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top.m

%%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%%
%%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%%
function top(nelx,nely,volfrac,penal,rmin);
% INITIALIZE
x(1:nely,1:nelx) = volfrac; 
loop = 0; 
change = 1.;
% START ITERATION
while change > 0.01  
  loop = loop + 1;
  xold = x;
% FE-ANALYSIS
  [U]=FE(nelx,nely,x,penal);         
% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
  [KE] = lk;
  c = 0.;
  for ely = 1:nely
    for elx = 1:nelx
      n1 = (nely+1)*(elx-1)+ely; 
      n2 = (nely+1)* elx   +ely;
      Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
      c = c + x(ely,elx)^penal*Ue'*KE*Ue;
      dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue;
    end
  end
% FILTERING OF SENSITIVITIES
  [dc]   = check(nelx,nely,rmin,x,dc);    
% DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD
  [x]    = OC(nelx,nely,x,volfrac,dc); 
% PRINT RESULTS
  change = max(max(abs(x-xold)));
  disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...
       ' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...
        ' ch.: ' sprintf('%6.3f',change )])
% PLOT DENSITIES  
  colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);
end 
%%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xnew]=OC(nelx,nely,x,volfrac,dc)  
l1 = 0; l2 = 100000; move = 0.2;
while (l2-l1 > 1e-4)
  lmid = 0.5*(l2+l1);
  xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));
  if sum(sum(xnew)) - volfrac*nelx*nely > 0;
    l1 = lmid;
  else
    l2 = lmid;
  end
end
%%%%%%%%%% MESH-INDEPENDENCY FILTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dcn]=check(nelx,nely,rmin,x,dc)
dcn=zeros(nely,nelx);
for i = 1:nelx
  for j = 1:nely
    sum=0.0; 
    for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx)
      for l = max(j-floor(rmin),1):min(j+floor(rmin),nely)
        fac = rmin-sqrt((i-k)^2+(j-l)^2);
        sum = sum+max(0,fac);
        dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);
      end
    end
    dcn(j,i) = dcn(j,i)/(x(j,i)*sum);
  end
end
%%%%%%%%%% FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [U]=FE(nelx,nely,x,penal)
[KE] = lk; 
K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));
F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);
for elx = 1:nelx
  for ely = 1:nely
    n1 = (nely+1)*(elx-1)+ely; 
    n2 = (nely+1)* elx   +ely;
    edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];
    K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;
  end
end
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F(2,1) = -1;
fixeddofs   = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);
alldofs     = [1:2*(nely+1)*(nelx+1)];
freedofs    = setdiff(alldofs,fixeddofs);
% SOLVING
U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);      
U(fixeddofs,:)= 0;
%%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [KE]=lk
E = 1.; 
nu = 0.3;
k=[ 1/2-nu/6   1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ... 
   -1/4+nu/12 -1/8-nu/8  nu/6       1/8-3*nu/8];
KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)
                  k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)
                  k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)
                  k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)
                  k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)
                  k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)
                  k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)
                  k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This Matlab code was written by Ole Sigmund, Department of Solid         %
% Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark.     %
% Please sent your comments to the author: sigmund@fam.dtu.dk              %
%                                                                          %
% The code is intended for educational purposes and theoretical details    %
% are discussed in the paper                                               %
% "A 99 line topology optimization code written in Matlab"                 %
% by Ole Sigmund (2001), Structural and Multidisciplinary Optimization,    %
% Vol 21, pp. 120--127.                                                    %
%                                                                          %
% The code as well as a postscript version of the paper can be             %
% downloaded from the web-site: http://www.topopt.dtu.dk                   %
%                                                                          %
% Disclaimer:                                                              %
% The author reserves all rights but does not guaranty that the code is    %
% free from errors. Furthermore, he shall not be liable in any event       %
% caused by the use of the program.                                        %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Preface

“The art of structure is where to put the holes”
Robert Le Ricolais, 1894-1977

This is a completely revised, updated and expanded version of the
book titled “Optimization of Structural Topology, Shape and Material”
(Bendsge 1995). The field has since then developed rapidly with many new
contributions to theory, computational methods and applications. This has
meant that a simple editing of Bendsge (1995) had to be superseded by what
is to a large extent a completely new book, now by two authors.

This work is an attempt to provide a unified presentation of methods for
the optimal design of topology, shape and material for continuum and discrete
structures. The emphasis is on the now matured techniques for the topology
design of continuum structures and its many applications that have seen the
light, of the day since the first monograph appeared. The technology is now
well established and designs obtained with the use of topology optimization
methods are in production on a daily basis.

The efficient use of materials is important in many different. settings. The
aerospace industry and the automotive industry, for example, apply sizing
and shape optimization to the design of structures and mechanical elements.
Shape optimization is also used in the design of electromagnetic, electro-
chemical and acoustic devices. The subject of non-linear, finite-dimensional
optimization for this type of problem is now relatively mature. It has pro-
duced a number of successful algorithms that are widely used for structural
optimization. However, these methods are unable to cope with the problem
of topology optimization, for either discrete or continuum structures.

The optimization of the geometry and topology of structural lay-out has
great impact on the performance of structures, and the last decade has scen a
great, amount of work in this important area of structural optimization. This
has mainly been spurred by the success of the material distribution method
for generating optimal topologies of structural elements. This defines shape
in terms of a material density and geometry is described by what amounts
to a raster representation as seen in computer graphics. Today one naturally
distinguishes between the search for “classical” designs made from a given
material, and methods that allow for a broader range of material usage.
When considering materials in the large, the method unifies two subjects,
each of intrinsic interests and previously considered distinct. One is structural
optimization at the level of macroscopic design, using a macroscopic definition
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of geometry given by for example thicknesses or boundaries. The other subject
is micromechanics, the study of the relation between microstructure and the
macroscopic behaviour of a composite material. Moreover, the introduction of
composite material in the shape design context leads naturally to the design
of materials themselves, widening the field of applications of structural design
techniques.

Materials with microstructure enter naturally in problems of optimal
structural design, be it shape or sizing problems. This was for example clearly
demonstrated in the paper by Cheng & Olhoff (1981) on optimal thickness
distribution for clastic plates. Their work led to a series of works on optimal
design problems introducing microstructure in the formulation of the prob-
lem. The material distribution method for topology design first introduced as
a computational tool in Bendsge & Kikuchi (1988) can be seen as a natural
continuation of these studies and has lead to the capability to reliably predict
optimal topologies of continuum structures.

For thin structures, that is, structures with a low fraction of available
material compared to the spatial dimension of the structure, the material dis-
tribution method predicts grid- and truss-like structures. Thus the matcrial
distribution method supplements classical analytical methods for the study of
fundamental properties of grid like continua, as first treated by Michell. Ap-
plications of numerical methods to truss problems and other discrete models
were first described in the early sixties but now we see that these challenging
large-scale problems can be solved with specialized algorithms that usc the
most recent developments in mathematical programming.

In its most general setting shape optimization of continuum structures
should consist of a determination for every point in space if there is material
in that point or not. Alternatively, for a FEM discretization every element
is a potential void or structural member. In this setting the topology of the
structure is not fixed a priori, and the general formulation should allow for
the prediction of the layout of a structure. Similarly, the lay-out of a truss
structure can be found by allowing all connections between a fixed set of
nodal points as potential structural or vanishing members. Topology design
problems formulated this way are inherently discrete optimization problems.
For truss problems it is natural to avoid this by using the continuously vary-
ing cross-sectional bar areas as design variables, allowing for zero bar areas.
For continuum structures one can apply an interpolation scheme that works
with a density of isotropic materials together with methods that steer the
optimized designs to “classical” black and white designs or one can use a
relaxation of the problem that introduces anisotropic composites such as lay-
ered periodic media, also leading to a description of shape by a density of
material. In both cases the density can take on all values between zero and
one, and one can also make physical sense of intermediate density values.

The approach to topology design outlined above is sometimes known as
the ground structure approach. This means that for an initially chosen layout
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of nodal points in the truss structure or in the finite element mesh, the
optimum structure connecting the imposed boundary conditions and external
loads is found as a subset of all the elements of the initially chosen set of
connections between the truss nodal points or the initially chosen set of finite
elements. The positions of nodal points are not used as design variables, so
a high number of nodal points should be used in the ground structure to
obtain efficient topologies. Also, the number of nodal points is not used as
design variables, so the approach appears as a standard sizing problem and
for continuum structures, the topology design problem has been cast as a
problem of finding the optimal density distribution of material in a fixed
domain, modelled with a fixed FEM mesh. This is of major importance for
the implementation of topology optinnzation methods.

The field of structural optimization combines mechanics, variational cal-
culus and mathematical programming to obtain better designs of structures.
This places any author in a somewhat problematic position on how to present
the material at hand. Here we take an operational approach, with strict
mathematical formalism reserved for situations where this is crucial for a
precise statement of results. The monograph falls in two parts. The first part
(Chaps. 1 and 2) deals with the topology design within the framework of
searching for optimum “classical designs” made from isotropic materials, cov-
ering theory and computational procedures and describing the broad range of
applications that have appeared in recent years. The second part concentrates
on compliance design and emphasizes the use of composites and materials in
the large for optimal structural design (Chap. 3). Here the particular format
of the compliance functional plays a significant role, and this is also exploited
for trusses, where much fundamental understanding can be obtained from a
sertes of problem statements that can be devised (Chap. 4).

The monograph also contains a substantial bibliography together with
bibliographical notes' covering the main subjects of this exposition as well
as related background material the reader may want to consult (Chap. 6).
Finally, appendices (Chap. 5) cover various more technical aspects of the
area, and Matlab codes that can be used for initial experiments in the field
are included.

1t is the aim of this monograph to demonstrate the importance of topology
and material design for structural optimization and that effective and mature
means for handling such design problems do exist. Structural optimization
enforces rather than removes the creative aspect of designing and the final
design must be a product of creativity rather than availability or lack of
analysis facilities. A topology design methodology is an important brick in
providing such facilities.

! To avoid long lists of references in the text, use is made of bibliographical notes
for a survey of the literature. Reference to the notes is by numbers in square
brackets, c.g., [36].



We close this brief introduction by remarking that the material distribu-
tion method for topology design has demonstrated its potential in a large
number of case studies. Also, commercial design software has now been avail-
able for a number of years and the method is standard technology in many
industries. While compliance design for structures was the state-of-the-art in
the early nineties, we see today that topology design is used for a broad range
of structural problems (free and forced vibrations, buckling, snap, stress con-
straints, pressure loads, compliant mechanisms, material design, design of
supports, crashworthiness, bio-mechanics, etc.) with both linear and non-
linear analysis modelling. Moreover, new areas are today included in the
problem types that can be handled, encompassing for example electrothermal
actuators, MEMS, Stokes flow problems, piezoelectric transducers, electro-
magnetic, and band gap structures. We expect the number of application
areas to grow even more in the coming years.

The findings and methods presented in this monograph are very much the
result of an international research effort and we wish to thank W. Achtziger,
I.A. Aksay, A. Ben-Tal, S. Bouwstra, T. Bruns, T. Buhl, A.R. Diaz, P. Duys-
inx, L.V. Gibiansky, R.B. Haber, R.T. Haftka, V.B. Hammer, L.V Hansen,
J.M. Guedes, J.5. Jeusen, C. Jog, J. Jonsmann, N. Kikuchi, M. Kocvara, U.D.
Larsen, R. Lipton, M.M. Neves, N. Olhoff, C.B.W. Pedersen, P. Pedersen, J.
Petersson, S. Plaxton, J. Rasmussen, H.C. Rodrigues, G.I.N. Rozvany, J.
Sokolowski, J.E. Taylor, D. Tcherniak, S. Torquato, N. Triantafyllidis, and J.
Zowe for the research collaborations that have provided the bases for the ma-
terial described in this book. Also, we would like to acknowledge G. Allaire,
M. Bagge, T. Borrvall, B. Bourdin, G. Buttazzo, L. Trabucho de Campos,
A.V Cherkaev, G. Francfort, J. Gravesen, J.M. Hansen, J. Kofoed, R.V
Kohn, E. Lund, K.A. Lurie, G.W Milton, P. Papalambros, N.L. Pedcrsen,
E. Petersen, U. Raitums, U. Ringertz, , O. da Silva Smith, C.A. Soto, M.
Stolpe, K. Svanberg, and D. Tortorelli for many very fruitful discussions on
the subjects of this book. Special thanks go to V.B. Hammer, M. Kocvara
and C.A. Soto for providing texts for a number of sections of the book; C.A.
Soto has also kindly given us much useful feedback from readings of the
manuscript at various stages. For the typing of the manuscript and the com-
pilation of the bibliography we have had invaluable help from master students
M.H. Sgndergard, C.L. Felter, and B. Rasmussen. Finally, we are indebted
to our colleagues at the Departments of Mathematics and of Mechanical En-
gineering (Solid Mechanics), Technical University of Denmark, for providing
scientifically and socially inspiring working conditions.

Lyngby, June 2002

Martin Philip Bendsge
Ole Sigmund
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1 Topology optimization by distribution of
isotropic material

In this chapter we present an overview of the basic ingredients of what we will
denote as the material distribution method for finding the optimum lay-out
of a linearly elastic structure. In this context the “lay-out” of the structure
includes information on the topology, shape and sizing of the structure and
the material distribution method allows for addressing all three problems
simultaneously.

Sizing, shape, and topology optimization problems address different as-
pects of the structural design problem. In a typical sizing problem the goal
may be to find the optimal thickness distribution of a linearly elastic plate
or the optimal member areas in a truss structure. The optimal thickness
distribution minimizes (or maximizes) a physical quantity such as the mean
compliance (external work), peak stress, deflection, etc. while equilibrium
and other constraints on the state and design variables are satisfied. The de-
sign variable is the thickness of the plate and the state variable may be its
deflection. The main feature of the sizing problem is that the domain of the
design model and state variables is known a priori and is fixed throughout
the optimization process. On the other hand, in a shape optimization prob-
lem the goal is to find the optimum shape of this domain, that is, the shape
problem is defined on a domain which is now the design variable. Topology
optimization of solid structures involves the determination of features such
as the number and location and shape of holes and the connectivity of the
domain.

1.1 Problem formulation and parametrization of design

The lay-out problem that shall be defined in the following combines several
features of the traditional problems in structural design optimization. The
purpose of topology optimization is to find the optimal lay-out of a structure
within a specified region. The only known quantities in the problem are the
applied loads, the possible support conditions, the volume of the structure
to be constructed and possibly some additional design restrictions such as
the location and size of prescribed holes or solid areas. In this problem the
physical size and the shape and connectivity of the structure are unknown.
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a) =>

Fig. 1.1. Three categories of structural optimization. a) Sizing optimization of a
truss structure, b) shape optimization and d) topology optimization. The initial
problems are shown at the left hand side and the optimal solutions are shown at
the right

The topology, shape, and size of the structure are not represented by stan-
dard parametric functions but by a set of distributed functions defined on
a fized design domain. These functions in turn represent a parametrization
of the stiffness tensor of the continuum and it is the suitable choice of this
parametrization which leads to the proper design formulation for topology
optimization.

1.1.1 Minimum compliance design

In the following, the general set-up for optimal shape design formulated as
a material distribution problem is described. The set-up is analogous to well
known formulations for sizing problems for discrete and continuum structures
[1], and to truss topology design formulations that are described later in this
monograph. It is important to note that the problem type we will consider is
from a computational point of view inherently large scale, both in state and
in the design variables. For this reason the first problems treated in this area
employed the simplest type of design problem formulation in terms of objec-
tive and constraint, namely designing for minimum compliance (maximum
global stiffness) under simple resource constraints. This is also conceptually
a natural starting point for this exposition as its solution reflects many of the
fundamental issues in the field.

Consider a mechanical element as a body occupying a domain 2™ which
is part of a larger reference domain 2 in R? or R® The reference domain {2 is
chosen so as to allow for a definition of the applied loads and boundary con-
ditions and the reference domain is sometimes called the ground structure,
in parallel with terminology used in truss topology design. Referring to the
reference domain 2 we can define the optimal design problem as the problem
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A design point

a)

A point with fixed material

A point with no material

(PR
c)

Fig. 1.2. a) The generalized shape design problem of finding the optimal material
distribution in a two-dimensional domain. b) Example rectangular design domain
and ¢) topology optimized solution based on a 3200 element discretization and 50%
material volume.

of finding the optimal choice of stiffness tensor E;jp(z) ! which is a variable
over the domain. Introducing the energy bilinear form (i.e., the internal vir-
tual work of an elastic body at the equilibrium u and for an arbitrary virtual
displacement v):

a(u,v) = /Q Eijri(T)esj (u)er (v)dS?

with linearized strains ¢;; (u) = L { 2% + 94 Y and the load linear form
X 2 \ Ox; Ox;

l(u):/fudﬂ+/ tuds ,
Q T'r

the minimum compliance (maximum global stiffness) problem takes the form
e 1)
st. ag(u,v)=1(v), forallveU (L.1)
EeEy

! In what follows we use a standard tensor notation consistent with a Cartesian
reference frame; this does not imply a loss of generality.
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Here the equilibrium equation is written in its weak, variational form, with U
denoting the space of kinematically admissible displacement fields, f are the
body forces and ¢ the boundary tractions on the traction part T'r C T = 90
of the boundary. Note that we use the index E to indicate that the bilincar
form ag depends on the design variables.

In problem (1.1), E,g denotes the set of admissible stiflness tensors for
our design problem. In the case of topology design, E.q could, for example,
consist of all stiffness tensors that attain the material properties of a given
isotropic material in the (unknown) set 1™ and zero properties elsewhere,
the limit of resource being expressed as me“ 1dQ? <V The various possible
definitions of E,.g4 is the subject of the following section.

When solving problems of the form (1.1) by computational means a typ-
ical approach, and the one used throughout this monograph, is to discretize
the problem using finite elements. It is here important to note that there are
two fields of interest in (1.1), namely both the displacement u and the stiff-
ness E. If we use the same finite element mesh for both fields, and discretize
E as constant in each element, we can write the discrete form of (1.1) as

min fTu
u,FE,

st. K(EJu=f (1.2)
E. € E.a

Here u and f are the displacement and load vectors, respectively. The stiffness
matrix K depends on the stiffness F, in element e, numberedase=1,..., N,
and we can write K in the form

N
K=Y K. (E)

e=1

where K, is the (global level) element stiffness matrix.

1.1.2 Design parametrization

In the design of the topology of a structure we are interested in the determi-
nation of the optimal placement of a given isotropic material in space, i.e.,
we should determine which points of space should be material points and
which points should remain void (no material). That is, we think of the ge-
ometric representation of a structure as similar to a black-white rendering
of an image. In discrete form this then corresponds to a black-white raster
representation of the geometry, with “pixels” (or “voxels”) given by the finite
element discretization.

Restricting our spatial extension to the reference domain 2, we are thus
seeking to determine the optimal subset ™2 of material points. For the
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optimization problem defined above, this approach implies that the set Enq
of admissible stiffness tensors consists of those tensors for which?:

B 0 1tz eqama,
Eijkl = lgmat Eijkh lgmas = {0 ifzeq \ (ymat

(1.3)
/ IgmaedQ = Vol(Q™) < V
Q

Here the last inequality expresses a limit, V', on the amount of material at our
disposal, so that the minimum compliance design is for a limited (fixed) vol-
ume. The tensor E?jkl is the stifiness tensor for the given isotropic material
and one normally writes E;jr; € L®(Q) to indicate the relevant function-
space for our problem. Note that this definition of E,4 means that we have
formulated a distributed, discrete valued design problem (a 0-1 problem).
The most commonly used approach to solve this problem is is to replace
the integer variables with continuous variables and then introduce some form
of penalty that steers the solution to discrete 0-1 values® The design problem
for the fixed domain is then formulated as a sizing problem by modifying the
stiffness matrix so that it depends continuously on a function which is inter-
preted as a density of material [6]. This function is then the design variable.
The requirement is that the optimization results in designs consisting almost
entirely of regions of material or no material. This means that intermedi-
ate values of this artificial density function should be penalized in a manner
analogous to other continuous optimization approximations of 0-1 problems.
One possibility which has proven very popular and extremely efficient is
the so-called penalized, proportional stiffuess model (the SIMP-model 4):

Eiju(z) = p(zVPEy, p>1,

14
[rnasv; o<p@ <1, eeq, a4
Q

Here the “density” p(z) is the design function and E?jk, represents the mate-
rial properties of a given isotropic material. One refers to p as a density of ma-
terial by the fact that the volume of the structure is evaluated as [, p(x)dQ.

The density interpolates between the material properties 0 and and E?j e

Eiju(p=0)=0, Eiir(p = 1) = Ejy

2 We consider isotropic materials only, as for anisotropic materials the placement
of the principal directions of the material should also be considered as a design
variable.

3 Methods that deals directly with the integer problem are briefly discussed in
Sect. 1.5.6.

4 SIMP: Solid Isotropic Material with Penalization.
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meaning that if a final design has density zero or one in all points, this design
is a black-and-white design for which the performance has been evaluated
with a correct physical model. In SIMP one will choose to use p > 1 so
that intermediate densities are unfavourable in the sense that the stiffness
obtained is small compared to the cost (volume) of the material. In other
words, by specifying a value of p higher than one makes it “uneconomical”
to have intermediate densities in the optimal design. Thus the penalization
is achieved without the use of any explicit penalization scheme. For problems
where the volume constraint is active, experience shows that optimization
does actually result in such designs if one chooses p sufficiently big (in order
to obtain true “0-1” designs, p > 3 is usually required). Moreover, it has been
proven for the minimum compliance problem in discrete form (cf., problem
(1.2)) that for p large enough there exists a globally optimal solution of 0-
1 form, provided the volume constraint is compatible with such a design
(Rietz 2001) (see also section 1.5.4). The SIMP interpolation is the basis for
most computational results in the first half of this monograph.

We note that the original “0-1” problem is defined on a fixed reference
domain and this together with the SIMP-interpolation means that the opti-
mal topology problem takes on the form of a standard sizing problem on a
fixed domain.

It has often been questioned if the SIMP-model can be interpreted in
physical terms (the term “material” is part of the acronym!). That is, can one
find a material, for example as a composite, which realizes the interpolation
model. It is important to point out that this comparison of an interpolation
scheme like SIMP with micromechanical models is significant mainly for the
benefit of understanding the nature of such computational measures. If a
nurerical scheme Jeads to black-and-white designs one can in essence choose
to ignore the physical relevance of intermediate steps which may include
“grey” However, the question of physical relevance is often raised, especially
as most computational schemes involving interpolations do give rise to designs
which are not completely clear of “grey” Also, the physical realization of
all feasible designs plays a role when interpreting results from a premature
termination of an optimization algorithm that has not converged fully to a
0-1 design.

We will return later in section 2.10 to the construction of a material model
that mimics the SIMP interpolation model. Central in such considerations is
a comparison with the Hashin-Shtrikman bounds for two-phase materials,
which expresses the limits of possible isotropic material properties one can
achieve by constructing composites (materials with microstructure) from two
given, linearly elastic, isotropic materials [4]. Without further elaboration
(and referring the reader to section 1.5.4) we remark here that the SIMP-
model can indeed be considered as a material model if the power p satisfies
that:
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Fig. 1.3. A black-and-white minimum compliance design for a loaded knee struc-
ture obtained with the SIMP interpolation scheme. The discretization is 60 by 60
elements and the material volume is limited to 47% of the design domain.

4
> _ — n2-D
p_max{l_uo 1400 (in ) (1.5)
> max< 15 1= 31-40 (in 3-D) -
Pema 7 "em 21— ) " ’

where 10 is the Poisson ratio of the given base material with stiffness tensor
E?j 1 (Bendsge & Sigmund 1999). In dimenston 2 this implies that the smallest
p is 3, which is admissible for #° = 1/3. In dimension 3 the smallest admissible
pis 2, but for 1° = 1/3 one should also in 3-D choose p greater than 3.

The use of the SIMP interpolation scheme addresses the integer format
of the original setting of the topology design problem with designs given as
in (1.3). It converts this integer problem to a sizing problem that typically
results in what for all practical purposes can be considered as 0-1 designs.
Another serious problem associated with the 0-1 problem statement, and a,
problem SIMP does not resolve, is the now well established lack of existence
of solutions to the distributed problem [3], [25], [34]. This is not only a seri-
ous theoretical drawback. It also has the effect of making the computational
results sensitive to the fineness of the finite element mesh discretization. As
mentioned, the interpolation scheme does not directly resolve this problem,
and further considerations are in place to assure a well-posed distributed de-
sign problem that also is benign in terms of mesh-refinement of the finite
element model. This aspect will be covered in some detail in 1.3.1.

The role of composites The initial work on numerical methods for topol-
ogy design of continuum structures was based on using composite materials
as the basis for describing varying material properties in space [3], [6]. This
approach has been named the homogenization method and its development
was strongly inspired by theoretical studies on generalized shape design in
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conduction and torsion problems and by numerical and theoretical work re-
lated to plate design (see, e.g., [25], [29]). The homogenization approach to
topology design can also be viewed as an interpolation model and many of
the developments in the area of topology design of structures are based on
this type of interpolation schemes. However, composites in topology design
has deeper roots than this and composites play a key role for providing in-
sight in the optimal use of materials in the large and for understanding the
mathematics and the physics of the “0-1” design problem.

We have here chosen to base the first part of this monograph on the
use of the somewhat simpler SIMP-type interpolation schemes (see also sec-
tion 1.5.4). This allows for a concentration on issues related to computational
implementations and developments related to the consideration of more elab-
orate optimal design settings than the minimum compliance design problem.
In the second half of the monograph we will return to discuss issues related to
the optimal use of material in general and the details of the homogenization
based method in particular.

1.1.3 Alternative problem forms

For the developments in the following it is important to note that problem
(1.1) can be given a number of equivalent formulations. These reformulations
use the special structure of the minimum compliance problem and they are
extremely useful for analysis and the development of specialized computa-
tional procedures for this type of problem. For this purpose we note that
the equilibrium condition of problem (1.1) can be expressed in terms of the
principle of minimum potential energy. That is, the displacement field u is a
minimizer of the functional F(v) = Jag(v,v) —{(v) on U (the total potential
energy). Then note that the value F(u) of the potential energy at equilibrium
equals —3{(u) < 0. Thus problem (1.1) can be written as

) 1
max min {iaE(u, u) — l(u)} (1.6)
Problem (1.6) can also be formulated in terms of stresses. Expressing the
inner equilibrium problem of (1.6) in terms of the (dual) principle of minimum
complementary energy, we have the formulation

. 1
i, i {3 ], Conououen} (17

of the minimum compliance design problem. Here C;jr = (E~!)ijs is the
compliance tensor, and the minimization with respect to the stresses ¢ is
taken over the set S of statically admissible stress fields, i.e.

S={oldivo+ f=0inQ, o-n=tonlr}.
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From the problem statement (1.6) we see that if the displacement field in
an optimal structure is known, then the optimal distribution of the stiffness
is such that the strain energy is maximized. Likewise, for a known stress
distribution in the optimal structure the complementary energy is minimized,
cf., (1.7). This characterization plays an important role in understanding the
nature of the design problem, both theoretically and computationally.

1.2 Solution methods

The use of an interpolation scheme like SIMP allows us to convert the optimal
topology problem into a sizing problem on a fized domain. Compared to
many traditional sizing problems for, e.g., frames and built-up structures
of plates, stringers, etc., the present problem differs in that the number of
design variables is typically very large (the number of design parameters and
the number of analysis variables is of the same order of magnitude). Thus
efficiency of the optimization procedure is crucial and one typically has to
adopt optimization settings that trade number of constraints for number of
design variables. The compliance design problem is an example of this. One
can here work with many variables, as the optimization problem (seen as a
problem in the density only) has just one constraint in addition to the simple
box-constraints giving upper and lower limits on the density variable.

1.2.1 Conditions of optimality

In the following we shall derive the necessary conditions of optimality for
the density p of the minimum compliance design problem that employs the
SIMP interpolation scheme.

Following standard optimality criteria methods used in structural opti-
mization [7], the simple structure of the continuum, single load problem (1.1)
can be utilized to generate extremely efficient computational update schemes
for solving the problems we address here. The key is to devise iterative meth-
ods which, for a previously computed design and its associated displacements,
update the design variables at each point (or rather at each element of a fi-
nite element discretization) independently from the updates at other points,
based on the necessary conditions of optimality. To this end, we first reca-
pitulate the form of the minimum compliance problem (1.1) written for the
case of the SIMP interpolation. In the continuum setting this is

in [
i 1)

st. ag(u,v)=1I(v), forallvelU
Eiju(z) = p(z)? Efjy

[o@a0svi 0<pmmspst,
Q

(1.8)
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Note that we here have introduced a lower bound ppyi, on the density in order
to prevent any possible singularity of the equilibrium problem. In typical
applications we set pmin = 1073

With Lagrange multipliers A, A~ (z), A*(x) for the constraints of (1.8),
the necessary conditions for optimality for the sizing variable p are a subset
of the stationarity conditions for the Lagrange function

£ =l(u) — {ag(u,ﬂ) - z(a)} + A(/Q p(z)dQ - V)+

/ X () (p() — 1)d02 + / A~ (2) (Prain — pla))d2
Q 2

where @ is the Lagrange multiplier for the equilibrium constraint. Note that
@ belongs to the set U of kinematically admissible displacement fields. Under
the assumption that p > pnin > 0 (so that displacement fields are unique),
the conditions for optimality with respect to variations of the displacement
field u give that @ = u while the condition for p becomes:

OF;ju
ap

eij(Wer(u) = A+ AT — A~ (1.9)

with the switching conditions
AT 20, AT 20, A (pmin — p(2)) =0, A (p(z) —1) =0 (1.10)

For intermediate densities (pmin < p < 1) the conditions (1.9), can be
written as

pola)’ Efyei(w)en(u) = A, (1.11)

which expresses that the strain energy density-like left-hand side term ° is
constant and equal to A for all intermediate densities. This is thus a condition
that is similar to the fully stressed design condition in plastic design. As
we expect areas with high energy to be too low on stiffness, we devise the
following fix-point type update scheme for the density [7]:

max{(1 - Q)px, pmin} if pr B < max{(1~()pK,pPmin} ,
pr+1 =4 min{(1+px, 1} if min{(1 +)px,1} < pr B
pr B} otherwise
(1.12)

Here px denotes the value of the density variable at iteration step K , and
By is given by the expression
® This term is in many circumstances called the mutual energy density — “mutual”

since it involves the two fields u and @. For compliance, u = %, and the mutuai
energy density equals the strain energy density.
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Br = Ag'pp(@)" 7 E)eij(uk e (uk) (1.13)

where ug is the displacement field at at the iteration step K, determined
from the equilibrium equation and dependent on pg. Note that a (local)
optimum is reached if Bx 1 for densities (pmin < p < 1). The update
scheme (1.12) adds material to areas with a specific strain energy that is
higher than A (that is, when Bg > 1) and removes it if the energy is below
this value; this only takes place if the update does not violate the bounds on
p. From integrating (1.11) one can see that A is proportional (by a factor p)
to the average strain energy density of the part of the structure that is given
by intermediate values of the density.

The variable 77 in (1.12) is a tuning parameter and ¢ a move limit. Both 5
and ¢ controls the changes that can happen at each iteration step and they
can be made adjustable for efficiency of the method. Note that the update
pr+1 depends on the present value of the Lagrange multiplier A, and thus
A should be adjusted in an inner iteration loop in order to satisfy the active
volume constraint. It is readily seen that the volume of the updated values
of the densities is a continuous and decreasing function of the multiplier
A. Moreover, the volume is strictly decreasing in the interesting intervals,
where the bounds on the densities are not active in all points (elements of a
FEM discretization). This means that we can uniquely determine the value
of A, using a bisection method or a Newton method. The values of 7 and
¢ are chosen by experiment, in order to obtain a suitable rapid and stable
convergence of the iteration scheme. A typical useful value of 7 and ¢ is 0.5
and 0.2, respectively.

It is noted above that the optimality criteria method is closely related to
the concept of fully stressed design. However, it is important to note that the
conditions (1.9, 1.10) only imply that the specific strain energy is constant
in areas of intermediate density, while it is lower in regions with a density
P = pmin and higher in regions with a density equal to 1.

The type of algorithm described above has been used to great effect in
a large number of structural topology design studies and is well established
as an effective (albeit heuristic) method for solving large scale problems [6],
[7)- The effectiveness of the algorithm comes from the fact that each design
variable is updated independently of the update of the other design variables,
except for the rescaling that has to take place for satisfying the volume con-
straint. The algorithm can be generalized to quite a number of structural
optimization settings (see for example Rozvany (1989), Rozvany (1992)), but
it is not always straightforward. For cases where for example constraints of a
non-structural nature should be considered (e.g., representing geometry con-
siderations), when non-self-adjoint problems are considered or where physical
intuition is limited, the use of a mathematical programming method can be
a more direct way to obtain results. Typically, this will be computationally
more costly, but a careful choice of algorithm can make this approach as
efficient as the optimality criteria method (see section 1.2.3).
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¢

Fig. 1.4. The possibility of letting the design area be a sub-area of the referencc
domain. Same design domain as in Fig. 1.3 but with a square area fixed to be void
and a rectangular area fixed to be solid. The compliance of the optimized topology
is 25% lower than in Fig. 1.3 due to the restricted design domain.

Fixed void region Fixed solid region

1.2.2 Implementation of the optimality criteria method

In sections 1.1.2 and 1.2.1 we have outlined the basic ingredients of the opti-
mality criteria method for implementing the material distribution procedure
for topology design. These consist of the basic parametrization of design
through the design-stiffness relation given by an appropriate interpolation
scheme and the update scheme for the density based on the optimality con-
ditions. Finally, this update scheme is based on the ability to solve the equi-
librium equations, and here we presume this to be performed by the finite
element method.

Computational procedure The direct method of topology design using
the material distribution method is based on the numerical calculation of
the globally optimal distribution of the density of material p which is the
design variable. For an interpolation scheme that properly penalizes interme-
diate densities (cf., discussion in section 1.1.2) the resulting 0-1 (or black and
white) design is actually the primary target of our scheme. The optimality
criteria method for finding the optimal topology of a structure constructed
from a single isotropic maierial then consists of the following steps:

Pre-processing of geometry and loading:

— Choose a suitable reference domain (the ground structure) that allows for
the definition of surface tractions, fixed boundaries, etc. (see Fig. 1.4).

— Choose the parts of the reference domain that should be designed, and
what parts of the ground structure that should be left as solid domains or
voids (see Fig. 1.4).
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Construct a finite element mesh for the ground structure. This mesh should
be fine enough in order to describe the structure in a reasonable resolution
bit-map representation. Also, the mesh should make it possible to define
the a priori given areas of the structure by assigning fixed design variables
to such areas. The mesh is unchanged through-out the design process.

— Construct finite element spaces for the independent fields of displacements
and the design variables.

Optimization:

Compute the optimal distribution over the reference domain of the design
variable p. The optimization uses a displacement based finite element analysis
and the optimality update criteria scheme for the density. The structure of
the algorithm is:

— Make initial design, e.g., homogeneous distribution of material. The itera-
tive part of the algorithm is then:

— For this distribution of density, compute by the finite element method the
resulting displacements and strains.

— Compute the compliance of this design. If only marginal improvement (in
compliance) over last design, stop the iterations. Else, continue. For de-
tailed studies, stop when necessary conditions of optimality are satisfied.

— Compute the update of the density variable, based on the scheme shown in
section 1.2.1. This step also consists of an inner iteration loop for finding
the value of the Lagrange multiplier A for the volume constraint.

Repeat the iteration loop.

For a case where there are parts of the structure which are fixed (as solid
and/or void) the updating of the design variables should only be invoked for
the areas of the ground structure which are being redesigned (reinforced).

Post-processing of results:

Interpret the optimal distribution of material as defining a shape, for ex-
ample in the sense of a CAD representation.

For the method above, one should at an initial stage decide on a choice of a
basic interpolation scheme, for example SIMP. It is interesting to note that
topology optimization using for example SIMP with a suitable high value of
the power p gives rise to very well defined designs consisting almost entirely
of areas with material or no material and very little area with intermediate
density of material, i.e. very little grey.

It is important to underline that the algorithm just described can be
implemented on any type of finite element mesh and any type of reference
domain €} (ground structure). This gives a significant flexibility to the method
in terms of defining boundary conditions and non-design parts of the struc-
ture. Nevertheless, in many cases one works with rectangular (in 2-D) or
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(linearization)
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l Update design variables
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Fig. 1.5. The flow of computations for topology design using the material distri-
bution method and the Method of Moving Asymptotes (MMA) for optimization.
The low-pass filter step (filtering of sensitivities) is discussed in Sec. 1.3.1.

box-like (in 3-D) domains, and with a mesh consisting of squares or cubes.
This simplifies implementation and can be employed to speed up the analysis
part of the procedure, see section 1.2.4.

On programming complexity The procedure described above does not
require any great programming efforts in order to solve the compliance topol-
ogy design problem. When access to a FEM code is provided, only a few lines
of extra code is required for the update scheme and for the computation of
the energies involved. If for example a rectangular design domain is consid-
ered and one uses square elements and a Q4 interpolation of displacements
and element wise constant densities, a complete program including FE anal-
ysis and plotting of the resulting designs can be written in 99 lines of Matlab
code (see appendix 5.1.1). This actually also includes a filtering procedure
that caters for the so-called checkerboard and mesh-dependency problems
associated with our design problem (see section 1.3.2 for further details).
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b 1 ! ?’

Fig. 1.6. Two examples of topology design for minimum compliance compared
with optimal Michell type structures (Michell 1904). a) and b) design domains,
c) and d) topology optimized solutions and e) and f) corresponding Michell type
optimal solutions (from Sigmund 2000a).

1.2.3 Sensitivity analysis and mathematical programming
methods

The use of mathematical programming algorithms for solving problems in
structural optimization is well established and described in detail in the liter-
ature, for sizing as well as shape design problems [1]. The standard procedure
is to consider the design problem as an optimization problem in the design
variables only, and with the displacement ficld regarded as a function of these
design variables. The displacement fields are given émplicitly in terms of the
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€)

Fig. 1.7. The influcnce of volume fraction. A long cantilever beam discretized by
6400 square elements and optimized for volume fractions of b) 80%, c) 60%, d) 40%
and e) 20%. For low amounts of volume, truss-like structures are predicted.

design variables through the equilibrium equation and finding the derivatives
of the displacements with respect to the design variables is termed sensitivity
analysis [1).

The basic idea of the material distribution technique for topology design
is to rephrase the problem as a sizing problem for the density p on a fixed
domain. Thus the technique outlined above carries over to topology design as
well. The major challenge, though, is to apply mathematical programming
software that is well geared to cope with many variables and typically a
moderate number of constraints. Here and in the following we will rely on
the MMA algorithm, with “MMA™ being the acronym for Method of Moving
Asymptotes (Svanberg 1987, Svanberg 2002). This algorithm has proven itself
to be versatile and well suited for large scale topology optimization problems.

Sensitivity analysis In order to complement the presentation of the opti-
mality criteria method, we will liere work with the FEM form of the minimum
compliance problem, that is the problem (cf., (1.2)):
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min fTu
u,pe
N
.t. K. =f
s (;pp ) " (1.14)
N
ZvepESV; 0<Pminspesla 6:17-"7N
e=1

When solving this by a mathematical programming algorithm we first rewrite
the problem as a problem in the design variables only:

min c(p,)
pe

N (1.15)
s.t. ZUePeSW 0<puin<pe<l, e=1,...,N

e=]
where the equilibrium equation is considered as part of a function-call:

N
c(p.) =fTu, where usolves Zpﬁ’KEu =f (1.16)

e=1

When gradients are required by the optimization algorithm employed to
solve (1.15), these are easily derived for the objectives and constraints in-
volving only p. For functions that depend on the displacements also, deriva-
tives can be obtained by the chain-rule. These expressions will then contain
derivatives of the displacement, which in turn can be obtained by taking
the derivative of the equilibrium equation Ku = f. In topology design we
typically work with a moderate number of constraints, so the most effective
method for calculating derivatives is to use the adjoint method, where the
derivatives of the displacement are not calculated explicitly. For the minimum
compliance problem (1.15) at hand we rewrite the function ¢(p) by adding
the zero function:

c(p) = fTu— o (Ku —1)

where 11is any arbitrary, but fized real vector. From this, after rearrangement
of terms, we obtain that

oe = (fT - flTK) u _ al 9K u
Ope Ipe Bpe
This can in turn be written as
Oc 70K
= -1 u,
8pe ap.

when 4 satisfies the adjoint equation:
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d) €)

Fig. 1.8. Influence of self-weight on the topology optimized cantilever beam. Here,
the load vector is design dependent (i.e. f = f(p)) and the sensitivity of compliance

: : : 8¢ _ _ . TOK v . .
including self-weight can be found as 7= = —u, B et 5 U a) Design domain

and loads, b) resulting topology for zero self weight, c) resulting topology for self
weight equal to 1.2 times the non-structural load, d) resulting topology for self
weight equal to 6 times the non-structural load and e) resulting topology for self
weight equal to 24 times the non-structural load.

f7T_a’TK =0

This latter equation is in the form of an equilibrium equation and for compli-
ance we see that we obtain directly that @ = u (normally the adjoint equation
requires additional computations). Moreover, the form of the stiffness matrix
means that the derivatives of the compliance ¢(p) for problem (1.15) is of the
particularly simple form:

ﬂ = —pp’é”luTKeu (1.17)
Thus derivatives for the minimum compliance problem are extremely easy to
compute. Also, one notices that the derivative is “localized” in the sense that
the derivative only involves information at the element level; however, there
is an effect from other design variables hidden in the displacement u. Finally,
we see that the sensitivity is negative for all elements, so physical intuition is
confirmed in that additional material in any element decreases compliance,
that is, makes the structure stiffer.

The basics of MMA The Method of Moving Asymptotes (MMA) and
its “mother” method CONLIN are mathematical programming algorithms
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well suited for topology design® They are in nature similar to methods like
Sequential Linear Programming (SLP) and Sequential Quadratic Program-
ming (SQP) for solving smooth, non-linear optimization problems, in the
sense that they work with a sequence of simpler approximate subproblems
of given type. For MMA and CONLIN these subproblems are separable and
convex and are constructed based on sensitivity information at the current
iteration point as well as some iteration history. At each iteration point this
subproblem is solved by for example a dual method or by an interior point
algorithm (primal-dual algorithm) , and the solution to the subproblem is
then used as the next design in the iterative procedure.
In MMA the approximation of a function F of n real variables x

{(z1,...,2,) around a given iteration point x° has the form

F(x) = F(x° Ti %
) "‘“Z}(m—xﬁzi-u)

where the numbers 7;, s; are chosen as

2 OF

. OF

if a—xi(xo) >0 thenr; = (U; — z?) a_:“(_,ro) and ;=0

. OF o - . 2 OF
if oz, (2°) <0 thenr; =0 and s; =— (2? — L;) 9. (z°),

and where, loosely speaking, the positive numbers U;, I, control the range
for which the approximation of F can generate reasonable answers for our
optimization problem (the parameters U;, L; give vertical asymptotes for the
approximations of F and is the source of the name of the algorithm). In the
optimization algorithm, the values of U,, L; for each function of the problem
are updated in each iteration, depending on the iteration history so far.

A central aspect of MMA and CONLIN is the use of such separable
and convex approximations. The former property means that the necessary
conditions of optimality of the subproblems do not couple the primary vari-
ables (the design variables) while the convexity means that dual methods or
primal-dual methods can be used. Together this has an immense effect on re-
ducing the computational effort needed to solve the subproblems, especially
for problems with only a few constraints.

Experience over the last couple of years have shown that the convex ap-
proximation methods are very efficient for topology optirnization. Typically
in these problems one chooses to work with a large number of design variables
(for the raster representation of the design, one operates with one or more
density variables per element in the finite element mesh) and try to formu-
late the optimization problem with a fairly limited number of constraints.
Compared to optimality criteria methods, the use of a mathematical pro-
gramming tool does provide an added flexibility to topology design. One

¢ The use of convex and separable approximations was first introduced with CON-
LIN (see, e.g. Fleury (1993) and references therein).
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avoids the development and coding of new algorithms for each new problem
that is to be solved, and it is also possible to handle geometry considerations
and situations where physical intuition is limited.

We close this discussion by noting that for the minimum compliance prob-
lem the use of the optimality criteria method or the use of MMA in essence in-
volves the same type of computations (see also Borrvall & Petersson (2001a)).
We found in (1.17) that the sensitivity of compliance is negative for any el-
ement density p.. Thus an MMA approximation of the compliance gives a
subproblem after iteration step K in the form

N K 2
. pe —Le)” dc
min { c(p’) — Z (:)Tc)%(ﬂk)}
e — e e e
e=! (1.18)
N
s.t. ngpESV, 0<pmin <pe <1, e=1,. .,N
e=1

Solving this problem by a dual method now involves steps similar to the
ones performed in section 1.2.1 for the optimality criteria method. First one
minimizes the Lagrange functional

N [ K 2, N
pe —L.)" 8¢
£=c(p)-> :(pff)w(p'() + A vepe — V)
e=1 € e € e=1

with respect to densities satisfying pmin < pe < 1,e =1, .., N. Using con-
vexity and that £ is separable, this optimization can easily be performed,
element by element. For the case where I, = 0 this rcsults in exactly the
optimality criteria update scheme given in (1.12), with move limit { = oo
and tuning parameter 7 = 0.5. The second step of the dual method is to
maximize the resulting functional with respect to A, and as for the optimal-
ity criteria method this corresponds to adjusting the value of A so that the
update scheme gives a density p(¥*1) that satisfies the volume constraint. In
the actual implementation of MM A, one chooses the asymptote parameters
L, more cleverly, improving speed of convergence.

In conclusion, we note that MMA is an invaluable tool for topology op-
timization problems. For simple compliance optimization problems it may
be a bit slower than the OC method but for more complicated problems in-
volving several constraints MMA stands for excellent convergence properties.
Also, the advanced versions of the program caters for more complex problems
formulations including min-max formulations etc. Contestants to MMA may
be Sequential Linear Programming (SLP) method, CONLIN and other first
order methods. Unless otherwise noted, we use either OC or MMA for all the
applications shown in this book.
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1.2.4 Implementation - the general concept

The use of mathematical programming techniques does not change the gen-
eral flow of a topology design procedure. Thus, compared to the optimality
criteria based method for topology design described in section 1.2.2, it only
influences the optimization step of the scheme. This iterative loop becomes:

Optimization with, for example, MMA:

— Make initial design, e.g., homogeneous distribution of material. The itera-
tive part of the algorithm is then:
For this distribution of density, compute by the finite element method the
resulting displacements.
Compute the compliance of this design and the associated sensitivity with
respect to design changes. If only marginal improvement (in compliance)
over last design, stop the iterations. Else, continue.

— Compute the update of the density variable, based on the MMA approxi-
mate subproblem solved by a dual or a primal-dual method.
Repeat the iteration loop.

The flow of computations sketched above shows the general concept, but pro-
gramming details may be somewhat different, depending on how the specific
mathematical programming software is structured. What is shown here is
what is typically called an externally controlled optimization loop. In some
cases an alternative structure is used, where the user provides subroutines
that compute function values and sensitivity information, and the optimiza-
tion software runs the loops “internally”

For the compliance problem the use of for example MMA does not change
significantly the programming effort required to implement the topology de-
sign procedure, and it can also be easily implemented in the 99 line Matlab
code mentioned earlier (see appendix 5.1.1)7

With this general outline of computations it is possible to generalize the
concept to many other design settings of interest. This is the subject of Chap.
2.

A publicly available topology optimization software The topology
optimization procedure as described in the preceding subsections has been
implemented as an interactive design program made available to the public
at the internet address http://www.topopt.dtu.dk. The program which is
described in detail in Tcherniak & Sigmund (2001) solves a standard 3-load
case compliance optimization problem. The topology optimization code is
written in FORTRAN77 and the Graphical User Interface (GUI) and the

7 The MMA-code is available both in FORTRAN and MATLAB versions from K.
Svanberg. The codes are free for academic use.
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file-transfer system is written in JAVA. The structures are independently of
aspect ratio always discretized by approximately 1000 elements®

Screen-dumps of the Graphical User Interface of the TOPOPT program
is shown in Fig. 1.9 together with a plot of the output. By pressing the left
panel buttons and using the mouse and the delete key, the user can define
the design domain, passive and active arcas, load-cases and supports. After
choosing the volume fraction and hitting the submit button, a sequence of
GIF-files illustrating the iteration history appears on the screen. Depending
on network load and connection, the solution of the problem may take from
10 seconds and up to a minute. As an extra feature, the animation sequences
may be downloaded after running the program.

Implementation details The apparent simplicity of computing minimum
compliance optimal topologies is somewhat betrayed by certain details that
one has to cater for if a generally useful and applicable tool is to be con-
structed. For example, as already mentioned, the scheme described till now
needs to be supplemented with some computational device that controls the
range of allowable density distributions, especially the so-called checkerboard
patterns that are numerical artifacts related to the discretization of displace-
ments and densities. Also, the problem is inherently mesh-dependent as for-
mulated and will generally not converge with mesh-refinement. Rather, finer
and finer structure of the designs will arise. These aspects are the subject of
the following section 1.3.

Another topic which is relevant to discuss here is the effect of the power
p of the SIMP interpolation. As mentioned, to obtain black and white (0-
1) topologies one has to work with a fairly large value of p, say, above 3.
Moreover, to eventually be able to interpret appearance of grey in the final
design as composite material, one also requires p be at least 3 (cf., (1.5), and
the discussion in 1.5.4). However, in implementations it is often seen that a
too severe penalization of the intermediate density can lead to designs which
are local minima and which are very sensitive to choice of the initial design for
the iterative optimization procedure (one “jumps” too fast to a 0-1 design).
Thus a continuation method is often advisable, which means that the power
p is slowly raised through the computations, until the final design is arrived
at (for a power satisfying our requirements). The scheme is not guaranteed to
give a fully 0-1 design (see Stolpe & Svanberg (2001b)). Nonetheless, it works
well in most cases, especially when combined with a filtering of scnsitivities
as described in section 1.3.1. It is advisable to use such a continuation scheme
as the standard procedure.

It is here important to underline that for the minimum compliance prob-
lem the by far most time-consuming part of the computations is spent on
solving the equilibrium equations (Borrvall & Petersson (2001a) report this

8 The current version of the web-program has been updated and additional features
added by Lars Voxen Hansen and Thomas Buhl (DTU) in the spring of 2002.
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Fig. 1.9. A wcb-based topology optimization program (http://www.topopt.dtu.dk)
for stiffness design of arbitrary two dimensional structurcs. The pictures demon-
strate an investigation of the influence of boundary conditions on the optimal topol-
ogy (from Tcherniak & Sigmund 2001).

share as up to 97%, in a parallel implementation). Thus it is critical for large
problems, especially in 3-D, to improve on the efficiency of the analysis capa-
bility. Here the utilization of homogeneous meshes oun rectangular or box-like
domains is useful, as it removes the necessity for the repeated computation
of local stiffness matrices. Also, the use of iterative solvers is useful in large
scale problems, and may be required for storage reasons. The ultimate tool is
to use vector computations and parallel computing, as for example reported
in Borrvall & Petersson (2001a), where also the MMA-based optimization is
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parallellized - solutions to 3-D problems with up to 220.000 brick elements
have been obtained (c.f., Figs. 1.11 and 1.12). Solutions to similar-sized prob-
lems have also been reported in DeRose Jr. & Diaz (2000) (c.f. Fig. 1.10),
but here the paradigm for the analysis part of the problem is fundamentally
changed. Instead of finite elements, a mesh-less, fictitious domain method is
used, based on using wavelets in a Galerkin scheme. The advantage here is
that an iterative, preconditioned conjugate gradient scheme exhibits a per-
formance that is insensitive to the discretization level.

In the future we may also see new approaches to solving the topology
optimization problem, based for example on developments in computational
mechanics. One possibility is to solve the original combined optimization
problem in one optimization routine and break with the tradition of viewing
the equilibrium statement as a function call. This means that analysis be-
comes part of the iterative procedure and for example a Newton scheme will
solve simultaneously the necessary conditions of optimality for the density
as well as for the displacements (the latter being the equilibrium equations).
This is what has been named a SAND approach (Simultaneous ANalysis and
Design). It has for example been tested for topology design in a multigrid
framework in Maar & Schulz (2000) and in the setting of free material design
and truss design where for example semi-definite programming can be applied
due to special problem structure (see Sects. 4.3 and 5.5). From a practical
point of view this approach has the weakness that a premature termination
of the procedure does not provide any analysis results for the current design,
and the method also requires full integration of optimal design and analysis
in one software system, i.e., optimization will no longer be an “add-on” to
existing FE software.

1.2.5 Topology optimization as a design tool

In the following we will try to illustrate some basic features of the material
distribution method when used for design, dealing for the moment only with
compliance design. In a later section 1.4 of this chapter we shall describe the
possible use of the topology design method as a pre-processor in an integrated
design process where boundary variation techniques are employed for refining
a design created by the topology design method.

In Chap. 2 we shall see that the topology design methodology over the
last decade has matured immensely and that one can today cater for a broad
range of structural objectives and constraints. Also, aspects of controlling
geometric features can be handled, as illustrated in section 1.3.1. Moreover, a
broad range of physics can be included in the modelling. This combined with
progress in algorithms and computational power means that the topology
design methodology is today much closer to being able to provide the user
with a final design than just a few years ago, and for example in the design
and manufacturing of MEMS (MicroElectroMechanical Systems, see section
2.6) case studies have shown that one can go directly from the topology
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Fig. 1.10. Optimized 3D cantilever beams. Left: discretization by 221.184 design
elements in a fictitious domain consiting of 128% = 1.097.152 voxels. By courtesy of
De Rose and A: Dfaz (from DeRose Jr. & Diaz 2000).

T

Fig. 1.11. Optimal design of a wishbone. Multiple load design using a very fine
FE model (260.000 elements). Note that post-processing is basically not needed.
By courtesy of T. Borrvall.

design output to manufacturing. In many other circumstances the practical
use of topology design is often at the level of a creative sparring partner in
the initial phase of a design process. Thus the output of the topology design
method is used to identify potentially good designs, the completion of the
design being based on traditional skills of the design office. One effect of the
topology method that cannot be underestimated is the efficient testing of the
appropriateness of the model of loads and supports. As the topology is very
sensitive to a proper modelling of the load environment, one can immediately
discover discrepancies or inaccuracies in this modelling.
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Fig. 1.12. Optimal design of cantilevered torsional beam in 3D. Design domain
and different views of the optimized topology. Discretized using 128000 elements
for one half of the problem and solved using parallel processing. By courtesy of T.
Borrvall and J. Petersson (from Borrvall & Petersson 2001a).

Examples of topology design The material distribution method for topol-
ogy design has been tested on a large number of examples, a few being illus-
trated in this and the preceding sections. The method allows for an efficient
prediction of the optimal topology, the optimal shape and the optimal use of
the prescribed possible support conditions. Also, it has proven to be a flexible
and reliable design tool. The methodology has over the last decade become a
fairly widespread tool in industrial applications, especially among some ma-
jor car manufacturers (see section 2.12.4), and the appearance of commercial
software has had an immense impact on the utilization of topology design
methods in practise [23].

For an efficient use of topology design, the problem should be formulated
on a ground structure (a reference domain) that is chosen as simple as possible
to reduce the size of the analysis problem. The domain should, as described
in section 1.2.2, allow for definition of loads and tractions and of boundary
condition. The use of an automatic mesh generator will, of course, simplify
the treatment of problems with complicated geometry such as non-simply
connected reference domains. Complicated reference domains are needed for
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= Y Instrument boxes

Wide-angle cameras

Fig. 1.13. Optimal design of frame for a satellite. Multiple load design using a 3-D
model. The structure is discretized by 288.000 cubic finite elements. a) Design do-
main showing instruments around which the frame is to be designed. b) Optimized
topology and c) optimized topology with instruments (from Sigmund 2000a).

cases where design requirements imply the exclusion of certain parts of space
as parts of the structure. If the precise shapes of inner holes in a non-simply
connected reference domain are unimportant, it is advisable to cater for such
holes by fixing the density of material to be zero for the elements defining the
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hole (or parts of it). These considerations have led to most examples being
treated in rectangular reference domains, but the use of the method is of
course not restricted to such domains.

For very low volume fractions, very fine discretization meshes are required
when dealing with 0-1 designs, as the structures break up if coarse meshes
arc used. However, for high volume fractions, even coarse meshes give a very
good indication of shape and topology and a good estimate of the optimal
compliance. Note that for comparatively small volume fractions, the method
predicts the lay-out of truss like structures and Michell frames (Fig. 1.2.2),
thus supplementing lay-out theory and truss topology methods (see Chap. 4)
for cases with a large, dense set of nodes; the material distribution method
not only predicts the optimal connectivities, but also the optimal location of
nodal points.

The application of interpolation schemes like SIMP that penalizes the
designs to become of a 0-1 nature results in what one could classify as clas-
sically uscful structures. One may argue that with present day technology
for producing advanced composite materials one should certainly not remain
limited by a wish to predict black and white designs only, but composites
should also be part of the “structural universe” This is the themne of Chap.
3.

Here and in the remainder of the monograph we show only a restricted
number of examples of optimal topologies. Many more examples of topology
designs from academia and industry can be found in the literature and on
the web.

1.3 Complications

In the following we will discuss two important issues that significantly in-
fluences the computational results that can be obtained with the material
distribution based topology design procedure. These are the appearance of
checkerboards and the mesh-dependency of results. The former refers to
the formation of regions of alternating solid and void clements ordered in
a checkerboard like fashion and is related to the discretization of the original
continuous problem. Mesh-dependence concerns the effect that qualitatively
different optimal solutions are reached for different mesh-sizes or discretiza-
tions and this problem is rooted in the issue of existence of solutions to the
continuous problemn.

1.3.1 Mesh-refinement and existence of solutions

It is well-established that the 0-1 and the SIMP topology optimization prob-
lem formulated in section 1.1 lacks existence of solutions in its general con-
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Fig. 1.14. Design of a lightweight city bus from preliminary design to final struc-
tural design. This example is courtesy of Altair Engineering, Inc., and has appeared
in the Altair OptiStruct users manual and in (Thomas et al. 2002). At first, topol-
ogy optimization is used to generate the optimum structural lay-out concept. The
design space is shown in a) as the gray colored panels. b) The results of the topol-
ogy optimization. ¢) CAD representation of the interpretation of the results of the
topology optimization. d) Sizing optimization is performed on the hollow rectangu-
lar bar members of the bus structure. ) Final bus design. The shape of the windows
was decided by the results of the structural needs identified by the topology opti-
mization.

tinuum setting® The reason is that the introduction of more holes, without

® In any discretized version of the 0-1 problem, existence is trivial, as one has a
design space with finitely many different design options.
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Fig. 1.15. Dependence of the optimal topology on mesh refinement for the MBB-
beam example. Solution for a discretization with a) 2700, c¢) 4800 and d) 17200
clements.

changing the structural volume, will generally increase the efficiency of a
given structure. In the limit of this process one obtains structural variations
in the form of microstructures that have an improved use of the material.
Such microstructures are typically not isotropic and cannot be represented
within the original design description of only isotropic material; one says that
there is a lack of closedness of the admissible set of designs. In computational
implementations this effect is seen as a numnerical instability where a larger
number of holes appear when a finer finite element mesh is employed. That
is, refining the finite element mesh for the reference domain ultimately leads
to a generation of a fine-scale internal structural lay-out similar in nature to
the microstructures that theory predicts. Thus the non-existence of solutions
is indeed a problem for the numnerical solutions of the topology optinization
problem. This dependence of the solutions on mesh-refinement is illustrated
in figure 1.15, where an improved finite element discretization results in a
much more detailed structure. Ideally, mesh-refinement should result in a
better finite element modelling of the same optimal structure and a better
description of boundaries — not in a nlore detailed and qualitatively different
structure. As we shall show, there are actually efficient and uncomplicated
ways to achieve mesh-independent procedures for obtaining 0-1 designs, so
there is no reason to accept results that are inherently mesh-dependent.
The approach to generate macroscopic and mesh-independent 0-1 solu-
tions is to reduce the space of admissible designs by some sort of global
or local restriction on the variation of density, thus effectively ruling out
the possibility for fine scale structures to formate. The techniques that have
been suggested for enforcing such a restriction fall into three generic classes
of methods. These consists of either adding constraints to the optimization
problem, reducing directly the parameter space for the designs, or applying
filters in the optimization implementation. For most of these methods, exis-
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Fig. 1.16. An example of how smaller holes increase the perimeter, for a fixed
volume. V is the volume and P is the perimeter of internal holes.

tence of solutions and also convergence of the FE approximations have been
proved, providing a solid foundation [8].

We close this brief discussion by noting that the alternative to a restric-
tion of the design space is to extend the space by allowing composites as
admissible designs (see Chap. 3). For minimum compliance this lives up to
our requirement of independence of mesh refinement, but also gives designs
with large areas of “grey” This is thus not an option if 0-1 designs are the
goall?

Perimeter control The perimeter of a mechanical cleinent ™2 is, vaguely
speaking, the surn of the lengths/areas of all inner and outer boundaries. Con-
straining the perimeter clearly lirnits the nunber of holes that can appear
in the domain, (cf. figure 1.16) and existence of solutions to the perimeter
controlled topology optimization is actually assured for both the discrete 0-1
setting and the interpolated version using SIMP Also, it has been imnple-
mented for both situations and for 2-D as well as 3-D problemns [8]. For the
SIMP method, one can impose a constraint that mimics such a perimeter
bound in the forin of an upper bound on the total variation, TV (p), of the
density p. In case the function p is smooth, the total variation constraint is
a L' bound on its gradient:

V(o) = [ 1190l de < P* (1.19)
Rﬂ

10 T order to force the composite solutions to a 0-1 design, an explicit penalty
on intermediate densities can be added - but this destroys the existence as one
reverts to the ill-posed 0-1 problem.
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For a 0-1 design, the total variation of p coincides with the perimeter of (™2
when p is 1 in 2™ and 0 elsewhere (in R®,n 2(3)). In this case the
constraint is expressed as

TV(p) = sup{ [ plividaly € CURA RO, el <1} <Pt 020
Rn
where C}(R™, R") denotes compactly supported vector valued C" functions.
For an element wise constant finite element discretization of the density
the total variation can in 2-D be calculated as

P= ilk (\/(/’)i +e2 — e) (1.21)
k=1

where (p); is the jump of material density through element interface k of
length I and K is the number of element interfaces (here one should also
count interfaces at the boundary of the domain € - else there will be bias
towards having material at the borders of ). The parameter e is a small
positive number which is used to convert the non-differentiable absolute value
into a differentiable term. This expression is exactly the total variation of the
element-wise constant density when € = 0.

It should be mentioned that there is an inherent problem of assuring
isotropy in an implementation of a discretized perimeter measure (this ef-
fect is also known from work in image segmentation, cf. , Chambolle (1995)).
Thus, in a regular 2-D mesh of squares, a bound on the discretized expres-
sion (1.21) will tend to favour structural edges parallel to those of the finite
element mesh. This is caused by the effect that a straight edge of length 1
that is angled 45 degrees to the directions of the finite element mesh will
be approximated by a jagged edge that has the perimeter v/2. In contrast,
the same edge has perimeter 1 when it is parallel to the mesh directions. In
the limit of mesh refinement for a FE-mesh directed along the z;-axes, the
discretized perimeter measure (1.21) is thus rather the proper discretization
of what is referred to a “taxi-cab” perimeter measure(cf., Petersson (1999b)):

. _ 9% 190\ 4
TVLaxlcab(p) = /R2 <| 8$1| + |a$2 ) dz (122)

This means that the numerical results will approach solutions of a continuum
topology optimization problem statement that includes a “perimeter bound”
that actually measures the “length” of the boundary of the structure by pro-
jecting this onto the coordinate axes. This in turn implies that even though
the perimeter constraint (1.21) assures convergence with respect to mesh re-
finement, a dependence on the choice of mesh will nonetheless be seen. This
effect, however, does not change with mesh refinement. This directional bias
of the results can be reduced considerably by considering more involved dis-
crete versions of the perimeter measure, see Petersson, Beckers & Duysinx
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(2000) and Borrvall (2001); in the latter reference more refined discretization
schemes are also discussed.

The perimeter bound adds one extra constraint to the topology optimiza-
tion problem and thus does not create any substantial problems for the use
of an algorithmn like MMA. However, it has been reported that the perimeter
constraint can be quite difficult to approximate resulting in fluctuations in
the design variables (this relates to the choice of the asymptotes of MMA).
However, this can be solved by an internal loop procedure for the perimeter
approximation which is computationally inexpensive compared to the equi-
librium analysis (see Duysinx (1997)). Finally, one should note that choosing
the bounding value of the perimeter constraint can be rather tricky, see below.

Other methods of restricting gradients One can also consider other
types of gradient constraints for the SIMP method that ensure existence of
solutions and convergence with mesh-refinement. These presuppose that p is
sufficiently smooth for the bound to make sense and do not seem to have any
equivalent for the discrete-valued (-1 setting, in contrast to the perimeter
measure discussed above.

One possibility is to constrain the local density variation by imposing
pointwise bounds on the derivatives of the function p:

dp
BIEZ'

<G, (i=1,2,(3)) (1.23)

This scheme, which in essence constrains the L norm of the gradient of
p, does assure existence of solutions and convergence of the finite element
scheme (Petersson & Sigmund 1998). The advantage of this gradient con-
straint is that it gives a well-defined local length scale. The constraint in
(1.23) implies that a transition from void to void through full material has to
take place over a distance that is longer than 2/G, which is thus the width of
the thinnest features of a feasible design. Unfortunately, an implementation
results in a huge number of extra constraints in the optimization problem and
the method must therefore be considered to be too slow for practical design
problems, if implemented directly as constraints. However, if one approxi-
mates the L constraint (1.23) by a L9 constraint. for suitable large ¢ one
can alternatively operate with just one global constraint (but choosing the
constraint value can be tricky and requires experimentation for each design
case) (see Borrvall (2001)).

The basic concept of a slope constraint can also be enforced by an adaptive
constraint strategy in the optimization algorithm that is similar to adding
move limits (Zhou, Shyy & Thomas 2001). This means that one only works
with the values of the box-constraints on the density p, which at the (K +1)-
th iteration step are modified to restrict the variations in the design

pE > max{pwin, Py — Di, G} - (1.24)
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Here j() is the element number of the element with the highest density value
among all elements adjacent to the element ¢ at the prior iteration step, and
D;, j(i is the distance between the centers of the clements ¢ and j(¢). This
strategy does not add to the computational complexity of the optimization
procedure. However, it does require that the applied optimization algorithm
can handle (temporary) violations of the box constraints. Furthermore, it is
unclear whether “playing” with the move-limits will jeopardize convergence
of the algorithm.

Another option is to implement a “global gradient constraint” by which
we mean the norm of the function p in the Sobolov space H!(Q):

Nl = ( [ +194) dsz)i <M (1.25)

Proof of existence when including this bound in the minimmum compliance
problem can be found in appendix 5.2.2 (for three dimensional problems
the proof requires that the power in SIMP satisfies p < 3). Note that we
for any finite element discretization of the ground structure € can choose
a large enough bound M on the norm of p so that the norm constraint
remains inactive, thus secmingly returning to the original formulation for
this discretization. Thus implementation of (1.25) also requires utmost care
and should involve experimenting with a range of values of the bound M. A
global gradient, constraint can also be formulated with the term p? removed
from (1.25), so that the constraint becomes a L? constraint on the gradient
of p. Numerical experiments with global gradients in the setting of topology
optimization can be found in Borrvall (2001), where also L7 constraints in
general are considered.

Filtering the density The techniques above impose explicit limitations on
the allowable density distributions that can appear in the optimal design,
and as such have to be catered for as constraints in the optimization formu-
lation. An alternative to this is to directly limit the variations of the densities
that appear in the set of admissible stiffness tensor E,q by only admitting
filtered densitics in the stiffness [8]. Thus the SIMP method is modified to
the following reduced design space:

(@) = (o x K)@)F ESy, p€ L(Q)
(p* K)(z) = /Q PWK(z —y)dy, (1.26)
[oannsv; 0<p@ <1, sen,

Q

where K is a convolution kernel, for example

[l . ,
K.(z) = 1 S if o]l <7,
0 otherwisc .
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The filter radius 7 is fixed in the formulation and implies the enforcement of
a fixed length-scale in the stiffness distribution. The filtering means that the
stiffness in a point = depends on the density p(z) in all points of a neighbor-
hood of x. This implies a smoothing of the stiffness fields in a fashion similar
to a filtering of an image. The smoothing and the fixed scale means that this
method gives existence of solutions and convergence with refinement of the
FE mesh. Loosely speaking, the reason that the filter removes any fine scale
behaviour of the density p is that such variations in the mechanical analysis
(via the filtering (p * K)) appears like a grey which is penalized by SIMP.
Generally this method results in density fields p that are bi-valued, but the
stiffness distribution (p * K)? is more “blurred” with grey boundaries. In a
sense this is an ambiguity, as the mechanical analysis is done on the filtered
density!! For implementation, the differences compared to the standard pro-
cedure described in section 1.2 are that the element stiffness matrices in the
finite element analysis are defined by weighted averages of the stiffnesses of
neighbouring elements, and the sensitivity information should be modified
to cater for the redefined stiffness tensor (this means that the sensitivity
of the compliance with respect to p(z) will involve the mutual energy of a
neighborhood of ).

Filtering the sensitivities Computational experience has shown that fil-
tering of the sensitivity information of the optimization problem is a highly
efficient way to ensure mesh-independency [8]. This means modifying the
design sensitivity of a specific element, based on a weighted average of the
clement sensitivities in a fized neighborhood. Such a filter is purely heuris-
tic but it produces results very similar to for example those obtained by
a local gradient constraint, it requires little extra CPU-time and it is very
simnple to implement as it does not add to the complexity of the optimiza-
tion problem (no extra constraints nced to be considered). Similar ideas of
weighted averages have been used to ensure mesh-independence for simnula-
tions of bone-remodelling and for analysis with plastic-softening materials
(Mullender, Huiskes & Weinans. 1994, Leblond, Perrin & Deveaux 1994).

The scheme works by modifying the element sensitivities of the compliance
as follows:

__ N
_(f;% : Z 9 (1.27)
Z =1

where N is the total number of elements in the mesh and where the mesh-
independent convolution operator (weight factor) H; is written as

H; = tin—dist(k,i), {i € N |dist(k,i) < 7min}, k=1,...,N (1.28)

1 In contrast, a non-filtered version of SIMP evaluates a 0-1 design with the same
distribution of stiffness as represented by the density.
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Fig. 1.17. Mesh-independent solutions of the cantilever problem using filtering of
sensitivitics. a) Design domain and load, b) 300, ¢) 600, d) 4800, e) 10.800 and
f) 19.200 element discretization. Filter radius is 8.2% of the height of the design
domain.

In this expression, the operator dist(k,z) is defined as the distance between
the center of the clement & and the center of an element 3. The convolution op-
erator I:Ii is zero outside the filter area. The convolution operator for element
i is seen to decay linearly with the distance from element k. It is worthwhile
noting that the sensitivity (1.27) converges to the original sensitivity when
the filter radius rmin approaches zero and that all sensitivities will be equal
(resulting in an even distribution of material) when rm;n, approaches infinity.
This filter is implemented in the Matlab code of appendix 5.1.1.

Unfortunately, the theoretical basis for the method is not yet understood.
Also, it is unclear exactly what problem we are solving. However, munerous
applications, many of which are shown in this monograph are based on this
filtering method. It has been applied to 2 and 3 dimensional problems, to
problems with up to 20 structural or other constraints, to problems involving
multiple arcas of physics and it has been an invaluable tool in designing
extremal material structures (c.f. Sect. 2.10). Furthermore, it gives results
that are stable under mesh-refinement and maintain a minimum length-scale
that is controlled by the filter radius ry,. Also, experience shows that the
filter somehow improves the computational behaviour of the topology design
procedures as it delays the tendency of the SIMP scheme to get “stuck” in
0-1 designs (this is discussed in more detail in Chap. 2). Fig. 1.17 shows an
example of mesh-independent designs obtain by the filter. In the following
we will refer to this filtering as the mesh-independence filter.
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Monotonicity based length scale control In some recent work a scheme
called the MOLE method (MOnotonicity based minimum LEngth scale) has
been proposed for the control of length-scale (Poulsen 2001a). As for the
perimeter and global gradient control it adds one extra constraint to the
optimization problem, but in this case the non-negative constraint function
should have value zero for the minimum length scale restriction to be satisfied.
Moreover, one can explicitly specify the desired minimum width d of material
parts and void inclusions. Thus it provides similar exact control as when using
local gradients, but within just one constraint.

The idea is to pass a circular“flter” window over the design and measure
if the density p along four equally spaced diagonals'? is monotonic or not. The
reason for testing over four diagonals is that a test only along the horizontal
and vertical directions would not be able to detect the fine-scale variation of a
corner to corner “hinge” in a regular mesh, while testing along the diagonals
only would prevent checkerboard detection. On the other hand testing along
more directions would make almost any design infeasible (see below).

The monotonicity of the density can be measured by applying the func-

tional
b
/ F'(x) dz
a

which is zero if the smooth function F' of one variable is monotonic on the
interval [a,b], and strictly positive otherwise. As the length scale criterion
is violated if the design at any point and at any of the test directions is
non-tonotonic, one obtains a constraint function Mg(p) with the required
properties by “summing” the values of M(p|,) over all points and all direc-
tions . We write this as

M) = | ( > M(ﬂh)) a, (1.30)

TEA(z,d)

M(F) = /b |F'(z)| dz — >0, (1.29)

where A(x, d) is the set of four diagonals of length d that we test over. The ex-
ponent ¢ is used to assure good numerical behaviour of the constraint M =0
and experiments have shown that ¢ = 4 is a good choice in immplernentations!?

In the discrete formulation of the constraint one works with differences
of element values of the density p and, as for the perimneter constraint, one
has to use a smoothed approximation to the absolute value (cf., (1.21). We
note that the computational effort in evaluating the constraint is linear in
the number of elements, and that derivatives can be computed directly (and
analytically). The idea also extends to 3-D, where the window is a ball and
where one will check along 13 diagonals.

12 Horizontal, vertical and at +/4 from the horizontal.
13 In the actual implementation one uses M < &, where § is decreased during the
iterative proccdure.
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We remark that, as we consider only four directions for checking the min-
imum length scale, it is clear that there will be some directional dependence
of the minimum allowed width of a strip of either material or void. Even
in the continuous formulation, the constraint M = 0 only allows piecewise
straight lines as boundaries between solid and void. It also restricts the angle
between these piecewise straight lines where they meet and the angle be-
tween the boundary lines at a kink will be less than 7 /4. This shows that
more test directions will restrict the boundary curves even further and in the
lirnit of testing along all diagonals only straight lines would be possible as
boundaries between solid and void. Finally, we note that, as we cannot make
angles sharper than 7, the smallest inscribed polygon of a hole is an octagon
which for a minimumn length d gives the minimum (approximate) radius of
curvature I—'E@d ~1.2d.

Comparison of methods The perimeter, local gradient and filter methods
produce very similar designs, but there are some differences. The perimeter
control and the global gradient control schemes are global constraints and will
allow the formation of locally very thin bars (albeit in limited numbers). The
local gradient and filtering schemes are local constraints and will generally
remove thin bars.

Predicting the value of the perimeter constraint for a new design problem
must be determined by experiments, since there is no direct relation between
local scale in the structure and the perimeter bound. If the perimeter bound
is too tight, there may be no solution to the optimization problem. This
problem is particularly difficult for three-dimensional problem. In contrast,
the gradient and filtering schemes define a local length scale under which
structural variation is filtered out. This local length scale corresponds to a
lower limit on bar/beam widths. Such a possibility of imposing a minimum
length scale is not only of importance for obtaining methods that are stable
under mesh-refinement. Almost of greater importance is the possibility this
gives for taking manufacturing considerations (machining constraints) into
account. This can be in the form of minimum member size requirements for
the material phase. This is important for the fabrication of MEMS (Micro-
ElectroMechanical Systeins, see section 2.6), where mechanisins are etched
or deposited by chemical processes. Also, minimum size of a void inclusion is
crucial if a structure is machined out by milling processes.

Finally, we remark that the use of a fized, finite dimensional set of designs
is a direct way of assuring existence of solutions as well as stability with
respect to mesh-refinement — the latter here then only means improving the
analysis grid. The geometric resolution cannot be improved beyond what is
contained in the initial design description.
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Fig. 1.18. The checkerboard problem demonstrated on a long cantilever beam. a)
Design problem, b) solution for 400 clement discretization and ¢) solution for 6400
element discretization.

1.3.2 The checkerboard problem

Patches of checkerboard patterns appear often in solutions obtained by a
direct implementation of the material distribution method that use the dis-
placement based finite element method, cf., figure 1.18. Within a checker-
board patch of the structure the density of the material assigned to contiguous
finite elements varies in a periodic fashion similar to a checkerboard consist-
ing of alternating solid and void elements. Such patterns are also observed
in the spatial distribution of the pressure in some finite element analyses of
Stokes flows. It is now well understood that also for topology design the ori-
gin of the checkerboard patterns is related to features of the finite element
approximation, and more specifically is due to bad numerical modelling that
overestimates the stiffness of checkerboards [9].

The restriction methods already described also has the eflect that checker-
boarding is reduced or removed The reason for this is that when one enforces
a constraint on geometry (gencrally speaking in terms of the length of the
boundary or in terms of gradient variation) that assure that solutions exist,
one also obtains FE-convergence and checkerboards cannot be present for a
fine enough mesh (more precisely, they can be made arbitrarily weak).

There are situations where one does not wish to enforce a fixed scale ge-
ometric restriction on the designs. This is the case when one uses numerical
methods to obtain an understanding of the behaviour of optimal topologies at
a fairly fine scale, but in a macroscopic representation. This is of theoretical
interest for obtaining insight in for example solutions to problems involving
Michell type continua. Moreover, it has great practical interest when design-
ing low volume fraction structures, where one can gain very useful insight
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for the design of truss and frame structures — here the continuum topol-
ogy design methodology can predict both member sizes and nodal positions.
Another situation where geometric restriction is unwanted is in the computa-
tional implementation of the relaxed form of the topology optimization prob-
lem, where composites are used to achieve existence of solutions. Also, when
studying variable thickness sheets and problems where all possible elasticity
tensors are part of the design space, checkerboard control should be achieved
by other means than by geometric restriction.

In the following we shall for 2-D problems outline explanations for the
appearance of checkerboards and describe a number of methods that can be
used to avoid them for cases where geometric scale is not restricted.

The stiffness of checkerboards The most direct explanation as to why
checkerboards appear in topology design is that such lay-outs of material
have an artificially high stiffness when analyzed in certain discretized formu-
lations. Thus it turns out that a checkerboard of material in a uniform grid
of square Q4 elements has a stiffness which is comparable to the stiffness of a
p = 1/2 variable thickness shect, for any applied loads (or prescribed strains)
(see Fig. 1.19 and section 3.3.5). For the minimum compliance problem of an
infinite medium, this means that for a Q4 discretization of displacements and
any discrete as well as the continuum description of p, the corresponding opti-
mization problem has the checkerboard version (matched to the Q4 mesh) as
an optimal design. Thus it is not surprising that one in general sees that opti-
mization generates these non-physical checkerboards when Q4-displacement
elements are used.

Checkerboards and choice of FE spaces The problem of finding the op-
timal topology by the material distribution method is a two field problem. It
involves finding the optimal distribution of material described by the density
p (or stiffness tensor F) as well as the displacement field u of this optimal de-
sign. It is in this connection useful to remember that the displacement based
minimum compliance problemn we consider can be cast in the form

éré%z(d Ll"lsllljl {%LEijkleij(U)Ekl(U)dQ —l(l})} (131)
and a numerical implementation operates on a discretized version of this
min-max type problem for a functional of two variables. It is well-known
(ci., Stokes flow), that the finite eleinent analysis of such problems can cause
problems, being unstable and being prone to the development of checker-
board patterns for one of the fields. The so-called Babuska-Brezzi (B-B)
condition has been developed as a criterion that will guarantee that a a
finite element discretization results in a stable numerical scheme, sce Brezzi
& Fortin (1991). Unfortunately, the functional (1.31) of the topology design
problem is not quadratic in the two fields and it is also not concave-convex.
Thus one cannot directly apply standard saddle point theory and the related
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Fig. 1.19. The checkerboard problem demonstrated on a square structure subject
to biaxial stress and modelled by Q4 elemcnts. a) Design problem, b) solution
without checkerboard control and ¢) solution with sensitivity filtering. All volume
fractions are 50% and the resulting compliances for a variable thickness plate (p = 1
in SIMP) (a) is 2.67; for the checkerboard structure (b) 2.81; and for the non-
checkerboard structure (c) it is 6.16. Even in this finite lay-out the non-physical
checkerboard — modelled by Q4 elements — is almost as stiff as the sheet.

application of the Babuska-Brezzi condition to the present situation. How-
ever, these problems aside, taking a direct analogy to the similar problem in
Stokes flow indicates nonetheless that certain combinations of finite element
discretizations will be unstable and some stable. This has been confirmed by
numerical experiments for both the SIMP model, for cases with composites
and for variable thickness sheets [9]. The analogy suggests that the use of
higher order finite elements for the displacement function is a viable method
to avoid the checkerboard problem and checkerboards are typically prevented
when using 8 or 9-node quadrilaterals for the displacements in combination
with an element wise constant discretization of density. An analysis based
on a patch test of the finite element models substantiates this finding (Jog
& Haber 1996). These patch tests are based on a B-B type analysis of a
linearized, incremental formn of the necessary conditions, corresponding to
an incremental, quadratic approximation of the saddle point problem (1.31),
and the tests give information on the performance of various combinations
of finite element approximations of the two field problem at hand. We also
note that it is possible to extend the full mathematical analyses of mixed
FE developed for the Stokes’ flow problem to the variable thickness sheet
problem (cf., Petersson (1999a)).

The use of higher order finite elements in topology design results in a
substantial increase in CPU-time, even though this is not today a serious
problem for 2-D problems. But it is still productive to employ alternative
and computationally more economical methods. Many such methods have
been proposed and typically include some flavour of a mesh related filtering
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of the densities. A series of such methods will be described below. Before
we turn our attention to these concepts, it is worth mentioning some very
recent ideas that work with modifications of the typical elerent density based
parametrization.

One is to change the discretization of the density field to be given by
the nodal values of the squares that define the mesh for the displacements;
the element density is then the average of the nodal values (Hammer 2001).
A sensitivity of compliance with respect to one of these densities will then
depend on the energies in the four neighboring elements, and the design de-
scription is in nature similar to filtering methods (see sections 1.3.1). It can be
shown that for a finite element discretization based on square elements, this
idea corresponds to imposing a local gradient constraint as in 1.23, where G
is equal to two times the element size. This means that there always will be a
rimn of at least one grey clement between solid and void elements. Obviously,
this also means that this nodal based averaging technique does not imply
mesh-independence. An example of the scheme applied to compliant mech-
anism design is shown in Fig. 2.27 Note that a scheme that uses a density
interpolation of nodal values does not have the desired effect.

Another idea is to use non-conforming elements for the displacement
fields, effectively giving correct zero stiffness to an infinite checkerboard also
in the discretized problem (Jang, Kim, Kim, Kim, Park & Shin 2001).

Finally, we remark that theoretical studies of the appearance of checker-
boards in three-dimensional problems are yet to be carried out. However
numerical experience shows that checkerboards also appear for this case.

Removing checkerboards in a patch In order to save CPU-timne, but still
obtain checkerboard free designs, it has been suggested to employ a patch
technique inspited by a method applied for the similar problems in Stokes
flow (cf., Johnson & Pitkiranta (1982)). This technique has in practical tests
shown an ability to damp the appearance of checkerboards. The strategy
controls the formation of checkerboards in meshes of 4-node quadrilateral
displacement elements coupled witl: constant material properties within each
element. Thus one maintains the use of low order clements. However, the
end result is the introduction of some type of element with a higher num-
ber of nodes, as the method in effect results in a“super-elernent” for the
density and displacement functions in 4 neighbouring elements. In what
follows we will assume that the design domain € is rectangular. It is dis-
cretized using a uniformm mesh of square, 4-node iso-parametric elements
Ky, i=1,...,2M, j =1,...,2N where 2M and 2N are the {even) number
of elements per side. Consider now, for odd ¢ and j, a patch Py; of four con-
tigllOllS clements K; = K,‘,j, K2 = Ki+1,j, K3 = Ki,j+1 and K4 = Ki+1,j+1,
as shown in Fig. 1.20, i.e.,

Pij=K)UK2UK3UK4.
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Fig. 1.20. Patches and basis functions used for checkerboard control.

Associated with P;; we introduce basis functions ¢};, ¢7;, ¢5; and ¢}; which
take the values £1 in P;; according to the pattern shown in Fig. 1.20 and
are zero outside P;;. Here we note that:

— The functions {¢%;} constitute an orthogonal basis,
A ”pure” checkerboard pattern is of the form u = EPU 7lij¢?j

This suggests that in order to avoid the formation of checkerboard patterns
we need to restrict p to lie within the more restricted, checkerboard-free space

V= v|”($)=zp‘-,(”3j i + v 0% +'U?j %), (vl U,vu)eR:‘
i=1,3,..2N -1, j=1,3, ..2M ~ 1

This restriction on p links the four elements in a patch, and the amount of
material in K{ UK, equals that of K, UK3 and each is half of the total volume
of the patch.

The coupling of the density distribution makes it difficult to apply the
usual iterative optimality condition method. In MMA one can work directly
with the design space V' by using the 3M N parameters (v} it vfj,v“) as design
variables. This, however, changes the simple bound constraints 0 < p < 1 into
a huge number of linear constraints on the parameters v, making this option
impractical. Instead, the following simpler procedure, which has been applied
in a variety of problems, can be employed for both algorithmns:

1. At cach iteration of the optimization algorithm the cell size parameters
within cach element K;; are updated using the usual update method (opti-
mality criteria approach or an MMA step).

2. For each patch P;; let {p1, p2, p3, pa} be the be the updated densities in the
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Fig. 1.21. Single checkerboard-patterns may form within the patch control scheme.
But no extended checkerboard patterns can be present (from Poulsen 2002).

four quadrants of the patch associated with the updated cell sizes (using the
nimbering of 1.20). We then seek, as the starting point for the next iteration,
a new piece-wise constant and checkerboard-free density distribution within
the patch, say p, written as

1 _ =
p(x) = 31+ p2 +ps +pa)¢' + 020 + T3¢®, € Dy

Here p is checkerboard-free (as U4 = 0) and it preserves material in the patch
(as the coefficient of ¢! is set as & = %(pl + p2 + p3 + pa) ). To determine
the parameters ¥z, U3, we select j as the best L2 approximation to p in P;;
under the constraints that 0 < p; < 1,7 = 1,2,3,4. This corresponds to a QP
problem in two variables, with linear constraints. The solution can be found
analytically, and is given as

1 o1
n==03Bp1+p2+p3s—ps), ps=z(pn—pz+3ps+p4),

=S

1 1
/72=Z(p1 +3p2 —p3 + 1), ﬁ4:Z(—P1+P2+P3+3P4),

if these values satisfies 0 < p; < 1. If a p; in these expressions is above 1,
it is set to 1 and the corresponding diagonal deunsity is adjusted to maintain
the volumne of the patch; negative values are handled likewise and are set to
0. The modification of the density outlined here has the flavour of a filtering
in a post-processing step that is invoked at each step of the optinization
procedure and should therefore be used with some caution. We note that
it does not disturb areas of the domain where no checkerboard control is
needed, and also remark again that the method corresponds to introducing
a "super-clement” of four Q4 elements with a total of 9 displacements nodal
points and with 3 degrees of freedom for the density approximation. Thus
the method maintains more resolution in densities, as compared to, say, the
approach of using Q9 elements for displacements and element-wise constant,
density p.

An alternative to the procedure above is to perforin a change of variables
that allows one to work directly with checkerboard free designs. Inspired by
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Fig. 1.22. A check for monotonicity along four paths around an interior node.

work in wavelet-based parametrization of the design (see section 1.5.5), we
introduce a checkerboard free space of auxiliary variables W = {w € V}. We
do not impose any side constraints on w(z) and convert it into to a density
satisfying the bounds 0 < p < 1 by a transformation:

(@) = huw(z), with h(w) = 222 4 1
where h is a strictly increasing function!? that will map checkerboard free
patches of the auxiliary variable w to checkerboard free patches of the density

0.

In the optimization, the variables (w};, w%,w;) then become the design
variables. For implementation, sensitivity information with respect to these
variables are needed, but this information can be gained from sensitivities
wrt. p(z) by an application of the chain-rule. The volume constraint becomes
a non-linear function in the auxiliary variables, but this does not create any
difficulties. Finally one notes that box constraints on the auxiliary variables
are a requirement of MMA (as in most mathematical programning algo-
rithms) and these can be chosen big ecnough as not to affect the results; also,
one can use an imposed Wi, to match a desired value of pmyin, but this is
not critical [11].

We note here that the schemes proposed above depend on the build-up of
the mesh in 2 by 2 patches of quadrilaterals. In each such patch checkerboards
are removed, but checkerboards between patches are still possible if the row
or column number of the upper left corner of a checkerboard is even. This
also means that corner to corner patterns of the single elements can occur,
but no large areas of checkerboards are possible. This is discussed in further
detail in section 2.6 that deals with design of mechanisms.

NoHinge: A checkerboard constraint In section 1.3.1 geometry control
was achieved by defining one extra constraint for the optimization problern.
This idea can also be implemented for checkerboard control, i.e., one defines
a non-negative constraint function that should have value zero for the design
to be free of checkerboards.

Consider the patch of square elements in figure 1.22. Defining the function

m(z,y,2) =y —x| +|z—y| - |z — x|,

—kw S
4 A function S(w) = 1 };S-"w + 3 is also a choice among many other possibilities.
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that is zero if the sequence of real numbers z,y, z is monotonic (increasing,
decreasing or constant) and strictly positive otherwise, we can determine
that the patch is free of checkerboard patterns, if just one of the numnbers
m(a, b,d), m(a,c,d), m(b,a,¢) or m(b,d,c) is zero. This can be in turn be
expressed as the condition that the number

h(a,b,c,d) = m(a,b,d)m(a,c,d) m(b,a,c)m(b,d,c),

is zero. A design defined by a density p that is element wise constant on a
mesh of quadrilaterals with N interior nodes will thus be free of checkerboards
if it satisfies the constraint

N

> " B(okar Prbr Prcr Pra) =0, (1.32)
k=1

where pie , € = a,b, ¢, d are the material densities in the elements connected
to the node k. This constraint can thus be added to our optimization problem
to assure checkerboard free solutions. Tt can also be used to remove “artifi-
cial” hinges in mechanism design, sec section 2.6. As we have seen in other
situations, an implementation using gradient based optimization techniques
requires a replacement of the absolute value by a smooth substitute, for exam-
ple [x] ~ Va2 + ¢ — e with € = 0.1. With this modification a sensitivity anal-
ysis of the constraint is straightforward, but rather tedious (Poulsen 2001b).
For an example of the use of this scheme, see Fig. 2.25.

Checkerboard control by filtering of sensitivities The filtering tech-
nique for gradients described in 1.3.1 can also be cast in a version that only
constrains checkerboards, without imposing a mesh independent length scale.
This just requires that one adjusts the filter in (1.27) to exactly making the
design sensitivity of a specific element depend on a weighted average over
the clement itself and its eight direct neighbours. This is a is very efficient
method for removing checkerboards [9].

1.3.3 Non-uniqueness, local minima and dependence on data

It is important to observe that most problemns in topology design (as in struc-
tural problems in the large) are not convex. Moreover, many problems have
multiple optima, i.e. non-unigue solutions. An example of the latter is the
design of a structure in uni-axial tension. Here a structure consisting of one
thick bar will be just as good as a structure made up of several thin bars with
the same overall arca. The non-convexity typically means that one can find
several different local minima (which is what the gradient based algorithms
locate) and one can obtain different solutions to the same discretized prob-
lem when choosing different starting solutions and different parameters of the
algorithms. Most global optimization methods seem to be unable to handle
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problems of the size of a typical topology optimization problein. Based on
cxperience, it seems that continuation methods must be applied to ensure
some sort of stable convergence towards reliably good designs.

The idca of continuation methods is to gradually change the optimiza-
tion problem from an (artificial) convex (or quasiconvex) problem to the
original (non-convex) design problem in a number of steps. In cach step a
gradient-based optimization algorithm is used until convergence. This is use-
ful in many types of problems. Examples are the use of a continuation method
were the structure first is optimized allowing regions consisting of compos-
ites (see Chap. 3), and after convergence, a penalization scheme is gradually
introduced to obtain a 0-1 design. Likewise (as mentioned in section 1.2.4),
for SIMP it is advisable to start out with p = 1 and then slowly raise the
value of p through the computations until the final design is arrived at. For
the perimeter constraint it is also beneficial to perform a gradual decrcase
of value of the constraint on the perimeter. For the mesh-independence filter
(see scction 1.3.1) it is normally recommended to start with a large value of
the filter size 7,,;, (which gives designs with blurry edges) and to gradually
decreasc it, to end up with a well-defined 0-1 design.

Finally, it is extremely important to observe that the results that one
obtains with topology design of course depends on the data that one decides
on using before applying the optimization procedure. Thus a change of the
geometry of the design domain, the choice of load and boundary conditions
can result in drastical changes in the“optimal design” that an algorithm may
produce. Siinilar effects can be seen from variations of perimeter constraint
values or filter parameters, etc. This is actually not that surprising as we are
dealing with very “nasty” optimization problems, but in topology design this
effect is just much more noticeable than in many other types of structural
optimization problems.

1.4 Combining topology and shape design

Traditionally, in shape design of mechanical bodies, a shape is defined by the
oriented boundary curves or boundary surfaces of the body and in shape op-
timization the optimal form of these boundaries is computed. This approach
is very well established and the literature is extensive [2], [35]. On the other
hand, we have just scen how the material distribution formulation can give a
good estimate of the boundary of a structure, but here a rcasonable predic-
tion of the finer details of the boundaries requires very large FEM models.
Also, the inherent large scale nature of the topology optimization method is
such that the objectives used for the optimization should be global criteria,
e.g. compliance, volume, average stress, etc., so that the effectiveness of the
dual optimizers can be maintained by treating problems with a moderate
number of constraints. For example, the focal point in the presentation so
far has been the minimization of the compliance of a structure subject to a
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Fig. 1.23. Postprocessing of grey-scale pictures by automatic (MATLAB) contour-
plotting. Cantilever beam for different aspect ratios. b), d) and f): optimized topolo-
gies based on SIMP and filtering of sensitivities and ¢), ) and g): contour plots
based on the grey-scale pictures.

constraint on the volume of the structure. On the other hand, the description
of the body by boundary curves and surfaces allows the finer details of the
body to be controlled by a moderate number of design variables (e.g., spline
control points) so this setting is better suited for studying problems such as
the minimization of the maximum value of the displacements or of the Von
Mises equivalent stress in the body*®

It is thus for this type of situations natural to integrate the material dis-
tribution method and the boundary variations approach into one design tool,
employing the topology optimization techniques as a pre-processor for bound-
ary shape optimization. The possibility of generating the optimal topology
for a body can be used by the designer to select the shape of the initial pro-
posed form of the body for the boundary variations technique. This is usually
left entirely to the designer, but the material distribution method gives the
designer a rational basis for his choice of initial form. As to be expected, the
topology is of great importance for the performance of the structure, and it
has turned out that - not unexpectedly - the compliance optimized topologies
generated using topology design are very good starting points for optimiza-

15 The handling of local stress constraints for continuum topology design problems
is described in section 2.3.
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Fig. 1.24. Postprocessing of grey-scale pictures by autoriatic (MATLAB) contour-
plotting. MBB-beam for volume fractions of 30%, 50% and 70%, respectively. b), d)
and f): optimized topologies based on SIMP and filtering of sensitivities and c), e)
and g): contour plots based on the grey-scale pictures. Only moderate modifications
(smoothing of corners etc.) seems to be needed before manufacturing.

tion concerning several other criteria such as maximum stress, maximum
deflection, etc.

The direct integration of topology optimization and shape design methods
is made difficult by the fact that the description of a structure by a density
function is fundamentally different from a description by boundary curves or
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surfaces, as used in boundary variations shape optimization methods. In a
CAD integrated shape optimization system, it is perhaps natural that the in-
tegration is based on the designer drawing the initial shape for the boundary
variations technique directly on the top of a picture of the topology optimized
structure, allowing for designer interaction [10]. This also creates a design
situation where the ingenuity of the designer is put to use for generating a
“good” initial form from the topology optimization results. The term “good”
in this context covers considerations such as ease of production, aesthetics,
etc. that may not have a quantified form. However, automatic interfacing be-
tween the topology optimization method and other structural optimization
methods is no doubt more productive. Here image processing and smooth
surface generation are key technologies [10]. Such techniques are especially
important for an effective integration of topology design methodology in gen-
eral purpose 3-D Computer Aided Optimal Design (CAOD) systems. We note
that any integration of the two design methods is simplified by the fact that
the integration can be based on a common FEM mesh generator and analysis
module and a common CAD input-output facility. The requirements on the
mesh generator are mainly governed by the boundary variations technique,
as mesh distortions and mesh non-untformities for that problem can become
critical due to the shape changes of the analysis domain.

An important aspect of shape design is adaptivity of the FE mesh. Like-
wise, for topology design on can work with a sequence of design situations
where the groundstructure (the reference domain) as well as the FE mesh is
subject to adaptation; for further details consult [10].

It should be emphasized that the boundary variation method in essence
is computationally significantly more involved than the topology design
method. Also, the mathematical technicalities of formulating the problem
and computing sensitivity information are more daunting, as is indicated
in appendix 5.3. On the other hand, the material distribution method is a
large scale optimization problem. Describing boundaries by for example spline
control points requires a much lower number of design variables, meaning
that standard mathematical programming techniques can be used also for
problems with a substantial number of constraints. Note also that the basic
approach to topology design is of equal complexity for two and three dimen-
sional structures, but that the description of geometry for boundary shape
design is much more complicated in dimension three.
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Fig. 1.25. The optimal design of a bearing pedestal, using the homogenization
approach (see Chap. 3) integrated with the boundary shape design system CAOS
(see Rasmussen et al. (1993)). a) The reference domain, with loading. The rim of
the inner hole was kept as a solid in the topology optimization. b) The result of
the homogenization approach. ¢) The final design, after boundary shape design for
minimum maximal Von Mises stress and after adding outer parts to the structure
for fastening. Utilizing symmetry only one half of the structure was analysed, as
indicated in b) (from Olhoff et al. 1992a).

Fig. 1.26. Optimized topology and shape design of a structure made of two mate-
rials, resulting in a sandwich structure. a) Optimized two-material topology com-
puted using rank-3 layered materials (see Chap. 3). b) Initial design for a refine-
ment using boundary shape optimization. All boundaries between skin and core
are restricted to be piecewise straight lines. For the boundary design the weight is
minimized without increasing the compliance relative to the optimal topology. c)
Final shape optimized structure. By courtesy of Rasmussen, Thomsen and Olhoff.
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Fig. 1.27. Inegrated optimal design of a vehicle roadarm. a) Initial Finite Element
Model, b) topology optimized roadarm, c) reconstructed solid model, d) Finite
Element mesh for shape design €) Von Mises stress of the shape optimized design
and f) comparison of the 3D Roadarm before and after shape design (Light grey:
initial design, dark grey: optimized design) (from Tang & Chang 2001).
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1.5 Variations of the theme

1.5.1 Multiple loads

The framework described for minimum compliance design for a single load
case generalizes easily to the situation where design for multiple load condi-
tions is formulated as a minimization of a weighted average of the compliances
for each of the load cases. We here obtain a simple multiple load formulation
as:
M
min wh ik (u¥)
ukeU,E
k=1 (1.33)
st. ap(wf,v)=1w), forallvel, k=1,...,M

EeEad,

for a set w®, f* t* I* k=1,.. , M, of weighting factors, loads and tractions,
and corresponding load linear forms given as

*u) = / fkudQ+/ tFuds,
Q Tk
for the M load cases we consider.
In this formulation the displacement fields for each individual load case
are independent, thus implying that the multiple load formulation for the
displacement based case has the equivalent form

max min M} {/QW(E,'ZL)dQ—l(ﬁ)}

E€Eqq ﬁ:{ul’m’u
u*eU, k=1,.., M
1 M
W(EG={u,.uM}) = 5 3wt B ey (@), (139
k=1

M
l(ﬁ: {ul,. .,uM}) = Zwklk(uk)
k=1

Likewise, we have a stress based formulation

M

: : 1 / k Bk

min min = wCipor.or dQ 1.35)
E€Eaq diva"+_f":0 in Q, { 2 Q kz—; K P (

o -n=t* on rk -

k=1,..M

For the stiffness modelled as in the SIMP model, the optimality criteria

method developed for the single load case generalizes directly and we obtain

an update scheme for pg at iteration step K which is exactly the same as

given in (1.12) of section 1.2.1, but with a modified “energy” expression
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Fig. 1.28. Example of differences in using one or more load cases. a) and b)
Design domains. ¢) and d) Optimized topologies for all loads in one load case. e)
and f) Optimized topologies for multiple loading cases. It is seen that single load
problems result in instable structures based on square frames whereas multi load
case problems results in stable structures based on triangular frames.

M

By = A}_(lpp(f”)(p_l)E?jkt Z wheij (uf )epg (uk)
k=1

Similarly, for use of an algorithm like MMA, the sensitivity of the weighted
average of compliances just becomes the weighted average of the sensitivities
of each of the compliances. Also, the similarity of the iterations in MMA and
in the the optimality criteria method remains. Finally, it may be remarked
that the inclusion of extra load cases is very cheap since the stiffness matrix
already has been factorized.

1.5.2 Variable thickness sheets

For planar problems, the stiffness tensors given by the SIMDP method reduces
to the setting of the well-known variable thickness sheet design problem if
we set p = 1; in this circumstance the density function p is precisely the
thickness h of the sheet. The minimum compliance problem then becomes
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min  I(u)
u,p

s.t. rap(u,v) = / h(z)E?jk,sij (w)eri(v)dQ = l(v), forallv e U (1.36)
Ja
[ )2 <V, o < < B < 0
Q

Problem (1.36) can also be written as (cf., (1.6))

min c(h)
heL™(),
henin Sh<hmax <00

Jo h(z)dQ<V (1_37)
c(h) = {Jrglr} {2l(v) - /Q h(l’)E,?jklEjj(v)Ek[(v)dQ}

As the stiffness is linear in h, the compliance ¢ is convex, as it is given as
a maximization of convex functions. Also, the complete problem statement
(1.37) is a convex-concave saddle point problem that (as noted earlier) lends
itself to a complete FE convergence analysis (see Petersson (1999b)) within
the framework of the theory developed for the Stokes’ flow problem. The
variable thickness sheet design problem also corresponds very closely to truss
design problems in the sense that the stiffness of the structure as well as
the volume of the structure depend linearly on the design variable for both
models. This implies that a discrete version of the problem can be solved using
some very efficient algorithms that have been developed for truss topology
design (cf. Chap. 4). These algorithms do not require that hg,;, > 0, and the
setting thus allows for a prediction of the the optimal topology of the sheet
without the ambiguity inherent in the chosen value of hyy; this is especially
important here as we do not force the design towards a 0-1 design.

The linear dependence of the stiffness on the design function h has an
even more significant implication for the continuum problem, as one can
prove existence of solutions (see appendix 5.2.1). Thus there is no need for
restriction methods or the introduction of materials with micro structure (this
holds for minimization of compliance and optimization of the fundamental
frequency). Finally, we remark that the variable thickness sheet problem also
plays a significant role when considering optimal design within a completely
free parametrization of the stiffness tensors over all positive definite tensors
in 2-D as well as 3-D. Here the problem form (1.36) arises after a reduction
of the original full formulation; this will be discussed in detail in Chap. 3.

Explicit penalization of thickness The variable thickness design problem
has been used as the inspiration for topology design methods where one seeks
the optimum over all isotropic materials with given Poisson ratio and linearly
varying Young’s modulus [11]. This formulation results in designs with large
domains of “grey” and modifications are necessary to obtain 0-1 designs.
This can be accomplished by adding to the objective an explicit penalty of
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Fig. 1.29. The design of a variable thickness sheet for two cantilever-like ground
structures with aspect ratios a) 1:1 and b) 1:4. ¢) — h): The optimal designs for a
volume constraint ¢) and d) 30%, e) and f) 60% and g) and h) 90%, respectively, of
the volume of a design with uniform thickness hmax (cf. constraints on thickness).
Notice that the areas of intermediate thickness is considerable, especially for low
amounts of available material. Thus the variable thickness design does not predict
the topology of the structure as a true 2-dimensional object, but utilizes that the
structure is in effect a 3-dimensional object.
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intermediate densities, for example in the form of functionals (we revert to
using a density p as the design variable):

Wip) = /Q o)1 - p(2))dQ, Wip) = /Q (221 - p@)2d2  (138)

Alternatively, the penalty function can be used as a constraint W(p) < § for
some small § > 0.

The use of a penalty function such as W (or V) has a detrimental effect on
the very nice mathematical properties of the original variable thickness sheet
problem. For one, existence of solutions is no longer true. However, existence
of solutions can be recovered (Borrvall & Petersson 2001b) by modifying the
penalty function (1.38) to the form

Wie) = [ (ox K)@)(1 - (px K)@)d, (1.39)

where one evaluates the original penalty function on a filtered version of the
density p (we use here the notation introduced in section 1.3.1). The filter
smoothes the density before penalization and as such provides for a more
severe penalization than does W (for details, consult Borrvall & Petersson
(2001b)). Thus using )7\), the designs become almost entirely black and white
(a 0-1 design) if the penalty factor is large enough (see Fig. 1.12).

The penalty approach just outlined maintains the existence of solutions
for the problem of minimum compliance and the maximization of the fun-
damental frequency. If a broader range of problems is to be considered the
restriction techniques, as described in section 1.3.1, should be applied. Note
also that the use of the penalty W makes it impossible to use the efficient
truss-type algorithm mentioned above (but an MMA inspired optimality cri-
terion method is an efficient alternative (Borrvall & Petersson 2001a)).

In order to maintain the structure of the original computational problem
it has been suggested instead to consider a sequence of problems where the
volume constraint in each step K of the sequence is modified as (see for
example Guedes & Taylor (1997), Rodrigues, Soto & Taylor (1999))

/ wi(z)p(x)dQ < V
Q

where the weight function wg is fixed and determined from the optimal
solution pg_; to the prior step so as to penalize low density regions:

_ Tk ifpr_1 <&
wi(z) = {0 otherwise

With suitable big values of T} and a small value of § this scheme generates 0-1
designs and each step is computationally equivalent to the original variable
thickness sheet problem. In implementation, the tuning of the penalization
becomes an issue. Also note that as above, the advantages of this idea is
closely linked to the properties of the minimum compliance problem.
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1.5.3 Plate design

Studies of the problem of variable thickness plate design and the appearance
of stiffeners in such design problems have played a crucial role in the develop-
ments in optimal structural design [29]. Thus topology design and especially
design with materials with microstructure can be seen as a natural exten-
sion of the original work by Cheng and Olhoff on plates. In this sense this
exposition of topology design methods is reversed relative to history, but it
is today more natural to consider plate design as a special variation of the
general framework.

The design of variable thickness Kirchhoff plates or Mindlin plates is at
first glance just another sizing problem of finding the optimal continuously
varying thickness of the plate. The close connection with the 0-1 topology
design problems is not entirely evident, but the cubic dependence of plate
bending stiffness on the thickness of the plate implies that the optimal design
prefers to achieve either of the bounds on the thickness, in essence a plate with
integral stiffeners. This in turn implies non-existence of solutions unless the
gradient of the thickness function is constrained or the problem is extended
to include fields of infinitely many stiffeners; this latter concept is dealt with
in Chap. 3.

Variable thickness design of Kirchhoff plates The minimum potential
energy statement for a Kirchhoff plate is of the form!®

. 1 B3
n}gn{i/n EE?jk,nij(w)nkl(w)dQ _/sszdﬂ}

where f is the transverse load. The thickness of the plate is denoted by h and
we assume that the mid-plane is a plane of symmetry. The deformation of the
plate is described by the transverse displacement of the mid-plane w, with
associated (linearized) curvature tensor x;; = %, and the relationship
between the curvature tensor and moment tensor M is given as

3
]\/[1']' = Dz‘jkl"ﬁkl with Dijkl = ’11_2E(i)jkl
where E?jkl is the plane stress elasticity tensor of the given material. The sim-
ilarity between the curvature-moment relation for plates and the strain-stress
relation in elasticity hides the fundamental difference that the Kirchhoff plate
is governed by a fourth order scalar equation, while standard linear elastic-
ity is governed by a system of second order equations. As for the variable
thickness sheet problem, the thickness of the plate also here automatically
provides the plate design problem with a continuous design variable. Consid-
ering the minimization of compliance the most natural problem to consider

is thus

16 Here and elsewhere in this section (section 1.5.3) all indices range over 1 and 2.
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max min{%/ D,-]-kmi]-(w)nkl(w)dﬂ—/ fwdQ} (1.40)
Q Q

DEPE.g w

with the set PE,g of bending stiffnesses given as

Dijr = B2y, he LX),

1.41
0 < hmin < h < hmax < 00, fQ hdQ2 < 14 ( )

which looks like a SIMP interpolation scheme! Also in the plate setting, prob-
lem (1.40) with the design set (1.41) is not well posed, and the existence of
solution is not always assured. This was first vividly demonstrated by Cheng
& Olhoff (1981), who discovered the formation of stiffeners in numerically
computed “optimal” solutions for high ratios of hmax/Pumin and Funax /Punis ,
where hynir = V/ fQ dQ, see Fig. 3.21 in Chap. 3. The number of stiffeners
increase when the discretization of design is refined, with a resulting (substan-
tial) decrease in compliance, a situation completely similar to the behaviour
of the 0-1 topology design setting. Compared to the variable thickness design
problem for sheets, this is caused by the cubic dependence of the stiffness
of the plate on the thickness. Physically, this dependence makes it advan-
tageous to move as much material as possible away from the mid-plane of
the plate, for example in the form of integral stiffeners. A method to obtain
mesh-independence and existence of solutions is analogous to what has been
described in section 1.3.1, by restricting the variation of the thickness func-
tion, for example in the form of a constraint on the slope (gradient) of the
thickness function. Example solutions with a point wise bound on the slope
of the thickness of a rotational symmetric plate were first shown in Niordson
(1983).

The computational procedure for computing optimal plate designs is com-
pletely analogous to the procedure described earlier in this chapter and the
optimality criteria and sensitivity calculations carry over ad verbatim, with
strains and stresses interpreted as curvatures and moments, respectively.

Topology design for Mindlin plates We close this brief discussion on
plate design by considering some models for the design of Mindlin plates.

The minimum potential energy statement for a constant thickness Mindlin
plate constructed from one material is of the form

{ L fo REQ e (Wen(w)dQ + L fo 2 By ki (w) ki ()dQ }

min i )
+1 fo AD§ ()73 ()dD = (f, fudf + f, tudr)

u

where f is the transverse and ¢t the in-plane load. The thickness of the plate is
denoted by h and we assume that the mid-plane is a plane of symmetry Also,
Ef;y is the plane stress elasticity tensor and D3 is the transverse shear stiff-
ness matrix. In Mindlin plate theory generalized displacements of the plate
u = (uj,ug,w,0;,0) consist of the in-plane displacements (ug, u2), the fibre
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Fig. 1.30. Resulting topologies for compliance minimization of square Mindlin
plates. The material volumes are restricted to 256% of the filled plates and the
plates are loaded with a force at the center. a) Simply supported and b) clamped
plate (from Pedersen 2001).

rotations (61,6s) and the transverse displacement of the mid-plane w The
associated membrane, bending, and transverse shear strains are, respectively,
== . Kij = -

2 0z; Oy Y29

+

€ij 3:0;]2), and Yi = 7 —01:

For plates there are several options for performing topology design, con-
nected to the possibility to also consider out-of-plane variations of the build-
up of the plate. For the design of a perforated plate one would thus use
thickness functions that attain values 0 or k, for example implemented with
the help of a density function p and a SIMP interpolation:

h=p°h Vol:/deQ
Q

Other possibilities is to consider reinforcement of a given plate or to consider
the design of a sandwich structure, where two outer skins are given and the
topology design deals with the topology design of the inper core [29].

1.5.4 Other interpolation schemes with isotropic materials

The use of SIMP or the penalized variable thickness formulation have in the
last few years been supplemented by some alternative interpolation schemes
that have certain theoretical or computationally advantageous features for
specific problems. As they fall within the class of interpolation models with
isotropic materials we briefly discuss them in this chapter. The use of com-
posites is the theme of Chap. 3.

Hashin-Shtrikman bounds The so-called Hashin-Shtrikman bounds for
two-phase materials express the limits of isotropic material properties that
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Fig. 1.31. Resulting topologies for compliance minimization of square Mindlin
cantilever plates. a) Design problem with loads for the first and the second load
case. b) Solution to one-load case problem with two upward oriented forces, c)
solution to one-load case problem with one force upwards and one downwards and
d) solution to two load case problem. The volume fraction is 50% (by Niels L.
Pedersen).

one can possibly achieve by constructing composites (materials with mi-
crostructure) from two (or more) given, linearly elastic, isotropic materials
[4]. These bounds give expressions of material parameters as functions of vol-
ume fraction, or for our purposes as functions of density p of material, and
can thus be employed as interpolation schemes (all material laws involved
will be isotropic). For our purposes we work with two materials, one with a
low stiffness E™™ and one with high stiffness E° The corresponding values
of the Poisson ratios are ™" and 1°

"The Hashin-Shtrikman bounds are typically expressed in terms of the bulk
and shear moduli of the materials , « and p (corresponding to the eigenvalues
of the stiffness tensor). Restricting ourselves here to 2-D plane elasticity, we
have for isotropic materials that

E E

REoa—w) FT 2+

(in 2— D).
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The bounds are then in terms of these parameters (in 2-D)!7 (we assume here
that k0 > k™ and p° > p™"):

min , o (1= p)p(s™™ — k%)

HS _

KHS o= (1 — p)™" + pK (1= p)KO + prmin + g0 (1.42)
HS min 0 (1 - p)p(“min _ “0)2

LS (1 s : (1.43)
upper (1= p)ul + pum™in + KTKE%G

o_ (1= p)p(r™™ — £°)2
Klower (1-p)x 4 pr= (1 - P)K,O + anin + umin , (144)
1— min __ ,,0}2
Hiower = (1= p)u™" + pp® — U=l I:m) min (1.45)

(1_ )u +pumm+n_mm__+_l;”_mm

Each combination of formulas k5, plfS =~ and «fiS. ., ullS. represents an

interpolation of the material properties of the two materials, and any convex
combination is also and interpolation scheme, which then satisfies the bounds.
Thus a whole range of schemes can be generated. Here the lower bound
interpolation penalizes intermediate densities most. Note that the Hashin-
Shtrikman bounds represent materials that have both a Young’s modulus
and a Poisson ratio that vary with density (even if the two base materials
have the same Poisson ratio).

If both materials have Poisson ratio equal to 1/3, then the upper and
lower bounds (and all convex combinations) also represent a material law
with Poisson ratio v = 1/3, and the bound can be expressed in terms of the
Young’s modulus only:

o pE0+(3—p)Emi“

Eﬂ)ze = 3 7
_ T (3 — 2p)EO + 2pEmin _
for v 1/3 E e (2 + p)EO + (l — p)Enun (146)
lower - 2(1 - p)EO + (1 + 2p)Emin
This reduces further if the weak material is void (E™" = 0):
pE° 0 forp<1,
Eupper = 3_—2—p Elower = {EO fO[‘ Z -1 , (147)

which is then an interpolation with void and with a material with v = 1/3
and Young’s modulus E° For many test cases in topology design one works
within this framework of v = 1/3.

17 The bounds are necessary conditions. It is known that not all combinations of
numbers k and p that satisfy the bounds actually represent the bulk and shear
moduli of a realizable material - see Chap. 2.
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Fig. 1.32. The interpolation using RAMP (solid curves) compared with the Hashin-
Shtrikman bounds (dotted curves).

SIMP and the Hashin-Shtrikman bound If we require that an inter-
polation model in any sense can be related to a composite made of the
given materials, then we should demand that the model satisfies the Hashin-
Shtrikman bounds stated above. For SIMP one of the material phases is zero,
i.e., E™" = (. Then the only relevant Hashin-Shtrikman bound (1.42) sim-
plify somewhat and it is possible to show that SIMP satisfies the bounds
if the power of the model satisfies the inequalities stated in (1.5) (Bendsge
& Sigmund 1999). As already noted, this does not assure that a composite
can actually be constructed. But we shall in Chap. 2 see how topology de-
sign (sic!) can be used to construct microstructures that realizes the SIMP
interpolation scheme.

An approach with rational functions In the section on the variable
thickness sheet problem it was seen how the expression of the compliance ¢
via the potential energy makes it possible to conclude that the compliance
in that situation is convex. On the other hand, if ¢ is derived in terms of the
complementary energy (cf., (1.7), we have that

¢ = min {/Cijklaijakldﬂ} (148)
cES Q
This shows that if one can make the compliance tensor Cyj, a concave func-
tion of the design, then ¢, as a minimization of concave functions, becomes
concave. And this is advantageous if we want 0-1 designs that are on the
“border” of the space of densities (this will be made precise below). For
interpolating the compliance we cannot work with vanishing stiffness, but
instead operate with a low stiffness E™i® and interpolate between this and
the properties E° (we assume constant Poisson ratio). The simplest concave
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interpolation of the inverse of the Young’s modulus F is then the linear one
(as proposed in Stolpe & Svanberg (2001b) and Rietz (2001)), which is

1 1 1 1
E(p) ~ Emin +p ﬁ - JEmin
This, in turn, corresponds to the following rational expression for E:

E(p) — Emin + 1+q(q _p) (EO _ Emin) (149)

where g = §, § = (BE° — E™™)/E™" (the corresponding expression for SIMD
is E = E™iv 4 pP (E? — E™in)). The relation given in (1.49) can also be used
for other values of ¢; the scheme has in certain circumstances been given the
acronym RAMP for Rational Approximation of Material Properties.

The interpolation (1.49) makes, by construction, the compliance a concave
function of p if ¢ is chosen as ¢ = ¢ (or bigger). Moreover, ¢ 0 gives
the linear interpolation (which makes compliance convex), and for materials
with Poisson ratio 1/3 the interpolation equals the Hashin-Shtrikman upper
bound for ¢ = 2(E® — E™")/(E® — 2E™i*) and the Hashin-Shtrikman lower
bound for ¢ = %(j. The intermediate densities are thus severely penalized for
larger values of ¢, cf., figure 1.5.4. A natural continuation method using this
interpolation scheme is then to begin the optimization procedure with ¢ =0
and then increase q until ¢ > §. The concavity of compliance for such large
values of ¢ implies the existence of a globally optimal 0-1 solution for a FE
discretized version of the problem, for example where we use element wise
constant densities in a mesh of squares, only the simple bounds 0 < p < 1 and
a volume constraint that is an integer times the volume of the base element
(Stolpe & Svanberg 2001b). This has the added side effect that one can
conclude similarly for the SIMP interpolation*®provided we choose p > (g +
1) If for example a perimeter constraint is added to the problem statement
this property does not hold any longer; however, the intrinsic penalization of
the interpolation still results in designs that are almost free of grey, if ¢ is
large enough. It is also worth noting that if E™™ is much smaller than E° (as
typical for finding the topology of a structure made from one material), then
the “magic” value ¢ becomes large (and infinite for the limit of E™® = ().

We remark here that if design of two-material structures is the goal of the
topology optimization, the RAMP model is in a sense more physical than
SIMP. The latter will always violate the Hashin-Shtrikman bounds for small
density values, while RAMP has a whole range of ¢ values for which the
bound is satisfied (for a Poisson ratio 1/3). However, RAMP does not satisfy
these bounds for the range of ¢ where the compliance becomes concave.

18 This follows from the property that for a given p, the SIMP interpolation gives
a higher compliance than the RAMP interpolation, when p > ¢+ 1.
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A Reuss-Voigt interpolation scheme The Voigt upper bound for the
effective properties of a mixture of two materials state that for any strain
field € we have that the strain energy W of the composite is bounded from
above by the expression

W < [pEdy + (1 — p)EGR €ijem »

where the two materials have elasticity tensors E° and E™", respectively, and
where the volume fraction of the material E° is p. Likewise, the Reuss lower
bound states that the energy W is bounded from below by the expression

min]—1
W > [pChig + (1 = PCER] ™ eizem

where C denotes the compliance tensors of the materials.

These two bounds can be combined to a convex combination to what has
been named a Reuss-Voigt interpolation scheme (Swan & Arora 1997, Swan
& Kosaka 1997a)

EYii(p) = [pEYy + (1 — p)EE] + (1 — a) [pChiyy + (1 — p)Cm] ™
(1.50)

Here a is a parameter which weighs the contributions from the Voigt and
Reuss bounds. If one of the materials is void, the interpolation introduces
a jump (discontinuity) at p = 1 which is not present if both materials have
some stiffness. In that case, for two materials that both have a Poisson’s ratio
of v = 1/3 we have that the Hashin-Shtrikman bounds are satisfied if and
only if @ =1/3 (Bendsge & Sigmund 1999).

Spline-based approach The SIMP interpolation scheme has zero slope at
zero density. Thus the stiffness converges to zero orders of magnitude faster
than mass and this has proven to be a difficulty when considering vibra-
tion problems. For benign computational behaviour in these problems (see
section 2.1) one needs an interpolation scheme where the ratio of mass to stiff-
ness (p/ E(p)) remains finite in the limit of vanishing density p. The RAMP
scheme and the Hashin-Shtrikman bound schemes have this feature. Another
way to secure this property is to construct a Bézier curve interpolation in
the (p, E)—plane that connects the two points (0,0) and (1, E°) and has
tangents (1, k1) and (1, ko), respectively, at the endpoints. As shown in Ped-
ersen (2002e), such a Bézier curve with four contrcl points can be given a
parametrization as

p(t) = —1—_—kl—(3t— 32) + 2
ky 1k , te[o,1]. (1.51)
E(t) = b ———(3t — 3t?) + 2

ky — k2
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For a given density, the first equation gives the corresponding parameter
value ¢, and this in turns gives the stiffness E. For (1.51) to satisfy the
Hashin-Shtrikman bounds for (Poisson ratio 1/3) one needs to choose the
slopes so that k; < 1/3 and k; > 3, and as for the other schemes, almost 0-1
designs are best achieved through a continuation method. Here that means
working with decreasing values of &; and increasing values of k.

1.5.5 Design parametrization with wavelets

The possibility of controlling geometric features of the designs that are ob-
tained from topology design has already been a central theme in section 1.3.1.
There such control is basically achieved by filtering techniques or by imposing
constraints on the pixel (voxel) based description of design. Another possi-
bility should be to work with alternative design descriptions that inherently
allows for some form of control of geometric complexity. This means that
one will express the density function p in terms of basis functions where the
coefficients will govern aspects of the geometry. A natural choice for such
a representation is wavelets, as these can represent data that is localized in
space as well as in frequency [11].

The general framework of wavelet representation of image data will not be
treated here. Instead we will indicate how one from a pixel representation can
construct an alternative design description that directly works with data at
different scales'® We take as the starting point the setting of the patch-based
checkerboard control described in section 1.3.2. As a first step of changing
the design representation one chooses to describe the density distribution in
the domain as

pz) = Z(Uilj bt vheh +uhel v o)
Pi;
where the basis functions d)fj, k=1,2,3,4, areillustrated in Fig. 1.20. In this
expansion the coefficients vilj represents the average value of the densities in
the patch, and the other coefficients express the local variations from this
average. One can now consider the larger scale mesh consisting of the patches
P;; and the corresponding average values v}j, which can be likened to standing
back from a picture so that local variations are averaged out. Here we can
again repeat this procedure of expanding in terms of basis functions (f)fj, k=
1,2,3,4, at this larger scale of working with 4-patches of the the patches P;;
(and the values vilj). This procedure is possible to perform if the number of
elements per side is 2M by 2%V, and it can be continued until the last patch
consists of the full domain divided into four “super-elements” In terms of

a design representation, we now have parameters that at different levels of

19 This is based on the discrete Haahr-wavelet and the associated Mallat decom-
position.



1.5 Variations of the theme 67

Fig. 1.33. A design with checkerboards, here shown in terms of its a) pixel values
and ¢) in terms of the basis functions ¢£-‘J-, k = 1,2,3,4: the top left quarter of c)
is the design in a spatial resolution which is half the original one, and the three
other quarters represent. the difference from this to the original design in various
ways. The original design in a) can be obtained by combining the four parts. In b),
checkerboards have been removed by setting the lower right comer of ¢) equal to
zero, as shown in d) (from Poulsen 2002).

fineness describe the density in terms of averages and variations from the
averages.

The alternative parametrization of design just outlined gives a direct way
to control the overall length scale from the level of fineness of the basis func-
tions that are applied. Moreover, it makes it possible to systematically do
the design process from coarse scale to fine scale (Kim & Yoon 2000). Fi-
nally, it makes it possible to work directly with a checkerboard-free design
space, as seen in section 1.3.2. However, the wavelet representation should
not be used directly in topology optimization, as it introduces a huge num-
ber of constraints associated with the condition 0 < p < 1 which regretfully
reduces computational efficiency. Instead, it is recommended to use interme-
diate variables as described in section 1.3.2 (Kim & Yoon (2000), Poulsen
(2002)).

We close this brief sketch by noting that wavelet based methods have also
been used as an alternative to finite elements for the analysis part of topology
design, see DeRose Jr. & Diaz (1999), DeRose Jr. & Diaz (2000). Moreover, it
is expected that use of more advanced wavelet bases than the Haahr-wavelet
should potentially lead to more refined methodologies to control geometry.
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1.5.6 Alternative approaches

The technique for topology design of continuum structures that is described
in this monograph is based on the concept of optimal distribution of mate-
rial, using interpolation of material properties together with mathematical
programming. As we shall see in Chap. 2, this is a universally efficient ap-
proach for a broad range of problems in engineering design. In parallel with
the development of this methodology, other schemes have also evolved [13].
Some of these work within the same modelling framework using algorithms
for discrete optimization or various types of growth/shrinking procedures,
but a completely different modelling paradigm can also be found in for ex-
ample the bubble method. We will here only briefly mention some of these
concepts, and refer to Eschenauer & Olhoff (2001) for a survey.

Solving the discrete problem The introduction of the interpolation
schemes for the 0-1 design problem is extremely useful as it allows for the use
of mathematical programming methods for continuous (smooth) problems.
However, it would be very useful if one could attack the original formulation
directly?® [13]. This has been done for the compliance design problem using
dual methods, that have been shown to be effective in the absence of local
constraints. Methods like simulated annealing or genetic algorithms have also
been tested for more general settings, but their need for many function eval-
uations is computationally prohibitive, but for rather small scale examples
(each call involves a costly finite element analysis on a grid at least as fine as
the raster representation of the design).

It has been shown recently (Stolpe & Svanberg 2001a) that for a broad
class of problems one can formulate the 0-1 topology design problem as a
linear mixed continuous-integer programming problem and this will no doubt
be useful for generating more efficient methods for treating the discrete format
in the future.

Growing and shrinking a structure; Bone remodelling Numerous
methods have been proposed for dealing with topology design without the
use of mathematical programming [13]. They are typically named as “evolu-
tionary” methods, but they are not in any way connected to the use of genetic
algorithms. On the contrary, these methods typically work with concepts that
are similar to the idea of fully stressed design, i.e., material is added to highly
stressed areas of a design and removed from understressed areas of the de-
sign, typically implemented by an addition or removal of elements from the
FE model.

Some implementations of such concepts are very similar to an optimality
criteria type algorithm, but the removal and adding of elements can lead to
erroneous results. This is basically because gradient information is used to

20 In a well-posed form, for example with a perimeter constraint.
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perform changes of variables between zero and one, as illustrated in Zhou &
Rozvany (2001) for the case of minimum compliance design.

It is interesting to note that many models used in bio-mechanics for bone
adaptation have a form which is similar to the optimality criteria algorithm
described in section 1.2.1 [7]. These models are usually based on energy argu-
ments and are not derived from an optimization principle. This similarity in
approach to material redistribution updates has also lead to bone adaptation
models being proposed as topology redesign methods.

Topological variations and level sets The concepts of topological deriva-
tives and the bubble method is based on utilizing ideas from the boundary
variations technique for shape design as a basis for topology design [13].

The topological derivative of a functional as compliance expresses the
sensitivity with respect to the opening of a small (infinitesimal) hole at a
certain position in the analysis domain. Likewise, in the bubble method a
criterion is developed that allows for the prediction of the most effective
location for creating a hole and this information is used to perform a boundary
variations shape optimization of the resulting topology. The hole placement
is then repeated in this shape optimized structure leading to good designs
with smooth boundaries. A direct application of the topological derivative in
a mathematical programming technique is presently not possible, as there is
no evident underlying parametrization available; implementations have thus
been based on techniques reminiscent of element removal techniques.

The application of level-set techniques for topology design have also been
proposed recently [13]. The contours of a parametrized family of level-set
functions are here used to generate the boundaries of a structure, and the
topology can change with changes in the level-set function. This technique is
in an initial stage of development.






2 Extensions and applications

In Chapter 1 we discussed the basics of the topology optimization method
applied to compliance minimization. Due to the simple form of the compliance
minimization problem, this problem was used as the fundamental test case
in the initial developments of the topology optimization method. Despite
its simplicity, the compliance minimization problem gives rise to non-trivial
theoretical and numerical problems such as checkerboards, mesh-dependency
and existence issues, and convergence to local minima. These problems have
to be dealt with before one can proceed to more advanced applications and
objective functions.

This chapter describes a range of advanced applications, emphasizing
problem formulations and solution procedures. New numerical and theoretical
problems like for example localized modes in low-density regions, one-node
connected hinges, instability of low density elements for geometrical non-
linear modelling, etc., appear for the more advanced applications, and we
here discuss methods to avoid them.

One of the most challenging and difficult parts of applying the topology
optimization method to new areas is to develop prudent choices and combi-
nations of objective functions and constraints. This is mostly based on many
experiments before arriving at “good” formulations that make physical sense
and which can be handled by the modelling and the optimization algorithms.
For example, structures that have been optimized with respect to a certain
load case may be useless when subjected to another load case. Therefore,
both {or more) load cases must be taken into account when formulating the
optimization problem. During the process it is important to interpret the
resulting topologies not only visually but also quantitatively. New methods
and formulations should if possible be compared with analytical results and
estimates. One should also check that the obtained results are better or at
least as good as intuitive solutions.

In this chapter we mainly use the SIMP approach (1.4) to interpolate
between solid and void material since this approach has proven to general-
ize easily to alternative applications. Unless otherwise stated we use filter-
ing of sensitivities (1.27) to obtain checkerboard-free and mesh-independent
designs. Also, the solution procedure follows the methodology described in
section 1.2. This means that the optimization is based on the use of den-
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sity as the primary variable, with state equations and associated sensitivity
analysis being treated as a function call. For this reason we write all opti-
mization problems with only the density as a free variable. Nonetheless, for
easy identification of problem structure we still include the state equations
in the formulation. Finally note that we throughout this chapter base all
formulations on a discretized FE format.

The chapter is not meant as a comprehensive review of the area of
advanced applications of topology design methods (see the bibliographical
notes). Rather, we quite naturally orient the developments toward projects
in which we have personally been involved.

2.1 Problems in dynamics

One of the first applications of the topology optimization method outside of
compliance minimization was in eigenvalue optimization for free vibrations.
This problem is relevant for the design of machines and structures subjected
to dynamic loads [14]. For example, one mnay wish to keep the eigenfrequencies
of a structure away from the driving frequency of an attached engine or one
may wish to keep the fundamental eigenfrequencies well above possible dis-
turbance frequencies. Also, structures with high fundamental eigenfrequency
tend to be reasonable stiff for all conceivable loads and therefore maximiza-
tion of the fundamental frequency results in designs that are also good for
static loads.

In specialized cases, one may wish to maximize the dynamic response of a
structure. This may be the case in sensors where the output signal is depen-
dent on the vibration amplitude, in actuators where resonance phenomena
may increase performance or in musical instruments and loudspeakers where
the radiated sound power {over a wide spectrum of frequencies) should be
maximized.

2.1.1 Free vibrations and eigenvalue problems

A commonly used design goal for dynamically loaded structures is the maxi-
mization of the fundamental eigenvalue A.ip,. The problem formulation may
be written as

max 4 Apin = min
p {mm i=1,....Naog ’}

s.t. (K - )\IM)Q’Z = 0, 1= 1, .- ,]Vdgf (21)
N
ZvepeSV, 0<pmin<pe<l, e=1,...,N
e=1

where K and M are the system stiffness and mass matrices, respectively and
®; is the eigenvector associated with the i’th eigenvalue. In practice one does
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Fig. 2.1. Top: A reinforcement problem. Maximization of the fundamental eigen-
value of a 5-bay tower structure where the outer frame structure is fixed to be
solid. Below: Maximization of the fundamental eigenvalue of a structure with non-
structural masses (each with a mass of 10% of the distributable mass) attached
on the rightmost corners. The structures are shown in their fundamental mode of
vibrations.

not solve for all Ng,y modes of the eigenvalue problem. Only the first up to
10 modes will usually play a role in determining the dynamical response of a
structure.

Note that the problem (2.1) as stated has a trivial solution: one can
in principle obtain an infinite eigenvalue by removing the entire structure.
Therefore, the eigenvalue problem (2.1) is often used in “reinforcement” prob-
lems where parts of the structure are fixed to be solid (see Fig. 2.1) or there is
a finite minimum thickness of the structure like a fixed shell thickness in the
reinforcement optimization of an engine hood. Alternatively, non-structural
masses may be added to parts of the design domain (see Figs. 2.1, 2.2 and
2.3).

An alternative to the formulation (2.1) is to apply the so-called bound-
formulation

max
ax f
s.t. ’\12.67 izl,...,Ndo‘f
(K—-AM)®; =0, i=1,...,Nys (2.2)

N
ZvePeSV, 0<Pmin§ﬂefl, 621,...,N
e=1

The sensitivities of a single modal eigenvalue are simply found as
O\ 7 |OK oM

= ®; - i | B
Ope ¢ [ape ) 6Pe] v
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where it is assumed that the eigenvector has been normalized with respect
to the kinetic energy, i.e. 8T M®; =1

For a solution where the optimum eigenvalue is single modal, the im-
plementation of (2.1) is straight forward although one should note that the
sensitivities of eigenvalues, as opposed to the sensitivities of the compliance
objective, may take negative as well as positive values. This is not a problem
when using mathematical programming methods for the optimization but
it requires a small modification for an application of the optimality criteria
algorithm. The density update (1.13) used in compliance minimization

e

_880 n
= pk[Bk]" = be 2.3
Pr+1 = pk|Bk] 'DK[AU] (2.3)
must for eigenvalue maximization be changed to

—mia)]"
max(0, )] (2.4)

= px|Bk]" = 9p-
Pk+1 = px[BK] px[ o

The bound-formulation problem (2.2) may be solved using mathematical pro-
gramming solvers like for example MMA.

In the case of repeated eigenvalues, the eigenvalues are non-differentiable
and ignoring this usually results in bad or wrong convergence of the algorithm.
Nonetheless, many results and algorithms can be found in the literature that
completely ignores this possibility of repeated eigenvalues. The problem is
actually well understood; thus the sensitivity analysis for repeated eigenvalue
problems should be performed as suggested in (Seyranian 1993, Seyranian,
Lund & Olhoff 1994), while the non-smoothness can be handled in a number
of ways [14] (see also Sect. 4.4.3).

For the formulations above, the optimized structures will often have a
multi-modal eigenvalue and this may be critical for stability. In order to
prevent multiple eigenmodes, one may require that the second eigenvalue is
some percent bigger than the first, the third is some percent bigger than the
second and so on. These constraints may easily be applied by rewriting the
bound formulation (2.2) to the format:

max
a B

st. [@f > B, i=1,...,Ngy
(K- MM)®; =0, i=1,...,Ngy (2.5)

N
Z'Uepeﬁv, 0< pmin <p. <1, e=1,. .,N
e=1

where e.g. @ = 0.95 (in (2.5) each eigenvalue is multiplied with « in the power
1). In this way one also eliminates the problem of non-differentiability at the
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Fig. 2.2. Optimized topology for maximization of the fundamental eigenfrequency.
The design domain is a simply supported Mindlin plate with a 10% non-structural
mass at the center and volume constraint of 60% of the total volume (from Pedersen

2000D).
(b)

s D

(c)

Fig. 2.3. Maximization of the fundamental eigenfrequency for pre-stressed Mindlin
plates. The plates are clamped at all edges, there is a 10% non-structural mass
attached to the center and the distributable amount of material is 256% of the
total volume. The pre-stress levels are a) 011 = 022 = 0, b) o1 = 022 = 10, ¢)
o011 = 022 = 25 and d) 01; = g22 = 100 (from Pedersen 2001).

optimum for a multiple eigenvalue solution. However, one should be careful
when using this method since the constraints may prevent the eigenmodes in
switching during the optimization. Therefore convergence to better solutions
may be jeopardized.

Another pitfall in eigenvalue optimization is the use of symmetry toreduce
problem sizes. Since eigenmodes may be asymmetric or totally non-symmetric
even for symmetric structures, the use of problem reduction by modelling and
optimizing only parts of the domain with symmetric boundary conditions
should be avoided, or at least, the results should be validated by analysing
the full problem after a design process that has forced symmetry. Problem
reduction by use of design variable symmetries and not analysis symmetries
is recommended and may in certain cases eliminate the problem of non-
differentiability of repeated eigenvalues (Kosaka & Swan 1999).



76 2 Extensions and applications

For topology design based on interpolation models (isotropic or not) an-
other issue becomes significant in eigenvalue optimization (both for vibration
and buckling problems). This is the appearance of “artificial modes” in low
density regions. For vibration problems, artificial modes appear as very local-
ized modes (groups of a few elements) in regions with relatively large mass to
stiffness ratio. For the SIMP interpolation, this happens for the density going
to zero. If the element mass is linearly dependent on the element density p,
and the element stiffness depends on the power of the element density (p.)?,
the ratio of the stiffness and the mass will go towards zero when the density
goes to zero. This gives rise to very low eigenfrequencies in low density re-
gions. The problem may be avoided by modifying the stiffness interpolation
using one of the methods described in Sect. 1.5.4; the key is to provide for a
ratio of mass to stiffness that remains finite in the limit of vanishing density.

An alternative way to solve eigenvalue optimization is by interior point
methods for mathematical programming problems with matrix inequalities
[14]. This is discussed for truss structures in Sect. 4.4.3. However, one should
bear in mind that the truss example is more benign than the general case,
as the problem there is a convez so-called SDP (semi-definite programming)
problem. However, recently developed algorithms for non-convex SDPs should
also be able to cater for the general eigenvalue problem (see Sect. 4.4.2).

2.1.2 Forced vibrations

In some situations one may want to minimize or maximize the dynamical
response of a structure for a given driving frequency or frequency range. An
example of the former could be for an airplane where the vibrations in the
structure should be minimized at the frequency of the propeller. For the
latter, examples are a sensor which should give a large output for a certain
driving frequency or a clock frequency generator that should vibrate at a
certain frequency for least possible input.

For solving this type of design problem we define the dynamic compliance
as driving force times magnitude of the displacement and express the goal for
the dynamical response in terms of this compliance. An optimization problem
solving the problem of minimizing the dynamic compliance of a structure
subject to periodic forces, £(£2), with frequency 2, can then be written as

rr;i)n {c = (fTu)z}

st. (K—2°M)u=f

N
ZvePeSV, 0<pmin <pe <1, e=1,. .,N
e=1

The sensitivities of the objective function may by use of the adjoint method
be found as
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dc .7 [0K -, 0M
Ope =X [ape « 3Pe] "

where X is the solution to the adjoint problem
(K—2°M) A= —2(fTu) f

We readily see from (2.6) that for low driving frequencies {2, the results
obtained should correspond roughly to the results of solving static problems
(the term £2°M is a small perturbation to the stiffness matrix). However, for
higher driving frequencies we should expect different resulting topologies. It
can be shown that this formulation corresponds to forcing the closest eigen-
frequency away form the driving frequency. An interesting result obtained
using this formulation is seen in Fig. 2.4c. Here a tuned mass damper is vi-
brating out of phase with the input point, resulting in an almost complete
damping of the vibrations at the input point.

Other interesting results may be obtained when the driving force is located
at another point than the point where the amplitude should be minimized.
Such problems are considered in Sect. 2.11.

2.2 Buckling problems

Another important problem in structural optimization is the maximization of
the fundamental bucklingload of a structure [15]. The solution of the buck-
ling problem and its associated numerical problems have many features in
common with the dynamical problems discussed in the previous section.

Limiting ourselves to considering only linear modelling, i.e. small displace-
ments, the standard objective is to maximize the minimum critical load P,
(or equivalently to minimize 1/FP..;). Typically the optimization problem is
formulated as!

. 1 1
min = max —
P {Pcrit i=1,....Nyos F; }

1
s.t. [G(u) — FK] @®; =0, i=1,..., Ny (2.7)

N
ZvePeSV, 0<pmin<pe <1, e=1,...,N
e=1

where @; is the eigenvector associated with the ¢’th critical load and G(u) is
the so-called geometric stiffness matrix which depends on the displacements
obtained from the linear, static equilibrium problem Ku =f

! As K is positive definite and as G may not be positive definite, it is most natural
to work with 1/P.;; as an eigenvalue.
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Fig. 2.4. Optimized topologies for different driving frequencies. a) A zero driving
frequency gives a statically stiff structure. b) while a small driving frequency forces
the first eigenfrequency upwards resulting in a statically stiff structure. c) A larger
driving frequency results in a tuned mass damper, d) and an even larger driving
frequency forces the first eigenfrequency downwards and away from the driving fre-
quency. All four examples where solved as reinforcement problems for a given outer
frame and a stiffness ratio between black and white areas of 100:1. The structures
are shown in their deformed states corresponding to the forced vibration mode.

In practice one does not solve for all Ngo; modes of the eigenproblem in
(2.7). In the beginning of the design iterations there is usually only one or
two critical eigenvalues whereas towards the end, up to 10 eigenvalues may
cluster above the most critical eigenvalue. The number of eigenvalues close
to the most critical eigenvalue should be monitored during the iterations.

Alternatively, one may reformulate (2.7) to a bound-formulation

min
i B

1
t = =1,. .,Ng
8 Pz .37 ) siVdof
1
[G ll) - —K] 'I’i = 0, = 17~-~7Ndof (28)
P;
N

<
(
’UePeSV) 0<P7m’n§ﬂe§17 621,...,]\7.
1
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The sensitivities of a single modal eigenvalue are found as

Onin 7 [0G 1 0K 70K
— =@ - — .
dpe U len T FRo] BT o 29)
where v is the solution to the adjoint load problem
Kv = @TB_G('L)QI_
ou

In the literature one can sometimes find that the last term of (2.9) is
ignored, but this should of course be avoided. We also remark that the issues
associated with multiple eigenvalues discussed for vibration problems are also
important for buckling problems.

As was the case for dynamical problems, artificial modes may also here
appear in low density regions where the (non-linear) geometrical stiffness is
high compared to the linear stiffness. To avoid the problem of artificial local
modes one can ignore the geometrical stifiness of low-density elements (Neves,
Rodrigues & Guedes 1995). This approach corresponds to ignoring the mass
of low-density elements in the vibration problem. This cut-off method seems
to stabilize the problem but may cause oscillations of the algorithm due
to abrupt changes in the values of the objective function and sensitivities.
However, a smooth version of this approach can be obtained by writing the
interpolation schemes in a slightly different way for the two stiffness matrices:

For matrix K Ex = [pmin + (1 — pmin) p¥} E°
For matrix G Eg = [pP] E°

where ppin is the minimum density normally imposed in the topology design
problems. This method seems to eliminate the problem for our test cases.

Solutions to a buckling problem are shown in Fig. 2.5. All the three towers
are optimized within a formulation that corresponds to (2.5) combined with
(2.8). With @ 0.99, the second buckling load was thus required to be
1% higher than the first, etc. For the low tower (Fig. 2.5a), the first five
eigenvalues of the resulting topology are governed by the buckling constraint.
During the optimization process these five critical modes take turns in being
the most critical mode. This means that convergence is very slow since only
very small steps can be taken in order not to violate the bound constraints.
For the higher towers (Fig. 2.5b and c), initial convergence is faster since only
the first global buckling mode is active. For the “almost optimal” structure a
local mode in the top vertical parts of the structure becomes just as critical
as the global mode and convergence again becomes slow.

2.3 Stress constraints

Imposing stress constraints on topology optimization problems is an ex-
tremely important topic. However, several challenges must be overcome in
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Fig. 2.5. Optimal re-enforcement of portal frames for maximum fundamental buck-
ling load. a) 40 by 40 elements discretization. b) and c) 120 by 30 element discretiza-
tions where b) is a re-enforcement problem where the outer frame is fixed to be
solid and ¢) allows a free distribution of 50% material. The buckling load for the
second tower c) is 1% lower than for the first tower b).

order to solve the problem efficiently. This section discusses some possible so-
lution methods. However, the best way to solve stress constrained problems
has probably yet to be suggested. Literature relevant for the stress problem
is found in literature section [16)].

2.3.1 A stress criterion for the SIMP model

For the 0-1 formulation of the topology design problem a stress constraint is
well-defined, but when a material of intermediate density is introduced, the
form of the stress constraint is not a priori given.

A stress criterion for the SIMP model should be as simple as possible (like
for the stiffness-density relation), and the isotropy of the stiffness properties
should be extended to the stress model. Moreover, for physical relevance
it is reasonable that the criterion should mimic consistent microstructural
considerations as for example illustrated in appendix 5.4.4. This leads one
to apply a stress constraint for the SIMP model (with exponent p) that is
expressed as a constraint of the the von Mises equivalent stress oym:

ovm < pPa ifp>0. (2.10)
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Optimum

Fig. 2.6. The stress singularity problem. Left: a typical feasible set of design vari-
ables for a minimum weight stress constrained problem with two variables. The
optimum solution is only connected to the interior of the feasible set by a line.
Right: relaxed design problem that enhances the chance of finding the right opti-
mum.

This constraint reflects the strength attenuation of a porous medium that
arises when an average stress is distributed in the local microstructure, mean-
ing that “local” stresses remain finite and non zero at zero density (cf. ap-
pendix 5.4.4). This results in a reduction of strength domain by the factor
PP We see that the same exponents are used for the stiffness interpolation
and the stress constraint. Choosing another exponent is not consistent with
physics and using an exponent that is less than p can for example lead to an
artificial removal of material (see Duysinx & Bendsge (1998)).

The classical stress-constrained optimization problem consists of finding
the minimum weight structure that satisfies the stress constraint and which
is in elastic equilibrium with the external forces, that is, we have a design
problem in the form

N
min Z:vepe
e=1
. Ku=f,
(UP)VMSPgUIifP>07 0<pmin§pe§17 €=1,...,N

where the stress for example is evaluated at the center-node of the individual
FE elements.

2.3.2 Solution aspects

Constraint relaxation The so-called “singularity” problem associated with
stress constraints requires special care when dealing with topology design
problems [16]. It was first identified for truss problems and arises from a
“degencracy” or an “irregularity” of the design space. The key effect is that
the feasible set in the design space contains degenerated appendices where
constraint qualification (the Slater condition) does not hold. This means that
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classical optimization algorithms based on Kuhn-Tucker conditions are un-
able to reach the optima that are located in these regions. In other words, a
standard optimization algorithm is not able to completely remove some low
density regions and to find the true optimal topologies.

One approach to circumvent this complication is to reformulate the prob-
lem as a sequence of problems that have nicer properties and which can give
solutions that converge to the true design (like a continuation method). First,
we note that in a topology design problem, the stress constraints should only
be imposed if material is present. To eliminate the condition p > 0 from the
constraint, one considers a modified formulation:

p (”VM - 1) <0 (2.11)

pPoy

For bars in a truss, this is equivalent to considering forces instead of stresses
[16]. Unfortunately, this reformulation does not change the problems with
constraint qualification, and additional measures are required. One method
is to rewrite the stress constraints using the e-relaxation approach proposed
in Cheng & Guo (1997). This relaxation? is a perturbation of the original
problem where the original stress constraints are replaced by the following
relaxed stress constraints and associated side constraints:

T P
p (,DI\:C’:: - 1) <e(l-p) € = prmin < P, (2.12)

where € 1s given. For any € > 0, the e-relaxed problem with the constraints
(2.12) is characterized by a design space that is not any longer degenerate,
and the factor (1 — p) on € assures that the real stress constraint is imposed
for p = 1. It is thus possible to reach a local optimum with optimization
algorithms based on Karush-Kuhn-Tucker conditions. If we can find the global
optimum p, then for ¢ — 0, the sequence of feasible domains and their
optimal solutions {p*} converge continuously towards the original degenerate
problem and its associated optimal solution (see [16]).

The solution procedure thus now consists in solving a sequence of opti-
mization problems, for decreasing € , in a continuation approach similar to
what is done with barrier and penalty functions. The implementation process
is here driven by the minimum density p,.:, = €® and choosing a quite large
initial minimum density is necessary to obtain reasonable results. We remark
here that the method may fail if the problem is such that there are many local
minima for the relaxed problems; as shown in Stolpe & Svanberg (2001¢) this
may happen even for rather simple truss examples. An alternative approach
is to not rely on gradient based techniques, see the discussion in Achtziger
(2000).

2 Relaxation in the sense of mathematical programming.
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Implementation aspects The local stress criterion adds a large number
of constraints to what is already a large scale optimization problem. Thus
it is important to apply an active set strategy which at each iteration step
preselects the potentially dangerous stress constraints to be considered. At
the beginning of the optimization process, the selection is large, but at the
end of the optimization the set of active constraints is stable and it can be
restricted to a fraction of the elements.

For working with MMA (or CONLIN) it is also important to treat the
stress constraint in a form which is suited for the approximation strategies
of these methods (Duysinx & Bendsge 1998). Thus the stress constraints
should be written as (observe that the density variables are strictly positive
for € > 0):

o _ £ +e¢ < 1.

pPar p
A global stress constraint An alternative to working with the local con-
straints is to use global L7 constraints that for large ¢ approximates the local
constraints. This can be implemented in the form (Duysinx & Sigmund 1998):

N g 1/q
Zmax({O,UVM—E+e}) <1
e~1 ppU[ p

This is just one constraint, so the savings in computational effort is im-
mense. The difficulty is the numerical problems associated with using large
g. Computational experiments shows that ¢ = 4 is a good choice; however,
for problems with very localized high stresses (like an T.-shape) one cannot
assure that the stress is below the critical value in all areas. Nonetheless,
the designs one can obtain are quite reasonable compared to using the very
cumbersome local constraint.

Example The MBB beam problem is here first optimized within a minimum
weight and stress constrained formulation, and the result of Fig. 2.7a was
produced with a finite element mesh of 45 by 15 nine node finite elements.
This design has a compliance value of 306.3Nm and a volume of material of
1.0632m3, which is approximatively 33 percents of the volume of the total
design area. This compliance value is used for a new problem where the
volume is minimized while the compliance is bounded to the same level as
that of the stress design. As one can see in Fig. 2.7b, this compliance design
is different from the stress constrained one. The volume of the design is
lower, at 0.9177m3, and the topology as well as the thicknesses of the bar-
like members are different. This demonstrates that stress constraints have a
non-trivial influence on the topology design even for simple problems. Note
that the results here do not apply any mesh independency constraints. Thus
if we refine the mesh, see Fig. 2.7¢, we see changes in the design.
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Fig. 2.7. The MBB beam. a) stress design and b) compliance design with 45x15
finite elements, and c) stress design with 60x20 finite elements (from Duysinx &
Bendsge 1998)

As demonstrated in Pedersen (1998), compliance design and stress de-
sign are equivalent if the stress criterion is consistent with the elastic energy
measure. However, we consider here the von Mises criterion, which is not
consistent with the energy criterion, except if the material is incompressible
i.e. if the Poisson’s ratio is 0.5. Therefore it is not surprising to observe a de-
viation between stress and compliance topology predictions for cases where
the stress state is characterized by hydrostatic pressure in some areas.

Stress concentration For stress constraints one has to pay special attention
to domains or problems that introduce a stress singularity (like in the inner
corner of an L-shaped domain). The real difficulty for such situations is not so
much in the optimization part but more the numerical problem of capturing
the high stress at the corner. The optimization solution is of course strongly
dependent on the quality of the analysis, and for most applications the stress
constrained design optimization should be coupled with a much more refined
analysis, using for example mesh adaptation.

2.4 Pressure loads

An example of design dependent loads is pressure loads. Since the direction
as well as the position of attack of the pressure loads depend on the boundary
between solid and void and because the boundaries are not well defined in
topology optimization problems, topology design with pressure loads is a
highly challenging problem [22].

The optimization problem is the classical one of compliance minimiza-
tion of a structure where the design parameters are the volumetric material
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Fig. 2.8. Optimization of an inlet. Two separate parts of the structural surface
are subjected to pressure loads. The design domain with the pressure initially dis-
tributed to narrow white internal channel is shown to the left. To the right is shown
the optimized topology for a volume fraction of 40%. The pressurized surfaces are
marked with grey lines (from ITammer & Olhoff 2000).

densities throughout the design domain. The novel aspect here lies in the
type of loading considered which occurs if free structural surface domains
are subjected to forces where both the direction, the location, and the size
can change with the material distribution. Examples are pressure and fluid
flow loading with the direction and location of the load changing with and
following the structural surface.

The compliance of the structure is written as

¢ (u) :/ fudQ+/ tudl“+/ pudl’,
Q I r

P

where an extra term representing the design dependent load - here a pressure
p — acting on parts of the boundary I, of the material domain.

In the work of Hammer & Olhoff (2000), (2001) the optimization process is
performed by successive iterations making use of the finite element analysis
model with fixed mesh on the one hand, and the design model with the
parametrized iso-volumetric density surface for the pressure loading on the
other. The load surfaces in the design model are controlled by the density
distribution in the finite element model and in turn fully determine the giobal
load vector on the finite element model. Thus the sensitivity analysis is based
on both the analysis model and the design model. In the sensitivity analysis
also the sensitivities of the load vector with respect to a design change must
be evaluated, and this is done analytically. The problem is solved by an
optimality criteria method.

The example in Fig. 2.8 models the inlet from a channel to a larger pres-
sure chamber. The material around the inlet is prescribed to be solid and
non-changeable. Here, two domains of the structural surface are subjected
to pressure, and the initial pressure distribution is shown along with the de-
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sign domain in figure 2.8(a). The value for the iso-volumetric density line p.
was initially chosen to be 0.25, and then gradually increased to p. = 0.85.
Other shapes of the initial small channel leading the pressure from the inlet
to the chamber could of course have been chosen, but the final design seems
unaffected thereof.

2.5 Geometrically non-linear problems

For compliance minimization problems displacements are typically small and
the problems may be modelled using linear finite element theory. For soft
structures, slender structures and mechanisms, however, it is imperative that
the problems are modelled using geometrically non-linear finite element anal-
ysis. This section discusses objective functions and modelling issues related
to stiffness optimization of structures undergoing finite displacements [17].
Later sections will discuss compliant mechanism design, crashworthiness de-
sign and other design problems involving geometrical non-linearities.

Structures undergoing large displacements may or may not be subject
to large strains. In this section, we assume that strains are small and hence
material non-linearity can be ignored.

2.5.1 Problem formulation and objective functions

The general topology optimization problem for situations with geometrical
non-linearities can in broad terms be written as

min ¢
i (p)

st. T=0, (2.13)

N
ZUePeSV7 O0<pmin<pe<l, e=1,...,N
e=1

where r is the residual in obtaining the structural equilibrium, c¢{p) is the
objective functions to be defined later and all other symbols have been defined
previously.

This topology optimization problem only differs from the standard topol-
ogy optimization problems in that the equilibrium r = 0 must be found using
an iterative procedure. For the linear analysis problems discussed in Chap. 1,
the equilibrium is found from the solution of a linear system of (finite element)
equations.

In the following we use the (non-linear) Green-Lagrange strain measure
to model the strain-displacement relations, that is

1
Mg = 5 (g + wj + Uk k)
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where u is the point-wise displacement and subscript “;” means differenti-
ation with respect to coordinate j. For later use we define the displacement
dependent matrix B as the matrix that transforms a change in displacement
du into a change in strain, i.e.

dn = B(u) du,

where u is the finite element displacement vector.
The (linear) Hooke’s law for Piola-Kirchhoff stresses and Green-Lagrange
strains with SIMP interpolations is written as

_ 0
8ij = p° Ejjgg Tt

where E?j 1 18 the constitutive tensor for a solid, linear, isotropic material.

The residual is defined as the error in obtaining the equilibrium
r(u) = f—/ B(u)"s(u) dV (2.14)
v

where f is the external force vector and s is the Piola-Kirchhoff stress writ-
ten in vector form. Following a Total Lagrangian approach, the integration
is performed over the undeformed volume. The equilibrium has been found
when the residual vector is equal to the zero vector. This finite element equi-
librium may be found incrementally or in one load step using the iterative
Newton-Raphson method. Both kinds of methods require the determination
of the tangent stiffness matrix

or

Kr=—-——.
T Jdu

For further details on the derivations of the finite element matrices for ge-
ometrically non-linear systems, the reader is referred to standard books on
non-linear finite element theory (see e.g. Zienkiewicz & Taylor (2000) or Cr-
isfield (1997)).

2.5.2 Choice of objective function for stiffness optimization

The first goal we consider is to maximize the stiffness of a structure undergo-
ing large deformations. Several different objective functions may be consid-
ered in order to solve this task and we will here deal with three possibilities,
namely: minimization of end-compliance, minimization of a weighted sum of
end-compliances and minimization of the complementary elastic work (Buhl,
Pedersen & Sigmund 2000). These objective functions are discussed in the
following.
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Minirnization of end-compliance The natural choice of objective func-
tion with regards to an efficient numerical implementation is the minimiza-
tion of the compliance in the deflected configuration here denoted “end-
compliance” The calculation of the end-compliance is simple since it only
requires the finding of one equilibrium, i.e. no incremental procedure is neces-
sary. Obviously the draw-back of this objective function is that the structure
may break down or collapse for loads lower than the design load, see below.

Defining end-compliance as the compliance of a structure in its equilib-
rium configuration, the objective function can be written as

c(p) = tTu,

where u is the displacement vector for the structure in its equilibrium
position. Assuming design independent loads, the sensitivity of the end-
compliance with respect to a change in element density may be found by
the adjoint method to be

de r Or
=2
dpe Ope

where the adjoint field A is the solution to the linear adjoint problem K4 A =
f

The sensitivity of the residual with respect to design changes is found
by differentiation of (2.14)® Solving the adjoint system is computatlonally
cheap because the factorized tangent stiffness matrix already has been found
during the equilibrium iterations and a solution only requires one extra for-
ward /backward substitution.

Multiple loading cases For multiple loading cases the objective function
is simply a weighted sum of end-compliances

M
c(p) = Zwi £ (2-15)
i=1

where M is the number of loading cases, f; and u; are the load and dis-
placement vectors of loading case ¢, respectively and w; are weighting factors
(EZ , wi = 1). The sensitivity analysis corresponds to a simple weighting of
the sensitivities of the individual loading cases.

Minimization of complementary work The last objective we constder is
the minimization of the complementary elastic work. Using the trapezoidal

3 Note that for a linear system, the partial derivative of the residual (assuming

design independent loads) is — —u and the adjoint equals the original displace-
ment vector u; thus the sensntlwty of the compliance becomes d‘ =—u” g:f u

as derived in Section 1.2.3
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method for numerical integration, the complementary work of the external
forces can be calculated as

n—1 1

+ > ulf) + 3 5 ulfn )] (2.16)

i=1

c(p) =W = AfT | =

where n is the number of increments in the load vector. The size of the in-
crements is determined by Af = (£, — fy)/n, where f5 and £, is the zero and
maximum load vectors, respectively. The sensitivity analysis for the comple-
mentary work is again found using the adjoint method as described for the
end compliance. This results in

n—1
de _ pgT [ 8r° Z ANt 8r’ ,\T 8r"] (2.17)

dp. " dp

where A; and r; are the vectors of adjoint and residuals, respectively, for the
load increment ¢ This means that for the sensitivity analysis we simply have
to perform one extra forward/backward substitution for each load step and
sum the results in Eq. 2.17.

2.5.3 Numerical problemns and ways to resolve them

In the non-linear finite element analysis, we save computational time by
reusing the displacement solution from a previous topology iteration in the
new Newton-Raphson equilibrium iteration. This saves a considerable number
of finite element iterations, especially when the topology changes get smaller
near convergence. The computational time highly depends on the size of the
applied force. For relatively small forces, obtaining the optimal solution takes
1.5 to 2 times the time to obtain a solution using linear modelling. For larger
loads where local buckling can be observed, the timne in which the optimal
solution is found can be 5 to 10 times higher than for the linear case.

When the finite element analysis is based on the Green-Lagrange or other
non-linear strain 1measures, large displacements may cause the tangent stiff-
ness matrix to become indefinite or even negative definite. This phenomena is
observed frequently during the topology optimization process and results in
non-convergence of the equilibrium iterations. Numerical experiments show
that the problem occurs in low-density elements with minimum or close to
minimum stiffness (see Fig. 2.9). The problem is “artificial” since the ele-
ments with minimum stiffness represent void and therefore their behaviour
should not influence the structural response. Since the problem is an artefact
of the nmumerical model, different schemes may be devised to circumvent the
problem.

Ignoring convergence in low density elements Usually, the Newton-
Raphson iterative scheme is stopped when the changes in nodal displace-
ments get below a certain value. For the topology optimization case, non-
convergence occurs when the displacements oscillate in nodes surrounded by
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Fig. 2.9. a) Original mesh, b) distortion of finite element mesh causing ill-

convergence of Newton-Raphson procedure and c¢) prevention of ill-convergence by
ignoring “low-density” nodes (indicated by circles) in the convergence criterion.

“yoid” (minimum density) elements. Since these nodes should have no struc-
tural importance one can circumvent the problem by relaxing the convergence
criterion for these nodes in the equilibrium iterations, that is, those nodes
surrounded by void elements are eliminated from the convergence criterion
(see Figure 2.9¢) (Buhl et al. 2000). This solution to the problem is efficient
and seldomly causes convergence problems. In the few cases where the pro-
cedure does not converge after 20 iterations, the displacement vector is reset
to zero and the equilibrium iterations are restarted.

Element removal Another way to circumvent the problem is to remove
elements with minimum density from the design domain. Element removal
may jeopardize convergence to the right minimum since re-appearance of
material in the removed elements is impossible. Examples show that the
“re-appearance” of material is crucial for the design process. Therefore one
should include a criterion for the “re-appearance” of elements. This can be
based on the same type of filtering techniques that are used to ensure mesh-
independency (Bruns & Tortorelli 2001).

2.5.4 Examples

It is not typical that structures optimized for stiffness undergo large displace-
ments. Nonetheless it may happen for very slender structures or for structures
built from very soft materials such as Nylon.

Optimal topologies for maximum stiffness Results from minimizing the
end-compliance of a cantilever beam for three different load magnitudes are
shown in the right column of Fig. 2.10. The left column shows the topologies
obtained using linear modelling which are independent of the load magnitude.
We notice that the topology obtained for the large displacement modelling
and the smallest load is equal to the topology obtained with a small dis-
placement modelling. We also see that the non-linear topologies become less
symmetric for larger loads. Finally, we notice that the optimized topologies
become increasingly degenerated for larger loads.
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Fig. 2.10. Optimized topologies for end-loaded cantilever example. Left column:
Optimized topology for small displacement FE-modelling. Right column: Optimized
topologies for large displacement FE-modelling (from Buhl et al. 2000).

Fig. 2.11. Deformed configuration of the topology optimized for 144 kN (see
Fig. 2.10). Note that the right-most bar supporting the load is un-bent in the
deformed configuration (from Buhl et al. 2000).

The deformed state of the structure optimized for the largest load is shown
in Fig. 2.11. It is seen that the bar in the right side of the structure (which
supports the load) is vertical in the deformed configuration. In this config-
uration the bar is un-bent. For any other load the bar will bend, resulting
in a bad compliance for the structure. This example therefore demonstrates,
that minimization of the end-compliance may result in degenerated structures
which only can support the load they are designed for. However, the problem
is worse for the non-linear case. Here the structure may not only collapse for
a load having another direction than the design load, but it may also collapse
for a load which just in magnitude is different from the design load.

One can partially circumvent the problem of degenerated topologies by
applying a minimization of a weighted sum of end-compliances (cf. (2.15)).
Figure 2.12 shows a design optimized for two loadings, one pointing upwards
and one pointing downwards. As expected, the optimal topology is symmet-
ric and in fact cannot be differentiated in topology nor in compliance from
the results obtained for small displacement theory (see Fig. 2.10, left). It is
interesting to note that the compliance of the symmetric structure is only
2.5% lower than for the non-symmetric one shown in Fig. 2.10(right).

In other situations the results are not so convincing, and one may obtain
structures that still become unstable due to buckling at a load which is not
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Fig. 2.12. A two-load case problem with two large loads acting in opposite vertical
directions (from Buhl et al. 2000).

Fig. 2.13. Optimized topology for minimization of complementary elastic work
(from Buhl et al. 2000).

a design load; this depends very intricately on the choice of loads. The most
effective way to prevent this is to operate with the complementary elastic
work (cf., (2.16)). In this way, we can make sure that the structure is stable
for any load up to the maximum design load. An example topology obtained
for a load of 144 kN and 12 load steps is shown in Figure 2.13 and this is a
structure seemingly without degeneracies.

A force-displacement diagram for the results obtained for a) small dis-
placement modelling, b) end-compliance and c) complementary work mini-
mization is shown in Figure 2.14a-c. Notice that the topology optimized for
end-compliance has minimum deflection at the design load as expected, but
for smaller loads, it has the maximum deflection. The curves for the designs
obtained with linear modelling and with minimization of complementary work
are almost coinciding, with the latter designs being slightly stiffer for most of
the interval. It is also interesting to note that the topology obtained for linear
modelling has a higher maximum load than the two others. This means that
obtaining a slightly higher stiffness by using non-linear modelling is achieved
at the cost of a more critical response to load perturbations.

Optimization of a structure with snap-through effect The examples
above show that the inclusion of large displacements in the topology opti-
mization process does not significantly affect the resulting topologies. Also,
the force-displacement curves obtained for small displacement optimization
and complementary work minimization only differ by a few percent. How-
ever, in some cases the difference can be extremely large as will be seen in
this example.

Thus, for the design problem sketched in Figure 2.15 we obtain the so-
lutions shown in Figure 2.16a and b, using linear and non-linear analysis,
respectively. It is seen that the two topologies are totally different due to
the buckling effects. The topology obtained using linear modelling (Fig-
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Fig. 2.14. Force-displacement diagram for the topologies optimized for a) mini-
mum compliance using small displacement finite element analysis, b) minimum end-
compliance for large displacement analysis and loading of 144 kN and ¢) minimum
complementary elastic work and end-loading of 144 kN (from Buhl et al. 2000).

ure 2.16a) consists of two long beams under compression and when using
non-linear modelling the compressed beams buckle and the whole structure
snaps through. Using non-linear modelling in the design process, the result-
ing topology consists of two longer beams in tension and two short beams in
compression as seen in Figure 2.16b.

Obviously, the topology in Figure 2.16a is optimal also in the non-linear
case if the force is applied in the upward direction instead of in the downward
direction. To obtain a structure that is stiff for loads in both directions, the
topology can be optimized using non-linear modelling and two load-cases,
one acting upwards and the other acting downwards. The resulting topology
is shown in Figure 2.16¢ and is seen to be a hybrid of the two single-load
topologies.

The non-linear responses for the three topologies are shown in Figure 2.17.
It is seen that the topology which is optimized using linear modelling buckles
just below the design load, whereas the buckling load of the design optimized
using non-linear modelling is well above the design load. Moreover, the buck-
ling load for the two-load structure is also seen to be higher than the design
load.
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Fig. 2.16. Optimal topologies for the design problem in Figure 2.15. a) optimized
topology for small displacement finite element modelling and b) optimized topology
for large displacement modelling and c) optimized topology for large displacement
modelling and two load-cases (from Buhl et al. 2000).
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Fig. 2.17. Force-displacement diagram for the optimized topologies in Fig. 2.16
found using linear, non-linear and two-load non-linear finite element modelling
(from Bubhl et al. 2000).

2.6 Synthesis of compliant mechanisms

Compliant mechanisms attain their mobility from flexibility of their con-
stituents as opposed to their rigid body counterparts that attain their mo-
bility from hinges, bearings and sliders. The main advantages of compliant
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mechanisms are that they can be built using fewer parts, require fewer assemn-
bly processes and need no lubrication. Special care must be taken, however,
in designing compliant mechanisms in order to obtain sufficient mobility and
safety against failure due to fatigue. An important application of compliant
mechanisms lies in MicroElectroMechanical Systems (MEMS) which cannot
be manufactured using typical assembly processes and may not make use
of hinges and bearings since friction dominates at the small (typically sub-
milimeter) scale (Petersen 1982).

One of the most important objectives in compliant mechanism synthesis
(and rigid-body mechanism synthesis for that sake) is to be able to con-
trol the ratios between output and input displacements or output and input
forces which are described by the geometrical and mechanical advantages,
respectively. It is also important to be able to synthesize mechanisms with
prescribed output paths for given inputs.

Topology optimization of compliant mechanisms can be performed based
on continuum as well as truss and frame discretizations [18]. Each discretiza-
tion has advantages and disadvantages. The truss and frame formulations
may have crossing members which cannot be manufactured in microscale.
On larger scales, however, overlaps are allowed and may result in mechanisms
with larger displacement ranges. Here we concentrate on the continuum dis-
cretization but the basic procedures apply to truss and frame discretizations
as well.

As an example of a compliant mechanism design problem we consider the
displacement inverter in Fig. 2.18(left). The goal of the topology optimization
problem is to design a structure that converts an input displacement on the
left edge 1o a displacement in the opposite direction on the right edge. In
order to be able to transfer work from the input port to the output port, the
inversion must be performed in a structurally efficient way. Also, it must be
possible to control the displacement amplification of the mechanism. Finally,
the modelling of the input force and displacements should model physical
actuators that may have limited strokes, actuation and blocking forces. In the
following, we discuss a formulation that satisfies all of these requirements.

Since it is extremely important to use large displacement theory in com-
pliant mechanism design, this section is based on geometrically non-linear
modelling. The simplified problem for linear analysis, which may be used as
a first step into compliant mechanism design is discussed at the end of this
section.

2.6.1 Problem setting

Assuming that the input actuator is a linear strain based actuator it can be
modelled by a spring with stiffness k;, and a force fi,. Examples of strain
based actuation principles are piezoelectric, thermal or electrothermal heat-
ing, shape memory alloys, etc., which are characterized by their blocking force
(fin) and their free (un-loaded) displacement (fi./kin). An alternative to the
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Fig. 2.18. A basic compliant mechanism design problem: the displacement inverter.
Left: the basic design problem and Right: spring and load model for the input
actuator and workpiece. Example solutions are shown in Fig. 2.23.

linear strain based actuator could be a constant force actuator with a limited
stroke. Such an actuator can be modelled by a force f;,, and a non-linear
spring which has a very small stiffness up to the maximum stroke value u;,
and a very high stiffness after u;, so that further displacement is prevented.

The goal of the optimization problem is to maximize the displacement
Uoye (Or force or work) performed on a workpiece modelled by a spring with
stiffness k,u:- By specifying different values of k,,; we can control the dis-
placement amplification. If we specify a low value of k,,; we get large output
displacements and vice versa. In order to maximize the work on the output
spring, the available material must be distributed in the structurally most ef-
ficient way. An optimization problem incorporating these ideas can be written
as

max Ueput
P

st. r=0 2.18)

N
Z'Uepefv; 0< pmin<pe<l, e=1,...,N
e=1

where r is the finite element residual for the analysis problem with the ap-
plied load f;,. This optimization problem is very similar to the minimization
problem (2.13) formulated for the minimization of end-compliance.

We now express the displacement at the output point as ugy = 17u,
where 1 is a vector with the value 1 at the degree of freedom corresponding
to the output point and with zeros at all other places. Then sensitivity of the
output displacement can be found to be given as

a'u,,ut _ AT 61'

Ope Ope ’

where A7 is the solution to the adjoint load problem

KpA=-1.
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The simple compliant mechanism optimization problem (2.18) is of the
same form as the compliance minimization problems discussed in Chapter 1,
in the sense that a simple objective function is to be minimized within the
limitation of a single linear constraint on volume. Therefore, we may also
use an optimality criteria approach to solve it. However, the fixed-point type
density update (2.3) has to be modified since the sensitivity of the objcctive
function may take both positive and negative signs. A (heuristic) modification
that results in a fairly stable convergence is

Buoue V17
w1 _ i |max(0, — )
P TP |\ T

Whereas the damping coefficient 7 for linear compliance minimization prob-
lems was chosen as 0.5 in order to ensure stable convergence, it sometimes
has to be chosen a bit lower to ensure stable convergence in compliant mech-
anism design problems. The best convergence, however, is obtained using a
mathematical programming algorithim like MMA.

The problem formulation for compliant mechanism synthesis described so
far is very simple and does not allow for multiple inputs or outputs or for
a very detailed control of the output ports* The following sections discuss
extensions that cater for such aspects.

2.6.2 Qutput control

Control of output direction Example solutions to the inverter example
in Fig. 2.18 are shown in Fig. 2.23. It is herc assumed that the structure is
symmetric and therefore the output displacement is a horizontal movement.
In other cases where the output displacement does not coincide with a line
of symmetry or if an inclined output displacement is specified, the problem
formulation (2.18) does not ensure an output displacement along the desired
direction. It only ensures that the component of the output displacement
along the desired direction is maximized. This effect is clearly seen in the
example of Fig. 2.19b where the output displacement is maximized in the
negative horizontal direction. However, the vertical displacement of the re-
sulting topology is actually bigger than the horizontal displaccment.

This problem can be handled by adding an extra constraint to the opti-
mization problem (2.18). The constraint ensures that the rclative displace-
ment 4,y perpendicular to the output displacement u,, is below a small
number ¢, i.e.

,&2

_¢2)_ut_ S 62 (219)
Uout

4 A Matlab implementation of the basic compliant mechanism design problem for
linear modelling and based on OC is found in Appendix 5.1.5.
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Fig. 2.19. Example with (b) and without (c) cross-sensitivity constraint.

where € is decreased during the design process. Adding an extra constraint
to the topology optimization problem is not problematic if one uses mathe-
matical programming (like the MMA) for solving the design problem. Never-
theless, one finds that much work in the area operates with all requirements
formulated in one objective function (with weighted multiple objectives) in
order to use simple algorithms. This has the disadvantage that it is difficult
to have precise control of the behaviour of the resulting mechanisms.

That the constraint (2.19) manages to control the output displacement as
desired is shown in Fig. 2.19¢. This topology is obtained with € = 0.01, that
is, a maximum cross-sensitivity between the two perpendicular output direc-
tions of 1%. The added constraint results in a mechanism with an entirely
different topology that ensures that the output point moves horizontally. It
is interesting to note that the extra constraint only penalizes the horizon-
tal output by 2% compared to the mechanism in (Fig. 2.19b) that has an
extremely high cross-sensitivity.

Multiple outputs Figure 2.20b shows an example design of a gripping
mechanism. Here the problem is formulated so that the vertical displacements
of the outer “jaws” is maximized, resulting in jaws that open like a pair of
scissors. In some cases one may require a parallel movement of the jaws.
This can be obtained by reformulating the objective function to a min-max
problem

mgx min {out,1, Yout,2}

where u,, ; is the displacement of the i’th output point. This problem may
be solved using a bound formulation for the two objectives wuowt,1, Uout,2, and
gives results as shown in 2.20c.

2.6.3 Path generating mechanisms

An important problem in compliant mechanism design is the synthesis of
path-generating mechanisms. Here, the output point of the mechanism is
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b)

Fig. 2.20. Example with parallel and non-parallel output displacements. a) Design
domain, b) the use of one output point results in a non-parallel opening of the ‘jaws’,
while c¢) the max-min formulation results in a parallel movement of the jaws.

required to pass through a number M of precision points defined by given
displacement vectors u},, .. An objective function formulated as the sum of
errors may then be written as

K

o(p) =Y (ourk — Wy )’ (2.20)
k=1

where ey is the k’th output displacement corresponding to the input load
step k.

For complicated output paths it does not make sense to attach a spring at
the output point in order to ensure an efficient force transfer, as done in the
previous subsections. Instead, apart from (2.20), we also require the output
point to pass through the precision points when loaded with counter loads
Pk, and pg 2, corresponding to counter-loads against the path and counter
loads perpendicular to the path at the points k, respectively. The objective
function may then be reformulated to

K K
C(p) = a; (uout,k,i - u;ut,k)27 (221)
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where a; are weighting factors and 1. 4, corresponds to the output dis-
placement vectors for no counter load (i=0), for the counter load against
the output path (i=1) and for the counter load perpendicular to the output
path (i=2). For further discussions on this scheme, the reader is referred to
Pedersen, Buhl & Sigmund (2001).

With the extended optimization formulation (2.21) which requires the
output point to pass through a number of precession points, it is possible to
synthesize mechanisms like the ones shown in Fig. 2.21. Here, the same in-
put displacement can be converted to a straight horizontal output, a straight
slanted output and an arch following output, respectively. It is not possible
to synthesize such path-generating mechanisms using linear (small displace-
ment) modelling.

An example of generating mechanisms that exhibits snap-through and
bistable behaviour is shown in Fig. 2.22. This is a highly complex topology
optimization problem and involves an arch-length-type finite element solver
and a lot of experiments in formulating objective functions and constraints
(Bruns, Sigmund & Tortorelli 2002, Bruns & Sigmund 2001).

2.6.4 Linear modelling

A linear version of the compliant mechanism design problem discussed above
may be used as an exercise and introduction to compliant mechanism design.
However, one must be aware of the severe limitations that such modelling
imposes (see Sect. 2.6.5). The linear optimization problem may be written as

MAax Yoyt
P

t Ku=f
s B (2.22)

N
ZUePeSV, 0< pmin <pe<l, e=1,...,N
e=1

If the load vector f is design independent the sensitivities can be found as

ot 70K
o _ .2
B0 A 3, u (2.23)

where (as for the non-linear case) A* is found as the solution to the adjoint
load problem K\ = —1

Compared to the implementation of the minimum compliance problem
only small changes are required for solving the linear mechanism design prob-
lem. Compared to the 99 line Matlab code needed for compliance design (cf.,
appendix 5.1.1), 105 lines of Matlab code can solve the linear mechanism de-
sign problem; we need to add six lines and change another 12 lines to adapt
the 99 line code into a code for compliant mechanism synthesis (see Appendix
5.1.5).
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Fig. 2.21. Path generating mechanisms with linear inputs. a) Design problem
where the output is required to follow a straight horizontal path, b) a straight
slanted path and c) an arch. d) Plots of the output paths of the synthesized mech-
anisms. Path-generating mechanisms cannot be synthesized using linear modelling

(from Pedersen et al. 2001).

2.6.5 Linear vs. non-linear modelling

The mechanism designs obtained using linear analysis typically behave dif-
ferently when modelled using large displacement analysis. In the best of sit-
uations one merely has inaccurate results but in the worst cases the results
are useless as large displacement mechanisms. Therefore, the use of geometri-
cally non-linear finite element modelling 1s absolutely essential for mechanism
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Fig. 2.22. Two-phase design process to generate a gripper mechanism that ex-
hibits snap-through and bistable behavior. In phase I, the goal is to generate a
topology that exhibits snap-through and bistable behavior from an initial design
with uniform rnaterial distribution. In phase II, the goal is to retain the bistable
behavior of phase I and maximize the gripping force on the workpiece while in its
deformed bistable configuration. a) Design domain. b/e) Optimal phase I/II load-
displacement trajectories (path O-A/path O-C) and clamping force histories (path
O-B/path O-D). Optimal phase I/II topology plots of the gripper mechanism in
c¢/f) their undeforrned bistable configurations (point O/point O) and d/g) their de-
formed bistable configurations (point A3/point C3). Note that the phase I topology
exhibits bistable behavior, a nonzero clamping force (point Bl) is applied to the
mechanism when the gripper is in its deformed bistable configuration (point A3),
the phase II topology retains its phase I bistable behavior, and the clamping force
(point D1) is improved by a factor of 4 when the gripper is in its deformed bistable
configuration (point C3) (from Bruns & Sigmund 2001).

synthesis. The inverter example in Figure 2.23 illustrates this. The goal in
this synthesis problem is to maximize the work performed on a spring in the
negative horizontal direction for an input force in the positive horizontal di-
rection as sketched in Fig. 2.18. The mechanism obtained for linear modelling
is shown in Figure 2.23a. When modelled using small displacement theory it
deflects as shown in Figure 2.23c. When modelled using large displacement
theory it deflects as seen in Figure 2.23d. We see that linear theory ignores
the locking of the two right-most bars when they reach the vertical position.
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€}

Fig. 2.23. Inverter synthesis. Design domain is seen in Fig. 2.18. a) Optimized
topology using linear modelling, b) optimized topology using non-linear modelling,
c) and d) deflection of a) using linear and non-linear modelling, respectively and
¢e) and f) deflection of b) using linear and non-linear modelling, respectively (from
Pedersen et al. 2001).

The mechanism topology obtained using non-linear modelling Figure 2.23b
does not have this problem (Fig. 2.18f) and its output displacement is, in the
large displacement setting, therefore more than two times higher than for the
linearly optimized mechanism in Fig. 2.18a.



104 2 Extensions and applications
2.6.6 Design of thermal actuators

In the applications of compliant mechanism design discussed so far the input
load was design independent. However, when designing for example thermally
dependent structures or thermal actuators the applied load depends on the
design. Example design problems are optimization of thermaj circuit breakers
or minimization of displacements and stresses due to thermal mismatch. Here
the temperature field is considered as uniform and the loads arise due to a
uniform change in the temperature.

The main difference in the design problem as compared to above is that
the sensitivity analysis has to take the dependent loads into account. We will
here just write the sensitivity expression for the linear case, were we have

Buout T [BK 81‘]

Bpe 3. Bpe

Here A7 is again found as the solution to the adjoint load problem
K\=-1

while the load vector is found as

f= Z . BEaATdV
e

where B is the finite element strain displacement matrix, E is the constitu-
tive matrix, « is the vector of thermal expansion coefficients and AT is the
(uniform) temperature change.

An example of thermal actuator design is shown in Fig. 2.24. The effect of
varying output springs is clearly seen. Note that topology optimized thermal
actuators have been manufactured and tested in microscale by Jonsmann,
Sigmund & Bouwstra (1999c).

2.6.7 Computational issues

Mechanism design should, as we have seen, preferably be carried out within
the framework of large displacement, non-linear analysis. Compared to stiff-
ness optimization (Sect. 2.5), the problems with excessive distortions of low
density elements and ill-convergence of equilibrium iterations are even more
pronounced for mechanism design. The methods of ignoring convergence in
low density elements or entirely removing low density elements as discussed
in section 2.5.3 must therefore be implemented.

One-node connected hinges In the examples of compliant mechanism
design shown so far, one notices that the resulting mechanisms are not truly
compliant but rather tend to have what amounts to almost moment-free one-
node connected hinges. This is especially the case for examples with large
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Fig. 2.24. Design of compliant thermal actuators with actuation caused by a uni-
form rise in temperature (linear modelling). Top row: Optimized topologies for
output spring stiffnesses of 2000, 200 and 20 N/m, respectively. Bottom row: Dis-
placements patterns of the optimized actuators.

output displacements, i.e., small transfer of forces. In reality the stress in
a sharp hinge would approach infinity and the structure would break, so
techniques to avoid them are required.

Like the checkerboard problem, one-node connected hinges are caused by
bad computational modelling that the optimization procedure exploits. In
the numerical model, the hinge is modelled by an artificially stiff corner to
corner connection of two Q4 elements. Moreover, the stress variations are
very badly modelled. The use of higher order elements only partly alleviates
the problem, and local stress constraint should probably be added to the
formulation. This is computationally prohibitive, so instead other methods
have been devised.

Only some of the checkerboard and mesh-independency schemes described
in Sect. 1.3 prevent the non-physical one-node connected hinges. For example,
the filter method which has been applied in all the examples shown so far is
based on a weighted averaging of neighbouring sensitivities. This means that
if the gain (sensitivity) in building a hinge is big enough, it will dominate
the average and cause hinges to appear. Also, the perimeter constraint will
not prevent the hinge since only a global constraint is imposed on the design.
The local gradient control will partly eliminate the problem but will result in
“grey” (intermediate density) hinges.
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Fig. 2.25. Hinge prevention by the NoHinge constraint (1.32) (from Poulsen
2001b).

Fig. 2.26. Hinge prevention by MOLE constraint (1.30) (from Poulsen 2001a).

The MOLE constraint (1.30) as well as the checkerboard (NoHinge) con-
straint (1.32) described in section 1.3 were developed precisely with the hinge
problem in mind and they do actually prevents hinges. The former method
furthermore imposes a minimum width of the hinge.

An alternative, but somewhat questionable, solution is to perform a post-
processing of the resulting topology and substitute the one-node connected
hinges with long slender compliant hinges. The post-processing may be based
on a contour plot of the topology as seen in Fig. 2.27.
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c) d) T

Fig. 2.27. Post-processing of topology optimization results for the inverter problem
from Fig. 2.18. a) Optimized inverter topology obtained using conventional element
based densities and c) optirnized inverter topology obtained using the nodal based
approach. b) and d) are 200 by 100 element structures based on an automatic (one
level) contour plot of a) and c¢), respectively. The originals have output displace-
ments of -1.18 and -1.11, respectively. The contour based structures have output
displacements of -1.09 and -1.12, respectively. Hinge stresses in the nodal based
structure (d) are approximately 80% lower than for (b). Full circles indicate highly
stressed hinges and dashed circles indicate better compliant and lowly stressed
hinges.

The recently suggested nodal variable method discussed in Sect. 1.3.2 actu-
ally makes the post-processing easier. Although the method is closely related
to the gradient constraint method, the method has the advantage that nodal
values in most cases takes the discrete 0-1 values whereas the element values
still take intermediate density values. However, basing a post-processing on
the nodal values results in nice, well-defined, and slender hinges. Figure 2.27
compares the post-processing step for the conventional FE schemes and the
nodal variable method. The resulting structure for the former case has some
very compact and highly stressed hinges, while the latter method gives a
topology with long and slender hinges. A disadvantage of the nodal variable
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method is the zig-zag interpolation of the boundary curves; however, this
may be removed by combining it with a filtering scheme.

2.7 Design of supports

Hitherto, we have only considered optimum structural design by material
distribution. However, the positions and amounts of supports in a structure
also play a major role in structural optimization, and substantial gains from
introducing design of supports is obtained for especially compliant mechanism
design [19].

If one can place supports anywhere in the design domain, the optimum
position of supports in a compliance minimization problem would be directly
under the load, causing zero compliance. Therefore, a judicious choice of the
possible location of the supports and their cost is in place.

The support design formulation consists in assigning rigid or no supports
to each element in a support design domain which may be a subset of the nor-
mal (material) design domain (cf., Buhl (2002)). As in material distribution
problems we convert this integer type problem into a continuous problem by
introducing an element support design variable £.. The model of the variable
support of an element in the FE mesh is sketched in Fig. 2.28. All the nodes
of the element are supported by variable stiffness springs and for high spring
stiffnesses this corresponds to fixing the element (as also used in the penaliza-
tion approach for imposing prescribed boundary conditions). We may then
introduce a diagonal element support stiffness matrix

Ks({e) = €ng.ev €e (S [{min§ 1]

where K, . is a diagonal matrix with“high” values compared to the diagonals
of the original stiffness matrix and ¢ is a penalization factor corresponding to
the power p for stiffness variables in the SIMP approach. The global stiffness
matrix may thus be assembled as

N N
K=Y pPK.+ Y &K,
e=1 e=1

To reduce the possibility of the design being forced into a local optimum,
a small lower bound &, is imposed on the support design variables. This
assures that the sensitivities always are non-zero making a re-introduction of
supports possible®

As for the material distribution part of the topology design problem, we
introduce a bound on the total support area S. For mechanism design this
bound is not very important but for stiffness problems the objective function

5 This effect may alternatively be obtained by using the RAMP or the spline
interpolation schemes (cf., Sect. 1.5.4) which have non-zero sensitivities for £ = 0.
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Fig. 2.28. Each node is supported by a horizontal and a vertical spring. Thus a
4-node element is supported by 8 springs.

will obviously be improved if more supports are added. In order to encour-
age or discourage the forming of supports in certain areas or along certain
boundaries, we introduce an element support cost factor f,. The constraint
on support area thus becomes Zivzl fele < S. If all f. = 1, the cost of sup-
ports is uniform, whereas if some support cost factors are set to higher values
(e.g. fe = 10), supports appearing in these elements will be discouraged. The
example in Fig. 2.29 demonstrates this aspect.

For compliance minimization (the linear case) , the optimization problem
can now be written as

n}i)n {e(p) = fTu}

N N
s.t. (Z PPK, + Z{ng,e) u="f

e=1 e=1

N (2.24)
D Uepe <V, 0<pmin<pe<l, e=1,...,N

e=1

N
Y fle<S  0<&mn<&<1, e=1...,N

e=1

Here, the sensitivity of the compliance with respect to the support design
variable is simply

de
dg.

As an example of compliance minimization including costs of supports,
we consider the design of the bridge structure sketched in Fig. 2.29a. Gradu-
ally making the cost of supports more expensive at the bottom of the design
domain results in bridge structures with three columns (Fig. 2.29b), two
columns (Fig. 2.29¢) and no columns (Fig. 2.29d). Correspondingly, the com-
pliances of the three structures increase.

An example of the possible gains in using variable supports in compliant
mechanism design is shown in Fig. 2.30. The goal is to design a gripping

= _qé‘g_l uTKs.eu
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Support area B2 Fixed supportarea M Solid area (road)

Fig. 2.29. Examples of design of supports combined with compliance minimization.
a) Design domain with possible support areas at the all edges except the top edge.
b) Optimized topology for equal support cost in the design domain (¢ = 1.12- 10_4).
¢) Optimized topology for support cost varying linearly from 1.0 at the top edge to
10.0 at the bottom edge (¢ = 2.38 - 10~*). d) Optimized topology for support cost
varying linearly from 1.0 at the top edge to 20.0 at the bottom edge (¢ = 3.79-10%)
(from Buhl 2002).

mechanism that maximizes the gripping motion for a given input actuation.
A limited amount of support may be located in the top and bottom parts of
the design domain. Fig. 2.30b shows the optimized gripper obtained with fixed
supports at the left edge and Fig. 2.30c shows the optimized gripper including
support design. The output displacement of the latter is 77% higher than for
the former, demonstrating the importance of including support design in
mechanism synthesis problems.

2.8 Alternative physics problems

The computational procedures for topology optimization were originally de-
veloped for the design of elastic structures, but its theoretical inspiration
came to a large extend from work carried out for plates and for scalar prob-
lems such as conduction problems (heat or electricity). The application of
numerical methods for topology optimization for these problems is with to-
days knowledge rather straightforward, and the computations are typically
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Support
areas

300 um

Fig. 2.30. Design of a micro-gripper including design of supports. b) Optimized
topology without support design (uow: = 10.8um) and ¢) Optimized topology in-
cluding support design (uow: = 19.1um). The gain in output displacement is 77%
(from Buhl 2002).

less time consuming due to the simpler FE analysis models. We note here
that all the theoretical considerations required for the elasticity case (mesh-
dependence, the role of composites, etc.) have parallels for the scalar situa-
tion; actually much more theoretical insight has been gained for this setting.

In recent years, topology design methods have also been expanded to for
example electro-magnetic problems, coupled problems, fluid problems, and
wave propagation problems. Here and in later sections of this chapter we
illustrate some of these settings.

2.8.1 Multiphysics problems

The phrase “multiphysics problems” covers optimization problems that re-
quire modelling in several areas of physics [18], [22]. Apart from making the
modelling more complicated due to coupling effects, it also complicates the
sensitivity analysis. However, with the help of the adjoint method, it is al-
ways possible to perform the sensitivity analysis in an efficient way as long
as the objective function is a global description of the response.
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Fig. 2.31. Topology optimization for a heat conduction problem of minimum re-
sistance between input and output points. Left: The design domain isolated at all
edges except for the heat sink at the center of the upper edge. The plate is sub-
jected to distributed heating all over the plate. Right: Optimized topology obtained
using a 91 line Matlab (cf., Appendix 5.1.6). The discretization consists of 40.000
elements.

We will demonstrate the sensitivity analysis for multiphysics problems on
a simple weakly eoupled linear problem involving two fields (for example heat
conduction and elasticity).

The FE-equations of the two systems are given by

Klul = f] and Kzuz = fz(ul) (225)

where it is assumed that system 2 (the elastic problem) is weakly dependent
on system 1 (the thermal field) and that both system matrices depend on
the design variables. This means that we have to solve system 1 and insert
the solution in the load vector of system 2. Physically, it means that the
temperature field gives rise to a thermal expansion that influences the elastic
field. The aim is to find the sensitivity of a component of the second response
vector (a displacement at a point) which can (as done previously) be written
as

Uout = lTU2

Using the adjoint method (cf., 1.2.3), we proceed as follows. We start by
adding two null terms to the original expression

Upue = 1T + A [Kquy — £i] + Ao [Kouy — f2(my))

where Ay and A, are arbitrary, fixed vectors. The sensitivity of this augmented
expression is
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To remove the field sensitivity terms g—,‘;j , the following expressions should
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This can be achieved by selecting the adjoint vectors A; as the solution to
the two adjoint problems
r Oty
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(2.26)

With solutions to these equations, the sensitivity expression becomes

6K1 6fl _ 6f2
ape

6uaut
Ope

= T B+ A (G = o)

It is now seen that the complete analysis and associated sensitivity calcu-
lation requires that one first solves system 1, then system 2 (2.25), and then
for the sensitivity analysis one solves system 2 with a new (unit) load case
and finally system 1 is solved with a modified load that depends on A, (see
(2.26)).

This scheme immediately applies also to systems that involve three weakly
coupled fields. This has been utilized for the results that are illustrated in
the next section.

2.8.2 MicroElectroMechanical Systems (MEMS)

In the introduction to section 2.6, we discussed the advantages of compliant
mechanism in connection with MEMS applications [18]. Modelling of MEMS
typically involves simulations in multiple physical domains, for example cou-
pled electrostatics and elasticity or coupled electric, thermal and elastic fields.
The latter is required for the analysis and design of an electrothermal micro
actuator. Electrothermal actuation is based on Joule’s (resistive) heating and
thereby thermal expansion and therefore requires modelling of three physical
fields, namely electric, thermal and elastic fields. Electrothermal actuation is
attractive for micro-systems due to its large displacement and force potential
but the drawbacks are that it requires a strong electric field and that the
operating temperature may disturb its environment.

A typical MEMS synthesis problem is to come up with a two-degree-
of-freedom device with zero cross-axis sensitivity for scanning purposes. A
design problem for such an application is sketched in Fig. 2.32a. The synthesis



114 2 Extensions and applications

=

|

scanning head

Tteration 10

Iteration 50

c) = d)

Fig. 2.32. Two degree-of-freedom electrothermomechanical actuator synthesis. a)
design problem with two electrical inputs, b) iteration history, ¢) actuation modes
and d) micro-fabricated actuator (from Jonsmann et al. 1999c).

problem here consists in finding a scanning mechanism where the scanning
head (output point) moves in the horizontal direction for one electric input
and in the vertical direction for another electrical input. The optimization
problem involves 16 “load cases”, 8 constraints and 8000 design variables.
The iteration history is shown in Figure 2.32b, the two modes of actuation
are shown in Figure 2.32c, and an actuator built in Nickel (size 500um by
400um) which was fabricated and tested at MIC, DTU is shown in Fig. 2.32d.
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2.8.3 Stokes flow problems

A new and very interesting application of the topology optimization method
is optimization for Stokes flow problems (Borrvall & Petersson 2002).

The finite element equations for general Stokes flow in three dimensions
can be written as

[—IC{*E 7GS] {:} - {(f)} (2.27)

where u is the velocity vector, p the pressure vector, and

K= / pBTLBdV, Gp = / (VNWIN,dV, f= [ NLidr
v JV I,

and p is the dynamic viscosity. Ny and IN, are the usual finite element shape
matrices for the velocity and pressure fields, respectively, and I is a diagonal
(6 by 6) matrix with 2’s on the first three diagonal entries and 1’s on the last
three diagonal entries (e.g. Zienkiewicz & Taylor 2000).

The key question is now how to optimize such kinds of problems using
topology optimization. For 2d problems, Borrvall & Petersson (2002) suggest
to model the flow as a Couette flow, i.e. a flow between plates with a distance
of 2p. This means that the components of the flow vector can be written as

T3

2
Ul(fcl,ﬂfz,fcz) = 111(1 - (7) )

T3

2
uz(T1, 22, x3) = d2(1 - (7) )
ug(xy, T2, 23) =0

Re-deriving the finite element equations with these assumptions and drop-
ping the hats, one gets the following matrices to insert in the general FE-
equation (2.27) which now is 2-dimensional

K= / pBTL,BdV + / a(p)NTNdV = prg + Za(p)Kg
v v e e

Gr = / (VNG N, dV f= [ NIUidr
v I;

where a(p) = 23”%.

The second term in K is interesting. For big p and therefore small a,
we have an undisturbed Stokes flow. For small p (narrow channel) the term
becomes large and may be interpreted as a large “damping” term that stops
the flow. Another way to interpret the second term is to see it as a penalization
term that ensures zero velocities at the penalized points just as for the

support design problem in Sect. 2.7.
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Fig. 2.33. Topology optimization of Stokes flow problem. The minimum drag pro-
files for b) 80% and c) 90% fluid volume, respectively. The results are obtained
using bi-linear 4-node elements for modelling of the velocity field and 4-node con-
stant pressure elements for the pressure field.

Although this formulation was derived for two-dimensional problems, the
idea generalizes to three dimensions although the physical explanation in this
case is lost.

We are now ready to formulate the optimization problemn. We will take
pe €]0, 1] as the design variable and we are allowed to use a prescribed amount
of fluid in the design domain, i.e. the sum of the p.’s is constrained. We
want to minimize the energy dissipation in the system. This corresponds to
maximizing the “fow compliance” ¢ = fTu.

The optimization problem may now be stated as
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min —fTu

st [—Iéfr _Gg] {3} B {tf)} (2.28)

N
Z'UePeSV, OSPeSL €=1,...,N
e=1

The sensitivities of the objective function are sirply

Oc _ 70K Oo(pe) ria
8pe_u Opeu— Ope K

The optimization problem (2.28) is closely related to compliance mini-
mization problems and may therefore be solved easily using an Optimality
Criteria based algorithm.

Interestingly, Borrvall & Petersson (2002) prove existence of solutions to
this problem without any additional relaxation or restriction. This can be
explained by the fact that contrary to elasticity problems where smaller and
smaller microstructures give better an better designs, smaller microstructures
in Stokes flow will cause increased drag and will therefore not appear.

We show two examples of topology optimization in Stokes flow. The first
is the minimum drag profile (Fig. 2.33) and the second is flow in a structure
with two parallel inlets and outlets (Fig. 2.34). Both examples are inspired
by Borrvall & Petersson (2002) and compare favourably to examples that can
be found in Pironneau (1973).

2.9 Optimal distribution of multiple material phases

In Chapter 1 we discussed different ways to interpolate the stiffness of el-
ements with intermediate densities for solid void (one material and void)
compliance minimization problems. We concluded that the choice of interpo-
lation scheme plays a role in being able to interpret intermediate variables
but otherwise, many different schemes have proven equally useful in obtaining
good topological solutions. When considering distribution of multiple mate-
rial phases in a design domain, the choice of interpolation function becomes
more critical. For stiffness interpolation there is again the risk of ending up
with intermediate design elements that cannot be represented by physical
materials. Worse however, there is a risk that the optimization algorithm will
make use of these non-physical properties to produce artificially good struc-
tures. An example of this could be a non-physically high thermal expansion
coefficient for an intermediate density element.

¢ In mathematical terms, the cxistence issue is simplified by the fact that the
design variable p now appears in the low-order terms of the analysis problem.



118 2 Extensions and applications

= ?—»5
§ =
= = o
= >

b) d)

Fig. 2.34. Minimization of flow resistance in a structures with two parallel inlets
and outlets for 30% fluid volume. a) Design domain with aspect ratio 1:1 and solu-
tion b). ¢) Design domain with aspect ratio 3:2 and solution d). The flow resistance
of d) is 22% lower than for a topology with two straight pipes as in b) due to the
lower resistance of the single wide channel.

In the following, we first discuss alternative ways to write the stiffness
interpolation for one material and void structures. Then we discuss the ex-
tensions to two material structures and finally to two material and void struc-
tures.

2.9.1 One material structures

Considering structures built from one material and void, the SIMP interpo-
lation for stiffness can be written in either of the following ways

E(pe) = 02E°  (Eijui(pe) = PEENk) (2.29)
K(pe) = pt KO

2.30
ulpe) = p¥ p° } (2:30)

where superscript © signifies a property of the solid material, and x and
are the bulk and shear moduli, respectively,. Also, it is assumed in (2.29)
that the Poisson’s ratio is constant and equal to 1° As discussed earlier (see
Sect. 1.1.2) the power p must be larger than a certain number dependent on
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the Poisson’s ratio of the material (cf., (1.5)) in order to satisfy the Hashin-
Shtrikman bounds on elastic material behaviour (see Appendix 5.4.6).

For an interpolation of scalar problems like electrical or thermal conduc-
tion we can use an interpolation as

¢pe) = P’SCO

where likewise p must be bigger or equal to 2 to ensure physical realizability
of intermediate density elements (Bendsge & Sigmund 1999).

2.9.2 Two material structures without void

Considering structures composed of two materials, the interpolation laws
must be modified. A modification of the power-law approach is to express
the elasticity tensor of element e as

Eijri(pe) = p Ejjyy + (1= pe)’ Ejpy (2.31)

where El,;, and EZ,, are the elasticity tensors of material 1 and 2, respec-
tively. Although this interpolation has been used with success, it suffers a
number of drawbacks. First, it violates the Hashin-Shtrikman bounds for low
values of p, and for large values of the power p. Furthermore, for the case
of two materials with equal Young’s moduli but different Poisson’s ratios,
it gives a strangely acting interpolation scheme. Finally, the scheme (2.31)
changes behaviour if the phases are interchanged.

Instead of (2.31) one can use an interpolation that works with a weighted
average of the Hashin-Shtrikman upper and lower bounds for each material
property independently (cf., Sect. 1.5.4). The interpolated values for bulk,
shear and conductivity moduli, respectively, are then written as

K(p(*) = (1 - 'll}) Kl}iier(pe) + d} K'ﬁlpf)e'r(pﬂ)
tlpe) = (=) 1fI5W (pe) + o pullSW (pe) 2, (2.32)
Clpe) =@ =) IS, (pe) +9 (S, (pe)

o (HS HS HS HS . i
where (K37 Kipper)s ((lamerr Cupper) are the lower and upper Ha.sl;lvr;—
H

Shtrikman bounds on bulk and conductivity moduli, respectively, and (/20"
pfpigﬁ) are the lower and upper Hashin-Shtrikman-Walpole bounds on shear
modulus for two-phase composites 7 In (2.32), 4 € [0, 1] interpolates between
the lower and upper bounds. If we choose ¢ = 0, the use of intermediate den-
sities is made uneconomical just as in the power-law approach.

For design of two-phase composite involving the thermal expansion co-

efficient, one does not need an interpolation scheme as it is directly given

" The upper and lower Hashin-Strikhman bounds are given in (1.42), (1.44) and
in Appendix 5.4.6.
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in terms of the effective (interpolated) bulk modulus (Levin 1967, Rosen &
Hashin 1970)

oK (s = K(p2)) — 02k2(K!  K{pe))
£(pe) (k! — K2)

afpe) = ) (2.33)

1

where k! and x? are the bulk moduli of material 1 and 2, respectively.

2.9.3 Two material structures with void

The two-phase power-law interpolation scheme can also be extended to a
scheme for three material phases (two materials and void) with two design
variables p! and p?

Eijn (pl,pfff) = (Pé)pl ((/’3)p2 Eiljkl +(1- Pg)pz E’L2]kl) )

where the penalization powers p; and p» can be chosen independently. This
modified SIMP scheme performs very well for pure stiffness problems. For use
in multiphysics, however, one should apply a hybrid of the power-law and the
Hashin-Shtrikman interpolation scheme, making use of the best features of
both. By interpolating between material (any of the two materials) and void
using the power-law approach, problems with jumps in properties are avoided
and by using the Hashin-Shtrikman bounds to interpolate between the two
material phases, a consistent interpolation is obtained.
The scheme is invoked for each property independently as

w(ph, p2) = (PP [(1 = 9) Kfo5er(02) + 4 ki (03)]
(o, p2) = (pL)P (L =) pfiow (02) + ¥ ulier (07)] (2:34)
C(Phs £2) = (PP [(1 —9) Gloier(P2) + 9 Clier(P2)]
The interpolation law for the thermal expansion coefficient is just a slight
modification of (2.33) and is given by
ot Kt (5 = 5(p}) — 0 K (' = K(g2)
K(pc) (K' —K )

(2.35)

Note that the thermal expansion coefficient depends on the bulk modulus of
the two-phase composite only (which is found by setting p§ = 1 in (2.34)).

The material interpolation scheme, defined by (2.34) and (2.35), is con-
trolled by the two penalization parameters p and ¥. If these parameters are
selected according to the criterion

0<w<1 (2.36)

k)

1 1,1 1,2 2 2 2
K +yp K+ KHp 4 pu
K u K
then it can be shown that the interpolated parameters always will satisfy the
Hashin-Shtrikman bound. Usually we choose p = 3 and ¥ = 1, correspond-
ing to the usual power-law penalization and the upper Hashin-Shtrikman
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d) ‘ e)

Fig. 2.35. Optimal distribution of two material phases for compliance minimization
of the L-shaped structure from Fig. 1.3. Different ratios between the stiff (black)
and the soft phase (hatched). a) Optimal distribution of 25% volume fraction of
only one phase. b-e) Optimal distributions of two matecrials with each a volume
fraction of 25%. Ratio between material stiffnesses: b) 0.01, ¢) 0.2, d) 0.5 and ¢)
0.8. f) Optimal distribution of 50% volume fraction of only one phase.

bound for the two material composite. In the cases where the upper Hashin-
Shtrikman bound interpolation results in intermediate values of the second
design variable, i.e. we have a two-material composite, the value of ¥ is low-
ered towards zero, resulting in a non-composite (and manufacturable) topol-
ogy.

2.9.4 Examples of multiphase design

An example of distribution of two material phases in an L-shaped design do-
main is shown in Fig. 2.35. Depending on the stiffuess of the second material
it will act as core material (Figs. 2.35b and ¢) or as a structural material
(Figs. 2.35d and e).

In the thermal actuator design problem shown in Figure 2.24a one may
introduce a second material with alternative thermomechanical properties to
compete in the material distribution process. However, if only the total vol-
ume fraction is prescribed rather than the volume fractions of the individual
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a)

Fig. 2.36. a) Two-material thermal actuator design problem and b) topology op-
timized bi-metal actuator with small support (from Sigmund 2001c).

phases and the design has lots of possible supports, experience shows that the
synthesis algorithm prefers only to make use of the material with the highest
product of Young’s modulus and the squared thermal expansion coefficient.
This numerical observation has also been verified analytically. In these cases,
the two-material synthesis problem would results in one-material actuators
like the ones shown in Figure 2.24 (see Sigmund (2001c) for details).

If there are only few and small supports (insufficiently grounded), the
synthesis algorithm can not make use of the type of amplification mecha-
nisms that are shown in Figure 2.24. Rather, the design procedure makes
use of the so-called bi-material or bimorph principle, see Figure 2.36. The
efficiency of the optimized actuator is here only 14% of an actuator with
ample supports (as shown in Figure 2.24). This underlines that bimorph ac-
tuation is extremely inefficient due to the loss of mechanical energy in the
interface between the two material phases. Consequently, they will only ap-
pear in topology optimized two-material actuators if supports are small or
rare (cf., Sigmund (2001c)).

More examples of design of multiphase material structures are given in
section 2.10.3 that deals with design of materials.

2.10 Material design

The response of structures depends on the materials they are built from. If one
can design materials with tailored or extreme properties one may be able to
design better structures. This aspect is central also in topology design where
the role of composites in the homogenization approach and other optimization
models operating with general material tensors underlines such an aspect of
local optimal use of material. This is the theme of Chap. 3.

In this section we will deal with methods that apply the ideas of topology
optimization, originally developed for structural optimization problems, to
the design of material design as well [21]. The fundamental idea is that eny
matertal is a structure if you look at it through a sufficiently strong micro-
scope.

Assuming that the material one considers is periodic, its effective prop-
erties may be fully described by an analysis of the smallest repetitive unit,
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the base cell. The design problem then consists in assigning a material type
to each point in the base cell. In the discretized topology optimization set-
ting this corresponds to assigning a material type to each element used to
discretize the base cell. The material type may be selected from two or more
constituent phases of which one may be void. For example, a porous honey-
comb material may be designed from a void and a solid material phase.

The effective properties of a material are found by homogenization of
the microstructure. In our case the microstructure does not exist ab initio
but we seek to come up with a microstructure with prescribed or extreme
homogenized properties. Therefore the material design method has also been
called the inverse homogenization method.

Before we proceed to define objective functions for material design, we
briefly discuss how to find the effective properties and the sensitivities thereof
using the homogenization method.

There is, as indicated above, a very strong interrelation between the de-
velopments that follows and the content of Chap. 3. Thus this section would
equally well fit in the framework of that Chapter. However, as the emphasis
in the following is on modelling and computational issues that have been dis-
cussed so far in this Chapter, the application of topology design to material
design is treated here and not in Chap. 3.

2.10.1 Numerical homogenization and sensitivity analysis

If a structure is built from periodic materials it is often too cumbersome or
even impossible to model it taking every detail of the micro-structure into
consideration. Therefore, one substitutes the microstructure with some aver-
age or smeared out properties that model the material behaviour seen on a
global scale. The process of finding representative or effective properties of
microstructured materials is called homogenization [20]. In Chap. 3 and in ap-
pendix 5.4 we discuss analytical procedures for the homogenization of simple
layered microstructures and their more complicated off-springs, the so-called
rank-N microstructures. If we want to model (and design) microstructures
with more general micro-geometries we have to perform the homogenization
by numerical means. In the following we describe the homogenization equa-
tions and briefly discuss their discretization in the finite element formulation.

The homogenized stiffness tensor is by integration over the base cell area
Y found as

1
H _ =
Eijkl - IYI/)"

where the Y-periodic test fields x*' are found as the solutions to the equilib-
rium equations

axkl
Bijta = Bigpo .| (2.37)

oxy! 9¢; d¢i
Eijpe—2d =/E —*dy for all Y — periodic ¢ , 2.38
/y " Gy, Oy Ty My Y (2.38)
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and Y is the area of the unit cell.
In a somewhat simpler notation, (2.37) may be written as

zjkl |Y| / FP‘I"‘S / E;[(]ij))(sggkl) - E:gk”) dy 3

Bx'q"

xkl) By ) and 5?]- corresponds to the three (2D) or six

where €pq = = 2( I
(3D) unit test strain ﬁelds.

In practice, the equilibrium equations (2.38) are solved as a finite element
problem with three or six load cases

kal — fkl

where the displacements x* are constrained to be Y-periodic by either a
penalty approach or by assigning equal node numbers to opposing boundary
nodes. The force vector is found from

=3 /Y BTE.(p.) 2 dy

and the global stiffness matrix is calculated as the usual assembly of element
stiffness matrices K = Y Ke plus corrections for periodicity. In FE-notation,
the effective properties may then be found as

1 kl E : 0(ij) _ )T / BT E(Pe) B dy (XO(kl) _ Xkl) —
z IYI Y.
06id) _ 4T K O(kl) _ ki
_IYI E (x x7)" Kel(pe) (x X)),

where E is the constitutive matrix, B is the finite element strain-displacement
matrix and x°() is the nodal displacement vector corresponding to the test
strain field 009

The sensitivity of a component of the constitutive tensor with respect to
the density design variable p. can again be found by the adjoint method. The
resulting sensitivity expression in FE-notation is

H
OEiju _ L( 0) _ 5idyT K. (pe) (2D _ 3kt
Ope Y] Bpe

2.10.2 Objective functions for material design

The goal of material design may be to synthesize a material with prescribed
constitutive properties or it may be to synthesize materials with extreme
constitutive properties. An example of the former could be the need for de-
signing a material with a specific Young’s modulus and a specific isotropic



2.10 Material design 125

thermal expansion coefficient. This material could be used to neutralize ther-
mal mismatch in a heat generating structure. An example of synthesis of an
extremal material could be to maximize the bulk modulus of a material for a
given volume fraction of solid material. This would result in a material with
an extreme stiffness to weight ratio.

For now, we consider the design of materials composed of a solid and a
void phase. Therefore, the element stiffness may be interpolated by the SIMP
interpolation E(p.) = pfEp as we did for structural design problems.

If we want to obtain a material with prescribed elastic tensor E7;,, an ob-
jective function to be minimized could be the error between the homogenized
elasticity tensor Egk, and the wanted stiffness tensor Ej;;,. An optimization
problem with this goal can be written as

d
nlin Z (Efjr — E,-‘}'u(p))z
i ki=1

st. KxM=f8 ki1=1,..d,

1 N
NI Zvepe S '19|
lY' e=1

0<sz'n§/)e31a €=1,. ',N

(2.39)

where 9 is the bound on the volume fraction and d is the spatial dimension.

If a material with the wanted properties E};, cannot be obtained for the
given constituent materials and volume fractions, the problem formulation
(2.39) may give usetess results. On the other hand, if the wanted properties
E};, are easy to obtain, it means that one could take out material of the
base cell and still obtain the wanted properties. This superfluous material
tends to cloak the design process and prevent convergence of the optimization
algorithm. Also, it paralyses the SIMP scheme since the volume constraint is
not active, in turn producing pictures with lots of grey elements.

Alternatively one my turn the problem upside down and minimize the vol-
ume fraction for prescribed constitutive properties. This may be formulated
as

1
min — Up
[ |Y|; Pe
s.t. kat:fkl7 ki=1,....d, (2.40)
E;jkl_Egkl(P):O, 1j,k;l:1,...,d’

0<sz‘n§ﬂe§1a CZ],---,N

For a continuum model®of the unit cell not every positive definite stiffness
tensor is realizable [25], and theoretical bounds on the material parameters

8 Using trusses for the unit cell is discussed in section 3.4.5.
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for isotropic, square or cubic symmetric composite material are known. This
means that the problem formulation (2.40) may in some cases suffer from
lack of any feasible designs. To circumvent this and in order to be able to
synthesize extreme materials, i.c. materials with properties that reach the
limits of the bounds, we write a new problem formulation as

m,;n (Ef(p))
s.t. Kx“:f“ kil=1,....d,

< (2.41)
v 2 zvepe <9,

gl(Fz]kl( N<g, i=1....M
O<sz‘nSPe§1, €=1,.. ,N

where the objective function c(E”k,) and constraints qz(Egk,) are functions
of the homogenized tensor and M is the number of constraints.

The constraints in (2.41) may take different forms. For example minimum
Poisson’s ratio is obtained for very soft structures and to prevent too flimsy
materials a lower bound constraint on the effective bulk modulus &,,;, may
therefore be added, i.e. g; = —&" and g} = —Kmmin. Also, it may be desired to
impose a constraint that ensures symmetries in the resulting material prop-
erties. Orthotropy (i.e. EH,, = EH,, = 0) may be obtained by imposing
one or more lines of symmetry in the base cell. Square symmetry may for
example be obtained by imposing one line of symmetry and adding the con-
straint go = (Ef,, — E&,,)?/(EH,, + EB,,)? with g = €2, where € is a
small tolerance number.

The problem formulation (2.41) was first suggested in Sigmund & Torquato
(1997) and has since then been used successfully in the design of material
with extremal elastic, thermoelastic, piezoclectric and other physical proper-
ties [21]. As will be seen in the following subsections, the results are very close
to theoretical limits and have in fact in some cases inspired the improvement
of theoretical limits.

2.10.3 Material design results

Extremal elastic properties A basic material design problemn is to find a
structure with maximum bulk modulus for a given volume fraction. This is
a highly non-unique optimization problem. Four types of microstructures are
now known to have extreme bulk moduli, i.e. they have bulk moduli equal to
the upper Hashin-Shtrikman bounds. These microstructures are sketched in
Fig. 2.37.
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Coated spheres assemblage Rank-3 laminate

Vigdergauz microstructure New microstructure

Fig. 2.37. The four known classes of extremal isotropic microstructures. The
isotropy requires special geometries of the different unit cells.

Topology optimization results for the maximization of bulk modulus
of two-dimnensional microstructures and a one-length-scale constraint® are
shown in Fig. 2.38. All four microstructures have effective bulk moduli
within a few percent of cach other and the known analytical bound. By
control of starting guesses, objective functions, base cell geometry and/or
isotropy type, one may obtain one structure or another. The results in
Fig. 2.38 were obtained for an initial filter radius of 10% of the base
cell. The filter size was gradually decreased to zero during the design pro-
cess. The obtained structures may be denoted one-length-scale microstruc-
tures and correspond to the known optimal so-called Vigdergauz struc-
tures (Vigdergauz 1994, Vigdergauz 1999). Note that the bulk optimized
microstructures are closed walled cells.

Figure 2.39 shows two examples of maximization of bulk modulus of 3D
structures. Again, the two structures that were obtained without and with
isotropy constraint have effective bulk moduli extremely close to the theoret-
ical Hashin-Shtrikman bounds.

¥ One length scale materials are here defined as microstructures that do not make
use of several length scales in the base cell. One length scale materials are ob-
tained by specifying rather big sizes of the seusitivity filter (e.g. 10% of the base
cell) in the initial topology optimization iterations.
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o>x0O]

Fig. 2.38. Four microstructures with extremal bulk moduli obtained by the inverse
homogenization procedure. a) Isotropic hexagonal microstructure (maximization
of bulk modulus for rectangular base cell with isotropy constraint), b) isotropic
triangular microstructure (maximization of product of bulk and shear modulus for
rectangular base cell with isotropy constraint), c) isotropic octagonal microstructure
(maximization of bulk modulus with isotropy constraint) and d) square symmetric
microstructure (maximization of bulk modulus) (from Sigmund 2000b).

Fig. 2.39. Three optimized three-dimensional microstructures. Left: cubic-
symmetric maximum bulk modulus microstructure. Center: Isotropic maximum
bulk modulus microstructure. Right: Isotopic negative Poisson’s ratio material
(from Sigmund 2000Db).

A realization of the SIMP model We have continually compared the
SIMP and other interpolation models with the Hashin-Shtrikman bounds
for isotropic composites. These bounds gives necessary conditions for the in-
terpolation models. However, it is the material design methodology of the
inverse homogenization method that allows us to construct concrete realiza-
tions of the SIMP model, as seen in Figs. 2.40 and 2.41. Note that, in itself,
the inverse homogenization is based on a SIMP interpolation in the unit cell,
making the dog bite its tail.

Negative Poisson’s ratio materials An extremely interesting application
of the material design method is the search for negative Poisson’s ratio mate-
rials. A number of such structures have been suggested in the literature (cf.
[21]), but here we apply topology optimization to obtain the behaviour we
are looking for. If (2.41) is formulated so as to minimize the Poisson’s ratio
with a constraint on bulk modulus and isotropy, the inverse homogenization
method gives results as shown for 2D in Fig. 2.42 and for 3D in Fig. 2.39.
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Fig. 2.40. Microstructures of material and void realizing the material properties
of the SIMP model with p = 3, for a base material with Poisson’s ratio v = 1/3.
As stiffer material microstructures can be constructed from the given densities,
non-structural areas are seen at the cell centers (from Bendsge & Sigmund 1999).

The isotropic and negative Poisson’s ratio structure has been manufac-
tured in micro-scale (Larsen, Sigmund & Bouwstra 1997). The 40 by 8 cell
testbeam was built using surface micromachining with a unit-cell size of 60
pm as shown in Fig. 2.42c. The Poisson’s ratio of the test-beamn was measured
to -0.910.1 in experiments; this compares favourably to the theoretical value
of -0.8. Recently, manufacturing of the topology optimized negative Poisson’s
ratio materials by extrusion techniques have been performed at University of
Michigan (http://msewww.engin.umich.edu:81/people/halloran).

Optimizing the thermal expansion coefficient For two-phase compos-
ites made from solid and void, the effective thermal expansion coefficient will
always be the same as for the solid phase, unless the material is disconnected.
For two-phase mixtures of two non-void materials, the effective thermal ex-
pansion coefficient for any square or cubic symmetric mixture of the materials
will always take values between the maximum and the minimum thermal ex-
pansion coefficients of the two phases. However, for three-phase composites,
it becomes more interesting. According to theory (Schapery 1968, Rosen &
Hashin 1970, Gibiansky & Torquato 1997) it is possible to synthesize three-
phase materials with effective thermal expansion coefficients that excced
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Fig. 2.41. Microstructures of material and void realizing the material properties
of the SIMP model with p = 4 for a base material with Poisson’s ratio v = 0 (top
row) and v = 0.5 (bottom row), respectively. As in Fig. 2.40, non-structural areas
are seen at the centers of the cells (from Bendsge & Sigmund 1999).

those of the individual phases. In particular, it should be possible to syn-
thesize negative thermal expansion materials from mixtures of two positive
expansion phases and a void phase. The extreme thermal expansion is ob-
tained at the cost of a decrease in the effective bulk modulus. The theoretical
bounds on the range of attainable combinations of thermal coefficients and
bulk modulus for a particular case are shown in Fig. 2.43a.

For the design of extremal thermal expansion coefficients it is necessary
to extend the previous problem formulation to include an extra load case.
This extra load case corresponds to subjecting the base cell to a uniform
temperature increase. The new problern formulation may be written as
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Fig. 2.42. Material microstructure with negative Poisson’s ratio. a) one unit cell
discretized by 60 by 60 elements, b) repeated unit cell and ¢) micromachined test
beam built at MIC, DTU, DK (from Larsen et al. 1997).
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where the thermal test field x® is again Y-periodic and the thermal finite
element load vector is defined as

=3 /Y BIE.(p}, %) a(p?)dY.
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Here, the clement thermal expansion coefficient a(p?) is interpolated by the
expression given in (2.35). The examples shown in the following are all based
on the three phase SIMP interpolation scheme (2.31).

Figure 2.43a shows a graph of the thermal expansion coefficients as
a function of the bulk moduli for some numerically obtained microstruc-
tures compared with the theoretical bounds. The design problem consists
in extremizing the thermoelastic properties of a composite consisting of
25% of a material with thermal expansion coefficient 10 (normalized value)
and 25% of a material with thermal expansion coefficient 1. A resulting
composite with a negative thermal expansion coefficient of -4.02 is shown
in Figure 2.43b. This shows that it is actually possible to design mate-
rials with negative thermal expansion coefficients from constituent phases
with positive thermal expansion coefficients. Actual manufacturing of three-
phase composites has been difficult but recent reports from rescarchers
at University of Michigan show that it is indeed possible to manufacture
the suggested composites but test results are not yet publicly available
(http://msewww.engin.umich.edu:81/people/halloran).

In Figure 2.43a one notes that the numerically obtained effective values
are far away from the old bounds (Schapery 1968, Rosen & Hashin 1970)
but very close to the newer bounds (Gibiansky & Torquato 1997). In fact,
the substantial improvement of the new bounds compared to the old bounds
was inspired by the numerical results by Sigmund & Torquato (1997). Using
the translation method, Gibiansky & Torquato (1997) managed to make the
theoretical bounds match the numerical results!

A new class of extremal two-phase composites Existing bounds on the
possible range of the bulk and shear moduli of isotropic two-phase composites
composed of isotropic constituents (Hashin & Shtrikman 1963, Cherkaev &
Gibiansky 1993) have only been proven optimal (in the sense that there exist
microstructures that attain them) for certain cases. In order to investigate
the optimality of these bounds in further detail, a study based on the inverse
homogenization was performed in (Sigmund 2000b). The study resulted in
numerically obtained bounds for one-length-scale structures, proof of opti-
mality of the bounds in a wider range than previously known and a new class
of extremal composites. Thus, use of the topology design methodology has
lead to new understanding in the arca of theoretical material science. This
symbiosis is strongly present when one considers topology design with com-
posites where design has benefited immensely from work in material science,
see Chap. 3.

Limiting the microstructural variation to one length-scale by fixing the
value of the mesh-independency filter, one-length-scale bounds on bulk and
shear moduli of isotropic two-phase composites shown in Figure 2.44a are
obtained. These bounds shall not be taken formally but more as bounds
based on experience and trust in that the inverse homogenization procedure
produces reliable results.
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Fig. 2.43. Design of materials with extreme thermoelastic properties using topol-
ogy optimization a) Thermal expansion coefficient-bulk modulus graph for spe-
cific thermoelastic composite including theoretical bounds and numerically obtained
properties, b), ¢) and d) material microstructure with negative thermal expansion
coefficient (single base cell, 3 by 3 array and heated single cell). When heated, the
cell contracts resulting in an cffective negative thermal expansion coefficient (from
Sigmund & Torquato 1997).

Studying the bounds based on the one-length-scale structures in Fig-
ure 2.44a, one notes that no structures get close to the lower right corner
of the bounds, also called the Walpole point (i.e. maximum bulk modulus
and minimum shear modulus corresponding to the lower right corner of the
bounds). Allowing finer variation in the microstructures by decreasing the fil-
ter size, a sequence of designs with properties getting closer and closer to the
Walpole point (see Figure 2.44a) may be obtained. Inspired by these numeri-
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Fig. 2.44. Design of extremal two-phase composites. a) Bound for one-length-scale
composites and numerically obtained microstructures and allowing finer variation
in the microstructure results in a new microstructure with properties close to the
Walpole point (maximum bulk modulus and minimum shear modulus, b) two-
dimensional members of the new class of extremal microstructures consisting of solid
convex polygonal regions connected by laminated bars and c¢) three-dimensional
members of the new class of extremal microstructures (from Sigmund 2000b).

cally obtained results, a parametrized hexagonal microstructure consisting of
convex polygonal regions of solid material phases connected by layers of equal
proportions was investigated analytically (see Figure 2.44b). Surprisingly, it
was possible to calculate the effective properties exactly and the bulk mod-
ulus of the composite corresponded to the Hashin-Shtrikman bounds. Even
more surprising, exact solutions and proof of extremity could be obtained
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for a whole class of similar microstructures in two and three dimensions (see
Fig. 2.44b and c). The investigation thus resulted in a new class of extremal
isotropic microstructures which constitutes an alternative to the three pre-
viously known classes, namely Composite Spheres assemblages, Vigdergauz
structures and rank-N layered materials (see Fig. 2.37). One member of this
class of materials (the hexagonal microstructure) has maximurn bulk modulus
and lower shear modulus than any previously known composite. Although no
member of the new class of materials attains the Walpole point exactly, the
Walpole point can be considered attainable for all practical means and the
Hashin-Shtrikman/Cherkaev-Gibiansky bounds have been proven optimal for
a wider range of properties than was previously known.

A new class of extremal three-phase composites Inspired by the two-
phase results in the previous subsection the same type study consisting of
analytical methods combined with numerical experiments may be performed
for three-phase materials. When considering three material phases the equa-
tions become much more complicated, and a large number of special cases
must be considered for the large number of possible material combinations
(e.g. bulk and shear moduli may be well-ordered or not). Nevertheless, the
existence of a new class of three-phase composites with extremal butk moduli
can be proved (Gibiansky & Sigmund 2000). The three phase microstruc-
tures are closely related to the two-phase class from the previous subsection.
For exainple, the three-phase structures converge to the two-phase structures
when the volume fraction of one phase approaches zero. For the three-phase
case, the new class of structures also expands the ranges of previously known
attainable properties and optimality of bounds. Figure 2.45a shows some
numerically obtained three-phase microstructures and Figure 2.45b shows
schernatics of members of the new class of three-phase extremal microstruc-
tures. Note how layered regions again play a significant role.

Piezoelectric sensors Another three-phase material design example is the
design of hydrophones based on piezoelectric sensing. A piezoelectric mate-
rial responds with an electric output when strained. For a typical ceramical
piezoelectric rod, the electric field depends on the elongation of the rod. Sim-
ply said, this means that the electric output for a horizontal compression
will have the negative sign of a that for a longitudinal compression. For hy-
drophones which should detect changes in hydrostatic pressures, this is a
problem. Compression in all directions simultaneously will almost cancel the
electrical output. In order to circumvent this problem it has been suggested
to embed piezoelectric rods in a matrix material with tailored properties. A
negative Poisson’s ratio matrix material will for example convert transverse
pressure to a compression of the rod instead of extension, in turn causing a
much larger output signal.

The inverse homogenization method may be used to identify the matrix
microstructure that maximizes the electric output of hydrophones. The prob-
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Fig. 2.45. Design of extremal three-phase composites. a) Numerically obtained
three-phase microstructures with extremal bulk modulus, b) schematics of the new
class of extremal microstructures (from Gibiansky & Sigmund 2000).

lem corresponds to a three-phase material design problem of distributing a
piezoelectric, a polymer and a void phase in a periodic base cell. However,
for various reasons, the periodicity of the matrix microstructure will often
be much smaller than for the embedded rods. Therefore one may model the
problem partly by effective medium theory and partly by numerical homoge-
nization. This means that the effective properties of the matrix material may
be found by numerical homogenization whereas the effective properties of the
mixture of the matrix material and the piezoelectric rods may be found an-
alytically (Avellaneda & Swart 1998). The effective piezoelectric properties
may thus be determined directly as functions of the effective matrix prop-
erties Egkl. The optimization problem may then be solved by the extremal
material design formulation given in (2.41).

Figure 2.46b shows one base cell of the matrix material of a hydrophone
optimized for maximum piezoelectric charge coefficient (Sigmund, Torquato
& Aksay 1998). One observes that this matrix material is a transversely
isotropic material with negative Poisson’s ratio. The improvement compared
to a solid polymer matrix is a factor of 11. Figure 2.46¢ shows a base cell
(5 mm cubed) manufactured at Princeton Materials Institute using stereo-
lithography.
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Piczoelectric rods

Fig. 2.46. Design of hydrophones using topology optimization. a) Schematic of
a 1-3 piezoelectric hydrophone, b) one base cell of hydrophone matrix optimized
for piezoelectric charge coefficient and ¢) onc base cell manufactured at Princeton
Material Institute using stereo-lithography (from Sigmund et al. 1998).

An investigation of bone microstructures If a 3D material is optimized
for stiffness (e.g. maximum bulk modulus), the resulting microstructures are
close-walled (c.f. Fig. 2.39), while it has been observed that most bone strue-
tures are built up as open walled cells (Gibson & Ashby 1988). This indicates
that bone structure is not optimal with respect to stiffness and that other
requirements also govern the growth of bone.

Bone is a material that can be considered quasi periodic and thus we can
apply homogenization. In many cases the material is orthotropic and physical
observations indicate that orthotropic directions of bone follow the principal
stress in loaded bone (Wolff’s law)!0

In order to open up the cell walls of high stiffness microstructures, a
constraint on the permeability of the cell could be imposed. Permeability
is essential for the flow of nutritients that is necessary for maintaining the
steadily active bone growth or degradation. Instead of setting up a compli-
cated flow model (like the Stokes flow model in section 2.8.3) we add an extra
constraint to the material optimization problem related to the conductivity
of the base cell. Here a void element should have a high conductivity and

1% This is consistent with results on the optimal rotation of orthotropic materials,
see Sect. 3.1.4.
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a solid element should have a low (zero conductivity). The interpolations of
Young’s modulus FE and the conductivity ¢, respectively, may thus be written
as

E(pe) = p2Eo and ((pe) = (1= pe)Plo

The optimization problem is then be written as

max K
2 (p)
st. KxM = kl=1,...,d,
1
v D vepe <O (2.43)
Y1 <
Hp) 2 ¢

O<Pmingpe§], 6=1,..,N

where ¢* is the lower bound constraint on the effective conductivity. Obvi-
ously, this optimization problem only makes sense for 3D problems where
both phases may be connected from cell to cell.

By specifying a lower bound on the conductivity of respectively 0%, 10%
and 20% of the conductivity of a totally void cell, the open-walled microstruc-
tures shown in Fig. 2.47 are obtained. Comparisons of the objective func-
tions (bulk moduli) for the closed and the open-walled structures show that
the close-walled microstructures are significantly stiffer than the open-walled
structures (Sigmund 1999). Thus stiffness cannot be the only objective of
bone microstructures. Here a conductivity constraint for allowing flow of
nutrition has been applied, but many other objectives of biological or me-
chanical nature may also play a role; for the latter minimum size constraints
and buckling sensitivity (Sect. 2.12.1) may well be significant.

2.11 Wave propagation problems

An interesting new application of the topology optimization method is the
design of structures and materials subject to wave propagation. The waves
may be elastic, acoustic or electromagnetic, and the phenomenon to be ex-
ploited is that for some frequency bands it is possible to construct periodic
structures or materials that hinder propagation. This is called a band gap.
The phenomenon of band gaps in structures subject to periodic loads
is illustrated in Fig. 2.48a and b. Here a two dimensional square domain is
subjected to a periodic loading at the left edge and it has absorbing boundary
conditions along all four edges. The frequency of excitation of the structure in
Fig. 2.48a is lower than for Fig. 2.48b. It is seen that waves propagate through
the structures from left to right and that the absorbing boundary conditions
damp the waves at the top and bottom. These are perfectly normal situations
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Fig. 2.47. Investigation of “bone” microstructures. All pictures show one half
of the resulting base cell topologies. Left: close-walled cell obtained from stiffness
optimization without conductivity constraint and center right: open-walled cells
obtained from stiffness optimization with conductivity constraints. The local con-
ductivity is inversely proportional to the local stiffness (from Sigmund 1999).

and could model surface waves on water, acoustic waves through air, out-of
plane waves in an elastic structure, polarized electromagnetic waves, etc.

Now, if we introduce a periodic distribution of inclusions with different
propagation speeds than in the original structures, the situation changes. For
the structure subjected to the lower excitation frequency (Fig. 2.48c), there is
still propagation although the waves have different shapes. However, for the
structure subjected to a higher excitation frequency (Fig. 2.48d) there seems
to be no propagation at all. This illustrates the band gap phenomenon. A
band gap material is defined as a material that does not allow wave propaga-
tion for certain frequency ranges. For elastic and acoustic waves the materials
are called phononic band gap materials, for electromagnetic wave propagation
the materials are called photonic band gap materials and the same principle
on the atomic scale lies behind semiconductors. The length scale of the peri-
odic structure in band gap materials is typically close to the wavelengths of
the forbidden frequencies.

Band gap materials may be used for many purposes, for example for
waveguides. The idea is illustrated in Figs. 2.48e and f. If we introduce a
defect in the periodic structures from Figs. 2.48¢ and d, waves with frequen-
cies outside the band gap may still propagate through the whole structure
(Fig. 2.48¢) but waves with frequencies within the band gap may now only
propagate through the defect, resulting in a wave guide as seen in Fig. 2.48f.
It is seen that it is actually possible to guide waves around a corner. This is
especially interesting for light waves since it may allow for the manufacturing
and design of so-called photonics based microchips which have much higher
clock frequencies than conventional microchips based on electrical conduc-
tion.

Apart from semiconductors and wave guides, band gap materials may be
used to generate frequency filters with control of pass or stop bands, as beam



140 2 Extensions and applications

Lower frequency Higher frequency

-

> e B ® N x ® AW

€)

Fig. 2.48. Scalar wave propagation in 2D domains with absorbing boundary con-
ditions and forced vibrations at the left edge. a) Wave propagation through ho-
mogeneous structure, b) wave propagation with higher frequency through homoge-
neous structure, ¢) wave propagation through structure with periodic inclusions, d)
(no) wave propagation with higher frequency through periodic structure, e) wave
propagation through periodic structure with defect and f) wave guiding at higher
frequency through a periodic structure with defect.
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splitters, as sound or vibration protection devices, as perfect mirrors and in
many other applications.

2.11.1 Modelling of wave propagation

Elastic wave propagation in a homogeneous material is governed by the
Navier vector equation

A+ wV(V u)+pViu—pi=0,

where A and p are Lamé’s coefficients, g is material mass density and u is
the point wise (vectorial) displacement.

For planar problems, the Navier equation may be split into an in-plane
equation (transverse and longitudinal modes) coupled to an out-of-plane
equation (also called the acoustic mode)

A+ V(Y ur)+uViay - piip =0, (2.44)
uV2ug — i3 =0, (2.45)

where subscripts 7 and 3 stand for transverse and out-of-plane components,
respectively.

For an inhomogencous structure, the acoustic or out-of-plane problem
(2.45) may be written as

V (uVu)-pi=0, (2.46)

where the subscript 3 has been omitted. This equation has the same form as
one of the in-plane modes for electromagnetic wave propagation (Maxwell’s
cquations), i.e.

v (v0) - zi -0,
€ C

the so-called Transverse Electric TE-polarization mode and is closely related
to the equation

V- 5P =0

governing the so-called Transverse Magnetic TM-polarization mode. Here, €
is the electric permitivity and c is the speed of light in vacuum.

In the following, we just consider the scalar problem (2.46). The wave
cquation (2.46) may be solved for a structure subject to forced periodic load-
ing or it may be solved as a cell problem assuming an infinite periodic struc-
ture.

For the structural problem we assume that the waves are harmonic and
described by uz = @3el*?) | where {2 is the driving frequency and i3 is the
amplitude. Substituting this into (2.46) and dropping the hats we get
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V (uVu) + 2pu=0
This equation may be written in finite element notation as
(K+iNC - 2>M)u=f (2.47)

where we have added (harmonic) boundary forces f and a damping matrix
C that models absorbing boundary conditions and/or structural damping.
This equation has a form which is very similar to the one used for forced
structural vibration (cf., Sect. 2.1.2).

For periodic structures (i.e. materials) the wave equation may also be
treated as an eigenvalue problem. As for the homogenization problem (Sect.
2.10.1), we may solve the global problem by analysing the base cell Y In
contrast to usual homogenization problems, however, the modes may not be
cell periodic and therefore we cannot just impose the usual periodic bound-
ary conditions. Instead we assume that the modes can be described by the
expression

u(y,k) _ ,U(y)eikTyeiwt (2.48)

where v is a Y-periodic displacement field, y is the spatial coordinate and k
is the wave vector. For k = 0, the solution mode u(y) will be Y-periodic. For
k = 7, the solution mode will be 2Y-periodic. For other k, the solution modes
can take any kind of periodicity in all directions. This kind of modelling is
based on the so-called Floquet-Bloch wave theory (Kittel 1986, Mathews &
Walker 1964).

Inserting (2.48) in (2.46) we get the eigenvalue problem

(V (1Vv) +w?pv) XY =0, (2.49)

which in principle should be solved for any wave vector k. However, due
to symmetry we may restrict the wave vector to the first Brillouin zone
k € [-m, 7}¢ (d is the dimension) (e.g. Brillouin 1946). This corresponds
to analysing the structural response to incident waves of any possible wave
length and direction. If we furthermore assume that the base cell is square
symmetric (i.e. is quadratic and symmetric around horizontal, vertical and
diagonal lines), we may restrict the range of wave vectors to the triangular
region indicated in Fig. 2.49, left. It is generally accepted (but to the authors
knowledge, not proved) that one only has to search the borders of the trian-
gular region to obtain a description of the band gap structure of a periodic
material. This means that the wave equation (2.49) only has to be solved for
a number of wave vectors along the lines I' = X, X = M and M — T (see
Fig. 2.49, left).
In finite element notation (2.49) may be written as

(K(k) ~w™)v=0, (2.50)



2.11 Wave propagation problems 143

‘Band 4, 0y

N : ' Band 3, @3
__E — _7_t> j<§ Band 2, (05
r Xk : : Band 1, 0,
| . Lk
o —— X M T

Fig. 2.49. Left: The irreducible Brillouin zone indicating the wave vectors to be
searched for the general 2D case (grey area). For square symmetry, the wave equa-
tion only has to be calculated for k-vector values along the curve I'— X — M —TI'
Right: Sketch of band structure indicating lowest four eigenvalues for wave vectors
along the line I" — X — M — I' in the irreducible Brillouin zone.

which is a standard eigenvalue problem. Since K is a Hermitian matrix and
M is real, symmetric and positive definite, the eigenvalues of (2.50) will all
be real and positive.

If one solves for the first few eigenvalues of (2.50) for a number of k, the
results can be plotted as a band diagram as sketched in Fig. 2.49, right. Fromn
the curves one may read the propagation modes for given frequencies.

Real band diagrams for out-of-plane polarized waves are shown in Fig.
2.50a and b for pure epoxy and duralumin, respectively (data from (Vasseur,
Deymier, Frantziskonis, Hong, Djafari-Rouhani & Dobrzynski 1998)). It is
seen that for these homogeneous materials there exist eigenmodes for any
frequency, i.e. there are no band gaps. Fig. 2.50c shows the band structure of
duralumin cylinders (radius equal to 30% of cell size) in an epoxy matrix. It is
seen that there are ranges of frequencies with no corresponding cigenmodes.
This means that no modes will propagate for these frequencies. There is a
large band gap between the first and the second band (from 31 kHz to 43
kHz corresponding to a relative gap size of Af/fo = 0.32) and a small gap
(Af/fo =0.11) between the second and the third band. This means that no
clastic waves with frequencies within the band gaps may propagate through
the structure. The band gap zones are indicated with hatched regions in the
diagram.

We may now consider two kinds of optimization problems. Either we op-
timize the material problem modelled by (2.50) or we optimize the structural
problem modelled by (2.47).

2.11.2 Optimization of band gap materials

An obvious goal for the optimization of band gap materials is to maximize
the relative band gap size. In this way the range of prohibited frequencies
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Fig. 2.50. Left: single cell, middle: 3 by 3 arrays of cells and right: band structure
of a) pure epoxy, b) pure duralumin and ¢) duralumin cylinders (radius 30% of cell
size) in epoxy. Hatched areas denote band gaps. The horizontal axes denote values
of the wave vector k on the boundary of the irreducible Brillouin zone. The band
diagrams are based on the solution of 15 eigenvalue problems with varying k.

will be wider and more signals may be sent through a waveguide based on
defects in the band gap material.

The design problem is a two material problem. We want to distribute
two non-void phases in the design domain (base cell). For reasons that will
become clear later, we here choose a linear material interpolation between
the phases, i.c. the wave shear modulus and mass density are interpolated as

p(pe) = (1 = pe)in + peprz and  plpe) = (1 = pe)pr + pefpr

where 1y and po are the shear moduli of material one and two, respectively,
/1 and py are the mass densities, and the interpolation density pe belongs to
[0, 1].

The objective is to maximize the relative band gap size between to bands
j and j + 1, i.e. maximizing the lowest valuc of the overlying bands and
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minimizing the maximum value of the underlying bands. This can be written
as a (double) max-min problem

Au?(p) rnlzn w]2-+1 (k,p) - max w]2- (k,p)
max ¢ e(p) = —; =2 —— 2 (2.51)
p w5 (p) min w1 (k, p) + max wj(k, p)

This is a “dirty” objective function in the sense that it is a max-min problem
with varying critical points (the k-vector(s) for the critical frequencies may
change during the optimization) and it may have several multiple eigenval-
ues. Interestingly, however, there is no need for a volume fraction constraint
in the problem since neither a pure phase one structure produces a band gap
(see e.g. Fig. 2.50a) and nor does a pure phase two structure (see c.g. Fig.
2.50b). Somewhere in between there must be a volume fraction that results
in the biggest band gap. Another interesting observation is that due to the
missing volume constraint, the usual SIMP interpolation becomes useless in
cnsuring black-and-white designs. However, this is not a big problem since
by experience, the optimized designs tend to be mostly black and white any-
way. Finally, the mesh-independent filtering techniques works badly due to
the missing volume constraint. Therefore, the regularized penalty function
method (1.39) is used to ensure black-and-white and mesh-independent de-
signs for this design problem.
The optimization problem may then now be written as

2
max 2<(P)
P wilp)
st. [K(k)—wM]u=0, ke[l -X-M-T1],
0<p. <1, e=1, ,N

(2.52)

and may be rewritten in the more convenient bound formulation
max =f
p

st [wink),,>8 m=1. ..M
[wik)],, <8 m=1,...,M (2.53)
[K(k) - w*M]u=0, ke[[—X—M-T],
0<peLl, e=1,.. ,N,

where the two first constraints take the M most critical values into account.
This problem may efficiently be solved using MMA.

Results from optimizing the epoxy/duraluminum structures from Fig. 2.50
are shown in Fig. 2.51. The first example maximizes the relative band gap
size between the first and the second band. The result is an almost square
inclusion of a duraluminum in the epoxy matrix. The relative band gap size
has increased from 0.32 for the circular inclusion in Fig. 2.50c to 0.65 for
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Fig. 2.51. Maximization of relative band gap size between a) first and second band
and b) second and third band.

the square inclusion structure in Fig. 2.51a. The second example maximizes
the relative band gap size between the second and the third band. In this
case, the resulting structure consists of diamond and circular inclusion of
duraluminum inclusions in the epoxy matrix. The relative size of the second
band gap has increased from 0.11 for the circular inclusion in Fig. 2.50c to
0.61 for the structure in Fig. 2.51b.

2.11.3 Optimization of band gap structures

The material design problem in the previous sub-section assumed infinite
periodicity of the material. This means that the influence of boundaries as
well as the influence of defects in the periodic structure can not be modelled.
In order to model finite domains we use the wave equation (2.47) and the
objective function here may be to minimize the magnitude of the wave at the
boundaries (hinder wave propagation) or to maximize the wave at certain
points in the structure (wave-guiding).

The optimization problem looks very much like the one defined for struc-
tures subjected to forced vibrations (Sect. 2.1.2) (Sigmund & Jensen 2002b,
Sigmund & Jensen 2002a). Here, however, the input point and the point to
be damped are not coincident. The difference may be seen as the difference in
optimizing for minimum compliance (Chap. 1) and in optimizing compliant
mechanisms (section 2.6).

An optimization problem solving the problem of minimizing the wave
magnitude at a point, a line or an area of a structure subjected to forced
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vibrations with frequency 2 can be written as
min ¢=a"Lu
P

st. (K+iNRC-2PM)u=f

N
ZvePeSV, 0<pmin<pe <1, e=1,...,N
e=1

where L is a zero matrix with ones at the diagonal elements corresponding to
the degrees of freedom of the nodes, lines or areas to be damped. Due to the
complex damping term, the solution of (2.47) is complex and we use overbar
(-) for the complex conjugate. This formulation corresponds to (2.6) with an
added damping term and a slightly modified objective function.

The sensitivities of the objective function can by the adjoint method be
found as

Be F[0K 8C oM
—9 o
Ope % (A [8Pe * 1Qape o 8Pe] ll)

where R(-) means real part and X is the solution to the adjoint equation
(K+iC— 2°M) A = —-Lu

Figure 2.52 shows an example where the suggested optimization procedure
is used to minimize wave propagation through a square plate. The left edge
if subjected to forced vibrations with frequency 2 = 200, the left and right
edges have absorbing boundary conditions and the top and bottom edges
are free. The size of the plate is 0.12, the shear moduli are y; = 0.384 and
p2 = 0.769 and the specific densities are p; = g2 = 1 (all data is normalized).
The objective is to minimize the average amplitude at the right edge. The
resulting structure is not unexpected a grid of alternating phase one and
phase two material corresponding to a Bragg grating. This structure is known
to reflect one dimensional waves. Compared to un-damped wave propagation,
the magnitude of the outgoing wave has been decreased by almost 3 orders
of magnitude.

The problem formulation (2.54) may also be used to design wave guides
as shown in Fig. 2.53. Here, all edges have absorbing boundary conditions.
The centerpart of the left edge is subjected to forced vibrations and the
objective function is to mazimize the wave magnitude at the center of the
lower edge. The resulting structure is intriguing. Apparently, the wave is bent
by a wave guide based on curved Bragg gratings. It is seen from the wave
picture (Fig. 2.53c) that the mode at the output port is almost as strong as
at the input port.
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Fig. 2.52. Damping of wave propagation in a quadratic plate. a) Design domain and
boundary conditions, b) optimized structure and ¢) the wave field (from Sigmund

& Jensen 2002b).
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Fig. 2.53. Optimization of waveguidance in a quadratic plate. a) Design do-
main and boundary conditions, b) optimized structure and ¢) the wave field (from
Sigmund & Jensen 2002b).

2.12 Various other applications

This section discusses various recent applications of the topology optimization
method [22].

2.12.1 Material design for maximum buckling load

In Sect. 2.10.3 we discussed a new class of materials with extremal elastic
properties. This material class makes use of infinitely fine laminations of
the constituent material phases so-called rank-1 laminates (c.f. Appendix
5.4). Such materials are from a practical point of view not very useful since
they have very low critical buckling loads when the softer phase has close to
zero stiffness. Therefore, it makes sense to optimize material structures for
buckling load rather than for normal linear loads. As we also discussed in
Sect. 2.10.3 under bone-remodelling, a buckling load criterion may very well
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Fig. 2.54. Modelling of non-local buckling using Floquet-Bloch wave theory (from
Neves et al. 2002a).

be the reason for why bone structure is a stiffness sub-optimal open-walled
cell structure.

In order to eliminate lamination type structures in the periodic cell, one
may introduce a local buckling load constraint on the cell problem, just as
we did for structural buckling problems in Section 2.2 (Neves, Sigmund &
Bendsge 2002b). However, there is no guaranty that a cell periodic buckling
mode is the most critical one, and therefore we should include also non-cell
periodic buckling modes when we scarch for the most critical buckling load.
This can be done by Floquet-Bloch wave analysis just as we did in Sect. 2.11
for wave propagation problems. Figure 2.54 shows a buckling load diagram
for varying wave-vectors k (see Sect. 2.11 for the theory) and some of the
associated buckling modes for a specific square microstructure. It is seen
that the most critical buckling mode is the shear mode which has a buckling
load that is less than a third of the cell periodic mode. This demonstrates the
importance of using Floquet-Bloch wave theory for modelling the problem.

Figure 2.55 shows another example of a critical load diagram for square
microstructures. The material structures are subject to uniaxial horizontal
loading and we allow a total volume fraction of 0.52 to be filled with stiff
material. In the first case (Fig. 2.55a), the outer square frame is fixed to
be solid and the rest of the material is evenly distributed in the interior of
the cell. This results in a non-dimensionalized buckling load of 0.029. Now
we maximize the minimum buckling load over all wave vectors along the
lines I' — X — M — I in the Brillouin zone. The optimized topology and its
associated buckling diagram is shown in Fig. 2.55a. The buckling load for the
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Fig. 2.55. Maximization of microstructural buckling load. a) Initial design with
buckling load 0.029 and b) topology optimized design with buckling load 0.061
(from Neves et al. 2002a).

optimized material structure is 0.061 — an increase of more than a factor of
two.

2.12.2 Crashworthiness

One of the most complicated optimization problem we can think of is the
optimization of transport vehicles for crashworthiness. First, the modelling is
extremely complicated, involving geometric and material non-linearities, con-
tact and very complex geometries. Second, especially for automotive struc-
tures, the load conditions are unknown since a crash between two cars or
a crash of a single car against a wall, a tree or a roll-over may happen in
infinitely many ways. Third, the sensitivity analysis for path-dependent and
dynamic problems is rather involved.

These complications may be the reason why not much work has been
done in applying topology optimization methods to crashworthiness design
problems. Further problems that are expected in the applications of topol-
ogy optimization methods to crashworthiness problems is how to model the
response for intermediate density materials and internal contact. Ford Mo-
tor Company has built up an in-house software for crashworthiness design
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based on the RADIOSS software for modelling (Soto 2001). The topology
optimization can be categorized as a re-enforcement optimization problem
and is performed based on heuristic criteria without sensitivity analysis (see
also Sect. 2.12.4).

A short description of recent work (Pedersen 2002b, Pedersen 2002c,
Pedersen 2002a, Pedersen 2002d) on topology optimization of frame struc-
tures for crashworthiness is given in the following. The work considers simpli-
fied planar models ignoring contact between elements. However, the sensitiv-
ity analysis is derived analytically which makes the algorithm very efficient.
The modelling is based on plastic beam elements and an implicit dynamic
Newmark time-stepping algorithm for obtaining the transient response.

The formulation of the optimization problem must accommodate con-
flicting criteria such as a maximum acceleration constraint to avoid driver
and passenger injuries due to too high g-forces (e.g. whip-lash) and a max-
imum deformation constraint to avoid passenger and driver injuries due to
penetration of the passenger cabin. These requirements are best met by a
structure with constant high acceleration (for example just below the head
injury criteria (HIC) acceleration) throughout the crash. Therefore the op-
timization problem is formulated as a min-max problem where the error in
obtaining the prescribed acceleration 4}, in M design points is minimized.
This optimization problem may be written as

mgn max |t () — @, |

m=1,2...,

s.t. r(t,h) =0,

N

Zhebele <V,

e=1

0< hmin <he <hmez, €=1,...,N

where b, is the thickness of element e, [ its length and h. is the design
variable (height of the beams). The residual r(t, h) = 0 describes the dynamic
equilibrium where ¢ is the time.

An example of the design of a car-front for frontal crash is shown in
Figs. 2.56 and 2.57.

Other applications of topology optimization to damage problems are dis-
cussed in Sect. 3.6 and an overview of literature on material non-lincarities
and damage related problems are found in [22] and [31].

2.12.3 Bio-mechanical simulations

Models for bone remodelling and optimal design have mutually provided
inspiration for new developments in either arca (see Pedersen & Bendsge
(1999) for a collection of papers dealing with such aspects [7]). It thus turns
out that there is a close similarity between the optimality criteria algorithm
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Fig. 2.56. Sketch of the design domain for crashworthiness design of a car. The
front part of the car is modelled by 272 plastic beam elements (c).

and schemes for bone remodelling. Also, in many isotropic remodelling algo-
rithms, the relationship between density and the elasticity modulus of can-
cellous bone is modelled exactly like in the SIMP model. Furthermore, when
orthotropy is taken into account, Wolff’s law for bone predicts that stresses
and material axes are aligned, exactly as for minimum compliance design,
see Sect. 3.1.4. Even though it is commonly agreed that the bone does not
attain, from a structural optimization point of view, a stable optimal con-
figuration with respect to any given static loads, the similarity between the
two types of modelling has suggested that optimal remodelling will provide
a framework for simulating the adaptation of bone structure that is subject
to external loading. We will not elaborate further on this here, but refer to
the vast literature on the subject [7].

2.12.4 Applications in the automotive industry

Since the introduction of the idea of treating structural topology optimization
as a material distribution problem this subject has evolved substantially and
it has changed the design process in the automotive industry!! by providing
better structures, not only in the early stages of the process, but also as a
technique to improve component designs in subsequent phases.

1 This section is based on a text kindly provided to us by Ciro A. Soto, Ford Motor
Co., Dearborn, ML
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Fig. 2.57. Topology optimized frame structure. Response curve and snapshots of
the deformations. The goal was to obtain a constant acceleration throughout the
crash.

Fig. 2.58. Bone remodelling simulation for multiple loads. Femur longitudinal
cuts. Two sets of results depending on cost of bone creation. By courtesy of P. A.
Fernandes, J. M. Guedes and H. C. Rodrigues.

Among the first publications on topology optimization applications in
the automotive industry are Huang, Walsh, Mancini, Wlotkowski, Yang &
Chuang (1993) and Yang & Chuang (1994). They implemented a topology
optimization software that used a commercial finite element method code to
perform the structural analysis, and solved automotive design problems with
a large number of degrees of freedom.

Structural topology optimization is an important tool for structural de-
signers in the automotive industry. In the first half of the 20th century, new
structural designs were obtained using much of the experience of the de-
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Fig. 2.59. Bone remodelling with tapered hip prosthesis, contact conditions, for
multiload case and with bone ingrowth modelling. By courtesy of J. Folgado, J. M.
Guedes and H. C. Rodrigues.

signer. However, with the introduction of structural optimization in the early
1960s, plus the advances in topology optimization in the 1990s, design pro-
cesses have changed dramatically in the industry. Nowadays, computers help
to create new topological designs in a matter of minutes using commercially
available structural topology optimization software. The applications of such
tools in the design cycle have had a tremendous impact on the final product
and in the design process as well. There are many types of structural prob-
lems that can be encountered in the automotive industry, from simple linear
static problems like a bracket design, to non-linear transient problems like
designing for crashworthiness.

Software for topology optimization In 1989 a company in Japan, Quint
Co., released Optishape, a commercial software to perform topology opti-
mization using the approach of Bendsge & Kikuchi (1988). Since then many
other CAE-software companies have developed similar packages for appli-
cations in the aerospace and automotive industry. Among them there are
Optistruct (from Altair Computing, USA), Construct (from MSC Software,
USA) and Catopo (from CES Eckard GmbH, Germany). Ford Motors devel-
oped its own topology optimization software in 1992 called TOP (Huang et al.
(1993), Yang & Chuang (1994), Soto, Yang & DeVries (1996), Soto & Yang
(1999)) and integrated it into a more comprehensive structural optimization
software called Optcom which is also able to do shape and size optimiza-
tion, plus sensitivity analysis based on simulations done with MSC/Nastran
structural analysis software. Thanks to the availability of such software since
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the carly 1990s the automotive industry has included the use of topology
optimization techniques in their structural design processes.

Challenges in vehicle design A vehicle can be succinctly described as a
payload box (cabin and trunk) on a suspension system (wheels and suspen-
sion) propelled by an engine (power train). This three-element description
interacts with the rest of the world through three other elements: human
beings (conductor and passengers), road (in contact with tires) and environ-
ment (wind, temperature, pressure, obstacles, pedestrians). This simplified
view will be used to quickly review three challenges engineers face during the
design process. The first challenge is the number of loading conditions that a
vchicle structure is subject to during its entire life. The second challenge of
vehicle design is the variability within each design condition. Roads are not
perfectly flat; tires do not wear uniformly; steel quality varics from batch to
batch, etc. Finally, engineers also have to deal with multidisciplinary aspects.

Stiffness maximization of vehicle structures The structural body of a
vehicle is required to provide a stiffness in bending and torsional directions
beyond some lower limits prescribed by the design team based on previ-
ous experiences and/or competitive vehicles. Maximization of the stiffness is
equivalent to minimization of the mean compliance of the structure under a
given load. This type of problem can be solved not only for components, but
also for vehicle structural skeletons (body structures). In its multiload format
(see Sect. 1.5.1), more than 80% of structural topology design optimization
problems in industry can be addressed by solving compliance minimization
problems. Here one often seeks the Pareto curve by solving several optimiza-
tion problems for different sets of weights. This is a very common situation
in automobile design, where two or more responses go through a trade-off
analysis to determine the final design.

Figure 2.60 shows a compliance optimized body structure (also known
as“the body in white”) of a sedan vehicle. The finite element meshes used
for such structures can easily reach 200,000 or more finite elements. The
design objective is to maximize the torsional and bending stiffness. These
two stiffnesses are important for static loading, for ride and handling and
also from the vibrational point of view.

Noise, vibration and harshness (NVH) NVH is a vehicle response that
passengers feel and judge continuously when the car is running. Vibrations
from 20 Hz up to 5000 Hz must be minimized in a vehicle design to reduce
discomfort on passengers. There are three main sources of vibrations: power
train (engine and transmission), wind, and road-tire interaction. Each one of
them has its own frequency range and are resolved in different ways. Power
train vibrations are well defined in terms of their frequency spectrum since
they come at known rpm values. In such cases, the optimization problem has
the design objective of preventing structural natural frequencies to coincide
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Fig. 2.60. A compliance optimized body structure of a sedan vehicle. Dark areas
indicate where more material improves the performance in torsional and bending
stiffness simultaneously. By courtesy of Ciro Soto and Ford Research Laboratory.

Fig. 2.61. Reinforcement of the back-plate of a sedan. Dark areas indicate where
more material improves the performance in torsional and bending stiffness simul-
taneously. By courtesy of Ciro Soto and Ford Research Laboratory.

with the power train frequencies. Wind vibration and noise are caused by
vibratory pressure of the wind on windshield, window glasses and other ex-
ternal panels. These vibrations are usually reduced by changes in the contour
and finish of the vehicle external surfaces. Vibrations coming from road-tire
interaction (harshness) are more difficult to treat because the range of fre-
quencies is very wide and sometimes it is impossible to provide a structure
with low vibration for the entire range. There are two main approaches to
deal with structural vibration problems. If the frequency spectrum of loads
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is very well defined with distinguishable frequencies, the manipulation of
the natural frequency spectrum is the better approach. Moving up or down
natural frequencies can be achieved using topology optimization techniques.
However, if the frequency spectrum of loads is very dense, with almost white
noise characteristics, the reduction of the magnitude of vibrations is the bet-
ter approach. This can be done when the simulation is performed as a forced
frequency vibration problem (cf., Sect. 2.1.2, [14]), rather than a free (eigen-
value) vibration problem (cf., Sect. 2.1.1, [14]). The former approach works
on the cause of the problem, while the latter works on the symptoms.

Design for stress reduction - durability Durability is the term used to
describe the fatigue phenomena in the automotive industry. The goal is to
build a vehicle with a useful life span of several hundred thousands kilometers
without experiencing any fatigue problems. The main difficulty lies in the
prediction of life (number of loading cycles) for the random loads acting
during the life time of the vehicle. Even more difficult is to compute sensitivity
coefficients of life with respect to changes in the thickness of panels or changes
in curvature. In addition, there has always been a controversy about including
local constraints in topology optimization problems. One side of the argument
is that topology is a global property of the structure and should not be subject
to point-wise constraints. On the other hand, local topology features (such
as holes) are often dominated by local structural behavior (e.g., stresses).
Nevertheless, there has been several attempts to include local stresses into
the problem formulation (cf., Sect. 2.3, [16]).

Topology of embossed ribs in structural shells One technique used to
increase local stiffness of structural shells is the addition of embossed ribs
(also knows as beading). These are stamped indentations with given length,
depth and separation to provide directional rigidity to the shell. The differ-
ence between doing the standard topology optimization and embossed rib
optimization is that the goal is not to look for isotropic material layout, but
for a layout and orientation of a fixed orthotropic stifiness property. More
specifically, when the design variable is close to zero, the local stiffness prop-
erty (membrane and bending components) must be of an isotropic material
plate of given thickness; and when the design variable is close to one, the lo-
cal stiffness properties must be that of an orthotropic ribbed plate. In order
to achieve this a new model is needed to simulate the structural behavior
of embossed ribs (see Soto & Yang (1999)) based on orthotropic plate mod-
elling (cf., Chap. 3). Since the local stiffness propertics then depend on the
amount and location of the embossed ribs and also depend on their orien-
tation, the optimization problem is posed with two design variables, namely
local rib-amount and orientation. See the paper (Soto 2002) for examples.

Topology optimization for crashworthiness In crashworthiness anal-
ysis of transportation vehicles there is a long list of complex phenomena:
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non-linear materials (plasticity, hardening, etc.); non-linear geometry (large
deformations and displacements, buckling); dynamics (inertial forces); sur-
face contacts (including self-contact of members); and strain rate effect due
to the speed of the crash, just to mention some of them. One of the main
difficulties in the crashworthiness design is the simulation of the phenomena.
A single simulation may take 24 to 30 hours on a supercomputer, and days in
a 2002-model workstation, hence, any attempt to do topology optimization,
where each finite clement has at least one design variable, must carefully
consider the use of more CPU time. Sce also the discussion in Sect. 2.12.2.



3 Design with anisotropic materials

In Chapters 1 and 2 we have concentrated on the generation of optimal
topologies based on the use of isotropic materials within the framework of
“classical” black-white (or 0-1) structures. Early developments in topology
optimization were build around the employment of composite materials as an
interpolation of void and full material. This was founded on theoretical work
that had lead to the understanding that the issue of existence of solutions can
be resolved by extending the design space to include rclaxed designs, here in
the form of composites.

When introducing composites as part of the solution method in topology
design one has to deal with a number of aspects of materials science and
specifically methods for computing the effective material parameters of com-
posites. Thus homogenization is an intrinsic part of topology design together
with the area of material science which is concerned with bounds on the prop-
erties of composites. The latter deals with the limits on the possible effective
material behaviour and directly gives information on the optimal use of local
material properties.

What is thus named the homogenization approach for topology design
constitutes the basis for many studies in topology design. One can here dis-
tinguish between the use of the methodology mainly as a tool for interpolation
of properties and studies where existence of solutions is a central aspect. One
will find that many of the developments in Chap. 2 have a counterpart based
on the homogenization method as an interpolation tool. On the other hand,
the complete theoretical insight of the existence issue has presently only been
gained for problems involving compliance and fundamental frequency opti-
mization [4].

Design with composite materials is, of course, an important area in its
own right [24]. This involves such issues as the optimal choice of orientation
of an orthotropic material and especially the optimal layup of laminates.
Moreover, one can choose to work with a completely free parametrization of
the stiffness tensor in order to find the optimal design where any material
can be used. The homogenization method and such aspects of the optimal
use of material in a broad sensc is the topic of this Chapter.
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otated
microstructure

Fig. 3.1. A structure made of materials with micro structure. Notice how the micro
structure is rotated by a rotation of the unit cells.

3.1 The homogenization approach

3.1.1 Parametrization of design

We have already noted that the original 0-1 problem statement of topology
design lacks existence of solutions in the continuum setting (the distributed
problem) [34], [25]. We have hitherto used a restriction method to assure
existence of solutions. On the other hand, existence studies shows that non-
convergent, minimizing sequences of admissible designs with finer and finer
geometrical details that can be found for the original “0-1” problem and that
these limits should be interpreted as designs where composites made from
the original material (and void) are integral parts of the optimal structure.

If we decide to work with an eztension of the design space, the key to
assuring the existence of solutions to our basic shape optimization problem
with unknown topology is thus the introduction of composite materials con-
structed from the given isotropic material (as defined by E?jk, of (1.3)) [4],
[5], [34], [25]- The design variable is then the continuous density of the base
material in these composites. We immediately note that such a relazation of
the problem in itself provides an interpolation for use in computations, as
the composites allows for a density of material, i.e., a definition of “grey”
Introducing a composite material consisting of an infinite number of infinitely
small holes periodically distributed through the base material, the topology
problem is consequently transformed to the form of a sizing problem where
the sizing variable is the material density p. As in SIMP, the on-ofl nature of
the problem is avoided through the introduction of this density, with p = 0
corresponding to a void, p = 1 to material and 0 < p < 1 to the porous
composite with voids at a micro level. We thus in this situation have a set of
admissible E,q stiffness tensors given in the form:
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Fig. 3.2. Layered materials for single load cases in dimension 2. The build-up of
a second rank layered material, by successive layering of mutual orthogonal layers,
resulting in an orthotropic material.
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where E;;41(z) are the effective material parameters for the composite. These
quantities can be obtained analytically or numerically through a suitable mi-
cro mechanical modelling (cf., Sect. 2.10 on material design; see also below).
The composite material will, in general, be anisotropic (or orthotropic) so the
angle of rotation 6 of the directions of orthotropy enters as a design variable,
via well-known transformation formulas for frame rotations. Observe that the
density of material p is, in itself, a function of a number of design variables
which describe the geometry of the holes at the micro level and it is these
variables that should be optimized. This means that one typically will have
more than one design variable per spatial point (or mesh element).

Note that for any material consisting of a given linearly elastic material
with microscopic inclusions of void, intermediate values of the density of the
base material will provide the structure with strictly less than proportional
stiffness (sec Fig. 3.4). In an optimal structure one could then expect to find
p-values of 0 and 1 in large areas. On the contrary, the optimal application
of the microstructures (see later) usually results in a very efficient use of
intermediate densities of material and the resulting designs have large areas
of “grey” One central aspect of this optimal employment of composites is
the possibility to adapt to the directions of strain/stress — in a manner of
speech, isotropic materials “waste” material also on non-loaded directions.
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Fig. 3.3. A 3-dimensional cell of a rank-3 layering, with orthogonal layerings at
three different scales. This microstructure is useful for single load problems in 3
dimensions.

In the initial studies of the homogenization approach, composites consist-
ing of square or rectangular holes in periodically repeated square cells were
used for planar problems, and these still play a central role in many appli-
cations. Later so-called ranked laminates (layers) have also become popular,
both because analytical expressions of their effective properties can be given
and because existence of solutions to the minimum compliance problem for
both single and multiple load cases in this case can be formally proved (with-
out any additional constraints on the design space).

Figure 3.1 shows a two-dimensional continuum structure made of a ma-
terial with microstructure and illustrates how the rotation of the unit cells
influences a microscopic view of the material. Figures 3.2, and 3.3 show lay-
ercd microstructures that are regularly used for optimal design'.The figures
show the unit cells for a material with a periodically distributed microstruc-
ture, so the cells in the structure are considered as being infinitely small,
but infinitely many. Finally, Fig. 3.4 shows the non-lincar density-stiffness
relation for a composite with square holes aligned with the axes of reference.
Also shown in this figure is the dependence of the effective properties on the
angle of rotation of the cells.

3.1.2 The homogenization formulas

The “homogenization approach” to topology design of continuum structures
as described above relies on the ability to model a material with microstruc-
ture, thus allowing for the description of a structure by a density of material.
Here one takes an approach where the porous material with microstructure
is constructed from a basic unit cell, consisting at a macroscopic level of
material and void. The composite, porous medium then consists of infinitely
many of such cells, now infinitely small, and repeated periodically through
the medium. At this limit, we can also have continuously varying density of

! It is common in the theoretical materials science literature to see these structures
denoted as laminates. However, to avoid confusion with the use of this word in
a structures context we call these structures “layerings”.
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Fig. 3.4. The dependence of the effective material properties of a periodic com-
posite with square holes in square cells on the size of hole and the angle of rotation
of the cell. a): The effective properties in a frame aligned with the directions of the
sides of the cell. Dependence on material density p. The dependence on cell rotation
(seen from a fixed frame), b) for a small sized hole with density of material in the
cell of 0.91 and ¢) for a large sized hole with density of material 0.36 (from Bendsge
& Kikuchi 1988).

material through the structure. The resulting medium can be described by
effective, macroscopic material properties which depend on the geometry of
the basic cell, and these properties can be computed by invoking the formulas
of homogenization theory.

The computation of these effective properties play a key role for the topol-
ogy optimization. Also, the formulas are central for comparing the different
choices of cell structure and they form the basis for the topology design of
the materials themselves, cf., Sect. 2.10 where the formulas have already been
presented. However, for the sake of completeness of the presentation in this
Chapter, the formulas of homogenization will again be briefly presented here
for the case of dimension 2. For details, the reader is referred to the refer-
ences quoted in the bibliographical notes [4], [20]. Suppose that a periodic
micro structure is assumed in the neighbourhood of an arbitrary point z of
a given linearly elastic structure (cf., Fig. 3.1). The length of periodicity is
represented by a parameter § which is very small and the clasticity tensor
Ef;y, s given in the form

Z,

Eju(z) = Eija(z, %)
where y = FEiju(z,y) is Y-periodic, with cell Y = [Yir, Yi1] % [Y2r, Yar]
of periodicity. Here z is the macroscopic variation of material parameters,
while z/d gives the microscopic, periodic variations. Now, suppose that the
structure is subjected to a macroscopic body force and a macroscopic surface
traction. The resulting displacement field 4®(z) can then be expanded as

ub(z) = uo(z) + du, (z, %) +o
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where the leading term ug(z) is a macroscopic deformation field that is in-
dependent of the microscopic variable y. It turns out that this effective dis-
placement field is the macroscopic deformation field that arises due to the
applied forces when the stiffness of the structure is assumed given by the
cffective stiffness tensor

kI
ukl(l') |Y|/ [ ikt (7, Y) — Eijpq(T, y) ] (3.2)

Here x* is a microscopic displacement field that is given as the Y-periodic

solution of the cell-problem (in weak form):
0 1 i
Hi gy = / E'ijk,(a:,y)aidy forall p € Uy (3.3)
Y Oy

J et g

where Uy denotes the set of all Y-periodic virtual displacement fields.

With yll (ylao)a y12 = (yQaO)) y21 = (01 yl) and y22 (07 y?)a the
variational form for the definition of the effective properties is:

1 i
Egkl(f’:) = Vl’g}}}, m vy — o, y* - ®) (3-4)

while the form of the equations (3.2) and (3.3) in compact notation is

1 G
Effu(z) = e =X, y* = xM) (3.5)
av(y¥ —x¥,0) =0 forall p € Uy (3.6)

From Equations (3.2) and (3.3) we see that the effective moduli for plane
problems can be computed by solving three analysis problems for the unit cell
Y For most geometries this has to be done numerically using finite clement
methods [20] or, as can be advantageous, by use of boundary element methods
or spectral methods. For use in a design context the homogenization process
should be implemented as an easy-to-use pre-processor (Guedes & Kikuchi
1991). Equations (3.2) and (3.3) hold for mixtures of linearly, elastic materials
and for materials with voids (Cioranescu & Paulin 1979). Figure 3.4 shows
the variation of the effective moduli for a material consisting of square cells
with square holes.

It is important herc to undecrline that the use of homogenized material
coefficients is consistent with a basic property of the minimum compliance
problem as formulated in (1.1). To this end, consider a minimizing sequence
of designs in the set of 0-1 designs defined in (1.3) and assume that this se-
quence of designs consists of microcells given by a scaling parameter § > 0.
In the limit of § — 0, the sequence of designs has a responsc governed by the
homogenized coefficients. It is a fundamental property of the homogenization
process that the displacements u®(z) of the sequence of designs will converge
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weakly to the displacement ug(x) of the homogenized design (cf., [4]). As the
compliance functional is a weakly continuous functional of the displacements
this implies the convergence of the compliance values. We can thus conclude
that inclusion of homogenized materials in the design formulation does not
provide for a jump in performance, but rather provides (some) closure of
the design space. Moreover, at the same time we achieve a design descrip-
tion by continuous variables, and can avoid the recourse to any additional
interpolation scheme.

We remark that layered materials have analytical expressions for the ef-
fective moduli (see below) and this is a distinct advantage for optimization.
For other types of micro voids the effective moduli have to be comnputed
numerically for a number of dimensions of the voids in the unit cell, and
for other values of densities the effective moduli can be interpolated using
for example Legendre polynomials or splines; this gives an easy method for
computing design derivatives as well. Note that the interpolation only needs
to be carried out for different values of Poisson’s ratio, as Young’s modulus
enters as a scaling factor. The plot in Fig. 3.4 was generated this way.

Layered material We now consider a layered material (cf., scale 2 of Fig. 3.2
rotated 90°) with layers directed along the yo-direction and repeated peri-
odically along the y;-axis. The unit cell is [0,1] x R, and it is clear that the
unit cell fields x* are independent of the variable 3. Also note that in Equa-
tion (3.2), the term involving the cell deformation field x* is of the form

ki
Eijpe(, y)%%, so an explicit expression for x* is not needed. Using period-
icity and api)ropriate test functions and assuming that the direction of the
layering coalesces with the directions of orthotropy of the materials involved,
the Ollly non-zero elements E1111, E2222, E1212(= E1221 = E2121 = E2112),
El122(= Eo211) of the tensor E;jiq can be calculated as shown in Appendix
5.4. Specifically, for a layering of two isotropic materials with the same Pois-
son ratio v, with different Young’s moduli £+ and E~ and with layer thick-
nesses v and (1 — 7), respectively, the layering formulas (in plane stress)
reduce to the following simple expressions:
Ell{ll =h, E'gzz = I+, E{én = ITUIl’ Eﬁzz =vh
1 EYE~
T 1-129E- 4+ (1 —7)EV’

(3.7)

I L=~vEt + (1 —9)E~

It has been noted earlier that layered materials (so-called rank-N layered
materials) play an important role as a class of composites for use in the
homogenization approach. Such materials are created by successive layering
of one material with composites already constructed. For example, the con-
struction of a rank-2 layering is as follows. First, a (first order) layering of
the strong and the weak material (void in the following) is constructed (see
scale 2 of Fig. 3.2). This resulting composite material is then used as one
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of two components in a new layered material, with layers of the isotropic,
strong material and of the composite just constructed; the layers of this com-
posite material are placed at an angle to the direction of the new layering.
The effective material properties of the resulting material can be computed
by recursive use of the effective material parameters for a layering and the
moduli are computed as the material is constructed, bottom up. The rank-N
construction is analogous, and just includes more steps. For a rank-2 layering
of material and void, with perpendicular layerings and with primary layer-
ings of density p in the 2-direction and the secondary layer of density + in
direction 1 (as in Fig. 3.2), the resulting material properties are:

~vE
py(1—v2) + (1~ p)
Egzz =uE+ H2V2E11{117 Eglz =0,

H _ H H
Ein = »  Eyiae = wvEpgy,

(3.8)

where E is Young’s modulus and v is Poisson’s ratio of the base material.
Also,the total density of the strong material in the unit cells of this rank-2
layered material is

p=pu+{1—py=p+y—py

A detailed derivation of the layer formulas is described in Appendix 5.4,
where the relation of the homogenization theory to traditional engineering
smear-out techniques is also underlined.

The importance of the layered materials not only hinges on the analytical
formulas for the effective material parameters. Of equal significance, studies
on bounds on the effective material properties of composite mixtures made of
two isotropic materials have shown that for elasticity the stiffest (or softest)
material for a single load or multiple load problem can be obtained by a
layered medium, with layering at several microscales? [4], [25]. For single load
problems the stiffest material consists of orthogonal layers, with no more
than 2 layers for dimension 2 and no more than 3 layers for dimension 3.
For muitiple load problems the stiffest material (for the weighted average
formulation) consists of layers that are not necessarily orthogonal, up to 3
for dimension 2 and up to 6 for dimension 3. The rank-2 materials are not
the only composites which in 2-D achieves the upper bound on stiffness of a
mixture of two materials [25]. The layered materials are thus not special in
the sense of being uniquely optimal, but they are special in the sense that
their effective material properties can be expressed analytically.

Parametrization by moments The formulas presented above become very
cumbersome if one employs rank-N layerings with many non-perpendicular
layers. In this case it is more convenient to work with the so-called moment
formulation for the effective material properties [25).

2 It is known that single scale microstructures cannot generate the stiffest structure
in all situations (Allaire & Aubry 1999).
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It turns out that the full range of effective material properties for all
rank-N layerings in 2-D can be described by just 5 parameters {see Appendix
5.4). These are the bulk density p of material together with four moments
(my,ma, m3,my) that are parameters of the form

mg = Z:n:] Hr Sin(20r), my = Z:n:l My sin(40’) s

In terms of these moments and the density p, the effective compliance tensor
can for example be written as (in plane stress and for layerings of material
and void)

my = 30 pr cos(207), ma = Y7L pur cos(467) } with iﬂr =1
r=1

_ (1 - P) -1
cH=ct+ 73—[1)] (3.9)

where the entries of the tensor D are
Dllll 2%(3+m2—4m1) D2222=§(3+m2+4m1)
Diyyog = Dagyy = (1 —ma)

_ _ _1
Dy112 = Dyyay = Doy = g(ms —ma) ,

- _ _ _1
Dyage = Dagoy = Dajaz = Doz = g(ma + my)

Dyz12 = Digoy = Dapya = Dayay = (1 —my)

When considering all possible layer combinations as well as layer directions,
the tensor CH will be parametrized by (m,,ms, ms, m4) belonging to the
convex set M given as

m}+m2<1,-1<my <1,
M= meRY2m2(1 — my) 4+ 2m2(1 + mo)+ (3.10)
+(m3 + m3) — dmymam, < 1

This convex set also encompasses the material tensors of rank-2 and rank-
3 layerings. However, compared to a rank-3 layering described by 2 rela-
tive densities and 3 directions of layerings, by introduction of the mornents
(my, m2,m3,my) there is one less variable to worry about. If optimization is
carried out using these moments one may wish to recover a composite from
the optimal moments — it turns out that for any given set of moments, a
composite with at most three layers can be can be constructed analytically,
see Lipton (1994a). For 3-D a parametrization in terms of moments can also
be given. Here one has to work with 15 moments and a characterization of
the set of moments in terms of matrix-inequalities, see Diaz & Lipton (2000).

3.1.3 Implementation of the homogenization approach

The homogenization approach to design of a structure with composites can
be implemented using the same flow of computations as for the material
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distribution method with isotropic materials, see sections 1.2.2 and 1.2.3.
However, two additional aspects have to be considered. First, a database of
material properties as functions of the design variables should be generated,
with one set of data for each allowed value of Poisson ratio. For layered
materials no database is required, only a suitable subroutine. Second, the
optimization routine should also cater for angles of rotations of the unit cells.
Finally, the implementation should be able to remove checkerboard patterns
as these also appear in this setting.

The homogenization approach has been used as the basis for many design
studies, encompassing many of the problems dealt with in Chaps. 1 and 2.
Compared to use of for example SIMP, the homogenization approach requires
additional design variables to describe the structure. On the other hand, one
always works with microstructures of a given type, giving a direct physical
understanding and in many cases a formal framework (homogenization the-
ory [4]) for computing the behaviour for intermediate densities when more
involved physical situations are involved.

In many cases the homogenization approach is actually used as a ba-
sis for computing black and white designs, and the extended design space
that encompasses composites is not employed to obtain information about
the optimal micro-scale use of material as well. Also, to obtain such “classi-
cal” designs, explicit penalties on the density (as discussed in Sect. 1.5.2) is
typically nceded to steer the design to a 0-1 format; in some circumstances
neglecting the rotation angle of the cells in the composite constitutes a suffi-
cient penalization that results in such designs. For compliance design it is also
known that the use of such sub-optimal microstructures consiting of square
holes in square cells give rise to rather well defined designs consisting almost
entirely of areas with material or no material and very little area with inter-
mediate density of material, i.e. very little composite material. This favours
the use of this micro geometry for obtaining 0-1 designs and the success of
the material distribution method in applications would probably never have
come about if such sub-optimal microstructures had not been used in the
initial numerical studies of the method (this was before the optimality of the
layered materials had been proven).

On the other hand, one of the main interest in using composites in the
design formulation is to see how this can influence the effectiveness of a
structure, and ultimately, to understand what constitutes the best structure.
That composites have a big part to play in such design studies can be seen
when computing minimum compliance designs with layered materials where
the result usually consists of large areas of intermediate densitics (“grey”
areas of composite).
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Fig. 3.5. Optimal design using a rank-2 material. Left: The optimal design using an
element wise constant density function and a 8-node displacement model. Right:
The unstable checkerboard solution obtained when using a 4-node displacement
model (from Jog et al. 1994).

Fig. 3.6. Optimal design using a rank-2 material strain energy density with penal-
ties on intermediate densities and on perimeter. a) shows the density distribution
for the unpenalized case. In b) intermediate densities are penalized. In c¢) and d) in-
termediate densities and perimeter are penalized, with d) being a fine mesh variant
of ¢) (from Jog et al. 1994).

3.1.4 Conditions of optimality for compliance optimization -
rotations and densitics

In the following we shall derive the necessary conditions of optimality for
the minimum compliance design problem that employs composite materials
in the parametrization of design. For this design formulation there are now
two distinct types of design variables. First, the composite material is an
anisotropic (normally orthotropic) material for which the angle of rotation of
the unit cell is an important unconstrained design variable, and second, the
sizes describing the unit cells constitute a different type of variables which
are globally constrained through the volume constraint. For the latter, the
derivation of the conditions of optimality follows directly from the devel-
opments in Sect. 1.2.1, so we will here concentrate on the problem for the
directions of orthotropy.

Optimal rotation of orthotropic materials The composites with cell
symmetry described in the preceding sections are orthotropic, and the angle
of rotation of the material axes of this material will influence the value of
the compliance of the structure. It turns out that the optimal rotation can
be found analytically and this is of great importance for computations and
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it is interesting in its own right. Thus the optimal rotation of an orthotropic
material is not only of importance for the present setting, but is equally sig-
nificant in the design of composite structures, laminates, etc. For this reason
we will here derive the conditions of optimality for material rotations in plane
stress/strain problems (i.e. 2-D) [24].

Assume an orthotropic material as given. Then in the frame of reference
given by the material axes of this material we have a stress-strain relation

0i = Eijuien

with Ey111, Eo200, Ejy22, Ej212 being the only non-zero components of the
stiffness tensor E;jjri. We assume that Eyqy; > Foggo , and assume that a
given set E”, k=1,...,M, of strain fieids for a number of load cases are
specified. With comphancc design in mind, we see from the formulations
(1.6) and (1.34) of the minimum compliance problem that our interest is to
maximize the weighted sum of a number of strain energy densities:

M
1 2 2 2
k k k _k
= 3 E w' [E””Efl + Eogg0esy + 2E11226”522 + 4E12126f2 ]
k=1

We now express the strains in terms of the principal strains £, ek;, where
we choose |e¥| > |e¥;| for convenience:

1
e =3 (e} +e§p) + (eF —efy) cos 2y]
efy = [(51 +efp) — (ef —efy) cos 2¢F)
efy =— 5(51 —e§y) sin2y*

Here 9* is the angle of rotation of the material frame relative to the frame of
the k’th principal strains. We are interested in the angle © of rotation of the
material relative to a chosen frame of reference which maximizes the function
W Each angle ¢* is thus written as y¥ = @ — o*, where of is the angle of
rotation of the k’th strain field (see Fig. 3.7).

Inserting the expressions for the strains expressed in terms of the refer-
ence principal strains into the equation for W and differentiating, we get the
condition of stationarity as:

M
> w* [AFsin2(0 — of) + B¥sin2(0 - o*) cos2(0 — of)] = 0,
k=1
Ak (5’;2 — &y )(En]] — En292)

= (ef — e§1)?(Bazo2 + Enin — 2Ey122 — 4E1212)

Stationarity is thus achieved if the following fourth order polynomial in sin 20
is zero:
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Fig. 3.7. The definition of angles of rotation of material and principal strain axes.

P(sin 20) =a, sin? 20 + a3 sin® 20 + assin? O + a; sin 20 + ag
Qa4 =Z32 + 23 a3 = 22124 — 22329

2

2
2 2 2
az =2; +z§—z3 — 2y a) =2923 — 22124, Qo= —4‘1—z,2

M M
2 = Z wFA¥sin2a® 2 = Z w® A¥ cos 2a*

k=1 k=1
M M
23 =2 Z w*B¥sinda* 2z, =2 Z w® B¥ cos4a®
k=1 k=1

(3.11)

The energy W is periodic so there exist at least two real roots of P Also, as
the order of P is four, the roots of P can be given analytically. The actual
minimizer of the compliance is found by evaluating W for the four or eight
stationary rotations. This feature is of great importance for the numerical im-
plementation of the homogenization approach for optimal topology design,
as the iterative optimization of a periodic function with several local min-
ima and maxima is very likely to give the wrong result. Also, the analytical
derivation of the optimal angles saves considerably in computational time.
For the single load case we can express directly the stationary angle ¢
(using the principal strain axcs as the reference system):
. . aer+err
sin2ep =0, or cos2yY = —, withy=—-——"- and
Ber—err
a = (Ejn — Erz) >0, 0= (Eas2+ Enn — 2B — 4E1212)

Inserting these values in the second variation of W with respect to
(Pedersen 1989), it can be seen that the maximizing ¢ (i.c. the compliance
minimizer) depends on the sign of the parameter 3. The parameter 8 is a
measure of the shear stiffness of the orthotropic material. For low shear stiff-
ness, that is, 8 > 0, the globally minimal compliance is achieved for ¢ = 0,
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i.e. the intuitive result that the numerically largest principal strain is aligned
with the stiffer material axis; also, from the stress-strain relation, we see that
in this case these axes are aligned with the axes of principal stresses. The
materials used in topology design (as described in Sect. 3.1.1) are weak in
shear i.e., 8 > 0. For certain (engineering) laminates with ply-angle +¢,
22,5° < ¢ < 45°, we can have the situation of high shear stiffness, i.e. 8 <0
(Pedersen 1989). In this case, cos 2y = — is the global minimum for com-
pliance as long as —1 < 7 < 0 ( 7y has the signof 8 ), and for y < 1,9 =0
is again the global minimum. Note that a similar analysis can be carried out
based on given stresses (here the complementary energy should be minimized,
cf, (1.7), (1.35)).

For three dimensional elasticity we have three angles of rotations possible
for the axes of orthotropy (e.g. using Euler angles) and the expressions above
for first variations with respect to angles become much more complicated.
For the materials used for design, it is possible to show stationarity of the
alignment of material axes, principal strain axes and principal stress axes.
The full answer to the 3-D cases is still open [24].

For the materials involving multi-layered media (the rank-N laminates
or layerings) the result on the optimal rotation follows by alternative means
from the studies on optimal bounds on effective moduli of materials [25]. For
these materials it is thus proven that for the single load case, the optimal
rotation of the material is consistent with an alignment of the layerings with
the principal stresses/strains and this holds in dimension two and three.

We remark here that the problem of optimal design of the spatially varying
angle of rotation of a fixed orthotropic material is not, in itself, well-posed
in general. Relaxation is needed for this case also, as the introduction of for
example layered materials consisting of the orthotropic material at various
rotations extends the range of available materials. This is discussed in Fedorov
& Cherkaev (1983); see also Thomsen (1991).

Optimality conditions for density The conditions of optimality for the
density parameters describing the stiffness of a composite can be derived
exactly along the lines of Sect. 1.2.1. For the problems at hand we note
that the tensor E;;i; now depends on geometric quantities which define the
microstructure. For a square, 1 by 1, micro cell with a rectangular hole of
dimension (1— ) times (1—+) the density of material is given as p = p+y—puy
and the constraints on the design variables u,y are

[@rr—m)@dn =V, 0<u@) <1, 0<q@) <1 (3.12)

This relation also holds for the rank-2 layered material with layers of density
1 and 7. For the present setting the optimality criterion update derived in
Sect. 1.2.1 then has the format:
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max{(1 - Q)px, 0} if px B, < max{(1 - {)ux, 0}
pk1 = kB if max{(1 - pk,0} < px B < min{(1+()px, 1},
min{(1 + C)purc, 1}if min{( + C)pre, 1} < B

max{(1 — {)vk, 0} if yk Efy < max{(1— {)yk,0},
Yk+1 = § Tk Efp if max{(1 - {)yk,0} < 1 Efe < min{(1+ ()7k,1},
min{ (1 + ()yk, 1} if min{(1 + {)x,1} < 1x Ef

Here pg, vk denotes the variables at iteration step K |, and B, E are

M
_ OE;;
B = [Ak(1— k)] ! Zwkﬁ(ﬂk,’)’l()eij (’U'f()fpg(u'f{)
k=1

M
_ OE;;
Ex =[Ak() — px)] ™! Lz:l w” —af/pq (1, Vi )Ei (uhe Jepg (k)

Also here, A is a Lagrange multiplier that should be adjusted in an inner
iteration loop in order to satisfy the active volume constraint.

In an implementation, the density update above can be combined with a
parallel, but separate update that caters for the optimization of the rotations
of the composites, using the roots of the polynomial (3.11). For stability of
such a scheme it is typically best to rely on the use of the principal stresses.

The parametrization (3.9) in terms of moments, together with the con-
straints (3.10) is not suited for use of the optimality criterion method. Also,
for a straightforward application of for example MMA it is troublesome that
the constraints (3.10) adds two cxtra constraints per element that are not
simple bounds. However, as the effective tensor is concave in the moments
(Lipton 1994c) this parametrization is perfectly suited for a hierarchical ap-
proach where locally optimal material properties are found (numerically) as
solutions to a set of inner optimization problems. Such an approach will de-
scribed in the following section.

3.2 Optimized energy functionals

The introduction of composite materials as part of the design formulation
signifies that the goal of the optimization is both to determine the opti-
mal spatial distribution of material as well as the optimal local use of this
material. If we allow the material variables to vary from point to point it
scems reasonable to accentuate this local optimal choice of microstructure,
and this perspective gives the inspiration for some alternative formulations
of optimization problems involving composites [26].
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3.2.1 Combining local optimization of material properties and
spatial optimization of material distribution

In the following, we will consider the material distribution method for general
anisotropic materials where an extra set of local variables (for example cell
rotation and some geometric parameters) define the material tensor E of the
problem. In turn the local variables also determine the pointwise density p of
material (the bulk density), or rather, the density p determines the volume
of material available for the pointwise (local) construction of E. Within this
framework we can then write the minimum compliance design problems (1.6)
and (1.7) as

. 1
max max min § = [ Eyg(@)es;(w)ep(u)dQ — 1{u)
density . Etfor . velU | 2 Jq
microstructure
plz), z€L, of density p(z)

Jo pdQ<V
(3.13)
i i i ! Cijni(x)os501dQ (3.14)
dgll;gy }I:"nglr min 2 Jo ikl (L )0ij Okl .

microstructure dive+f=0
;(zgégeg; of density p(z) o-n=L
Q =

The basic idea is then to interchange the optimization over the design of
the microstructure and the optimization over stresses or displacement. This
interchange gives valuable insight in problem structure and provides us with
a basis for constructing some alternative solution procedures and computa-
tional schemes.

The interchange of min-min in the stress formulation (3.14) results in
an equivalent problem as the constraint sets for the two operators in the
inf-inf problem are given entirely in terms of the variable over which each
individual infimum is sought. Introduction of, for example, stress constraints
at the outer design level of problem (3.14) would destroy this feature. For the
displacement formulation (3.13) the interchange will in general not result in
an equivalent problem. Nonetheless, as we havé that

supinf ¢(z,y) < inf sup ¢(z,y) ,
z ¥ Yy z

for any function of two parameters, the interchange will provide us with an
upper bound on the optimal objective in (1.6) and thus a lower bound for the
compliance of the optimal structure. In situations where the problem satisfies
conditions for the existence of a saddle value (saddle point), the interchange
will result in an equivalent problem also for the strain case this holds if
we work in the framework of layered materials (see Sect. 3.3), for a free
parametrization of the tensor E (see section 3.4), and for laminated plates
(see Sect. 3.5.2).
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The interchange of equilibrium analysis and optimization of local material
properties results in a reformulated displacement based problem

i W(p,€:5(u))d —1 .
s mind [ W.e5)an -1} (3.15)
" pdQ<V

where W (p, €) denotes the pointwise optimal strain energy density expression
given by

. E for 2
microstructure
of density p(z)

Wip,e) = max {lEi,jklfijEkl} (3.16)

Here we have used that the optimization of microstructure is pointwise, so
that one can move this extremization under the integration over the domain.
In the stress based case we have a problem form

min min {/ T(p, a,-j)dQ} (3.17)
p(z), z€Q, divag—f:O Q
@ PAQSV T pinsy

with an optimized complementary energy density

_ ) 1
{(p,055) = min { §Cijkm¢j0kt } (3.18)

microstructure
of density p(z)

For the optimization problems consisting of (3.15)-(3.16) and (3.17)-(3.18) we
have two coupled optimization problems, which we label the local anisotropy
and the material distribution optimization problems, respectively. The ma-
terial distribution problems are the problems (3.15), (3.17). These are the
“master” problems (the outer problems) of this hierarchical formulation and
they deal with the spatial distribution of resource/material (a global prob-
lem). The local anisotropy problems are the problems (3.16) and (3.18). These
inner “slave” problems address the question of optimal choice of material (a
local problem).

The local anisotropy problems (3.16) and (3.18) correspond to finding the
pointwise stiffest material for a given fixed strain or fixed stress field and a
given density of material. This is a standard problem setting in the theory of
variational bounds on effective moduli of anisotropic materials. It is of great
importance in its own right and has been the subject of intense studies in
material science.

The equilibrium problem in (3.15) secks kinematically admissible equi-
librium displacements for the locally optimum energy functional, for a given
distribution of resource p, while the equilibrium problem in (3.17) secks stati-
cally admissible equilibrium stress fields which minimize the locally optimum



176 3 Design with anisotropic materials

Initial guess
(Initial design)
l

l Analysis (Finite elements): |

1 l

Optimization of material
properties for given
strains/stress and density

Updating spatial
distribution of material

no

Converged ?

yes
plot results

stop

Fig. 3.8. Optimal design using a hierarchical approach. The resulting structure is
here a low volume solution to the problem shown in Fig. 3.5.

energy functional, again for a given distribution of resource p. It should be
noted that, since the locally optimum energies depend on the displacement
and stress fields in a complex fashion via the optimization problems (3.16) and
(8.18), the inner equilibrium statements of the problems (3.15) and (3.17) are
in fact constitutively non-linear and non-smooth elasticity problems, except
in very special cases. However, as we shall see in the coming sections, there
are important cases of material modelling where these equilibrium problems
become problems in linear elasticity or where the non-smoothness is isolated
to unimportant strain/stress values. For the strain based problem, it is worth
remarking that the equilibrium problem remains a convex problem after the
optimization over local material properties. The optimal strain energy den-
sity W(p,€) is derived as a maximization of convex functions in the strains
and is thus in itself convex in these variables.

3.2.2 A hierarchical solution procedure

The problem separation described above naturally leads one to consider a
different computational implementation as compared to the procedure de-
scribed in Sect. 3.1.3. Such an implementation can for example work with
problem (3.15) in the displacements and density only. We accordingly con-
sider the solution to (3.16) as given, either through an analytical or a com-
putational procedure. Then (3.15) has exactly the format of the compliance
problem dealt with in Chap. 1 for the SIMP model, that is, the compliance
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is a function of the density and is given by the solution of a minimum po-
tential encrgy problem. This problem can then be solved for example by
an optimality criterion method or by MMA. Here onc needs sensitivity in-
formation of the compliance, i.e., derivative information for the equilibrium
problem of (3.15), which is given by the derivative of the optimized strain
energy W with respect to the density. For an analytically derived optimal
strain energy functional this derivative is straightforward to obtain, while for
a computationally derived optimal strain energy functional this derivative is
given simply as the Lagrange multiplier for the volume constraint of prob-
lem (3.16), i.e., the derivative is given directly from the computation of the
optimal encrgy. The equilibrium problem in (3.15) is in general a non-linear
problem, so the equilibrium problem requires an inner iteration loop at this
point, but computational experience has shown that, as the optimization over
the bulk density is in itself iterative, only one (or a few) equilibrium iterations
need to be used for each design update.

One of the advantages of the computational program just described is
that the main flow of the procedure is independent of the modelling of the
material used for the description of design. This latter information is added
as an external module (the solution of (3.16)). This feature makes it possible
to generate flexible procedures, where the material model can be changed
easily.

In many implementations the non-linear analysis iterations are avoided
[26]). Thus linear analysis is applied for the equilibrium problem with fized
material parameters and problem (3.16) is used to generate the parameters
of the optimal stiffness tensor for each displacement iteration. The direct
coupling between the material parameters and the displacements is there-
fore ignored in the implementation of the linear equilibrium analysis. This
computational procedure is especially attractive for nultiple load problems
where the use of the linear analysis also circumvents the coupling between
the displacements for the different loads that is introduced via (3.16).

The procedure described here has been impleniented for a broad variety
of models [26]. It is particularly well suited for the parametrization by mo-
ments (3.9) of the effective parameters for rank-N layered materials needed
for multiple load cascs. Here the inner problem (3.16) becomes a convex
problem that can be solved efficiently by computational means. In other sit-
uations, as we shall see in the following sections, this inner problem can ac-
tually be solved analytically. One can go one step further and solve the inner
anisotropy problem by the material design method described in Sect. 2.10. In
this situation one uses only microstructures which involve one length-scale,
and the microstructure is designed by a topology design method as described
in Sect. 2.10. The computations involved in this approach are quite massive:
the number of local topology design problems equals the number of finite
clements in the mesh defining the material distribution p. However, all these
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Fig. 3.9. The MBB beam. The optimal distribution of material and associated mi-
crostructures obtained from a hierarchical approach. The local material anisotropy
problem (3.16) has here been solved numerically, using topology design of the unit
cell of a composite. The cell is not rotated — the necessary rotation arises from the
material design (from Rodrigues et al. 2002).

local problems are independent and can be solved simultaneously using par-
allel processing methodologics.

Additional problem reduction In the development above we could have
performed one further interchange for the stress case® namely the inter-
change of the optimization over density and the extremum form of the equi-
librium problem. Such an interchange results in the problem

mn {0}, fe)= min | [ Moo (3.19)
divat£=0 p(a),zeq, = O
Jo pdQ<V

We have written problem (3.19) in a form which underlines that this re-
duced problemn should be interpreted as an equilibrium only problems for
a globally optimized complementary energy expression. The optimized en-
ergy is non-smooth and couples all degrees of freedomn through the volume
constraint. This latter complication can be circumvented by considering the
volume constraint of the original problem (3.14) in the form of a penalization
and not a constraint (Allaire & Kohn 1993, Allaire & Francfort 1993). With
this interpretation problem (3.19) becomes

min {ﬁ/\(a)} , (o) = demng} [I(p,0i;) + Ap) dO2, (3.20)
divet7=0 o(z), zeQ

3 Examples show that this typically does not make sense for the strain based
setting.
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where A is now a fixed penalty factor. For a computational procedure for
problem (3.20) one could solve the inner problem by analytical or computa-
tional means and implement a non-smooth optimization method for solving
the equilibrium problem. Such a procedure for layered microstructures is
described in Allaire & Kohn (1993), while Allaire & Francfort (1993) have
implemented a method, as outlined above, based on linear analysis, where
both the material properties and the density is updated based on the alge-
braic solution of the optimization of the complementary energy (sce section
3.3 for the derivation of these expressions). Further details can also be found
in Allaire (2002).

3.3 Optimized energy functionals for the
homogenization modelling

In the following we will compute the optimal strain and complementary ener-
gies for rank-2 layered materials in 2-D, corresponding to the local anisotropy
optimization problem for single load minimum compliance design. That is,
we will develop the solution to problems (3.16) and (3.18) for the class of
composites that are rank-2 layered materials.

We use here the parametrization of the stiffness of the rank-2 material by
the two layer-thicknesses i and +, see Sect. 3.1.2. If the primary layerings of
density p are placed in the 2-direction of our reference frame, the effective
material properties in plane stress are (cf., (3.8))

1E H H
El = , Ef,=wEH
1111 (1= %)+ (1 - p) 1122 = BV E
Efl, = uE + p*V*Ef |, Eff,=0

when the weak material is void, i.e. E~ — 0. It is straightforward to verify
that such a material is weak in shear, i.e. that the material parameters satisfy
ER |+ El,, —2EH,, — 4Ef,, > 0 (cf., definition in Sect. 3.1.4).

3.3.1 The stress based problem of optimal layered materials

The results on optimal rotation of orthotropic materials shows that for the
minimum compliance problem with a material which is weak in shear, the axes
of orthotropy should be aligned with the axes of principal stresses oy, orr
This gives a complementary energy of the form

1 H
n= _Cz‘jklaijakl

H 2 H
2 Efi\ 10} + Efjpo0f = 2E{ 3501011

2|D| [

with |D| = Ef,,E&,, — (Ef,,)*> Here, we have the well-known relations
between principal stresses and stresses in an arbitrary frame:
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1
or = 5 (011 + 0922 + \/(011 —022)2 +40122)

1
orr = P (Uu + 022 — \/(1711 — 022)? +4Ufg)

We sec that the alignment of axes is consistent with the fact that Eff,, =0
for the layered material; the vanishing shear stiffness for the layered material
plays no role as the material automatically rotates to a frame of zero shear.

Note that the material law described by the energy expression above rep-
resents a non-linear material, by virtue of the optimal rotation and the fact
that Eff,, # Ef,,. Here and in the following we use the term “material
law” to describe the characteristics of the optimized energy expressions. This
should not be interpreted as properties of the layered materials in a phys-
ical sense, but expresses the peculiarity of the energy of a structure which
automatically assigns the real material in accordance with the applied load
(stress/strain field).

We now fix the density p and express v in terms of g from the relation
p=p+v— py Stationarity of the energy with respect to the layer density
4 can now be found by standard but fairly lengthy calculations. We find the
stationary layer density p and corresponding layer density v given as

plo] ploi

/_L = — —_ —
ot + A= plorl” " lotl + lonr]

These values turn out to represent minimizing values if the value of u sat-
isfy the constraints 0 < g < p. This implies that the stresses should satisfy
ororr # 0 and for such values of stress the optimal layering is a true rank-2
layering. If o707 = 0 we have a region with an unidirectional, single layer-
ing or a solid region corresponding to p =0,y = por u = p, v = 0. The
numerical values of stresses in the formula above indicate that there for the
rank-2 regions are two distinct types of layerings depending on the sign of the
quantity ororr. We denote the two types of stationary layerings as mode I
(oror < 0) and mode II (oyo; > 0) materials, and the rank-1 materials as
mode IIT materials. Note that the expressions above were derived under the
assumption that the direction of the outer layer of the rank-2 layering (cor-
responding to u) 1s aligned with o7, and that no restrictions where imposed
on the relative sizes of o and o5y The analysis shows that the optimization
over layer densities automatically assures that the axis of maximal stiffness
is aligned with the axis of the largest stress, in accordance with the result
on optimal rotations. Also note that a second, equally optimal layering can
be obtained by aligning the outer layerings with the stress oy ; the formulas
above now hold with o7 and oy interchanged. The effective complementary
energy for both optimal microstructures is given by the expressions
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— 1
ModeI II= ETo [0F + 0f; — 2(1 — p + pv)oroy)]
51 1 2 2
Mode IT 1 :E[U,+U,1+2(l—p—pll)0]0”] (32])
Mode IIT ﬁ—o—%ifa =0 ﬁ—a—%'ifa =0
= 2Ep mnm=u, = 2Ep r=

The material properties of the now optimized microstructure are completely
given in terms of the density and the principal stresses. Noting that

2 2 _ 2 2 2 _ 2
o+ 05 =07, + 059 + 207y, 0101 = 011022 — Oy

we observe the surprising fact that the optimized energy corresponds to a
material law which for the regions with two layerings is linearly elastic and
quasi isotropic. For the single layering regions the material law is non-linear.
Note that the isotropy of the optimized material law is natural in view of the
rotation of the rank-2 material. The linearity and isotropy of this extremal
material law can be understood in a broader context from the so-called trans-
lation method for obtaining optimal bounds on effective moduli of composite
materials (Cherkaev 1993, Milton 1990).

The expression (3.21) is the solution to the problem (3.18) for the single
load case we consider. For the stress based problem (3.17) a further reduction
to a design-free problem is possible, cf., problem (3.19) defined in Sect. 3.2.2.
To this end we should optimize with respect to the density of material also.
Taking the volume constraint into account for the inner problem of (3.19), we
minimize with respect to the bulk density p the expression II+Ap, where A >
0 is a Lagrange multiplier for the volume constraint. By fairly straightforward
algebraic manipulations, we get the following optimality condition for the
bulk density p:

_lorl+ o]

p= TVAAE in all modes (3.22)

In (3.22) the absolute value operators indicate that we have different expres-
sions for mode-1 and mode-II. The corresponding densities v and p are

lor ] _ loil

HEVRE -l | VAE

and the optimal distribution of the bulk density should satisfy the volume
constraint

N +|0”| .
dQ:/mx {'i”l—,1}dnzv 3.23
/np Ja " V2AE ( )

This constraint determines the value of the Lagrange multiplier A for any
relevant volume constraint. Thus the volume constraint implies that we can
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consider A as a function of the principal stresses, given via the equation (3.23).
Taking this feature into consideration, the optimal complementary energy
density can be expressed in terms of stresses only, and we have reduced the
stress based design problem (1.7) to a design independent non-linear, non-
smooth elasticity problem of the form

min { / ﬁ(o)dQ} (3.24)
divui_ft:O Q

Details of a numerical procedure for solving the stress based problem (3.24)
can be found in Allaire & Kohn (1993) and Allaire (2002).

3.3.2 The strain based problem of optimal layered materials

The algebra involved in optimizing the microstructure for the strain based
formulation s much more complicated than for the stress case and for simpli-
fication of presentation in this case, it turns out to be convenient to impose
the choice |ef| > |err| for the principal strain directions. The steps of the
analysis are all analogous to the procedure for the stress case, but the al-
gebraic manipulations now become very involved, and the use of symbolic
manipulations is recommended.

The optimal density u and corresponding density -y are again given by
different expressions, depending on the relative values of the principal strains
€1, €rr as well as the size of the bulk density p. We again denote the different
expressions as Mode-I, Mode-IT and Mode-1II regions (there is a one-to-one
correspondence with the stress energy modes). The optimal values are

{ L= €y ((1+Vﬂ—ﬂ}+5n er+enr
Mode I ver+(2-p—vvplert } if <p<l1
_ erterr(l+vp—p — y
Y= (—-v)(er—err) (1 V)E
L= sy!E/p+p—1]+€n € €11
Mode II vert(2-ptv-vplenr if 1 51,
{ y = Shulrete—) (1+v)er
ModeIlm {PTO0l ypgcpc B17C1 gy SLYEL
Y= (1+v)er (I -v)er

The effective strain cnergy corresponding to either optimal layering is given
by the expressions
I W(p,E) = m [E%+E%I+2(1 —p+pl/)61€1[]

I W(p,e) = sammymssy 67 + €51 — 20— p— pr)erert]

— FEe? . — Ee?, .
M W)= L it lerl > lerrl, Wipe) = 22 it et < el

In the Mode-I1I regions with single layers, the material law is non-linear and,
as for the stress based analysis, the rank-2 layered regions of Modes I and
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=y

Fig. 3.10. Optimal design using an optimized rank-2 material strain energy density.
Optimized designs computed using element wise constant density function and a
8-node displacement model. Center: the optimal density distribution, and Right:
the associated principal stress distribution for a volume fraction of 20%. Note that
grey area is not limited to biaxial response. The bicycle wheel like design has an
area with radial uniaxial stress as well as a rim of circumferential uniaxial stress
(the rim of a wheel’) (from Jog et al. 1994).

II correspond to a linearly elastic material law which has the same stiffness
matrix as the optimal material obtained in the stress case. This is consistent
with a duality principle for the optimized strain and complementary energics

divglirflzo {/Qﬁ(p’ ”)dﬂ} = max {l(“) - /QW(p,E(u))dQ}
o-n=t

that holds when the bulk density p is kept fixed (Lipton 1994c).

The optimization of the strain energy with respect to layer directions
as well as layer densities results in an optimized strain energy W which is
convex in the density p; this is readily checked by examining the second
derivative of the energy for the different modes. This excludes the possibility
of interchanging min and the max in the reduced problem

max min { / W(p, e(w))d§2 — l(u)} (3.25)
density p uelU Q
Jo pdQ2=V

and this is thus the final reduced form of the strain based formulation (com-
pare with (3.24)).

3.3.3 The limiting case of Michell’s structural continua

The lay-out theory of Michell frames and its extensions to flexural systems is
the classical approach to topology and lay-out design of structures [3], [27].
It has been illustrated earlier that the material distribution method predicts
structures that resemble truss-type lay-outs and Michell continua type lay-
outs, when constrained to small volumes of available material. We show here
that this limiting process can be formalized through an asymptotic expansion
of the problem under rescaling of the geometric and load data.
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A Michell frame is a continuum in dimension two consisting of two mutu-
ally orthogonal fields of tension/compression only members that are directed
along the principal strain. The total amount of material used is described
by two independent densities of material, constrained to satisfy some volume
constraint. The problem is a continuum analogue to the single-load truss op-
timal design problem, and there are a number of equivalent stress or strain
based problem statements. The frame is described by a specific strain energy
of the form

W= % [e? + B3]

where o, €7 and 3, ey are the densities and corresponding principal strains
in the two directions of the continua, and the optimization problem is the
one of minimizing compliance for a given volume of material, or equivalently,
maximizing of compliance for given constraints on the strains in each bar, cf.,
Hemp (1973), Bendsge, Ben-Tal & Zowe (1994). Lay-out theory for grid-type
structures in general, as treated by Prager and Rozvany, deals with problems
with a wider scope of objectives and constraints, but with basically the same
cnergy definition as above.

The Michell frane is usually understood as a limiting case for low densities
of material, where the interaction of thin members in a planar frame can be
ignored. Thus, we are concerned with the limiting situation where the layers
in a layered material become “thin” relative to the cell size of the problem.
This can be modelled by letting the density of material tend to zero in an
asymptotic expansion. Taking the limit of zero density of material requires a
complementary rescaling of the loads and tractions to make the energy limit
well posed. We thus introduce a scaling parameter £ which reduces the layer
densities by rescaling the dimensions of the microstructure relative to the
unit cell (see Fig. 3.11). The rescaled densities are

N 2 - 2 s g2
p=&u, =&y, p=E&p
We now use the rescaled densities together with an expansion of the stresses
and strains in the expressions for the optimized energies described above,
using only the terms of zero order in £ and requiring that the energies remain
finite in the limit of £ — 0. For the stress based case the stress expansion
reads
Gij = + 5_205'2 +E 0! + o) + Eoi; + E20% +
For the energy to remain finite in the limit, the expansion in stresses must

be of order greater than or equal to 1. The zero-order part of the optimized
complementary energy I (see Sect. 3.3.1) then becomes (for all modes)

1
Ty = — 2
M 2Ep(|01|+|0n|) )
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Fig. 3.11. The rescaling of the layerings that leads to the Michell frame limit.

corresponding to a rescaling of stress given by o;; This is expected from
equilibrium considerations for the unit cell.

The rescaling at the limit of £ — 0 implies that the upper constraint on
bulk density p is not active. Thus the optimization over p under the volume
constraint results in the stress based problem (3.17) reducing to the form

min {/ (los] + |a”])dﬂ}
divo+ f=0 Q

o-n=1

This is the classical Michell problem formulated in stresses. Here the specific
reference to the volume constraint is not present, as the Lagrange multiplier
for this constraint only enters as a scaling parameter which has no influence
on the form of the optimal solution. The problem corresponds to a lay-out
problem, where the cost of carrying the principal stresses is minimized over
all statically admissible stress fields. This corresponds directly to the classical
stress-based truss optimization problem stated as

m

. i + —
min a—(ql +4q7)
st. Blqt—q7)=f, ¢t>0,¢; >0,i=1,...,m,

which is a problem in plastic design. Here, ¢, g7 are the truss bar member
forces in compression and tension, respectively, B is the compatibility matrix,
l; the lengths of the bars and 7; the yield limit for bar number i . This problem
is equivalent to the problem of fixed volume, minimum compliance design of
an clastic truss structure with Young’s moduli E; = &7 and a volume equal
to the optimal volume for the plastic problem, thus taking the development
“full circle” Truss topology design is trcated in detail in Chap. 4.

One can also perform an analysis as above for the strain based case where
the relevant scaling of strain is %eij, consistent with the stress scaling (see
Bendsge & Haber (1993)). Also, an alternative to the development above is to
consider the stress-based formulation (3.24). Here one obtains that the limit-
ing case of infinitely large Lagrange multiplier A for the volume constraint (i.c.
small density) corresponds to the stress-based Michell frame lay-out problem
formulation (Allaire & Kohn 1993).
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Fig. 3.12. The shape of single inclusions of void in a cell of a homogenized, periodic
medium minimizing complementary energy (Vigdergauz-like structures for v = 1/3
and a density p = 0.5). Results for a range of principal stress ratios of a macroscopic
stress field (from Bendsge & Sigmund 1999).

3.3.4 Comparing optimal energies

A key question for understanding the nature of the results that can be ob-
tained from optimization of material distribution is a comparison of the stiff-
ness parameters of various microstructures at hand. For compliance design
the local anisotropy problems (3.16) and (3.18) give the relevant measures to
consider, i.e., one works in terms of strain or complementary energies.

It is known from work in the theoretical materials science [25] that the
optimal complementary energy (3.21) derived in Sect. 3.3.1 for rank-2 layered
materials constitutes the attainable lower bound on the complementary en-
ergy of any composite constructed from void and an isotropic, linearly elastic
material with Young s modulus E and Poisson’s ratio v. This means that any
elasticity tensor E 1« related to the given material satisfies that

sk (07 + 071 —2(1 — p+pv)ojor] if 07011 <0,

[E{jk,]_l o101 2 { L

5B, 107 + 0 +2(1—p—pv)oson] if ororr 20,
(3.26)

for any stress tensor o with principal stresses or,or;. We have seen in
Sect. 3.3.2 that this upper bound on the stiffness of a composite can also
be expressed in terms of strain energy. As we have seen, the bound (3.26)
can be attained by a rank-2 layering that have two length scales. For stresses
with ojorr 2 0, single scale, single inclusion microstructures which attain the
bounds have been presented in Vigdergauz (1989), Grabovsky & Kohn (1995).
For illustration, Fig. 3.12 shows a range of single inclusion Vigdergauz-like
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Fig. 3.13. Comparison of the optimal (mifiimal) complementary energy as a func-
tion of the ratio of the principal stresses, for a density p = 0.5, and for various types
of microstructures and interpolation schemes (material and void mixtures). The
Vigdergauz-like structures are shown in Fig. 3.12 (from Bendsge & Sigmund 1999).

microstructures for a range of positive as well as negative values of UEIJ—; these
structures have been computed by the inverse homogenization methodology
described in Sect. 2.10. Note, however, that for oyor; < 0 no single scale
periodic composite can obtain the bounds, and any composite obtaining the
bound (in 2-D) must be degenerate (i.c. has a singular stiffness tensor) (see
Allaire & Aubry (1999)); this effect is also seen in Fig. 3.13.

For their use in optimal topology design it is useful to compare ener-
gies attainable by other microstructures and interpolation schemes with the
bound (3.26). Figure 3.13 thus shows (for p = 0.5) a comparison of the
optimal bound, achievable by the ranked layered materials, with the range
of minimal complementary energies? which can be obtained by the SIMP
interpolation, by microstructures with square holes, by microstructures with
rectangular holes, and by the Vigdergauz microstructures. What is noticeable
is how close the various energies are for stress fields close to pure dilation,
while shearing stress fields demonstrates a considerable difference. In the
latter case, the microstructural based models are considerably stiffer than
the SIMP model. Moreover, the microstructure with square holes is notably
less stiff for uni-axial stresses compared to the other microstructures, since

4 We compare complementary energies as this gives more informative plots.
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Fig. 3.14. Comparison of the complementary energy of optimized base cells for a
multiload situation with p = 0.5 (see text). The single scale composites are obtained
with square base cells (from Guedes et al. 2001).

the imposed symmetry of this microstructure here hinders an efficient use of
material.

The plots of the complementary energy explains many features of compu-
tational experience with the various interpolation schemes. For compliance
optimization, the complementary energy should be minimized. As ranked
laminates are efficient also at intermediate densities, optimal design with
this material model leads to designs with typically rather large areas of in-
termediate density. This is also the case when using the microstructures with
rectangular holes and the Vigdergauz microstructures. Thus if such materials
are used for obtaining black-and-white designs, some other form of penaliza-
tion of intermediate density has to be introduced, as discussed earlier. On the
other hand, the SIMP model and the microstructure with square holes usu-
ally lead to designs with very little “grey”, as intermediate values of density
tend to give poor performance in comparison with cost.

The multiload case For the local anisotropy problems for multiple loads
one works with a weighted average of strain or complementary energies. Also
here the optimal bound (i.e., the lowest average complementary energy) can
be found by using rank-N layered materials [25]. This situation is studied
in detail in Cherkaev, Krog & Kucuk (1998), and one can here benefit by
working with the moment-based parametrization of stiffness by moments (see
Sect. 3.1.2). As above, it is instructive for this situation also to compare
this optimal energy with computational results (inverse homogenization) that
approximate the energy bounds by use of single scale microstructures.

The example in Fig. 3.14 considers four load cases. The same weight factor
is used for each pair of load cases, where the first pair gives tension and the
second pair gives shear. The weighting factors on the energies are written
as w! = X and w? = (1 — X) where ) varies from zero to one, where zero
corresponds to the tension load situations and A equal to one corresponds to
shear.
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3.3.5 Optimal energies and the checkerboard problem

In Sect. 1.3.2 we showed by example that a checkerboard of material in a
uniform grid of square Q4 elements has a stiffness which is comparable to
the stiffness of a p = 1/2 variable thickness sheet. Let us here formalize this
in light of the energy considerations carried out so far, following the ideas of
Diaz & Sigmund (1995).

For exemplification, consider the optimal design of a planar, infinite and
periodic medium with an average density of material equal to 1/2 and subject
to an average, macroscopic strain & The minimization of compliance then
corresponds to the problem

max min _ ¥(p,u)
p,<p>=0.5 wu, periodic

(3.27)
with #(E, 1) = [ 7Bl (€ = e(w)); € — (0 a2
where we use a SIMP interpolation. Assuming now that the displacement is
restricted to the space of Q4 discretizations for a square mesh we first note
that if p is distributed in a 0-1 checkerboard pattern in this mesh (denoted
as pp), then (this can be derived analytically, see Diaz & Sigmund (1995))

. 1 o
u€Q4I:nrl>Ie1riodic!p(pP’ u) = EE%kleij ekl
This can also be understood as follows: the Q4-homogenized properties of a
checkerboard pattern is %Eo By Q4-homogenized we mean the homogenized
properties that one obtains if the displacement fields are restricted to Q4
discretizations at the level of the checkerboard.
For the design problem (3.27) we also have:

T(p,u) < / PP Efjpi€ij€radQ
Q

min
u€Q4, periodic
1
0 s .
= ijszijekz/np”dﬂg EE?J.M%.&H

Thus the checkerboard pattern is an optimal design, for the model with Q4-
displacements. This is unphysical for several reasons. First, the true homoge-
nized material parameters for a checkerboard of material and void is actually
zero (Berlyand & Kozlov 1992). Second, the stiffest material that can be con-
structed is the rank-2 layered composite, which has a strain energy W given
in Sect. 3.3.2. Comparing, we obtain that

— 1 o
W(p=05,8) < EE?jkleijekl

where equality only holds if the principal strains satisfy Ef_—', = —v (with the

convention || > |&;7|). This means that a Q4-checkerboard grossly overes-
timates the stiffness, to the extend that it is “stiffer” than the stiffest lay-out
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of material (the stiffness corresponds to the Voigt bound, which cannot be
realized by a composite).

If one carries out a similar analysis for displacements in a Q9 discretiza-
tion, the checkerboards instead have a stiffness which is smeller than that of
a rank-2 material, so here these patterns are not advantageous; see Diaz &
Sigmund (1995) for details.

3.4 Design with a free parametrization of material

The goal of this section is to formulate a structural optimization problem in
a form that encompasses the design of structural material in a broad sense,
while also encompassing the provision of predicting the structural topologies
and shapes associated with the optimum distribution of the optimized ma-
terials. This is accomplished by representing as design variables the material
properties in the most general form possible for a (locally) linear elastic con-
tinuum namely as the unrestricted set of positive semi-definite constitutive
tensors [28].

In the modelling of the optimization problem the parameters which de-
scribe the structure are, as in the preceding sections of this chapter divided
into two sets: the parameters defining the local material tensor and those that
describe the specific cost of the material. In parallel with the developments
for layered materials, see Sect. 3.3, it can be shown that the minimum compli-
ance optimization of a structure with respect to these two sets of parameters
can be performed independently. Furthermore, the optimization with respect
to the local material tensor parameters can be performed analytically. This
derivation is fairly simple for both the single load case and the multiple load
problem and for any dimension of the spatial domain. Thus the more general
problem statement is considerably simpler as compared to the homogeniza-
tion topology problem (see Sect. 3.3).

The very general framework of optimizing directly on a free parametriza-
tion of the material tensor results in developments which provide an attain-
able global lower bound on the performance of any structure designed for the
same loads, boundary conditions and ground structure. At the same time, it
provides an attainable global upper variational bound on the effective moduli
of any elastic material, within the cost measures defined. Also, the consid-
erable simplifications that can be demonstrated indicate that the broader
form of a material design problem, as described and analyzed in this section,
constitutes effective means for studying the global structural optimization
problem involving sizing, shape, topology and material selection.

The results that we can obtain within the assumption of a locally un-
constrained configuration of material are informative towards gaining insight
into the nature of efficient local structures. This is useful for theoretical as
well as practical purposes. As an example of the latter, recent work has thus
employed the framework of free material design to generate procedures for
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tape-lay-up in composites. Also, the original theoretical work on the subject
laid the seeds for the very successful use of topology design methodology for
design of materials, as described in Sect. 2.10. Here one tries, for practical
reasons, to understand how to match a particular local microstructure to the
specific form of a elasticity tensor, for example the ones predicted here.

3.4.1 Problem formulation for a free parametrization of design

Modelling considerations In the homogenization method, the total vol-
ume of material, defined at the micro level, provides a natural cost function
for the optimization problem. There is not at first glance a natural cost func-
tion for the general material design formulation we consider here, where we
allow for all possible positive semi-definite constitutive tensors. Instead, we
use certain invariants of the stiffness tensor as the measure of cost, thus en-
suring that the optimal design solutions are independent of the choice of
reference frame.

For physical reasons, the possible stiffness tensors in the design formu-
lation are restricted to the set of positive semi-definite, symmetric tensors.
Also, suitable cost functions must have the property of frame indifference.
Since the goal is to optimize the local material properties as well as the
global structural response, we choose to consider cost in terms of invariants
of the constitutive tensor itself. Specifically, we choose for the developments
in the following two invariants as examples of local cost (Bendspe, Guedes,
Haber, Pedersen & Taylor 1994)

Case A ‘I’A(E) = Ez'jz'j Case B ‘I’B(E) = [EijklEijkl]%

i.e., respectively, the trace and the Frobenius norm of the 4-tensor E.

Note that these measures are homogeneous of degree one. Thus comparing
to the conventional 2D problem for the design of material distribution in a
sheet (where total cost is proportional to the volume of material), the above
“cost measures” correspond in their role to the sheet thickness. More general
considerations are also possible, combining several invariants of the tensor to
provide for generalized cost measures which can be varied to cater for specific
design goals, for example governed by available fiber composites (see [28]).

Problem statement The problem we consider is the multiple load minimum
compliance problem (1.33) (cf., Sect. 1.5.1) generalized to the situation where
the material properties themselves appear in the role of design variables. This
means that we consider a design parametrization (a definition of Eaq4) in the
form®

Er-0inQ, Eju e L®(Q), for all ijkl, / YE)Q<V  (3.28)
Q

® We use the notation E > 0 to signify that E is positive semidefinite.
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Thus we take the minimization over all positive, semi-definite stiffness tensors
Eijr (with the usual symmetry properties) and use the integral over the
domain of some invariant W(F;;r;) of the stiffness tensor as the measure of
cost. For the the sake of simplifying the derivation, we introduce the resource
density functions, po = Ya(F) and pp =~ ¥g(F) and state the minimum
compliance problem for a multiple load setting in terms of potential energy
as

max max min / W(E,w)dQ — I(4)
density p stiffness E>0 u {u M} Q
e
1 M
W(E 'll 5 E 1]pq(-E EIJ(U )qu(uk) (329)

(@) = Zwklk(uk), o= {u,.. ,uM}
=1

with M load cases (body forces f*, boundary traction t*, and weighting
factors w*). Here we have, as in Sect. 3.2.1, provided a separation between
the properties of the tensor F that can be optimized locally (at each point
in the structure) and those that must be treated as a distributed parameter
problem over the full domain.

In the max-min problems above we have introduced an upper bound on
the resource densities in order to ensure that the problem is well posed. A
possible non-zero lower bound is also catered for. Note that the resource
constraints are convex for both case A and B.

In the developments to follow, we show that an analytical optimization
actually can reduce the number of free design variables from 6 in dimen-
sion two and 21 in dimension three to only one in both dimensions (in any
dimension that is).

Splitting the problem into a series of sub-problems Analogous to
the developments in Sect. 3.2.1 we can rearrange problem (3.29) and split
it into two coupled optimization subproblems ( the local anisotropy problem,
and the material distribution problem). The interchange of the min and max
for the inner problems of (3.29) here gives an eguivalent problem as (3.29)
satisfies the conditions for existence of a saddle point: the objective function
is concave (lincar) in E and convex in the displacements u* and the set
{E|¥(E) < p, E = 0} is closed, convex and weak"-compact in L*(f2) (see
also Appendix 5.2).

3.4.2 The solution to the optimum local anisotropy problems

In this section we study the solution to the local anisotropy optimization
problem. To this end we define the positive semi-definite, symmetric 4-tensor
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A as

ijrg? ijpg

M
Aijpg = ZkaE' Al = Eij(uk)qu(uk)
k=1

and write the optimization of the energy W(E, @) of (3.29) as

1
e EEiqu Aijpq (3.30)
Y(E)<p
The Frobenius norin case. For the norm resource measure, problem (3.30)
corresponds to finding the tensor E of given norm that has the largest stan-
dard inner product with the given tensor A. The optimal stiffness tensor is
thus proportional to A and because of the resource constraint it is (uniquely)
given as
EB _— p Aijpg
P Amnrs Amnrs

The corresponding extremal energy functional is

M
We(p, @) = pWr(2) = g Aijpq Aijpg = g > whwlles;(ub)ei; (uh) 2
E,1=1

We have denoted by W the optimum energy density function per unit amount
of resource p. Here and elsewhere we embellish with an upper inverted “hat”
(W) quantities per unit amount of resource.

Note that the optimized material properties represented by Eg-pq do not
possess any specific symmetry properties and the material is thus generally
anisotropic for all but very special cases. The optimized material tensor can
have zero eigenvalues, and this happens always if the number of load cases
that we consider is one or two in dimension 2 or one to five in dimension
3. For more than this number of load cases, the material will generically be
stable, with zero eigenvalues only appearing if the strain fields are linearly
dependent.

The trace case. For the trace resource measure, problemn (3.30) corresponds
to solving a linear programming problem, with objective given by the tensor
A In order to find the solution to this problem, introduce the spectral de-
compositions of E and A. Now let 0 < 1y < < 9N, Ef/:l 7 = p, and
0< A < < An be the ordered eigenvalues of E and A, respectively
(N = 3 in dimension 2 and N = 6 in dimension 3). From a result on the
eigenvalues of positive symmetric matrices (Mirsky 1959), it follows that

N N
Eiqu Aiqu S Zni/\i S anx = PX 3

i=1 i=1
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where X denotes the largest eigenvalue of the tensor A, with orthonormal
eigentensors €, a = 1,..., P We observe that the right hand side of these
inequalities is achieved by any stiffness tensor E of the form

P
m?q PZ#" €y€pg>  With Z“a =
a=1

so we conclude that the optimal energy in the trace case is

M
Walp, @) = pWA(ﬂ) = gx = gmaxeig {Z wke,-j(uk)epq(uk)}
k=1

If X is a simple eigenvalue, E4 is unique and it corresponds to an orthotropic
material, but in the generic case the form of an optimal E4 is only determined
when the full problem is solved (the parameters u® of the expansion of E4
is found from this “outer” problem).

The single load case For the case of a single load case (M = 1), the optimal
energy in the trace and norm case reduce to the same expression, namely

. 1 1
pr(ul) = Epeij(ul)eij(ul) = §p1ijkleij(ul)ekl(ul)

corresponding the energy of an isotropic, zero-Poisson-ratio material, with
stiffness tensor pI, which is p times the identity tensor. This matrix has
norm ¥g(pl) = v Np and trace ¥4(pl) = Np (N = 3 in dimension 2 and
N = 6 in dimension 3). Note however, that the bound W, is achieved with
the (unique) tensor

£i (u" )er (')
Epq (U)€pg (u')

which has norm as well as trace equal to p. The optimized material repre-
sented by E* is orthotropic, with axes of orthotropy given by the axes of
principal strains (and stresses) for the field e;;(u!), in analogy to the results
on optimal rotations of orthotropic materials as described in Sect. 3.1.4.

For completeness of presentation, we write for dimension 2 the resulting
optimal stiffnesses in terms of and in the frame of the principal strains ey, ;5
of the single strain field &;;(u) (for convenience we have dropped the index
”1” for this load case)

* _ A B _
Eijkl = Eijkl = Ez‘jkl =pr

6% Er€rr 0

. P
(E )mal.rix = m EIEIT E%[ 0
T I 0 0 0

Note again that the optimized material is indeed orthotropic, and that the
material stiffness tensor has two zero eigenvalues. Thus, the extremization
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of the strain energy density results in a material which is at the utmost
limit of feasibility for satisfying the positivity constraint, and the material
can only carry strain fields which are direct scalings of the given strain field
for which the optimization was undertaken. This underlines the true optimal
nature of the material. Such behaviour of extremized materials was also scen
in the homogenization method for topology design with one given material,
as described in Sect. 3.3; in that case the optimized material has one zero
eigenvalue corresponding to vanishing shear stiffness.

For the single load case, we have for both resource measures obtained the
reduced equivalent problem statement in the form

1 .
i d 2 iy () —

delrgizar( p urnEllrll { 2 ,/Q P (U)EZJ (U) & l(U)}
0<pmin<PL Pmax

Jo pAQ<V

which not only gives the optimal distribution of material, but also the dis-
placements, strains, stresses and material properties of the optimal structure.
For this problem we can return to the original form of the minimum compli-
ance problem as stated in (1.6) taking the development “full circle”

min {(u)
up
/ peij(u)ei;(V)dQ =1(w) forallv €U
Q
0 < pmin £ P £ Pmax; /pdﬂsV
Q

This reduced problem is exactly equivalent to the variable-thickness design
problem for a sheet made of an isotropic zero-Poisson-ratio material, with
the density p playing the role of the thickness of the sheet. This problem is
discussed in detail in Sect. 5.2.1, and in Appendix 5.2 where the existence of
optimal solutions is proved by a fairly straightforward development.

Let us briefly for the single load case consider the stress based formulation
(1.7) for the design parametrization used here. This problem can be stated
as

. 1 ;)
o-n=t on I't

where we take the infimum with respect to all positive definite stiffness
tensors, in order to give meaning to Ei;,'claijakl Interchanging the equilib-
rium minimization with the local minimization of complementary energy (cf.
Sect. 3.2.1) and using that we from a spectral decomposition can derive that

1
inf  E;loonm= ~oi0i, 3.32
E>U,13(E)=p ZJklazyakl pUuUz] ( )
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for both of our resource measures, we see that the stress based case has a
reduced formulation

1 1
inf min {—/ —aijakldﬂ}
densnty p divoe+ f=0 1151 Q|2 Qbf
-

0<p<Ppmax 0-n=t on
Jq pdQ<V

as expected in light of the form of the displacements based formulation above.

3.4.3 Analysis of the reduced problems

The equilibrium problem for the optimized energy The solution to the
local anisotropy problems has shown that the equilibrium problem with the
optimized strain energy functions for both cases we consider can be written
as

min { / WV (i2)d€Y z(a)} (3.33)
a={u',...,uM} Q
kel k=1,.. .M

This is a coupled, non-linear problem for all the load cases at once, the
coupling arising through the optimized strain energy functional.

We note here that the function W(ul,...,uM ) of the displacements is
homogeneous of degree two, that is, under proportional loading the opti-
mized material behaves as a linearly elastic material. Moreover, W is a con-
vex function. This follows from the fact that W is given as a maximiza-
tion of convex functions of the displacements. For the Frobenius norm re-
source measure, we note that W is a smooth function, except at the origin
(u!,...,uM) = (0,. .,0) when all displacements are zero. For the trace re-
source measure the optimized strain energy functional involves an eigenvalue
problem, which implies that the functional W is only differentiable at sets
of displacements for which the maximal eigenvalue of the tensor A is not
repeated, and it is non-differentiable at displacements for which the maxi-
mal eigenvalue is multiple. This includes the origin (u!, ..,4™) = (0,...,0)
where all displacements are zero. Remark that for the single load case, the
equilibrium problem (3.33) is just a single linear equilibrium problem for a
structure made of a zero-Poisson-ratio material with varying Young moduli,
as described through the variable p.

The optimization problem in resource density The reduced optimiza-
tion problem is as described earlier

max ®(p) = min { / pW (@)d — z(a)} (3.34)
density p a={u’,...,uM} Q
0 Prnin £ 0 P wFeU, k=1,..,M

T pdQ<V
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Fig. 3.15. The design of a bearing pedestal using optimal materials. The single
load, boundary conditions etc. are described in Fig. 1.25. Left: Distribution of
resource. Right: Directions and sizes of principal strains. Compare with Fig. 1.25
(from Bendsge & Guedes 1994).

This is of the form of a variable thickness sheet problem for a sheet made of a
non-linear elastic material. Here the function ®(p) of the density distribution
p is defined through the non-linear equilibrium problem discussed in the
previous section. Since ®(p) is given as a minimization of concave (linear)
functions in p, ®(p) is in itself concave. Thus (3.34) is a convex minimization
problem in the density variable p, where the condition of optimality is that
the energy W(u!,...,uM) is constant in the region of intermediate density.

The reduced problem (3.34) is also a saddle point problem in the resource
density p and displacements {¢#*} The existence of a saddle point is also
here assured and we can thus find an optimal solution of the optimization
problem (3.34) by solving

~min {W(a)—z(a)}, W(a) = jmax / pW (4)d)
el B 0Pon <o

Q

(3.35)

Using a Lagrange multiplier A for the resource constraint, the globally opti-
mized weighted strain energy functional W () can then be expressed as

—

W (@) = in { [ mex {pmiaI7(@) ~ A, poanl ¥ (@) = A} a2+ AV}
(3.36)

This implies that the design variables can be removed entirely from the prob-
lem, and the resulting problem becomes a non-linear and non-smooth, convex,
analysis-only problem. Similar results are also developed for truss design in
Chap. 4.

An extension to contact problems It is clear from the analysis above
that all steps can be performed without restriction for problems that include
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design independent, convex displacement constraints in the equilibrium state-
ment. Thus design problems including unilateral contact can be treated by a
similar analysis.

Now let ' denote the boundary of potential contact and let «-n > 0 on
I'c be the unilateral contact condition; this is a convex constraint. Then the
design problem for minimum compliance under multiple loads can be stated
as (see also Sect. 4.2.3)

max min {/ W(E,4)dQt — l(ﬂ)}
stiffness E>0 a={u',...,uM} Q
Jo W(E)QSV kepy y*.n>0 on Te

where the inner problem is the minimum potential energy principle expressed
for a contact problem. For both resource measures this problem can be re-
duced to the forms seen earlier, the only change being the addition of the
contact condition on the admissible displacements. Also, the optimal mate-
rials are given by the same expressions.

Materials with piecewise linear elastic behaviour The general frame-
work of free material optimization can also be extended to cover the design
of a structure and associated material properties for a system composed of
a generic form of nonlinear softening materiel. Here the optimal distribution
of material properties depends on the magnitude of load, in contrast to the
case with linear material.

The relevant mechanics is now represented in terms of a generalized com-
plementary energy principle and the design objective is likewise based on
complementary energy. Net material properties of the softening medium re-
flect a superposition of properties associated with each of a number of ma-
terial constituents, and the collection of these properties, expressed through
the stiffness tensors for each of these constituents, provides the problem with
a set of design parameters. It is the availability of an extremum problem
formulation for the analysis part of the problem that makes it possible to
treat the design of nonlinear materials conveniently. The formulation used
amounts to a generalized form of the complementary energy principle, and
is stated here in stresses alone (a mixed formulation in terms of stress and
deformation fields is in other situations convenient, see Taylor (1993)). With
the superposition of M softening components and one purely elastic basis
component to make up the total stress, the analysis problem has the form:
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max a
a0k,

M
st div(y; + Zofj) +af=0,
k=1
M
(’Yij+Zofj)-n:atonFT
k=1
ot ey k=1, ... M
M

/(Durs%y’yrs + Z ijrsC 5s)dQ <
k=1

Here C¥, = [E, 17! are the compliance tensors for the M softening compo-
nents and D;jrs = [Fyjrs] 7! is the compliance tensor for the basis component.
The stresses for the softening components are denoted o* and the stress of the
basis component is . The convex sets of admissible stresses for the softening
components are denoted by K. This problem statement is a parametrized
complementary energy formulation for the general softening material. The
solution to this problem predicts a bound to the equilibrium load within the
limit I1 on total complementary energy.

The formulation above leads one naturally to consider the design of the
nonlinear material for maximization of load carrying capacity within the
framework of free material design. Up to a rescaling factor on the load this
problem is equivalent to the convex problem:

El,ilfr g}cln /([E]TS‘] 71.7’)/7‘5 + ’; z]rs Uk ok )dQ

M
st div(vy; + Zofj) +af=0,
k=1
M
(i + Zaikj) n=aton Iy
k=1
o* €Ky, k=1,. M

F>0E*>0,k=1,.. \M

/ T(F)dN <V, / V(E*Q < Vi k=1,.... M
o o
where each phase has a limited total amount of resource. This is a generalized
complementary energy formulation of the design of structures with piecewise
linear behaviour.

In the formulation above it is assumed that the softening constraints for
the softening components ¢* of total stress are design independent. Thus the
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solution predicts the optimal distribution of stiffnesses within these specified
softening limits. With this assumption we can now perform the minimization
with respect to the pointwise variation of the stiffness tensors, using the result
(3.32). With the introduction of these optimal local energy expression, the
problem can be reduced to the convex problem:

1
inf min /( YijYrs + Z;—auars)dﬂ

Pk.PO ok

s.t. div(y; + Zaij )+af=0,
k=1

('y“+20 )-n=aton I'r

ok e}Ck ,k:l,...,M
F>0FEf>0,k=1,....,.M

/podﬂgvo /pdeSVk,k=1,...,M
Q Q

where the energy measure for each constituent corresponds to the comple-
mentary energy of a linear elastic, zero-Poisson-ratio material of density equal
to the locally assigned resource value.

The analysis above can also be performed for an analogous problem of
designing a structure made of a general type of elastic/stiffening material
(see Bendsge, Guedes, Plaxton & Taylor (1996); here computational examples
can also be found). The analysis model in this case is a displacement based
equivalent to the models used above. A detailed description of the analysis
model can be found in Taylor (1994). For further discussions on analysis
models and sizing and shape design for elasto-plastic problems we refer to
the bibliographical notes [31] and the references of the literature mentioned
there.

3.4.4 Numerical implementation and examples

Computational procedure for the single load case For the single load
case, both the trace and Frobenius norm resource measures lead to the same
reduced problem of what amounts to a variable thickness sheet problem for
a sheet made of a zero-Poisson-ratio material. In this case we have a design
problem that shares important features with minimum compliance problems
for trusses, and the problem can be cfficiently solved using one of the al-
gorithms presented in Sect. 4.3 on truss topology optimization (Zowe, Koc-
vara & Bendsge 1997). This is based on the format of the problem formula-
tion (3.36), which in discretized FE form can be rewritten as a smooth and
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d

Fig. 3.16. The design of a L-shaped cantilever a) using optimal materials. Single
load case. The upper, black part at the support is considered as fixed. b): Distribu-
tion of resource. ¢): Distribution of E;;1, d): Distribution of Ezs02 e): Distribution
of |E1122]. f) Directions and sizes of principal strains; directions correspond to di-
rection of material axes (from Bendspe & Guedes 1994).

convex optimization problem in displacements only (with the notation of,
e.g., (1.14)):

lEnI{f:' {r- fTu+ AV}

s.t. pmin[%uTKeu —Al<7T e=1,...,N (3.37)
pmax[%uTKeu— A<t e=1,...,N

This format is well-suited for solution by the so-called PBM interior point
methods (see Appendix 5.5). Note that (3.37) only involves the displacement
variables (and two auxiliary variables), that it is a linear optimization prob-
lem with quadratic constraints, and that the Lagrange multipliers for the
constraints determines the values of the density p (see Ben-Tal & Bendspe
(1993) and Achtziger, Bendsge, Ben-Tal & Zowe (1992)).

Computational procedure for the general case The presence of mul-
tiple load cases introduces significant complications if the reduced energy
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expressions are applied. These complications arise because the locally opti-
mal material couples deformations associated with the different load cases in
a complex way that, as we have already seen, involves non-linear, non-smooth
energy functionals which depend on all the load cases simultaneously. This
stands in sharp contrast with the solution of the problem of design for a sin-
gle load case. Early numerical work for the multiple load scenario employed
an iterative secant method method for solving the inner non-linear equilib-
rium problem and an optimality criteria method for the density optimization
(Bendsge, Diaz, Lipton & Taylor 1995). This can be applied for the Frobenius
norm case, but experience has shown that the complicated non-smoothness
for the trace resource case prevents the use of this approach.

An efficient alternative is to apply the formulation (3.35) also in the mul-
tiple load case. Limiting ourselves to the trace case, a reformulation in the
spirit of (3.37) is also possible, but it now involves constraints stating that
certain matrices are positive definite; in the trace case the optimal specific
energy W is the largest eigenvalue of the tensor A and this can be expressed
as

VVA = inf T
ispa—Aijpg>0

This also means that W4 is bounded by a constant k if and only if klijpg —
Aijpg » 0. This can, as A is the sum of dyadic products, be rewritten as a
condition that a certain matrix, which is linear in the strains £ (u*), is positive
semidefinite (see Sect. 5.5.4 for details). Based on (3.35) it is thus possible to
write a FE discretized version of the problem as a semidefinite program in the
displacements only (see Ben-Tal, Kocvara, Nemirovski & Zowe (1999) where
also contact conditions are treated). The advantage of this reformulation is
that such problems can be solved very efficiently by modern mathematical
programming methods, see Appendix 5.5.

3.4.5 Free material design and composite structures

The result of the free parametrization of material is in a sense the ultimately
best physically attainable material and it is natural to utilize the full informa-
tion obtained in the results in an attempt to design an attainable advanced
material. This obviously depends on the type of the advanced material avail-
able and on the manufacturing technology.

Realization by tape-lay-up First we consider a procedure that relies on
the free material optimization for design of composite materials manufactured
by the so-called tape-laying technology. In a post-processing phase one can
here generate curves which indicate how to lay the tapes and how to organize
the thickness of the tapes. This gives a good initial approximation for an
optimization procedure that also takes into consideration all the technological
restrictions of the tape-laying process.
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Fig. 3.17. Tape-laying example. Top left is the stress directions from the free
material optimization and a super-posed Michell solution. Top right shows the
laying of the first tape. Bottom pictures show two tape layers obtained by post-
processing of the top left design. By courtesy of M. Kocvara and H.R.E.M. Hérnlein.

The post-processing uses that the optimal material for the single load free
material design is orthotropic and that the axes of orthotropy correspond
point-wise to the orthogonal directions of principal strains or stresses. This
allows an interpretation where this governs the direction of fibres in a (weak)
resin material. To get an impression of the lay-out of these fibres and the
thickness, a graphical post-processing tool can be employed that plots the
vector fields of principal strain direction by means of smooth curves. The
optimal load path is interpreted as that of a fibre reinforced material, for
example in the form of pre-pregs of Carbon Fibre Reinforced Plastic (CFRP)
tapes. Tape-laying is thus a way to bridge the gap between free material
design and the preliminary design phases for structures constructed from
such tapes. Further details can be found in Hornlein, Kocvara & Werner
(2001).

Realization by materials with microstructure Alternatively, skele-
tal bar structures could be used to generate microstructures that mimic
the behaviour of the optimized material tensors, see figures below. These
results are obtained numerically by an inverse homogenization operation
(see Sect. 2.10) that works with unit cells constructed from truss elements
(Sigmund 1994b, Sigmund 1995). The results substantiates the theoretical
finding ((Milton & Cherkaev 1995)) that any stiffness tensor can be con-
structed from layered materials made from an infinitely strong phase and an
infinitely weak phase.
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Fig. 3.18. Minimum weight 2-D microstruciures (upper row shows the unit cells,
lower row an assemblage of cells) for obtaining materials with the indicated stiffness
in the axis of the cell, corresponding the optimal material for a single strain field
€ = (1,1, 0). This is an isotropic material with Poisson’s ratio 1.0. The three designs
all have the same weight and are obtained using a 4 by 4 equidistant nodal lay-out in
a square cell. All 120 possible connections between the nodal points are considered
as potential members. Members not shown for the optimum cell (and structure)
are at the minimum gauge which is 10° times smaller than the maximum gauge.
The different designs are obtained by penalization of the lengths of the bars (from
Sigmund 1994b).

3.5 Plate design with composite materials

3.5.1 The homogenization approach for Kirchhoff plates

In analogy with the topology design problem treated so far, a relaxation of
the Kirchhoff plate design problem® requires that one considers plates with
infinitely many, infinitely thin integral stiffeners ([29]). This can be in the
form of a rank-2 structure of stiffeners of height hy., on a solid plate of
variable thickness h, i.e. a planar rank-2 layering of the weak tensor 'll—:E?] "

and the strong tensor %ﬂ ?jk, (see Fig. 3.20).

IFor the relaxed design problem we thus need to state the homogenization
formulas for Kirchhoff plates, more specifically the effective material param-
eters for rib-stiffened plates. With these formulas at hand (see Sect. 5.4.5 of
Appendix 5.4), the computational procedure for computing optimal designs
is completely analogous to the procedure described in Sect. 3.1.3. The opti-
mality criteria for the densities are equivalent to those derived in Sect. 3.1.4,
with strains and stresses interpreted as curvatures and moments. However,

extra care is required for use of the result on optimal rotations.

6 We refer to Sect. 1.5.3 for notation.
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Fig. 3.19. Minimum weight microstructures in dimension 3 for obtaining materials
which corresponds to the optimal material for a single strain field ¢ = (1,1, 1,0,0,0).
The three designs all have the same weight and are obtained using a 4 by 4 by 4
equidistant nodal lay-out in a cubic cell. All 2016 possible connection between the
nodal points are considered as potential members. Members not shown for the
optimum cell (and structure) are at the minimum gauge. The different designs are
obtained by penalization of members with certain lengths. The topologies in a) and
b) have full cubic symmetry. The topology in ¢) has bars on the surface of the cell
only and is not cubic symmetric, even though the effective parameters are isotropic.
Notice the similarity between the 3-D microstructures and the 2-D microstructures
shown in Fig. 3.18 (from Sigmund 1995).

In order to exemplify the difference to the plane stress situation, consider
a constant thickness, perforated plate with an orthogonal rank-2 system of
stiffeners. The effective bending stiffness is then D = E%;‘D, with (see Ap-
pendix 5.4)
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Fig. 3.20. Cross-section of the upper half of a rib-stiffened plate with one field of
stiffeners running along the normal of the cutting plane.

E -
7 Dy122 = pvEq111,

DS =)+ - 53

Doxz = pE+ p2v*Enn, Dize = (v+p+ H’Y)m

where the primnary layering of density p is in the 2-direction and the secondary
layer has density . This material law satisfies that Dyq111 + D2222 —2D1122 —
4Dj212 < 0 (see discussion in section 3.1.4), meaning that the analysis of
the minimurn compliance plate problem is more tricky than the plane stress
case. As an example, there may be regions in a plate where an optimnal,
orthogonal rank-2 layering is not aligned with the principal curvatures. We
will not treat the plate problem in further detail, as this is a major subject
(see the monograph by Lewinski & Telega (2000) and [29]).

We do mention, however, that the optimal design of plates takes an extra
twist when the analysis modelling is taken into account. The design problem
and its associated relaxation can be viewed as a purely mathernatical ques-
tion of achieving well-posedness, but as any plate model is an approximate
model, it is natural to question the validity of the relaxation in relation to
the modelling restrictions/assurnptions made to achieve the plate model un-
der consideration [29]. Thus the use of thin, high stiffeners in a Kirchhoff
plate model is in fact a violation of the assumptions under which this model
can be derived from 3-D elasticity. This means that the developments above
should be seen in the framework of achieving regularization strictly within
the Kirchhoff plate frainework, ignoring eventual modelling restrictions. The
modelling problemn should by no means be distnissed but lies outside the scope
of this presentation. The reader is referred to the literature [29] for further
information on this problemn as well as to studies of optimnal thickness design
of Mindlin plates within the framnework of the homogenization modelling,

3.5.2 Minimum compliance design of laminated plates

This section is concerned with the optimal design of the lay-up of laminated
plates for mnaximnumn stiffness. We consider optimization with respect to the
ply thicknesses, fiber orientations and the stacking sequence of the larninates,
keeping the ply material properties and the shape of the plate fixed. Instead
of working directly with this mix of integer and real design parameters we
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Fig. 3.21. Plate design of a clamped Kirchhoff plate subject to uniform trans-
verse load. Left: Optimal thickness design (ill-posed). Right: Optimal distribution
of material with two fields of stiffeners. The design data is hmin/hmax = 5.0 and
hinax /hunit = 2.84. In both illustrations only the variation over the minimum gauge
hmin is shown.

employ a design parametrization through the so-called lamination parame-
ters [30]. These represent the effective, integrated properties of the laminate
and are given as moments relative to the plate mid-plane of the trigonomet-
ric functions entering in the frame rotation formulas for stiffness matrices. In
this way the properties related to the stiffness of the laminates are empha-
sized in the optimization model, while the realization of the optimal effective
properties is postponed for subsequent post-processing.

The developments below are strongly related to the free material design
and to the homogenization approach discussed earlier, and also here we can
carry out an analytical derivation of the optimal local properties of mate-
rial. Moreover, we choose to extend the design space to include “chattering”
designs, thereby allowing infinitely many small variations of the fiber ori-
entation in each point through the thickness for each design domain of the
plate (Haminer, Bendsge, Lipton & Pedersen 1996). This corresponds to the
introduction of periodic composites for topology design and the use of rib-
reinforced plates in plate design.

Parametrization by lamination parameters Before defining the lam-
ination parameters we first need to express the constitutive relations for a
single ply of material in convenient form. Thus the e