note that 

Consider now, for example, the derivative of g with respect to the area A. 

We obtain otI/oA and ot3/oA by differentiating Eqs. (a) with respect to A 

b otl H ot3 - 1 = 0 loA + 0.4 
(c) 

For example, consider a nominal design with tl = t2 = ta = t and bl = b2 = H. For 
this initial design A = 3Ht, I = 7tH3/12, and 9 = O.4Ht. We start by solving Eqs. 
(c) for otdoA and ota/oA to obtain 

otl -1 
= oA 2H' 
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and then 
8y 
8A = 1.3. 

As a check we can change the area by a small amount D..A without changing the 
other arguments of y. This can be accomplished by changing tl by (8tl/8A)D..A = 
-0.5D..A/ H and changing t3 by (at3/8A)D..A = 1.5D..A/ H. We then check that the 
moment of inertia I does not change (to first order in D..A), and that g changes by 
approximately 1.3D..A. • •• 

When it is difficult to eliminate local variables by using the global variables, 
we may want to use both types of variables. As noted before, the use of equality 
constraints to enforce compatibility between local and global variables may lead to 
ill-conditioning. Instead Schmit and co-workers (e.g., [7]) used the objective function 
of the lower-level problems as a means of enforcing compatibility. That objective 
function was made to be a measure of the discrepancy between the lower level and 
upper level variables. This approach (as well as the use of equality constraints) trans
fers the problem of the compatibility between lower-level and upper-level variables 
from the formulation or decomposition stage to the solution stage. The solution of a 
decomposed problem is discussed in the following sections. 

10.3 Coordination and Multilevel Optimization 

Once a problem has been transformed to have a block-angular form, we realize 
important savings in the cost of calculating sensitivity derivatives. However, it may 
be possible to gain additional savings by employing an optimization method which 
capitalizes on the special form of the problem (in particular on the smaller size of the 
subproblems). 

A natural approach to the problem is to use a nested or two-level optimization 
procedure where the optimization of the subsystem variables, Xi, is nested inside an 
upper-level optimization of the global variables, y. In some cases the two levels of 
optimization can be uncoordinated, with the optimization process simply shuttling 
back and forth between the upper-level and the lower-level optimization. If changes 
in the global variables affect local constraints only weakly, this process can converge 
fast (but not necessarily to the optimum). For example, Kirsch [8] developed a three
level optimization procedure for reinforced concrete structures which relies on such 
an iterative procedure. 

In many cases, however, the optimization process at the two levels has to be 
coordinated. For linear problems Dantzig and Wolfe ([9] and [10]) and Rosen [11] 
and [12] developed two-levels algorithms for the block-angular problem, Eq. (10.2.5). 
For nonlinear problems, one possible approach is known as the model-coordination 
method. Here we describe a version based on derivatives of the optima of subsys
tems with respect to upper-level variables. Consider the block-angular problem, Eq. 
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(10.2.5). \Ve start by replacing it by the following two levd-problem 

minimize fo(Y) + L f;'(y) 
i=1 

such that go(Y) 2:0, 
(10.3.1) 

where 

ft(y) = min fi(Xi, y) 
Xi 

such that gi(Xi, y) 2: o. 
This problem can be solw'd ill two stages. First, an initial guess for y is selected, and 
each of the s sublevels is optimized for the corresponding Xi. Then, the sensitivities of 
the optima of each sublevel with respect to changcs in yare calculated (as described 
in section 5.4). Finally, these sensitivities are used to change the coupling or top-level 
variables (y), in one or more iterations. 

One of the difficulties associated with such a two-level approach is that for some 
values of y there may he no feasible solution to some of the suble\'('l problems. For 
linear programmiIlg, nosen's algorithm [12] starts by finding a feasible solution. For 
nonlinear problems it is difficult to ensure that for a given value of the vector y all 
subproblems have feasible solutions, even though it is possible to add constraints to 
the upper-leVel problem that help prevcnt lower-level infeasibility (see Kirsch, [13]). 
Additionally, the nse of sensitivities of the subsystems to challges in the top-level 
variables has one spriOllS drawback: These sensitivities may not he continuous (see 
Barthelemy and Sobie8ki [14]). This is demonstrated in the following example. 

Example 10.3.1 

Consider again the three-bar truss of Example 10.2.1. As shown in that example, 
the problem has a hlock-angular form, with the areas and moments of inertia being 
the global design variahles, and member forces the local variables. The upper level 
optilllization in a two-level approach for this problem can be formulated as follows: 

minimize m = (II (4A.\ + A B) 
such that p~f - P 2: 0 , 

\. 
jJ" -]J 2: 0 , 

where p:f amI p;:. denote the collapse values of p for the horizontal and vcrtiealload 
cases, respectivel.\". These collapse values are ohtained from the solution of two sub
level optimization problems. For the horizontalloacl we solve 
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maXImIze p;f 
such that 0.8GG(1l ~ - n{!) = p:f , 

n~ + O.!j(n~ + n{!) = 0, 

7f2 EI 4 
-ncf~ < --_. 
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Similarly, for the vertical load we solve 

maximize 

such that 

To optimize the upper-level problem we will need derivatives of the two collapse loads 
with respect to the cross-sectional areas and moments of inertia. \Ve will consider 
only the derivatives of the horizontal collapse load p!!. The problem is simple enough, 
so that the solution for the collapse load can be found by inspection. If IB is large 
enough, so that member B is not critical, then collapse will be reached when members 
A and C reach their maximum (yield or buckling) loads, and from the horizontal 
equation of equilibrium we get 

From the vertical equation of equilibrium we can then check that at this load member 
B will be indeed below its failure load if 

If, on the other hand, I B < I BO then members C and B will reach t.heir maximum 
load first, and using the two equations of equilibrium we find that 

II 0.8667f2 E 
Pc = [2 (2IB +0.5IA ). 

It is easy to check that when IlJ = I Bo both expressions for the collapse load give 
identical results, so that p~l is a continuous function of lB. The derivative of p~I with 
respect to III, on the other hand, is not continuous. When IB < I Bo this derivative 
is zero, as the collapse load is independent of the properties of member n when that 
member is not critical. For Is > I Bo we get 

()p~I 1.7327f2 

OlB [2 

This discontinuity in t.he derivative can pose difficulties to most optimization algo
rithms, especially if the optimum design is in the vicinity of IB = I Bo .• •• 

10.4 Penalty and Envelope Function Approaches 

One way of avoiding the difficulties of the two-level approach discussed above is 
to use an exterior or extended interior penalty-function method (see Section 5.7) 
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for the objective function at the lower levels. The penalty function approach allows 
us to accept upper-level (y variables) that do not have lower-level (x; variables) 
feasible solutions. Indeed, the penalty associated with constraint violation at the 
lower levels will eventually drive the upper-level design variables away from regions 
with no lower-level feasible solutions. Also, the extended penalty function smoothens 
the discontinuities associated with the derivatives of the lower-level optima, especially 
when the lower-level optimization is not performed with extreme values of the penalty 
parameter. Finally, the use of a penalty function solves the difficulty that occurs when 
the lower-level variables do not contribute to the objective function. 

Consider the block-angular problem described by Eq. (10.2.5). Using a penalty 
function approach we replace the constrained problem with 

minimize <I>(y, x, 1") = 10(Y) + Pv[go(Y), r] + L (f;(Xi' y) + Pv[g;(Xi,Y), 1"]) , 
;=1 

(10.4.1) 
where Pv is the penalty associated with a vector of constraints. For example, if g is a 
constraint vector with m components we will often use a cumulative penalty function 

m 

PV(g,I') = LP(gj, 1"), 
j=1 

(10.4.2) 

where p denotes some penalty function such as the convenient extended interior 
penalty function (see Section 5.7) 

The transition parameter go depends on 1" as 

go = go01"1/2 , 

for 9j ~ go , 
for gj < go . 

(10.4.3) 

(10.4.4) 

where goo is a constant. The problem described by Eq. (10.4.1) is solved for a series 
of values of 1" such that 1" --+ O. A multilevel version of this formulation is 

s 

minimize 10(Y) + Pv[go(y, r)] + L cPi(Y, r) 
i=1 (10.4.5) 

where cPi(Y,r) = min {/;(Xi,Y)+P,,[gi(Xi,y),1"i]} . 
Xi,ri 

The series of values for the subsystem penalty parameters r; tend to zero together 
with the global penalty parameter 1". 

The method of varying the penalty parameters of the subsystems defines the 
particular multilevel algorithm. One attractive approach is to perform each sublevel 
optimization for only a single value of 1";, arguing that there is no point in striving 
for an exact sublevel optimum before the upper-level variables have settled close to 
their final values. That single value of the penalty parameter for each subsystem 
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can then be gradually reduced towards zero as the optimization proceeds. Reference 
[15] shows that when all subsystems use the same penalty parameter, the multilevel 
optimization is completely equivalent to the single-level approach. This means that 
the same series of int.ermediate designs are obtained on the way to t.he final opt.imum, 
and the calculat.ions performed could be made to be identical. The process can be 
viewed as a two-level optimization, or a single-level optimization where the block
angular form is utilized to reduce the amount of computation and permit parallel 
operations. 

Note that even when other techniques are used to solve multilevel optimization 
problems it is common practice to use approximate or partially converged solutions 
of the sub-level optimizations. 

Example 1004.1 

Consider the two-level formulation of the elastic design of the three-bar truss in 
Example 10.2.2. For this simple example it is convenient to use a vector penalty 
function Pv which is equal to the penalty associated with the most critical constraint. 

Pv(g, r) = p[min(gd, r] . 
• 

In general this penalty approach may create discontinuity problems when the most 
critical constraint changes identity. For our problem, though, this does not happen. 
The penalty function formulation is then 

minimize 
where 

¢ = m(y) + Pv[gl(y),g2(y), g3(y), r] + ¢l(Y, r) + ¢2(Y, r) 
¢l(Y,r) = minpv[gll(.rl,y),gdxl,y),r] , 

Xl 

¢2(y, r) = minpv[g2l(X2, y), g22(X2, y), r] , 
X2 

(10.4.6) 

where the mass and constraint functions are given in Example 10.2.2. Note that the 
local variables Xl and X2 do not contribute to the mass, so that the formulation of 
Eq. (10.3.1) would not have any objective function at the lower level, and the lower 
level problems would only require finding a feasible solution. 

With this penalty function formulation, the lower-level objectives ¢l and ¢2 each 
contain the contributions of two constraints. Because the penalty is based on the 
most critical constraint the lower-level optimum occurs when these two constraints 
are equally critical. For the first subsystem we get gll = g12 which yields 

For the second subsystem we get g21 = g22 or 

1/4 X2 = 0.02102Y2 . 

With these relationships we can now solve the upper level problem as a single-level 
optimization problem .••• 
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Instead of a penalty function it is possible to usc an envelope function which 
replaces a vector of constraints with a single envelope constraint. Sobieski and co
workers have made extensive use of the Kresselmeier-Steinhauser (KS) envelope con
straint (see Chapter 5) for multilevel formulations (e.g., Sobieski et al. [IG]). The KS 
envelope constraint replaces the constraint vector g by K S(g) where 

KS(g) = -grnin - (1/ p)log [~exP[p(gmin - gd]] , 

where g; are the components of g, p is a factor that plays the same role as the penalty 
parameter and gmin is the most critical constraint. It is easy to show that 

gmin ;::: KS(g) ;::: gmin - (1/ p)log(m), (10.4.7) 

where rn is the number of constraints (components of g). As p is increased K S(g) 
approaches the value of gm;n' The negative of KS can be used instead of Pv in the 
penalty formulation. 

10.5 Narrow-Tree Multilevel Problems 

\Vhile in many cases the objective of decomposition is to produce a problem with 
many daughter sublevels (Figure 10.l.la), there are many cases where we have a 
narrow-tree structure with one or few daughter sublevels (Figure 1O.1.1b). In some 
cases there is an advantage to pursue the solution using multilevel optimization. 
However, in other ca.<;es it may be better to convert the multilevel problem into a 
single-level one. 

10.5.1 Simultaneous Analysis and Design 

Interest in converting a two-level optimization problem into a single-level problem 
has been particularly evident in the area of simultaneous structural analysis and 
design. The simultaneous analysis and design (SAND) approach seeks to change 
the nested approach typical of traditional structural optimization. In the nested 
approach the structure is analyzed for a trial design, the sensitivity of the response 
with respect to structural sizes is then calculated, and the sizes are modified based 
on these sensitivities to obtain the next trial design. The structural analysis is nested 
inside the optimization procedure, repeated again and again for a sequence of trial 
designs. The SAND approach seeks to perform the analysis and design as a single 
problem with response variables added to structural sizes as unknowns to be treated 
all in a similar way. 

The two-level form of the traditional nested approach is evident in problems where 
the structural analysis can be formulated as an optimization problem. For example, 
limit design of structures can be formulated as weight minimization subject to con
straints on the collapse loads. These collapse loads are the solution of a maximization 
problem. In Example 10.3.1 we saw the two-level format of a limit design problem 
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that was formulated as a single-level problem in Example 10.2.1. The single-level for
mulation had cross-sectional areas (structural sizes) and member forces (structural 
response) as design variables. 

In the case oflimit design the single-level formulation, that is the SAND approach, 
is the method of choice in engineering practice. However, in the elastic range the 
nested approach is the rule. The problem of minimum-weight clesign subject to 
displacement and stress constraints in the elastic range can be formulated as 

minimize W (x) 
such that gj(u,x):::,,:O, j=l, ... ,m, (10.5.1) 

where the displacement field u can be obtained as the solution to the minimization 
of the potential energy U given in term of the stiffness matrix K and the load vector 
f 

minimize U = (1/2)uT K(x)u - uTf. (10.5.2) 

The common approach is to solve this problem as a two-level optimization since 
the solution to the energy minimization prohlem is obtained simply by solving the 
equations of equilibriulIl Ku = f(x). 

The SAND approach of using the equations of equilibrium as equality constraiuts 
and treating both strnctural sizes and displacements as design variahles was at
tempted in the 1960's by Fox and Schmit [17] using a conjugate gradient (CG) tech
nique for the optimization. However, the CG method could not deal effectively with 
the equality constraints associated with the equations of equilibrium because the stiff
ness matrix generated hy a finite-element model is typically ill-conditioned. Gaussian 
elimination techniques lose accuracy when applied to ill-conditioned equations, but 
this can be tolerated if the numher of digits used in the computer arithmetic is high 
enongh (most finite-element computations are done in douhle precision). The ef
fect of ill-conditioning on iterative methods snch as the CG method is to slow down 
COllYergence. 

Recent advances in optimization methods such as preconditioned CG methods, 
however, improve the efficiency of the SAND approach, and make it competitive 
for three-dimensional problems that result in a poorly-banded stiffness matrices. As 
a result there has been a revival of interest in SAND approaches (see Haftka [IS], 
Smaoui and Schmit [19], Ringertz [20], anel Haftka and Kamat [21]). Overall, the 
SAND method eliminates the need for continnally reanalysing the structure, at the 
expense of solving a larger optimization problem (including displacements as design 
variables). It is, therefore, most appropriate to usc SAND in problems with a very 
large number of structnral design variables, where the addition of displacement vari
ables has a small effect on the total nnmber of design variahles. 

The SAND method is not the method of choice when there are many load cases 
because in that case the number of displacement design variables becomes very large. 
However, Chibani [22] employed SAND in this case using a two-level approach and 
geometric programming to alleviate the computational burden. The method is also 
very useful in topology optimization where the traditional nested approach runs into 
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trouble when the elimination of parts of the structure can render the stiffness matrix 
singular (see Bends0e et al. [23]) 

It is not always possible to transform a two-level problem into a single-level 
one. Consider, for example, the problem of maximizing the lowest frequency Wi of a 
strnctnre subject to the constraint that its weight TV docs not exceed a limit H'u. A 
two-level formulation of the problem is 

maximize 
such that 

Wi(X) 

IV - lV(x) > 0 It _ , 
(10.5.3) 

where WI is the solutioll of the lower-level minimization of the Rayleigh qnotient 

(10.5.4) 

with M being the mass matrix and u the eigrnwctor corresponding to Wi. It is not 
possible to replace this tVv"O-level problem by thr single-level problem 

uTKu w2 - __ _ 
1- uTMu (10.5.5) 

find x and u to maximize 

such that 1V - W(x) > 0 'Ii _ , 

because in the above formulation the optimization ,yill choose the eigenvector corre
sponding to the highest. rather than the lowest frequency. It is still possible to convert 
this frequency maximization problem to an SAND single-level approach [24] by using 
the Kuhn-Tucker conditions of the problem, but the process is more complex and 
more computationally costly than the nested approach of Eqs. (10.5.3) and (10.5.4). 

10.5.2 Other Applications 

One of the common applications of multilevel approach to a problem with a narrow
tree form is in combined sizing and geometry optimization. Typically, t.he geometrical 
design variables are selected to be the upper level variables, and the sizing variables to 
be the lower-level variables. The motivation for this approach has been the disparate 
nature of the two types of variables that can lead to numerical difficnlties when they 
are treated together as a single group of design variables. Typical applications have 
been to truss (e.g., [25-28]) and frame design (e.g., [29]-31]) problems. 

10.6 Decomposition in Response and Sensitivity Calculations 

Systems that have block-angular structures in term of the design optimization 
problem will usually have a similar structure in the analysis problem. That is, if we 
denote the response of the oS subsystems by Ui, i = 1,··· ,oS, we can often find a set of 
global response variables w which deconples the response computations (that is the 
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analysis) of the individual subsystems. That is, the equations governing the response 
of the system can he written as 

rO(Ul,··· , Us> w) =0, 
Ti(Ui, w) =0, i=l, .. ·,s. 

(10.6.1) 

\Ne can take advantage of this block angular structure in the solution procedure. 
For example, consider the use of Newton's method for solving the system. Given an 
initial estimate for the solution we compute a correction to that estimate from a first 
order Taylor series expansion 

ro + To,16.U1 + ... + ro,,6.us + ro,o6.w =0, 
ri + ri,i6.ui + ri,06.w =0, i = 1,··· ,8. 

(10.6.2) 

where a comma followed by i indicates a derivative with respect to Ui and a comma 
followed by a zero indicates a derivative with respect to w. For example, ro,; indicates 
a matrix with its jth row consisting of the derivatives of the jth component of ro with 
respect to the components of Ui. All quantities are evaluated at the initial estimate. 
An examination of Eq. (10.6.2) shows that we can first express 6.Ui in terms of 6.w 
as 

(10.6.3) 

and then substitute into Eq. (10.6.2) to obtain 

(10.6.4) 

That is, the problem can be reduced t.o a solution of a system, Eq. (10.6.4), of the 
order of w, and then the individual subsystem responses, Ui, can be calculated, as 
needed, from Eq. (10.6.3). 

The same procedure can be used to calculate the sensit.ivity of the response with 
respect to design variables. Assume now that the system depends also on a design 
parameter x. That is, we have 

rO(Uj,···, Us> w,.r) =0, 
ri(ui,W,.T) =0, i = 1,···, s. 

Differentiating the system with respect to x we get 

oro OUI oUs ow 
- + TO 1-- + ... + ro -- + ro 0- =0 
ox 'o:c ,8 ox 'ox ' 

OUi ow 
r· +r··- +r·o- =0 , ',' ox "ox ' i = 1,···, s. 

(10.6.5) 

(10.6.6) 

\Ne can now express oud ox in terms of ow / ih and reduce the problem to a system 
of the same order as that of w. 
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The typical example of the above approach is substructuring. For displacement
based finite element formulation W is the vector of boundary degrees of freedom, 
and Uj is the vector of interior degrees of freedom of the ith substructure. However, 
another important example is from the area of multidisciplinary design. There each 
subsystem may represent a different disciplina.ry analysis of the same system. The 
Ui are disciplinary responses that do not influence the other disciplinary analyses 
while t.he W vector includes all the response quant.ities that affect more than one 
discipline. In this case, however, the components of W can typically be identified 
with one discipline or another, so that it is convenient to divide W into subvectors 
Wi, i = 1, ... , s, where Wi consists of the response variables of the ith discipline which 
affect the response calculations in one or more ot.l)('r disciplines. 

Sobieski [32] clevdoped the followiug procedure for calculating the sensitivity of 
a 1111lltidisciplinary system with respect to design variables and callccI it the global 
sensitivity equation (GSE). In describing the GSE procedure we assume that the 
response calculations in each discipline are performed by some analytical or software 
hlocks (or 'black boxes') or even experimental tools that can be described as 

Ui = ti(Wj,"', wsox). (10.6.7) 

That is, ri is a procedurt, for calculating Wi given the response of the other disciplines 
and a vector x of design variables. Similarly ti H'presents a procedurc for calculating 
the response Ui. Equation (10.6.7) represents a systf'm of coupled nonlinear cquations 
in the Wi, i = 1,'" ,s. The solution of this system can proceed, for exampk, by the 
use of ~ewton's mctl1od, so that given an iuitial estimate w? for the Wi'S we can find 
a correction tl.wiby solving 

JD.W = tl.r, (10.6.8) 

where 

I -rj,2 
-r2.1 I 

W = 1 :: ) tl.r = 1 ~~: ) 
Ws tl.rs 

J= 

I 
( 10.6.9) 

and where 
( 10.6.10) 

After \\Ie converge to the solution for W we can thcn find the Ui from Eq. (10.6.7). 
The calculation of sensitivity with respect to a design parameter proceeds ill a similar 
manner. Differentiating Eq. (10.6.7) with respect to a component of x we get 

(10.6.11) 

The special structure ofthe Jacobian J permits us to reduce the order of the equations 
by eliminating onc of the Wi'S as illustrated in the example below. 
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The GSE approach requires the derivatives of the individual disciplinary responses 
with respect to the input of all the other disciplines. The cost of these calculation can 
be very large when the front of interaction between disciplines is large. In comparing 
the cost of the GSE approach to that of finite-difference calculation of the derivatives, 
a key parameter is the number of design variables. For a large number of design vari
ables, the GSE method tends to be more efficient than the finite-difference method, 
while for a small number of design variables finite-differences are less expensive. For 
a more detailed discussion of the cost issues, as well as the pathological cases when 
the GSE matrix may be singular, the reader is referred to [32]. 

As noted before, the major difficulty associated with using multilevel techniques 
is in finding a way to decompose the problem so that it would have the requisit.e hi
erarchical structure. Successful decomposition breaks the problem into elements that 
have only narrow fronts of interaction. For multidisciplinary analysis and sensitivity 
we seek wa.ys to narrow the front of interaction between disciplines. The following ex
a.mple of integrated aerodynamic-structural wing analysis and sensiti\'ity calculations 
illustrates the use of a reduced-basis technique for achieving this goal. 

Example 10.6.1 

Consider the aeroelastic analysis of an aircraft wing. The flow field around the wing 
is calculated based on the shape of the wing. Then pressures and loads are calculated 
from flow velocities, and these are used to calculate structural displacements which 
in turn change the shape of the wing. The solution for this coupled problem is often 
performed iteratively, starting with the flow field around a rigid wing, continuing 
with the loads and displacements associated with this flow field, updating the shape 
of the wing based on these displacements, and so on. This approach, called fixed-point 
iteration, may be preferable to Newton's method if the calculation of the Jacobian 
is expensive. However, if we need also the sensitivity of the aeroelastic response to 
design parameters, it may be advantageous to use Newton's method instead of the 
fixed-point iteration. The feasibility of using Newton's method depends on the \vidth 
of the front of interaction. To focus on the question of the front of interaction we start 
without consideration of design variables and examine the solution of the aeroelastic 
interaction. 

We assume that we have an aerodynamic 'black box' that solves for the flow 
field represented, say, by the velocity vector, v, given the shape of the wing which is 
represented by a shape vector, s, 

(a) 
where b a denotes the application of the aerodynamic black box. Next we have a force 
black box which translates the flow velocities into aerodynamic loads fa that can be 
used in the structural analysis 

(b) 

The next black box is the structural analysis package which combines the aerodynamic 
loads with inertia loads and calculates the displacement vector u 

u = bs(f,,). ( c) 
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Finally, we have an interpolation black-box which updates the shape of the wing 
based on the displacement field 

(d) 

At first glance, the system described by Eqs. (a)-( d) appears to be fully coupled. 
Solving this system by Newton's method appears to be impractical because of the 
huge size of the Jacobian. The flow field vector v and the displacement vector u 
usually have thousands or tens of thousands of components. However, the vectors 
fa and s can have a fairly small number of components, and we can reduce the 
problem size enormously by combining the first two and last two black boxes. The 
first combination gives us the aerodynamic forces in terms of the shape of the wing 

(e) 

and the second combination gives us the shape of the wing as a function of the 
aerodynamic forces 

(1) 
\Ve note that the variables fa and s play the role of Wj and W2 in Eq. (10.6.7), while 
v and u play the role of Uj and U2. 

The above approach of using only fa and s as interaction variables leads to a 
great reduction in the number of cross-derivatives that need to be calculated. How
ever, the number of components of fa and s is often several dozens, and calculating 
the Jacobian can still be prohibitively expensive. Further reduction in the number of 
required derivatives is achieved by using a reduced basis technique to represent the 
displacements for the purpose of describing the aero elastic interaction. The displace
ment vectors are assumed to be adequately represented by a linear combination of 
mode shapes (often vibration modes) as 

U=Uq, (g) 

where U is a matrix of modes and q a vector of modal amplitudes. The order of the 
vector q is typically much smaller than that of U or even fa. Furthermore, for the 
reduced basis structnral analysis we now do not need fa but instead the generalized 
load vector f; given as (see Eq. (7.4.30)) 

(h) 

The reduced-basis (or modal) structural analysis black box is now described schemat
icallyas 

( i) 

It is now most efficient to group our four black boxes in a slightly different order to 
make f; and q the interaction variables. That is, the generalized aerodynamic forces 
are given in terms of the modal amplitudes as 

(j) 

and r:; is simply equal to b;. 
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For the Newton iteration, Eq. (10.6.8), we need to calculate J 12 = {)ri/{)q 
and J 21 = {)r'2/ {)f:. These are cross derivatives, in that they are derivatives of the 
aerodynamic forces with respect to the shape changes due to structural displacements, 
and derivatives of shape change due to structural displacements with respect to the 
aerodynamic loads. J 12 and J 21 are matrices, and it is convenient to label them as 
A and S. The component aij of the matrix A is the derivative of the ith component 
of f:, f:;, with respect to the jth component of q, qj. Similarly the component Sij of 
the matrix S is the derivative of qi with respect to f:j . These derivatives are often 
calculated by finite differences. For example, if we perturb qj and recalculate f: from 
Eq. (j) we can estimate the jth column of the matrix A as the difference in f: divided 
by the perturbation in qj. 

Equation (10.6.8) can now be written as 

(k) 

Because of the special structure of Eq. (k) we can eliminate either ~q or ~f:. For 
example, if ~f: has more components than ~q, it may be advantageous to eliminate 
~f: by using the first row of Eq. (k) 

~f: = A~q + ~r;: , (1) 

and substituting it into the second row to get 

(I - SA)~q = ~r2 + S~r;:. (m) 

The solution of the aeroelastic interaction via Newton's method will consist then of 
solving Eq. (m) for ~q, followed by the calculation of ~fa from Eq. (I), and then 
updating q and f: and calculating new A and S to repeat the iteration. 

The calculation of sensitivity with respect to a design parameter .1: will proceed 
along the same line. Equation (10.6.11) will become 

[ 1 -Aj {PJi} = { ~ } 
-S 1 ~ ~ 

(n) 

While the reduced basis technique approximates the aero elastic interaction, it does 
not require that we also approximate the calculation in each individual discipline. 
After we find f: and q from the coupled analysis, we do not need to use Eq. (g) to 
calculate the displacements. Instead we can calculate the actual aerodynamic forces 
fa corresponding to displacements U q, and then calculate the displacement from the 
full structural analysis, Eq. (c) .••• 
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10.7 Exercises 

1. Consider the 3 bar truss of Figure 10.2.2. The cross-sectional areas and moments 
of inertia of the three members are given, and we want to optimize the geometry of the 
truss to minimize the weight subject to the constraint that the truss does not collapse 
under either load case (consider both yielding and Euler buckling). Formulate the 
problem in a block-angular form. 

2. Consider the portal frame of Figure 10.2.4. Formulate the minimum weight design 
of the frame subject to stress constraints and horizontal displacement limit of 10cm. 
The design variabks are the cross-sectional dimensions for each of the three beams. 
Define global design variables to reduce the problem to a block-angular form. 

3. Calculate the dcri\'at.ives of !J in Example 10.2.3 with respect to its ot.her five 
arguments. 

4. Obtain t.he solut.ion of Example 10.4.I. 

5. Solve Example IDA. 1 using the 1(S function. 

6. Formulate the clastic design problem of the three-bar truss (Example 10.2.2) as a 
simultaneous-analysis and design problem. 
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Optimum Design of Laminated Composite Structures 11 

Because of their superior mechanical properties compared to single phase materi
als, laminated fibrous composite materials are finding a wide range of applications 
in structural design, especially for lightweight strnctures that have stringent stiff
ness and strength requirements. Designing with laminated composites, on the other 
hand, has become a challenge for the designer because of a wide range of parameters 
that can be varied, and because the complex behavior and multiple failure modes of 
these structures require sophisticated analysis techniques. Finding an efficient com
posite structural design that meets the requirements of a certain application can be 
achieved not only by sizing the cross-sectional areas and member thicknesses, but 
also by global or local tailoring of the material properties through selective use of 
orientation, number, and stacking sequence of laminae that make up the composite 
laminate. The increased number of design variables is both a blessing and a curse 
for the designer, in that he has more control to fine-tune his strllctme to l1H'et de
sign requirements, but only if he can figme out how to select those dpsign variables. 
The possibility of achieving an efficient design that is safe against multiple failure 
mechanisms, coupled with the difficulty in selecting the values of a large set of design 
variables makes structural optimization an obvious tool for the design of laminated 
composite structures. 

Because of the need for sophisticated analysis tools for most realistic applica
tions, designing with laminated composites largely relied on procpclmes that simply 
coupled those analyses with black-box optimizers. However a better understanding 
of the peculiarities associated with optimization of composites can best be illustrated 
through simple examples. In this chapter we emphasize examples that focus on hasic 
concepts. 

11.1 Mechanical Response of a Laminate 

\Vhile laminated composite materials are attractive replacements for metallic ma
terials for many structural applications that require high stiffness-to-weight and high 
strength-to-weight ratios, the analysis and design of these materials are considerably 
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more complex than those of metallic structures. One of the complexities in formu
lating the analysis of a laminated composite material is due to material anisotropy 
that requires an increased number of material constants for characterization of the 
mechanical response of the laminate. The generalized Hooke's law for an anisotropic 
material is given in terms of 21 independent stiffness coefficients. It is this aspect 
of composite materials which makes them attractive for optimal design and tailoring 
purposes. However, for a general structure with a three-dimensional stress state it is 
very difficult to solve the governing equations. Fortunately, most composite structures 
are plate-type structures which are composed of layers or plies of orthotropic material 
which can be characterized in terms of a smaller number of stiffness constants. In 
the following section, the basic equations that govern the mechanical response of an 
orthotropic lamina are summarized. 

x 

Figure 11.1.1 An orthotropic lamina with off-axis principal material directions. 

11.1.1 Orthotropic Lamina 

For an orthotropic material with the axes of orthotropy 1-2 aligned with the x-y 
coordinate axes (e = 0 in Fig. 11.1.1), the stress-strain relation in the principal 
material directions is given by the following set of equations with 9 independent 
constants. 

l i~) = 

T31 

T12 

o 
o 
o 

C44 
o 
o 

o 
o 
o 
() 

C55 

o 

o 11 /01 ) 

o E2 

o 103 

o 123· 

o 131 

C66 112 

(11.1.1 ) 

Furthermore, by assuming a plane stress state in each of the layers in the 1-2 principal 
material plane, we have 

0"3 = 0, T23 = 0, and (11.1.2) 
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which reduces the stress-strain relations to [1 J 

(11.1.3) 

where the Qij'S are called the reduced stiffnesses and are given in terms of four 
independent engineering material constants in principal material directions as 

El E2 
Qll = , Q22 = , 

1 - 11121121 1 - 11121121 

Q _ 1112E2 1121El 
12 - , 

1 - 11121121 1 - 11121121 
(11.1.4) 

and Q66 = G12 . 

Since the orthotropic layers are generally rotated with respect to reference coor
dinate axes, the stress-strain relations given in the principal directions of material 
orthotropy Eq. (11.1.3) must be transformed to these axes. This transformation 
produces 

{ (lx} [Qll Q12 glo] { fx } 
(ly = QI2 Q22 Q26 fy , (11.1.5) 
Txy Q16 Q26 Q66 fXY 

where the transformed reduced stiffnesses Oij are related to the Q ij by 

011 = Qll cos4 8 + 2( Q12 + 2Q66) sin2 8 cos2 8 + Q22 sin4 8, 

012 = (Qn + Q22 - 4Q66) cos2 8 sin2 () + Qdsin4 8 + cos4 8) , 

022 = Qll sin4 () + 2(Q12 + 2Q66)sin2(}cos2 8 + Q22COS48, (11.1.6) 

016 = (Qn - QI2 - 2Q66) sin () cos3 () + (Ql2 - Q22 + 2Q66) sin3 () cos () , 

026 = (Qll - Q12 - 2Q66) sin3 8 cos 8 + (Q12 - Q22 + 2Q66) sin 8 cos3 8, 

066 = (Ql1 + Q22 - 2QI2 - 2Q66) sin2 8 cos2 8 + Q66(sin4 8 + ('os4 ()) . 

Equations (11.1.6) are the basic building blocks of the classical lamination theory 
which will be discussed next. These equations, however, can be put into a simpler 
form in terms of the angular orientation of the principal axis of orthotropy with 
respect to the reference x-y coordinate system. Tsai and Pagano [2J defined the 
following material properties that are invariant with respect to ply orientation 

1 
U1 = g(3Qll + 3Q22 + 2QI2 + 4Q66) , 

1 
U2 = 2(Qll - Q22)' 

1 
U3 = g(Qll + Q22 - 2QI2 - 4Q66), (11.1.7) 

1 
U4 = g(Ql1 + Q22 + 6Q12 - 4Q66) , 

1 
U5 = g( Q11 + Q22 - 2Q12 + 4Q66) . 
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Using various trigonometric identities, we can write the transformed reduced stiff
nesses of Eq. (11.1.6) as 

Oll = U1 + U2 cos 28 + U3 cos 48 , 
012 = U4 - U3 cos40, 
022 = U1 - U2 cos 20 + U3 cos 48, 

016 = -~U2 sin 28 - U3 sin48, 

026 = -~U2 sin 20 + U3 sin 48 , 

066 = U5 - U3 cos 40 . 

(11.1.8) 

The above form of the reduced stiffnesses is simpler than those shown in Eq. 
(11.1.6) in terms of the ply orientation and, therefore, is useful for design optimization 
purposes where derivatives of the stiffnesses with respect to the orientation variables 
are needed. 

h 

I 1 

.~ 2 
hl2 Zo 

Z2 

Jz k ~I zk zN-1 

Z 
N I 

N 

Figure 11.1.2 Laminate stacking convention. 

11.1.2 Classical Laminated Plate Theory 

Classical lamination theory (CLT) assumes that the N orthotropic layers described 
above are perfectly bonded together, as in Fig. 11.1. 2, with a non-shear-deformable, 
infinitely thin bondline. Kirchhoff plate theory is used, which assumes a linear 
throllgh-the-thickness variation of the in-plane displacements, 

awo 
u = uo - z ax ' awo 

v = Vo - z ay , (11.1.9) 

and vanishing through-the-thickness strain components, fz = IXZ = IYz = 0 and w = 
woo The strain distribution is, therefore 

{ :: } = { :~ } + z { :: } , 
IXy IXy Kxy 

(11.1.10) 
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where the superscript 0 indicates the mid-plane strains, and the curvatures K, are 
the mid-plane curvatures. Therefore, the stresses in the kth ply can be expressed in 
terms of the reduced stiffnesses of that particular ply by substituting Eq. (11.1.10) 
into the stress-strain relationship, Eq. (11.1.5) 

(11.1.11) 

• , ~y x 
• 

Nx • 
I L x 
tz r .. Nx 

Nxy 

;: « ... Nxy y/ y 
y 

Figure 11.1.3 Stress and moment resultants in a laminate. 

The net stress resultant and moment resultant (stress couple) per unit length of 
the cross section acting at a point in the laminate, see Fig. 11.1.3, are obtained by 
through-the-thickness integration of the stresses in each ply, 

{ N} h/2 {} N Zk { } x J ax J ax Ny = ay dz = L ay dz, 
N xy -h/2 rxy k k=lzk_t r xy 

(11.1.12) 

{ M} h/2 {} N Zk { } Mu = J ~: zdz = L J ~: zdz. 
Mxy -h/2 rxy k k=lzk_t r xy 

(11.1.13) 

Substituting the stress-strain relations of Eq. (11.1.11), we obtain the following 
constitutive relations for the laminate, 

and 
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where 
N 

Aij = L (Q;j)k(Zk - Zk-l) , (11.1.16) 
k=l 

(11.1.17) 

(11.1.18) 

11.1.3 Bending, Extension, and Shear Coupling 

The A and D matrices are the extensional and flexural stiffness matrices, respec
tively. The A matrix relates the in-plane stress resultants to the mid-plane strains, 
and the D matrix relates the moment resultants to the curvatures. The B matrix, 
on the other hand, relates the in-plane stress resultants to the curvatures and mo
ment resultants to the mid-plane strains, and hence is called the bending-extension 
coupling matrix. This coupling matrix can be a useful tool in designing laminates 
for certain structural applications. If it is undesirable, the B matrix can be avoided 
by a symmetric placement of the plies with different orientations with respect to the 
mid-plane of a laminate. However, as noted by Caprino and Crivelli-Visconti [3] and 
by Gunnink [4], symmetry is a sufficient but not a necessary condition to avoid cou
pling. It is shown by Kandil and Verchery [5] that a certain class of laminates, such as 
laminates consisting of two symmetric sub-laminates with equal numbers of plies and 
equal but arbitrary fiber orientations, (h and B2 , for which the minimum number of 
layers is eight [BI/B2 /B2/BI/B2 /BI/BI/B2 ], possess no bending-extension coupling. This 
may be important for design optimization purposes because symmetric placement of 
the plies may restrict certain combinations of the in-plane and bending stiffnesses. 

In addition to the bending-extension coupling, certain elements of the A, B, and 
D matrices result in coupling response. \Vhen the Al6 and A 26 terms are not zero, 
there is a shear-extension coupling. The existence of D16 and D 26 terms induces 
bending-twisting coupling, and bending-shear coupling as well as extension-twisting 
coupling results from non-zero B16 and B 26 terms. Again, by proper selection of the 
laminate, these coupling terms can be eliminated. For example, by using negative 
angle plies for every positive angle ply used in the laminate one can eliminate the 
shear-extension coupling. Such laminates arc referred to as balanced laminates. How
ever, these same terms can also be manipulated to tailor the response of a laminate 
to the needs of a specified design application, as in the case of aeroelastic tailoring 
(see Section 11.4.2). 

The A, B, and D matrices are commonly used in the literature in the form 
defined in Eqs. (11.1.16)-(11.1.18) together with the definitions of (Qij) given by 
Eq. (11.1.6). However, for some design procedures, the use of sines and cosines of 
multiple angles (see Eqs. 11.1.8) proved to be more useful, especially for derivation 
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of the sensitivities of these matrices with respect to the angular orientation design 
variables. Starting with the integral form of the Eqs. (11.1.16)-(11.1.18), for example, 

h/2 

{All,Bll,Dll } = J Qll{1,z,Z2}dz, 

-h/2 

and assuming each layer to be of the same material, we have 

(11.1.19) 

h/2 h/2 

{All, B ll , D ll } = Udh,O, ~:}+U2 J cos2B{I,z,z2}dz+U3 J cos4B{1,z,z2}dz. 

-h/2 -h/2 
(11.1.20) 

Similar expressions can be found for the other stiffness terms, and are summarized 
in Table 11.1.1 where the expressions for the V's are the following 

Table 11.1.1 : A, B, D Matrices in Terms of Lamina Invariants 

{All, B ll , D ll } 

{A22 , B22 , D22 } 
{AI2' B 12 , D 12 } 
{A66 , B66 , D66 } 

2{A16, B 16 , D 16 } 

2{A26, B26 , D26 } 

VO{A,B,D} V1{A,B,D} V2{A,B,D} 

U1 
U1 
U4 

U5 

0 
0 

U2 0 
-U2 0 

0 0 
0 0 
0 -U2 
0 -U2 

h3 
VO{A,B,D} = {h, 0, 12} , 

h/2 

Vl{A,B,D} = J cos2B{1, z, z2}dz, 

-h/2 
h/2 

V2{A,B,D}= J sin2B{I,z,z2}dz, 

-h/2 
h/2 

V3{A,B,D} = J cos4B{1, z, z2}dz, 

-h/2 
h/2 

V4{A,B,D} = J sin4B{1, z, z2}dz . 

-h/2 

V3{A,B.D} 

U3 

U3 
-U3 
-U3 

0 
0 

The above set of integrals can again be replaced hy summations. 

V4{A,B,D} 

0 
0 
0 
0 

-2U3 

2U3 

(11.1.21 ) 
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11.2 Laminate Design 

The laminate stiffness matrices described in the previous section can he manipulated 
both by changing the number of layers and their orientations. Therefore, use of 
these quantities as design variables enables us to change the material properties of a 
laminate as well as its thickness. In many practical applications, bending-extension 
and shear-extension coupling is undesirable. Consequently, most laminates in use 
today are symmetric and balanced to eliminate these couplings. Balanced symmetric 
laminates are also much easier to analyze. For example, analysis of a laminate with 
bending-extension coupling is difficult because out-of-plane deformations associated 
with in-plane loads may be large and, therefore, require nonlinear analysis capability. 
Therefore, most of optimization work to date has been limited to balanced symmetric 
laminates. In the remainder of this chapter only such laminates are considered. 

Most commercially available composite materials come in fixed ply thickness. 
Furthermore, most of the data available for laminate behavior is limited to ply ori
entations of 0-, 90-, and ±45-deg. For these reasons, laminate design is primarily an 
integer programming problem. However, most of the available optimization software 
is for continuous-valued design variables and the past work on laminate optimization 
are based on the use of such variables. The total thicknesses of contiguous plies of 
the same orientation, referred to as the ply thickness variables, were commonly used 
as design variables. Ply orientations were also occa..<;ionally used as of'sign variables, 
with orientations taking any value between 0- ano 90-deg. The final ply thicknesses 
(or orientations) can be rounded-off to integer multiples of the commertially available 
ply thickness (or convential ply orientations). However, for large number of design 
variables finding a rounded-off design that does not violate any constraint is often dif
ficult. Also, the problem must be formulated with a given stacking sequence, rather 
than letting the optimization obtain the best stacking sequence. For these rea..'>ons, 
there is a growing interest in the application of integer programming methods to 
laminate design. We start this chapter with description of approaches that imple
ment traditional continuous-valued variables, with integer programming applications 
described in section 11.3. 

There are a number of design considerations for optimization of laminated plates 
depending on the intended application. One of the key considerations in terms of 
analysis and design is whether the plate is designed for in-plane or out-of-plane re
sponse. For the sake of simplicity we review these two cases separately. 

11.2.1 Design of Laminates for In-plane Response 

Ply Thickness Variables: One of the earliest efforts in designing laminates for in-plane 
strength and stiffness requirements is due to Schmit and Farshi [6) who considered 
a symmetric balanced laminate with fixed ply orientations. The thicknesses of the 
individual layers ti, i = 1, ... , I with different prescribed orientations were used as 
design variables. Because of the symmetric laminate restriction, only the thicknesses 
of one half, I, of the total number of layers, N, are used. The laminate is under the 
action of combined membrane force resultants, Nxb N yk , Nxyb k = 1, ... , J{ where J{ 

is the number of load cases. 

422 



Section 11.2: Laminate Design 

The optimization problem is formulated as the following: 

I 

minimize W = 2:2Piti 
i=1 

subject to S _ 1 (p(i) Q(i) R(i) ) 1 gijk - - j flik + j f2ik + j /12ik ~ , 

All ~ All/, A22 ~ A 221 , A66 ~ A 661 , 

and ti ~ 0, 
for i = 1, ... , I, j = 1, ... , J, k = 1, ... , K, 

(11.2.1) 

(11.2.2) 

(11.2.3) 
(11.2.4) 
(11.2.5) 

where pP), Q~i), RY); are coefficients which define the jth boundary of a failure enve
lope for each layer (i) in the strain space, and the flik, f2ik, and /12ik are the principal 
material-direction strains in the ith layer under the kth load condition. For a simple 
maximum strain criterion, which puts bounds on the maximum values of the strains 
in the principal material directions, the failure envelope has 6 facets with P, Q, and 
R defined as the inverse of the normal and shearing failure strains in the longitudinal 
and transverse directions to the fibers in tension and compression. Equations (11.2.3) 
prescribe lower limits All/, A 22/, and A661 of the membrane stiffnesses of the laminate. 

The approach used by Schmit and Farshi transforms the nonlinear programming 
problem described in Eqs. (11.2.1)-(11.2.5) into a sequence of linear programs (see 
section 6.1). The inequality constraint Eq. (11.2.2) representing the strength criterion 
is a nonlinear function of the thickness variables and, therefore, is linearized as 

~, (t) = S(t) + ~(t _ t ) (p(i)af1ik + Q(i)af2ik + R(i)a/12ik ) 
g,)kL 9 0 L...J 1 01 ) at ) at ) at ' 

1=1 I I I 

( 11.2.6) 

where the derivatives of the principal strains in the ith layer are related to the deriva
tives of the laminate strains through the transformation relations 

aeik _ T,ae'k 
atl - 'atl' 

(11.2.7) 

where eik = (flik, f2ik, /12ikf, and Ti is the transformation matrix for the ith layer 
defined by 

[ 
COS2 0i 

Ti = sin20i 
- 2 cos Oi sin Oi 

sin20i 
COS2 0i 

2 cos 0i sin Oi 

cos Oi sin Oi 1 
- cos 0i sin Oi . 

(COS2 0i - sin2 Oi) 
(11.2.8) 

For a given in-plane loading condition Nk = (Nxk' N yk , Nxykf, the derivative of 
the laminate strains with respect to the thickness variables can be determined by 
differentiating Eq. (11.1.14), N = Ae'k, to obtain 

aNk = aA e'k + A ae'k = 0 . 
atl atl atl 

(11.2.9) 
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Since the A matrix is a linear function of the thickness variables (see Eq. 11.1.16), 
the derivative is simply equal to the transformed reduced stiffnesses of the ith layer 

8A -
oti = Qi, (11.2.10) 

so that from Eq. (11.2.9) we have 

8e'k A-1Q- 0 

otl = - lek' (11.2.11) 

Equation (11.2.6) together with (11.2.7) and (11.2.11) can be used to form the linear 
approximations at any stage of the design optimization. 

In addition to the constraint approximation, Schmit and Farshi also used a con
straint deletion technique by including only those constraints that are potentially 
critical at each stage of the constraint approximations. 

Table 11.2.1 : Minimum weight laminates with stiffness constraints loaded in 
axial compression. 

Layup and Orientation Initial Final Final Number 
Layer Angle Design Design Design of Plies 
Number deg ti (in.) tf (in.) % (rounded) 

[0/ ± 45/90). 
1 00 0.032281 0.018793 28.96 4 
2 +450 0.032281 0.023048 35.52 6 
3 -450 0.032281 0.023048 35.52 6 
4 900 0.032281 0.000000 0 0 

2:ti 0.129124 0.064890 

[0/ ± 45). 
1 00 0.034194 0.012555 21.12 3 
2 +450 0.034194 0.023441 39.44 6 
3 -450 0.034194 0.023441 39.44 6 

2: ti 0.102583 0.059438 

Results of optimal designs for various conventional laminates with O-deg, ±45-
deg, and 90-deg ply orientations under various combinations of in-plane normal and 
shear loads presented in Ref. [6) demonstrate the importance of the choice of laminate 
stacking sequence on the optimum design. For example, for a laminate under uniaxial 
stress and limits on shear stiffness, it does make a difference whether we select a 
[0/ ± 45/90). laminate or [0/ ± 45). laminate even though at the end of the design 
iterations the thickness of the 90-deg plies of the first laminate vanishes. Results 
of these laminates obtained from Ref. [6) are summarized in Table 11.2.1. The 
final design of the first laminate has a critical strength constraint for the 90-deg 
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ply. Compared to the second laminate [OJ ± 45], it is about 9% thicker due to 
an additional O-deg ply required for the first laminate to prevent violation of the 
strength constraint in the 90-deg layers. In order to achieve a true optimal solution, 
therefore, the designer has to repeat the optimization process with different laminate 
definitions, especially by removing the layer(s) that converge to their lower bounds. 
However, the fact that a layer assumes a value different from its lower bound may not 
mean that the particular layer is essential for the optimal design. That is, it is quite 
possible that once a layer with a thickness different from its lower bound is removed, 
the optimization procedure can resize the remaining layers to achieve a weight lower 
than the one achieved before. This can make the design procedure difficult, because 
of the need to try all possible combinations of preselected angles. However, for most 
practical applications the presence of plies with fibers running in prescribed directions 
(such as fibers transverse to the load direction) is desirable. Therefore, lower limits 
which are generally different than zero are imposed, and ply removal is not an option. 
Multiple load conditions also tend to produce designs where ply removal may not be 
possible. 

Ply Orientation Variables: In order to find the laminate stacking sequence which 
is best suited to the load condition under consideration, the ply orientations of the 
laminate as well as the ply thicknesses need to be used as design variables. Indeed 
many design codes treat both as design variables. In order to demonstrate the use 
of ply orientations as design variables, however, we concentrate on examples with 
only ply orientation variables. For optimization problems formulated as minimum
weight designs, the objective function is independent of the ply orientations. This 
might cause difficulties in converging to an optimum solution with some optimiza
tion algorithms. An alternative to the weight objective function minimization is the 
maximization of the laminate strength as demonstrated by Park [7] and l\Iassard [8]. 

A quadratic first-ply failure (FPF) criterion based on an approximate failure 
envelope in the strain space [9] is used by Park [7] for laminates under various in
plane loading conditions (Nx, Ny, Nxy ). This approximate failure envelope is given 
by 

€; + €~ + (lj2h;y = bo2 , (11.2.12) 

where bo is defined solely in terms of the stiffness and strength properties in the 
principal material directions. The objective function to be minimized is defined as 

f = €; + €~ + (lj 2h;y, (11.2.13) 

which represents the square of the norm of the strain vector. The smaller the objec
tive function value, the larger the loads that can be applied to the laminate before 
the failure envelope is violated, therefore, the stronger the laminate in FPF. One 
key feature of this approximate strain failure envelope is that it applies to laminate 
strains and does not require ply-level strain calculations. Only balanced symmetric 
laminates are considered in reference 7, and six different laminates were studied, five 
of which were the following conventionallayups; [-B, +B]" [-B, 0, +B1.., [-B, 90, +B]s, 
[-B, 0, 90, +B]., and [-B, -45, +45, +B],. The sixth laminate wa.<; called a continu
ous laminate, and was assumed to have fiber orientation changing linearly from the 
top surface to the mid-plane of the laminate covering a range from -B to B-deg. 
orientations. 
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Results in [7] showed that under combined loading the best laminate, according 
to the FPF criterion, for large longitudinal loading without shear is the [-0,0, +8]8 
type, and for large shear loading without the longitudinal load, the best is the 
[-0, -45, +45, +8]8 laminate. The optimum angle for the [-8,0, +8]8 laminate de
pended on the magnitude of the transverse load Ny, and was equal to O-deg for Ny = O. 
As the transverse load is increased, the optimum angle reached 45-deg for Ny = Nx/2, 
and was equal to 60-deg for Ny = Nx • Similarly, for the [-8, -45, +45, +0]. laminate 
(with shear loading and no axial loading), the optimal angle was 45-deg for Ny = O. 
As the transverse load Ny increased, the optimal angle increased and reached a value 
of about 73-deg for Ny = Nxy . The continuous laminate proved to have the best 
overall performance under combined longitudinal and shear loadings with a range 
±65-deg for Ny = O. 

The above results were intuitively appealing in that the fibers were mostly placed 
in a direction parallel to the applied loads. But such intuition may not always lead 
to optimal designs when working with composite materials. Consider, for example, 
using Hill's yield stress criterion interpreted for composite materials by Tsai [10], 

f = (~ r -C;2) + (~;r + c~2r ~ 1, (11.2.14) 

for the strength prediction of a unidirectional composite. The quantities X, Yare the 
normal strengths in directions parallel and transverse to the fibers, and S is the shear 
strength of a ply. Brandmaier showed [11] that if the transverse normal strength Y 
is less than the shear strength S, optimal placement of the fibers is not along the 
principal stress directions, but depends on the values of the strength quantities as well 
as the applied stresses. This can be demonstrated (see Exercise 1) by expressing the 
principal stresses in terms of the applied stresses (Jx, (Jy, Txy , and the fiber orientation 
8, and equating the derivative of Eq. (11.2.14) with respect to the fiber orientation 
to zero. 

A Graphical Tool for Optimum Design: A graphical procedure introduced by 
Miki [12, 13] for the design of laminates with prescribed in-plane stiffness properties is 
a highly practical tool for design optimization. The procedure is suitable for multiple 
balanced angle-ply laminates of the type [(±8/ )N)(±8/-dNI_J ... /(±8dN,]s where 
the total number of plies in the laminate is N = 2 2:{=1 Ni . In addition to the 
balanced angle-ply sub-laminates, one unidirectional lamina with principal material 
axes aligned with the axes of the laminate can be included into the stacking sequence. 

The major effort of this design procedure is the construction of a lamination 
parameter diagram which describes the allowable region of lamination parameters 
Vt and V3*' These parameters are obtained by normalizing the in-plane components 
of VIA and V3A in Eq. (11.1.21) by the total laminate thickness. For a laminate 
of total thickness h, in which the volume fraction of the plies with ±8; orientation 
angles are V;, the lamination parameters are given as 

/ 

V * VIA "'" 8 I = h = ~ vk cos 2 k, 

k=1 

and 
TT 1 

* v3A L 8 V3 = - = Vkcos 4 k, 
h 

k=1 

(11.2.15) 
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where 
2(Zi - zi-d 

Vi = h ' and 
I 

L v;=1. 
;=1 

(11.2.16) 

Because of the normalization, the values of the lamination parameters are always 
bounded, -1::; Vi· ,Va· ::; 1. For a laminate with only one fiber orientation angle, 
the lamination parameters are 

vt = cos20, and Va" = cos 40 , (11.2.17) 

and the two parameters are related as 

Va" = 2Vi"2 - 1 . (11.2.18) 

C A 

-1 

Figure 11.2.1 Lamination parameter diagram of a [±O]. laminate. 

Values of all possible combinations of the lamination parameters are, therefore, 
located along the curve ABC in Fig. 11.2.1 described by Eq. (11.2.18). Note that the 
points A, B, and C correspond to laminates with [0], [±45]., and [90] ply orientations, 
respectively. For each design point along the curve ABC the values of the effective 
engineering elastic constants can be obtained from 

(11.2.19) 
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where the elements of the extensional stiffness matnx of the laminate are determined 
from the following equations from Table (11.1.1) 

( 11.2.20) 

and where the Ui are the orientation-invariant material properties, Eq. (11.1.7). 

If the laminate consists of two or more fiber orientations, then it is shown bv i\Iiki 
[12] that Eq. (11.2.18) becomes an inequality • 

(11.2.21 ) 

The allowable region of the lamination parameters is the area bounded by the curve 
ABC in Fig. 11.2.1, independent of the number of different ply orientations. Any 
point inside the lamination parameter diagram, therefore, corresponds to laminates 
with two or more fiber orientations. Because a point is defined by two parameters, 
this means that only two orientation angles (h and O2 arc sufficient for designing 
laminates for prescribed stiffness requirements. For halanced angle-ply laminates with 
more than two orientations, there will be many eombinations of til(' ply orientations 
that will produce the same lamination parameters and, therefore, the same stiffness 
properties. Each point inside the design space is called a lamination point, and 
corresponds to a laminate with a specific stiffness properties. It is also possible to 
restrict permissible values of the various effective engineering stiffnesses (Ex, E y , G xy, 

and vxy ) graphically. This is achieved by introducing contours of constant effective 
engineering stiffnesses, obtained from Eqs. (11.2.19) and (11.2.20), for each of the 
engineering constants 

Ex contours: 

Ey contours: 
u* _ U:jVt 2 + U2 Ey V't + EyU1 - Uf + Ul 
Y3 -

v xy contours: 

Gxy contours: 

U3 (2U1 + 2U4 - Ey) 

V;* _ vxyU2 Vt - VryU j + U4 

3 - (1 + Vxy)U3 ' 

17* _ U.s - Gxy 
~3 -

U:I 

( 11.2.22) 

( 11.2.23) 

(11.2.24) 

(11.2.25) 

Contours of constant laminate effective engineering properties are shown in Fig. 
11.2.2 . The figure indicates that, if no other constraints are specified, the maximum 
values of the Ex, Ey, and Gxy are all achieved for lamination points located around 
the boundary of the design space which require only one lamination angle. As ex
pected, the maximum Ex and Ey are obtained for O-deg and 90-deg laminates, and 
the maximum shear stiffness for [±45}s laminate. However, detC'Imination of the value 
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I Ex (GPa) I y * 
20 50 80 13110 140 170 

y* 
~~~~~++~~~~.-~ 1 

-1 

I Ey<GPa) I y* 
170 

3 
140 1101 80 

-1 

-1 't----i----f30 1 -1 

-1 

50 20 

Figure 11.2.2 Contours of constant effective engineering elastic properties. 

y * 1 

y* 
1 

1 

of lamination angle [±B]s that maximizes the effective Poisson's ratio is not straight 
forward and is a function of the lamina properties via Eqs. (11.1.7) and (11.1.4). For 
example, for T300/5208 graphite/epoxy and Scotchply 1002 glass/epoxy materials 
the laminates that produce the maximum Poisson's ratio are [±25]s and [±31]s, 
respectively. 

For design problems where one or more of the effective engineering constants are 
constrained, appropriate contours can be superimposed to identify the feasible design 
space and the lamination point that maximizes (or minimizes) the desired stiffness 
property (see Exercise 2). 
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11.2.2 Design of Laminates for Flexuml Response 

Ply Thickness Variables: For rectangular laminated plates under in-plane compres
sive loads, the strength constraint becomes unimportant if the size of the plate is 
large compared to the thickness. For such plates, elastic stability and vibration, 
which are governed by the flexural rigidities of the plate must be considered. One of 
the earliest studies that included the elastic stability constraint during the optimal 
design of composite plates is by Schmit and Farshi [14]. 

~ 

b 

a 

f-XY 

~Nx 

x ... 

Figure 11.2.3 Laminated panel under in-plane loads. 

For a symmetrically laminated, balanced orthotropic laminate with only thickness 
design variables, the elastic stability constraint is imposed in the form 

(11.2.26) 

where t is a vector of design variables which are the thicknesses of individual layers in 
a laminate, and ,\ is the buckling load factor. For a balanced, symmetric laminate of 
dimensions a by b with simply supported boundaries under-in plane loads an assumed 
displacement function of the form 

N M 
( ) " " w: . m7rX • rl7rY 

W X,Y = L....JL....J mnsm-a-sm-b-' 
n=l m=l 

(11.2.27) 

gives M x N of these constraints representing the ].,[ x N possible modes of buckling 
associated with the transverse displacement patterns. This form of the displacements 
satisfies the boundary conditions exactly. A truncated series can be used for an ap
proximate solution of the differential equation governing the buckling of a rectangular 
orthotropic plate 

~w ~w ~w ~w ~w ~w 
Dn!i"""4 + 2(D12 + 2D66)!'l 2!'l 2 + D22!i"""4 = ,\(N.!'l 2 + Ny?li + 2Nxy~), 

vX vX vy vy vX vy V;T:VY 
(11.2.28) 
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where N x, Ny, and Nry are equal to the applied design loads. Substituting Eq. 
(11.2.27) into the equilibrium equation and applying Galerkin's method leads to an 
eigenvalue problem of the form 

Kw = AKcw, (11.2.29) 

where the eigenvector is composed of the unknown coefficients of the displacement 
function, w = {Wl1 ... IV1N W21 ... IV2N •..... IV M N V. The matrices K and Kc 
are given as 

{ m,p= 1, ... ,"~1} 
n,q=l, ... ,N ' (11.2.30) 

where 

(11.2.31) 

{ m,p= 1, ... ,Af} 
n,q= 1, ... ,N ' 

(11.2.32) 
where 

{ 
0 if p = m or q = n } 

~mnpq = mnpq bpmbqn ' 

(p2 _ m 2)(q2 _ n2) 

bpm _ { 1 if (p + m) odd } and b qn _ { 1 if (q + n) odd } 
- 0 if (p + m) even ' - 0 if (q + n) even 

The indices p and q are used as a counter for the equations and m and n are the 
indices for the coefficients of the IV mn 's in each one of the equations. Therefore, no 
summation is implied over the indices m, n, p, q in the calculation of elements of the 
two matrices. 

For a simply supported plate under biaxial compression loads only (Nxy = 0), 
the plate buckles when the load amplitude parameter A reaches a critical value Acr 
given as 

(11.2.33) 

where m and n are the number of half waves in the x and y directions, respectively, 
that minimize Acr . 

As they did for the strength constraint Eq. (11.2.2), Schmit and Farshi used a 
linear approximation for the buckling constraints in the form 

I aAb 
gdt) = 1 - Ab(to) - 2:(t; - to;)-I . 

. at; t=to ,=1 
(11.2.34) 
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Noting from Eqs. (11.2.32) that the matrix KG is independent of the design variables, 
and using Eq. 7.3.5, we can show that the derivatives of the kth buckling load factor 
are given by 

(11.2.35) 

Since the matrix K is a function of the flexural stiffnesses, an explicit expression for 
the derivatives of K with respect to the design variables can be written as 

okpq _ ab [6 6 OJmn] 
otj - 4 mp nq Oti ' (11.2.36) 

where 

Bimn = 7f4 [ODll (m)4 + 2(OD12 + 2BD66) (m)2 (~)2 + BD22 (~)4] 
Oti Oti a oti Oti a b Oti b 

(11.2.37) 
The partial derivatives of the flexural stiffnesses can be related to the partial deriva
tives of the in-plane stiffness matrix A. For a quasi-homogeneous laminate in which 
the bending-twisting coupling terms, D16 and D26 , are ignored (these terms vanish 
as the number of ply groups increase), the in-plane and flexural moduli are related 
by (see page 204 of Ref. 9) 

h2 
Djj = 12Aij, (11.2.38) 

where h is the laminate thickness. The partial derivatives of the flexural stiffnesses 
are, therefore, given by 

oDrs = ~ [(OArs) h2 2A h] 
ot i 12 at i + rs , r,s = 1,2,6, (11.2.39) 

where the derivative of the A matrix is given by Eq. (11.2.10). 

Graphical Buckling Optimization: Just as with the in-plane lamination diagram 
discussed earlier, a diagram can be constructed, as shown by Miki [15], for designing 
laminates for buckling response. We define flexural lamination parameters as 

and 
I 

* 12 \1;10 "" W3 = ~ = ~skcos4Bk' (11.2.40) 
k=l 

where I = N /2, and 

(11.2.41 ) 

Miki shows [15] that a relation of the same form as Eq. (11.2.21) is obtained 

(11.2.42) 
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Therefore, any balanced symmetric angle-ply laminate with multiple orientations can 
be represented as a point in a region bounded by 

w; = 2Wt2 -1, (11.2.43) 

where the designs on the boundaries correspond to designs with only one lamination 
angle, [(±O)I]., and 

wt = cos 20, and w; = cos 40 . (11.2.44) 

The diagram for the flexural lamination parameters can be used for designing 
laminates for maximum buckling load under uniaxial and biaxial loads. For pre
scribed values of the m and n, and a fixed ratio of applied transverse load to axial 
load it can be shown, by manipulating Eq. (11.2.33), that the contours of the critical 
load parameter ACT are straight lines in the flexural lamination diagram. However, 
a difficulty in using flexural lamination parameter in designing laminates with max
imum buckling load is that m and n are seldom known a priory. Since these two 
numbers depend on the design variables, as well as the plate aspect ratio and the ap
plied loads, it is not always possible to predict them accurately. For further discussion 
of the use of the flexural lamination parameter diagram for buckling maximization 
see Ref. [15]. Also, the following analytical discussion of the use of ply orientation 
variables for buckling problem explains the role of m and n. 

Ply Orientation Variables: A number of researchers carried out analytical inves
tigations of the optimization of various flexural response quantities such as vibration 
frequency [16-18]' structural compliance [19]' and buckling response [20] of simply 
supported laminated plates. For a plate with length a and width b, Pedersen [20] 
defined a parameter 4> which is proportional to the square of natural frequency and 
buckling load, and inversely proportional to the out-of-plane displacements. The 
quantity 4>, composed of a linear combination of the non-dimensional bending stiff
nesses dij (i,j = 1,2,6), is defined as 

(11.2.45) 

where "I is a mode parameter defined as the ratio of the longitudinal and transverse 
half-wave lengths by 

na 
"1= -, 

mb 
(11.2.46) 

with m and n being the modal half-wave numbers in the x and y directions, respec
tively (see Eq. 11.2.27). The non-dimensional bending stiffllesses, dij, are defined in 
terms of the flexural stiffnesses as 

(11.2.47) 

For a laminate with fixed ply thicknesses, the maximization of the buckling load or 
the natural frequency, or minimization of the displacements, is achieved by obtaining 
the stationary value of the 4> with respect to the ply orientations. That is 

84> _ 8du 2 2( 8d12 2 8d66 ) 4 8d22 - 0 
80 - 80 + "I 80 + 80 + 17 80 - . (11.2.48) 
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Restricting the laminate to be a balanced, symmetric angle-ply laminate and 
ignoring the bending-twisting coupling terms, we can put the bending stiffness matrix 
from Table 11.1.1 into a summation form 

W* 1 
W* - 1 

o 
o 

(11.2.49) 

where Wi and W; arc defined by Eq. (11.2.40). Using Eqs. (11.2.40), (11.2.48), and 
(11.2.49) we have 

(11.2.50) 

The stationary values of ¢ correspond to 

fh = 0, or Ilh 1 = 90, (11.2.51 ) 

or 10 1- ~cos-l (U2 (7]4 -1) ) 
k -2 4U3(1-67]2+TJ4) ( 11.2.52) 

The existence of multiple values of the fiber orientation that yield stationary values 
for the quantity ¢ indicates local optima. The first two roots are independent of the 
material properties and the geometry. The solution in Eq. (11.2.52), on the other 
hand, contains the material properties and the mode parameter TJ, and is valid in a 
range (see Muc [21]) TJ~in < T,2 < TJ~ax where 

2 6 ± }36 + 4[(U2/4U3? - 1] 
TJmax = 2[(U2 /4U3 ) + 1] , 

( 11.2.53) 
when 0 reaches 0 and 90-deg , respectively. 

The optimal values of the fiber angles for two different values of the U2/4U3 

values are presented in Figure 11.2.4 from Eq. (11.2.52). The range of the U2 /4U3 

values used in the figure practically covers many commercially available composites 
including Graphite-Epoxy, Boron-Epoxy, Glass-Epoxy, and Aramid-Epoxy. Clearly 
the optimal fiber orientation is insensitive to the material properties, but strongly 
influenced by the mode shape parameter. For small or large values of the mode 
parameter TJ the optimal orientation is either Ok = O-deg or Ok = 90-deg, and the 
optimal orientation is independent of the position of the layer in the laminate. 

The influence of the mode parameter TJ on value of the optimal fiber orientation 
needs to be investigated further. The minimum value of ¢ which corresponds to the 
buckling mode shape with lowest buckling load is obtained for transverse wavelength 
parameter n = 1, but it is not always clear what value of the longitudinal wavelength 
parameter m leads to the lowest value of the parameter ¢. For plate aspect ratios 
r = alb less than a critical value (rer)l the wave number Tn = 1 gives the lowest value. 
For r > (rer)l the wave number is determined such that it minimizes ¢. The points 
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Figure 11.2.4 Optimal ply orientation as a function of the mode parameter ",. 

points of intersection of the curves of ¢J for mode parameters m and m + 1 give the 
critical values of the plate aspect ratio [151 

(11.2.54) 

where m = m + 1 is the wave number of the adjacent mode shape. However, it is 
demonstrated by Miki [151 that, in the range (rcr)m < r < (rcr)m, laminates designed 
by assuming the mode shape to be m lead to a laminate which has lower buckling 
load corresponding to mode m. Similarly, laminates designed by assuming the mode 
shape to be m give a laminate which has lower buckling load corresponding to mode 
m. This indicates that at the optimum both buckling loads are the same. In the 
range of r where two successive modes are simultaneously active, the optimum value 
of the fiber orientation is determined from ¢J(m) = ¢J(m) and is given by 

U2 (r4 + m2m2 ) ± y'Ui(r4 + m2m2 )2 - 8U3 (U1 - U3)(r4 - m2m2 )2 
cos20=--~------~--~~~--~--~~~~----~~------~ 

4U3 (r4 - m2m2 ) 

(11.2.55) 

The optimal orientation of the fibers, including the interaction of the adjacent 
modes, for a T300/5208 Graphite/Epoxy laminate as a function of the plate aspect 
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Figure 11.2.5 Optimal ply orientation as a function of plate aspect ratio. 

ratio is shown in Figure 11.2.5. For aspect ratios greater than unity, the optimal 
angle oscillates around 45-deg. The amplitude of the oscillations decreases as the 
aspect ratio r is increased, therefore, for all practical purposes and for aspect ratios 
r > 4 the optimal angle can be assumed to be Bapt = 45-deg. 

If the laminate is loaded under biaxial compression [20], for small aspect ratios, 
r < 1.5, the optimal fiber angle is similar to the case of uniaxial compression. For 
aspect ratios larger than 1.5, the value of the optimal angle increases rapidly as the 
ratio of the transverse load to the axial load (Ny/Nr) increases. For Ny ~ 4Nx , the 
optimal fiber orientation is 90-deg. 

Importance of Laminate Stacking Sequence: When ply thickness design variables 
are used, the stacking sequence is selected ahead of time. As for in-plane loads, the 
optimum design can be influenced by a choice of whether include or not to include 
a particular ply orientation. However, for flexural response, the stacking sequence 
is more important because it strongly affects the D matrix while it has no effect on 
the A matrix. Fortunately, as shown below, the optimum design is insensitive to the 
choice of stacking sequence. 

If the relative position of the boundaries between the plies are ~k = Zk/ h for a 
laminate with N plies, then 

(k=1, ... ,N-1); (11.2.56) 
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the derivative of ¢ with respect to the ply boundary variable is 

()¢ = {)dll 2 2( ()d12 2 ()d66 ) 4 {)d22 == 0 
{)~k {)~k + .,., {)~k + {)~k +.,., {)~k . (11.2.57) 

Since the contribution of the individual layers to the overall D matrix depends only 
on the distance of the layers to the laminate mid-plane, the derivative of the D matrix 
is expressed as 

()Dij 2( ) -- D·· -D·· {)~k - ~k 'J k 'J HI . 
(11.2.58) 

Here Diik depends only on the properties and orientation of the k-th layer and (as
suming the adjacent layers to be made of the same material so that the constant U 
terms are omitted) is defined by 

-U3c~os40J 
(11.2.59) 

Then, as shown by Cheng Kengtung [19] the derivative of the function ¢ can be 
expressed as 

[ 
U2 cos 20k + U3 cos 40k 

Dk == h3 -U3cos40k 
o 

-U3cos40k 
-U2 cos 20k + U3 cos 4fh 

o 

;~ == 2{~~) [-U2(1- .,.,4) - 2U3{1-6.,.,2+.,.,4){cos 20k +coS28k+d] (cos 2(h -cos 28k+1) . 

(11.2.60) 
Since the sign of the derivative of ¢ is independent of the position of the boundary, 
we choose either the minimum or the maximum thickness for the k-th ply depending 
on the sign of the derivative. For example, if it > 0 we will use {k = {kmax in 
order to maximize the buckling load. Furthermore, some specific combinations of the 
neighboring ply orientations lead to stationary values for the ¢, see Eq. (11.2.60), 
indicating possible local minima. These roots are 

and (11.2.61 ) 

(11.2.62) 

If the total thickness of the two plies is kept constant, the derivative is zero for 
these angles whatever the location of the boundary between the plies. Therefore, 
the buckling load is independent of the thickness distribution of the adjacent plies. 
Moreover, for a square laminate, .,., = 1, ¢ is constant for 

(11.2.63) 

whatever the material properties. 

Shin et al. showed [22] that for a symmetric laminate with fixed total thick
ness, the order of ply orientations can also be permitted in any desired way without 
changing the D matrix (see exercise 3). The individual ply thicknesses do change, 
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of course. In practice, the requirement of an integer number of plies forces changes 
in the D matrix, but if the total thickness is large compared to angle-ply thickness 
this effect will be small. This is demonstrated in Table 11.2.2, taken from [22]. which 
presents six permutations of a plate made of 0, 90 and 45 plies. The total thickness 
for all six permutations is the same (normalized to one) and all have the same D 
matrix and the same buckling load. If the total number of plies is 50 the buckling 
loads of the six laminates vary by less then one percent (see Ref. 22). 

Table 11.2.2 : Optimum Designs with Equivalent D Matrix 

StackingSequence 

[0/90/451' 
[0/45/90. 
[45/0/90]. 
[45/90/0]. 
[90/45/0]. 
[90/0/45]. 

0.0366 (0.04) 
0.0366 (0.04) 
0.2228 (0.20) 
0.2228 (0.20) 
0.1399 (0.12) 
0.1399 (0.12) 

0.1539 (0.16) 
0.2496 (0.24) 
0.0634 (0.08) 
0.3044 (0.32) 
0.3872 (0.40) 
0.0506 (0.04) 

0.8095 (0.80) 
0.7139 (0.72) 
0.7139 (0.72) 
0.4729 (0.48) 
0.4729 (0.48) 
0.8095 (0.84) 

t Ply thicknesses are rounded such that each laminate has a total of 50 plies. 

The insensitivity of the design to the choice of stacking sequence disappears when 
strength is also a consideration. In such cases the choice of stacking sequence is 
critical, and this topic is discussed in the next section. 

11.3 Stacking Sequence Design 

The methods presented in the previous section yield results that are valuable for un
derstanding the basic trends in laminate design. However, one of the major difficulties 
of a realistic design situation is the need for a practical laminate which is generally 
made up of plies with only O-deg, 90-deg and ±45-df'g orientations (or occasionally 
orientations with 15-df'g increments between 0- and 90-dc-g), and thicknesses which 
are integer multiples of the ply thickness. Of course, df'ciding the numhf'r of plies of a 
specified orientation is not sufficient to define a laminate, but through-the-thickness 
location of the ply must be decided as well. This means that the basic design problem 
is to determine the stacking sequence of the composite laminate~a problem which 
calls for discrete programming techniques. In the following, we introduce various 
approaches t.hat address t.his problem. 

11.3.1 Graphical Stacking Sequence Design 

The lamination parameter diagrams introduced in s('ction 11.2 can be used for de
signing laminates with predetermined ply orientation angles. It is shown by ~1iki 
and Sugiyama [23] that the feasible region for laminates with fixed ply angles is a 
polygon with vertices located on the envelope of the lamination parameter diagram. 
If the design point is on the periphery of the diagram, the laminate is an angle ply 
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laminate with one fiber orientation. Therefore, given a set of permissible integer ply 
orientations, vertices of the polygons are placed at those locations that correspond 
to the selected angles. For example, the design spaces for laminates made up of plies 
with O-deg, ±45-deg, and 90-deg orientations and O-deg, ±30-deg, ±60-deg, and 90-
deg orientations are shown in Fig. 11.3.1-a and 11.3.1-b, respectively. For laminates 
with 0, ±45, and 90-deg plies, the design space is a triangle with vertices at A, B, 
and C as shown in the figure. For ply orientations of O-deg, ±30-deg, ±60-deg, and 
90-deg, the design space is a trapezoid. 

v· 3 

-1 B (45">. 

a) 0-, ±45-, and 9O-deg plies b) 0-, ±30-, ±60-, and 9O-deg plies 

Figure 11.3.1 In-plane lamination diagmm for laminates with integer ply orientations. 

Points along the edges and interior points of the polygons correspond to laminates 
with combinations of two or more ply orientations, and their number is determined 
by the total number of layers in the laminate. If the total number of layers is N 
and I = N /2, then in addition to the vertices, we obtain I - 1 equally spaced design 
points along the edges and along the internal lines that join two vertices. From the 
nodes we obtained along the edges, we also draw lines parallel to the lines that join 
vertices. If such a line terminates at another discrete design point at the opposite 
end of the polygon, then it is easy to label the design that would be in the interior 
by looking at the designs at the two end points. For example, for an eight-ply (total) 
laminate with O-deg, ±45-deg, and 90-deg angles (triangular design space), there are 
five equally spaced design points with fiber orientations varying incrementally from 
one vertex to another as shown in Fig. U.3.I-a. Note that the design points inside 
the triangular region also follow an incremental pattern, but are combinations of the 
three available angles. Design points for a laminate with total six layers are shown 
in Fig. 11.3.I-b. Labeling of those designs is left to the reader (see exercise 4). 

Just as for the in-plane lamination diagram, it is possible to construct the flexural 
lamination diagram for a laminate with prescribed fiber orientations. The boundaries 
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of the design space are same as the in-plane parameters; the prescribed angles are on 
the envelope of the lamination diagram and form the vertices of a polygon. However 
in this case the design points, which are combinations of the given angles, are not 
equally spaced (although combinations of the angles corresponding to two vertices 
are still located along the edge that connect these vertices) but are located through 
the use of Eq. (11.2.40). 

11.3.2 Penalty Function Formulation 

Buckling Design: The procedure described in section 5.7.4 for the use of a penalty 
function to achieve designs with discrete valued variables is demonstrated in this 
section for buckling maximization of laminates with fiber orientation variables. In 
order to establish results that can be used to compare with integer orientation designs, 
a series of results was generated for the continuous problems, see Gurdal and Haftka 
[24]. This was achieved by turning off the penalty terms for the non-discrete values 
of the design variables. 

The problems solved are for a = 20 in by b = 10 in (50.8 ern x 25.4 ern) rectangular 
plates of specified numbers of plies and fiber orientation design variables. The critical 
eigenvalues are maximized for applied compressive load of N x = 1 with varying N y / N x 
ratios. 
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Figure 11.3.2 Optimum continuous fiber orientations for maximum buckling load. 

Plates with four different thicknesses corresponding to 8, 12, 16, and 24 ply lam
inates were designed. The optimal orientations of the surface layer fibers (indicated 
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by dashed lines) and the layer adjacent to the mid-plane (solid lines) are shown in 
Fig. 11.3.2 for each of the four laminates. For uniaxial compression, Ny = 0 or 
Nx = 0 (or NyjNx > 2.5), the laminates have the same fiber orientation through 
the entire thickness which are ±45-deg and 90-deg, respectively. For intermediate 
load ratios, the fiber angles at the surface layer are larger than the mid-plane layers 
with the difference being largest for the thick 24-ply laminates. However, the fiber 
orientation of the surface layers appears to depend only on the load ratio, and not 
on the laminate thickness. 

40 

= 
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0.00 

~, 
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· .... 16-ply Laminate 
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• : ........ .... :::£. 
:1;' • . •••• ... . . " . . . . 

•.... '-'''''''' ... : 
0.50 1.00 1.50 2.00 2.50 

Ny/Nx 

Figure 11.3.3 Buckling load reduction for laminates with O-deg, ±45-deg, and 90-deg 
plies. 

Next, the same design cases were repeated using discrete fiber orientations of 0-, 
±45-, and 90-deg. Solutions were obtained with the penalty function approach, and 
checked by the branch-and-bound approach described in section 11.3.3. Plies with 
+45-deg orientation were required to be adjacent to -45-deg plies so as to minimize 
bending-twisting coupling. For the penalty function approach, it was convenient to 
require also the plies with 0- and 90-deg orientations to appear in pairs. Plots of 
the percentage reduction in buckling load due to the restrictions to discrete orien
tations arc shown in Fig. 11.3.3 for the four laminates. Discrete valued designs are 
accompanied with a substantial buckling load reduction over at least a portion of 
the load ratio range considered. The largest penalty was for Nyj Nx = 0.5 (about 
22% reduction), and the thin 8-ply and 12-ply laminates. However, buckling load 
reductions associated with different thicknesses appeared to be quite random. 

The laminate stacking sequences obtained for the discrete valued designs are 
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Table 11.3.1: Optimum stacking sequence for 8-ply laminates under biaxial compression. 

0.0 
0.25 
0.50 
0.75 
1.00 
1.50 
2.00 
2.50 

Continuous Optima 

±45h. 
±53. 7/ ± 49.8]. 
±64.3/ ± 53.2j8 
±70.0/ ± 58.6 • 
±73.5/ ± 65.8 B 

±79.4/ ± 70.5 • 
±83.4/ ± 78.1 • 
±89.2/ ± 88.4]. 

Penalty Approach 

±45 2• 
±45 28 
±45 28 
902/ ± 45j. 
902/ ± 45 8 

902/ ± 45]. 
902/ ± 45]. 
[904]4. 

Global Optima 

Table 11.3.2 : Optimum stacking sequence for 16-ply laminates under biaxial compression. 

0.0 
0.25 
0.50 
0.75 
1.00 
1.50 
2.00 
2.50 

Continuous Optima 

[±45]4. 
[±52.2/ ... / ± 46.5]. 
[±65.3/ ... / ± 60.0]. 
[±70.9/··· / ± 52.3]. 

!±74.9/ ... / ± 52.6]. 
±80.0/ ... / ± 64.1]. 
[±83.9/··· / ± 71.8]. 
[±89.2/ ... / ± 87.9]. 

Penalty Approach 

[±45]4. 
[±45]4. 
[902 ± 453]. 

[902/ ± 4531. 
[904 / ± 452]. 

[906/ ± 45]. 
[906/ ± 45]. 
[90]s. 

Global Optima 

[±452 /904]. 

[±45/9061. 
[902 / ± 452/902]. 

[902 / ± 45/904]. 

[904/ ± 4521. 
[904/ ± 45/902]. 

presented in Table 11.3.1 and 11.3.2 for the 8-ply and the 16-ply laminates. Included 
in the table are the laminate stacking sequences for the continuous valued designs, 
the discrete designs obtained by using the modified penalty method, and the global 
optimal designs. If the design obtained by the penalty function approach is same as 
the global optimal design, the entry under the Global Optima column is left blank. 
The penalty approach is unable to reach the global optimum in some cases, especially 
for laminates with large numbers of plies. In every case, the discrete designs obtained 
by the penalty function approach followed a pattern such that the orientations of the 
outer plies were larger than those plies close to the mid-plane; this was similar to 
the trend observed for the continuous designs. Global optimal designs, on the other 
hand, had orientations that were more random. The differences in buckling loads 
ranged up to 14%, and illustrate the danger oflooking for the discrete optimum near 
the continuous one. 

11.3.3 Integer Linear Progmmming Formulation 

The normalized integrals used for the graphical procedure as design variables, see Eqs. 
(11.2.14) and (11.2.39), may not be a good choice for more general design problems. 
In order to define the integrals that are needed for characterizing the laminate, a new 
set of variables that define the existence of a given orientation layer or the orientation 
of a specified layer are proposed by Haftka and Walsh [25]. Such variables arc referred 
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to as ply-identity design variables. For example, if we have four possible orientations 
and N plies, we can use N design variables that take the values of 1 to 4 to define 
the stacking sequence. If symmetry is used this number can be reduced to N /2. 

It is also possible to use zero-one ply identity design variables. For example, if 
the laminate is made up of O-deg, 90-deg, and ±45-deg plies the stacking sequence 
can be defined in terms offour sets of ply-orient at ion-identity variahles 0;, ni, ff and 
ft, i = 1"", N/2, that are zero-one integer variables. The variables 0i, ni, If or 
ft is equal to one if there is a O-deg, 90-deg, 45-deg or -45-deg ply, respectively, in 
the ith layer. 

The advantage of these zero-one ply-identity variables is that the integrals, and 
therefore the A and D matrices are linear functions of these variables. The integrals 
VOA , ViA and V3A are given in terms of the ply identity variables and the thickness 
of a single ply t as 

jh/2 N/2 

VOA = dz = 2tL:)Ok + nk + fr + fl:'), 
-h/2 k=l 

jh/2 N/2 

ViA = cos20dz = 2t~)Ok - nk), 
-h/2 k=l 

(11.3.1) 

jh~ ~2 

V3A = cos40dz = 2t~)Ok + nk - tr - fl:') . 
-h/2 k=l 

For the flexural response, the integrals Von, Vin and V3n are exprcs:-;cd as 

3 N/2 3 N/2 
2t '"' [ Zk 3 Zk-l 3] 2t '"'I 3 3] Vm = 3"" ~Pkcos20k (T) - (-t-) = 3"" ~ k - (k -1) (Ok - nk), (11.3.2) 

k=l k=l 

3 N/2 3 N/2 
2t '"' [ Zk 3 Zk-l 3 2t '"' 33m V3n = 3 ~Pkcos40k (T) -(-t-) 1 = 3 ~[k -(k-l) ](Ok+nk-tr-fk)' 

k=l k=l 

where tr and ff do not appear in the expression for ViA and Vin since the cosine of 
90 degrees is equal to zero. The variable Pk in Eq. (11.3.2) is unity if the Hh ply is 
occupied and zero if it is empty. Constraints are applied during the optimization to 
ensure that Pk can be zero only for the outermost plies. 

Stacking Sequence for Buckling Design: Since the buckling load for symmetric 
laminates under biaxial loads is a linear function of the flexural lamination param
eters which are linear functions of the ply-identity yariables (see Eqs. (11.2.32) and 
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(11.2.48)), the problem can, therefore, be posed as a linear integer programming 
problem. 

Two formulations for the optimization problem are possible. The first is the 
optimization of a laminate with a fixed thickness for maximum buckling load, and the 
second is the optimization of a laminate for minimum thickness for a given buckling 
load. For the first optimization problem the lowest buckling load oX' is maximized, 
over values of m and n. The objective oX* is not a smooth function of the design 
variables, and the standard device (see section 2.4) for removing this problem is to 
add oX* as a design variable and require it to be less than or equal to each oXcr(m,n). 
Thus, the optimization problem is formulated as 

find 
to maximize 

such that 

oX*, and OJ, nj, If, Ijm, i = 1,···, N/2, 
oX* 

oX*~oXcr(m,n), m=l,···,mj, n=l,···,nj, 

OJ + nj + Jr + Jim = 1 , i = 1, ... , N /2, 
N/2 

and LJr - Ijm = o. 
i=1 

(11.3.3) 

The minimization over m and n is performed by checking for all valu('s of 111 between 
1 and mj, and all values of n between 1 and nj. The last constraint in Eq. (11.3.3) 
ensures that the number of 45-deg and -45-deg plies is the same, so that the laminate 
is balanced. The optimization problem of Eq. (11.3.3) is a int('gcr linear programming 
problem, and the methods described in chapter 3.9 can be applied. 

For the dual problem of weight minimization of a laminate capable of sustaining 
a specified load without buckling, the total number of layers must be variable. This 
seems to contradict the use of ply-identity variables which requires N to be known 
in advance. A remedy for this contradiction is to start with a number of layers large 
enough so that the initial design does not buckle, but permit some of the plies to be 
empty (OJ + ni + Jr + Ijm ~ 1). Of course, plies that are permitted to be empty must 
be the outer plies of the laminate in order to maintain integrity of the laminate. The 
formulation takes the form 

find OJ, ni, If, Ijm, i = 1 ... N/2 , , , 
N/2 

to minimize L(Oi + nj + Jr + It) 
i=1 

suchthat oXcr (m,n);:::l, m=l,···,mj, 71=l,···,nj, 

Oi+ni+Jr+lim~l, i=1,···,N/2, 
(11.3.4) 

N/2 

2:. If - lim = 0 , 
j=1 

and 0i + ni + Jr + Ijm ~ Oi-l + ni-l + If-l + /[':.1 . 

where the last constraint ensures that the empty pli('s are on the outside. 
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In general, the solution of the weight minimization problem is not unique. For a 
minimum weight design with N· layers, it is possible to change the orientations of the 
fibers and come up with designs that will have the same weight but different buckling 
loads. Out of those feasible designs, ideally, one would like to choose the one that has 
the largest margin for the buckling constraint. This can be achieved by subtracting 
a small fraction of Acr from the objective function, so that the modified objective 
function serves the dual purpose of minimizing weight while maximizing the buckling 
load. For results on weight minimization designs, the reader is referred to Haftka and 
Walsh [25]. In the following paragraphs, results for buckling maximization will be 
presented. 

40 

= 
~ 30 

* 

-:::: 20 
Y 
~ 

:a 
'-' .. 
c< 10 • .. 
c< ........ .. .. .. . _. .. o 

0.00 

. 
•• ~ •• 

•• 24-ply Laminate 
.~. 16-ply Laminate .. ' 12-ply Laminate '.' a-ply Laminate 

.. '. ., ... 

.... • • . .. ' . *', ' ...•..... : ....•.... 
• ....... ' ".t-

• I ..... _. ". '. "'. ".4.: 1.0 \ " . .................... 
0.50 1.00 1.50 2.00 2.50 

Ny/Nx 

Figure 11.3.4 Buckling load reduction for globally optimal laminates with O-deg} ±45-
deg} and 90-deg plies. 

For the results presented in this section the solution of Eqs. (11.3.3) is gener
ated with the LINDO program [26] which employs the branch-and-bound algorithm 
described in section 3.9.1. First we present the biaxial load cases that were reported 
earlier in Table 11.3.1 and 11.3.1 as global optima. A plot similar to the plot shown 
in Fig. 11.3.3, this time for the global optimum designs obtained through the use of 
the linear integer programming approach, is shown in Fig. 11.3.4 for comparison. In 
general, there is a small amount of improvement in the buckling load reduction for 
most of the laminates. For example, the worst buckling load reduction (compared to 
the continuous designs) is still for the 8-ply laminate for a load ratio of Ny/Nx = 0.5, 
but it is only about 18% as compared to 22%. Also, there is an orderly progres
sion with increasing laminate thickness. The smallest and the largest buckling load 
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reductions are associated with the 24-ply and the 8-ply laminates, respectively. 

When the number of contiguous plies with the same orientation angle is large, 
composite laminates are known to experience matrix cracking. Therefore, it is desir
able to limit the number of such contiguous plies. vVe demonstrate the use of such 
a constraints on the design obtained for Ny/ N x = 2. \Ve start with the design that 
was presented in Table 11.3.2, [904 / ± 45/902]" which we imposed the constraint that 
the plies with different orientations appear in pairs. The critical load factor for this 
optimal design was Au = 36.19. Next, we relax this requirement and redesign the 
plate so that we can have single plies with different orientations adjacent to one an
other. This yields a design which has 5 contiguous 90-deg plies, [90,,/ + 45/- 45/90]' •. 
The critical load factor for this design is Acr = 36.8--1, a 1.8% increase compared to 
the design which restricts each orientation to be in pairs. TIl(' fad that 45-deg plies 
appear in a pair is of course coincidental. vVe then implement the contiguous ply 
requirement by adding the constraint 

n1 + n5 + 116 + n7 + 718 :::; --1 . (11.3.5) 

The design ohtained with this constraint is [904 / + --13/9021 - 43]s and has a slightly 
smaller load factor, Acr = 36.59, compared to the previous design. However, it still 
has a slightly larger load factor compared to the design from Table 11.3.2, hut violates 
the requirements that off-axis angles appear in pairs. By introducing a constraint of 
the form 

if - Jr';-l = 0, i = 1,2, ... , (I -1), 

where if' = 0, and If = 0, 
( 11.3.6) 

designs that have the --13-deg plies in plus and minus pairs can he achieved, \vithout 
requiring the 0- and the 90-deg plies to be in pairs, and without exceeding 4 contiguous 
plies with the same orientations. In this particular case we obt ain again the design 
presented in Table 11.3.2. 

Stiffness and Buckling Design: In some cases it rna}' be dpsirahle to impose 
constraints on the stiffness of the plate. For example, a constraint requiring All to 
have a minimum value of A~l can be written as 

(11.3.7) 

As shown in [25] this constraint can he expressed as a linear function of the ply 
identity design variables similar to the buckling constraint. Therefore, it can be used 
as a constraint in the prohlem formulated by Eqs. (11.3.3). The effect of introducing 
a minimum stiffness requirement is checked for Ny/Nx = 2. The optimum laminate 
for this case, was dominated hy 90-deg plies, and has only 16 percent of the axial 
stiffness All of an all O-deg laminate. A requirement that All be at least 50 percent 
of the unidirectional laminate was added, ,vith and without the requirement of no 
more than four contiguous plies. The results are compared to the original design in 
Fig. 11.3.5. It is seen that the stiffness requirement is satisfied by putting O-deg plies 
near the plane of symmetry where they have only a minimal effect on the bending 
stiffnesses, and hence on the buckling load. The reduction in the buckling load is 
about 8 percent. For this design the effect of adding the requirements of no more 
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(905/451-45190)s Acr = 36.84 (904/04)s Acr = 33.77 
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contiguous ply 

constraint 

Figure 11.3.5 Effect of stiffness requirement on laminate design. 

than 4 contiguous plies had a substantial effect (7 percent reduction) on the buckling 
load. 

Stacking Sequence for Strength and Buckling Design: In the absence of applied 
shear loads, the laminate strains €x and €y can be calculated (for a load factor>' = 1) 
from 

and (11.3.8) 

The strains for the kth ply may be calculated from the transformation 

COS2()kfx + sin2()k f y , 

. 2() 2() sm kfx + cos kfy, (11.3.9) 

sin 2()k( €y - f x ) • 

Even though the extensional stiffnesses Aij are linear functions of the design variables 
the strains calculated by Eq.(l1.3.8), are nonlinear functions ofthese variables. These 
strains can be linearized, as shown by Nagendra et al. [27], by a linear Taylor series 
in A ij . We have 

(11.3.10) 
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where E is a typical strain component (.x = 1 ), EL is its linear approximation, and 
Aijo and Aij are the extensional stiffnesses calculated at the nominal design point Xo 

and neighboring designs, respectively. The derivatives of the strain with respective 
to the extensional stiffnesses at the nominal design point are calculated in terms of 
the midplane strains and the extensional stiffnesses at the nominal design. The linear 
strain approximation can thus be constructed along a particular fiber orientation and 
transverse to it by evaluating the strains E~, E~ and ,f2 for each orientation (since the 
orientation is chosen apriori, either 0° or 45°) in terms of the midplane strains using 
Eq. (11.3.9). For example, the strains along and transverse to the 45° fibers and in 
shear can be derived as 

(11.3.11) 

The derivatives needed for the strain approximation of Eq.(11.3.10) can then be 
obtained by differentiating Eq.(I1.3.11). For example, the derivative of the strain 
along the 45° fiber with respect to All can be written as 

OEI 1 (A12 - Ad 
OAll = 2 (AU A 22 - Ai2) Ex, 

(11.3.12) 

where Aij are the extensional stiffnesses at the nominal design point. Similar strain 
derivatives with respect to A22 and A12 can be derived. The extensional stiffnesses are 
a linear function of the ply-identity design variables, thus the strain approximation 
is a linear function of the ply-identity variables. It is also important to note that the 
strains are initially calculated based on some reference value of the load. In order 
to implement the strain constraint they have to be multiplied by the value of the 
buckling load multiplier .xc which is also a function of the design variables, 

< (11.3.13) 

where Eia is the strain allowable. The strain constraint of Eq. (11.3.13) can be 
linearized by moving .xc to the right hand side, and expanding 1/.xc in linear Taylor's 
series to obtain 

(11.3.14) 

where Ao is the buckling load factor for the nominal design. 

The linear strain constraint of Eq. (11.3.14) can now be added to the problem 
formulation of Eqs. (11.3.3) for designing laminates that are buckling and strength 
failure resistant. Since the formulation involves a local approximation for the strength 
constraint, sequential linear programming needs to be used. In using sequential linear 
programmig, imposing move limits is generally recommended so that designs geneated 
based on approximate constraints remain in or near the feasible design space. In the 
case of zer%ne ply-identity variables, imposing move limits on the design variables is 
not practical. Hence move limits were applied as bounds on the extensional stiffnesses 
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Figure 11.3.6 Maximum buckling load designs with strength constraints. 

Aij expressed in terms of the ply-identity variables. This requires addition of six more 
constraints to the problem 

< k· - 'J i,j=1,2. (11.3.15) 

Designs with strength constraints were obtained for laminates that are thicker 
than those considered in the previous cases so that the buckling loads are likely to 
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violate the strain failure constraints. Design results for 48-ply laminates under two 
different combination of biaxial loads (Ny / Nz = 0.25 and Ny / Nz = 0.5), for Nz = 
0.25 lb/in ( 175 N /m) are presented in Fig. 11.3.6, along with the results for designs 
with no strain constraint. Since the method used involves local approximations, the 
final design may be a locally optimal design. Designs with a higher confidence of 
being globally optimum can be generated by using one of the probabilistic search 
algorithms for nonlinear programming problems with discrete valued design variables 
(see chapter 4). The last design in each of the load cases presented in Fig. 11.3.6 
is generated using the genetic algorithm discussed in section 4.4.2 and verified to be 
actually the global optimum design. Compared to the design without strength failure 
constraint, the failure load factor decreased by 6.05% for Ny = 0.25. Although the 
design for this load case was only a local maximum, the load factor differed from the 
global optimum design only by a fraction of a percent. For the load ratio of 0.5, the 
design without the strain constraint violated the shear strength by 7%. The design 
obtained from the sequential integer linear programming approach was also the global 
optimum. 

11.3.4 Probabilistic Search Methods 

Probabilistic search methods such as simulated annealing and genetic algorithms have 
a number of parameters that can be tuned to tailor the method to the problem at 
hand. For simulated anealing these parameters include the initial temperature and 
the rate of cooling. For genetic algorithms the tuning parameters are the probabilities 
of the various genetic operators, such as mutation, as well as population size and 
convergence criteria. The design of unstiffened laminates using Classical Lamination 
theory is a good problem for tuning such parameters because it is so computationally 
inexpensive to optimize. 

For simulated annealing Lombardi [28] studied the effect of initial temperature 
and cooling rate on the performance of the algorithm for the buckling load maximiza
tion problem described in the previous section. The performance of the algorithm was 
judged by two criteria: computational cost and reliability in finding the global opti
mum. The problem tends to have a large number of solutions (stacking sequences) 
with very similar buckling loads. For this reason, a success was defined as a solution 
which is within 0.1 % of the maximum buckling load. Results were obtained for 32-
ply plates where plies were grouped in stacks of two O-deg, 90-deg or ±45-deg plies. 
For symmetric laminates this requires to define the angles of 8 stacks for a total 
of 38 = 6561 possiblilities. The simulated annealing algorithm required about 1000 
analyses for high reliability, which is a sizable fraction of the design space. However, 
when the number of plies was incleased from 32 to 64, the number of required anal
yses increased only to about 3000, while the number of possible designs increased to 
316 = 43 million. 

Le Riche and Haftka [29] solved the same buckling maximization problem for 48-
and 64-ply laminates using genetic algorithms. Tuning the probabilites of the genetic 
operators as well as the population size could reduce substantially the number of 
required analyses. For 48-ply laminates, for example, the number of required analyses 
was found to be about of 200-300. One advantage of the genetic algorithm is that 
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it yields several near optimal designs, rather than one optimum. For example, for a 
plate with a = 20in, b = 5in, Nx = llbjin, and Ny = 0.51bjin two of the best designs 
were: [902 , ±452, 902 , ±45, 902 , ±456]s, and [±45, 904, ±45, 902, ±455 , 902, ±45]s. The 
first laminate has a buckling load of .xc = 9998, while the second buckles at .xc = 9976. 
For a designer, the differences between the laminates, such as the presence of ±45-deg 
plies on the outside, or the reduced percentage of 90-deg plies in the second laminate 
may be more important than the 0.2% difference in buckling loads. 

11.4 Design Applications 

11.4.1 Stiffened Plate Design 

Laminated plates stiffened by longitudinal and transverse members are one of the 
most common structural components. Use of stiffeners makes it possible to resist 
highly directional loads, and to introduce multiple load paths that may provide pro
tection against damage and crack growth under both compressive and tensile loads. 
The biggest advantage of the stiffeners, though, is the increased bending stiffness 
of the panel with a minimum of additional material, which makes these structures 
highly desirable for out-of-plane loads and destabilizing compressive loads. In addi
tion to placement of the stiffeners to resist directional loads, the use of composite 
materials makes it possible to further tailor the stiffness and strength characteristics 
of the individual elements (such as webs, flanges, and skin) of a stiffened plate to meet 
various structural requirements. This local tailoring is achieved through selection of 
ply orientations and thicknesses for the different sections of the plate. Also the use 
of composite materials makes it possible to adopt stiffener cross-sectional geometries 
which may be expensive to manufacture using metallic materials. 

However, the complex behavior of stiffened composite plates makes it difficult 
to adopt the simplifying assumptions used for the analysis of flat laminates which 
often lead to closed-form solutions. Therefore, design optimization of such plates 
typically requires use of numerical algorithms. In this section we will discuss the 
design of stiffened composite plates under compressive and shear loadings, and subject 
to mainly buckling constraints. 

In one of the early studies of optimum design of stiffened plates, Stroud and 
Agranoff [30] considered a longitudinally stiffened plate composed of an assembly 
of orthotropic plate elements. The plate configurations were limited to corrugated 
and hat-stiffened plates, but the same procedure used in Ref. 30 can be extended to 
other geometries such as the ones shown in Figure 11.4.1. The simplified analysis was 
based on buckling of orthotropic plates with simply supported boundary conditions. 
Both global and local modes of buckling were considered. The global buckling analysis 
modeled the stiffened plate as an orthotropic plate with smeared stiffeners, a'lsumed to 
buckle as a wide column. For local buckling, each element of the plate wac;; considered 
separately as a narrow strip of orthotropic plate with simply supported boundary 
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Figure 11.4.1 Examples of typical stiffened panel concepts. 

conditions along the lines of attachment to adjacent elements. That is, the rotational 
restraint between panel elements such as stiffener and skin was ignored, and the 
continuity of the buckling mode shapes between different elements was not accounted 
for. Equations for the buckling loads resulting from these assumptions are presented 
in Table 11.4.1 for plates loaded by compressive and shear loads. 

The local buckling equations in the table are applied to each of the plate elements 
of width b and length L. The length L of each element is assumed to be much larger 
than the width of the elements for both longitudinal compression and shear loadings. 
The D;/s are the bending stiffness coefficients (Eq. 11.1.18) of the respective plate 
elements. For global buckling under longitudinal compression, the panel is treated 
as a wide column with the loaded edges simply supported and the unloaded edges 
free. The longitudinal stiffness of the column is equal to the smeared longitudinal 
stiffness of the panel, EI. For the shear loading case, the stiffened panel is modeled 
as a uniform thickness orthotropic laminate (with smeared orthotropic properties, 
Dl , D2 , and D3 ) infinitely long in the transverse direction and simply supported 
along the loaded edges. The smeared stiffness terms (EI, D1, D2 , and D3 ) in the 
global buckling relations strongly depend on the cross-sectional configuration of the 
stiffeners. The calculation of these smeared stiffnesses for complicated stiffened panel 
geometries is quite involved and requires various kinematic assumptions depending 
on the applied loads. The derivation of some of the smeared stiffness terms is demon
strated in Ref. 30 for corrugated and hat-stiffened panels. 

The design problem of Ref. 30 was formulated as a mathematical programming 
problem with panel mass per unit width being the objective function. Design variables 
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Table 11.4.1 : Overall and Local Buckling Equations from Reference 30 

Loading 

Global Buckling 

Longitudinal 
Compression 

Shear 

For ( > 1, 

For ( < 1, 

Combined 

Local Buckling 

Longitudinal 
Compression 

Shear 

For ( > 1, 

For ( < 1, 

Combined 

Equation 

( = JD1D2 
D3 

Reference 

Eq. (92), [31) 
Eq. (3), [32) 

Eqs. (2.2.2-21), 

2 2 3! 5.05 
Nxy,er = ([) (Dl D2)4 (8.125 + -(-) (2.2.2-22), [33) 

Nxy,er = (~?JD1D3(l1.7+0.532(+0.938(2) pp. 468-471, [34) 

N x + ( N xy ) 2 _ 1 Eq. (105.8), [34) 
Nx,er Nxy,cr -

21l'2 [1 ] Nx,er = ---,;2 (DllD22)'i + D12 + 2D66 

(= JDll D22 
D12 + 2D66 

2 2 3! 5.05 
Nxy,er = (b) (D ll D22 ) 4 (8.125 + -(-) 

Nxy,er = (~)2J D22(D 12 + 2D66 ) 

(11.7 + 0.532( + 0.938(2) 

Nx + Nxy _ 1 ( )
2 

N x,er Nxy,cr -

Eq. (92), [31) 
Eq. (3), [32) 

Eqs. (2.2.2-21), 

(2.2.2-22), [33) ; 

pp. 468-471, [34) 

Eq. (105.8), [34) 

were the element widths and thicknesses of the layers that make up the elements. The 
design constraints were buckling load, strength and stiffness requirements, and lower 
and upper bounds on some of the panel dimensions. A general purpose optimization 
code AESOP [35)' which is based on exterior penalty function formulation, was used 
for the design optimization. 

A more rigorous design procedure [36] based on a stiffened panel buckling and 
vibration analysis code VIPASA [37, 38) and a mathematical programming code 
based on the method of feasible directions algorithm (see Section 5.6 ) CONMIN [39) 
was introduced to improve some of the assumptions made in Ref. 30. The analysis 
code VIPASA is capable of computing buckling loads of structures comprised of flat 
rectangular plate elements connected together along their longitudinal edges. As 
opposed to the procedure used in Ref. 30, the analysis accounts for the physical 
connection between the adjacent elements by maintaining the continuity of the buckle 
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patterns across the intersection of neighboring plate elements. Buckling solutions are 
based on exact thin-plate equations with D 16 and D 26 anisotropic stiffness terms so 
that bending-twisting coupling is allowed. Individual plate elements may be isotropic, 
orthotropic, or anisotropic. However, the laminates that make up the elements are 
limited to balanced symmetric layups such that bending-extension and extension
shearing couplings are eliminated. Another limitation of the analysis is the buckling 
boundary conditions. Although the unconnected longitudinal edges may take various 
boundary conditions, the boundary conditions along the loaded edges are limited 
to simply supported conditions. Any combination of longitudinal, transverse, and 
shearing loads that are constant along the length of the panel may be applied, see 
Fig. 11.4.2. However, as will be discussed later, in the case of applied shear loads 
the limitation of the simply supported boundary condition at the loaded edge may 
result in inaccuracies in the buckling load calculations. 

Figure 11.4.2 Loading conditions and initial imperfections. 

The VIPASA analysis program was eventually used by Stroud and Anderson as 
the basis of a design code PASCO [40,41] which is commonly used for preliminary de
sign of uniaxially-stiffened panel structures. PASCO uses the nonlinear mathematical 
programming code CONMIN [39] for optimization. The design problem is formulated 
so as to minimize the panel mass for a given set of loadings. Constraints include up
per and lower bounds on design variables, lower bounds on material strength and 
buckling loads, lower and upper bounds on overall bending, extensional, and shear 
stiffnesses, and lower bounds on vibration frequencies. In addition to the design con
dition described for VIPASA analysis (Nx, Ny, Nxy ), PASCO includes applied bending 
moment (Mx), lateral pressure (p), overall bow-type initial imperfections, and tem
perature loadings. The effects of the bending strains, resulting from the applied 
bending moment, pressure, initial imperfection, or the temperature, are included in 
the strain failure analysis by superimposing them on the uniform strains resulting 
from the in-plane loads. The bending strains resulting from the applied pressure 
and bow-type imperfections are calculated based on a beam-column approach [42] by 
calculating the corresponding bending moment at the panel midlength. This maxi
mum bending moment is conservatively assumed to act over the entire panel length. 
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This approach is in line with the VIPASA requirement that the prebuckling stress 
distribution be constant along the panel length. For more detailed discussion of the 
bending moments see Ref. 40. Use of multiple sets of design conditions is also allowed 
in PASCO. The set of design variables consists of the widths, b, the ply thicknesses, 
t, and orientations, 6, of any of the plate elements that make up the panel. Re
ducing the number of design variables by linking of some of the element dimensions 
or ply orientations through linear relations is also possible. PASCO is also capable 
of implementing approximations for the buckling and vibration constraints through 
first-order Taylor series expansion of those constraints, and set move limits for the 
design variables. This aspect of the code makes it computationally efficient and very 
attractive for preliminary design purposes, and lets the designer compare various 
design concepts in a cost-effective manner. 

Example 11.4.1 

a) Tailored corrugated panel. 

~ 
b) Corrugated panel with continuous laminate 

2b j 

1\ roc 
1--:::--1 H 

2bl b3 
c) Hat-stiffened panel 

o 
d) Blade-stiffened plate 

e) Unstiffened flat plate. 

Figure 11.4.3 Design configurations. 
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This example by Swanson and Giirdal [43] is a comparison of the structural ef
ficiencies of optimally designed composite wing rib panel configurations typical of a 
center-wing-box fuel-cell closeout rib of large transport-type aircraft. Rib dimensions 
of 28 inches high by 80 inches wide are used. The panel configurations are cho
sen to be practical and applicable to cost-effective manufacturing techniques. These 
configurations are shown in Fig. 11.4.3, and include a tailored corrugated panel, a 
corrugated panel with a continuous laminate throughout its length and width, and a 
hat-stiffened panel. A corrugated panel is relatively easy to manufacture since it has 
continuous plies which run throughout the configuration that form integral stiffeners 
without requiring fasteners. It is also suitable for the thermoforming process which is 
a potentially economical manufacturing technique for thermoplastic materials. Also 
included are a blade-stiffened panel, which is the most commonly used concept for 
wing rib applications, and a flat unstiffened plate which is used as a ba.'leline config
uration for comparison. 

The constraints considered in this example include those associated with material 
strength, buckling, and geometric limits. The material failure criterion chosen is the 
maximum strain failure criterion. The buckling criterion implemented is hased on a 
common design practice used for wing structures that docs not allow the components 
to buckle at design limit loads. Thus, the design of the wing rib does not consider 
any post buckling-load-carrying capability of the panel. 

The design variahles are thc thicknesses of plies with different ply orientations in 
the different sections of the panels. Conventional ply angles of ±45-deg, O-deg, and 
90-deg orientations are chosen. Also, detailed cross-sectional dimensions are used as 
sizing variables to determine the best cross-sectional geometry. Hercules AS4/3502 
preimpregnated graphite-epoxy tape is chosen as a typical graphite-epoxy material. 

211 (45°) 

212 (0°) 

211 (45°) 

Figure 11.4.4 Tailored corrugated panel model. 
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The geometry of the repeating elements is typically defined by the plate element 
width design variables b1 through b4 as shown in Fig. 11.4.3. For the corrugated 
panels, for example, both the upper and lower corrugation caps are assumed to be 
of equal width due to symmetry. The plate element widths, b2 and b3 , define the 
corrugated panel web angle. The panel webs are made of only ±45-deg plies, Fig. 
11.4.4, that run continuously across the width of the cross section. Such continuous 
plies help reduce manufacturing costs and eliminate stress concentrations that could 
occur at the ±45-deg ply termination points. In the plate elements which make up the 
caps, O-deg plies are included between the layers of ±45-deg fibers. Thus, the entire 
laminate is defined by two thickness design variables, tl and t2, relating to the 45-deg 
and O-deg plies, respectively. Cross-sectional details of the other configurations can 
be obtained from Ref. 43. 

The loads considered in Ref. 43 are combined in-plane axial compression (Nx ), 

shear (Nxy ), and pressure (p) loads with magnitudes typical of an inboard wing rib 
fuel closeout cell for a large transport aircraft. In the present example a load index of 
N x / L, where L is the panel length, is used with values ranging from 0.3 to 1000 lb/ in2 . 

This range includes loadings above and below typical rib loads so that design trends 
for panels for other subcomponents, such as a wing skin, are covered. 

1.0 10.0 100.0 1000.0 

~ (~) 
L • In' 

Figure 11.4.5 Structural efficiency of axial compression loaded panels. 

The effect of axial compression load intensity on the structural efficiency and 
geometry of all the panel configurations considered in the present study is shown in 
Figs. 11.4.5. The tailored corrugated panel concept with different laminates in the 
corrugation crowns and webs is the most structurally efficient configuration. The 
corrugated panel concept with a continuous laminate is the next most structurally 
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efficient concept, followed by the blade-stiffened panel concept, the hat-stiffened panel 
concept, and the unstiffened flat panels (see Fig. 11.4.5). The weight differences in 
this load range are due largely to the modeling of the laminates that define the 
panel geometry. Each configuration is modeled such that a minimum number of plies 
necessary to define the geometry is used, and that number differs for each model. 
For low axial load intensity, all configurations, excluding the unstiffened plate, are 
constrained by the same minimum gage ply thickness of 0.005 inches on all the plies. 
Therefore, the weight of a panel is almost directly proportional to the number of 
layers in the cross section and is independent of the intensity of the load .••• 

One drawback of PASCO is possible inaccuracy in modeling the boundary condi
tions under shear loads. Boundary conditions on the panel ends perpendicular to the 
stiffeners are assumed to be simply supported and cannot be changed. \Vithout the 
shearing loads, the buckling pattern consists of a series of straight nodal lines that 
coincide with the loaded edges of the panel. When shear is applied to the panels, 
the buckling pattern consists of a series of skewed nodal lines and the buckling load 
calculated for this load case may deviate from to the buckling load of a simply sup
ported plate. In particular, if a single buckling half-wave of length A forms along the 
panel length, L, the PASCO analysis can severely underestimate the buckling load. 

An optional smeared stiffness solution [38] is included in PASCO for the A = L 
case to provide a more accurate solution when a shear load is present. The smeared 
stiffness approach was shown [44] to be an improved solution but not always a con
servative one. Additionally, in order to achieve an optimally designed stiffened panel 
configuration, the full cross-sectional detail must be retained to account for local 
stiffener buckling, while at the same time, maintaining the simple support bound
ary conditions at the loaded edges. The smeared stiffener solution in PASCO does 
not account for such detail. An improved analysis exists in the VICON, (VIPASA 
with CONstraints) program [45, 46] which modifies the VIPASA buckling analysis 
to include supports at arbitrary locations along t.he panel length through the use of 
Lagrange multipliers. By specifying the supports at intervals corresponding to the 
ends of the desired panel length, the simple support boundary conditions can be en
forced at the panel ends when shear is applied. The VICON analysis has recently 
been implemented in a design code VICONOPT by Butler and Williams [47]. 

The design requirement that does not allow buckling of the panels at the limit 
load is appropriate for wing and empennage cover panels because of nonstructural 
considerations such as maintaining a good aerodynamic surface. However, fuselage 
panels of metallic aircraft structures are commonly designed to buckle below their 
ultimate loads. The lack of sufficient information on the post buckling response of 
composite panels hindered the application of such a design philosophy in the past. 
Realization of the possible weight saving kindled interest in designing post buckled 
panels in recent years (see Dickson et al. [48, 49] and Shin et al. [50]. A non
linear theory for the prediction of behavior of locally imperfect stiffened panels has 
been incorporated by Bushnell into the design optimization program PANDA2 [51]. 
However, because of the complexity and serious computational cost involved in post
buckling analysis of stiffened panel structures, optimal design of such panels is still 
far from being a routine practice. 
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11.4.2 Aeroelastic Tailoring 

Another major area of design optimization application is the aeroelastic tailoring of 
aircraft wing structures which involve aeroelastic constraints. Aeroelastic tailoring 
involves the use of structural deformations to improve the structural and aerodynamic 
characteristics of a lifting surface. A suggested standard definition [52] is; 

Aeroelastic tailoring is the embodiment of directional stiffness into an aircraft 
structural design to control aeroelastic deformation, static or dynamic, in such a 
fashion as to affect the aerodynamic and structural performance of that aircraft in a 
beneficial way. 

The beneficial behavior characteristics are those associated with the aero elastic 
twist, aeroelastic camber, improved flutter and divergence speeds, reduced aeroelastic 
roll control losses, and increased strength [53]. 

The subject of aero elastic tailoring has gained popUlarity during the past decade 
because of advancements in the structural optimization field and increased use of 
composite materials in aircraft structures. Composite wing designs are often more 
flexible than metal ones, which makes them more susceptible to aero elastic effects. 
However, composite materials often provide the designer with an opportunity to im
prove aerodynamic performance by tailoring the material response, through the use 
of ply thickness and orientation design variables, to generate favorable aeroelastic 
effects. While there is an increased flexibility in tailoring the design, the increased 
number of design variables and complex response characteristics of composite ma
terials make the difficult wing design problem even more difficult [54, 55]. This is 
where the use of advanced optimization techniques come into picture. Although it is 
still considered costly, application of rigorous optimization algorithms to the detailed 
structural model of a lifting surface may make it possible to achieve the desired per
formance improvements. Many of the early studies, however, relied on simplification 
of the structural model to make the design affordable. These simplifications included, 
in some cases, beam models for the structural representation. A survey of the appli
cations of structural optimization techniques to problems of design under aeroelastic 
constraints is presented by Haftka [56]. 

One of the early efforts in introducing structural optimization into aeroelastic tai
loring is the TSO program developed by McCullers and Lyneh [57]. The program orig
inated under the name WASP (Wing Aeroelastic Synthesis Procedure) [58], and uses 
a mathematical programming procedure based on a penalty approach (sec Section 
5.7) for converting the constrained problem into a series of unconstrained problems. 
The unconstrained minimizations are performed via the Davidon-Flctcher-Powell al
gorithm (see Section 4.2). Modeling of the wing structure is based on plate analysis 
with a Ritz solution technique. The objective function may be any combination 
of weight, lift curve slope, control surface effectiveness, flutter speed, fundamental 
natural frequency or deflections. The design variables are coefficients of polynomi
als which control both the orientations of the various plies and their thicknesses. 
Use of a polynomial description of the design parameters along with the Ritz pro
cedure makes the application the mathematical programming method manageable 
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for optimization purpose. The TSO program was used for several design studies for 
aeroelastic tailoring applications to existing aircraft [54, 58, 59] 

Another popular program for the design of lifting surfaces subject to strength 
and aero elastic constraints is the finite element based program FASTOP developed 
by Grumman [60]. The program employs optimality criteria methods (see Chapter 
9), and is also capable of handling flutter constraints. Optimality criteria meth
ods are very efficient for designs subject to a single constraint. Thus, despite the 
costly finite element analysis involved, the cost of optimization was kept manageable 
through the use of sequential treatment of constraints. First the stress constraints 
are treated by the non-optimal Fully Stressed Design (FSD, see Section 9.1), fol
lowed by a 'uniform-cost-effectiveness' optimality criterion (Section 9.3) for each of 
the aero elastic constraints. The process is repeated with the strength and aeroelastic 
constraints until convergence is achieved. Design variables are limited to thickness 
or cross-sectional areas, and ply orientations are not allowed to change during the 
design. 

A more recent finite element based design program is ASTROS (Automated 
Structural Optimization Systems) [61] developed by Northrop under an Air Force 
contract. ASTROS is designed as an automated procedure to address interdisci
plinary requirements during preliminary design of aerospace structures. The struc
tural analysis module of ASTROS is derived from the public domain version of the 
NASTRAN finite element code and forms the core of the procedure. The structural 
analysis module is used to obtain structural response to applied mechanical, gravita
tional, aerodynamic, induced thermal, and time dependent loads. Design constraints 
include limits on stresses, strains, displacements, modal frequencies, flutter response, 
aeroelastic lift effectiveness, and aileron effectivE'ness. Design variables that can be 
used in the process are element areas and thicknesses, structural inE'rtias and con
centrated masses. Membrane and bending elements used in the structural analysis 
provide full-composite modeling capability. Individual ply thicknesses of the mate
rial can be used as design variables, but the ply orientation design variables are not 
allowed. In order to reduce the number of design variables and to assure physically 
meaningful dimensions design variable linking is used. The design variable linking 
is implemented together with a procedure that divides the design variables into two 
groups that are identified as global and local variables. A global design variable can 
be specified as a weighted sum of a number of local design variables. Similar to 
TSO, shape function type of linking can be used to define shapes such as a smooth 
thickness variation along the span direction. The design optimization module used 
in ASTROS is the ADS (Automated design Synthesis) [62] program. All sensitivities 
of the objective function and of the constraints are calculated based on analytical 
derivatives. Both direct and adjoint-variable methods (see Chapter 7) are available. 

11.5 Design Uncertainties 

Although composite materials provide a vast, and probably so far underutilized, 
freedom in tailoring structural response to sui t the needs of the designer, they also dis
play certain problems uncharacteristic of conventional materials. Optimally designed 
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structures are known to be sensitive to changes in load conditions and imperfections. 
Because of increased number of variables which enable designers to tailor the design 
closer to the desired specifications, this sensitivity may be heightened for composite 
structures. The simplest example of sensitivity to changes in the load condition is the 
case of a laminate designed to carry uniaxial loads [63]. For this application, it can 
easily be demonstrated that the best design is the one that has all the layers oriented 
along the load direction. It is also well known that this design is extremely poor for 
carrying loads transverse to the fiber direction. Therefore, any change in the direc
tion of the applied design load is likely to result in a failure, wherea.<; a similar design 
made of a conventional isotropic material would be capable of carrying a transverse 
load of magnitude equal to the original design load. 

Another complication in designing optimal composite structures is sometimes 
the difficulty in identifying and imposing proper strength constraints. Not only the 
load and stress distributions are functions of the ply thickness and fiber orientation 
variables, but the strength properties are also dependent on these variables. Failure of 
composite laminates is largely due to highly localized stresses. The number of possible 
local failure modes is large, and these failure modes are generally micromechanically 
governed and complex. Fiber breaking, matrix cracking, fiber-matrix debonding, and 
separation of individual layers can result in surface and through-the-thickness cracks, 
splits, and delaminations. Under compressive loads, even the instability of fibers on 
a microscopic scale (often referred as fiber microbuckling) wa.<; proposed as a failure 
mechanism, although based on more recent studies compression failures for high
performance composites are believed to be strength-related failures. Furthermore, 
failure modes can interact with one another making the strength prediction even 
more difficult. 

Some of the basic assumptions used for simplification of the laminate stress anal
ysis that reduce the three-dimensional nature of the laminated composites to two 
dimensions may also cause loss of information important for failure predictions. It is 
well known that laminated composite plates can locally display a three-dimensional 
stress state. The most common examples of these three-dimensional effects are free
edge stresses, and interlaminar stresses at the stiffener-skin interface of stiffened pan
els. It is important that designers be aware of such local effects during the formulation 
of the optimization problem and include appropriate constraints to account for them. 

It is only fair to claim that some of the design-related issues of composites failures 
are not well understood. Sometimes strength quantities that are needed for imple
mentation of a certain stress constraint may not be available. For example, based 
on their experience with metallic materials, designers often look for a compressive 
material strength limit that they can include in an optimization problem. It can be 
argued that the compressive failure strength is a highly problem-dependent quantity, 
rather than a material strength parameter. In some applications, the lack of under
standing and availability of predictive models for certain design considerations may 
hamper the design effort. For example, unlike metallic materials, composites have 
been found to be sensitive to low-velocity impact loadings. Currently, there is no 
predictive model that can realistically be used for designing laminates under impact 
damage conditions. Some of these topics are still under development and constitute 
a major effort in the area of mechanics of composite materials. 
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Under these difficulties, designers sometimes resort to practical guidelines. Rather 
than using ply orientation angles as design variables, designers often fix them to 
prescribed practical angles such as O-deg, ±45-deg, and 90-deg. Even if the applied 
loading is highly directional, such as panels under uniaxial loadings, presence of plies 
other than the ones aligned along the load direction provides increased safety for off
design load conditions such as unexpected transverse loads. In order to assure that 
the thickness design variables associated with those plies that are placed based on 
intuitive guidelines do not disappear, either lower bound on those thicknesses are used 
or additional loads are specified. For example, application of a certain percentage of 
the axial load as shear load leads to non-zero thickness for ±45-deg layers even if the 
lower bound on those layers is zero. 

The selection of a stacking sequence for a laminate is also guided by intuitive 
considerations. For example, use of ±45-deg plies as the outside layers of a laminate 
is preferred because of damage tolerance considerations. Another practical guideline 
is not to allow more than 4 identical contiguous plies. This guideline helps to reduce 
the interlaminar stresses between plies with different orientations. In order to satisfy 
such ply stacking sequence rules, an iterative procedure may be used as outlined in 
Ref. [64]. If the branch-and-bound algorithm with ply identity variables is used, this 
requirement can easily be implemented through the nse of Eq. (11.3.5) as dcscribed 
earlier. 

11.6 Exercises 

1. For a unidirectional laminate under uniform applied stresses, (Jx, (Jy, and Txy , 

show that the stationary values of the Tsai-Hill function 

are achieved for 

and 

where 

and 

a cos 20 + sin 20 = 0 , 

a sin 20 - cos 20 = b , 

a = 2Txy - 1, and 
(Jy 

b = (Jy + (Jx 1 - 0:2 , 

(J Y - (J x (32 - 0:2 - 2 

o:=X/Y, and (3=X/S, 

(11.6.1) 

where X, Yare the normal strengths parallel and transverse directions to the fibers 
and S is the shear strength. 

2. Using the graphical procedure described in scction 2, determine the orientations 
and thickness ratio of a balanced angle-ply symmetric, [(±01)"t/(±02),,,,], T300-5208 
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graphite-epoxy laminate with maximum effective shear stiffness G;xy. The laminate 
must also meet the following stiffness requirements 

Ex 2:: 17.5 106 psi, Ey 2:: 5.8 106 psi, and 0.1 2:: Vz: y 2:: 0.3 . 

Engineering properties of T300-5208 graphite-epoxy material along its principal ma
terial directions are 

El = 26.25 106 psi, E2 = 1.49 106 psi, G12 = 1.04 106 psi, and V12 = 0.28 . 

3. Show that a quasi-isotropic laminate [Of, 90f, -45f, +45fl can be replaced by 
[90j, Ok, -45f, +45fl with an identical D matrix by suitably selecting j and k so 
that j + k = 2i (note: j and k may be non-integers). 

Figure 11.6.1 Blade stiffened panel under uniaxial compression. 

4. For a laminate that is made up of integer number of plies with 0-, ±30-, ±60-, 
and 90-deg orientations, the design space is shown in Fig. l1.3.1-b. 

a) Complete the figure by putting the stacking sequences of laminates next to the 
appropriate discrete design points on the figure. 

b) If the laminate is required to have a Poisson's ratio V",y greater than 0.3, 
determine the stacking sequence that maximizes the transverse modulus E y • 
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5. The skin laminate of a ~irnply snpported blade stiffened panel shown in Figure 
11.6.1 is a [±45n ls construction, and the stiffeners are made of unidirectional laminae. 
Determine the longitudinal ~rneared stiffness EI which can be used for the global 
buckling load calculation presented in Table 11.3.1. Assuming the thicknesses of 
individual plies to be continuously variable, determine the minimum weight design 
for an axial compression of Nx = 10000 lbjin. Consider only buckling constraints. 
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157, 274 
Newton-type methods 157 
normalization of design variables 
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one dimensional line search 14 
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.fully stressed design 348-352 

.intuitive 348-353 

.Lagrange multiplier estimation 371 
376 

.scaling based 372-374, 380-381 
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optimization packages 242-243 
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.WASP 242, 459 
PANDA2 program 458 
PARS Program 242 
PASCO program 454-458 
penalty function 

.asymptotic behavior 188, 192 

.exterior 187-190 

.interior 190, 191 
penalty function methods 186-198 

.extrapolation procedure 188, 192 

.extended interior 190-192 

.ill-conditioning 189 

.integer programming problems 
195-198,440-442 

.unconstrained minimization 193-195 
plastic design (see limit analysis 

and design) 
plate problems 4, 20, 56, 60 
ply-orientation variables 425, 433 
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.repeated eigenvalues 276, 281-283 
.vibration 276-283 

sensitivity derivatives of limit load 
274-275 

sentiitivity derivatives of optimum 
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simultaneous analysis and design 11, 15 
21, 404-406 
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Mechanics 

SOUD MECHANICS AND ITS APPLICATIONS 
Series Editor: G.M.L. Gladwell 

Aims and Scope of the Series 
The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this 
series is to provide lucid accounts written by authoritative researchers giving vision and insight in 
answering these questions on the subject of mechanics as it relates to solids. The scope of the series 
covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; 
variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and 
elastic bodies; vibrations of solids and structures; dynamical systems and chaos; the theories of 
elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; 
structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental 
mechanics; biomechanics and machine design. 

1. R.T. Haftka, Z. Giirdal and M.P. Kamat: Elements 0/ Structural Optimization. 2nd rev.ed., 
1990 ISBN 0-7923-0608-2 

2. J.J. Kalker: Three-Dimensional Elastic Bodies in Rolling Contact. 1990 
ISBN 0-7923-0712-7 

3. P. Karasudhi: Foundations o/Solid Mechanics. 1991 ISBN 0-7923-0772-0 
4. N. Kikuchi: Computational Methods in Contact Mechanics. (forthcoming) 

ISBN 0-7923-0773-9 
5. Y.K. Cheung and A.Y.T. Leung: Finite Element Methods in Dynamics. (forthcoming) 

ISBN 0-7923-1313-5 
6. J.F. Doyle: Static and Dynamic Analysis 0/ Structures. With an Emphasis on Mechanics and 

Computer Matrix Methods. 1991 ISBN 0-7923-1124-8; Pb 0-7923-1208-2 
7. 0.0. Ochoa and J.N. Reddy: Finite Element Modelling 0/ Composite Structures. 

(forthcoming) ISBN 0-7923-1125-6 
8. M.H. Aliabadi and D.P. Rooke: Numerical Fracture Mechanics. ISBN 0-7923-1175-2 
9. J. Angeles and C.S. L6pez-Cajun: Optimization o/Cam Mechanisms. 1991 

ISBN 0-7923-1355-0 
10. D.E. Grierson, A. Franchi and P. Riva: Progress in Structural Engineering. 1991 

ISBN 0-7923-1396-8 
11. R.T. Haftka and Z. Giirdal: Elements of Structural Optimization. 3rd rev. and expo ed. 1992 

ISBN 0-7923-1504-9; Pb 0-7923-1505-7 

Kluwer Academic Publishers - Dordrecht / Boston / London 
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FLUID MECHANICS AND ITS APPLICATIONS 
Series Editor: R. Moreau 

Aims and Scope of the Series 
The purpose of this series is to focus on subjects in which fluid mechanics plays a fundamental 
role. As well as the more traditional applications of aeronautics, hydraulics, heat and mass transfer 
etc., books will be published dealing with topics which are currently in a state of rapid develop
ment, such as turbulence, suspensions and multiphase fluids, super and hypersonic flows and 
numerical modelling techniques. It is a widely held view that it is the interdisciplinary subjects that 
will receive intense scientific attention, bringing them to the forefront of technological advance
ment. Fluids have the ability to transport matter and its properties as well as transmit force, 
therefore fluid mechanics is a subject that is particularly open to cross fertilisation with other 
sciences and disciplines of engineering. The subject of fluid mechanics will be highly relevant in 
domains such as chemical, metallurgical, biological and ecological engineering. This series is 
particularly open to such new multidisciplinary domains. 

1. M. Lesieur: Turbulence in Fluids. 2nd rev. ed., 1990 ISBN 0-7923-0645-7 
2. O. Metais and M. Lesieur (eds.): Turbulence and Coherent Structures. 1991 

ISBN 0-7923-0646-5 
3. R. Moreau: Magnetohydrodynamics. 1990 ISBN 0-7923-0937-5 
4. E. Coustols (ed.): Turbulence Control by Passive Means. 1990 ISBN 0-7923-1020-9 
5. A. A. Borissov (ed.): Dynamic Structure of Detonation in Gaseous and Dispersed Media. 

1991 ISBN 0-7923-1340-2 
6. K.-S. Choi (ed.): Recent Developments in Turbulence Management. 1991 

ISBN 0-7923-1477-8 

Kluwer Academic Publishers - Dordrecht / Boston / London 
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From 1990, books on the subject of mechanics will be published under two series: 
FLUID MECHANICS AND ITS APPLICATIONS 

Series Editor: R.J. Moreau 
SOLID MECHANICS AND ITS APPLICATIONS 

Series Editor: G.M.L. Gladwell 

Prior to 1990, the books listed below were published in the respective series indicated below. 

MECHANICS: DYNAMICAL SYSTEMS 

Editors: L. Meirovitch and G.JE. Oravas 

I. E.H. Dowell: Aeroelasticity of Plates and Shells. 1975 ISBN 90-286-0404-9 
2. D.G.B. Edelen: Lagrangian Mechanics of Nonconservative Nonholonomic Systems. 

1977 ISBN 90-286-0077-9 
3. J.L. Junkins: An Introduction to Optimal Estimation of Dynamical Systems. 1978 

ISaN 90-286-0067-1 
4. E.H. Dowell (ed.), H.C. Curtiss Jr., R.H. Scanlan and F. Sisto: A Modern Course in 

Aeroelasticity. Revised and enlarged edition see under Volume 11 
5. L. Meirovitch: Computational Methods in Structural Dynamics. 1980 

ISBN 90-286-0580-0 
6. B. Skalmierski and A. Tylikowski: Stochastic Processes in Dynamics. Revised and 

enlarged translation. 1982 ISBN 90-247-2686-7 
7. P.C. MUller and W.O. Schieh1en: Linear Vibrations. A Theoretical Treatment of Multi-

degree-of-freedom Vibrating Systems. 1985 ISBN 90-247-2983-1 
8. Gh. Buzdugan, E. Mihailescu and M. Rade~: Vibration Measurement. 1986 

ISBN 90-247-3111-9 
9. G.M.L. Gladwell: Inverse Problems in Vibration. 1987 ISBN 90-247-3408-8 

10. G.1. Schueller and M. Shinozuka: Stochastic Methods in Structural Dynamics. 1987 
ISBN 90-247-3611-0 

11. E.H. Dowell (ed.), H.C. Curtiss Jr., R.H. Scanlan and F. Sisto: A Modern Course in 
Aeroelasticity. Second revised and enlarged edition (of Volume 4). 1989 

ISBN Hb 0-7923-0062-9; Pb 0-7923-0185-4 
12. W. Szempliriska-Stupnicka: The Behavior of Nonlinear Vibrating Systems. Volume I: 

Fundamental Concepts and Methods: Applications to Single-Degree-of-Freedom 
Systems. 1990 ISBN 0-7923-0368-7 

13. W. Szempliriska-Stupnicka: The Behavior of Nonlinear Vibrating Systems. Volume II: 
Advanced Concepts and Applications to Multi-Degree-of-Freedom Systems. 1990 

ISBN 0-7923-0369-5 
Set ISBN (Vols. 12-13) 0-7923-0370-9 

MECHANICS OF STRUCTURAL SYSTEMS 

Editors: J.S. przemieniecki and G.lE. Oravas 

1. L. Fryba: Vibration of Solids and Structures under Moving Loads. 1970 
ISBN 90-01-32420-2 

2. K. Marguerre and K. Wolfel: Mechanics of Vibration. 1979 ISBN 90-286-0086-8 
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3. E.B. Magrab: Vibrations 0/ Elastic Structural Members. 1979 ISBN 90-286-0207-0 
4. R.T. Haftka and M.P. Kamat: Elements 0/ Structural Optimization. 1985 

Revised and enlarged edition see under Solid Mechanics and Its Applications. Volume 1 
5. J.R. Vinson and R.L. Sierakowski: The Behavior 0/ Structures Composed o/Composite 

Materials. 1986 ISBN Hb 90-247-3125-9; Pb 90-247-3578-5 
6. B.E. Gatewood: Virtual Principles in Aircra/t Structures. Volume 1: Analysis. 1989 

ISBN 90-247-3754-0 
7. B.E. Gatewood: Virtual Principles in Aircraft Structures. Volume 2: Design, Plates, 

Finite Elements. 1989 ISBN 90-247-3755-9 
Set (Gatewood 1 + 2) ISBN 90-247-3753-2 

MECHANICS OF ELASTIC AND INELASTIC SOLIDS 
Editors: S. Nemat-Nasser and G.JE. Oravas 

1. G.M.L. Gladwell: Contact Problems in the Classical Theory 0/ Elasticity. 1980 
ISBN Hb 90~286-0440-5; Pb 90-286-0760-9 

2. G. Wempner: Mechanics o/Solids with Applications to Thin Bodies. 1981 
ISBN 90-286-0880-X 

3. T. Mura: Micromechanics 0/ Defects in Solids. 2nd revised edition, 1987 
ISBN 90-247-3343-X 

4. R.G. Payton: Elastic Wave Propagation in Transversely Isotropic Media. 1983 
ISBN 90-247-2843-6 

5. S. Nemat-Nasser, H. AM and S. Hirakawa (eds.): Hydraulic Fracturing and Geother-
mal Energy. 1983 ISBN 90-247-2855-X 

6. S. Nemat-Nasser, R.J. Asaro and G.A. Hegemier (eds.): Theoretical Foundation for 
Large-scale Computations o/Nonlinear Material Behavior. 1984 ISBN 90-247-3092-9 

7. N. Cristescu: Rock Rheology. 1988 ISBN 90-247-3660-9 
8. G.I.N. Rozvany: Structural Design via Optimality Criteria. The Prager Approach to 

Structural Optimization. 1989 ISBN 90-247~3613-7 

MECHANICS OF SURFACE STRUCTURES 
Editors: W.A. Nash and G.JE. Oravas 

1. P. Seide: Small Elastic Deformations o/Thin Shells. 1975 ISBN 90-286-0064-7 
2. V. Pane: Theories 0/ Elastic Plates. 1975 ISBN 90-286-0104-X 
3. J.L. Nowinski: Theory o/Thermoelasticity with Applications. 1978 

ISBN 90-286-0457-X 
4. S. Lukasiewicz: Local Loads in Plates and Shells. 1979 ISBN 90-286-0047-7 
5. C. Fii't: Statics, Formfinding and Dynamics 0/ Air-supported Membrane Structures. 

1983 ISBN 90-247-2672-7 
6. Y. Kai-yuan (ed.): Progress in Applied Mechanics. The Chien Wei-zang Anniversary 

Volume. 1987 ISBN 90-247-3249-2 
7. R. Negruliu: Elastic Analysis 0/ Slab Structures. 1987 ISBN 90-247-3367-7 
8. J.R. Vinson: The Behavior o/Thin Walled Structures. Beams, Plates, and Shells. 1988 

ISBN Hb 90-247-3663-3; Pb 90-247-3664-1 
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MECHANICS OF FLUIDS AND TRANSPORT PROCESSES 
Editors: R.J. Moreau and G . .tE. Oravas 

1. J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics. With Special 
Applications to Particular Media. 1983 ISBN Hb 90-01-37115-9; Pb 90-247-2877-0 

2. S. Zahorski: Mechanics o/Viscoelastic Fluids. 1982 ISBN 90-247-2687-5 
3. J.A. Sparenberg: Elements o/Hydrodynamics Propulsion. 1984 ISBN 90-247-2871-1 
4. B.K. Shivamoggi: Theoretical Fluid Dynamics. 1984 ISBN 90-247-2999-8 
5. R. Timman, A.J. Hermans and G.C. Hsiao: Water Waves and Ship Hydrodynamics. An 

Introduction. 1985 ISBN 90-247-3218-2 
6. M. Lesieur: Turbulence in Fluids. Stochastic and Numerical Modelling. 1987 

ISBN 90-247-3470-3 
7. L.A. Lliboutry: Very Slow Flows 0/ Solids. Basics of Modeling in Geodynamics and 

Glaciology. 1987 ISBN 90-247-3482-7 
8. B.K. Shivamoggi: Introduction to Nonlinear Fluid-Plasma Waves. 1988 

ISBN 90-247-3662-5 
9. V. Bojarevic!s, Ya. Freibergs, E.!. Shilova and E.V. Shcherbinin: Electrically Induced 

Vortical Flows. 1989 ISBN 90-247-3712-5 
10. J. Lielpeteris and R. Moreau (eds.): Liquid Metal Magnetohydrodynamics. 1989 

MECHANICS OF ELASTIC STABILITY 

Editors: H. Leipholz and G . .tE. Oravas 

ISBN 0-7923-0344-X 

1. H. Leipholz: Theory 0/ Elasticity. 1974 ISBN 90-286-0193-7 
2. L. Librescu: Elastostatics and Kinetics 0/ Aniosotropic and Heterogeneous Shell-type 

Structures. 1975 ISBN 90-286-0035-3 
3. C.L. Dym: Stability Theory and Its Applications to Structural Mechanics. 1974 

ISBN 90-286-0094-9 
4. K. Huseyin: Nonlinear Theory 0/ Elastic Stability. 1975 ISBN 90-286-0344-1 
5. H. Leipholz: Direct Variational Methods and Eigenvalue Problems in Engineering. 

1977 ISBN 90-286-0106-6 
6. K. Huseyin: Vibrations and Stability o/Multiple Parameter Systems. 1978 

ISBN 90-286-0136-8 
7. H. Leipholz: Stability 0/ Elastic Systems. 1980 ISBN 90-286-0050-7 
8. V.V. Bolotin: Random Vibrations o/Elastic Systems. 1984 ISBN 90-247-2981-5 
9. D. Bushnell: Computerized Buckling Analysis 0/ Shells. 1985 ISBN 90-247-3099-6 

10. L.M. Kachanov: Introduction to Continuum Damage Mechanics. 1986 
ISBN 90-247-3319-7 

11. H.H.E. Leipholz and M. Abdel-Rohman: Control 0/ Structures. 1986 
ISBN 90-247-3321-9 

12. H.E. Lindberg and A.L. Florence: Dynamic Pulse Buckling. Theory and Experiment. 
1987 ISBN 90-247-3566-1 

13. A. Gajewski and M. Zyczkowski: Optimal Structural DeSign under Stability Con-
straints. 1988 ISBN 90-247-3612-9 
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MECHANICS: ANALYSIS 
Editors: V.J. Mizel and G.m. Oravas 

1. M.A. Krasnoselskii, P.P. Zabreiko, E.I. Pustylnik and P.E. Sbolevskii: Integral 
Operators in Spaces of Summable Functions. 1976 ISBN 90-286-0294-1 

2. V.V. Ivanov: The Theory of Approximate Methods and Their Application to the 
Numerical Solution of Singular Integral Equations. 1976 ISBN 90-286-0036-1 

3. A. Kufner, O. John and S. Pu~fk: Function Spaces. 1977 ISBN 90-286-0015-9 
4. S.G. Mikhlin: Approximation on a Rectangular Grid. With Application to Finite 

Element Methods and Other Problems. 1979 ISBN 90-286-0008-6 
5. D.G.B. Edelen: Isovector Methods for Equations of Balance. With Programs for 

Computer Assistance in Operator Calculations and an Exposition of Practical Topics of 
the Exterior Calculus. 1980 ISBN 90-286-0420-0 

6. R.S. Anderssen, F.R. de Hoog and M.A. Lukas (eds.): The Application and Numerical 
Solution of Integral Equations. 1980 ISBN 90-286-0450-2 

7. R.Z. Has'minskiI: Stochastic Stability of Differential Equations. 1980 
ISBN 90-286-0100-7 

8. A.1. Vol'pert and S.1. Hudjaev: Analysis in Classes of Discontinuous Functions and 
Equations of Mathematical Physics. 1985 ISBN 90-247-3109-7 

9. A. Georgescu: Hydrodynamic Stability Theory. 1985 ISBN 90-247-3120-8 
10. W. Noll: Finite-dimensional Spaces. Algebra, Geometry and Analysis. Volume I. 1987 

ISBN Hb 90-247-3581-5; Pb 90-247-3582-3 

MECHANICS: COMPUTATIONAL MECHANICS 
Editors: M. Stem and G.m. Oravas 

1. T.A. Cruse: Boundary Element Analysis in Computational Fracture Mechanics. 1988 
ISBN 90-247-3614-5 

MECHANICS: GENESIS AND METHOD 
Editor: G.)E. Oravas 

1. P.-M.-M. Duhem: The Evolution of Mechanics. 1980 

MECHANICS OF CONTINUA 

Editors: W.O. Williams and G.m. Oravas 

ISBN 90-286-0688-2 

I. C.-c. Wang and C. Truesdell: Introduction to Rational Elasticity. 1973 

2. PJ. Chen: Selected Topics in Wave Propagation. 1976 
3. P. Villaggio: Qualitative Methods in Elasticity. 1977 

ISBN 90-01-93710-1 
ISBN 90-286-0515-0 
ISBN 90-286-0007-8 
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1. G.c. Sih (ed.): Methods of ATUllysis and Solutions of Crack Problems. 1973 
ISBN 90-01-79860-8 

2. M.K. Kassir and G.C. Sih (eds.): Three-dimensional Crack Problems. A New Solution 
of Crack Solutions in Three-dimensional Elasticity. 1975 ISBN 90-286-0414-6 

3. G.C. Sih (ed.): Plates and Shells with Cracks. 1977 ISBN 90-286"0146-5 
4. G.C. Sih (ed.): ElastodYTUlmic Crack Problems. 1977 ISBN 90-286-0156-2 
5. G.C. Sih (ed.): Stress ATUllysis of Notch Problems. Stress Solutions to a Variety of 

Notch Geometries used in Engineering Design. 1978 ISBN 90-286-0166-X 
6. G.C. Sih and E.P. Chen (eds.): Cracks in Composite Materials. A Compilation of Stress 

Solutions for Composite System with Cracks. 1981 ISBN 90-247-2559-3 
7. G.C. Sih (ed.): Experimental Evaluation of Stress Concentration and Intensity Factors. 

Useful Methods and Solutions to Experimentalists in Fracture"Mechanics. 1981 

MECHANICS OF PLASTIC SOLIDS 

Editors: J. Schroeder and G.lE. Oravas 

ISBN 90-247-2558-5 

1. A. Sawczuk (ed.): Foundations of Plasticity. 1973 ISBN 90-01-77570-5 
2. A. Sawczuk (ed.): Problems of Plasticity. 1974 ISBN 90-286-0233-X 
3. W. Szczepitiski: Introduction to the Mechanics of Plastic Forming of Metals. 1979 

ISBN 90-286-0126-0 
4. D.A. Gokhfeld and O.F. Chemiavsky: Limit ATUllysis of Structures at Thermal Cycling. 

1980 ISBN 90-286-0455-3 
5. N. Cristescu and I. Suliciu: Viscoplasticity. 1982 ISBN 90-247-2777-4 
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