



top.m

%%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%%
%%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%%
function top(nelx,nely,volfrac,penal,rmin);
% INITIALIZE
x(1:nely,1:nelx) = volfrac; 
loop = 0; 
change = 1.;
% START ITERATION
while change > 0.01  
  loop = loop + 1;
  xold = x;
% FE-ANALYSIS
  [U]=FE(nelx,nely,x,penal);         
% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
  [KE] = lk;
  c = 0.;
  for ely = 1:nely
    for elx = 1:nelx
      n1 = (nely+1)*(elx-1)+ely; 
      n2 = (nely+1)* elx   +ely;
      Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
      c = c + x(ely,elx)^penal*Ue'*KE*Ue;
      dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue;
    end
  end
% FILTERING OF SENSITIVITIES
  [dc]   = check(nelx,nely,rmin,x,dc);    
% DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD
  [x]    = OC(nelx,nely,x,volfrac,dc); 
% PRINT RESULTS
  change = max(max(abs(x-xold)));
  disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...
       ' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...
        ' ch.: ' sprintf('%6.3f',change )])
% PLOT DENSITIES  
  colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);
end 
%%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xnew]=OC(nelx,nely,x,volfrac,dc)  
l1 = 0; l2 = 100000; move = 0.2;
while (l2-l1 > 1e-4)
  lmid = 0.5*(l2+l1);
  xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));
  if sum(sum(xnew)) - volfrac*nelx*nely > 0;
    l1 = lmid;
  else
    l2 = lmid;
  end
end
%%%%%%%%%% MESH-INDEPENDENCY FILTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dcn]=check(nelx,nely,rmin,x,dc)
dcn=zeros(nely,nelx);
for i = 1:nelx
  for j = 1:nely
    sum=0.0; 
    for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx)
      for l = max(j-floor(rmin),1):min(j+floor(rmin),nely)
        fac = rmin-sqrt((i-k)^2+(j-l)^2);
        sum = sum+max(0,fac);
        dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);
      end
    end
    dcn(j,i) = dcn(j,i)/(x(j,i)*sum);
  end
end
%%%%%%%%%% FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [U]=FE(nelx,nely,x,penal)
[KE] = lk; 
K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));
F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);
for elx = 1:nelx
  for ely = 1:nely
    n1 = (nely+1)*(elx-1)+ely; 
    n2 = (nely+1)* elx   +ely;
    edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];
    K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;
  end
end
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F(2,1) = -1;
fixeddofs   = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);
alldofs     = [1:2*(nely+1)*(nelx+1)];
freedofs    = setdiff(alldofs,fixeddofs);
% SOLVING
U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);      
U(fixeddofs,:)= 0;
%%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [KE]=lk
E = 1.; 
nu = 0.3;
k=[ 1/2-nu/6   1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ... 
   -1/4+nu/12 -1/8-nu/8  nu/6       1/8-3*nu/8];
KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)
                  k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)
                  k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)
                  k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)
                  k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)
                  k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)
                  k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)
                  k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This Matlab code was written by Ole Sigmund, Department of Solid         %
% Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark.     %
% Please sent your comments to the author: sigmund@fam.dtu.dk              %
%                                                                          %
% The code is intended for educational purposes and theoretical details    %
% are discussed in the paper                                               %
% "A 99 line topology optimization code written in Matlab"                 %
% by Ole Sigmund (2001), Structural and Multidisciplinary Optimization,    %
% Vol 21, pp. 120--127.                                                    %
%                                                                          %
% The code as well as a postscript version of the paper can be             %
% downloaded from the web-site: http://www.topopt.dtu.dk                   %
%                                                                          %
% Disclaimer:                                                              %
% The author reserves all rights but does not guaranty that the code is    %
% free from errors. Furthermore, he shall not be liable in any event       %
% caused by the use of the program.                                        %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Preface 

"The art of structure is where to put the holes" 
Robert Le Ricolais, 1894-1977 

This is a completely revised, updated and expanded version of the 
book titled "Optimization of Structural Topology, Shape and Material" 
(Bendsoe 1995). The field has since then developed rapidly with many new 
contributions to theory, computational methods and applications. This has 
meant that a simple editing of Bendspe (1995) had to be superseded by what 
is to a large extent a completely new book, now by two authors. 

This work is an attempt to provide a unified presentation of methods for 
the optimal design of topology, shape and material for continuum and discrete 
structures. The emphasis is on the now matured techniques for the topology 
design of continuum structures and its many applications that have seen the 
light of the day since the first monograph appeared. The technology is now 
well established and designs obtained with the use of topology optimization 
methods are in production on a daily basis. 

The efficient use of materials is important in many different settings. The 
aerospace industry and the automotive industry, for example, apply sizing 
and shape optimization to the design of structures and mechanical elements. 
Shape optimization is also used in the design of electromagnetic, electro-
chemical and acoustic devices. The subject of non-linear, finite-dimensional 
optimization for this type of problem is now relatively mature. It has pro-
duced a number of successful algorithms that are widely used for structural 
optimization. However, these methods are unable to cope with the problem 
of topology optimization, for either discrete or continuum structures. 

The optimization of the geometry and topology of structural lay-out has 
great impact on the performance of structures, and the last decade has seen a 
great amount of work in this important area of structural optimization. This 
has mainly been spurred by the success of the material distribution method 
for generating optimal topologies of structural elements. This defines shape 
in terms of a material density and geometry is described by what amounts 
to a raster representation as seen in computer graphics. Today one naturally 
distinguishes between the search for "classical" designs made from a given 
material, and methods that allow for a broader range of material usage. 
When considering materials in the large, the method unifies two subjects, 
each of intrinsic interests and previously considered distinct. One is structural 
optimization at the level of macroscopic design, using a macroscopic definition 
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of geometry given by for example thicknesses or boundaries. The other subject 
is micromechanics, the study of the relation between microstructure and the 
macroscopic behaviour of a composite material. Moreover, the introduction of 
composite material in the shape design context leads naturally to the design 
of materials themselves, widening the field of applications of structural design 
techniques. 

Materials with microstructure enter naturally in problems of optimal 
structural design, be it shape or sizing problems. This was for example clearly 
demonstrated in the paper by Cheng & Olhoff (1981) on optimal thickness 
distribution for elastic plates. Their work led to a series of works on optimal 
design problems introducing microstructure in the formulation of the prob-
lem. The material distribution method for topology design first introduced as 

 a computational tool in Bendsoe & Kikuchi (1988) can be seen as  a natural 
continuation of these studies and has lead to the capability to reliably predict 
optimal topologies of continuum structures. 

For thin structures, that is, structures with a low fraction of available 
material compared to the spatial dimension of the structure, the material dis-
tribution method predicts grid- and truss-like structures. Thus the material 
distribution method supplements classical analytical methods for the study of 
fundamental properties of grid like continua, as first treated by Michell. Ap-
plications of numerical methods to truss problems and other discrete models 
were first described in the early sixties but now we see that these challenging 
large-scale problems can be solved with specialized algorithms that use the 
most recent developments in mathematical programming. 

In its most general setting shape optimization of continuum structures 
should consist of a determination for every point in space if there is material 
in that point or not. Alternatively, for a FEM discretization every element 
is a potential void or structural member. In this setting the topology of the 
structure is not fixed a priori, arid the general formulation should allow for 
the prediction of the layout of a structure. Similarly, the lay-out of a truss 
structure can be found by allowing all connections between a fixed set of 
nodal points as  potential structural or vanishing members. Topology design 
problems formulated this way are inherently discrete optimization problems. 
For truss problems it is natural to avoid this by using the continuously vary-
ing cross-sectional bar areas as  design variables, allowing for zero bar areas. 
For continuum structures one can apply an interpolation scheme that works 
with a density of isotropic materials together with methods that steer the 
optimized designs to "classical" black and white designs or one can use a 
relaxation of the problem that introduces anisotropic composites such as lay-
ered periodic media, also leading to a description of shape by a density of 
material. Irr both cases the density can take on all values between zero and 
one, and one can also make physical sense of intermediate density values. 

The approach to topology design outlined above is sometimes known as 
 the ground structure approach. This means that for an initially chosen layout 
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of nodal points in the truss structure or in the finite element mesh, the 
optimum structure connecting the imposed boundary conditions and external 
loads is found as a subset of all the elements of the initially chosen set of 
connections between the truss nodal points or the initially chosen set of finite 
elements. The positions of nodal points are not used as design variables, so 
a high number of nodal points should be used in the ground structure to 
obtain efficient topologies. Also, the number of nodal points is not used as 
design variables, so the approach appears as a standard sizing problem and 
for continuum structures, the topology design problem has been cast as a 
problem of finding the optimal density distribution of material in a fixed 
domain, modelled with a fixed FEM mesh. This is of major importance for 
the implementation of topology optimization methods. 

The field of structural optimization combines mechanics, variational cal-
culus and mathematical programming to obtain better designs of structures. 
This places any author in a somewhat problematic position on how to present 
the material at hand. Here we take an operational approach, with strict 
mathematical formalism reserved for situations where this is crucial for a 
precise statement of results. The monograph falls in two parts. The first part 
(Chaps. 1 and 2) deals with the topology design within the framework of 
searching for optimum "classical designs" made from isotropic materials, cov-
ering theory and computational procedures and describing the broad range of 
applications that have appeared in recent years. The second part concentrates 
on compliance design and emphasizes the use of composites and materials in 
the large for optimal structural design (Chap. 3). Here the particular format 
of the compliance functional plays a significant role, and this is also exploited 
for trusses, where much fundamental understanding can be obtained from a 
series of problem statements that can be devised (Chap. 4). 

The monograph also contains a substantial bibliography together with 
bibliographical notes' covering the main subjects of this exposition as well 
as related background material the reader may want to consult (Chap. 6). 
Finally, appendices (Chap. 5) cover various more technical aspects of the 
area, and Matlab codes that can be used for initial experiments in the field 
are included. 

It is the aim of this monograph to demonstrate the importance of topology 
and material design for structural optimization and that effective and mature 
means for handling such design problems do exist. Structural optimization 
enforces rather than removes the creative aspect of designing and the final 
design must be a product of creativity rather than availability or lack of 
analysis facilities. A topology design methodology is an important brick in 
providing such facilities. 

To avoid long lists of references in the text, use is made of bibliographical notes 
for a survey of the literature. Reference to the notes is by numbers in square 
brackets, e.g., [36]. 



X 

We close this brief introduction by remarking that the material distribu-
tion method for topology design has demonstrated its potential in a large 
number of case studies. Also, commercial design software has now been avail-
able for a number of years and the method is standard technology in many 
industries. While compliance design for structures was the state-of-the-art in 
the early nineties, we see today that topology design is used for a broad range 
of structural problems (free and forced vibrations, buckling, snap, stress con-
straints, pressure loads, compliant mechanisms, material design, design of 
supports, crashworthiness, bio-mechanics, etc.) with both linear and non-
linear analysis modelling. Moreover, new areas are today included in the 
problem types that can be handled, encompassing for example electrothermal 
actuators, MEMS, Stokes flow problems, piezoelectric transducers, electro-
magnetic, and band gap structures. We expect the number of application 
areas to grow even more in the coming years. 

The findings and methods presented in this monograph are very much the 
result of an international research effort and we wish to thank W. Achtziger, 
I.A. Aksay, A. Ben-Tal, S. Bouwstra, T. Bruns, T. Buhl, A.R. Diaz, P. Duys-
inx, L.V. Gibiansky, R.B. Haber, RT. Haftka, V.B. Hammer, L.V Hansen, 
J.M. Guedes, J.S. Jensen, C. Jog, J. Jonsmann, N. Kikuchi, M. Kocvara, U.D. 
Larsen, R. Lipton, M.M. Neves, N. Olhoff, C.B.W. Pedersen, P. Pedersen, J. 
Petersson, S. Plaxton, J. Rasmussen, H.C. Rodrigues, G.I.N. Rozvany, J. 
Sokolowski, J.E. Taylor, D. Tcherniak, S. Torquato, N. Triantafyllidis, and J. 
Zowe for the research collaborations that have provided the bases for the ma-
terial described in this book. Also, we would like to acknowledge G. Allaire, 
M. Bagge, T. Borrvall, B. Bourdin, G. Buttazzo, L. Trabucho de Campos, 
A.V Cherkaev, G. Francfort, J. Gravesen, J.M. Hansen, J. Kofoed, R..V 
Kohn, E. Lund, K.A. Lurie, G.W Milton, P. Papalambros, N.L. Pedersen, 
E. Petersen, U. Raiturns, U. Ringertz, , O. da Silva Smith, C.A. Soto, M. 
Stolpe, K. Svanberg, and D. Tortorelli for many very fruitful discussions on 
the subjects of this hook. Special thanks go to V.B. Hammer, M. Kocvara 
and C.A. Soto for providing texts for a number of sections of the book; C.A. 
Soto has also kindly given us much useful feedback from readings of the 
manuscript at various stages. For the typing of the manuscript and the com-
pilation of the bibliography we have had invaluable help from master students 
M.H. SOndergârd, C.L. Felter, and B. Rasmussen. Finally, we are indebted 
to our colleagues at the Departments of Mathematics and of Mechanical En-
gineering (Solid Mechanics), Technical University of Denmark, for providing 
scientifically and socially inspiring working conditions. 

Lyngby, June 2002 

Martin Philip Bendsoe 

Ole Sigmund 
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1 Topology optimization by distribution of 
isotropic material 

In this chapter we present an overview of the basic ingredients of what we will 
denote as the material distribution method for finding the optimum lay-out 
of a linearly elastic structure. In this context the "lay-out" of the structure 
includes information on the topology, shape and sizing of the structure and 
the material distribution method allows for addressing all three problems 
simultaneously. 

Sizing, shape, and topology optimization problems address different as-
pects of the structural design problem. In a typical sizing problem the goal 
may be to find the optimal thickness distribution of a linearly elastic plate 
or the optimal member areas in a truss structure. The optimal thickness 
distribution minimizes (or maximizes) a physical quantity such as the mean 
compliance (external work), peak stress, deflection, etc. while equilibrium 
and other constraints on the state and design variables are satisfied. The de-
sign variable is the thickness of the plate and the state variable may be its 
deflection. The main feature of the sizing problem is that the domain of the 
design model and state variables is known a priori and is fixed throughout 
the optimization process. On the other hand, in a shape optimization prob-
lem the goal is to find the optimum shape of this domain, that is, the shape 
problem is defined on a domain which is now the design variable. Topology 
optimization of solid structures involves the determination of features such 
as the number and location and shape of holes and the connectivity of the 
domain. 

1.1 Problem formulation and parametrization of design 

The lay-out problem that shall be defined in the following combines several 
features of the traditional problems in structural design optimization. The 
purpose of topology optimization is to find the optimal lay-out of a structure 
within a specified region. The only known quantities in the problem are the 
applied loads, the possible support conditions, the volume of the structure 
to be constructed and possibly some additional design restrictions such as 
the location and size of prescribed holes or solid areas. In this problem the 
physical size and the shape and connectivity of the structure are unknown. 
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Fig. 1.1. Three categories of st ructural optimization. a) Sizing optimization of a 
truss structure, b) shape optimization and d) topology optimization. The initial 
problems are shown at the left hand side and the optimal solutions are shown at 
the right 

The topology, shape, and size of the structure are not represented by stan-
dard parametric functions but by a set of distributed functions defined on 
a fixed design domain. These functions in turn represent a parametrization 
of the stiffness tensor of the continuum and it is the suitable choice of this 
parametrization which leads to the proper design formulation for topology 
optimization. 

1.1.1 Minimum compliance design 

In the following, the general set-up for optimal shape design formulated as 
a material distribution problem is described. The set-up is analogous to well 
known formulations for sizing problems for discrete and continuum structures 
[1], and to truss topology design formulations that are described later in this 
monograph. It is important to note that the problem type we will consider is 
from a computational point of view inherently large scale, both in state and 
in the design variables. For this reason the first problems treated in this area 
employed the simplest type of design problem formulation in terms of objec-
tive and constraint, namely designing for minimum compliance (maximum 
global stiffness) under simple resource constraints. This is also conceptually 
a natural starting point for this exposition as its solution reflects many of the 
fundamental issues in the field. 

Consider a mechanical element as a body occupying a domain f /mat which 
is part of a larger reference domain S2 in R 2  or R3  The reference domain 1 is 
chosen so as to allow for a definition of the applied loads and boundary con-
ditions and the reference domain is sometimes called the ground structure, 
in parallel with terminology used in truss topology design. Referring to the 
reference domain S2 we can define the optimal design problem as the problem 
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A design point  

•  

A point with no material  

Fig. 1.2. a) The generalized shape design problem of finding the optimal material 
distribution in a two-dimensional domain. b) Example rectangular design domain 
and c) topology optimized solution based on a 3200 element discretization and 50% 
material volume. 

of finding the optimal choice of stiffness tensor Eijki  (x) 1  which is a variable  
over the domain. Introducing the energy bilinear form (i.e., the internal vir-
tual work of an elastic body at the equilibrium u and  for an arbitrary virtual  
displacement y):  

a(u, v) = f Eijk!  (x)Eij (u)Ekt (v)df2 , 
n  

with linearized strains Eij(u) = z 
 \

a^^ +) and the load linear form  

1(u) = f f udS2 + 
fFT

tuds, 
^  

the minimum compliance (maximum global stiffness) problem takes the form  

min 1(u)  
uEU,E  

s.t. aE(u,v) = 1(v), for all y  E U  
E E E,  

In what follows we use a standard tensor notation consistent with a Cartesian  

reference frame; this does not imply a loss of generality.  

a)  
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Here the equilibrium equation is written in its weak, variational form, with U 
denoting the space of kinematically admissible displacement fields, f are the 
body forces and t the boundary tractions on the traction part I-, C f w X311 
of the boundary. Note that we use the index E to indicate that the bilinear 
form aE depends on the design variables. 

In problem (1.1), Ead denotes the set of admissible stiffness tensors for 
our design problem. In the case of topology design, E ad could, for example, 
consist of all stiffness tensors that attain the material properties of a given 
isotropic material in the (unknown) set ç1ma t  and zero properties elsewhere, 
the limit of resource being expressed as fo,,,„ 1d52 < V The various possible 
definitions of Ead is the subject of the following section. 

When solving problems of the form (1.1) by computational means a typ-
ical approach, and the one used throughout this monograph, is to discretize 
the problem using finite elements. It is here important to note that there are 
two fields of interest in (1.1), namely both the displacement u and the stiff-
ness E. If we use the same finite element mesh for both fields, and discretize 
E as constant in each element, we can write the discrete form of (1.1) as 

min fTu 
u, E.,  

s.t. K(E,e )u = f 

Ee  E Ead 

(1.2) 

Here u and f are the displacement and load vectors, respectively. The stiffness 
matrix K depends on the stiffness Ee  in element e, numbered as e = 1, .. _ , N, 
and we can write K in the form 

K =  E Ke (Ee) 
e=1 

where K e  is the (global level) element stiffness matrix. 

1.1.2 Design parametrization 

In the design of the topology of a structure we are interested in the determi-
nation of the optimal placement of a given isotropic material in space, i.e., 
we should determine which points of space should be material points and 
which points should remain void (no material). That is, we think of the ge-
ometric representation of a structure as similar to a black-white rendering 
of an image. In discrete form this then corresponds to a black-white raster 
representation of the geometry, with "pixels" (or "voxels") given by the finite 
element discretization. 

Restricting our spatial extension to the reference domain 52, we are thus 
seeking to determine the optimal subset 52rnat  of material points. For the 
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optimization problem defined above, this approach implies that the set Ead  

of admissible stiffness tensors consists of those tensors for which 2 :  

E 	1 tE° 	1 ^= J1if x Ei2mat 
a^kl = fl°'° z kl , S2^'a 	l 0 if x E  SË \ Smat  

lo.ne,di2 = Vol(i2mat) < V 

Here the last inequality expresses a limit, V, on the amount of material at our 
disposal, so that the minimum compliance design is for a limited (fixed) vol-
ume. The tensor E°  kl  is the stiffness tensor for the given isotropic material 
and one normally writes Eijkl  E L°°(i2) to indicate the relevant function-
space for our problem. Note that this definition of Ead means that we have  
formulated a distributed, discrete valued design problem (a 0-1 problem).  

The most commonly used approach to solve this problem is is to replace  

the integer variables with continuous variables and then introduce some form  
of penalty that steers the solution to discrete 0-1 values 3  The design problem  
for the fixed domain is then formulated as a sizing problem by modifying the  

stiffness matrix so that it depends continuously on a function which is inter-
preted as a density of material [6]. This function is then the design variable.  

The requirement is that the optimization results in designs consisting almost  

entirely of regions of material or no material. This means that intermedi-
ate values of this artificial density function should be penalized in a manner  

analogous to other continuous optimization approximations of 0-1 problems.  

One possibility which has proven very popular and extremely efficient is  

the so-called penalized, proportional stiffness model (the SIMP-model 4 ):  

Eijkl (x) = P(x) DF-'iejkl, p > 1 ,  

p(x)di2 < V; 0 < p(x) < 1, x E i2 ,  
(1.4)  

Here the "density" p(x) is the design function and E°  kl  represents the mate-
rial properties of a given isotropic material. One refers to p as a density of ma-
terial by the fact that the volume of the structure is evaluated as f 0  p(x)d0.  
The density interpolates between the material properties 0 and and n u : 

 

Eijkl (P = 0) = 0 , 	Eijkl  (P = 1 ) _ E?jkl  

2  We consider isotropic materials only, as for anisotropic materials the placement  

of the principal directions of the material should also be considered as a design  
variable.  

3  Methods that deals directly with the integer problem are briefly discussed in  

Sect. 1.5.6.  
4  SIMP: Solid Isotropic Material with Penalization.  

(1.3)  
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meaning that if a final design has density zero or one in all points, this design 
is a black-and-white design for which the performance has been evaluated 
with a correct physical model. In SIMP one will choose to use p > 1 so 
that intermediate densities are unfavourable in the sense that the stiffness 
obtained is small compared to the cost (volume) of the material. In other 
words, by specifying a value of p higher than one makes it "uneconomical" 
to have intermediate densities in the optimal design. Thus the penalization 
is achieved without the use of any explicit penalization scheme. For problems 
where the volume constraint is active, experience shows that optimization 
does actually result in such designs if one chooses p sufficiently big (in order 
to obtain true "0-1" designs, p > 3 is usually required). Moreover, it has been 
proven for the minimum compliance problem in discrete form (cf., problem 
(1.2)) that for p large enough there exists a globally optimal solution of 0-
1 form, provided the volume constraint is compatible with such a design 
(Rietz 2001) (see also section 1.5.4). The SIMP interpolation is the basis for 
most computational results in the first half of this monograph. 

We note that the original "0-1" problem is defined on a fixed reference 
domain and this together with the SIMP-interpolation means that the opti-
mal topology problem takes on the form of a standard sizing problem on a 
fixed domain. 

It has often been questioned if the SIMP-rnodel can be interpreted in 
physical terms (the term "material" is part of the acronym!). That is, can one 
find a material, for example as a composite, which realizes the interpolation 
model. It is important to point out that this comparison of an interpolation 
scheme like SIMP with micromechanical models is significant mainly for the 
benefit of understanding the nature of such computational measures. If a 
numerical scheme leads to black-and-white designs one can in essence choose 
to ignore the physical relevance of intermediate steps which may include 
"grey" However, the question of physical relevance is often raised, especially 
as  most computational schemes involving interpolations do give rise to designs 
which are not completely clear of "grey" Also, the physical realization of 
all feasible designs plays a role when interpreting results from a premature 
termination of an optimization algorithm that, has not converged fully to a 
0-1 design. 

We will return later in section 2.10 to the construction of a material model 
that mimics the SIMP interpolation model. Central in such considerations is 
a comparison with the Hashin-Shtrikman bounds for two-phase materials, 
which expresses the limits of possible isotropic material properties one can 
achieve by constructing composites (materials with microstructure) from two 
given, linearly elastic, isotropic materials [4]. Without further elaboration 
(and referring the reader to section 1.5.4) we remark here that the SIMP-
model can indeed be considered as a material model if the power p satisfies 
that: 
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Fig. 1.3. A black-and-white minimum compliance design for a loaded knee struc-
ture obtained with the SIMP interpolation scheme. The discretization is 60 by 60 
elements and the material volume is limited to 47% of the design domain. 
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where v°  is the Poisson ratio of the given base material with stiffness tensor 
E° ki  (Bendspe & Sigmund 1999). In dimension 2 this implies that the smallest 

p is 3, which is admissible for v° = 1/3. In dimension 3 the smallest admissible 
p is 2, but for v° = 1/3 one should also in 3-D choose p greater than 3. 

The use of the SIMP interpolation scheme addresses the integer format 
of the original setting of the topology design problem with designs given as 
in (1.3). It converts this integer problem to a sizing problem that typically 
results in what for all practical purposes can be considered as 0-1 designs. 
Another serious problem associated with the 0-1 problem statement, and a 
problem SIMP does not resolve, is the now well established lack of existence 
of solutions to the distributed problem [3], [25], [34]. This is not only a seri-
ous theoretical drawback. It also has the effect of making the computational 
results sensitive to the fineness of the finite element mesh discretization. As 
mentioned, the interpolation scheme does not directly resolve this problem, 
and further considerations are in place to assure a well-posed distributed de- 
sign problem that also is benign in terms of mesh-refinement of the finite 
element model. This aspect will be covered in some detail in 1.3.1. 

The role of composites The initial work on numerical methods for topol-
ogy design of continuum structures was based on using composite materials 
as the basis for describing varying material properties in space [3], [6]. This 
approach has been named the homogenization method arid its development 
was strongly inspired by theoretical studies on generalized shape design in 

(1.5) 
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conduction and torsion problems and by numerical and theoretical work re-
lated to plate design (see, e.g., [25], [29]). The homogenization approach to 
topology design can also be viewed as an interpolation model and many of 
the developments in the area of topology design of structures are based on 
this type of interpolation schemes. However, composites in topology design 
has deeper roots than this and composites play a key role for providing in-
sight in the optimal use of materials in the large and for understanding the 
mathematics and the physics of the "0-1" design problem. 

We have here chosen to base the first part of this monograph on the 
use of the somewhat simpler SIMP-type interpolation schemes (see also sec-
tion 1.5.4). This allows for a concentration on issues related to computational 
implementations and developments related to the consideration of more elab-
orate optimal design settings than the minimum compliance design problem. 
In the second half of the monograph we will return to discuss issues related to 
the optimal use of material in general and the details of the homogenization 
based method in particular. 

1.1.3 Alternative problem forms 

For the developments in the following it is important to note that problem 
(1.1) can be given a number of equivalent formulations. These reformulations 
use the special structure of the minimum compliance problem and they are 
extremely useful for analysis and the development of specialized computa-
tional procedures for this type of problem. For this purpose we note that 
the equilibrium condition of problem (1.1) can be expressed in terms of the 
principle of minimum potential energy. That is, the displacement field u is a 
minimizer of the functional F(v) = 2 aÉ; (v, v) — /(v) on U (the total potential 
energy). Then note that the value F(n) of the potential energy at equilibrium 
equals —2l(u) < O. Thus problem (1.1) can be written as 

max min { —

1

a E (u, u) — l(u) y 
EEE,.d uEU 	2 	 JJJ  

(1.6) 

Problem (1.6) can also be formulated in terms of stresses. Expressing the 
inner equilibrium problem of (1.6) in terms of the (dual) principle of minimum 
complementary energy, we have the formulation 

min min { 1 
 f 

CiiktaijakidII1 
EEEed QES 2 

of the minimum compliance design problem. Here Cijkl = (E-1 )ijkl is the 
compliance tensor, and the minimization with respect to the stresses a is 
taken over the set S of statically admissible stress fields, i.e. 

S = {a l diva + f = 0  in 0 , a • n = t on FT} • 

(1.7) 
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From the problem statement (1.6) we see that if the displacement field in 
an optimal structure is known, then the optimal distribution of the stiffness 
is such that the strain energy is maximized. Likewise, for a known stress 
distribution in the optimal structure the complementary energy is minimized, 
cf., (1.7). This characterization plays an important role in understanding the 
nature of the design problem, both theoretically and computationally. 

1.2 Solution methods  

The use of an interpolation scheme like SIMP allows us to convert the optimal 
topology problem into a sizing problem on a fixed domain. Compared to 
many traditional sizing problems for, e.g., frames and built-up structures 
of plates, stringers, etc., the present problem differs in that the number of 
design variables is typically very large (the number of design parameters and 
the number of analysis variables is of the same order of magnitude). Thus 
efficiency of the optimization procedure is crucial and one typically has to 
adopt optimization settings that trade number of constraints for number of 
design variables. The compliance design problem is an example of this. One 
can here work with many variables, as the optimization problem (seen as a 
problem in the density only) has just one constraint in addition to the simple 
box-constraints giving upper and lower limits on the density variable. 

1.2.1 Conditions of optimality 

In the following we shall derive the necessary conditions of optimality for 
the density p  of the minimum compliance design problem that employs the 
SIMP interpolation scheme. 

Following standard optimality criteria methods used in structural opti-
mization [7], the simple structure of the continuum, single load problem (1.1) 

 can be utilized to generate extremely efficient computational update schemes 
for solving the problems we address here. The key is to devise iterative meth-
ods which, for a previously computed design and its associated displacements, 
update the design variables at each point (or rather at each element of a fi-
nite element discretization) independently from the updates at other points, 
based on the necessary conditions of optimality. To this end, we first reca-
pitulate the form of the minimum compliance problem (1.1) written for the 
case of the SIMP interpolation. In the continuum setting this is 

uEU,p  
min 1(u)  

s.t. aE(u,v) = l(v), for all v E U  
(1.8)  

Ei,jkl(x) = P(x)P Ei^j'kl 

P(x)dS2< V; 0 <P,ni„< P < 1 .  i  
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Note that we here have introduced a lower bound prn in  on the density in order  
to prevent any possible singularity of the equilibrium problem. In typical  

applications we set () min  = 10-3  
With Lagrange multipliers A, A -  (x), A+ (x) for the constraints of (1.8), 

the necessary conditions for optimality for the sizing variable p are a subset 
of the stationarity conditions for the La

r

grange function 

{aE(n £ =1(n) - 	 , û.) -1(û)
l 
 } + A(Jp(x)d,fl - V)+ 

 JJJ 	
f 	

n 

f A+ (x)(p(x) - 1)d,fl+
J 

A- (x)(pna„ - P(x))d^fl 
n .n  

where is the Lagrange multiplier for the equilibrium constraint. Note that  

v, belongs to the set U of kinematically admissible displacement fields. Under  

the assumption that p > pn,; r  > 0 (so that displacement fields are unique),  
the conditions for optimality with respect to variations of the displacement  

field u give that v, = u while the condition for p becomes:  

ôEijkt  

Op 

with the switching conditions  

)i -  > 0, A+ > 0, A- (Purin - p(x)) = 0, A+ (P(x) - 1) = 0 	(1.10)  

For intermediate densities (purin < p < 1) the conditions (L9), can be  
written as  

pp(x)p-1 E° k,ejj(u)ekt(u) = A , 	 (1.11)  

which expresses that the strain energy density-like left-hand side term 5  is  
constant and equal to A for all intermediate densities. This is thus a condition  

that is similar to the fully stressed design condition in plastic design. As  

we expect areas with high energy to be too low on stiffness, we devise the  

following fix-point type update scheme for the density [7]:  

max{(1 - ()PK,Pmin}  if pKBK < max{(1 - ^)PK , Prnin} ,  

PK+1 = min{(1+ OpK, 1) 	if min{(1+ OpK,11 < pK BK  

ph- Bk 	 otherwise  

(1.12)  

Here pK denotes the value of the density variable at iteration step K , and  
BK is given by the expression  

5  This term is in many circumstances called the mutual energy density -  "mutual"  
since it involves the two fields u and v,. For compliance, u = u ,  and the mutual  
energy density equals the strain energy density.  
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BK = AK 1 PP(x)r 1 	(uK)Ekl(uK) 	 (1.13) 

where UK is the displacement field at at the iteration step K, determined 
from the equilibrium equation and dependent on pK. Note that a (local) 
optimum is reached if BK 1 for densities (p., ;,, < p < 1). The update 
scheme (1.12) adds material to areas with a specific strain energy that is 
higher than A (that is, when BK > 1) and removes it if the energy is below 
this value; this only takes place if the update does not violate the bounds on 
p. From integrating (1.11) one can see that A is proportional (by a factor p) 
to the average strain energy density of the part of the structure that is given 
by intermediate values of the density. 

The variable Ti in (1.12) is a tuning parameter and C  a move limit. I3oth j 
and Ç  controls the changes that can happen at each iteration step and they 
can be made adjustable for efficiency of the method. Note that the update 
PK+1 depends on the present value of the Lagrange multiplier A, and thus 
A should be adjusted in an  inner iteration loop in order to satisfy the active 
volume constraint. It is readily seen that the volume of the updated values 
of the densities is a continuous and decreasing function of the multiplier 
A. Moreover, the volume is strictly decreasing in the interesting intervals, 
where the bounds on the densities are not active in all points (elements of a 
FEM discretization). This means that we can uniquely determine the value 
of A, using a bisection method or a Newton method. The values of rr and  

are chosen by experiment, in order to obtain a suitable rapid and stable 
convergence of the iteration scheme. A typical useful value of 71 and Ç  is 0.5 
and 0.2, respectively. 

It is noted above that the optimality criteria method is closely related to 
the concept of fully stressed design. However, it is important to note that the 
conditions (1.9, 1.10) only imply that the specific strain energy is constant 
in areas of intermediate density, while it is lower in regions with a density 

P= Pmi ❑ and higher in regions with a density equal to 1. 
The type of algorithm described above has been used to great effect in 

a large number of structural topology design studies and is well established 
as an  effective (albeit heuristic) method for solving large scale problems [6], 
[7]. The effectiveness of the algorithm comes from the fact that each design 
variable is updated independently of the update of the other design variables, 
except for the resealing that has to take place for satisfying the volume con-
straint. The algorithm can be generalized to quite a number of structural 
optimization settings (see for example Rozvany (1989), Rozvany (1992)), but 
it is not always straightforward. For cases where for example constraints of a 
non-structural nature should be considered (e.g., representing geometry con-
siderations), when non-self-adjoint problems are considered or where physical 
intuition is limited, the use of a mathematical programming method can be 
a more direct way to obtain results. Typically, this will be computationally 
more costly, but a careful choice of algorithm can make this approach as 
efficient as the optimality criteria method (see section 1.2.3). 
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Fig. 1.4. The possibility of letting the design area be a sub-area of the reference  

domain. Same design domain as in Fig. 1.3 but with a square area fixed to be void  

and a rectangular area fixed to be solid. The compliance of the optimized topology  

is 25% lower than in Fig. 1.3 due to the restricted design domain.  

1.2.2 Implementation of the optimality criteria method 

In sections 1.1.2 and 1.2.1 we have outlined the basic ingredients of the opti-
mality criteria method for implementing the material distribution procedure  
for topology design. These consist of the basic parametrization of design  
through the design-stiffness relation given by an appropriate interpolation  
scheme and the update scheme for the density based on the optimality con-
ditions. Finally, this update scheme is based on the ability to solve the equi-
librium equations, and here we presume this to be performed by the finite  
element method.  

Computational procedure The direct method of topology design using  
the material distribution method is based on the numerical calculation of  
the globally optimal distribution of the density of material p which is the  
design variable. For an interpolation scheme that properly penalizes interme-
diate densities (cf., discussion in section 1.1.2) the resulting 0-1 (or black and  
white) design is actually the primary target of our scheme. The optimality  
criteria method for finding the optimal topology of a structure constructed  
from a single isotropic material then consists of the following steps:  

Pre-processing of geometry and loading:  

—Choose a suitable reference domain (the ground structure) that allows for  
the definition of surface tractions, fixed boundaries, etc. (see Fig. 1.4).  

—Choose the parts of the reference domain that should be designed, and  
what parts of the ground structure that should be left as solid domains or  
voids (see Fig. 1.4).  
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Construct a finite element mesh for the ground structure. This mesh should 
be fine enough in order to describe the structure in a reasonable resolution 
bit-map representation. Also, the mesh should make it possible to define 
the a priori given areas of the structure by assigning fixed design variables 
to such areas. The mesh is unchanged through-out the design process. 
Construct finite element spaces for the independent fields of displacements 
and the design variables. 

Optimization: 
Compute the optimal distribution over the reference domain of the design 
variable p. The optimization uses a displacement based finite element analysis 
and the optimality update criteria scheme for the density. The structure of 
the algorithm is: 

—Make initial design, e.g., homogeneous distribution of material. The itera-
tive part of the algorithm is then: 

—For this distribution of density, compute by the finite element method the 
resulting displacements and strains. 
Compute the compliance of this design. If only marginal improvement (in 
compliance) over last design, stop the iterations. Else, continue. For de-
tailed studies, stop when necessary conditions of optimality are satisfied. 

—Compute the update of the density variable, based on the scheme shown in 
section 1.2.1. This step also consists of an inner iteration loop for finding 
the value of the Lagrange multiplier A for the volume constraint. 
Repeat the iteration loop. 

For a case where there are parts of the structure which are fixed ( as  solid 
and/or void) the updating of the design variables should only be invoked for 
the areas of the ground structure which are being redesigned (reinforced). 

Post-processing of results: 

Interpret the optimal distribution of material as  defining a shape, for ex-
ample in the sense of a CAD representation. 

For the method above, one should at an initi al  stage decide on a choice of a 
basic interpolation scheme, for example SIMP. It is interesting to note that 
topology optimization using for example SIMP with a suitable high value of 
the power p gives rise to very well defined designs consisting almost entirely 
of areas with material or no material and very little area with intermediate 
density of material, i.e. very little grey. 

It is important to underline that the algorithm just described can be 
implemented on any type of finite element mesh and any type of reference 
domain S2 (ground structure). This gives a significant flexibility to the method 
in terms of defining boundary conditions and non-design parts of the struc-
ture. Nevertheless, in many c ases one works with rectangular (in 2-D) or 



14 	1 Topology optimization by distribution of isotropic material  

no  

Initialize  
(Starting guess) 

Finite element analysis  

Sensitivity analysis  
(linearization)  

Low—pass filtering  

Update design variables  

converged ?  

^^SiP.CS,363y1[?Y^^1^7Gl11$^â1i.^a düe  

K'„T^ ^^z#MY"3'4!7.nii[^St^Ed^^^^ 6i^ 
E^ Sé^ audC3#•:3^1a +..'^7c^1,@ft^^

Ft  

v'2 c`s.^^I$^E3Ktffi[„ ^t^^:J iE4 ~ 1 ^a^S `•S ^$F8 7Y^ 
A  ^ 

ENNEI UT  ' :I••.. 	-,ENE  dew  
A  

Optimization  
Method of Moving Asymptotes  

    

I^^ ^^\  
^ 	 !  

plot results/  
post—processing  

 

 

    

Fig. 1.5. The flow of computations for topology design using the material distri-
bution method and the Method of Moving Asymptotes (MMA) for optimization.  

The low-pass filter step (filtering of sensitivities) is discussed in Sec. 1.3.1.  

box-like (in 3-D) domains, and with a mesh consisting of squares or cubes. 
This simplifies implementation and can be employed to speed up the analysis 
part of the procedure, see section 1.2.4. 

On programming complexity The procedure described above does not 
require any great programming efforts in order to solve the compliance topol-
ogy design problem. When access to a FEM code is provided, only a few lines 
of extra code is required for the update scheme and for the computation of 
the energies involved. If for example a rectangular design domain is consid-
ered and one uses square elements and a Q4 interpolation of displacements 
and element wise constant densities, a complete program including FE anal-
ysis and plotting of the resulting designs can be written in 99 lines of Matlab 
code (see appendix 5.1.1). This actually also includes a filtering procedure 
that caters for the so-called checkerboard and mesh-dependency problems 
associated with our design problem (see section 1.3.2 for further details). 
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Fig. 1.6. Two examples of topology design for minimum compliance compared 
with optimal Michell type structures (Michell 1904). a) and h) design domains, 
c) and d) topology optimized solutions and e) and f) corresponding Michell type 
optimal solutions (from Sigmund 2000a). 

1.2.3 Sensitivity analysis and mathematical programming 
methods 

The use of mathematical programming algorithms for solving problems in 
structural optimization is well established and described in detail in the liter-
ature, for sizing as well as shape design problems [1]. The st andard procedure 
is to consider the design problem as an optimization problem in the design 
variables only, and with the displacement field regarded as a function of these 
design variables. The displacement fields are given implicitly in terms of the 
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Fig. 1.7. The influence of volume fraction. A long cantilever beam discretized by  

6400 square elements and optimized for volume fractions of b) 80%, c) 60%, d) 40%  

and e) 20%. For low amounts of volume, truss-like structures are predicted.  

design variables through the equilibrium equation and finding the derivatives 
of the displacements with respect to the design variables is termed sensitivity  
analysis [1].  

The basic idea of the material distribution technique for topology design 
is to rephrase the problem as  a sizing problem for the density p on a fixed 
domain. Thus the technique outlined above carries over to topology design as 
well. The major challenge, though, is to apply mathematical programming 
software that is well geared to cope with many variables and typically a 
moderate number of constraints. Here and in the following we will rely on 
the MMA algorithm, with "MMA" being the acronym for Method of Moving 
Asymptotes (Svanberg 1987, Svanberg 2002). This algorithm has proven itself 
to be versatile and well suited for large scale topology optimization problems. 

Sensitivity analysis h1 order to complement the presentation of the opti-
mality criteria method, we will here work with the FEM form of the minimum 
compliance problem, that is the problem (cf., (1.2)): 
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min fTu 
u,Pe 

s.t. 
(EN 

pe( K e)u=f 
 

e- 1 
(1.14) 

E 91epe < V, 0 < Pmin < Pe < 1, e = 1, . . . , N 
e=1 

When solving this by a mathematical programming algorithm we first rewrite 
the problem as a problem in the design variables only: 

min c(pc) 
Pe 

s.t. E v e t),  < V, 0 < pmin Ç Pe < 1, e = 1, . . . , N 
e=1 

where the equilibrium equation is considered as  part of a function-call: 

c(pe ) = fTu , where u solves 	péKe u = f 
	

(1.16) 
e=1 

When gradients are required by the optimization algorithm employed to 
solve (1.15), these are easily derived for the objectives and constraints in-
volving only p. For functions that depend on the displacements also, deriva-
tives can be obtained by the chain-rule. These expressions will then contain 
derivatives of the displacement, which in turn can be obtained by taking 
the derivative of the equilibrium equation Ku = f. In topology design we 
typically work with a moderate number of constraints, so the most effective 
method for calculating derivatives is to use the adjoint method, where the 
derivatives of the displacement are not calculated explicitly. For the minimum 
compliance problem (1.15) at hand we rewrite the function c(p) by adding 
the zero function: 

c(p)= fTu—nT  (Ku —f) 

where û is any arbitrary, but fixed real vector. From this, after rearrangement 
of terms, we obtain that 

8c.  8u üT  8K 

	

_ (fT — i1,„) 	
—  

°Pe 	 5Pe 	aPe 

This can in turn be written as  

8c 	T  8K 
u °Pe 

	Pe  
, 

when n satisfies the adjoint equation: 

(1.15) 
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ME> MC> 
b) 	 c)  

ICZ> ME:D? 
d) 	 e)  

Fig. 1.8. Influence of self-weight on the topology optimized cantilever beam. Here,  

the load vector is design dependent (i.e. f =f(p)) and the sensitivity of compliance 

includin a` _ -uT up  g self-wei ght can be found as ea e 	^ v.. 	+ v^  ue. a) Design domain 
and loads, b) resulting topology for zero self weight, c) resulting topology for self  

weight equal to 1.2 times the non-structural load, d) resulting topology for self  

weight equal to 6 times the non-structural load and e) resulting topology for self  

weight equal to 24 times the non-structural load.  

f7 —iiTK = O 

This latter equation is in the form of an equilibrium equation and for compli-
ance we see that we obtain directly that û = u (normally the adjoint equation 
requires additional computations). Moreover, the form of the stiffness matrix 
means that the derivatives of the compliance c(p) for problem (1.15) is of the 
particularly simple form: 

ac  
_  —ppé—r uTKeu  

OPe  

Thus derivatives for the minimum compliance problem are extremely easy to  

compute. Also, one notices that the derivative is "localized" in the sense that  

the derivative only involves information at the element level; however, there  

is an effect from other design variables hidden in the displacement u. Finally, 
we see that the sensitivity is negative for all elements, so physical intuition is 
confirmed in that additional material in any element decreases compliance, 
that is, makes the structure stiffer. 

(1.17)  

The basics of MMA The Method of Moving Asymptotes (MMA) and 
its "mother" method CONLIN are mathematical programming algorithms 
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well suited for topology designs They are in nature similar to methods like 
Sequential Linear Programming (SLP) and Sequential Quadratic Program-
ming (SQP) for solving smooth, non-linear optimization problems, in the 
sense that they work with a sequence of simpler approximate subproblems 
of given type. For MMA and CONLIN these subproblems are separable and 
convex and are constructed based on sensitivity information at the current 
iteration point as well as  some iteration history. At each iteration point this 
subproblem is solved by for example a dual method or by an interior point 
algorithm (primal-dual algorithm) , and the solution to the subproblem is 
then used as  the next design in the iterative procedure. 

In MMA the approximation of a function F of n real variables x 
(xi , ... , x„) around a given iteration point x 0  has the form 

Ti 	 )

F(x) N F(x° ) + 	1 U" + x 
 Si 

 L 2  

where the numbers ri, si are chosen as 

if 
car 

(x 0 ) > 0 then ri = (Ui — x°) 2 
OF 

 —(x6) and .s i  = 0 , 
Ox 	 OXi 

if —
Di 

(x0)  < 0 then ri = 0 and si = — (x? — Li)
2 OF (x°)  , 

âxi 	 Ox i  

and where, loosely speaking, the positive numbers Ui , Li control the range 
for which the approximation of F can generate reasonable answers for our 
optimization problem (the parameters Ui , Li  give vertical asymptotes for the 
approximations of F and is the source of the name of the algorithm). In the 
optimization algorithm, the values of Ui , L i  for each function of the problem 
are updated in each iteration, depending on the iteration history so far. 

A central aspect of MMA and CONLIN is the use of such separable 
and convex approximations. The former property means that the necessary 
conditions of optimality of the subproblems do not couple the primary vari-
ables (the design variables) while the convexity means that dual methods or 
primal-dual methods can be used. Together this has an immense effect on re-
ducing the computational effort needed to solve the subproblems, especially 
for problems with only a few constraints. 

Experience over the last couple of years have shown that the convex ap-
proximation methods are very efficient for topology optimization. Typically 
in these problems one chooses to work with a large number of design variables 
(for the raster representation of the design, one operates with one or more 
density variables per element in the finite element mesh) and try to formu-
late the optimization problem with a fairly limited number of constraints. 
Compared to optimality criteria methods, the use of a mathematical pro-
gramming tool does provide an added flexibility to topology design. One 

6 The use of convex and separable approximations was first introduced with CON- 
LIN (see, e.g. Fleury (1993) and references therein). 
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avoids the development and coding of new algorithms for each new problem 
that is to be solved, and it is also possible to handle geometry considerations 
and situations where physical intuition is limited. 

We close this discussion by noting that for the minimum compliance prob-
lem the use of the optimality criteria method or the use of MMA in essence in-
volves the same type of computations (see also Borrvall & Petersson (2001a)). 
We found in (1.17) that the sensitivity of compliance is negative for any el-
ement density p c . Thus an MMA approximation of the compliance gives a 
subproblem after iteration step K in the form 

—L ) 
min {c(PK)  — E (pe — Le aPe (pK)  } e=1 

s.t. E ve pe <V, OG Aran <pe<1,  e=1,. ,N 
e=1 

Solving this problem by a dual method now involves steps similar to the 
ones performed in section 1.2.1 for the optimality criteria method. First one 
minimizes the Lagrange functional 

L e ) 2  CJC K  

G = c(PK ) — 	 (P ) + A( vePe — V ) 
— Pe j e dPe 	 e=1 e=1  

with respect to densities satisfying p min  < Pe  < 1, e = 1, .. , N. Using con-
vexity and that G is separable, this optimization can easily be performed, 
element by element. For the case where L e  = 0 this results in exactly the 
optimality criteria update scheme given in (1.12), with move limit ( = co 
and tuning parameter n = 0.5. The second step of the dual method is to 
maximize the resulting functional with respect to A, and as for the optimal-
ity criteria method this corresponds to adjusting the value of A so that the 
update scheme gives a density p(K+1 ) that satisfies the volume constraint. In 
the actual implementation of MMA, one chooses the asymptote parameters 
Le  more cleverly, improving speed of convergence. 

In conclusion, we note that MMA is an invaluable tool for topology op-
timization problems. For simple compliance optimization problems it may 
be a bit slower than the OC method but for more complicated problems in-
volving several constraints MMA stands for excellent convergence properties. 
Also, the advanced versions of the program caters for more complex problems 
formulations including min-max formulations etc. Contestants to MMA may 
be Sequential Linear Programming (SLP) method, CONLIN and other first 
order methods. Unless otherwise noted, we use either OC or MMA for all the 
applications shown in this book. 

(1.18) 
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1.2.4 Implementation - the general concept 

The use of mathematical programming techniques does not change the gen-
eral flow of a topology design procedure. Thus, compared to the optimality 
criteria based method for topology design described in section 1.2.2, it only 
influences the optimization step of the scheme. This iterative loop becomes: 

Optimization with, for example, MMA: 

—Make initial design, e.g., homogeneous distribution of material. The itera-
tive part of the algorithm is then: 
For this distribution of density, compute by the finite element method the 
resulting displacements. 
Compute the compliance of this design and the associated sensitivity with 
respect to design changes. If only marginal improvement (in compliance) 
over last design, stop the iterations. Else, continue. 

—Compute the update of the density variable, based on the MMA approxi-
mate subproblem solved by a dual or a primal-dual method. 
Repeat the iteration loop. 

The flow of computations sketched above shows the general concept, but pro-
gramming details may be somewhat different, depending on how the specific 
mathematical programming software is structured. What is shown here is 
what is typically called an externally controlled optimization loop. In some 
cases an alternative structure is used, where the user provides subroutines 
that compute function values and sensitivity information, and the optimiza-
tion software runs the loops "internally" 

For the compliance problem the use of for example MMA does not change 
significantly the programming effort required to implement the topology de-
sign procedure, and it can also be easily implemented in the 99 line Matlab 
code mentioned earlier (see appendix 5.1.1) 7  

With this general outline of computations it is possible to generalize the 
concept to many other design settings of interest. This is the subject of Chap. 
2. 

A publicly available topology optimization software The topology 
optimization procedure as described in the preceding subsections has been 
implemented as an  interactive design program made available to the public 
at the internet address http://www.topopt.dtu.dk . The program which is 
described in detail in Tcherniak & Sigmund (2001) solves a standard 3-load 
case compliance optimization problem. The topology optimization code is 
written in FORTRAN77 and the Graphical User Interface (GUI) and the 

7  The MMA-code is available both in FORTRAN and MATLAB versions from K. 
Svanberg. The codes are free for academic use. 
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file-transfer system is written in JAVA. The structures are independently of 
aspect ratio always discretized by approximately 1000 elements 8  

Screen-dumps of the Graphical User Interface of the TOPOPT program 
is shown in Fig. 1.9 together with a plot of the output. By pressing the left 
panel buttons and using the mouse and the delete key, the user can define 
the design domain, passive and active areas, load-cases and supports. After 
choosing the volume fraction and hitting the submit button, a sequence of 
GIF-files illustrating the iteration history appears on the screen. Depending 
on network load and connection, the solution of the problem may take from 
10 seconds and up to a minute. As an extra feature, the animation sequences 
may be downloaded after running the program. 

Implementation details The apparent simplicity of computing minimum 
compliance optimal topologies is somewhat betrayed by certain details that 
one has to cater for if a generally useful and applicable tool is to be con-
structed. For example, as already mentioned, the scheme described till now 
needs to be supplemented with some computational device that controls the 
range of allowable density distributions, especially the so-called checkerboard 
patterns that are numerical artifacts related to the discretization of displace-
ments and densities. Also, the problem is inherently mesh-dependent as for-
mulated and will generally not converge with mesh-refinement. Rather, finer 
and finer structure of the designs will arise. These aspects are the subject of 
the following section 1.3. 

Another topic which is relevant to discuss here is the effect of the power 
p of the SIMP interpolation. As mentioned, to obtain black and white (0-
1) topologies one has to work with a fairly large value of p, say, above 3. 
Moreover, to eventually be able to interpret appearance of grey in the final 
design as  composite material, one also requires p be at least 3 (cf., (1.5), and 
the discussion in 1.5.4). However, in implementations it is often seen that a 
too severe penalization of the intermediate density can lead to designs which 
are local minima and which are very sensitive to choice of the initial design for 
the iterative optimization procedure (one "jumps" too fast to a 0-1 design). 
Thus a continuation method is often advisable, which means that the power 
p is slowly raised through the computations, until the final design is arrived 
at (for a power satisfying our requirements). The scheme is not guaranteed to 
give a fully 0-1 design (see Stolpe & Svanberg (2001b)). Nonetheless, it works 
well in most cases, especially when combined with a filtering of sensitivities 
as described in section 1.3.1. It is advisable to use such a continuation scheme 
as  the standard procedure. 

It is here important to underline that for the minimum compliance prob-
lem the by far most time-consuming part of the computations is spent on 
solving the equilibrium equations (Borrvall & Petersson (2001a) report this 

8  The current version of the web-program has been updated and additional features 
added by Lars Voxen Hansen and Thomas Buhl (DTU) in the spring of 2002. 
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Topology Optimization 

Fig. 1.9. A web-based topology optimization program (http://www.topopt.dtu.dk ) 
for stiffness design of arbitrary two dimensional structures. The pictures demon-
strate an investigation of the influence of boundary conditions on the optimal topol-
ogy (from Tcherniak Sc Sigmund 2001). 

share as up to 97%, in a parallel implementation). Thus it is critical for large 
problems, especially in 3-D, to improve on the efficiency of the analysis capa-
bility. Here the utilization of homogeneous meshes on rectangular or box-like 
domains is useful, as it removes the necessity for the repeated computation 
of local stiffness matrices. Also, the use of iterative solvers is useful in large 
scale problems, and may be required for storage reasons. The ultimate tool is 
to use vector computations and parallel computing, as for example reported 
in Borrvall & Petersson (2001a), where also the MMA-based optimization is 
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parallellized - solutions to 3-D problems with up to 220.000 brick elements 
have been obtained (c.f., Figs. 1.11 and 1.12). Solutions to similar-sized prob-
lems have also been reported in DeRose Jr. & Diaz (2000) (c.f. Fig. 1.10), 
but here the paradigm for the analysis part of the problem is fundamentally 
changed. Instead of finite elements, a mesh-less, fictitious domain method is 
used, based on using wavelets in a Galerkin scheme. The advantage here is 
that an iterative, preconditioned conjugate gradient scheme exhibits a per-
formance that is insensitive to the discretization level. 

In the future we may also see new approaches to solving the topology 
optimization problem, based for example on developments in computational 
mechanics. One possibility is to solve the original combined optimization 
problem in one optimization routine and break with the tradition of viewing 
the equilibrium statement as  a function call. This means that analysis be-
comes part of the iterative procedure and for example a Newton scheme will 
solve simultaneously the necessary conditions of optimality for the density 
as  well as  for the displacements (the latter being the equilibrium equations). 
This is what has been named a SAND approach (Simultaneous ANalysis and 
Design). It has for example been tested for topology design in a multigrid 
framework in Maar & Schulz (2000) and in the setting of free material design 
and truss design where for example semi-definite programming can be applied 
due to special problem structure (see Sects. 4.3 and 5.5). From a practical 
point of view this approach has the weakness that a premature termination 
of the procedure does not provide any analysis results for the current design, 
and the method also requires full integration of optimal design and analysis 
in one software system, i.e., optimization will no longer be an "add-on" to 
existing FE software. 

1.2.5 Topology optim;zation as a design tool 

In the following we will try to illustrate some b asic features of the material 
distribution method when used for design, dealing for the moment only with 
compliance design. In a later section 1.4 of this chapter we shall describe the 
possible use of the topology design method as  a pre-processor in an integrated 
design process where boundary variation techniques are employed for refining 
a design created by the topology design method. 

In Chap. 2 we shall see that the topology design methodology over the 
last decade has matured immensely and that one can today cater for a broad 
range of structural objectives and constraints. Also, aspects of controlling 
geometric features can be handled, as  illustrated in section 1.3.1. Moreover, a 
broad range of physics can be included in the modelling. This combined with 
progress in algorithms and computational power means that the topology 
design methodology is today much closer to being able to provide the user 
with a final design than just a few years ago, and for example in the design 
and manufacturing of MEMS (MicroElectroMechanical Systems, see section 
2.6) case studies have shown that one can go directly from the topology 
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Fig. 1.10. Optimized 3D cantilever beams. Left: discretization by 221.184 design 
elements in a fictitious domain consiting of 128 3  = 1.097.152 voxels. By courtesy of 
De Rose and A: Diaz (from DeRose Jr. & Diaz 2000). 

Fig. 1.11. Optimal design of a wishbone. Multiple load design using a very fine 
FE model (260.000 elements). Note that post-processing is basically not needed. 
By courtesy of T. Borrvall. 

design output to manufacturing. In many other circumstances the practical 
use of topology design is often at the level of a creative sparring partner in 
the initial phase of a design process. Thus the output of the topology design 
method is used to identify potentially good designs, the completion of the 
design being based on traditional skills of the design office. One effect of the 
topology method that cannot be underestimated is the efficient testing of the 
appropriateness of the model of loads and supports. As the topology is very 
sensitive to a proper modelling of the load environment, one can immediately 
discover discrepancies or inaccuracies in this modelling. 
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Fig. 1.12. Optimal design of cantilevered torsional beam in 3D. Design domain 
and different views of the optimized topology. Discretized using 128000 elements 
for one half of the problem and solved using parallel processing. By courtesy of T. 
Borrvall and J. Petersson (from Borrvall & Petersson 2001a). 

Examples of topology design The material dist ribution method for topol-
ogy design has been tested on a large number of examples, a few being illus-
trated in this and the preceding sections. The method allows for an efficient 
prediction of the optimal topology, the optimal shape and the optim al  use of 
the prescribed possible support conditions. Also, it has proven to be a flexible 
and reliable design tool. The methodology has over the last decade become a 
fairly widespread tool in industrial applications, especially among some ma-
jor car manufacturers (see section 2.12.4), and the appearance of commercial 
software has had an immense impact on the utilization of topology design 
methods in practise [23]. 

For an efficient use of topology design, the problem should be formulated 
on a ground structure (a reference domain) that is chosen as simple as possible 
to reduce the size of the analysis problem. The domain should, as described 
in section 1.2.2, allow for definition of loads and tractions and of boundary 
condition. The use of an  automatic mesh generator will, of course, simplify 
the treatment of problems with complicated geometry such as non-simply 
connected reference domains. Complicated reference domains are needed for 
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Fig. 1.13. Optimal design of frame for a satellite. Multiple load design using a 3-D 
model. The structure is discretized by 288.000 cubic finite elements. a) Design do-
main showing instruments around which the frame is to be designed. b) Optimized 
topology and c) optimized topology with instruments (from Sigmund 2000a). 

cases where design requirements imply the exclusion of certain parts of space 
as parts of the structure. If the precise shapes of inner holes in a non-simply 
connected reference domain are unimportant, it is advisable to cater for such 
holes by fixing the density of material to be zero for the elements defining the 
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hole (or parts of it). These considerations have led to most examples being 
treated in rectangular reference domains, but the use of the method is of 
course not restricted to such domains. 

For very low vohune fractions, very fine discretization meshes are required 
when dealing with 0-1 designs, as the structures break up if coarse meshes 
are used. However, for high volume fractions, even coarse meshes give a very 
good indication of shape and topology arid a good estimate of the optimal 
compliance. Note that for comparatively small volume fractions, the method 
predicts the lay-out of truss like structures and Michell frames (Fig. 1.2.2), 
thus supplementing lay-out theory and truss topology methods (see Chap. 4) 
for cases with a large, dense set of nodes; the material distribution method 
not only predicts the optimal connectivities, but also the optimal location of 
nodal points. 

The application of interpolation schemes like SIMP that penalizes the 
designs to become of a 0-1 nature results in what one could classify as clas-
sically useful structures. One may argue that with present day technology 
for producing advanced composite materials one should certainly not remain 
limited by a wish to predict black and white designs only, but composites 
should also be part of the "structural universe" This is the theme of Chap. 
3. 

Here and in the remainder of the monograph we show only a restricted 
number of examples of optimal topologies. Many more examples of topology 
designs from academia and industry can be found in the literature and on 
the web. 

1.3 Complications 

In the following we will discuss two important issues that significantly in-
fluences the computational results that can be obtained with the material 
distribution based topology design procedure. These are the appearance of 
checkerboards and  the mesh-dependency of results. The former refers to 
the formation of regions of alternating solid and void elements ordered in 
a checkerboard like fashion and is related to the discretization of the original 
continuous problem. Mesh-dependence concerns the effect that qualitatively 
different optimal solutions are reached for different mesh-sizes or discretiza-
tions and  this problem is rooted in the issue of existence of solutions to the 
continuous problem. 

1.3.1 Mesh-refinement and existence of solutions 

It is well-established that the 0-1 and the SIMP topology optimization prob- 
lem formulated in section 1.1 lacks existence of solutions in its general con- 
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Fig. 1.14. Design of a lightweight city bus from preliminary design to final struc-
tural design. This example is courtesy of Altair Engineering, Inc., and has appeared 
in the Altair OptiStruct users manual and in (Thomas et al. 2002). At first, topol-
ogy optimization is used to generate the optimum structural lay-out concept. The 
design space is shown in a) as the gray colored panels. b) The results of the topol-
ogy optimization. c) CAD representation of the interpretation of the results of the 
topology optimization. d) Sizing optimization is performed on the hollow rectangu-
lar bar members of the bus structure. e) Final bus design. The shape of the windows 
was decided by the results of the structural needs identified by the topology opti-
mization. 

tinuurn settings  The reason is that the introduction of more holes, without 

s In any discretized version of the 0-1 problem, existence is trivial, as one has a 
design space with finitely many different design options. 
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Fig. 1.15. Dependence of the optimal topology on mesh refinement for the MBB-
beam example. Solution for a discretization with a) 2700, c) 4800 and d) 17200 
elements. 

changing the structural volume, will generally increase the efficiency of a 
given structure. In the limit of this process one obtains structural variations 
in the form of microstructures that have an improved use of the material. 
Such microstructures are typically not isotropic and cannot be represented 
within the original design description of only isotropic material; one says that 
there is a lack of closedness of the admissible set of designs. In computational 
implementations this effect is seen as  a numerical instability where a larger 
number of holes appear when a finer finite element mesh is employed. That 
is, refining the finite element mesh for the reference domain ultimately leads 
to a generation of a fine-scale internal structural lay-out similar in nature to 
the microstructures that theory predicts. Thus the non-existence of solutions 
is indeed a problem for the numerical solutions of the topology optimization 
problem. This dependence of the solutions on mesh-refinement is illustrated 
in figure 1.15, where an improved finite element discretization results in a 
much more detailed structure. Ideally, mesh-refinement should result in a 
better finite element modelling of the same optimal structure and a better 
description of boundaries — not in a niore detailed and qualitatively different 
structure. As we shall show, there are actually efficient and uncomplicated 
ways to achieve mesh-independent procedures for obtaining 0-1 designs, so 
there is no reason to accept results that are inherently mesh-dependent. 

The approach to generate macroscopic and mesh-independent 0-1 solu-
tions is to reduce the space of admissible designs by some sort of global 
or local restriction on the variation of density, thus effectively ruling out 
the possibility for fine scale structures to formate. The techniques that have 
been suggested for enforcing such a restriction fall into three generic classes 
of methods. These consists of either adding constraints to the optimization 
problem, reducing directly the parameter space for the designs, or applying 
filters in the optimization implementation. For most of these methods, exis- 
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Fig. 1.16. An example of how smaller holes increase the perimeter, for a fixed  
volume. V is the volume and P is the perimeter of internal holes.  

tence of solutions and also convergence of the FE approximations have been  
proved, providing a solid foundation [8].  

We close this brief discussion by noting that the alternative to a restric-
tion of the design space is to extend the space by allowing composites as  
admissible designs (see Chap. 3). For minirniun compliance this lives up to  
our requirement of independence of mesh refinement, but also gives designs  
with large areas of "grey" This is thus not an option if 0-1 designs are the  
goal 10  

Perimeter control The perimeter of a mechanical element 11'nar is, vaguely  
speaking, the sum of the lengths/areas of all inner and outer boundaries. Con-
straining the perimeter clearly limits the number of holes that can appear  
in the domain, (cf. figure 1.16) and existence of solutions to the perimeter  
controlled topology optimization is actually assured for both the discrete 0-1  
setting and the interpolated version using SIMP Also, it has been imple-
mented for both situations and for 2-D as well as  3-D problems [8]. For the  
SIMP method, one can impose a constraint that mimics such a perimeter  
bound in the form of an upper bound on the total variation, TV(p), of the  
density p. In case the function p is smooth, the total variation constraint is  
a Lr bound on its gradient:  

TV(p) = f n  IIVp^I dc < P" 	 (1.19) 
	  R  

10  In order to force the composite solutions to a 0-1 design, an explicit penalty 
on intermediate densities can be added - but this destroys the existence as one 
reverts to the ill-posed 0-1 problem. 



32 	1 Topology optimization by distribution of isotropic material  

For a 0-1 design, the total variation of p coincides with the perimeter of 9°.at  

when p is l in S2mat  and  0 elsewhere (in R", n 2(3)). In this case the  
constraint is expressed as  

TV(p) = sup 
{ fRn 

 pdiv(pdx ^p E C^ (R^ , Rn ), ^^cp^^ < 1 } < P* 	(1.20)  

where 0 (R", R') denotes compactly supported vector valued C 1  functions.  
For an element wise constant finite element discretization of the density  

the total variation can in 2-D be calculated as  

P= Elk (/(p)+e2_) 	 (1.21) 
 

where (p)k is the jump of material density through element interface k of  
length lk and K is the number of element interfaces (here one should also  

count interfaces at the boundary of the domain S2 — else there will be bias  

towards having material at the borders of f2). The parameter f is a small  
positive number which is used to convert the non-differentiable absolute value  

into a differentiable term. This expression is exactly the total variation of the  

element-wise constant density when e = 0.  
It should be mentioned that there is an inherent problem of assuring  

isotropy in an implementation of a discretized perimeter measure (this ef-
fect is also known from work in image segmentation, cf. , Chambolle (1995)).  

Thus, in a regular 2-D mesh of squares, a bound on the discretized expres-
sion (1.21) will tend to favour structural edges parallel to those of the finite  

element mesh. This is caused by the effect that a straight edge of length l  

that is angled 45 degrees to the directions of the finite element mesh will  

be approximated by a jagged edge that has the perimeter f. In contrast,  

the same edge has perimeter 1 when it is parallel to the mesh directions. In  

the limit of mesh refinement for a FE-mesh directed along the xi-axes, the  

discretized perimeter measure (1.21) is thus rather the proper discretization  

of what is referred to a  "taxi-cab" perimeter measure(cf., Petersson (1999b)): 

TVtaxicab (P) = f    dx 	 (1.22) 
 

This means that the numerical results will approach solutions of a continuum  

topology optimization problem statement that includes a "perimeter bound"  

that actually measures the "length" of the boundary of the structure by pro-
jecting this onto the coordinate axes. This in turn implies that even though  

the perimeter constraint (1.21) assures convergence with respect to mesh re-
finement, a dependence on the choice of mesh will nonetheless be seen. This  

effect, however, does not change with mesh refinement. This directional bias  

of the results can be reduced considerably by considering more involved dis-
crete versions of the perimeter measure, see Petersson, Beckers & Duysinx  
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(2000) arid Borrvall (2001); in the latter reference more refined discretization 
schemes are also discussed. 

The perimeter bound adds one extra constraint to the topology optimiza-
tion problem and thus does not create any substantial problems for the use 
of an algorithm like MMA. However, it has been reported that the perimeter 
constraint can be quite difficult to approximate resulting in fluctuations in 
the design variables (this relates to the choice of the asymptotes of MMA). 
However, this can be solved by an internal loop procedure for the perimeter 
approximation which is computationally inexpensive compared to the equi-
librium analysis (see Duysinx (1997)). Finally, one should note that choosing 
the bounding value of the perimeter constraint can be rather tricky, see below. 

Other methods of restricting gradients One can also consider other 
types of gradient constraints for the SIMP method that ensure existence of 
solutions and convergence with mesh-refinement. These presuppose that p is 
sufficiently smooth for the bound to make sense and do not seem to have any 
equivalent for the discrete-valued 0-1 setting, in contrast to the perimeter 
measure discussed above. 

One possibility is to constrain the local density variation by imposing 
pointwise bounds on the derivatives of the function p: 

<G,  (i = 1, 2, (3)) 	 (1.23) 

This scheme, which in essence constrains the LO° norm of the gradient of 
p, does assure existence of solutions and convergence of the finite element 
scheme (Petersson & Sigmund 1998). The advantage of this gradient con-
straint is that it gives a well-defined local length scale. The constraint in 
(1.23) implies that a transition from void to void through full material has to 
take place over a distance that is longer than 2/G, which is thus the width of 
the thinnest features of a feasible design. Unfortunately, an implementation 
results in a huge number of extra constraints in the optimization problem and 
the method must therefore be considered to be too slow for practical design 
problems, if implemented directly as  constraints. However, if one approxi-
mates the L°° constraint (1.23) by a LQ constraint for suitable large q one 
can alternatively operate with just one global constraint (but choosing the 
constraint value can be tricky and requires experimentation for each design 
case) (see Borrvall (2001)). 

The basic concept of a slope constraint can also be enforced by an adaptive 
constraint strategy in the optimization algorithm that is similar to adding 
move limits (Zhou, Shyy & Thomas 2001). This means that one only works 
with the values of the box-constraints on the density p, which at the  (K +1)-
th iteration step are modified to restrict the variations in the design 

pK+r > rnax{pmin, pi(i) — Di, i ( i)G} . 

8p 

axi 

(1.24) 
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Here j(i) is the element number of the element with the highest density value 
among all elements adjacent to the element i at the prior iteration step, and 
Di, Ai)  is the distance between the centers of the elements i and j(i). This 
strategy does not add to the computational complexity of the optimization 
procedure. However, it does require that the applied optimization algorithm 
can handle (temporary) violations of the box constraints. Furthermore, it is 
unclear whether "playing" with the move-limits will jeopardize convergence 
of the algorithm. 

Another option is to implement a "global gradient constraint" by which 
we mean the norm of the function p in the Sobolov space H 1 (52): 

IIPI IH' = (f (p2  + IIVpII 2 ) dtI) 
z 

< M 	 (1.25) 

Proof of existence when including this bound in the minimum compliance 
problem can be found in appendix 5.2.2 (for three dimensional problems 
the proof requires that the power in SIMP satisfies p < 3). Note that we 
for any finite element discretization of the ground structure Il can choose 
a large enough bound M on the norm of p so that the norm constraint 
remains inactive, thus seemingly returning to the original formulation for 
this discretization. Thus implementation of (1.25) also requires utmost care 
and should involve experimenting with a range of values of the bound M. A 
global gradient constraint can also be formulated with the term p 2  removed 
from (1.25), so that the constraint becomes a L 2  constraint on the gradient 
of p. Numerical experiments with global gradients in the setting of topology 
optimization can be found in Borrvall (2001), where also L 9  constraints in 
general are considered. 

Filtering the density The techniques above impose explicit limitations on 
the allowable density distributions that can appear in the optimal design, 
and as such have to be catered for as  constraints in the optimization formu-
lation. An alternative to this is to directly limit the variations of the densities 
that appear in the set of admissible stiffness tensor E ad by only admitting 

filtered densities in the stiffness [8]. Thus the SIMP method is modified to 
the following reduced design space: 

Eijkt (x) = ((p * K) (x)) P E°  ka , 
p E L°° (52) , 

(p * K)(x) = f p(y)K(x — y) dy , 
t 

 0< p(x)<1, x ES2, f p(x)dII<V; a 
where K is a convolution kernel, for example 

K (x) _ { 1 - IITII  

0 	

if IIxII < r 
otherwise . 

(1.26) 
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The filter radius r is fixed in the formulation and implies the enforcement of 
a fixed length-scale in the stiffness distribution. The filtering means that the 
stiffness in a point x depends on the density p(x) in all points of a neighbor-
hood of x. This implies a smoothing of the stiffness fields in a fashion similar 
to a filtering of an image. The smoothing and the fixed scale means that this 
method gives existence of solutions and convergence with refinement of the 
FE mesh. Loosely speaking, the reason that the filter removes any fine scale 
behaviour of the density p is that such variations in the mechanical analysis 
(via the filtering (p * K)) appears like a grey which is penalized by SIMP. 
Generally this method results in density fields p that are bi-valued, but the 
stiffness distribution (p * K)P is more "blurred" with grey boundaries. In a 
sense this is an ambiguity, as the mechanical analysis is done on the filtered 
density ll  For implementation, the differences compared to the standard pro-
cedure described in section 1.2 are that the element stiffness matrices in the 
finite element analysis are defined by weighted averages of the stiffnesses of 
neighbouring elements, and the sensitivity information should be modified 
to cater for the redefined stiffness tensor (this means that the sensitivity 
of the compliance with respect to p(x) will involve the mutual energy of a 
neighborhood of x). 

Filtering the sensitivities Computational experience has shown that fil-
tering of the sensitivity information of the optimization problem is a highly 
efficient way to ensure mesh-independency [8]. This means modifying the 
design sensitivity of a specific element, based on a weighted average of the 
element sensitivities in a fixed neighborhood. Such a filter is purely heuris-
tic but it produces results very similar to for example those obtained by 
a local gradient constraint, it requires little extra CPU-time and it is very 
simple to implement as it does not add to the complexity of the optimiza-
tion problem (no extra constraints need to be considered). Similar ideas of 
weighted averages have been used to ensure mesh-independence for simula-
tions of bone-remodelling and for analysis with plastic-softening materials 
(Mullender, Huiskes & Weinans. 1994, Leblond, Perrin & Deveaux 1994). 

The scheme works by modifying the element sensitivities of the compliance 
as follows: 

aff 	1 	" ^ 	a  

aPk 
= 	", 	Hi  Pi —

Pi 
Pk E Hz 

i=1 

where N is the total number of elements in the mesh and where the mesh-
independent convolution operator (weight factor)Hi is written as 

Hi = rmin — dist (k, i), {i E N I dist(k,i) < rmin l l  , k = 1, ... , N (1.28) 

(1.27) 

11  In contrast, a non -filtered version of SIMP evaluates a 0-1 design with the same 
distribution of stiffness as represented by the density. 
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Î 	251> ie) 	--  
Fig. 1.17. Mesh-independent solutions of the cantilever problem using filtering of 
sensitivities. a) Design domain and load, b) 300, c) 600, d) 4800, e) 10.800 and 
f) 19.200 element discretization. Filter radius is 8.2% of the height of the design 
domain. 

In this expression, the operator dist(k, i) is defined as the distance between 
the center of the element k and the center of an element i. The convolution op-
erator H2  is zero outside the filter area. The convolution operator for element 
i is seen to decay linearly with the distance from element k. It is worthwhile 
noting that the sensitivity (1.27) converges to the original sensitivity when 
the filter radius r, n i n  approaches zero and that all sensitivities will be equal 
(resulting in an even distribution of material) when r m ; n  approaches infinity. 
This filter is implemented in the Matlab code of appendix 5.1.1. 

Unfortunately, the theoretical basis for the method is riot yet understood. 
Also, it is unclear exactly what problem we are solving. However, numerous 
applications, many of which are shown in this monograph are based on this 
filtering method. It has been applied to 2 and 3 dimensional problems, to 
problems with up to 20 structural or other constraints, to problems involving 
multiple areas of physics and it has been an invaluable tool in designing 
extremal material structures (c.f. Sect. 2.10). Furthermore, it gives results 
that are stable under mesh-refinement and maintain a minimum length-scale 
that is controlled by the filter radius r m ; n . Also, experience shows that the 
filter somehow improves the computational behaviour of the topology design 
procedures as it delays the tendency of the SIMP scheme to get "stuck" in 
0-1 designs (this is discussed in more detail in Chap. 2). Fig. 1.17 shows an 
example of mesh-independent designs obtain by the filter. In the following 
we will refer to this filtering as the mesh-independence filter. 
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Monotonicity based length scale control In some recent work a scheme  
called the MOLE method (MOnotonicity based minimum LEngth scale) has  
been proposed for the control of length-scale (Poulsen 2001a). As for the  

perimeter and global gradient control it adds one extra constraint to the  

optimization problem, but in this case the non-negative constraint function  

should have value zero for the minimum length scale restriction to be satisfied.  

Moreover, one can explicitly specify the desired minimum width d of material  
parts and void inclusions. Thus it provides similar exact control as when using  

local gradients,  but  within just one constraint.  
The idea is to pass a circular"filter" window over the design and measure  

if the density p along four equally spaced diagonals 12  is monotonic or not. The  
reason for testing over four diagonals is that a test only along the horizontal  

and vertical directions would not be able to detect the fine-scale variation of a  

corner to corner "hinge" in a regular mesh, while testing along the diagonals  

only would prevent checkerboard detection. On the other hand testing along  
more directions would make almost any design infeasible (see below).  

The monotonicity of the density can be measured by applying the func-
tional  

M (F) = f IF(x)I dx —   
"  f  F'(x) dx 

" 

> 0 , 	 (1.29)  

   

which is zero if the smooth function F of one variable is monotonic on the 
interval [a, b], and strictly positive otherwise. As the length scale criterion 
is violated if the design at any point and at any of the test directions is 
non-monotonic, one obtains a constraint function Md(p) with the required 
properties by "summing" the values of M(pk) over all points and all direc-
tions ry. We write this as 

Md(p) = Ĵ  C E .M (ply )) cif/  , 	 (1.30)  

7EA(x,d)  

where A(x, d) is the set of four diagonals of length d that we test over. The ex-
ponent q is used to assure good numerical behaviour of the constraint M = 0  
and experiments have shown that q = 4 is a good choice in implementations 13  

In the discrete formulation of the constraint one works with differences  

of element values of the density p and, as for the perimeter constraint, one  

has to use a smoothed approximation to the absolute value (cf., (1.21). We  

note that the computational effort in evaluating the constraint is linear in  

the number of elements, and that derivatives can be computed directly ( and  
analytically). The idea also extends to 3-D, where the window is a ball and  

where one will check along 13 diagonals.  
12  Horizontal, vertical and at fir/4 from the horizontal.  

13  In the actual implementation one uses M < d, where d is decreased during the 
iterative procedure. 
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We remark that, as we consider only four directions for checking the min-
imum length scale, it is clear that there will be some directional dependence 
of the minimum allowed width of a strip of either material or void. Even 

in the continuous formulation, the constraint M = 0 only allows piecewise 
straight lines as boundaries between solid and void. It also restricts the angle 
between these piecewise straight lines where they meet and the angle be-
tween the boundary lines at a kink will be less than 7r/4. This shows that 
more test directions will restrict the boundary curves even further and in the 
limit of testing along all diagonals only straight lines would be possible as 
boundaries between solid and void. Finally, we note that, as we cannot make 
angles sharper than â , the smallest inscribed polygon of a hole is an octagon 
which for a minimum length d gives the minimum (approximate) radius of 

curvature 12\5 d 1.2 d. 

Comparison of methods The perimeter, local gradient and filter methods 
produce very similar designs, but there are some differences. The perimeter 
control and the global gradient control schemes are global constraints and will 
allow the formation of locally very thin bars (albeit in limited numbers). The 
local gradient and filtering schemes are local constraints and will generally 
remove thin bars. 

Predicting the value of the perimeter constraint for a new design problem 
must be determined by experiments, since there is no direct relation between 
local scale in the structure and the perimeter bound. If the perimeter bound 
is too tight, there may be no solution to the optimization problem. This 
problem is particularly difficult for three-dimensional problem. In contrast, 
the gradient and filtering schemes define a local length scale under which 
structural variation is filtered out. This local length scale corresponds to a 
lower limit on bar/beam widths. Such a possibility of imposing a minimum 
length scale is not only of importance for obtaining methods that are stable 
under mesh-refinement. Almost of greater importance is the possibility this 
gives for taking manufacturing considerations (machining constraints) into 
account. This can be in the form of minimum member size requirements for 
the material phase. This is important for the fabrication of MEMS (Micro-
ElectroMechanical Systems, see section 2.6), where mechanisms are etched 
or deposited by chemical processes. Also, minimum size of a void inclusion is 
crucial if a structure is machined out by milling processes. 

Finally, we remark that the use of a fixed, finite dimensional set of designs 
is a direct way of assuring existence of solutions as  well as stability with 
respect to mesh-refinement — the latter here then only means improving the 

analysis grid. The geometric resolution cannot be improved beyond what is 
contained in the initial design description. 
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b) 

c) 

Fig. 1.18. The checkerboard problem demonstrated on a long cantilever beam. a) 
Design problem, b) solution for 400 element discretization and c) solution for 6400 
element discretization. 

1.3.2 The checkerboard problem 

Patches of checkerboard patterns appear often in solutions obtained by a 
direct implementation of the material distribution method that use the dis-
placement based finite element method, cf., figure 1.18. Within a checker-
board patch of the structure the density of the material assigned to contiguous 
finite elements varies in a periodic fashion similar to a checkerboard consist-
ing of alternating solid and void elements. Such patterns are also observed 
in the spatial distribution of the pressure in some finite element analyses of 
Stokes flows. It is now well understood that also for topology design the ori-
gin of the checkerboard patterns is related to features of the finite element 
approximation, and more specifically is due to bad numerical modelling that 
overestimates the stiffness of checkerboards [9]. 

The restriction methods already described also has the effect that checker-
boarding is reduced or removed The reason for this is that when one enforces 
a constraint on geometry (generally speaking in terms of the length of the 
boundary or in terms of gradient variation) that assure that solutions exist, 
one also obtains FE-convergence and checkerboards cannot be present for a 
fine enough mesh (more precisely, they can be made arbitrarily weak). 

There are situations where one does not wish to enforce a fixed scale ge-
ometric restriction on the designs. This is the case when one uses numerical 
methods to obtain an understanding of the behaviour of optimal topologies at 
a fairly fine scale, but in a macroscopic representation. This is of theoretical 
interest for obtaining insight in for example solutions to problems involving 
Michell type continua. Moreover, it has great practical interest when design-
ing low volume fraction structures, where one can gain very useful insight 
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for the design of truss and frame structures — here the continuum topol-
ogy design methodology can predict both member sizes and nodal positions. 
Another situation where geometric restriction is unwanted is in the computa-
tional implementation of the relaxed form of the topology optimization prob-
lem, where composites are used to achieve existence of solutions. Also, when 
studying variable thickness sheets and problems where all possible elasticity 
tensors are part of the design space, checkerboard control should be achieved 
by other means than by geometric restriction. 

in the following we shall for 2-D problems outline explanations for the 
appearance of checkerboards and describe a number of methods that can be 
used to avoid them for cases where geometric scale is not restricted. 

The stiffness of checkerboards The most direct explanation as to why 
checkerboards appear in topology design is that such lay-outs of material 
have an artificially high stiffness when analyzed in certain discretized formu-
lations. Thus it turns out that a checkerboard of material in a uniform grid 
of square Q4 elements has a stiffness which is comparable to the stiffness of a 
p = 1/2 variable thickness sheet, for  any applied loads (or prescribed strains) 
(see Fig. 1.19 and section 3.3.5). For the minimum compliance problem of an 
infinite medium, this means that for a Q4 discretization of displacements and 
any discrete as well as the continuum description of p, the corresponding opti-
mization problem has the checkerboard version (matched to the Q4 mesh) as 
an optimal design. Thus it is not surprising that one in general sees that opti-
mization generates these non-physical checkerboards when Q4-displacement 
elements are used. 

Checkerboards and choice of FE spaces The problem of finding the op-
timal topology by the material distribution method is a two field problem. It 
involves finding the optimal distribution of material described by the density 
p (or stiffness tensor E) as well as the displacement field u of this optimal de-
sign. It is in this connection useful to remember that the displacement based 
minimum compliance problem we consider can be cast in the form 

max min { 1 f Ezjkieii(v)Eki (v)dSt — t(v) } 	 (1.31) 
EEE,d vEU 	2 S2 	 111 

and a numerical implementation operates on a discretized version of this 
min-max type problem for a functional of two variables. It is well-known 
(cf., Stokes flow),, that the finite element analysis of such problems can cause 
problems, being unstable and being prone to the development of checker-
board patterns for one of the fields. The so-called Babuska-Brezzi (B-B) 
condition has been developed as a criterion that will guarantee that a a 
finite element discretization results in a stable numerical scheme, see Brezzi 
& Fortin (1991). Unfortunately, the functional (1.31) of the topology design 
problem is not quadratic in the two fields and it is also not concave-convex. 
Thus one cannot directly apply standard saddle point theory and the related 



1.3 Complications 	41  

  

^

"0:::»._._:.::::...::.:..:.
: 	

.'^
' r̂•.f},' "::•::.:.4.4.....:.4.0::.:... ..:.. 

 ti }. 
 

	,
•.̂••Y  

 ti r ^: L 	}: .  

}Y } :• : 	 ti r1 : 
• ' ' r:::  

 ::.::..".:•::•::....
:%:%:»::•::»:

'}}}}:ti }}  • : ':  . . Y.ti'^ ;}.;  

} 	.:... 	 . .}  •^ . 
f  •:.̂ '^.^.^. •r:  ::::::

::::.:
:::::::::::»»

. 

	

f.....t .. 
 

• :•'^{ r.^. ^ } 
 'r : : : .y 	 :.}•.  

b)  c)  

Fig. 1.19. The checkerboard problem demonstrated on a square structure subject 
to biaxial stress and modelled by Q4 elements. a) Design problem, b) solution 
without checkerboard control and c) solution with sensitivity filtering. All volume 
fractions are 50% and the resulting compliances for a variable thickness plate (p = 1 
in SIMP) (a) is 2.67; for the checkerboard structure (b) 2.81; and for the non-
checkerboard structure (c) it is 6.16. Even in this finite lay-out the non-physical 
checkerboard - modelled by Q4 elements - is almost as stiff as the sheet. 

application of the Babuska-Brezzi condition to the present situation. How-
ever, these problems aside, taking a direct analogy to the similar problem in 
Stokes flow indicates nonetheless that certain combinations of finite element 
discretizations will be unstable and some stable. This has been confirmed by 
numerical experiments for both the SIMP model, for cases with composites 
and for variable thickness sheets [9]. The analogy suggests that the use of 
higher order finite elements for the displacement function is a viable method 
to avoid the checkerboard problem and checkerboards are typically prevented 
when using 8 or 9-node quadrilaterals for the displacements in combination 
with an element wise constant discretization of density. An analysis based 
on a patch test of the finite element models substantiates this finding (Jog 
& Haber 1996). These patch tests are based on a B-B type analysis of a 
linearized, incremental form of the necessary conditions, corresponding to 
an incremental, quadratic approximation of the saddle point problem (1.31), 

 and the tests give information on the performance of various combinations 
of finite element approximations of the two field problem at hand. We also 
note that it is possible to extend the full mathematical analyses of mixed 
FE developed for the Stokes' flow problem to the variable thickness sheet 
problem (cf., Petersson (1999a)). 

The use of higher order finite elements in topology design results in a 
substantial increase in CPU-time, even though this is not today a serious 
problem for 2-D problems. But  it is still productive to employ alternative 
and computationally more economical methods. Many such methods have 
been proposed and typically include some flavour of a mesh related filtering 



42 	1 Topology optimization by distribution of isotropic material 

of the densities. A series of such methods will be described below. Before 
we turn our attention to these concepts, it is worth mentioning some very 
recent ideas that work with modifications of the typical element density based 
parametrization. 

One is to change the discretization of the density field to be given by 
the nodal values of the squares that define the mesh for the displacements; 
the element density is then the average of the nodal values (Hammer 2001). 
A sensitivity of compliance with respect to one of these densities will then 
depend on the energies in the four neighboring elements, and the design de-
scription is in nature similar to filtering methods (see sections 1.3.1). It can be 
shown that for a finite element discretization based on square elements, this 
idea corresponds to imposing a local gradient constraint as  in 1.23, where G 
is equal to two times the element size. This means that there always will be a 
rim of at least one grey element between solid and void elements. Obviously, 
this also means that this nodal based averaging technique does not imply 
mesh-independence. An example of the scheme applied to compliant mech-
anism design is shown in Fig. 2.27 Note that a scheme that uses a density 
interpolation of nodal values does not have the desired effect. 

Another idea is to use non-conforming elements for the displacement 
fields, effectively giving correct zero stiffness to an infinite checkerboard also 
in the discretized problem (Jang, Kim, Kim, Kim, Park & Shin 2001). 

Finally, we remark that theoretical studies of the appearance of checker-
boards in three-dimensional problems are yet to be carried out. However 
numerical experience shows that checkerboards also appear for this c ase. 

Removing checkerboards in a patch In order to save CPU-time, but still 
obtain checkerboard free designs, it has been suggested to employ a patch 
technique inspired by a method applied for the similar problems in Stokes 
flow (cf., Johnson & PitkAranta (1982)). This technique has in practical tests 
shown an ability to damp the appearance of checkerboards. The strategy 
controls the formation of checkerboards in meshes of 4-node quadrilateral 
displacement elements coupled with constant material properties within each 
element. Thus one maintains the use of low order elements. However, the 
end result is the introduction of some type of element with a higher num-
ber of nodes, as the method in effect results in a"super-element" for the 
density and displacement functions in 4 neighbouring elements. In what 
follows we will assume that the design domain ft is rectangular. It is dis-
cretized using a uniform mesh of square, 4-node iso-parametric elements 
Kii, i = 1, ... , 2M, j = 1, ... , 2N where 2M and 2N are the (even) number 
of elements per side. Consider now, for odd i and j, a patch P ik  of four con-
tiguous elements K 1  = Ki,i, K2 = Kz+1,j, K3 = K2,j+1 and K4 = K2+1,j+1, 
as  shown in Fig. 1.20, i.e., 

P27  = K1  U K2 U K3 U K4 . 
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Fig. 1.20. Patches and basis functions used for checkerboard control.  

Associated with P zi  we introduce basis functions 	̂, ^ ,  (gi  and 03  which 
take the values +1 in P j3  according to the pattern shown in Fig. 1.20 and 
are zero outside P. Here we note that: 

— The functions {4} constitute an orthogonal basis,  

A "pure" checkerboard pattern is of the form u = E 1'„ 7rq^ rh  1  
This suggests that in order to avoid the formation of checkerboard patterns  

we need to restrict p to lie within the more restricted, checkerboard-free space  

v(z) =EY,,(v9Y'  1; +vqi 0Z, +v^16 j),  (ti; ,vFi ,vt) E  R3, } 
 

i = 1,3,...2N -1, j=1,3, ..2M- 1  

This restriction on p links the four elements in a patch, and the amount of 
material in K t  UK4  equals that of K2UK3 and each is half of the total volume 
of the patch. 

The coupling of the density distribution makes it difficult to apply the 
usual iterative optimality condition method. In MMA one can work directly 
with the design space V by using the 3MN parameters (v ,  v ,  v  i3j ) as design 
variables. This, however, changes the simple bound constraints 0 < p < 1 into 
a huge number of linear constraints on the parameters y, making this option 
impractical. Instead, the following simpler procedure, which has been applied 
in a variety of problems, can be employed for both algorithms: 
1. At each iteration of the optimization algorithm the cell size parameters 
within each element Kii are updated using the usual update method (opti-
mality criteria approach or an MMA step). 
2. For each patch 	let  {pi, P2, P3, p4} be the be the updated densities in the  
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Fig. 1.21. Single checkerboard-patterns may form within the patch control scheme. 
But no extended checkerboard patterns can be present (from Poulsen 2002). 

four quadrants of the patch associated with the updated cell sizes (using the 
numbering of 1.20). We then seek, as the starting point for the next iteration, 
a new piece-wise constant and checkerboard-free density distribution within 
the patch, say p , written as 

1 
P(x) = 4 (Pi + P2 + p3 + P4)0'  + v2 02 + 03 03 , z E Pay 

Here p is checkerboard-free (as v4  = 0) and it preserves material in the patch 
(as the coefficient of 0'  is set as  VI = â (p1 + p2 + p3 + p4) ). To determine 
the parameters v2 i  vs, we select p as  the best L 2  approximation to p in P ik 

 under the constraints that 0 < pi  < 1, i = 1, 2, 3, 4. This corresponds to a QP 
problem in two variables, with linear constraints. The solution can be found 
analytically, and is given as 

Pi = 4 
 (3Pi + p2 + p3 — P4) , 	P3 = —

4
(P1  — P2 + 3p3 + P4) 

1 	 ] 
P2 = 4 (Pi + 3P2 — P3 + P4) , 	P4 = 4 ( — P1 + P2 + P3 + 3P4) 

if these values satisfies 0 < pi  < 1. If a pi  in these expressions is above 1, 
it is set to 1 and the corresponding diagonal density is adjusted to maintain 
the volume of the patch; negative values are handled likewise and are set to 
0. The modification of the density outlined here has the flavour of a filtering 
in a post-processing step that is invoked at each step of the optimization 
procedure and should therefore be used with some caution. We note that 
it does not disturb areas of the domain where no checkerboard control is 
needed, and also remark again that the method corresponds to introducing 
a "super-element" of four Q4 elements with a total of 9 displacements nodal 
points and with 3 degrees of freedom for the density approximation. Thus 
the method maintains more resolution in densities, as compared to, say, the 
approach of using Q9 elements for displacements and element-wise constant 
density p. 

An alternative to the procedure above is to perform a change of variables 
that allows one to work directly with checkerboard free designs. Inspired by 
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Fig. 1.22. A check for monotonicity along four paths around an  interior node. 

work in wavelet-based parametrization of the design (see section 1.5.5), we 
introduce a checkerboard free space of auxiliary variables W = {w E V}. We 
do not impose any side constraints on w(x) and convert it into to a density 
satisfying the bounds 0 < p < 1 by a transformation: 

1 
p(x) = h(w(x)), with h(w) = arctan(w) + 2 ' 

where h is a strictly increasing function 14  that will map checkerboard free 
patches of the auxiliary variable w to checkerboard free patches of the density 

p. 
In the optimization, the variables (wh, w , qi ) then become the design 

variables. For implementation, sensitivity information with respect to these 
variables are needed, but this information can be gained from sensitivities 
wrt. p(x) by an application of the chain-rule. The volume constraint becomes 
a non-linear function in the auxiliary variables, but this does not create any 
difficulties. Finally one notes that box constraints on the auxiliary variables 
are a requirement of MMA (as in most mathematical programming algo-
rithms) and these can be chosen big enough as not to affect the results; also, 
one can use an imposed w m ; n  to match a desired value of A min , but this is 
not critical [11]. 

We note here that the schemes proposed above depend on the build-up of 
the mesh in 2 by 2 patches of quadrilaterals. In each such patch checkerboards 
are removed, but checkerboards between patches are still possible if the row 
or column number of the upper left corner of a checkerboard is even. This 
also means that corner to corner patterns of the single elements can occur, 
but no large areas of checkerboards are possible. This is discussed in further 
detail in section 2.6 that deals with design of mechanisms. 

NoHinge: A checkerboard constraint In section 1.3.1 geometry control 
was achieved by defining one extra constraint for the optimization problem. 
This idea can also be implemented for checkerboard control, i.e., one defines 
a non-negative constraint function that should have value zero for the design 
to be free of checkerboards. 

Consider the patch of square elements in figure 1.22. Defining the function 

rn(x,y,z)= — + lz — — lz — , 

14  A function S(w) = z i+é kw  + z is also a choice among many other possibilities. 
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that is zero if the sequence of real numbers x, y, z is monotonic (increasing, 
decreasing or constant) and strictly positive otherwise, we can determine 
that the patch is free of checkerboard patterns, if just one of the numbers 
m(a, b, d), m(a, c, d), m(b, a, c) or m(b, d, c) is zero. This can be in turn be 
expressed as the condition that the number 

h(a,b,c,d) = m(a,b,d)m(a,c,d)m(b,a,c)m(b,d,c) , 

is zero. A design defined by a density p that is element wise constant on a 
mesh of quadrilaterals with N interior nodes will thus be free of checkerboards 
if it satisfies the constraint 

E h(Pk,ae Pk,6, Pk,c) Pk,d) = 0 0 (1.32) 
k=1 

where pk, e  , e = a, b, c, d are the material densities in the elements connected 
to the node k. This constraint can thus be added to our optimization problem 
to assure checkerboard free solutions. It can also be used to remove "artifi-
cial" hinges in mechanism design, see section 2.6. As we have seen in other 
situations, an implementation using gradient based optimization techniques 
requires a replacement of the absolute value by a smooth substitute, for exam-
ple lxi ^ -/x 2  + e2  — c with e = 0.1. With this modification a sensitivity anal-
ysis of the constraint is straightforward, but rather tedious (Poulsen 2001b). 
For an example of the use of this scheme, see Fig. 2.25. 

Checkerboard control by filtering of sensitivities The filtering tech-
nique for gradients described in 1.3.1 can also be cast in a version that only 
constrains checkerboards, without imposing a mesh independent length scale. 
This just requires that one adjusts the filter in (1.27) to exactly making the 
design sensitivity of a specific element depend on a weighted average over 
the element itself and its eight direct neighbours. This is a is very efficient 
method for removing checkerboards [9]. 

1.3.3 Non-uniqueness, local minima and dependence on data 

It is important to observe that most problems in topology design (as in struc-
tural problems in the large) are not convex. Moreover, many problems have 
nu ltiple optima, i.e. non-unique solutions. An example of the latter is the 
design of a structure in uni-axial tension. Here a structure consisting of one 
thick bar will be just as good as a structure made up of several thin bars with 
the same overall area. The non-convexity typically means that one can find 
several different local minima (which is what the gradient based algorithms 
locate) and one can obtain different solutions to the same discretized prob-
lem when choosing different starting solutions and different parameters of the 
algorithms. Most global optimization methods seem to be unable to handle 
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problems of the size of a typical topology optimization problem. Based on 
experience, it seems that continuation methods must be applied to ensure 
some sort of stable convergence towards reliably good designs. 

The idea of continuation methods is to gradually change the optimiza-
tion problem from an (artificial) convex (or quasiconvex) problem to the 
original (non-convex) design problem in a number of steps. In each step a 
gradient-based optimization algorithm is used until convergence. This is use-
ful in many types of problems. Examples are the use of a continuation method 
were the structure first is optimized allowing regions consisting of compos-
ites (see Chap. 3), and after convergence, a penalization scheme is gradually 
introduced to obtain a 0-1 design. Likewise (as mentioned in section 1.2.4), 
for SIMP it is advisable to start out with p = ] and then slowly raise the 
value of p through the computations until the final design is arrived at. For 
the perimeter constraint it is also beneficial to perform a gradual decrease 
of value of the constraint on the perimeter. For the mesh-independence filter 
(see section 1.3.1) it is normally recommended to start with a large value of 
the filter size r min  (which gives designs with blurry edges) and to gradually 
decrease it, to end up with a well-defined 0-1 design. 

Finally, it is extremely important to observe that the results that one 
obtains with topology design of course depends on the data that one decides 
on using before applying the optimization procedure. Thus a change of the 
geometry of the design domain, the choice of load and boundary conditions 
can result in drastical changes in the"optimal design" that an algorithm may 
produce. Similar effects can be seen from variations of perimeter constraint 
values or filter parameters, etc. This is actually not that surprising as we are 
dealing with very "nasty" optimization problems, but in topology design this 
effect is just much more noticeable than in many other types of structural 
optimization problems. 

1.4 Combining topology and shape design 

Traditionally, in shape design of mechanical bodies, a shape is defined by the 
oriented boundary curves or boundary surfaces of the body and in shape op-
timization the optimal form of these boundaries is computed. This approach 
is very well established and the literature is extensive [2], [35]. On the other 
hand, we have just seen how the material distribution formulation can give a 
good estimate of the boundary of a structure, but here a reasonable predic-
tion of the finer details of the boundaries requires very large FEM models. 
Also, the inherent large scale nature of the topology optimization method is 
such that the objectives used for the optimization should be global criteria, 
e.g. compliance, volume, average stress, etc., so that the effectiveness of the 
dual optimizers cari be maintained by treating problems with a moderate 
number of constraints. Foi example, the focal point in the presentation so 
far has been the minimization of the compliance of a structure subject to a 
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Fig. 1.23. Postprocessing of grey-scale pictures by automatic (MATLAB) contour-
plotting. Cantilever beam for different aspect ratios. b), d) and f): optimized topolo-
gies based on SIMP and filtering of sensitivities and c), e) and g): contour plots 
based on the grey-scale pictures. 

constraint on the volume of the structure. On the other hand, the description 
of the body by boundary curves and surfaces allows the finer details of the 
body to be controlled by a moderate number of design variables (e.g., spline 
control points) so this setting is better suited for studying problems such as 
the minimization of the maximum value of the displacements or of the Von 
Mises equivalent stress in the body 15  

It is thus for this type of situations natural to integrate the material dis-
tribution method and the boundary variations approach into one design tool, 
employing the topology optimization techniques as a pre-processor for bound-
ary shape optimization. The possibility of generating the optimal topology 
for a body can be used by the designer to select the shape of the initial pro-
posed form of the body for the boundary variations technique. This is usually 
left entirely to the designer, but the material distribution method gives the 
designer a rational basis for his choice of initial form. As to be expected, the 
topology is of great importance for the performance of the structure, and it 
has turned out that - not unexpectedly - the compliance optimized topologies 
generated using topology design are very good starting points for optimiza- 

15  The handling of local stress constraints for continuum topology design problems 
is described in section 2.3. 
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Fig. 1.24. Postprocessing of grey-scale pictures by automatic (MATLAB) contour-
plotting. MBB-beam for volume fractions of 30%, 50% and 70%, respectively. b), d) 
and f): optimized topologies based on SIMP and filtering of sensitivities and c), e) 
and g): contour plots based on the grey-scale pictures. Only moderate modifications 
(smoothing of corners etc.) seems to be needed before manufacturing. 

tion concerning several other criteria such as maximum stress, maximum 
deflection, etc. 

The direct integration of topology optimization and shape design methods 
is made difficult by the fact that the description of a structure by a density 
function is fundamentally different from a description by boundary curves or 
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surfaces, as used in boundary variations shape optimization methods. In a 
CAD integrated shape optimization system, it is perhaps natural that the in-
tegration is based on the designer drawing the initial shape for the boundary 
variations technique directly on the top of a picture of the topology optimized 
structure, allowing for designer interaction [10]. This also creates a design 
situation where the ingenuity of the designer is put to use for generating a 
"good" initial form from the topology optimization results. The term "good" 
in this context covers considerations such as ease of production, aesthetics, 
etc. that may not have a quantified form. However, automatic interfacing be-
tween the topology optimization method and other structural optimization 
methods is no doubt more productive. Here image processing and smooth 
surface generation are key technologies [10]. Such techniques are especially 
important for an effective integration of topology design methodology in gen-
eral purpose 3-D Computer Aided Optimal Design (CAOD) systems. We note 
that any integration of the two design methods is simplified by the fact that 
the integration can be based on a common FEM mesh generator and analysis 
module and a common CAD input-output facility. The requirements on the 
mesh generator are mainly governed by the boundary variations technique, 
as mesh distortions and mesh non-uniformities for that problem can become 
critical due to the shape changes of the analysis domain. 

An important aspect of shape design is adaptivity of the FE mesh. Like-
wise, for topology design on can work with a sequence of design situations 
where the groundstructure (the reference domain) as well as the FE mesh is 
subject to adaptation; for further details consult [10]. 

It should be emphasized that the boundary variation method in essence 
is computationally significantly more involved than the topology design 
method. Also, the mathematical technicalities of formulating the problem 
and computing sensitivity information are more daunting, as is indicated 
in appendix 5.3. On the other hand, the material distribution method is a 
large scale optimization problem. Describing boundaries by for example spline 
control points requires a much lower number of design variables, meaning 
that standard mathematical programming techniques can be used also for 
problems with a substantial number of constraints. Note also that the basic 
approach to topology design is of equal complexity for two and three dimen-
sional structures, but that the description of geometry for boundary shape 
design is much more complicated in dimension three. 
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a Load 

Fig. 1.25. The optimal design of a bearing pedestal, using the homogenization 
approach (see Chap. 3) integrated with the boundary shape design system CAOS 
(see Rasmussen et al. (1993)). a) The reference domain, with loading. The rim of 
the inner hole was kept as a solid in the topology optimization. b) The result of 
the homogenization approach. c) The final design, after boundary shape design for 
minimum maximal Von Mises stress and after adding outer parts to the structure 
for fastening. Utilizing symmetry only one half of the structure was analysed, as 
indicated in b) (from Olhoff et al. 1992a). 

Fig. 1.26. Optimized topology and shape design of a structure made of two mate-
rials, resulting in a sandwich structure. a) Optimized two-material topology com-
puted using rank-3 layered materials (see Chap. 3). b) Initial design for a refine-
ment using boundary shape optimization. All boundaries between skin and core 
are restricted to be piecewise straight lines. For the boundary design the weight is 
minimized without increasing the compliance relative to the optimal topology. c) 
Final shape optimized structure. By courtesy of Rasmussen, Thomsen and Olhoff. 

a 
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f 

e 

C.^ 
Fig. 1.27. Inegrated optimal design of a vehicle roadarm. a) Initial Finite Element 
Model, b) topology optimized roadarm, c) reconstructed solid model, d) Finite 
Element mesh for shape design e) Von Mises stress of the shape optimized design 
and f) comparison of the 3D Roadarm before and after shape design (Light grey: 
initial design, dark grey: optimized design) (from Tang & Chang 2001). 
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1.5 Variations of the theme 

1.5.1 Multiple loads 

The framework described for minimum compliance design for a single load 
case generalizes easily to the situation where design for multiple load condi-
tions is formulated as a minimization of a weighted average of the compliances 
for each of the load cases. We here obtain a simple multiple load formulation 
as:  

min  \--• w k l k (uk)  

uk EU,E k=1  

s.t. aE(uk , v) = l k (v), for all v E U, k = 1,..., M 

E EEad,  

(1.33)  

for a set wk f k , t k  1k  k = 1 ,  .. , M, of weighting factors, loads and tractions, 
and corresponding load linear forms given as 

lk (u)=J f k u dS2+ J tk u ds, 
o 	r;.  

for the M load cases we consider.  
In this formulation the displacement fields for each individual load case  

are independent, thus implying that the multiple load formulation for the  

displacement based case has the equivalent form  

max 	min  
EEEad v.={u ^ ,... ,uM } 

uk EU, k=1, ,M  

{  f  W (E, û)(1S2 — l (û) } 
))J  

M 

147 (E,û = {7c 1 ,...,uM }) = 2^wkEi.7P9(x)Ei.9 (uk)ep9(uk) ,  
k=1  

Nr 

l(û = {ul ,. 
- ^ uM }) =  Ewklk (uk )  

k=1  

Likewise, we have a stress based formulation 

{
fQ M 

 
min 	min 	1 	 wkCi^ kta  ak do

EEEd 	k— 	 2 	 p9
divo^-f -0 in 52, 	k=1  

ak -n=tk  on  II- 
k=1,... ,M  

For the stiffness modelled as in the SIMP model, the optimality criteria 
method developed for the single load case generalizes directly and we obtain 
an update scheme for pK at iteration step K which is exactly the same as 
given in (1.12) of section 1.2.1, but with a modified "energy" expression 

(1.34)  

(1.35)  
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e) 
	

^ 

Fig. 1.28. Example of differences in using one or more load cases. a) and b)  

Design domains. c) and d) Optimized topologies for all loads in one load case. e)  
and f) Optimized topologies for multiple loading cases. It is seen that single load  

problems result in instable structures based on square frames whereas multi load  

case problems results in stable structures based on triangular frames.  

BK = /IK1 pp(x) 11)-1) EO
kI Ewk Ei7^^K^^P9^^K^ 

k= 1  

Similarly, for use of an algorithm like MMA, the sensitivity of the weighted  

average of compliances just becomes the weighted average of the sensitivities  

of each of the compliances. Also, the similarity of the iterations in MMA and  

in the the optimality criteria method remains. Finally, it may be remarked  
that the inclusion of extra load cases is very cheap since the stiffness matrix  

already has been factorized.  

1.5.2 Variable thickness sheets  

For planar problems, the stiffness tensors given by the SIMP method reduces  

to the setting of the well-known variable thickness sheet design problem if  

we set p = 1; in this circumstance the density function p is precisely the  
thickness h of the sheet. The minimum compliance problem then becomes  
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min 1(u)  
11 ,p  

s.t. : ah(u,v) - I^  h(x)Et ki ezi (u)ekl(v)dSt = 1(v), for all y E U  

h(x)d1-2 < V, h,,,i„ < h < h,n . < oo  

Problem (1.36) can also be written as (cf., (1.6))  

	

min 	c(h)  
heL°°(o),  

h m ; _<h<h „„<œ 

	

fn  h(x)do< 

{ 21 (v)
Vl

c(h) = min 	— f h(x)E kleii(v)ekl(v)dD1 
vE  S2 

As the stiffness is linear in h, the compliance c is convex, as it is given as 
a maximization of convex functions. Also, the complete problem statement 
(1.37) is a convex-concave saddle point problem that (as noted earlier) lends 
itself to a complete FE convergence analysis (see Petersson (1999b)) within 
the framework of the theory developed for the Stokes' flow problem. The 
variable thickness sheet design problem also corresponds very closely to truss 
design problems in the sense that the stiffness of the structure as well as 
the volume of the structure depend linearly on the design variable for both 
models. This implies that a discrete version of the problem can he solved using 
some very efficient algorithms that have been developed for truss topology 
design (cf. Chap. 4). These algorithms do not require that h,,,;,, > 0, and the 
setting thus allows for a prediction of the the optimal topology of the sheet 
without the ambiguity inherent in the chosen value of h,,,;,,; this is especially 
important here as we do not force the design towards a 0-1 design. 

The linear dependence of the stiffness on the design function h has an 
even more significant implication for the continuum problem, as one can 
prove existence of solutions (see appendix 5.2.1). Thus there is no need for 
restriction methods or the introduction of materials with micro structure (this 
holds for minimization of compliance and optimization of the fundamental 
frequency). Finally, we remark that the variable thickness sheet problem also 
plays a significant role when considering optimal design within a completely 
free parametrization of the stiffness tensors over all positive definite tensors 
in 2-D as well as 3-D. Here the problem form (1.36) arises after a reduction 
of the original full formulation; this will be discussed in detail in Chap. 3. 

Explicit penalization of thickness The variable thickness design problem 
has been used as the inspiration for topology design methods where one seeks 
the optimum over all isotropic materials with given Poisson ratio and linearly 
varying Young's modulus (11]. This formulation results in designs with large 
domains of "grey" and modifications are necessary to obtain 0-1 designs. 
This can be accomplished by adding to the objective an explicit penalty of 

(1.36)  

(1.37)  
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Fig. 1.29. The design of a variable thickness sheet for two cantilever-like ground 
structures with aspect ratios a) 1:1 and b) 1:4. c) — h): The optimal designs for a 
volume constraint c) and d) 30%, e) and f) 60% and g) and h) 90%, respectively, of 
the volume of a design with uniform thickness hmax  (cf. constraints on thickness). 
Notice that the areas of intermediate thickness is considerable, especially for low 
amounts of available material. Thus the variable thickness design does not predict 
the topology of the structure as a true 2-dimensional object, but utilizes that the 
structure is in effect a 3-dimensional object. 
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intermediate densities, for example in the form of functionals (we revert to  
using a density p as the design variable): 

W(P) = f p(x)(1 — P(x))d 1 , W(p) = f P(x) 2 ( 1  — P(x)) 2 d52 	(1.38)  

Alternatively, the penalty function can be used as a constraint W(p) < b for 
some small b > O. 

The use of a penalty function such as  W (or W) has a detrimental effect on 
the very nice mathematical properties of the original variable thickness sheet 
problem. For one, existence of solutions is no longer true. However, existence 
of solutions can be recovered (Borrvall & Petersson 2001h) by modifying the 
penalty function (1.38) to the form 

W(P) = f (p * K)(x)( 1  — (p * K)(x))dfl , 	 ( 1 -39)  

where one evaluates the original penalty function on a filtered version of the 
density p (we use here the notation introduced in section 1.3.1). The filter 
smoothes the density before penalization and as such provides for a more 
severe penalization than does W (for details, consult Borrvall & Petersson 

(2001b)). Thus using W, the designs become almost entirely black and white 
(a 0-1 design) if the penalty factor is large enough (see Fig. 1.12). 

The penalty approach just outlined maintains the existence of solutions 
for the problem of minimum compliance and the maximization of the fun-
damental frequency. If a broader range of problems is to be considered the 
restriction techniques, as  described in section 1.3.1, should be applied. Note 
also that the use of the penalty W makes it impossible to use the efficient 
truss-type algorithm mentioned above (but an MMA inspired optimality cri-
terion method is an efficient alternative (Borrvall & Petersson 2001a)). 

In order to maintain the structure of the original computational problem 
it has been suggested instead to consider a sequence of problems where the 
volume constraint in each step K of the sequence is modified as (see for 
example Guedes & Taylor (1997), Rodrigues, Soto & Taylor (1999)) 

J WK(x)P(x)dcl  <V  
^ 

where the weight function wK is fixed and determined from the optimal 
solution p _r to the prior step so as to penalize low density regions: 

f TK ifpK_j < S  
wK(x) 	0 otherwise 

With suitable big values of Tk and a small value of 6 this scheme generates 0-1 
designs  and  each step is computationally equivalent to the original variable 
thickness sheet problem. In implementation, the tuning of the penalization 
becomes an issue. Also note that as  above, the advantages of this idea is 
closely linked to the properties of the minimum compliance problem. 
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1.5.3 Plate design 

Studies of the problem of variable thickness plate design and the appearance 
of stiffeners in such design problems have played a crucial role in the develop-
ments in optimal structural design [29]. Thus topology design and especially 
design with materials with microst ructure can be seen as a natural exten-
sion of the original work by Cheng and Olhoff on plates. In this sense this 
exposition of topology design methods is reversed relative to history, but it 
is today more natural to consider plate design as a special variation of the 
general framework. 

The design of variable thickness Kirchhoff plates or Mindlin plates is at 
first glance just another sizing problem of finding the optimal continuously 
varying thickness of the plate. The close connection with the 0-1 topology 
design problems is not entirely evident, but the cubic dependence of plate 
bending stiffness on the thickness of the plate implies that the optimal design 
prefers to achieve either of the bounds on the thickness, in essence a plate with 
integral stiffeners. This in turn implies non-existence of solutions unless the 
gradient of the thickness function is constrained or the problem is extended 
to include fields of infinitely many stiffeners; this latter concept is dealt with 
in Chap. 3. 

Variable thickness design of Kirchhoff plates The minimum potential 
energy statement for a Kirchhoff plate is of the form es  

3 
men { 

l 2 ./52 	 1 12 
Ku  m Kij (w)ikl (w)d1l — 

J 
fwdIl } 

2 	JJJ 

where f is the transverse load. The thickness of the plate is denoted by h and 
we assume that the mid-plane is a plane of symmetry. The deformation of the 
plate is described by the transverse displacement of the mid-plane w , with 
associated (linearized) curvature tensor /îij = af

.
âs, , and the relationship 

between the curvature tensor and moment tensor M is given as 

= Dijk lKkl 
h3  

with Dijkl = 12 E°jkl 

where gild is the plane stress elasticity tensor of the given material. The sim-
ilarity between the curvature-moment relation for plates and the strain-stress 
relation in elasticity hides the fundamental difference that the Kirchhoff plate 
is governed by a fourth order scalar equation, while standard linear elastic-
ity is governed by a system of second order equations. As for the variable 
thickness sheet problem, the thickness of the plate also here automatically 
provides the plate design problem with a continuous design variable. Consid-
ering the minimization of compliance the most natural problem to consider 
is thus 
16  Here and elsewhere in this section (section 1.5.3) all indices range over 1 and 2. 
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(1.40) 
2 

with the set  PEad of bending stiffnesses given as 

9 
Dijkt = 12 E° kt ,  h E L°°(S2) ,  (1.41)  

0< h,nin< h< hmax<00 , 4.2 hdS2<V  

which looks like a SIMP interpolation scheme! Also in the plate setting, prob-
lem (1.40) with the design set (1.41) is not well posed, and the existence of  
solution is not always assured. This was first vividly demonstrated by Cheng 

 & Olhoff (1981), who discovered the formation of stiffeners in numerically  
computed `optimal" solutions for high ratios of hmax/hmin and knax/hanif  

where hunif = V/ j di-2, see Fig. 3.21 in Chap. 3. The number of stiffeners 
increase when the discretization of design is refined, with a resulting (substan-
tial) decrease in compliance, a situation completely similar to the behaviour 
of the 0-1 topology design setting. Compared to the variable thickness design 
problem for sheets, this is caused by the cubic dependence of the stiffness 
of the plate on the thickness. Physically, this dependence makes it advan-
tageous to move as much material as possible away from the mid-pl ane of 
the plate, for example in the form of integral stiffeners. A method to obtain 
mesh-independence and existence of solutions is analogous to what has been 
described in section 1.3.1, by restricting the variation of the thickness func-
tion, for example in the form of a constraint on the slope (gradient) of the 
thickness function. Example solutions with a point wise bound on the slope 
of the thickness of a rotational symmetric plate were first shown in Niordson 
(1983).  

The computational procedure for computing optimal plate designs is com-
pletely analogous to the procedure described earlier in this chapter and the 
optimality criteria and sensitivity calculations carry over ad verbatim, with 
strains and stresses interpreted as curvatures and moments, respectively. 

Topology design for Mindlin plates We close this brief discussion on 
plate design by considering some models for the design of Mindlin plates. 

The minimum potential energy statement for a constant thickness Mindlin 
plate constructed from one material is of the form 

min z f, hE°kteij(u)ekt(u)d 1l+ 2 fo i2E°kt kij(u ) kkt(u)dS2  

u 	+2 f„  hD  isi ryi(u)7j (u)dS2 — (L. 	+ f[.. tuff)  

where f is the transverse and t the in-plane load. The thickness of the plate is  

denoted by h and we assume that the mid-plane is a plane of symmetry Also,  
E° kt  is the plane stress elasticity tensor and Ds is the transverse shear stiff  
ness matrix. In Mindlin plate theory generalized displacements of the plate  

u = (u 1 , u2 , w, 01 , 02 ) consist of the in-plane displacements (u 1 , u2) , the fibre  
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Fig. 1.30. Resulting topologies for compliance minimization of square Mindlin  

plates. The material volumes are restricted to 25% of the filled plates and the  

plates are loaded with a force at the center. a) Simply supported and b) clamped  

plate (from Pedersen 2001).  

rotations (91,02) and the transverse displacement of the mid-plane w The 
associated membrane, bending, and transverse shear strains are, respectively, 

	

1 aui au; 	1
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Eii 2 ( ax; C72 i ) 	2 ^^^ 
agi 

), and ryi = a^Z —  ei.  

For plates there are several options for performing topology design, con-
nected to the possibility to also consider out-of-plane variations of the build-
up of the plate. For the design of a perforated plate one would thus use 
thickness functions that attain values 0 or h, for example implemented with 
the help of a density function p and a SIMP interpolation: 

h=pPh, Vol =^phdst 
n  

Other possibilities is to consider reinforcement of a given plate or to consider  
the design of a sandwich structure, where two outer skins are given and the  

topology design deals with the topology design of the inner core [29].  

1.5.4 Other interpolation schemes with isotropic materials  

The use of SIMP or the penalized variable thickness formulation have in the  

last few years been supplemented by some alternative interpolation schemes  

that have certain theoretical or computationally advantageous features for  

specific problems. As they fall within the class of interpolation models with  

isotropic materials we briefly discuss them in this chapter. The use of com-
posites is the theme of Chap. 3.  

Hashin-Shtrikman bounds The so-called Hashin-Shtrikman bounds for  

two-phase materials express the limits of isotropic material properties that  
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Fig. 1.31. Resulting topologies for compliance minimization of square Mindlin 
cantilever plates. a) Design problem with loads for the first and the second load 
case. b) Solution to one-load case problem with two upward oriented forces, c) 
solution to one-load c ase problem with one force upwards and one downwards and 
d) solution to two load case problem. The volume fraction is 50% (by Niels L. 
Pedersen).  

one can possibly achieve by constructing composites (materials with mi-
crostructure) from two (or more) given, linearly elastic, isotropic materials  

[4]. These bounds give expressions of material parameters as functions of vol-
ume fraction, or for our purposes as functions of density p of material, and  
can thus be employed as interpolation schemes (all material laws involved  

will be isotropic). For our purposes we work with two materials, one with a  

low stiffness Emi" and one with high stiffness E° The corresponding values  

of the Poisson ratios are vm 1° and v°  
The Hashin-Shtrikman bounds are typically expressed in terms of the bulk 

and shear moduli of the materials , ir and p, (corresponding to the eigenvalues 
of the stiffness tensor). Restricting ourselves here to 2-D pl ane elasticity, we 
have for isotropic materials that 

_ E 	E 
^  2(1 — v) ' 

 µ 
—  2(1 + v)  

(in 2 — D) .  



62 	1 Topology optimization by distribution of isotropic material  

The hounds are then in terms of these parameters (in 2-D) 17  (we assume here  
that K° > Kmin and p° > pmin):  

K 	= 1 _ Kmin + 
upper
HS 
 - ( 	P) 	pK0 

 

fLHSupper 
= (1 — p)pmin + pip
—  

(1  — p) p( Kmin _ KO)2  

(1 _ p) KO + pKmin + po 

( 1  — p) p(pmin _ p0)2  

( 1  — p)p° + pp"'  + KO+ZNo  

(1.42)  

(1.43)  

( 1  — p)p(Kmin 
 _ 0)2  

(1 — p)K° + pKmin + pmin  

( 1  — p)p(fL'nin 
—  p0)2  

( 1  — p)fL°  + ppmin + s,:„ 	+2µ.i, n  

Each combination of formulas K^ per ,  flapper 
 an

d K o er, 
par  er represents an  

interpolation of the material properties of the two materials, and any convex 
combination is also and interpolation scheme, which then satisfies the hounds. 
Thus a whole range of schemes can be generated. Here the lower bound 
interpolation penalizes intermediate densities most. Note that the Hashin-
Shtrikman bounds represent materials that have both a Young's modulus 
and a Poisson ratio that vary with density (even if the two base materials 
have the same Poisson ratio). 

If both materials have Poisson ratio equal to 1/3, then the upper and 
lower bounds (and all convex combinations) also represent a material law 
with Poisson ratio v = 1/3, and the bound can be expressed in terms of the 
Young's modulus only: 

E  S —  E°  pE0  + 	(3o p)Emmin (3 — 2p)E + 2pE 

EHS = Emin  (2 + p)E°  + (1 —  p)E'nin 
lower  2(1 — p)E° + (1 + 2p)E Mill  

This reduces further if the weak material is void (Em irs = 0): 

HS = (1  _ p) min p  0 
Klower 	1 	K 	+  K 

Power =  ( 1  — 
p)/umin + pip  

(1.44)  

(1.45)  

for v = 1/3 (1.46)  

pE°  
Eupper = 

3  —  2p  Elower = 
_ ^ 0 for p<1, 

E° for p = 1 ,  
(1.47)  

which is then an interpolation with void and with a material with v = 1/3 
and Young's modulus E° For many test cases in topology design one works 
within this framework of v = 1/3. 

17  The bounds are necessary conditions. It is known that not all combinations of 
numbers k and p that satisfy the bounds actually represent the bulk and shear 
moduli of a realizable material - see Chap. 2. 
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Fig. 1.32. The interpolation using RAMP (solid curves) compared with the Hashin-
Shtrikman bounds (dotted curves).  

SIMP and the Hashin-Shtrikrnan bound If we require that an  inter-
polation model in any sense can he related to a composite made of the  

given materials, then we should demand that the model satisfies the Hashin-
Shtrikman bounds stated above. For SIMP one of the material phases is zero,  

i.e.,  E17"n  = O. Then the only relevant Hashin-Shtrikman bound (1.42) sim-
plify somewhat and it is possible to show that SIMP satisfies the bounds  
if the power of the model satisfies the inequalities stated in (1.5) (Bends0e  

& Sigmund 1999). As already noted, this does not assure that a composite  
can actually be constructed. But we shall in Chap. 2 see how topology de-
sign (sic!) can be used to construct microstructures that realizes the SIMP  

interpolation scheme.  

An approach with rational functions In the section on the variable  

thickness sheet problem it was seen how the expression of the compliance c  
via the potential energy makes it possible to conclude that the compliance  

in that situation is convex. On the other hand, if c is derived in terms of the  
complementary energy (cf., (1.7), we have that  

c = min  
oEs  

{ 
J 

C2^k^az^v^ 1dS2 } 	 (1.48) 
111 	st 	 111  

This shows that if one can make the compliance tensor Czjki a concave func-
tion of the design, then c, as a minimization of concave functions, becomes  
concave. And this is advantageous if we want 0-1 designs that are on the  

"border" of the space of densities (this will be made precise below). For  

interpolating the compliance we cannot work with vanishing stiffness, but  

instead operate with a low stiffness Ern!" and interpolate between this and  
the properties E° (we assume constant Poisson ratio). The simplest concave  
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interpolation of the inverse of the Young's modulus E is then the linear one 
(as proposed in Stolpe & Svanberg (2001b) and Rietz (2001)), which is 

1 _ 1 +  (1 	1 

E(p) Em 	
p 

in 	E° Emin /f 

This, in turn, corresponds to the following rational expression for E: 

E(p) = Emi' + 
1 + q(1 — p) (E° 

Emin) 	 (1.49) 

where q = q, q w (E° — E"")/E"" (the corresponding expression for SIMP 
is E = En-1i" + pP (E°  — Em il). The relation given in (1.49) can also be used 
for other values of q; the scheme has in certain circumstances been given the 
acronym RAMP for Rational Approximation of Material Properties. 

The interpolation (1.49) makes, by construction, the compliance a concave 
function of p if q is chosen as q = q (or bigger). Moreover, q 0 gives 
the linear interpolation (which makes compliance convex), and for materials 
with Poisson ratio 1/3 the interpolation equals the Hashin-Shtrikman upper 
hound for q = 2(E°  — E`"'")/(E °  — 2E"i") and the Hashin-Shtrikman lower 
bound for q = s q. The intermediate densities are thus severely penalized for 
larger values of q, cf., figure 1.5.4. A natural continuation method using this 
interpolation scheme is then to begin the optimization procedure with q = 0 
and then increase q until q > q. The concavity of compliance for such large 
values of q implies the existence of a globally optimal 0-1 solution for a FE 
discretized version of the problem, for example where we use element wise 
constant densities in a mesh of squares, only the simple bounds 0 < p < 1 and 
a volume constraint that is an integer times the volume of the b ase element 
(Stolpe & Svanberg 2001b). This has the added side effect that one can 
conclude similarly for the SIMP interpolation'sprovided we choose p > (q + 
1) If for example a perimeter constraint is added to the problem statement 
this property does not hold any longer; however, the intrinsic penalization of 
the interpolation still results in designs that are almost free of grey, if q is 
large enough. It is also worth noting that if E" i" is much smaller than E°  (as 

 typical for finding the topology of a structure made from one material), then 
the "magic" value q becomes large (and infinite for the limit of E"i" = 0). 

We remark here that if design of two-material structures is the goal of the 
topology optimization, the RAMP model is in a sense more physical than 
SIMP. The latter will always violate the Hashin-Shtrikman hounds for small 
density values, while RAMP has a whole range of q values for which the 
bound is satisfied (for a Poisson ratio 1/3). However, RAMP does not satisfy 
these bounds for the range of q where the compliance becomes concave. 

18  This follows from the property that for a given p, the SIMP interpolation gives 
a higher compliance than the RAMP interpolation, when p > q +1. 
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A Reuss-Voigt interpolation scheme The Voigt upper bound for the 
effective properties of a mixture of two materials state that for any strain 
field E we have that the strain energy W of the composite is hounded from 
above by the expression 

W < [pE° kt + ( 1  — P)Et] EijEkt 

where the two materials have elasticity tensors E° and E"i", respectively, and 
where the volume fraction of the material E°  is p. Likewise, the Reuss lower 
bound states that the energy W is bounded from below by the expression 

-1 
W > [PC°kt + ( 1  — P)Ci

„
iii] Eijekt , 

where C denotes the compliance tensors of the materials. 
These two bounds can he combined to a convex combination to what has 

been named a Reuss-Voigt interpolation scheme (Swan & Arora 1997, Swan 
& Kosaka 1997a) 

VR 	 0 	 ine 	 min 
E3(p) = a [PF'ijkt + (1  — P)Ei

m
jkll + (1 — a) [PC + (1  — P)Cijkt] 

(1.50) 

Here a is a parameter which weighs the contributions from the Voigt and 
Reuss bounds. If one of the materials is void, the interpolation introduces 
a jump (discontinuity) at p = 1 which is not present if both materials have 
some stiffness. In that case, for two materials that both have a Poisson's ratio 
of y  = 1/3 we have that the Hashin-Shtrikman bounds are satisfied if and 
only if a = 1/3 (Bendspe & Sigmund 1999). 

Spline-based approach The SIMP interpolation scheme has zero slope at 
zero density. Thus the stiffness converges to zero orders of magnitude faster 
than mass and this has proven to be a difficulty when considering vibra-
tion problems. For benign computational behaviour in these problems (see 
section 2.1) one needs an interpolation scheme where the ratio of mass to stiff-
ness (p/E(p)) remains finite in the limit of vanishing density p. The RAMP 
scheme and the Hashin-Shtrikman hound schemes have this feature. Another 
way to secure this property is to construct a Bézier curve interpolation in 
the (p, E) —plane that connects the two points (0, 0) and (1, E°) and has 
tangents (1, ki) and (1, k2), respectively, at the endpoints. As shown in Ped-
ersen (2002e), such a Bézier curve with four control points can be given a 
parametrization as  

1 — kl 
p(t) = 	(3t. — 3t2) + t3 

kl — k2 	 , 	 t E [0,1] . 
E(t) = k1  1 — k l 

— k2
(3t — 3t2) + t3 

 kl   

(1.51) 
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For a given density, the first equation gives the corresponding parameter  
value t, and this in turns gives the stiffness E. For (1.51) to satisfy the  
Hashin-Shtrikman bounds for (Poisson ratio 1/3) one needs to choose the  
slopes so that k 1  < 1/3 and k2 > 3, and as for the other schemes, almost 0-1  
designs are best achieved through a continuation method. Here that means  
working with decreasing values of k 1  and increasing values of kz.  

1.5.5 Design parametrization with wavelets 

The possibility of controlling geometric features of the designs that are ob-
tained from topology design has already been a central theme in section 1.3.1. 
There such control is basically achieved by filtering techniques or by imposing  
constraints on the pixel (voxel) based description of design. Another possi-
bility should be to work with alternative design descriptions that inherently  
allows for some form of control of geometric complexity. This means that  
one will express the density function p in terms of basis functions where the  
coefficients will govern aspects of the geometry. A natural choice for such  
a representation is wavelets, as these can represent data that is localized in  
space as well as in frequency [11].  

The general framework of wavelet representation of image data will not be  
treated here. Instead we will indicate how one from a pixel representation can  

construct an alternative design description that directly works with data at  
different scales 19  We take as the starting point the setting of the patch-based  
checkerboard control described in section 1.3.2. As a first step of changing  
the design representation one chooses to describe the density distribution in  
the domain as  

1 	2 2 	3 3 
p(x) _ 	(vi

1 
 i ^ii +  vzi^ti + vzi ^2i 

Pi;  

v2jWj ) , 

where the basis functions çbt , k = 1, 2, 3, 4, are illustrated in Fig. 1.20. In this  

expansion the coefficients vl̂   represents the average value of the densities in  
the patch, and the other coefficients express the local variations from this  
average. One can now consider the larger scale mesh consisting of the patches  
Pi; and the corresponding average values  ^ , which can be likened to standing  
back from a picture so that local variations are averaged out. Here we can  
again repeat this procedure of expanding in terms of basis functions ¢t, k =  
1, 2, 3, 4, at this larger scale of working with 4-patches of the the patches P Zi  
(and the values vli  ). This procedure is possible to perform if the number of  
elements per side is 2M by 2N, and it can be continued until the last patch  
consists of the full domain divided into four "super-elements" In terms of  
a design representation, we now have parameters that at different levels of  

19  This is based on the discrete Haahr-wavelet and the associated Mallat decom-
position.  
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c 
	

d 

Fig. 1.33. A design with checkerboards, here shown in terms of its a) pixel values 
and c) in terms of the basis functions , k = 1, 2, 3,4: the top left quarter of c) 
is the design in a spatial resolution which is half the original one, and the three 
other quarters represent the difference from this to the original design in various 
ways. The original design in a) can be obtained by combining the four parts. In b), 
checkerboards have been removed by setting the lower right corner of c) equal to 
zero, as shown in d) (from Poulsen 2002). 

fineness describe the density in terms of averages and variations from the 
averages. 

The alternative parametrization of design just outlined gives a direct way 
to control the overall length scale from the level of fineness of the basis func-
tions that are applied. Moreover, it makes it possible to systematically do 
the design process from coarse scale to fine scale (Kim & Yoon 2000). Fi-
nally, it makes it possible to work directly with a checkerboard-free design 
space, as seen in section 1.3.2. However, the wavelet representation should 
not be used directly in topology optimization, as it introduces a huge num-
ber of constraints associated with the condition 0 < p < 1 which regretfully 
reduces computational efficiency. Instead, it is recommended to use interme-
diate variables as described in section 1.3.2 (Kim Si Yoon (2000), Poulsen 
(2002)). 

We close this brief sketch by noting that wavelet based methods have also 
been used as an alternative to finite elements for the analysis part of topology 
design, see DeRose Jr. & Diaz (1999), DeRose Jr. & Diaz (2000). Moreover, it 
is expected that use of more advanced wavelet bases than the Haahr-wavelet 
should potentially lead to more refined methodologies to control geometry. 
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1.5.6 Alternative approaches 

The technique for topology design of continuum structures that is described 
in this monograph is based on the concept of optimal distribution of mate-
rial, using interpolation of material properties together with mathematical 
programming. As we shall see in Chap. 2, this is a universally efficient ap-
proach for a broad range of problems in engineering design. In parallel with 
the development of this methodology, other schemes have also evolved [13]. 
Some of these work within the same modelling framework using algorithms 
for discrete optimization or various types of growth/shrinking procedures, 
but a completely different modelling paradigm can also be found in for ex-
ample the bubble method. We will here only briefly mention some of these 
concepts, and refer to Eschenauer & Olhoff (2001) for a survey. 

Solving the discrete problem The introduction of the interpolation 
schemes for the 0-1 design problem is extremely useful as it allows for the use 
of mathematical programming methods for continuous (smooth) problems. 
However, it would be very useful if one could attack the original formulation 
directly20  [13]. This has been done for the compliance design problem using 
dual methods, that have been shown to be effective in the absence of local 
constraints. Methods like simulated annealing or genetic algorithms have also 
been tested for more general settings, but their need for many function eval-
uations is computationally prohibitive, but for rather small scale examples 
(each call involves a costly finite element analysis on a grid at least as fine as 
the raster representation of the design). 

It has been shown recently (Stolpe & Svanberg 2001a) that for a broad 
class of problems one can formulate the 0-1 topology design problem as a 
linear mixed continuous-integer programming problem and this will no doubt 
be useful for generating more efficient methods for treating the discrete format 
in the future. 

Growing and shrinking a structure; Bone remodelling Numerous 
methods have been proposed for dealing with topology design without the 
use of mathematical programming [13]. They are typically named as "evolu-
tionary" methods, but they are not in any way connected to the use of genetic 
algorithms. On the contrary, these methods typically work with concepts that 
are similar to the idea of fully stressed design, i.e., material is added to highly 
stressed areas of a design and removed from understressed areas of the de-
sign, typically implemented by an addition or removal of elements from the 
FE model. 

Some implementations of such concepts are very similar to an optimality 
criteria type algorithm, but the removal and adding of elements can lead to 
erroneous results. This is basically because gradient information is used to 

20 In a well-posed form, for example with a perimeter constraint. 
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perform changes of variables between zero and one, as illustrated in Zhou & 
Rozvany (2001) for the case of minimum compliance design. 

It is interesting to note that many models used in bio-mechanics for bone 
adaptation have a form which is similar to the optimality criteria algorithm 
described in section 1.2.1 [7]. These models are usually based on energy argu-
ments and are not derived from an  optimization principle. This similarity in 
approach to material redistribution updates has also lead to bone adaptation 
models being proposed as topology redesign methods. 

Topological variations and level sets The concepts of topological deriva-
tives and the bubble method is based on utilizing ideas from the boundary 
variations technique for shape design as a basis for topology design [13]. 

The topological derivative of a functional as compliance expresses the 
sensitivity with respect to the opening of a small (infinitesimal) hole at a 
certain position in the analysis domain. Likewise, in the bubble method a 
criterion is developed that allows for the prediction of the most effective 
location for creating a hole and this information is used to perform a boundary 
variations shape optimization of the resulting topology. The hole placement 
is then repeated in this shape optimized structure leading to good designs 
with smooth boundaries. A direct application of the topological derivative in 
a mathematical programming technique is presently not possible, as there is 
no evident underlying parametrization available; implementations have thus 
been based on techniques reminiscent of element removal techniques. 

The application of level-set techniques for topology design have also been 
proposed recently [13]. The contours of a parametrized family of level-set 
functions are here used to generate the boundaries of a structure, and the 
topology can change with changes in the level-set function. This technique is 
in an initial stage of development. 





2 Extensions and applications 

In Chapter 1 we discussed the basics of the topology optimization method 
applied to compliance minimization. Due to the simple form of the compliance 
minimization problem, this problem was used as the fundamental test case 
in the initial developments of the topology optimization method. Despite 
its simplicity, the compliance minimization problem gives rise to non-trivial 
theoretical and numerical problems such as checkerboards, mesh-dependency 
and existence issues, and convergence to local minima. These problems have 
to be dealt with before one can proceed to more advanced applications and 
objective functions. 

This chapter describes a range of advanced applications, emphasizing 
problem formulations and solution procedures. New numerical and theoretical 
problems like for example localized modes in low-density regions, one-node 
connected hinges, instability of low density elements for geometrical non-
linear modelling, etc., appear for the more advanced applications, and we 
here discuss methods to avoid them. 

One of the most challenging and difficult parts of applying the topology 
optimization method to new areas is to develop prudent choices and combi-
nations of objective functions and constraints. This is mostly based on many 
experiments before arriving at "good" formulations that make physical sense 
and which can be handled by the modelling and the optimization algorithms. 
For example, structures that have been optimized with respect to a certain 
load case may be useless when subjected to another load case. Therefore, 
both (or more) load cases must be taken into account when formulating the 
optimization problem. During the process it is important to interpret the 
resulting topologies not only visually but also quantitatively. New methods 
and formulations should if possible be compared with analytical results and 
estimates. One should also check that the obtained results are better or at 
least as good as intuitive solutions. 

In this chapter we mainly use the SIMP approach (1.4) to interpolate 
between solid and void material since this approach has proven to general-
ize easily to alternative applications. Unless otherwise stated we use filter-
ing of sensitivities (1.27) to obtain checkerboard-free and mesh-independent 
designs. Also, the solution procedure follows the methodology described in 
section 1.2. This means that the optimization is based on the use of den- 
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sity as the primary variable, with state equations and associated sensitivity 
analysis being treated as a function call. For this reason we write all opti-
mization problems with only the density as a free variable. Nonetheless, for 
easy identification of problem structure we still include the state equations 
in the formulation. Finally note that we throughout this chapter base all 
formulations on a discretized FE format. 

The chapter is not meant as a comprehensive review of the area of 
advanced applications of topology design methods (see the bibliographical 
notes). Rather, we quite naturally orient the developments toward projects 
in which we have personally been involved. 

2.1 Problems in dynamics 

One of the first applications of the topology optimization method outside of 
compliance minimization was in eigenvalue optimization for free vibrations. 
This problem is relevant for the design of machines and structures subjected 
to dynamic loads [14]. For example, one may wish to keep the eigenfrequencies 
of a structure away from the driving frequency of an attached engine or one 
may wish to keep the fundamental eigenfrequencies well above possible dis-
turbance frequencies. Also, structures with high fundamental eigenfrequency 
tend to be reasonable stiff for all conceivable loads and therefore maximiza-
tion of the fundamental frequency results in designs that are also good for 
static loads. 

In specialized cases, one may wish to maximize the dynamic response of a 
structure. This may be the case in sensors where the output sign al  is depen-
dent on the vibration amplitude, in actuators where resonance phenomena 
may increase performance or in musical instruments and loudspeakers where 
the radiated sound power (over a wide spectrum of frequencies) should be 
maximized. 

2.1.1 Free vibrations and eigenvalue problems 

A commonly used design go al  for dynamically loaded structures is the maxi-
mization of the fundamental eigenvalue " min . The problem formulation may 
be written as 

max {Amin  = min ai } 

J 
s.t. (K — A M) 411 i = 0 , i = 1 , • . , do  

E vepe < V, 	0 < purin < Pe <1, e =1,...,N  
e=1 

where K and M are the system stiffness and mass matrices, respectively and 
4, i is the eigenvector associated with the i'th eigenvalue. In practice one does 

(2.1) 
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Fig. 2.1. Top: A reinforcement problem. Maximization of the fundamental eigen-
value of a 5-bay tower structure where the outer frame structure is fixed to be  

solid. Below: Maximization of the fundamental eigenvalue of a structure with non-
structural masses (each with a mass of 10% of the distributable mass) attached  

on the rightmost corners. The structures are shown in their fundamental mode of  

vibrations.  

not solve for all Nd0f modes of the eigenvalue problem. Only the first up to 
10 modes will usually play a role in determining the dynamical response of a 
structure.  

Note that the problem (2.1) as stated has a trivial solution: one can 
in principle obtain an infinite eigenvalue by removing the entire structure. 
Therefore, the eigenvalue problem (2.1) is often used in "reinforcement" prob-
lems where parts of the structure are fixed to be solid (see Fig. 2.1) or there is 
a finite minimum thickness of the structure like a fixed shell thickness in the 
reinforcement optimization of an engine hood. Alternatively, non-structural 
masses may be added to parts of the design domain (see Figs. 2.1, 2.2 and 
2.3).  

An alternative to the formulation (2.1) is to apply the so-called bound-
formulation 

max Q 
p 

s.t. 	ai > (i ,  i = 1, . . . , Nd of  

(K — AiM) 4)i = 0, i = 1, . . . , Nd o  f  

E ve pe  < V, 	0 < p,n.in < Pe < 1, e = 1,_.., N  
e=1  

The sensitivities of a single modal eigenvalue are simply found as  

ai  —  Tr 31( 	ĉ Ml 
— ^ L

aPe 	aP 
—  ^ i — J  aPe 	 e  

(2.2)  
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where it is assumed that the eigenvector has been normalized with respect  

to the kinetic energy, i.e. 4TM4 i  = 1  
For a solution where the optimum eigenvalue is single modal, the im-

plementation of (2.1) is straight forward although one should note that the  

sensitivities of eigenvalues, as opposed to the sensitivities of the compliance  

objective, may take negative as well as positive values. This is not a problem  

when using mathematical programming methods for the optimization but  

it requires a small modification for an application of the optimality criteria  

algorithm. The density update (1.13) used in compliance minimization  

ac n  

PK +1 = PK[BK] n  = PK 	
aPe  

!l ve  

must for eigenvalue maximization be changed to 

1max(0, 	gi^:  )1 n 

IL 	 P  elv 

The bound-formulation problem (2.2) may be solved using mathematical pro-
gramming solvers like for example MMA.  

In the case of repeated eigenvalues, the eigenvalues are non-differentiable  

and ignoring this usually results in bad or wrong convergence of the algorithm.  

Nonetheless, many results and algorithms can be found in the literature that  

completely ignores this possibility of repeated eigenvalues. The problem is  

actually well understood; thus the sensitivity analysis for repeated eigenvalue  

problems should be performed as suggested in (Seyranian 1993, Seyranian,  
Lund & Olhoff 1994), while the non-smoothness can be handled in a number  

of ways [14] (see also Sect. 4.4.3).  

For the formulations above, the optimized structures will often have a  

multi-modal eigenvalue and this may be critical for stability. In order to  

prevent multiple eigenmodes, one may require that the second eigenvalue is  

some percent bigger than the first, the third is some percent bigger than the  

second and so on. These constraints may easily be applied by rewriting the  

bound formulation (2.2) to the format:  

max Q  

q  s.t. 	[(Y] i  ^i > p, 	i = 1, • • • , Ndof  
(K — AiM)43i = 0, i = 1, • • • , Ndof  

E vepe <V, 	0 <p,rzin  <Pe <1, e=1,. ., N  

(2.5)  

e=1  

PK+1 = PK[BKr = PK 

where e.g. a = 0.95 (in (2.5) each eigenvalue is multiplied with a in the power 
i). In this way one also eliminates the problem of non-differentiability at the 

(2.3)  

(2.4)  
e  
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Fig. 2.2. Optimized topology for maximization of the fundamental eigenfrequency. 
The design domain is a simply supported Mindlin plate with a 10% non-structural 
mass at the center and volume constraint of 60% of the total volume (from Pedersen 
2000b). 

Fig. 2.3. Maximization of the fundamental eigenfrequency for pre-stressed Mindlin 
plates. The plates are clamped at all edges, there is a 10% non-structural mass 
attached to the center and the distributable amount of material is 25% of the 
total volume. The pre-stress levels are a) all = azz = 0, b) au = az2 = 10, c) 
all = az2 = 25 and d) a n  = a22 = 100 (from Pedersen 2001). 

optimum for a multiple eigenvalue solution. However, one should be careful 
when using this method since the constraints may prevent the eigenmodes in 
switching during the optimization. Therefore convergence to better solutions 
may be jeopardized. 

Another pitfall in eigenvalue optimization is the use of symmetry to reduce 
problem sizes. Since eigenmodes may be asymmetric or totally non-symmetric 
even for symmetric structures, the use of problem reduction by modelling and 
optimizing only parts of the domain with symmetric boundary conditions 
should be avoided, or at least, the results should be validated by analysing 
the full problem after a design process that has forced symmetry. Problem 
reduction by use of design variable symmetries and not analysis symmetries 
is recommended and may in certain cases eliminate the problem of non-
differentiability of repeated eigenvalues (Kosaka & Swan 1999). 



76 	2 Extensions and applications 

For topology design based on interpolation models (isotropic or not) an-
other issue becomes significant in eigenvalue optimization (both for vibration 
and buckling problems). This is the appearance of "artificial modes" in low 
density regions. For vibration problems, artificial modes appear as very local-
ized modes (groups of a few elements) in regions with relatively large mass to 
stiffness ratio. For the SIMP interpolation, this happens for the density going 
to zero. If the element mass is linearly dependent on the element density pe  
and the element stiffness depends on the power of the element density (NY , 
the ratio of the stiffness and the mass will go towards zero when the density 
goes to zero. This gives rise to very low eigenfrequencies in low density re-
gions. The problem may be avoided by modifying the stiffness interpolation 
using one of the methods described in Sect. 1.5.4; the key is to provide for a 
ratio of mass to stiffness that remains finite in the limit of vanishing density. 

An alternative way to solve eigenvalue optimization is by interior point 
methods for mathematical programming problems with matrix inequalities 
[14]. This is discussed for truss structures in Sect. 4.4.3. However, one should 
bear in mind that the truss example is more benign than the general case, 
as the problem there is a convex so-called SDP (semi-definite programming) 
problem. However, recently developed algorithms for non-convex SDPs should 
also be able to cater for the general eigenvalue problem (see Sect. 4.4.2). 

2.1.2 Forced vibrations 

In some situations one may want to minimize or maximize the dynamical 
response of a structure for a given driving frequency or frequency range. An 
example of the former could be for an  airplane where the vibrations in the 
structure should be minimized at the frequency of the propeller. For the 
latter, examples are a sensor which should give a large output for a certain 
driving frequency or a clock frequency generator that should vibrate at a 
certain frequency for least possible input. 

For solving this type of design problem we define the dynamic compliance 
as driving force times magnitude of the displacement and express the goal for 
the dynamical response in terms of this compliance. An optimization problem 
solving the problem of minimizing the dynamic compliance of a structure 
subject to periodic forces, f(,f2), with frequency ,f2, can then be written as 

min {c= (fTU) 2 } 

s.t. 	(K — (2 2M) u = f 	
(2.6) 

E vepe < V, 	O < pionr, < p e  < 1, e = 1, . . , N 
e=1 

The sensitivities of the objective function may by use of the adjoint method 
be found as 
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8c — AT 	̂ 2 ^3M1 
 

We L aPe 	̂Pe J ^ 

where A is the solution to the adjoint problem  

(K — (?2 M) A = —2(fTn) f 

We readily see from (2.6) that for low driving frequencies 0, the results 
obtained should correspond roughly to the results of solving static problems 
(the term ,(l 2M is a small perturbation to the stiffness matrix). However, for 
higher driving frequencies we should expect different resulting topologies. It 
can be shown that this formulation corresponds to forcing the closest eigen-
frequency away form the driving frequency. An interesting result obtained 
using this formulation is seen in Fig. 2.4c. Here a tuned mass damper is vi-
brating out of phase with the input point, resulting in an almost complete 
damping of the vibrations at the input point. 

Other interesting results may be obtained when the driving force is located 
at another point than the point where the amplitude should be minimized. 
Such problems are considered in Sect. 2.11. 

2.2 Buckling problems  

Another important problem in structural optimization is the maximization of 
the fundamental bucklingload of a structure [15]. The solution of the buck-
ling problem and its associated numerical problems have many features in 
common with the dynamical problems discussed in the previous section. 

Limiting ourselves to considering only linear modelling, i.e. small displace-
ments, the standard objective is to maximize the minimum critical load Pent  

(or equivalently to minimize 1/Pe it ). Typically the optimization problem is 
formulated as' 

( 	
= 	

1  
min jl 	max 	1  

P 	PC1Tit 	i-1,.. ,Nd,f P i  

s.t. 	[G(u) —  .T 
J 

 K] 	= 0, i = 1,..., Ndof 

Evepe < V, 	0 < p„, < Pe <1, e = 1,..., N  
e=1  

where 4)i is the eigenvector associated with the i'th critical load and G (u) is  
the so-called geometric stiffness matrix which depends on the displacements  

obtained from the linear, static equilibrium problem Ku = f  

(2.7)  

As K is positive definite and as G may not be positive definite, it is most natural  

to work with 1/PP,.i t  as an eigenvalue.  
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Fig. 2.4. Optimized topologies for different driving frequencies. a) A zero driving  

frequency gives a statically stiff structure. b) while a small driving frequency forces  

the first eigenfrequency upwards resulting in a statically stiff structure. c) A larger  

driving frequency results in a tuned mass damper, d) and an even larger driving  

frequency forces the first eigenfrequency downwards and away from the driving fre-
quency. All four examples where solved as reinforcement problems for a given outer  

frame and a stiffness ratio between black and white areas of 100:1. The structures  

are shown in their deformed states corresponding to the forced vibration mode.  

In practice one does not solve for all Ndof modes of the eigenproblem in  
(2.7). In the beginning of the design iterations there is usually only one or  

two critical eigenvalues whereas towards the end, up to 10 eigenvalues may  

cluster above the most critical eigenvalue. The number of eigenvalues close  

to the most critical eigenvalue should be monitored during the iterations.  

Alternatively, one may reformulate (2.7) to a bound-formulation  

min  
P 

s.t.  

^ 

1  

[G(u)

= 1,• •,A'dof 

 —KJ^i = 0 , i = 1, ...,Nd of 

E ve Pe < V, 	0< PMin<Pe < 1, e = 1, ..., N .  
e=1  

(2.8)  
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The sensitivities of a single modal eigenvalue are found as  

a^vrzin 
 = ^rT 

[OG — 1 ̂ KJ  ^1 + VT u,  Pe 	 P 	P 	0Pe  

where y  is the sob Lion to the adjoint load problem  

Kv = i 
â ^(ii) 

 .  

In the literature one can sometimes find that the last term of (2.9) is  

ignored, but this should of course be avoided. We also remark that the issues  

associated with multiple eigenvalues discussed for vibration problems are also  

important for buckling problems.  
As was the case for dynamical problems, artificial modes may also here  

appear in low density regions where the (non-linear) geometrical stiffness is  

high compared to the linear stiffness. To avoid the problem of artificial local  

modes one can ignore the geometrical stiffness of low-density elements (Neves,  

Rodrigues & Guedes 1995). This approach corresponds to ignoring the mass  
of low-density elements in the vibration problem. This cut-off method seems  

to stabilize the problem but may cause oscillations of the algorithm due  
to abrupt changes in the values of the objective function and sensitivities.  

However, a smooth version of this approach can he obtained by writing the  

interpolation schemes in a slightly different way for the two stiffness matrices:  

For matrix K EK = [p,,,; n  + (1 — pn,in ) pp] E°  

For matrix G EG = [pp]  E°  

where p,n i n  is the minimum density normally imposed in the topology design 
problems. This method seems to eliminate the problem for our test cases. 

Solutions to a buckling problem are shown in Fig. 2.5. All the three towers 
are optimized within a formulation that corresponds to (2.5) combined with 
(2.8). With a 0.99, the second buckling load was thus required to be 
1% higher than the first, etc. For the low tower (Fig. 2.5a), the first five 
eigenvalues of the resulting topology are governed by the buckling constraint. 
During the optimization process these five critical modes take turns in being 
the most critical mode. This means that convergence is very slow since only 
very small steps can be taken in order not to violate the bound constraints. 
For the higher towers (Fig. 2.5b and c), initial convergence is faster since only 
the first global buckling mode is active. For the "almost optimal" structure a 
local mode in the top vertical parts of the structure becomes just as critical 
as the global mode and convergence again becomes slow. 

(2.9)  

2.3 Stress constraints  

Imposing stress constraints on topology optimization problems is an ex- 
tremely import ant topic. However, several challenges must be overcome in 
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Fig. 2.5. Optimal re-enforcement of portal frames for maximum fundamental buck-
ling load. a) 40 by 40 elements discretization. b) and c) 120 by 30 element discretiza-
tions where b) is a re-enforcement problem where the outer frame is fixed to be 
solid and c) allows a free distribution of 50% material. The buckling load for the 
second tower c) is 1% lower than for the first tower b). 

order to solve the problem efficiently. This section discusses some possible so-
lution methods. However, the best way to solve stress constrained problems 
has probably yet to be suggested. Literature relevant for the stress problem 
is found in literature section [16]. 

2.3.1 A stress criterion for the SIMP model 

For the 0-1 formulation of the topology design problem a stress constraint is 
well-defined, but when a material of intermediate density is introduced, the 
form of the stress constraint is not a priori given. 

A stress criterion for the SIMP model should be as simple as possible (like 
for the stiffness-density relation), and the isotropy of the stiffness properties 
should be extended to the stress model. Moreover, for physical relevance 
it is reasonable that the criterion should mimic consistent microstructural 
considerations as for example illustrated in appendix 5.4.4. This leads one 
to apply a stress constraint for the SIMP model (with exponent p) that is 
expressed as a constraint of the the von Mises equivalent stress QvM: 

avM < pP o i  if p>0. 	 (2.10) 
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Fig. 2.6. The stress singularity problem. Left: a typical feasible set of design vari-
ables for a minimum weight stress constrained problem with two variables. The 
optimum solution is only connected to the interior of the feasible set by a line. 
Right: relaxed design problem that enhances the chance of finding the right opti-
mum. 

This constraint reflects the strength attenuation of a porous medium that 
arises when an average stress is distributed in the local microstructure, mean-
ing that "local" stresses remain finite and non zero at zero density (cf. ap-
pendix 5.4.4). This results in a reduction of strength domain by the factor 
pp We see that the same exponents are used for the stiffness interpolation 
and the stress constraint. Choosing another exponent is not consistent with 
physics and using an  exponent that is less than p can for example lead to an 
artificial removal of material (see Duysinx & Bends4e (1998)). 

The classical stress-constrained optimization problem consists of finding 
the minimum weight structure that satisfies the stress constraint and which 
is in elastic equilibrium with the external forces, that is, we have a design 
problem in the form 

min E ve pe  
e=t 

. .t. Ku = f, 

(Qe)vm < pé ot if p > 0 , 	0 < pmin < /l e  < 1, e = 1, . . . , N 

where the stress for example is evaluated at the center-node of the individual 
FE elements. 

2.3.2 Solution aspects 

Constraint relaxation The so-called "singularity" problem associated with 
stress constraints requires special care when dealing with topology design 
problems [16]. It was first identified for truss problems and arises from a 
"degeneracy" or an "irregularity" of the design space. The key effect is that 
the feasible set in the design space contains degenerated appendices where 
constraint qualification (the Slater condition) does not hold. This means that 
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classical optimization algorithms based on Kuhn-Tucker conditions are un-
able to reach the optima that are located in these regions. In other words, a 
standard optimization algorithm is not able to completely remove some low 
density regions and to find the true optimal topologies. 

One approach to circumvent this complication is to reformulate the prob-
lem as a sequence of problems that have nicer properties and which can give 
solutions that converge to the true design (like a continuation method). First, 
we note that in a topology design problem, the stress constraints should only 
be imposed if material is present. To eliminate the condition p > 0 from the 
constraint, one considers a modified formulation: 

1) < 0 	 (2.11) 

For bars in a truss, this is equivalent to considering forces instead of stresses 
[16]. Unfortunately, this reformulation does not change the problems with 
constraint qualification, and additional measures are required. One method 
is to rewrite the stress constraints using the E-relaxation approach proposed 
in Cheng & Guo (1997). This relaxation' is a perturbation of the original 
problem where the original stress constraints are replaced by the following 
relaxed stress constraints and associated side constraints: 

aVM  

Ppat / 	 z  
1 < E(1 — p) 	E = 	P (2.12) 

where e is given. For any E > 0, the E-relaxed problem with the constraints 
(2.12) is characterized by a design space that is not any longer degenerate, 
and the factor (1 — p) on e assures that the real stress constraint is imposed 
for p = 1. It is thus possible to reach a local optimum with optimization 
algorithms based on Karush-Kuhn-Tucker conditions. If we can find the global 
optimum pE, then for e —> 0, the sequence of feasible domains and their 
optimal  solutions {pÉ } converge continuously towards the origin al  degenerate 
problem and its associated optim al  solution (see [16]). 

The solution procedure thus now consists in solving a sequence of opti-
mization problems, for decreasing E , in a continuation approach similar to 
what is done with barrier and penalty functions. The implementation process 
is here driven by the minimum density pain  = E 2  and choosing a quite large 
initial  minimum density is necessary to obtain reasonable results. We remark 
here that the method may fail if the problem is such that there are many local 
minima for the relaxed problems; as shown in Stolpe & Svanberg (2001c) this 
may happen even for rather simple truss examples. An alternative approach 
is to not rely on gradient based techniques, see the discussion in Achtziger 
(2000). 

2  Relaxation in the sense of mathematical programming. 
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Implementation aspects The local stress criterion adds a large number 
of constraints to what is already a large scale optimization problem. Thus 
it is important to apply an active set strategy which at each iteration step 
preselects the potentially dangerous stress constraints to be considered. At 
the beginning of the optimization process, the selection is large, but at the 
end of the optimization the set of active constraints is stable and it can be 
restricted to a fraction of the elements. 

For working with MMA (or CONLIN) it is also important to treat the 
stress constraint in a form which is suited for the approximation strategies 
of these methods (Duysinx & Bendsroe 1998). Thus the stress constraints 
should be written as (observe that the density variables are strictly positive 
for e>0): 

aVM E 
+ E < 1. 

Pnat P 

A global stress constraint An alternative to working with the local con- 
straints is to use global LQ constraints that for large q approximates the local 
constraints. This can be implemented in the form (Duysinx & Sigmund 1998): 

i IrrN 
	({0

y
I E max 	AV M _+E}) 	< 1. 

e.=1 	Prai 	P 	1 

This is just one constraint, so the savings in computational effort is im-
mense. The difficulty is the numerical problems associated with using large 
q. Computational experiments shows that q = 4 is a good choice; however, 
for problems with very localized high stresses (like an L-shape) one cannot 
assure that the stress is below the critical value in all areas. Nonetheless, 
the designs one can obtain are quite reasonable compared to using the very 
cumbersome local constraint. 

Example The MBB beam problem is here first optimized within a minimum 
weight and stress constrained formulation, and the result of Fig. 2.7a was 
produced with a finite element mesh of 45 by 15 nine node finite elements. 
This design has a compliance value of 306.3Nm and a volume of material of 
1.0632m3 , which is approximatively 33 percents of the volume of the total 
design area. This compliance value is used for a new problem where the 
volume is minimized while the compliance is bounded to the same level as 

 that of the stress design. As one can see in Fig. 2.7b, this compliance design 
is different from the stress constrained one. The volume of the design is 
lower, at 0.9177m3 , and the topology as well as the thicknesses of the bar-
like members are different. This demonstrates that stress constraints have a 
non-trivial influence on the topology design even for simple problems. Note 
that the results here do not apply any mesh independency constraints. Thus 
if we refine the mesh, see Fig. 2.7c, we see changes in the design. 
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ZIKS;=22N 

Fig. 2.7. The MBB beam. a) stress design and b) compliance design with 45x15 
finite elements, and c) stress design with 60x20 finite elements (from Duysinx & 
Bendspe 1998) 

As demonstrated in Pedersen (1998), compliance design and stress de-
sign are equivalent if the stress criterion is consistent with the elastic energy 
measure. However, we consider here the von Mises criterion, which is not 
consistent with the energy criterion, except if the material is incompressible 
i.e. if the Poisson's ratio is 0.5. Therefore it, is not surprising to observe a de-
viation between stress and compliance topology predictions for cases where 
the stress state is characterized by hydrostatic pressure in some areas. 

Stress concentration For stress constraints one has to pay special attention 
to domains or problems that introduce a stress singularity (like in the inner 
corner of an L-shaped domain). The real difficulty for such situations is not so 
much in the optimization part but more the numerical problem of capturing 
the high stress at the corner. The optimization solution is of course strongly 
dependent on the quality of the analysis, and for most applications the stress 
constrained design optimization should be coupled with a much more refined 
analysis, using for example mesh adaptation. 

2.4 Pressure loads 

An example of design dependent loads is pressure loads. Since the direction 
as well as the position of attack of the pressure loads depend on the boundary 
between solid and void and because the boundaries are not well defined in 
topology optimization problems, topology design with pressure loads is a 
highly challenging problem [22]. 

The optimization problem is the classical one of compliance minimiza-
tion of a structure where the design parameters are the volumetric material 
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Fig. 2.8. Optimization of an inlet. Two separate parts of the structural surface  

are subjected to pressure loads. The design domain with the pressure initially dis-
tributed to narrow white internal channel is shown to the left. To the right is shown  
the optimized topology for a volume fraction of 40%. The pressurized surfaces are  

marked with grey lines (from Hammer & Olhoff 2000).  

densities throughout the design domain. The novel aspect here lies in the  

type of loading considered which occurs if free structural surface domains 
are subjected to forces where both the direction, the location, and the size 
can change with the material distribution. Examples are pressure and fluid 
flow loading with the direction and location of the load changing with and 
following the structural surface. 

The compliance of the structure is written as 

c  (n) = f f udS2 + 
 f 

 t^rdi +  f pudl', 
z 	, 	p  

where an  extra term representing the design dependent load - here a pressure 
p - acting on parts of the boundary I , of the material domain. 

In the work of Hammer & Olhoff (2000), (2001) the optimization process is 
performed by successive iterations making use of the finite element analysis 
model with fixed mesh on the one hand, and the design model with the 
parametrized iso-volumetric density surface for the pressure loading on the 
other. The load surfaces in the design model are controlled by the density 
distribution in the finite element model and in turn fully determine the global 
load vector on the finite element model. Thus the sensitivity analysis is based 
on both the analysis model and the design model. In the sensitivity analysis 
also the sensitivities of the load vector with respect to a design change must 
be evaluated, and this is done analytically. The problem is solved by an 

 optimality criteria method. 
The example in Fig. 2.8 models the inlet from a channel to a larger pres-

sure chamber. The material around the inlet is prescribed to be solid and 
non-changeable. Here, two domains of the structural surface are subjected 
to pressure, and the initial pressure distribution is shown along with the de- 
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sign domain in figure 2.8(a). The value for the iso-volumetric density line pc  
was initially chosen to be 0.25, and then gradually increased to pc  = 0.85. 
Other shapes of the initial small channel leading the pressure from the inlet 
to the chamber could of course have been chosen, but the final design seems 
unaffected thereof. 

2.5 Geometrically non-linear problems  

For compliance minimization problems displacements are typically small and  

the problems may be modelled using linear finite element theory. For soft  

structures, slender structures and mechanisms, however, it is imperative that  

the problems are modelled using geometrically non-linear finite element anal-
ysis. This section discusses objective functions and modelling issues related  
to stiffness optimization of structures undergoing finite displacements [17].  

Later sections will discuss compliant mechanism design, crashworthiness de-
sign and other design problems involving geometrical non-linearities.  

Structures undergoing large displacements may or may not be subject  

to large strains. In this section, we assume that strains are small and hence  

material non-linearity can be ignored.  

2.5.1 Problem formulation and objective functions  

The general topology optimization problem for situations with geometrical  

non-linearities can in broad terms be written as  

min c(p)  

s.t. r = 0 ,  

^ vePe <17,  
e=1  

0 <p771in< Pe< 1, e= 1,... , N  

(2.13)  

where r is the residual in obtaining the structur al  equilibrium, c(p) is the 
objective functions to be defined later and all other symbols have been defined 
previously.  

This topology optimization problem only differs from the standard topol-
ogy optimization problems in that the equilibrium r = 0 must be found using 
an iterative procedure. For the linear analysis problems discussed in Chap. 1, 
the equilibrium is found from the solution of a linear system of (finite element) 
equations. 

In the following we use the (non-linear) Green-Lagrange strain measure 
to model the strain-displacement relations, that is 

1  
= 2 (ui  + u9 , i + 4l,k,i u k,.9 )  , 
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where u is the point-wise displacement and subscript ", j " means differenti-
ation with respect to coordinate j. For later use we define the displacement  
dependent matrix B as the matrix that transforms a change in displacement  

du into a change in strain, i.e.  

d^ = B(u)du,  

where u is the finite element displacement vector.  

The (linear) Hooke's law for Piola-Kirchhoff stresses and Green-Lagr ange  
strains with SIMP interpolations is written as  

Sij = /' E29j'kl  r/kl 

where E° kl  is the constitutive tensor for a solid, linear, isotropic material.  

The residual is defined as the error in obtaining the equilibrium  

r(u) = f — f B(u) Ts(u) dV 	 (2.14) 

where f is the external force vector and s is the Piola-Kirchhoff stress writ-
ten in vector form. Following a Total Lagrangian approach, the integration  

is performed over the undeformed volume. The equilibrium has been found  

when the residual vector is equal to the zero vector. This finite element equi-
librium may be found incrementally or in one load step using the iterative  

Newton-Raphson method. Both kinds of methods require the determination  

of the tangent stiffness matrix  

_ 

 

Or  

KT 	23u 

For further details on the derivations of the finite element matrices for ge-
ometrically non-linear systems, the reader is referred to standard books on  

non-linear finite element theory (see e.g. Zienkiewicz & Taylor (2000) or Cr-
isfield (1997)).  

2.5.2 Choice of objective function for stiffness optimization  

The first goal we consider is to maximize the stiffness of a structure undergo-
ing large deformations. Several different objective functions may be consid-
ered in order to solve this task and we will here deal with three possibilities,  

namely: minimization of end-compliance, minimization of a weighted sum of  

end-compliances and minimization of the complementary elastic work (Buhl,  

Pedersen & Sigmund 2000). These objective functions are discussed in the  

following.  
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Minimization of end-compliance The natural choice of objective func-
tion with regards to an efficient numerical implementation is the minimiza-
tion of the compliance in the deflected configuration here denoted "end-
compliance" The calculation of the end-compliance is simple since it only 
requires the finding of one equilibrium, i.e. no incremental procedure is neces-
sary. Obviously the draw-back of this objective function is that the structure 
may break down or collapse for loads lower than the design load, see below. 

Defining end-compliance as the compliance of a structure in its equilib-
rium configuration, the objective function can be written as 

c(p) = fT ir , 

where u is the displacement vector for the structure in its equilibrium 
position. Assuming design independent loads, the sensitivity of the end-
compliance with respect to a change in element density may be found by 
the adjoint method to be 

do 	 T ar 

dpe 	ape 

where the adjoint field J1 is the solution to the linear adjoint problem KT À = 
f 

The sensitivity of the residual with respect to design changes âP  is found 

by differentiation of (2.14) 3  Solving the adjoint system is computationally 
cheap because the factorized tangent stiffness matrix already has been found 
during the equilibrium iterations and a solution only requires one extra for-
ward/backward substitution. 

Multiple loading cases For multiple loading cases the objective function 
is simply a weighted sum of end-compliances 

c(p) = E., IT  ui  

i=i 
(2.15) 

where M is the number of loading cases, fi  and ui are the load and dis-
placement vectors of loading case i, respectively and wi are weighting factors 
(IM, iv; = 1). The sensitivity analysis corresponds to a simple weighting of 
the sensitivities of the individual loading cases. 

Minimization of complementary work The last objective we consider is 
the minimization of the complementary elastic work. Using the trapezoidal 

3  Note that for a linear system, the partial derivative of the residual (assuming 
design independent loads) is —eu u and the adjoint equals the original displace- 

ment vector u; thus the sensitivity of the compliance becomes dve = —uT aP  u 
as derived in Section 1.2.3 
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method for numerical integration, the complementary work of the external  

forces can be calculated as 

1 	 n -1 	 1 	ll 
c(p) = W c  ^ afT 

  

u(fo)  + E u(fi) + 2 u(fn
)J  i=1  

where n is the number of increments in the load vector. The size of the in-
crements is determined by of = (fn  — fo ) /n, where fo  and fn  is the zero and 
maximum load vectors, respectively. The sensitivity analysis for the comple-
mentary work is again found using the adjoint method as described for the 
end compliance. This results in 

(2.16)  

c  ofT 
 L 2 

	aro  + 
dpe 	o  Pe  

n-1  E Ai t aP a-1 	e  

T arn  
+ 

 An 
 aPe  

(2.17)  

where a z  and r, are the vectors of adjoint and residuals, respectively, for the  
load increment i This means that for the sensitivity analysis we simply have  
to perform one extra forward/backward substitution for each load step and  
sum the results in Eq. 2.17.  

2.5.3 Numerical problems and ways to resolve them 

In the non-linear finite element analysis, we save computational time by  
reusing the displacement solution from a previous topology iteration in the  
new Newton-Raphson equilibrium iteration. This saves a considerable number  
of finite element iterations, especially when the topology changes get smaller  
near convergence. The computational time highly depends on the size of the  
applied force. For relatively small forces, obtaining the optimal solution takes  
1.5 to 2 times the time to obtain a solution using linear modelling. For larger  
loads where local buckling can be observed, the time in which the optimal  
solution is found can be 5 to 10 times higher than for the linear case.  

When the finite element analysis is based on the Green-Lagrange or other  
non-linear strain measures, large displacements may cause the tangent stiff-
ness matrix to become indefinite or even negative definite. This phenomena is  
observed frequently during the topology optimization process and results in  
non-convergence of the equilibrium iterations. Numerical experiments show  
that the problem occurs in low-density elements with minimum or close to  
minimum stiffness (see Fig. 2.9). The problem is "artificial" since the ele-
ments with minimum stiffness represent void and therefore their behaviour  
should not influence the structural response. Since the problem is an artefact  
of the numerical model, different schemes may be devised to circumvent the  
problem.  

Ignoring convergence in low density elements Usually, the Newton-
Raphson iterative scheme is stopped when the changes in nodal displace-
ments get below a certain value. For the topology optimization case, non-
convergence occurs when the displacements oscillate in nodes surrounded by  
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a) 	 b) 	 c) 

Fig. 2.9. a) Original mesh, b) distortion of finite element mesh causing ill-
convergence of Newton-Raphson procedure and c) prevention of ill-convergence by 
ignoring `Row-density" nodes (indicated by circles) in the convergence criterion. 

"void" (minimum density) elements. Since these nodes should have no struc-
tural importance one can circumvent the problem by relaxing the convergence 
criterion for these nodes in the equilibrium iterations, that is, those nodes 
surrounded by void elements are eliminated from the convergence criterion 
(see Figure 2.9c) (Buhl et al. 2000). This solution to the problem is efficient 
and seldomly causes convergence problems. In the few cases where the pro-
cedure does not converge after 20 iterations, the displacement vector is reset 
to zero and the equilibrium iterations are restarted. 

Element removal Another way to circumvent the problem is to remove 

elements with minimum density from the design domain. Element removal 
may jeopardize convergence to the right minimum since re-appearance of 
material in the removed elements is impossible. Examples show that the 
"re-appearance" of material is crucial for the design process. Therefore one 
should include a criterion for the "re-appearance" of elements. This can be 
based on the same type of filtering techniques that are used to ensure mesh-
independency (Bruns & Tortorelli 2001). 

2.5.4 Examples 

It is not typical that structures optimized for stiffness undergo large displace-
ments. Nonetheless it may happen for very slender structures or for structures 
built from very soft materials such as Nylon. 

Optimal topologies for maximum stiffness Results from minimizing the 
end-compliance of a cantilever beam for three different load magnitudes are 
shown in the right column of Fig. 2.10. The left column shows the topologies 
obtained using linear modelling which are independent of the load magnitude. 
We notice that the topology obtained for the large displacement modelling 
and the smallest load is equal to the topology obtained with a small dis-
placement modelling. We also see that the non-linear topologies become less 
symmetric for larger loads. Finally, we notice that the optimized topologies 
become increasingly degenerated for larger loads. 
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Fig. 2.10. Optimized topologies for end-loaded cantilever example. Left column: 
Optimized topology for small displacement FE-modelling. Right column: Optimized 
topologies for large displacement FE-modelling (from Buhl et al. 2000). 

zM;;01 
Fig. 2.11. Deformed configuration of the topology optimized for 144 kN (see 
Fig. 2.10). Note that the right-most bar supporting the load is un-bent in the 
deformed configuration (from Buhl et al. 2000). 

The deformed state of the structure optimized for the largest load is shown 
in Fig. 2.11. It is seen that the bar in the right side of the structure (which 
supports the load) is ve rt ical in the deformed configuration. In this config-
uration the bar is un-bent. For any other load the bar will bend, resulting 
in a bad compliance for the structure. This example therefore demonstrates, 
that minimization of the end-compliance may result in degenerated structures 
which only can support the load they are designed for. However, the problem 
is worse for the non-linear case. Here the structure may not only collapse for 
a load having another direction than the design load, but it may also collapse 
for a load which just in magnitude is different from the design load. 

One can partially circumvent the problem of degenerated topologies by 
applying a minimization of a weighted sum of end-compliances (cf. (2.15)). 
Figure 2.12 shows a design optimized for two loadings, one pointing upwards 
and one pointing downwards. As expected, the optimal topology is symmet-
ric and in fact cannot be differentiated in topology nor in compliance from 
the results obtained for small displacement theory (see Fig. 2.10, left). It is 
interesting to note that the compliance of the symmetric structure is only 
2.5% lower than for the non-symmetric one shown in Fig. 2.10(right). 

In other situations the results are not so convincing, and one may obtain 
structures that still become unstable due to buckling at a load which is not 



Fig. 2.12. A two-load case problem with two large loads acting in opposite vertical 
directions (from Buhl et al. 2000). 

22SE> 
Fig. 2.13. Optimized topology for minimization of complementary elastic work 
(from Buhl et al. 2000). 

a design load; this depends very intricately on the choice of loads. The most 
effective way to prevent this is to operate with the complementary elastic 
work (cf., (2.16)). In this way, we can make sure that the structure is stable 
for any load up to the maximum design load. An example topology obtained 
for a load of 144 kN and 12 load steps is shown in Figure 2.13 and this is a 
structure seemingly without degeneracies. 

A force-displacement diagram for the results obtained for a) small dis-
placement modelling, b) end-compliance and c) complementary work mini-
mization is shown in Figure 2.14a-c. Notice that the topology optimized for 
end-compliance has minimum  deflection at the design load as expected, but 
for smaller loads, it has the maximum deflection. The curves for the designs 
obtained with linear modelling and with minimization of complementary work 
are almost coinciding, with the latter designs being slightly stiffer for most of 
the interval. It is also interesting to note that the topology obtained for linear 
modelling has a higher maximum load than the two others. This means that 
obtaining a slightly higher stiffness by using non-linear modelling is achieved 
at the cost of a more critical response to load perturbations. 

Optimization of a structure with snap-through effect The examples 
above show that the inclusion of large displacements in the topology opti-
mization process does not significantly affect the resulting topologies. Also, 
the force-displacement curves obtained for small displacement optimization 
and complementary work minimization only differ by a few percent. How-
ever, in some cases the difference can be extremely large as will be seen in 
this example. 

Thus, for the design problem sketched in Figure 2.15 we obtain the so-
lutions shown in Figure 2.16a and b, using linear and non-linear analysis, 
respectively. It is seen that the two topologies are totally different due to 
the buckling effects. The topology obtained using linear modelling (Fig- 
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Fig. 2.14. Force-displacement diagram for the topologies optimized for a) mini-
mum compliance using small displacement finite element analysis, b) minimum end-
compliance for large displacement analysis and loading of 144 kN and c) minimum 
complementary elastic work and end-loading of 144 kN (from Buhl et al. 2000). 

ure 2.16a) consists of two long beams under compression and when using 
non-linear modelling the compressed beams buckle and the whole structure 
snaps through. Using non-linear modelling in the design process, the result-
ing topology consists of two longer beams in tension and two short beams in 
compression as seen in Figure 2.16b. 

Obviously, the topology in Figure 2.16a is optimal also in the non-linear 
case if the force is applied in the upward direction instead of in the downward 
direction. To obtain a structure that is stiff for loads in both directions, the 
topology can be optimized using non-linear modelling and two load-cases, 
one acting upwards and the other acting downwards. The resulting topology 
is shown in Figure 2.16c and is seen to be a hybrid of the two single-load 
topologies. 

The non-linear responses for the three topologies are shown in Figure 2.17. 
It is seen that the topology which is optimized using linear modelling buckles 
just below the design load, whereas the buckling load of the design optimized 
using non-linear modelling is well above the design load. Moreover, the buck-
ling load for the two-load structure is also seen to be higher than the design 
load. 
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Fig. 2.15. Design problem with snap-through effect. 
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Fig. 2.16. Optimal topologies for the design problem in Figure 2.15. a) optimized 
topology for small displacement finite element modelling and b) optimized topology 
for large displacement modelling and c) optimized topology for large displacement 
modelling and two load-cases (from Buhl et al. 2000). 

Deflection (m) 

Fig. 2.17. Force-displacement diagram for the optimized topologies in Fig. 2.16 
found using linear, non-linear and two-load non-linear finite element modelling 
(from Buhl et al. 2000). 

2.6 Synthesis of compliant mechanisms 

Compliant mechanisms attain their mobility from flexibility of their con- 
stituents as opposed to their rigid body counterparts that attain their mo- 
bility from hinges, bearings and sliders. The main advantages of compliant 
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mechanisms are that they can be built using fewer parts, require fewer assem-
bly processes and need no lubrication. Special care must be taken, however, 
in designing compliant mechanisms in order to obtain sufficient mobility and 
safety against failure due to fatigue. An important application of compliant 
mechanisms lies in MicroElectroMechanical Systems (MEMS) which cannot 
be manufactured using typical assembly processes and may not make use 
of hinges and bearings since friction dominates at the small (typically sub-
milimeter) scale (Petersen 1982). 

One of the most important objectives in compliant mechanism synthesis 
(and rigid-body mechanism synthesis for that sake) is to be able to con-
trol the ratios between output and input displacements or output and input 
forces which are described by the geometrical and mechanical advantages, 
respectively. It is also important to be able to synthesize mechanisms with 
prescribed output paths for given inputs. 

Topology optimization of compliant mechanisms can be performed based 
on continuum as well as truss and frame discretizations [18]. Each discretiza-
tion has advantages and disadvantages. The truss and frame formulations 
may have crossing members which cannot be manufactured in microscale. 
On larger scales, however, overlaps are allowed and may result in mechanisms 
with larger displacement ranges. Here we concentrate on the continuum dis-
cretization but the basic procedures apply to truss and frame discretizations 
as well. 

As an example of a compliant mechanism design problem we consider the 
displacement inverter in Fig. 2.18(left). The goal of the topology optimization 
problem is to design a structure that converts an input displacement on the 
left edge to a displacement in the opposite direction on the right edge. In 
order to be able to transfer work from the input port to the output port, the 
inversion must be performed in a structurally efficient way. Also, it must be 
possible to control the displacement amplification of the mechanism. Finally, 
the modelling of the input force and displacements should model physical 
actuators that may have limited strokes, actuation and blocking forces. In the 
following, we discuss a formulation that satisfies all of these requirements. 

Since it is extremely important to use large displacement theory in com-
pliant mechanism design, this section is based on geometrically non-linear 
modelling. The simplified problem for linear analysis, which may be used as 
a first step into compliant mechanism design is discussed at the end of this 
section. 

2.6.1 Problem setting 

Assuming that the input actuator is a linear strain based actuator it can be 
modelled by a spring with stiffness kin  and a force fi n . Examples of strain 
based actuation principles are piezoelectric, thermal or electrothermal heat-
ing, shape memory alloys, etc., which are characterized by their blocking force 
(fi n ) and their free (un-loaded) displacement (f,„,/ km ). An alternative to the 
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Fig. 2.18. A basic compliant mechanism design problem: the displacement inverter. 
Left: the b asic design problem and Right: spring and load model for the input 
actuator and workpiece. Example solutions are shown in Fig. 2.23. 

linear strain based actuator could be a constant force actuator with a limited 
stroke. Such an actuator can be modelled by a force fi n  and a non-linear 
spring which has a very small stiffness up to the maximum stroke value uin 
and a very high stiffness after ui n  so that further displacement is prevented. 

The goal of the optimization problem is to maximize the displacement 

flout (or force or work) performed on a workpiece modelled by a spring with 
stiffness knit. By specifying different values of kout  we can control the dis-
placement amplification. If we specify a low value of knit  we get large output 
displacements and vice versa. In order to maximize the work on the output 
spring, the available material must be distributed in the structurally most ef-
ficient way. An optimization problem incorporating these ideas can be written 
as 

max 
P 

s.t. 

flout 

r=0 
(2.18) 

E vePe < V, 	0 < Pmin Ç Pe <1,  e = 1, . . . ,N 
e=1 

where r is the finite element residual for the analysis problem with the ap-
plied load fin . This optimization problem is very similar to the minimization 
problem (2.13) formulated for the minimization of end-compliance. 

We now express the displacement at the output point as fl out  = 1Tu, 
where 1 is a vector with the value 1 at the degree of freedom corresponding 
to the output point and with zeros at all other places. Then sensitivity of the 
output displacement can be found to be given as 

&tout ar = AT  

aPe 	aPe 

where AT  is the solution to the adjoint load problem 

KTa = —1 . 
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The simple compliant mechanism optimization problem (2.18) is of the  

same form as the compliance minimization problems discussed in Chapter 1,  

in the sense that a simple objective function is to be minimized within the  

limitation of a single linear constraint on volume. Therefore, we may also  

use an optimality criteria approach to solve it. However, the fixed-point type  

density update (2.3) has to be modified since the sensitivity of the objective  

function may take both positive and negative signs. A (heuristic) modification  

that results in a fairly stable convergence is  

	

{max(0, — a^°°` 	 )1x+i 	K 	

 ape  J 
Pe 	— Pe 	

.^ ve  

Whereas the damping coefficient 7/ for linear compliance minimization prob-
lems was chosen as 0.5 in order to ensure stable convergence, it sometimes 
has to be chosen a bit lower to ensure stable convergence in compliant mech-
anism design problems. The best convergence, however, is obtained using a 
mathematical programming algorithm like MMA. 

The problem formulation for compliant mechanism synthesis described so 
far is very simple and does not allow for multiple inputs or outputs or for 
a very detailed control of the output ports 4  The following sections discuss 
extensions that cater for such aspects. 

2.6.2 Output control  

Control of output direction Example solutions to the inverter example  
in Fig. 2.18 are shown in Fig. 2.23. It is here assumed that the structure is  

symmetric and therefore the output displacement is a horizontal movement.  

In other cases where the output displacement does not coincide with a line  

of symmetry or if an inclined output displacement is specified, the problem  
formulation (2.18) does not ensure an output displacement along the desired  

direction. It only ensures that the component of the output displacement  

along the desired direction is maximized. This effect is clearly seen in the 
example of Fig. 2.19b where the output displacement is maximized in the 
negative horizontal direction. However, the vertical displacement of the re-
sulting topology is actually bigger than the horizontal displacement. 

This problem can be handled by adding an extra constraint to the opti-
mization problem (2.18). The constraint ensures that the relative displace-
ment ûout  perpendicular to the output displacement u out  is below a small 
number e, i.e. 

2  
"out  <  E2  z — "out  

n 

(2.19)  

4  A Matlab implementation of the basic compliant mechanism design problem for 
linear modelling and based on OC is found in Appendix 5.1.5. 
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Fig. 2.19. Example with (b) and without (c) cross -sensitivity constraint.  

where e is decreased during the design process. Adding an extra constraint  
to the topology optimization problem is not problematic if one uses mathe-
matical programming (like the MMA) for solving the design problem. Never-
theless, one finds that much work in the area operates with all requirements  
formulated in one objective function (with weighted multiple objectives) in  
order to use simple algorithms. This has the disadvantage that it is difficult  
to have precise control of the behaviour of the resulting mechanisms.  

That the constraint (2.19) manages to control the output displacement as  
desired is shown in Fig. 2.19c. This topology is obtained with e = 0.01, that  
is, a maximum cross-sensitivity between the two perpendicular output direc-
tions of 1%. The added constraint results in a mechanism with an entirely  
different topology that ensures that the output point moves horizontally. It  
is interesting to note that the extra constraint only penalizes the horizon-
tal output by 2% compared to the mechanism in (Fig. 2.19b) that has an  
extremely high cross-sensitivity.  

Multiple outputs Figure 2.20b shows an example design of a gripping  
mechanism. Here the problem is formulated so that the vertical displacements  
of the outer "jaws" is maximized, resulting in jaws that open like a pair of  
scissors. In some cases one may require a parallel movement of the jaws.  
This can be obtained by reformulating the objective function to a min-max  
problem  

max min {uout,l, uout,z}  

where uout,,  is the displacement of the i'th output point. This problem may  
be solved using a bound formulation for the two objectives uout,i, uout,z, and  
gives results as shown in 2.20c.  

2.6.3 Path generating mechanisms 

An important problem in compliant mechanism design is the synthesis of  
path-generating mechanisms. Here, the output point of the mechanism is  
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Fig. 2.20. Example with parallel and non-parallel output displacements. a) Design  

domain, b) the use of one output point results in a non-parallel opening of the `jaws',  

while c) the max-min formulation results in a parallel movement of the jaws.  

required to pass through a number M of precision points defined by given 
displacement vectors uô„ t m . An objective function formulated as the sum of 
errors may then be written as 

x 

c(p) = E(uout,k — uout,k)2 	 (2.20)  
k=1  

where uo„ t. ,k is the k'th output displacement corresponding to the input load  

step k.  
For complicated output paths it does not make sense to attach a spring at  

the output point in order to ensure an efficient force transfer, as done in the  

previous subsections. Instead, apart from (2.20), we also require the output  

point to pass through the precision points when loaded with counter loads  

pk,1 and pk,2 i  corresponding to counter-loads against the path and counter  

loads perpendicular to the path at the points k, respectively. The objective  
function may then be reformulated to  

K  x  
* c(p) = 	̂i ^(uoutki — uout,k)

z 
, 

i=0 k=1  

(2.21)  
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where ai are weighting factors and uour,k, i , corresponds to the output dis-
placement vectors for no counter load (i=0), for the counter load against 
the output path (i=1) and for the counter load perpendicular to the output 
path (i=2). For further discussions on this scheme, the reader is referred to 
Pedersen, Buhl & Sigmund (2001). 

With the extended optimization formulation (2.21) which requires the 
output point to pass through a number of precession points, it is possible to 
synthesize mechanisms like the ones shown in Fig. 2.21. Here, the same in-
put displacement can be converted to a straight horizontal output, a straight 
slanted output and an arch following output, respectively. It is not possible 
to synthesize such path-generating mechanisms using linear (small displace-
ment) modelling. 

An example of generating mechanisms that exhibits snap-through and 
bistable behaviour is shown in Fig. 2.22. This is a highly complex topology 
optimization problem and involves an arch-length-type finite element solver 
and a lot of experiments in formulating objective functions and constraints 
(Bruns, Sigmund & Tortorelli 2002, Bruns & Sigmund 2001). 

2.6.4 Linear modelling 

A linear version of the compliant mechanism design problem discussed above 
may be used as an exercise and introduction to compliant mechanism design. 
However, one must be aware of the severe limitations that such modelling 
imposes (see Sect. 2.6.5). The linear optimization problem may be written as 

max uour 

s.t. Ku = f 

E vePe <_ V, 	O < Pmi.n < Pe <1, e =1,...,N  
e=1 

(2.22) 

If the load vector f is design independent the sensitivities can he found as 

auour = AT (9K 
u 	 (2.23) 

aPe 	aPe 

where (as for the non-linear case) A T  is found as the solution to the adjoint 
load problem KA = —1 

Compared to the implementation of the minimum compliance problem 
only small changes are required for solving the linear mechanism design prob-
lem. Compared to the 99 line Matlab code needed for compliance design (cf., 
appendix 5.1.1), 105 lines of Matlab code can solve the linear mechanism de-
sign problem; we need to add six lines and change another 12 lines to adapt 
the 99 line code into a code for compliant mechanism synthesis (see Appendix 
5.1.5). 
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Fig. 2.21. Path generating mechanisms with linear inputs. a) Design problem  

where the output is required to follow a straight horizontal path, b) a straight  

slanted path and c) an arch. d) Plots of the output paths of the synthesized mech-
anisms. Path-generating mechanisms cannot be synthesized using linear modelling  

(from Pedersen et al. 2001).  

2.6.5 Linear vs. non-linear modelling  

The mechanism designs obtained using linear analysis typically behave dif-
ferently when modelled using large displacement analysis. In the best of sit-
uations one merely has inaccurate results but in the worst cases the results  

are useless as large displacement mechanisms. Therefore, the use of geometri-
cally non-linear finite element modelling is absolutely essential for mechanism  
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Fig. 2.22. Two-phase design process to generate a gripper mechanism that ex-
hibits snap-through and bistable behavior. In phase I, the goal is to generate a 
topology that exhibits snap-through and bistable behavior from an initial design 
with uniform material distribution. In phase II, the goal is to retain the bistable 
behavior of phase I and maximize the gripping force on the workpiece while in its 
deformed bistable configuration. a) Design domain. b/e) Optimal phase I/II load-
displacement trajectories (path 0-A/path O-C) and clamping force histories (path 
0-B/path O-D). Optimal phase I/II topology plots of the gripper mechanism in 
c/f) their undeforrned bistable configurations (point 0/point 0) and d/g) their de-
formed bistable configurations (point A3/point C3). Note that the phase I topology 
exhibits bistable behavior, a nonzero clamping force (point B1) is applied to the 
mechanism when the gripper is in its deformed bistable configuration (point A3), 
the phase II topology retains its phase I bistable behavior, and the clamping force 
(point Dl) is improved by a factor of 4 when the gripper is in its deformed bistable 
configuration (point C3) (from Bruns & Sigmund 2001). 

synthesis. The inverter example in Figure 2.23 illustrates this. The goal in  

this synthesis problem is to maximize the work performed on a spring in the  
negative horizont al  direction for an input force in the positive horizontal di-
rection as sketched in Fig. 2.18. The mechanism obtained for linear modelling 
is shown in Figure 2.23a. When modelled using small displacement theory it 
deflects as shown in Figure 2.23c. When modelled using large displacement 
theory it deflects as seen in Figure 2.23d. We see that linear theory ignores 
the locking of the two right-most bars when they reach the vertical position. 
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e) 0 

Fig. 2.23. Inverter synthesis. Design domain is seen in Fig. 2.18. a) Optimized 
topology using linear modelling, b) optimized topology using non-linear modelling, 
c) and d) deflection of a) using linear and non-linear modelling, respectively and 
e) and f) deflection of b) using linear and non-linear modelling, respectively (from 
Pedersen et al. 2001). 

The mechanism topology obtained using non-linear modelling Figure 2.23b 
does not have this problem (Fig. 2.18f) and its output displacement is, in the 
large displacement setting, therefore more than two times higher than for the 
linearly optimized mechanism in Fig. 2.18a. 
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2.6.6 Design of thermal actuators 

In the applications of compliant mechanism design discussed so far the input 
load was design independent. However, when designing for example thermally 
dependent structures or thermal actuators the applied load depends on the 
design. Example design problems are optimization of thermal circuit breakers 
or minimization of displacements and stresses due to thermal mismatch. Here 
the temperature field is considered as uniform and the loads arise due to a 
uniform change in the temperature. 

The main difference in the design problem as compared to above is that 
the sensitivity analysis has to take the dependent loads into account. We will 
here just write the sensitivity expression for the linear case, were we have 

Nowt  = A T f aK u  _ of 1 

aPe 	L aPe 	aPe J 

Here AT  is again found as the solution to the adjoint load problem 

KA = —1. 

while the load vector is found as 

f =  JBEa4TdV 
v` 

where B is the finite element strain displacement matrix, E is the constitu-
tive matrix, a is the vector of thermal expansion coefficients and AT is the 
(uniform) temperature change. 

An example of thermal actuator design is shown in Fig. 2.24. The effect of 
varying output springs is clearly seen. Note that topology optimized thermal 
actuators have been manufactured and tested in microscale by Jonsmann, 
Sigmund & Bouwstra (1999c). 

2.6.7 Computational issues 

Mechanism design should, as we have seen, preferably be carried out within 
the framework of large displacement, non-linear analysis. Compared to stiff-
ness optimization (Sect. 2.5), the problems with excessive distortions of low 
density elements and ill-convergence of equilibrium iterations are even more 
pronounced for mechanism design. The methods of ignoring convergence in 
low density elements or entirely removing low density elements as discussed 
in section 2.5.3 must therefore be implemented. 

One-node connected hinges In the examples of compliant mechanism 
design shown so far, one notices that the resulting mechanisms are not truly 
compliant but rather tend to have what amounts to almost moment-free one-
node connected hinges. This is especially the case for examples with large 
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Fig. 2.24. Design of compliant thermal actuators with actuation caused by a uni-
form rise in temperature (linear modelling). Top row: Optimized topologies for  

output spring stiffnesses of 2000, 200 and 20 Nam, respectively. Bottom row: Dis-
placements patterns of the optimized actuators.  

^ 

output displacements, i.e., small transfer of forces. In reality the stress in  

a sharp hinge would approach infinity and the structure would break, so  

techniques to avoid them are required.  

Like the checkerboard problem, one-node connected hinges are caused by  

bad computational modelling that the optimization procedure exploits. In  

the numerical model, the hinge is modelled by an artificially stiff corner to  

corner connection of two Q4 elements. Moreover, the stress variations are  

very badly modelled. The use of higher order elements only partly alleviates  
the problem, and local stress constraint should probably be added to the  

formulation. This is computationally prohibitive, so instead other methods  

have been devised.  
Only some of the checkerboard and mesh-independency schemes described  

in Sect. 1.3 prevent the non-physical one-node connected hinges. For example,  

the filter method which has been applied in all the examples shown so far is  
based on a weighted averaging of neighbouring sensitivities. This means that  

if the gain (sensitivity) in building a hinge is big enough, it will dominate  
the average and cause hinges to appear. Also, the perimeter constraint will  
not prevent the hinge since only a global constraint is imposed on the design.  

The local gradient control will partly eliminate the problem but will result in  
"grey" (intermediate density) hinges.  
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Fig. 2.25. Hinge prevention by the NoHinge constraint (1.32) (from Poulsen 
2001b). 

k2 

Fig. 2.26. Hinge prevention by MOLE constraint (1.30) (from Poulsen 2001a). 

The MOLE constraint (1.30) as well as the checkerboard (NoHinge) con-
straint (1.32) described in section 1.3 were developed precisely with the hinge 
problem in mind and they do actually prevents hinges. The former method 
furthermore imposes a minimum width of the hinge. 

An alternative, but somewhat questionable, solution is to perform a post-
processing of the resulting topology and substitute the one-node connected 
hinges with long slender compliant hinges. The post-processing may be based 
on a contour plot of the topology as seen in Fig. 2.27. 
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Fig. 2.27. Post-processing of topology optimization results for the inverter problem 
from Fig. 2.18. a) Optimized inverter topology obtained using conventional element 
based densities and c) optimized inverter topology obtained using the nodal based 
approach. b) and d) are 200 by 100 element structures based on an automatic (one 
level) contour plot of a) and c), respectively. The originals have output displace-
merits of -1.18 and -1.11, respectively. The contour based structures have output 
displacements of -1.09 and -1.12, respectively. Hinge stresses in the nodal based 
structure (d) are approximately 80% lower than for (b). Full circles indicate highly 
stressed hinges and dashed circles indicate better compliant and lowly stressed 
hinges. 

The recently suggested nodal variable method discussed in Sect. 1.3.2 actu-
ally makes the post-processing easier. Although the method is closely related 
to the gradient constraint method, the method has the advantage that nodal 
values in most cases takes the discrete 0-1 values whereas the element values 
still take intermediate density values. However, basing a post-processing on 
the nodal values results in nice, well-defined, and slender hinges. Figure 2.27 
compares the post-processing step for the conventional FE schemes and the 
nodal variable method. The resulting structure for the former case has some 
very compact and highly stressed hinges, while the latter method gives a 
topology with long and slender hinges. A disadvantage of the nodal variable 
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method is the zig-zag interpolation of the boundary curves; however, this 
may be removed by combining it with a filtering scheme. 

2.7 Design of supports 

Hitherto, we have only considered optimum structural design by material 
distribution. However, the positions and amounts of supports in a structure 
also play a major role in structur al  optimization, and substantial gains from 
introducing design of supports is obtained for especially compliant mechanism 
design [19]. 

If one can place supports anywhere in the design domain, the optimum 
position of supports in a compliance minimization problem would be directly 
under the load, causing zero compliance. Therefore, a judicious choice of the 
possible location of the supports and their cost is in place. 

The support design formulation consists in assigning rigid or no supports 
to each element in a support design domain which may be a subset of the nor-
mal (material) design domain (cf., Buhl (2002)). As in material distribution 
problems we convert this integer type problem into a continuous problem by 
introducing an element support design variable G. The model of the variable 
support of an element in the FE mesh is sketched in Fig. 2.28. All the nodes 
of the element are supported by variable stiffness springs and for high spring 
stiffnesses this corresponds to fixing the element (as also used in the penaliza-
tion approach for imposing prescribed boundary conditions). We may then 
introduce a diagonal element support stiffness matrix 

Ks(e) = CK8,e, G E [emin; 1 ] 

where K s , e  is a diagonal  matrix with"high" values compared to the diagonals 
of the original stiffness matrix and q is a penalization factor corresponding to 
the power p  for stiffness variables in the SIAM approach. The global stiffness 
matrix may thus be assembled as 

N 	N 

K = E Pe Ke + E C Ks, 
e=1 	e=1 

To reduce the possibility of the design being forced into a local optimum, 
a small lower bound min  is imposed on the support design variables. This 
assures that the sensitivities always are non-zero making a re-introduction of 
supports possibles  

As for the material distribution part of the topology design problem, we 
introduce a bound on the total support area S. For mechanism design this 
bound is not very important but for stiffness problems the objective function 

5  This effect may alternatively be obtained by using the RAMP or the spline 
interpolation schemes (cf., Sect. 1.5.4) which have non-zero sensitivities for = 0. 
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V Spring 

• : Node 

Element 

Fig. 2.28. Each node is supported by a horizontal and a vertical spring. Thus a 
4-node element is supported by 8 springs. 

will obviously be improved if more supports are added. In order to encour-
age or discourage the forming of supports in certain areas or along certain 
boundaries, we introduce an element support cost factor fe . The constraint 
on support area thus becomes >e 1  feS€ < S. If all fe  = 1, the cost of sup-
ports is uniform, whereas if some support cost factors are set to higher values 
(e.g. fe  = 10), supports appearing in these elements will be discouraged. The 
example in Fig. 2.29 demonstrates this aspect. 

For compliance minimization (the linear case) , the optimization problem 
can now be written as 

min { c(p) = fTU} 

N 

S. t. E péK e  + E cKa ,e  u = f 
e—t 	 e=1 	/ 

E vePe < 1i 	O <Pmin < Pe < 1, e = 1, ..., N 
e=1 

E febe< S, 	0 <Smin<Se < 1, e = 1, ..., N 
e=1 

Here, the sensitivity of the compliance with respect to the support design 
variable is simply 

dc  = 	e 	K s , e u 
e 

As an example of compliance minimization including costs of supports, 
we consider the design of the bridge structure sketched in Fig. 2.29a. Gradu-
ally making the cost of supports more expensive at the bottom of the design 
domain results in bridge structures with three columns (Fig. 2.29b), two 
columns (Fig. 2.29c) and no columns (Fig. 2.29d). Correspondingly, the com-
pliances of the three structures increase. 

An example of the possible gains in using variable supports in compliant 
mechanism design is shown in Fig. 2.30. The goal is to design a gripping 

(2.24) 
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Fig. 2.29. Examples of design of supports combined with compliance minimization. 
a) Design domain with possible support areas at the all edges except the top edge. 
b) Optimized topology for equal support cost in the design domain (c = 1.12.10 -4 ). 
c) Optimized topology for support cost varying linearly from 1.0 at the top edge to 
10.0 at the bottom edge (c = 2.38 • 10-4 ). d) Optimized topology for support cost 
varying linearly from 1.0 at the top edge to 20.0 at the bottom edge (c = 3.79.10-4 ) 
(from Buhl 2002). 

mechanism that maximizes the gripping motion for a given input actuation. 
A limited amount of support may be located in the top and bottom parts of 
the design domain. Fig. 2.30b shows the optimized gripper obtained with fixed 
supports at the left edge and Fig. 2.30c shows the optimized gripper including 
support design. The output displacement of the latter is 77% higher than for 
the former, demonstrating the importance of including support design in 
mechanism synthesis problems. 

2.8 Alternative physics problems 

The computational procedures for topology optimization were originally de-
veloped for the design of elastic structures, but its theoretical inspiration 
came to a large extend from work carried out for plates and for scalar prob-
lems such as conduction problems (heat or electricity). The application of 
numerical methods for topology optimization for these problems is with to-
days knowledge rather straightforward, and the computations are typically 
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Fig. 2.30. Design of a micro-gripper including design of supports. b) Optimized 
topology without support design (nous  = 10.81m) and c) Optimized topology in-
cluding support design (uout = 19.1µm). The gain in output displacement is 77% 
(from Buhl 2002). 

less time consuming due to the simpler FE analysis models. We note here 
that all the theoretical considerations required for the elasticity case (mesh-
dependence, the role of composites, etc.) have parallels for the scalar situa-
tion; actually much more theoretical insight has been gained for this setting. 

In recent years, topology design methods have also been expanded to for 
example electro-magnetic problems, coupled problems, fluid problems, and 
wave propagation problems. Here and in later sections of this chapter we 
illustrate some of these settings. 

2.8.1 Multiphysics problems 

The phrase "multiphysics problems" covers optimization problems that re-
quire modelling in several areas of physics [18], [22]. Apart from making the 
modelling more complicated due to coupling effects, it also complicates the 
sensitivity analysis. However, with the help of the adjoint method, it is al-
ways possible to perform the sensitivity analysis in an  efficient way as long 
as the objective function is a global description of the response. 
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T=O 

Disiribût d 
heating 

Fig. 2.31. Topology optimization for a heat conduction problem of minimum re-
sistance between input and output points. Left: The design domain isolated at all 
edges except for the heat sink at the center of the upper edge. The plate is sub-
jected to distributed heating all over the plate. Right: Optimized topology obtained 
using a 91 line Matlab (cf., Appendix 5.1.6). The discretization consists of 40.000 
elements. 

We will demonstrate the sensitivity analysis for multiphysics problems on 
a simple weakly coupled linear problem involving two fields (for example heat 
conduction and elasticity). 

The FE-equations of the two systems are given by 

K r ur  = f1 	and 	Klug = f2(u1) 
	

(2.25) 

where it is assumed that system 2 (the elastic problem) is weakly dependent 
on system 1 (the thermal field) and that both system matrices depend on 
the design variables. This means that we have to solve system 1 and insert 
the solution in the load vector of system 2. Physically, it means that the 
temperature field gives rise to a thermal exp ansion that influences the elastic 
field. The aim is to find the sensitivity of a component of the second response 
vector (a displacement at a point) which can (as done previously) be written 
as 

//out = IT u2 

Using the adjoint method (cf., 1.2.3), we proceed as follows. We start by 
adding two null terms to the original expression 

trout = ITu2 + A1 [Kiur — f1] + A2 [K2u2  - f2( 11 1)] 

where A, and A2  are arbitrary, fixed vectors. The sensitivity of this augmented 
expression is 
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aft)  +  A2  ( aK2  u2  _ aft  )+  
8Pe 	aPe 	8Pe  
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To remove the field sensitivity termsâ the following expressions should 
be zero 

[1T + AZ K2] 
au2  = 0 and 
aPe  
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z au,  + Ai K1J 

^
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 = 0 
L  

This can be achieved by selecting the adjoint vectors A as the solution 
the two adjoint problems 

to  

K2A2 = —1 and K1  A l  = Az au  

T  aft  

1 
	 (2.26)  

With solutions to these equations, the sensitivity expression becomes 

Now, 	T aK 1 	aft 	,t . 8K2 	aft  
ape 

= Al  ( aPP 	
e 
 ) + A2  ( u1 — 

a 	a 	u2 — a ) 
P 	PP 	Pe  

It is now seen that the complete analysis and associated sensitivity calcu-
lation requires that one first solves system 1, then system 2 (2.25), and then 
for the sensitivity analysis one solves system 2 with a new (unit) load case 
and finally system 1 is solved with a modified load that depends on A l  (see 
(2.26)).  

This scheme immediately applies also to systems that involve three weakly  
coupled fields. This has been utilized for the results that are illustrated in  

the next section. 

2.8.2 MicroElectroMechanical Systems (MEMS) 

In the introduction to section 2.6, we discussed the advantages of compliant 
mechanism in connection with MEMS applications [18]. Modelling of MEMS 
typically involves simulations in multiple physical domains, for example cou-
pled electrostatics and elasticity or coupled electric, thermal and elastic fields. 
The latter is required for the analysis and design of an  electrothermal micro 
actuator. Electrothermal actuation is based on Joule's (resistive) heating and 
thereby thermal expansion and therefore requires modelling of three physical 
fields, namely electric, thermal and elastic fields. Electrothermal actuation is 
attractive for micro-systems due to its large displacement and force potential 
but the drawbacks are that it requires a strong electric field and that the 
operating temperature may disturb its environment. 

A typical MEMS synthesis problem is to come up with a two-degree-
of-freedom device with zero cross-axis sensitivity for scanning purposes. A 
design problem for such an application is sketched in Fig. 2.32a. The synthesis 
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Fig. 2.32. Two degree-of-freedom electrothermomechanical actuator synthesis. a) 
design problem with two electrical inputs, b) iteration history, c) actuation modes 
and d) micro-fabricated actuator (from Jonsmann et al. 1999c). 

problem here consists in finding a scanning mechanism where the scanning 
head (output point) moves in the horizontal direction for one electric input 
and in the vertical direction for another electrical input. The optimization 
problem involves 16 "load cases", 8 constraints and 8000 design variables. 
The iteration history is shown in Figure 2.326, the two modes of actuation 
are shown in Figure 2.32c, and an  actuator built in Nickel (size 500µm by 
400µm) which was fabricated and tested at MIC, DTU is shown in Fig. 2.32d. 
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2.8.3 Stokes flow problems 

A new and very interesting application of the topology optimization method 
is optimization for Stokes flow problems (Borrvall & Petersson 2002). 

The finite element equations for general Stokes flow in three dimensions 
can be written as 

[—GT G od{p} — { o} 
where u is

f 

 the velocity vector, p the  pressure vector, and 

K 
 = J

1B 7'I0BdV, GH = 	f = f Nu t dT 
v 	 , 

and  is the dynamic viscosity. N„ and N p  are the usual finite element shape 
matrices for the velocity and pressure fields, respectively, and I o  is a diagonal 
(6 by 6) matrix with 2's on the first three diagonal entries and l's on the last 
three diagonal entries (e.g. Zienkiewicz & Taylor 2000). 

The key question is now how to optimize such kinds of problems using 
topology optimization. For 2d problems, Borrvall & Petersson (2002) suggest 
to model the flow as a Couette flow, i.e. a flow between plates with a distance 
of 2p. This means that the components of the flow vector can he written as 

u2(/xl,x2,x3) = fl2 (1 — 

u3(x1,x2,x3) = 0 

Re-deriving the finite element equations with these assumptions and drop-
ping the hats, one gets the following matrices to insert in the general FE-
equation (2.27) which now is

/

2-dimensional 

K = I uBT  IoBdV + J a(p)NT  NdV = E µKé + E a(p)K° 
. V 	 V 	 e 	 e 

GF=f (VNu)TNdV p 	f= fr, 
N,T, i di" 

where a(p) =  — p• 
The second terni in K is interesting. For big p and therefore small a, 

we have an  undisturbed Stokes flow. For small p (narrow channel) the term 
becomes large and may be interpreted as a large "damping" term that stops 
the flow. Another way to interpret the second term is to see it as a penalization 
term that ensures zero velocities at the penalized points just as for the 
support design problem in Sect. 2.7. 

(2.27) 
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Fig. 2.33. Topology optimization of Stokes flow problem. The minimum drag pro-
files for b) 80% and c) 90% fluid volume, respectively. The results are obtained 
using bi-linear 4-node elements for modelling of the velocity field and 4-node con-
stant pressure elements for the pressure field. 

Although this formulation was derived for two-dimensional problems, the 
idea generalizes to three dimensions although the physical explanation in this 
case is lost. 

We are now ready to formulate the optimization problem. We will take 

Pe E]0, 1] as the design variable and we are allowed to use a prescribed amount 
of fluid in the design domain, i.e. the sum of the p e 's is constrained. We 
want to minimize the energy dissipation in the system. This corresponds to 
maximizing the "flow compliance" e = fT  u. 

The optimization problem may now be stated as 
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The optimization problem (2.28) is closely related to compliance mini-
mization problems and may therefore be solved easily using an Optimality  
Criteria based algorithm.  

Interestingly, Borrvall & Petersson (2002) prove existence of solutions to  

this problem without any additional relaxation or rest riction. This can be  
explained by the fact that contrary to elasticity problems where smaller and  

smaller microstructures give better an better designs, smaller microstructures  

in Stokes flow will cause increased drag and will therefore not appear. 6  
We show two examples of topology optimization in Stokes flow. The first  

is the minimum drag profile (Fig. 2.33) and the second is flow in a structure  
with two parallel inlets and outlets (Fig. 2.34). Both examples are inspired  

by Borrvall & Petersson (2002) and compare favourably to examples that can  

be found in Pironneau (1973).  

2.9 Optimal distribution of multiple material phases  

In Chapter 1 we discussed different ways to interpolate the stiffness of el-
ements with intermediate densities for solid void (one material and void) 
compliance minimization problems. We concluded that the choice of interpo-
lation scheme plays a role in being able to interpret intermediate variables 
but otherwise, many different schemes have proven equally useful in obtaining 
good topological solutions. When considering distribution of multiple mate-
rial phases in a design domain, the choice of interpolation function becomes 
more critical. For stiffness interpolation there is again the risk of ending up 
with intermediate design elements that cannot be represented by physical 
materials. Worse however, there is a risk that the optimization algorithm will 
make use of these non-physical properties to produce artificially good struc-
tures. An example of this could be a non-physically high thermal expansion 
coefficient for an intermediate density element. 

s.t.  

0 < pe  < 1, e = 1,..., N  

6  In mathematical terms, the existence issue is simplified by the fact that the  
design variable p now appears in the low-order terms of the analysis problem.  
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Fig. 2.34. Minimization of flow resistance in a structures with two parallel inlets  

and outlets for 30% fluid volume. a) Design domain with aspect ratio 1:1 and solu-
tion b). c) Design domain with aspect ratio 3:2 and solution d). The flow resistance  

of d) is 22% lower than for a topology with two straight pipes as in b) due to the  

lower resistance of the single wide channel.  

In the following, we first discuss alternative ways to write the stiffness  
interpolation for one material and void structures. Then we discuss the ex-
tensions to two material structures and finally to two material and void struc-
tures.  

2.9.1 One material structures  

Considering structures built from one material and void, the SIMP interpo-
lation for stiffness can be written in either of the following ways  

E(Pe) = PéE°  

l6(p e ) =  

P(Pe) = e p°  

(Eijkl (Pe) = Pe g'kl ) ^  

^ 

(2.29)  

(2.30)  

where superscript ° signifies a property of the solid material, and it and  µ 
are the hulk and shear moduli, respectively,. Also, it is assumed in (2.29)  
that the Poisson's ratio is const ant and equal to v°  As discussed earlier (see  
Sect. 1.1.2) the power p must be larger than a certain number dependent on  
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the Poisson's ratio of the material (cf., (1.5)) in order to satisfy the Hashin-
Shtrikman bounds on elastic material behaviour (see Appendix 5.4.6).  

For an interpolation of scalar problems like electrical or thermal conduc-
tion we can use an interpolation as  

((Pe) =  Pé(o  

where likewise p must be bigger or equal to 2 to ensure physical realizability  

of intermediate density elements (Bends0e & Sigmund 1999). 

2.9.2 Two material structures without void 

Considering structures composed of two materials, the interpolation laws 
must be modified. A modification of the power-law approach is to express 
the elasticity tensor of element e as 

Eijkl (Pe) = Pe 	+ (1- (2.31)  

where E^^ kl  and Éjkt  are the elasticity tensors of material 1 and 2, respec- 
tively. Although this interpolation has been used with success, it suffers a 
number of drawbacks. First, it violates the Hashin-Shtrikman bounds for low 
values of pe  and for large values of the power p. Furthermore, for the case 
of two materials with equal Young's moduli but different Poisson's ratios, 
it gives a strangely acting interpolation scheme. Finally, the scheme (2.31) 
changes behaviour if the phases are interchanged. 

Instead of (2.31) one can use an interpolation that works with a weighted 
average of the Hashin-Shtrikman upper and lower bounds for each material 
property independently (cf., Sect. 1.5.4). The interpolated values for bulk, 
shear and conductivity moduli, respectively, are then written as 

K(Pe) _ ( 1  —  Y) 401wer(Pe) + nnp  er(Pe)  
µ(Pe) _ ( 1 — V) ) µlower'Pe) + ILuppw(Pe) 	,  
((Pc) = ( 1  —  b)  (II wer(Pe )  + 21)  (, per(Pe)  

whereki 	̂Ei 	rl 	H 	are the lower and upper Hashin- ( towerrs s 	upper
s

), (Slower
rs, 

 (u.pper
s

) 	 Pp 
Shtrikman bounds on bulk and conductivity moduli, respectively, and 	,  
µ vpW)  are the lower and upper Hashin-Shtrikman-Walpole bounds on shear  

modulus for two-phase composites 7  In (2.32), iJ,  E [0, 1] interpolates between  
the lower and upper bounds. If we choose l = 0, the use of intermediate den-
sities is made uneconomical just as in the power-law approach.  

For design of two-phase composite involving the thermal exp ansion co-
efficient, one does not need an  interpolation scheme as it is directly given  

(2.32)  

7  The upper and lower Hashin-Strikhman bounds are given in (1.42), (1.44) and 
in Appendix 5.4.6. 
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in terms of the effective (interpolated) bulk modulus (Levin 1967, Rosen & 
Hashin 1970) 

a 1 K 1 (K2 
— K(Pe)) — 

 a2K2(Kl 
— K(Pe)) 	 2.33 a(Pe) = 	

K(Pe)(K l  _ K2) 	' 	 ( 	)  

where K 1  and K2  are the bulk moduli of material 1 and 2, respectively.  

2.9.3 Two material structures with void  

The two-phase power-law interpolation scheme can also be extended to a 
scheme for three material phases (two materials and void) with two design 
variables pe and pe  

Eijki(Pe, Pe2 ) = (Pl)p'  (07'2  E kl + ( 1  — Pe2 ) p2  F'2jkl)  

where the penalization powers pi and p2 can be chosen independently. This 
modified SINIP scheme performs very well for pure stiffness problems. For use 
in multiphysics, however, one should apply a hybrid of the power-law and the 
Hashin-Shtrikman interpolation scheme, making use of the best features of 
both. By interpolating between material (any of the two materials) and void 
using the power-law approach, problems with jumps in properties are avoided 
and by using the Hashin-Shtrikman bounds to interpolate between the two 
material phases, a consistent interpolation is obtained. 

The scheme is invoked for each property independently as 

K(Pe> Pe) _ (Pe) p  [( 1  — 0) Klower(Pe) + <er(Pe)]  
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The interpolation law for the thermal expansion coefficient is just a slight  

modification of (2.33) and is given by  

a(P2 ) = al 
Kt 

 (K2  — K(PZ)) — a2  Kz  (K 1  — K(Pé)) 	 (2.35) 
K (pe) (K

1 	

K ) 	
• 

Note that the thermal expansion coefficient depends on the bulk modulus of  

the two-phase composite only (which is found by setting pi = 1 in (2.34)).  

The material interpolation scheme, defined by (2.34) and (2.35), is con-
trolled by the two penalization parameters p and P. If these parameters are  
selected according to the criterion  

Kl + p l K l  + Il l K2 + p2 K2 +  p2 

p > max 	
pl 	K1 	p2 	

K2 	
/  

then it can be shown that the interpolated parameters always will satisfy the  

Hashin-Shtrikman bound. Usually we choose p = 3 and cP = 1, correspond- 
ing to the usual power-law penalization and the upper Hashin-Shtrikman  

(2.34)  

0<!Y<1 (2.36)  
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Fig. 2.35. Optimal distribution of two material phases for compliance minimization 
of the L-shaped structure from Fig. 1.3. Different ratios between the stiff (black) 
and the soft phase (hatched). a) Optimal distribution of 25% volume fraction of 
only one phase. b-e) Optimal distributions of two materials with each a volume 
fraction of 25%. Ratio between material stiffnesses: b) 0.01, c) 0.2, d) 0.5 and e) 
0.8. f) Optimal distribution of 50% volume fraction of only one phase. 

bound for the two material composite. In the cases where the upper Hashin-
Shtrikman bound interpolation results in intermediate values of the second 
design variable, i.e. we have a two-material composite, the value of sY is low-
ered towards zero, resulting in a non-composite (and manufacturable) topol-
ogy. 

2.9.4 Examples of multiphase design 

An example of distribution of two material phases in an L-shaped design do-
main is shown in Fig. 2.35. Depending on the stiffness of the second material 
it will act as core material (Figs. 2.35b and c) or as a structural material 
(Figs. 2.35d and e). 

In the thermal actuator design problem shown in Figure 2.24a one may 
introduce a second material with alternative thermomechanical properties to 
compete in the material distribution process. However, if only the total vol-
ume fraction is prescribed rather than the volume fractions of the individual 
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Fig. 2.36. a) Two-material thermal actuator design problem and b) topology op-
timized bi-rnetal actuator with small support (from Sigmund 2001c). 

phases and the design has lots of possible supports, experience shows that the 
synthesis algorithm prefers only to make use of the material with the highest 
product of Young's modulus and the squared thermal expansion coefficient. 
This numerical observation has also been verified analytically. In these cases, 
the two-material synthesis problem would results in one-material actuators 
like the ones shown in Figure 2.24 (see Sigmund (2001c) for details). 

If there are only few and small supports (insufficiently grounded), the 
synthesis algorithm can not make use of the type of amplification mecha-
nisms that are shown in Figure 2.24. Rather, the design procedure makes 
use of the so-called bi-material or bimorph principle, see Figure 2.36. The 
efficiency of the optimized actuator is here only 14% of an  actuator with 
ample supports (as shown in Figure 2.24). This underlines that bimorph ac-
tuation is extremely inefficient due to the loss of mechanical energy in the 
interface between the two material phases. Consequently, they will only ap-
pear in topology optimized two-material actuators if supports are small or 
rare (cf., Sigmund (2001c)). 

More examples of design of multiphase material structures are given in 
section 2.10.3 that deals with design of materials. 

2.10 Material design 

The response of structures depends on the materials they are built from. If one 
can design materials with tailored or extreme properties one may be able to 
design better structures. This aspect is central also in topology design where 
the role of composites in the homogenization approach and other optimization 
models operating with general material tensors underlines such an  aspect of 
local optimal use of material. This is the theme of Chap. 3. 

In this section we will deal with methods that apply the ideas of topology 
optimization, originally developed for structural optimization problems, to 
the design of material design as well [21]. The fundamental idea is that any 
material is a structure if you look at it through a sufficiently strong micro-
scope. 

Assuming that the material one considers is periodic, its effective prop-
erties may be fully described by an analysis of the smallest repetitive unit, 
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the base cell. The design problem then consists in assigning a material type  
to each point in the hase cell. In the discretized topology optimization set-
ting this corresponds to assigning a material type to each element used to 
discretize the base cell. The material type may be selected from two or more 
constituent phases of which one may be void. For example, a porous honey-
comb material may be designed from a void and a solid material phase. 

The effective properties of a material are found by homogenization of 
the microstructure. In our case the microstructure does not exist ab initio  

but we seek to come up with a microstructure with prescribed or extreme 
homogenized properties. Therefore the material design method has also been 
called the inverse homogenization method. 

Before we proceed to define objective functions for material design, we 
briefly discuss how to find the effective properties and the sensitivities thereof 
using the homogenization method. 

There is, as indicated above, a very strong interrelation between the de-
velopments that follows and the content of Chap. 3. Thus this section would 
equally well fit in the framework of that Chapter. However, as the emphasis 
in the following is on modelling and computational issues that have been dis-
cussed so far in this Chapter, the application of topology design to material 
design is treated here and not in Chap. 3. 

2.10.1 Numerical homogenization and sensitivity analysis  

If a structure is built from periodic materials it is often too cumbersome or 
even impossible to model it taking every detail of the micr o-structure into 
consideration. Therefore, one substitutes the microstructure with some aver-
age or smeared out properties that model the material behaviour seen on a 
global scale. The process of finding representative or effective properties of 
microstructured materials is called homogenization [20]. In Chap. 3 and in ap-
pendix 5.4 we discuss analytical procedures for the homogenization of simple 
layered microstructures and their more complicated off-springs, the so-called 
rank-N microstructures. If we want to model (and design) microstructures 
with more general micro-geometries we have to perform the homogenization 
by numerical means. In the following we describe the homogenization equa-
tions and briefly discuss their discretization in the finite element formulation. 

The homogenized stiffness tensor is by integration over the hase cell area 
Y found as 

1 f 	 l^ kl 

EZ^kI 
NI

Y Eijkt — EZ9r4 	
aye 

dy  

where the Y-periodic test fields xPl  are found as the solutions to the equilib-
rium equations 

(2.37)  

Ei axPl  aoi 
 d 	/ 	d 	for all Y  periodic 	(2.38) Z^ kl — 	y 	P 	̂ , ^Pe 

aye ayi 
y  . 

E
Y 	ay.;  r.  
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and Y is the area of the unit cell.  
In a somewhat simpler notation, (2.37) may be written as  

E^^kl = 1 

	

Ep4 (Ep92j) 
— EP92j))(E0 	— 

6:7(sky) 
 dy 

IYI
rs / rs

(kl) 
rs > 

Y  

kl 	kI 

where egkl) 
 = z (â + yp) and Et corresponds to the three (2D) or six 

(3D) unit test strain fields. 
In practice, the equilibrium equations (2.38) are solved as a finite element 

problem with three or six load cases 

KXkI  = fkl  

where the displacements Xkl  are constrained to be Y-periodic by either a 
penalty approach or by assigning equal node numbers to opposing boundary 
nodes. The force vector is found from 

fkl  E  f Bé Ee(Pe) eo(kl)dy 
e  Y  

and the global stiffness matrix is calculated as the usual assembly of element  
stiffness matrices K = Ee  Ke  plus corrections for periodicity. In FE-notation, 
the effective properties may then be found as 

E ,̂kl ivi E(X
O(ij) _ X

2i)T f 
 BT E(Pe) B dy  (x" )  — x") = 

p  

where E is the constitutive matrix, B is the finite element strain-displacement  
matrix and Xo(ij)  is the nodal displacement vector corresponding to the test  
strain field e 0 (ii )  

The sensitivity of a component of the constitutive tensor with respect to  
the density design variable pe  can again be found by the adjoint method. The  
resulting sensitivity expression in FE-notation is  

aEi  kl 	
1 (X0(2.2) _ X2.2 )T ÔK e (Pe)  (X0(k1) _ 

Xkl). 

ape 	IYI 	 aPe  

2.10.2 Objective functions for material design 

The goal of material design may be to synthesize a material with prescribed  
constitutive properties or it may be to synthesize materials with extreme  
constitutive properties. An example of the former could be the need for de-
signing a material with a specific Young's modulus and a specific isotropic  

e 

0 (ij ) 	 kl)  
^ (X 	— X

ij ) T 
Ke(Pe) (X0( — x"), 
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thermal expansion coefficient. This material could be used to neutralize ther-
mal mismatch in a heat generating structure. An example of synthesis of an  
extremal material could be to maximize the bulk modulus of a material for a  

given volume fraction of solid material. This would result in a material with  

an  extreme stiffness to weight ratio.  
For now, we consider the design of materials composed of a solid and a  

void phase. Therefore, the element stiffness may be interpolated by the SIMP  

interpolation E(pe ) = péE0  as we did for structural design problems.  
If we want to obtain a material with prescribed elastic tensor É   an ob-

jective function to be minimized could be the error between the homogenized  

elasticity tensor Eiki  and the wanted stiffness tensor Ez^ kl . An optimization 
problem with this goal can be written as 

d  

mi
n  E (Ezkt — Ei^kl (p))2  

s.t. KXkI =  fkl 	k,1 = 1,  - - • ,d ,  

1 N I I E ve pe <19,  
e=1  

0 < pnai„ < pe  < 1, e = 1, . . ,N  

where 19 is the bound on the volume fraction and d is the spatial dimension. 
If a material with the wanted properties E:ikl  cannot be obtained for the 

given constituent materials and volume fractions, the problem formulation 
(2.39) may give useless results. On the other h and, if the wanted properties 

E:iki are easy to obtain, it means that one could take out material of the 
base cell and still obtain the wanted properties. This superfluous material 
tends to cloak the design process and prevent convergence of the optimization 
algorithm. Also, it paralyses the SIMP scheme since the volume constraint is 
not active, in turn producing pictures with lots of grey elements. 

Alternatively one my turn the problem upside down and minimize the vol-
ume fraction for prescribed constitutive properties. This may be formulated 
as  

1 
 

min E  ve pe 
P I Y I  e=1  

s.t. KXkI = fki
, 	 k, l = 1,  . . . ,d ,  

Ezjkl  — EHkI (p) = 0, 	, j, k, l =  1, . . . , d ,  

0 < Amin < pe  < 1, e = 1, . . . , N  

For a continuum model 8of the unit cell not every positive definite stiffness 
tensor is realizable [25], and theoretical bounds on the material parameters 

8  Using trusses for the unit cell is discussed in section 3.4.5.  

(2.39)  

(2.40)  
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for isotropic, square or cubic symmetric composite material are known. This 
means that the problem formulation (2.40) may in some cases suffer from 
lack of any feasible designs. To circumvent this and in order to be able to 
synthesize extreme materials, i.e. materials with properties that reach the 
limits of the bounds, we write a new problem formulation as 

min  c(Eikt(P)) 

s.t. Kx kt = fkl 	k, l = 1 	d 

1 
N 

lYl  E VePe < 99, 

e=1 

gi(E kl(P)) <.gz, i = 1,...,M 

0 < pniin  < pe  <1, e=1,.. ,N 

where the objective function c(E iki ) and constraints 9i(Eik,) are functions 
of the homogenized tensor and M is the number of constraints. 

The constraints in (2.41) may take different forms. For example minimum 
Poisson's ratio is obtained for very soft structures and to prevent too flimsy 
materials a lower bound constraint on the effective bulk modulus 	may 
therefore be added, i.e. g1 = —IC H  and gl = 	Also, it may be desired to 
impose a constraint that ensures symmetries in the resulting material prop-
erties. Orthotropy (i.e. Eii12 = E22 1 2 = 0) may be obtained by imposing 
one or more lines of symmetry in the base cell. Square symmetry may for 
example be obtained by imposing one line of symmetry and adding the con-

straint 92 = (EN11 — E2z22) 2 /(EH11 + 12222)2 with g2 = E 2 , where e is a 
small tolerance number. 

The problem formulation (2.41) was first suggested in Sigmund & Torquato 
(1997) and has since then been used successfully in the design of material 
with extremal elastic, thermoelastic, piezoelectric and other physical proper-
ties [21]. As will be seen in the following subsections, the results are very close 
to theoretical limits and have in fact in some cases inspired the improvement 
of theoretical limits. 

2.10.3 Material design results 

Extremal elastic properties A basic material design problem is to find a 
structure with maximum bulk modulus for a given volume fraction. This is 
a highly non-unique optimization problem. Four types of microstructures are 
now known to have extreme bulk moduli, i.e. they have bulk moduli equal to 
the upper Hashin-Shtrikman bounds. These microstructures are sketched in 
Fig. 2.37. 

(2.41) 
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Fig. 2.37. The four known classes of extremal isotropic microstructures. The 
isotropy requires special geometries of the different unit cells. 

Topology optimization results for the maximization of bulk modulus 
of two-dimensional microstructures and a one-length-scale constraints are 
shown in Fig. 2.38. All four microstructures have effective bulk moduli 
within a few percent of each other and the known analytical bound. By 
control of starting guesses, objective functions, base cell geometry and/or 
isotropy type, one may obtain one structure or another. The results in 
Fig. 2.38 were obtained for an initial filter radius of l0% of the base 
cell. The filter size was gradually decreased to zero during the design pro-
cess. The obtained structures may be denoted one-length-scale microstruc-
tures and correspond to the known optimal so-called Vigdergauz struc-
tures (Vigdergauz 1994, Vigdergauz 1999). Note that the bulk optimized 
microstructures are closed walled cells. 

Figure 2.39 shows two examples of maximization of bulk modulus of 3D 
structures. Again, the two structures that were obtained without and with 
isotropy constraint have effective bulk moduli extremely close to the theoret-
ical Hashin-Shtrikman bounds. 

9  One length scale materials are here defined as microstructures that do not make 
use of several length scales in the base cell. One length scale materials are ob-
tained by specifying rather big sizes of the sensitivity filter (e.g. 10% of the base 
cell) in the initial topology optimization iterations. 
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100+4 b) 	 c) d) 

Fig. 2.38. Four microstructures with extremal bulk moduli obtained by the inverse 
homogenization procedure. a) Isotropic hexagonal microstructure (maximization 
of bulk modulus for rectangular b ase cell with isotropy constraint), b) isotropic 
triangular microstructure (maximization of product of bulk and shear modulus for 
rectangular base cell with isotropy constraint), c) isotropic octagonal microstructure 
(maximization of bulk modulus with isotropy constraint) and d) square symmetric 
microstructure (maximization of bulk modulus) (from Sigmund 2000b). 

Fig. 2.39. Three optimized three-dimensional microstructures. Left: cubic-
symmetric maximum bulk modulus microstructure. Center: Isotropic maximum 
bulk modulus microstructure. Right: Isotopic negative Poisson's ratio material 
(from Sigmund 2000b). 

A realization of the SIMP model We have continually compared the 
SIMP and other interpolation models with the Ilashin-Shtrikman bounds 
for isotropic composites. These bounds gives necessary conditions for the in-
terpolation models. However, it is the material design methodology of the 
inverse homogenization method that allows us to construct concrete realiza-
tions of the SIMP model, as seen in Figs. 2.40 and 2.41. Note that, in itself, 
the inverse homogenization is based on a SIMP interpolation in the unit cell, 
making the dog bite its tail. 

Negative Poisson's ratio materials An extremely interesting application 

of the material design method is the search for negative Poisson's ratio mate-
rials. A number of such structures have been suggested in the literature (cf. 
[21]), but here we apply topology optimization to obtain the behaviour we 
are looking for. If (2.41) is formulated so as to minimize the Poisson's ratio 
with a constraint on bulk modulus and isotropy, the inverse homogenization 
method gives results as shown for 2D in Fig. 2.42 and for 3D in Fig. 2.39. 
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Fig. 2.40. Microstructures of material and void realizing the material properties 
of the SIMP model with p = 3, for a base material with Poisson's ratio v = 1/3. 
As stiffer material microstructures can be constructed from the given densities, 
non-structural areas are seen at the cell centers (from Bendsoe & Sigmund 1999). 

The isotropic and negative Poisson's ratio structure has been manufac-
tured in micro-scale (Larsen, Sigmund & 13ouwstra 1997). The 40 by 8 cell 
testbeam was built using surface micromachining with a unit-cell size of 60 
pm as shown in Fig. 2.42c. The Poisson's ratio of the test-beam was measured 
to -0.9+0.1 in experiments; this compares favourably to the theoretical value 
of -0.8. Recently, manufacturing of the topology optimized negative Poisson's 
ratio materials by extrusion techniques have been performed at University of 
Michigan (http://msewww.engin.umich.edu:81/people/halloran).  

Optimizing the thermal expansion coefficient For two-phase compos-

ites made from solid and void, the effective thermal expansion coefficient will 
always be the same as for the solid phase, unless the material is disconnected. 
For two-phase m ixtures of two non-void materials, the effective thermal ex-
pansion coefficient for any square or cubic symmetric mixture of the materials 
will always take values between the maximum and the minimum thermal ex-
pansion coefficients of the two phases. However, for three-phase composites, 
it becomes snore interesting. According to theory (Schapery 1968, Rosen & 
Hashin 1970, Gibiansky Si Torquato 1997) it is possible to synthesize three-
phase materials with effective thermal expansion coefficients that exceed 
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Fig. 2.41. Microstructures of material and void realizing the material properties  

of the SIMP model with p = 4 for a base material with Poisson's ratio  y  = 0 (top  
row) and v = 0.5 (bottom row), respectively. As in Fig. 2.40, non-structural areas  

are seen at the centers of the cells (from Bendsne & Sigmund 1999).  

those of the individual phases. In particular, it should be possible to syn-

thesize negative thermal expansion materials from mixtures of two positive  

expansion phases arid a void phase. The extreme thermal expansion is ob-
tained at the cost of a decrease in the effective bulk modulus. The theoretical  

bounds on the range of attainable combinations of thermal coefficients and  

bulk modulus for a particular case are shown in Fig. 2.43a.  

For the design of extremal thermal expansion coefficients it is necessary  

to extend the previous problem formulation to include an extra load case.  
This extra load case corresponds to subjecting the base cell to a uniform  

temperature increase. The new problem formulation may be written as  
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c)  

Fig. 2.42. Material microstructure with negative Poisson's ratio. a) one unit cell 
discretized by 60 by 60 elements, b) repeated unit cell and c) micromachined test 
beam built at MIC, DTU, DK (from Larsen et al. 1997). 

max  c(E^kt(P ' ,P2 )> «H(P1 ,P2 ))  

s.t. Kx^`^ = f^^ 	k,1 = 1, . . . ,d ,  
Kxa =  fa 

1  Î I  ^ vePePe < 191> 0 < Pmin < Pe Ç  1, e = 1, .., N  (2.42)  

Ill 	vePe(1 — Pe) < 792, 0<p<1, e = 1,..., N 
e  

gz(E!.liki 
 1 2 	+  

where the thermal test field x" is again Y-periodic and the thermal finite  

element load vector is defined as  

fa  = 	Be Ee(PePe) a(Pe)dY. 
^  y. 
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Here, the element thermal expansion coefficient cx(pe) is interpolated by the 
expression given in (2.35). The examples shown in the following are all based 
on the three phase SIMP interpolation scheme (2.31). 

Figure 2.43a shows a graph of the thermal expansion coefficients as 
a function of the bulk moduli for some numerically obtained microstruc-
tures compared with the theoretical bounds. The design problem consists 
in extremizing the thermoelastic properties of a composite consisting of 
25% of a material with thermal expansion coefficient 10 (normalized value) 
and 25% of a material with thermal expansion coefficient 1. A resulting 
composite with a negative thermal expansion coefficient of -4.02 is shown 
in Figure 2.43b. This shows that it is actually possible to design mate-
rials with negative thermal expansion coefficients from constituent phases 
with positive thermal expansion coefficients. Actual manufacturing of three-
phase composites has been difficult but recent reports from researchers 
at University of Michigan show that it is indeed possible to manufacture 
the suggested composites but test results are not yet publicly available 
(http: //msewww.engin.umich.edu:81  /people/halloran). 

In Figure 2.43a one notes that the numerically obtained effective values 
are far away from the old bounds (Schapery 1968, Rosen & Hashin 1970) 
but very close to the newer bounds (Gibiansky & Torquato 1997). In fact, 
the substantial improvement of the new bounds compared to the old bounds 
was inspired by the numerical results by Sigmund & Torquato (1997). Using 
the translation method, Gibiansky & Torquato (1997) managed to make the 
theoretical bounds match the numerical results! 

A new class of extremal two-phase composites Existing bounds on the 
possible range of the bulk and shear moduli of isotropic two-phase composites 
composed of isotropic constituents (Hashin & Shtrikman 1963, Cherkaev & 
Gibiansky 1993) have only been proven optimal (in the sense that there exist 
microstructures that attain them) for certain cases. In order to investigate 
the optimality of these bounds in further detail, a study based on the inverse 
homogenization was performed in (Sigmund 2000b). The study resulted in 
numerically obtained bounds for one-length-scale structures, proof of opti-
mality of the bounds in a wider range than previously known and a new class 
of extremal composites. Thus, use of the topology design methodology has 
lead to new understanding in the area of theoretical material science. This 
symbiosis is strongly present when one considers topology design with com-
posites where design has benefited immensely from work in material science, 
see Chap. 3. 

Limiting the microstructural variation to one length-scale by fixing the 
value of the mesh-independency filter, one-length-scale bounds on bulk and 
shear moduli of isotropic two-phase composites shown in Figure 2.44a are 
obtained. These bounds shall not be taken formally but more as bounds 
based on experience and trust in that the inverse homogenization procedure 
produces reliable results. 
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Fig. 2.43. Design of materials with extreme thermoelastic properties using topol-
ogy optimization a) Thermal expansion coefficient-bulk modulus graph for spe-
cific thermoelastic composite including theoretical bounds and numerically obtained 
properties, b), c) and d) material microstructure with negative thermal exp ansion 
coefficient (single base cell, 3 by 3 array and heated single cell). When heated, the 
cell contracts resulting in an effective negative thermal exp ansion coefficient (front 
Sigmund & Torquato 1997). 

Studying the bounds based on the one-length-scale structures in Fig-
ure 2.44a, one notes that no structures get close to the lower right corner 
of the bounds, also called the Walpole point (i.e. maximum bulk modulus 
and minimum shear modulus corresponding to the lower right corner of the 
bounds). Allowing finer variation in the microstructures by decreasing the fil-
ter size, a sequence of designs with properties getting closer and closer to the 
Walpole point (see Figure 2.44a) may be obtained. Inspired by these numeri- 
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Fig. 2.44. Design of extremal two-phase composites. a) Bound for one-length-scale 
composites and numerically obtained microstructures and allowing finer variation 
in the microstructure results in a new microstructure with properties close to the 
Walpole point (maximum bulk modulus and minimum shear modulus, b) two-
dimensional members of the new class of extremal microstructures consisting of solid 
convex polygonal regions connected by laminated bars and c) three-dimensional 
members of the new class of extremal microstructures (from Sigmund 2000b). 

tally obtained results, a parametrized hexagonal microstructure consisting of 
convex polygonal regions of solid material phases connected by layers of equal 
proportions was investigated analytically (see Figure 2.44b). Surprisingly, it 
was possible to calculate the effective properties exactly and the bulk mod-
ulus of the composite corresponded to the Hashin-Shtrikman bounds. Even 
more surprising, exact solutions and proof of extremity could be obtained 
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for a whole class of similar microstructures in two and three dimensions (see 
Fig. 2.44b and c). The investigation thus resulted in a new class of extremal 
isotropic microstructures which constitutes an alternative to the three pre-
viously known classes, namely Composite Spheres assemblages, Vigdergauz 
structures and rank-N layered materials (see Fig. 2.37). One member of this 
class of materials (the hexagonal microstructure) has maximum bulk modulus 
and lower shear modulus than any previously known composite. Although no 
member of the new class of materials attains the Walpole point exactly, the 
Walpole point can be considered attainable for all practical means and the 
Hashin-Shtrikman/Cherkaev-Gibiansky bounds have been proven optimal for 
a wider range of properties than was previously known. 

A new class of extremal three-phase composites Inspired by the two-
phase results in the previous subsection the same type study consisting of 
analytical methods combined with numerical experiments may be performed 
for three-phase materials. When considering three material phases the equa-
tions become much more complicated, and a large number of special cases 
must be considered for the large number of possible material combinations 
(e.g. bulk and shear moduli may be well-ordered or not). Nevertheless, the 
existence of a new class of three-phase composites with extremal bulk moduli 
can be proved (Gibiansky & Sigmund 2000). The three phase microstruc-
tures are closely related to the two-phase class from the previous subsection. 
For example, the three-phase structures converge to the two-phase structures 
when the volume fraction of one phase approaches zero. For the three-phase 
case, the new class of structures also expands the ranges of previously known 
attainable properties and optimality of bounds. Figure 2.45a shows some 
numerically obtained three-phase microstructures and Figure 2.45b shows 
schematics of members of the new class of three-phase extremal microstruc-
tures. Note how layered regions again play a significant role. 

Piezoelectric sensors Another three-phase material design example is the 
design of hydrophones based on piezoelectric sensing. A piezoelectric mate-
rial responds with an electric output when strained. For a typical ceramical 
piezoelectric rod, the electric field depends on the elongation of the rod. Sim-
ply said, this means that the electric output for a horizontal compression 
will have the negative sign of a that for a longitudinal compression. For hy-
drophones which should detect changes in hydrostatic pressures, this is a 
problem. Compression in all directions simultaneously will almost cancel the 
electrical output. In order to circumvent this problem it has been suggested 
to embed piezoelectric rods in a matrix material with tailored properties. A 
negative Poisson's ratio matrix material will for example convert transverse 
pressure to a compression of the rod instead of extension, in turn causing a 
much larger output signal. 

The inverse homogenization method may be used to identify the matrix 
microstructure that maximizes the electric output of hydrophones. The prob- 
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Fig. 2.45. Design of extremal three-phase composites. a) Numerically obtained 
three-phase microstructures with extremal bulk modulus, b) schematics of the new 
class of extremal microstructures (from Gibiansky & Sigmund 2000). 

lern corresponds to a three-phase material design problem of distributing a 
piezoelectric, a polymer and a void phase in a periodic base cell. However, 
for various reasons, the periodicity of the matrix microstructure will often 
be much smaller than for the embedded rods. Therefore one may model the 
problem partly by effective medium theory and partly by numerical homoge-
nization. This means that the effective properties of the matrix material may 
be found by numerical homogenization whereas the effective properties of the 
mixture of the matrix material and the piezoelectric rods may be found an-
alytically (Avellaneda & Swart 1998). The effective piezoelectric properties 
may thus be determined directly as functions of the effective matrix prop-
erties Ek l . The optimization problem may then be solved by the extremal 
material design formulation given in (2.41). 

Figure 2.46b shows one base cell of the matrix material of a hydrophone 
optimized for maximum piezoelectric charge coefficient (Sigmund, Torquato 
& Aksay 1998). One observes that this matrix material is a transversely 
isotropic material with negative Poisson's ratio. The improvement compared 
to a solid polymer matrix is a factor of 11. Figure 2.46c shows a base cell 
(5 mm cubed) manufactured at Princeton Materials Institute using stereo-
lithography. 
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Fig. 2.46. Design of hydrophones using topology optimization. a) Schematic of 
a 1-3 piezoelectric hydrophone, b) one base cell of hydrophone matrix optimized 
for piezoelectric charge coefficient and c) one base cell manufactured at Princeton 
Material Institute using stereo-lithography (from Sigmund et al. 1998). 

An investigation of bone microstructures If a 3D material is optimized 
for stiffness (e.g. maximum bulk modulus), the resulting microstructures are 
close-walled (c.f. Fig. 2.39), while it has been observed that most bone struc-
tures are built up as open walled cells (Gibson & Ashby 1988). This indicates 
that bone structure is not optimal with respect to stiffness and that other 
requirements also govern the growth of bone. 

Bone is a material that can be considered quasi periodic and thus we can 
apply homogenization. In many cases the material is orthotropic and physical 
observations indicate that orthotropic directions of bone follow the principal 
stress in loaded bone (Wolff's law) 1°  

In order to open up the cell walls of high stiffness microstructures, a 
constraint on the permeability of the cell could be imposed. Permeability 
is essential for the flow of nutritients that is necessary for maintaining the 
steadily active bone growth or degradation. Instead of setting up a compli-
cated flow model (like the Stokes flow model in section 2.8.3) we add an extra 
constraint to the material optimization problem related to the conductivity 
of the base cell. Here a void element should have a high conductivity and 

10 This is consistent with results on the optimal rotation of orthotropic materials, 
see Sect. 3.1.4. 
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a solid element should have a low (zero conductivity). The interpolations of  

Young's modulus E and the conductivity Ç, respectively, may thus be written 
as  

E(Pe) = p E0  and Ç(Pe) = ( 1  — Pe) P C0  

The optimization problem is then be written as  

max K(p)  

s.t. Kx" = fkl , k,1 = 1,..., d ,  

1  
I^I 

 L' 
 vePe  < 79 

e 

C H (P) ? C  
0< Pmin < Pe <1, e= 1, .. , N  

where ç* is the lower bound constraint on the effective conductivity. Obvi-
ously, this optimization problem only makes sense for 3D problems where 
both phases may be connected from cell to cell. 

By specifying a lower bound on the conductivity of respectively 0%, 10% 
and 20% of the conductivity of a totally void cell, the open-walled microstruc-
tures shown, in Fig. 2.47 are obtained. Comparisons of the objective func-
tions (bulk moduli) for the closed and the open-walled structures show that 
the close-walled microstructures are significantly stiffer than the open-walled 
structures (Sigmund 1999). Thus stiffness cannot be the only objective of 
bone microstructures. Here a conductivity constraint for allowing flow of 
nutrition has been applied, but many other objectives of biological or me-
chanical nature may also play a role; for the latter minimum size constraints 
and buckling sensitivity (Sect. 2.12.1) may well be significant. 

2.11 Wave propagation problems  

An interesting new application of the topology optimization method is the 
design of structures and materials subject to wave propagation. The waves 
may be elastic, acoustic or electromagnetic, and the phenomenon to be ex-
ploited is that for some frequency bands it is possible to construct periodic 
structures or materials that hinder propagation. This is called a band gap. 

The phenomenon of band gaps in structures subject to periodic loads 
is illustrated in Fig. 2.48a and b. Here a two dimensional square domain is 
subjected to a periodic loading at the left edge and it has absorbing boundary 
conditions along all four edges. The frequency of excitation of the structure in 
Fig. 2.48a is lower than for Fig. 2.48b. It is seen that waves propagate through 
the structures from left to right and that the absorbing boundary conditions 
damp the waves at the top and bottom. These are perfectly normal situations 

(2.43)  
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Conductivity = 10% Conductivity = 0% 

Fig. 2.47. Investigation of "bone" microstructures. All pictures show one half 
of the resulting base cell topologies. Left: close-walled cell obtained from stiffness 
optimization without conductivity constraint and center right: open-walled cells 
obtained from stiffness optimization with conductivity constraints. The local con-
ductivity is inversely proportional to the local stiffness (from Sigmund 1999). 

and could model surface waves on water, acoustic waves through air, out-of 
plane waves in an elastic structure, polarized electromagnetic waves, etc. 

Now, if we introduce a periodic distribution of inclusions with different 
propagation speeds than in the original structures, the situation changes. For 
the structure subjected to the lower excitation frequency (Fig. 2.48c), there is 
still propagation although the waves have different shapes. However, for the 
structure subjected to a higher excitation frequency (Fig. 2.48d) there seems 
to be no propagation at all. This illustrates the band gap phenomenon. A 
band gap material is defined as a material that does not allow wave propaga-
tion for certain frequency ranges. For elastic and acoustic waves the materials 
are called phononic band gap materials, for electromagnetic wave propagation 
the materials are called photonic band gap materials and the same principle 
on the atomic scale lies behind semiconductors. The length scale of the peri-
odic structure in band gap materials is typically close to the wavelengths of 
the forbidden frequencies. 

Band gap materials may be used for many purposes, for example for 
waveguides. The idea is illustrated in Figs. 2.48e and f. If we introduce a 
defect in the periodic structures from Figs. 2.48c and d, waves with frequen-
cies outside the band gap may still propagate through the whole structure 
(Fig. 2.48e) but waves with frequencies within the band gap may now only 
propagate through the defect, resulting in a wave guide as seen in Fig. 2.48f. 
It is seen that it is actually possible to guide waves around a corner. This is 
especially interesting for light waves since it may allow for the manufacturing 
and design of so-called photonics based microchips which have much higher 
clock frequencies than conventional microchips based on electrical conduc-
tion. 

Apart from semiconductors and wave guides, band gap materials may be 
used to generate frequency filters with control of pass or stop bands, as beam 
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Lower frequency 	 Higher frequency 

e) 0 

Fig. 2.48. Scalar wave propagation in 2D domains with absorbing boundary con-
ditions and forced vibrations at the left edge. a) Wave propagation through ho-
mogeneous structure, b) wave propagation with higher frequency through homoge-
neous structure, c) wave propagation through structure with periodic inclusions, d) 
(no) wave propagation with higher frequency through periodic structure, e) wave 
propagation through periodic structure with defect and f) wave guiding at higher 
frequency through a periodic structure with defect. 
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splitters, as sound or vibration protection devices, as perfect mirrors and in  
many other applications.  

2.11.1 Modelling of wave propagation 

Elastic wave propagation in a homogeneous material is governed by the  
Navier vector equation  

(A+  µ)o(v u) + µv 2 u - Pü = 0 ,  

where A and p are Lamé's coefficients, P is material m ass density and u is  
the point wise (vectorial) displacement.  

For planar problems, the Navier equation may be split into an in-plane  

equation (transverse and longitudinal modes) coupled to an out-of-plane  

equation (also called the acoustic mode)  

	

(A+p)V(V uT)+ pV2 uT — PUT= 0 , 	 (2.44)  

	

/1'2713 — Pu3 = 0 , 	 ( 2 .45)  

where subscripts T and 3 stand for transverse and out-of-plane components, 
respectively. 

For an inhomogeneous structure, the acoustic or out-of-plane problem 
(2.45) may be written as 

V (µVu) — Pü = 0 , 	 (2.46)  

where the subscript 3 has been omitted. This equation has the same form as 
 one of the in-plane modes for electromagnetic wave propagation (Maxwell's 

equations), i.e. 

(v) _ - = o^ 	 >  

the so-called Transverse Electric TE-polarization mode and is closely related  
to the equation  

V 2 O  

governing the so-called Transverse Magnetic TM-polarization mode. Here, E  
is the electric permitivity and c is the speed of light in vacuum.  

In the following, we just consider the scalar problem (2.46). The wave  
equation (2.46) may be solved for a structure subject to forced periodic load-
ing or it may be solved as  a cell problem assuming an infinite periodic struc-
ture.  

For the structural problem we assume that the waves are harmonic and  
described by n3 = û3e(i nt) , where .fl is the driving frequency and ü3  is the  
amplitude. Substituting this into (2.46) and dropping the hats we get  
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V (µVu)+ .(22 pu =0 

This equation may be written in finite element notation as 

(K+i.f2C—f22M)u=f 
	

(2.47) 

where we have added (harmonic) boundary forces f and a damping matrix 
C that models absorbing boundary conditions and/or structural damping. 
This equation has a form which is very similar to the one used for forced 
structural vibration (cf., Sect. 2.1.2). 

For periodic structures (i.e. materials) the wave equation may also be 
treated as an eigenvalue problem. As for the homogenization problem (Sect. 
2.10.1), we may solve the global problem by analysing the base cell Y In 
contrast to usual homogenization problems, however, the modes may not be 
cell periodic and therefore we cannot just impose the usual periodic bound-
ary conditions. Instead we assume that the modes can be described by the 
expression 

u(y,k) = 
v(y)eik T y eiwt 	 (2.48) 

where y  is a Y-periodic displacement field, y is the spatial coordinate and k 
is the wave vector. For k = 0, the solution mode u(y) will be Y-periodic. For 
k = 7r, the solution mode will be 2Y-periodic. For other k, the solution anodes 
can take any kind of periodicity in all directions. This kind of modelling is 
based on the so-called Floquet-Bloch wave theory (Kittel 1986, Mathews & 
Walker 1964). 

Inserting (2.48) in (2.46) we get the eigenvalue problem 

(V (pVv) +w2 p`v) ekT Y = 0, 	 (2.49) 

which in principle should be solved for any wave vector k. However, due 
to symmetry we may restrict the wave vector to the first Brillouin zone 
k E [—ir, 7r] d  (d is the dimension) (e.g. Brillouin 1946). This corresponds 
to analysing the structural response to incident waves of any possible wave 
length and direction. If we furthermore assume that the base cell is square 
symmetric (i.e. is quadratic and symmetric around horizontal, vertical and 
diagonal lines), we may restrict the range of wave vectors to the triangular 
region indicated in Fig. 2.49, left. It is generally accepted (but to the authors 
knowledge, not proved) that one only has to search the borders of the trian-
gular region to obtain a description of the band gap structure of a periodic 
material. This means that the wave equation (2.49) only has to be solved for 
a number of wave vectors along the lines T —> X , X —> M and M -* I' (sec 
Fig. 2.49, left). 

In finite clement notation (2.49) may be written as  

(K(k) — w 2M) y  = 0 , 	 (2.50) 
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Fig. 2.49. Left: The irreducible Brillouin zone indicating the wave vectors to be 
searched for the general 2D case (grey area). For square symmetry, the wave equa-
tion only has to be calculated for k-vector values along the curve F — X — M — F 
Right: Sketch of hand structure indicating lowest four eigenvalues for wave vectors 
along the line F — X — M — F in the irreducible Brillouin zone. 

which is a standard eigenvalue problem. Since K is a Hermitian matrix and 
M is real, symmetric and positive definite, the eigenvalues of (2.50) will all 
be real and positive. 

If one solves for the first few eigenvalues of (2.50) for a number of k, the 
results can be plotted as a band diagram as sketched in Fig. 2.49, right. From 
the curves one may read the propagation modes for given frequencies. 

Real band diagrams for out-of-plane polarized waves are shown in Fig. 
2.50a and b for pure epoxy and duralumin, respectively (data from (Vasseur, 
Deymier, Frantziskonis, Hong, Djafari-Rouhani & Dobrzynski 1998)). It is 
seen that for these homogeneous materials there exist eigenmodes for any 
frequency, i.e. there are no band gaps. Fig. 2.50c shows the band structure of 
duralumin cylinders (radius equal to 30% of cell size) in an epoxy matrix. It is 
seen that there are ranges of frequencies with no corresponding eigenmodes. 
This means that no modes will propagate for these frequencies. There is a 
large band gap between the first and the second band (from 31 kHz to 43 
kHz corresponding to a relative gap size of o f / fo  = 0.32) and a small gap 
(D f / fo  = 0.11) between the second and the third band. This means that no 
elastic waves with frequencies within the band gaps may propagate through 
the structure. The band gap zones are indicated with hatched regions in the 
diagram. 

We may now consider two kinds of optimization problems. Either we op-
timize the material problem modelled by (2.50) or we optimize the structural 
problem modelled by (2.47). 

2.11.2 Optimization of hand gap materials 

An obvious goal for the optimization of band gap materials is to maximize 
the relative band gap size. In this way the range of prohibited frequencies 
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Fig. 2.50. Left: single cell, middle: 3 by 3 arrays of cells and right: band structure 
of a) pure epoxy, b) pure duralumin and c) duralumin cylinders (radius 30% of cell 
size) in epoxy. Hatched areas denote band gaps. The horizontal axes denote values 
of the wave vector k on the boundary of the irreducible Brillouin zone. The band 
diagrams are based on the solution of 15 eigenvalue problems with varying k. 

will be wider and more signals may be sent through a waveguide based on 
defects in the band gap material. 

The design problem is a two material problem. We want to distribute 
two non-void phases in the design domain (base cell). For reasons that will 
become clear later, we here choose a linear material interpolation between 
the phases, i.e. the wave shear modulus and mass density are interpolated as 

ti(Pe) _ (1 — Pe)P1 + Pe /12 and P(Pe) _ ( 1  — Pe)Pl + peP2 

where Pi  and µ2  are the shear moduli of material one and two, respectively, 
P1 and p2  are the mass densities, and the interpolation density pc  belongs to 

[0 , 1 ]. 
The objective is to maximize the relative band gap size between to bands 

j and j + 1, i.e. maximizing the lowest value of the overlying bands and 
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minimizing the maximum value of the underlying b ands. This can be written  
as a (double) max-min problem  

	

o02 (P) 	
nkn w^+1 (k ,  P) — m^ax w^ (k , P)  

	

Px 
 c(P) = wo (P) 	

2 
min w^+1 (k, P) + max w32  (k ,  P)  

(2.51)  

This is a "dirty" objective function in the sense that it is a max-min problem  
with varying critical points (the k-vector(s) for the critical frequencies may  
change during the optimization) and it may have several multiple eigenval-
ues. Interestingly, however, there is no need for a volume fraction constraint  
in the problem since neither a pure phase one structure produces a band gap  
(see e.g. Fig. 2.50a) and nor does a pure phase two structure (see e.g. Fig.  
2.50b). Somewhere in between there must be a volume fraction that results  
in the biggest band gap. Another interesting observation is that due to the  
missing volume constraint, the usual SIMP interpolation becomes useless in  
ensuring black-and-white designs. However, this is not a big problem since  
by experience, the optimized designs tend to be mostly black and white any-
way. Finally, the mesh-independent filtering techniques works badly due to  
the missing volume constraint. Therefore, the regularized penalty function  
method (1.39) is used to ensure black- and-white and mesh-independent de-
signs for this design problem.  

The optimization problem may then now be written as  

max  
P 	wô(P)  

s.t. [K(k) — w 2 M1 u = 0, k E [F — X — M —  T] , 

0< p„<1, e=1, ,N  

and may be rewritten in the more convenient bound formulation  

max =  /3 

s.t. 	[w3 + 1  (k)],,, > Q, m = 1, . . , M  

[w 3 (k)] <(i 	m = 1,..., M  

[K (k) — w 2M] u = 0, k E [F — X — M — T] ,  

0< pe <1, e= 1,.. ,N,  

where the two first constraints take the M most critical values into account.  
This problem may efficiently be solved using MMA.  

Results from optimizing the epoxy/duraluminum structures from Fig. 2.50  
are shown in Fig. 2.51. The first example maximizes the relative band gap  
size between the first and the second band. The result is an almost square  
inclusion of a duraluminum in the epoxy matrix. The relative band gap size  
has increased from 0.32 for the circular inclusion in Fig. 2.50c to 0.65 for  

ziw2  (P)  

(2.52)  

(2.53)  
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Fig. 2.51. Maximization of relative band gap size between a) first and second hand 
and b) second and third band. 

the square inclusion structure in Fig. 2.51a. The second example maximizes 
the relative band gap size between the second and the third band. In this 
case, the resulting structure consists of diamond and circular inclusion of 
duraluminum inclusions in the epoxy matrix. The relative size of the second 
band gap has increased from 0.11 for the circular inclusion in Fig. 2.50c to 
0.61 for the structure in Fig. 2.51b. 

2.11.3 Optimization of band gap structures 

The material design problem in the previous sub-section assumed infinite 
periodicity of the material. This means that the influence of boundaries as 
well as the influence of defects in the periodic structure can not be modelled. 
In order to model finite domains we use the wave equation (2.47) and the 
objective function here may be to minimize the magnitude of the wave at the 
boundaries (hinder wave propagation) or to maximize the wave at certain 
points in the structure (wave-guiding). 

The optimization problem looks very much like the one defined for struc-
tures subjected to forced vibrations (Sect. 2.1.2) (Sigmund & Jensen 2002b, 
Sigmund & Jensen 2002a). Here, however, the input point and the point to 
be damped are not coincident. The difference may be seen as the difference in 
optimizing for minimum compliance (Chap. 1) and in optimizing compliant 
mechanisms (section 2.6). 

An optimization problem solving the problem of minimizing the wave 
magnitude at a point, a line or an area of a structure subjected to forced 
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vibrations with frequency 12 can be written as  

min c = ÛTLu  
P 

s.t. 	(K + i 12C-122 M) u=f 	
(2.54)  

E vePe < V, 	0 < pvnin < Pe < 1 , e = 1 , , N  
e=1  

where L is a zero matrix with ones at the diagonal elements corresponding to 
the degrees of freedom of the nodes, lines or areas to be damped. Due to the 
complex damping term, the solution of (2.47) is complex and we use overbar 
(.) for the complex conjugate. This formulation corresponds to (2.6) with an 
added damping term and a slightly modified objective function. 

The sensitivities of the objective function can by the adjoint method be 
found as 

ac 
= 2^t AT  [UK  + i

.fl ac — ^2  âM l u 
aPe 	 ape 	ape 	ape J  

where R(.) means real part and A is the solution to the adjoint equation 

(K + iC —122 M) A = —Lu 

Figure 2.52 shows an example where the suggested optimization procedure 
is used to minimize wave propagation through a square plate. The left edge 
if subjected to forced vibrations with frequency 12 = 200, the left and right 
edges have absorbing boundary conditions and the top and bottom edges  

are free. The size of the plate is 0.12, the shear moduli are pi = 0.384 and 
µ2 = 0.769 and the specific densities are  pi = p2  = 1 (all data is normalized). 
The objective is to minimize the average amplitude at the right edge. The 
resulting structure is not unexpected a grid of alternating phase one and 
phase two material corresponding to a Bragg grating. This structure is known 
to reflect one dimensional waves. Compared to un-damped wave propagation, 
the magnitude of the outgoing wave has been decreased by almost 3 orders 
of magnitude. 

The problem formulation (2.54) may also be used to design wave guides 
as shown in Fig. 2.53. Here, all edges have absorbing boundary conditions. 
The centerpart of the left edge is subjected to forced vibrations and the  

objective function is to maximize the wave magnitude at the center of the 
lower edge. The resulting structure is intriguing. Apparently, the wave is bent 
by a wave guide based on curved Bragg gratings. It is seen from the wave 
picture (Fig. 2.53c) that the mode at the output port is almost as strong as 
at the input port . 
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Fig. 2.52. Damping of wave propagation in a quadratic plate. a) Design domain and 
boundary conditions, b) optimized structure and c) the wave field (from Sigmund 
& Jensen 2002b).  
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Fig. 2.53. Optimization of waveguidance in a quadratic plate. a) Design do-
main and boundary conditions, b) optimized structure and c) the wave field (from 
Sigmund & Jensen 2002b). 

2.12 Various other applications  

This section discusses various recent applications of the topology optimization  

method [22].  

2.12.1 Material design for maximum buckling load  

In Sect. 2.10.3 we discussed a new class of materials with extremal elastic  

properties. This material class makes use of infinitely fine laminations of  

the constituent material ph ases so-called rank-1 laminates (c.f. Appendix  
5.4). Such materials are from a practical point of view not very useful since  

they have very low critical buckling loads when the softer phase has close to  

zero stiffness. Therefore, it makes sense to optimize material structures for  

buckling load rather than for normal linear loads. As we also discussed in  
Sect. 2.10.3 under bone-remodelling, a buckling load criterion may very well  
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Fig. 2.54. Modelling of non-local buckling using Floquet-Bloch wave theory (from  
Neves et al. 2002a).  

be the reason for why bone structure is a stiffness sub-optimal open-walled 
cell structure. 

In order to eliminate lamination type structures in the periodic cell, one 
may introduce a local buckling load constraint on the cell problem, just as 
we did for structural buckling problems in Section 2.2 (Neves, Sigmund & 
BendsOe 2002b). However, there is no guaranty that a cell periodic buckling 
mode is the most critical one, and therefore we should include also non-cell 
periodic buckling modes when we search for the most critical buckling load. 
This can be done by Floquet-Bloch wave analysis just as we did in Sect. 2.11 
for wave propagation problems. Figure 2.54 shows a buckling load diagram 
for varying wave-vectors k (see Sect. 2.11 for the theory) and some of the 
associated buckling modes for a specific square microstructure. It is seen 
that the most critical buckling mode is the shear mode which has a buckling 
load that is less than a third of the cell periodic mode. This demonstrates the 
importance of using Floquet-Bloch wave theory for modelling the problem. 

Figure 2.55 shows another example of a critical load diagram for square 
microstructures. The material structures are subject to uniaxial horizontal 
loading and we allow a tot al  volume fraction of 0.52 to be filled with stiff 
material. In the first case (Fig. 2.55a), the outer square frame is fixed to 
be solid and the rest of the material is evenly distributed in the interior of 
the cell. This results in a non-dimensionalized buckling load of 0.029. Now 
we maximize the minimum buckling load over all wave vectors along the 
lines F —X — M — r in the Brillouin zone. The optimized topology and its 
associated buckling diagram is shown in Fig. 2.55a. The buckling load for the 
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Fig. 2.55. Maximization of microstructural buckling load. a) Initial design with 
buckling load 0.029 and b) topology optimized design with buckling load 0.061 
(from Neves et al. 2002a). 

optimized material structure is 0.061 — an increase of more than a factor of 
two. 

2.12.2 Crashworthiness 

One of the most complicated optimization problem we can think of is the 
optimization of tr ansport vehicles for crashworthiness. First, the modelling is 
extremely complicated, involving geometric and material non-linearities, con-
tact and very complex geometries. Second, especially for automotive struc-
tures, the load conditions are unknown since a crash between two cars or 
a crash of a single car against a wall, a tree or a roll-over may happen in 
infinitely many ways. Third, the sensitivity analysis for path-dependent and 
dynamic problems is rather involved. 

These complications may be the reason why not much work has been 
done in applying topology optimization methods to crashworthiness design 
problems. Further problems that are expected in the applications of topol-
ogy optimization methods to crashworthiness problems is how to model the 
response for intermediate density materials and internal contact. Ford Mo-
tor Company has built up an  in-house software for crashworthiness design 
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based on the R .ADIOSS software for modelling (Soto 2001). The topology 
optimization can be categorized as a re-enforcement optimization problem 
and is performed based on heuristic criteria without sensitivity analysis (see 
also Sect. 2.12.4). 

A short description of recent work (Pedersen 2002b, Pedersen 2002c, 
Pedersen 2002a, Pedersen 2002d) on topology optimization of frame struc-
tures for crashworthiness is given in the following. The work considers simpli-
fied planar models ignoring contact between elements. However, the sensitiv-
ity analysis is derived analytically which makes the algorithm very efficient. 
The modelling is based on plastic beam elements and an implicit dynamic 
Newmark time-stepping algorithm for obtaining the transient response. 

The formulation of the optimization problem must accommodate con-
flicting criteria such as a maximum acceleration constraint to avoid driver 
and passenger injuries due to too high g-forces (e.g. whip-lash) and a max-
imum deformation constraint to avoid passenger and driver injuries due to 
penetration of the passenger cabin. These requirements are best met by a 
structure with constant high acceleration (for example just below the head 
injury criteria (HIC) acceleration) throughout the crash. Therefore the op-
timization problem is formulated as a min-max problem where the error in 
obtaining the prescribed acceleration ii in M design points is minimized. 
This optimization problem may be written as 

min 	max 	iii,,,,(h) — ii7n 1 
h m=1,2... ,M 

s.t. r(t, h) = 0, 

Ehe be le  < V, 
e=1 

0 < llm, z n  < he  < lbmaæ , e = 1,  • .. , N 

(2.55) 

where be  is the thickness of element e, le  its length and he  is the design 
variable (height of the beams). The residual r(t, h) = 0 describes the dynamic 
equilibrium where t is the time. 

An example of the design of a car-front for frontal crash is shown in 
Figs. 2.56 and 2.57. 

Other applications of topology optimization to damage problems are dis-
cussed in Sect. 3.6 and an overview of literature on material non-linearities 
and damage related problems are found in [22] and [31]. 

2.12.3 Bio-mechanical simulations 

Models for bone remodelling and optimal design have mutually provided 
inspiration for new developments in either area (see Pedersen & Bends0e 
(1999) for a collection of papers dealing with such aspects [7]). It thus turns 
out that there is a close similarity between the optimality criteria algorithm 
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Fig. 2.56. Sketch of the design domain for crashworthiness design of a car. The  
front part of the car is modelled by 272 plastic beam elements (c). 

and schemes for bone remodelling. Also, in many isotropic remodelling algo-
rithms, the relationship between density and the elasticity modulus of can-
cellous bone is modelled exactly like in the SIMP model. Furthermore, when 
orthotropy is taken into account, Wolff's law for bone predicts that stresses 
and material axes are aligned, exactly as for minimum compliance design, 
see Sect. 3.1.4. Even though it is commonly agreed that the bone does not 
attain, from a structural optimization point of view, a stable optimal con-
figuration with respect to any given static loads, the similarity between the 
two types of modelling has suggested that optimal remodelling will provide 
a framework for simulating the adaptation of bone structure that is subject 
to external loading. We will not elaborate further on this here, but refer to 
the vast literature on the subject [7]. 

2.12.4 Applications in the automotive industry  

Since the introduction of the idea of treating structural topology optimization 
as a material distribution problem this subject has evolved substantially and 
it has changed the design process in the automotive industry ll  by providing 
better structures, not only in the early stages of the process, but also as a  

technique to improve component designs in subsequent phases. 

11 This section is based on a text kindly provided to us by Ciro A. Soto, Ford Motor 
Co., Dearborn, MI. 
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Fig. 2.57. Topology optimized frame structure. Response curve and snapshots of  

the deformations. The goal was to obtain a constant acceleration throughout the  

crash.  
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Fig. 2.58. Bone remodelling simulation for multiple loads. Femur longitudinal 
cuts. Two sets of results depending on cost of bone creation. By courtesy of P. A. 
Fernandes, J. M. Guedes and H. C. Rodrigues. 

Among the first publications on topology optimization applications in 
the automotive industry are Huang, Walsh, Mancini, Wlotkowski, Yang & 
Chuang (1993) and Yang & Chuang (1994). They implemented a topology  
optimization software that used a commercial finite element method code to  

perform the structural analysis, and solved automotive design problems with  
a large number of degrees of freedom.  

Structural topology optimization is an important tool for structural de-
signers in the automotive industry. In the first half of the 20th century, new  

structural designs were obtained using much of the experience of the de- 
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Fig. 2.59. Bone remodelling with tapered hip prosthesis, contact conditions, for 
multiload case and with bone ingrowth modelling. By courtesy of J. Folgado, J. M. 
Guedes and H. C. Rodrigues. 

signer. However, with the introduction of structural optimization in the early 
1960s, plus the advances in topology optimization in the 1990s, design pro-
cesses have changed dramatically in the industry. Nowadays, computers help 
to create new topological designs in a matter of minutes using commercially 
available structural topology optimization software. The applications of such 
tools in the design cycle have had a tremendous impact on the final product 
and in the design process as well. There are many types of structural prob-
lems that can be encountered in the automotive industry, from simple linear 
static problems like a bracket design, to non-linear transient problems like 
designing for crashworthiness. 

Software for topology optimization In 1989 a company in Japan, Quint 
Co., released Optishape, a commercial software to perform topology opti-
mization using the approach of Bendsoe & Kikuchi (1988). Since then many 
other CAE-software companies have developed similar packages for appli-
cations in the aerospace and automotive industry. Among them there are 
Optistruct (from Altair Computing, USA), Construct (from MSC Software, 
USA) and Catopo (from CES Eckard GmbH, Germany). Ford Motors devel-
oped its own topology optimization software in 1992 called TOP (Hu ang et al. 
(1993), Yang & Chuang (1994), Soto, Yang & DeVries (1996), Soto & Yang 
(1999)) and integrated it into a more comprehensive structural optimization 
software called Optcom which is also able to do shape and size optimiza- 
tion, plus sensitivity analysis based on simulations done with MSC/Nastran 
structural analysis software. Thanks to the availability of such software since 
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the early 1990s the automotive industry has included the use of topology 
optimization techniques in their structural design processes. 

Challenges in vehicle design A vehicle can be succinctly described as a 
payload box (cabin and trunk) on a suspension system (wheels and suspen-
sion) propelled by an engine (power train). This three-element description 
interacts with the rest of the world through three other elements: human 
beings (conductor and passengers), road (in contact with tires) and environ-
ment (wind, temperature, pressure, obstacles, pedestrians). This simplified 
view will be used to quickly review three challenges engineers face during the 
design process. The first challenge is the number of loading conditions that a 
vehicle structure is subject to during its entire life. The second challenge of 
vehicle design is the variability within each design condition. Roads are not 
perfectly fiat; tires do not wear uniformly; steel quality varies from batch to 
batch, etc. Finally, engineers also have to deal with multidisciplinary aspects. 

Stiffness maximization of vehicle structures The structural body of a 
vehicle is required to provide a stiffness in bending and torsional directions 
beyond some lower limits prescribed by the design team based on previ-
ous experiences and/or competitive vehicles. Maximization of the stiffness is 
equivalent to minimization of the mean compliance of the structure under a 
given load. This type of problem can be solved not only for components, but 
also for vehicle structural skeletons (body structures). In its rnultiload format 
(see Sect. 1.5.1), more than 80% of structural topology design optimization 
problems in industry can be addressed by solving compliance minimization 
problems. Here one often seeks the Pareto curve by solving several optimiza-
tion problems for different sets of weights. This is a very common situation 
in automobile design, where two or more responses go through a trade-off 
analysis to determine the final design. 

Figure 2.60 shows a compliance optimized body structure (also known 
as"the body in white") of a sedan vehicle. The finite element meshes used 
for such structures can easily reach 200,000 or more finite elements. The 
design objective is to maximize the torsional and bending stiffness. These 
two stiffnesses are important for static loading, for ride and handling and 
also from the vibrational point of view. 

Noise, vibration and harshness (NVH) NVH is a vehicle response that 
passengers feel and judge continuously when the car is running. Vibrations 
from 20 Hz up to 5000 Hz must be minimized in a vehicle design to reduce 
discomfort on passengers. There are three main sources of vibrations: power 
train (engine and tr ansmission), wind, and road-tire interaction. Each one of 
them has its own frequency range and are resolved in different ways. Power 
train vibrations are well defined in terms of their frequency spectrum since 
they come at known rpm values. In such cases, the optimization problem has 
the design objective of preventing structural natural frequencies to coincide 
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Fig. 2.60. A compliance optimized body structure of a sedan vehicle. Dark areas 
indicate where more material improves the performance in torsional and bending 
stiffness simultaneously. By courtesy of Ciro Soto and Ford Research Laboratory. 

Fig. 2.61. Reinforcement of the back-plate of a sedan. Dark areas indicate where 
more material improves the performance in torsional and bending stiffness simul-
taneously. By courtesy of Ciro Soto and Ford Research Laboratory. 

with the power train frequencies. Wind vibration and noise are caused by 
vibratory pressure of the wind on windshield, window glasses and other ex-
ternal panels. These vibrations are usually reduced by changes in the contour 
and finish of the vehicle external surfaces. Vibrations coming from road-tire 
interaction (harshness) are more difficult to treat because the range of fre-
quencies is very wide and sometimes it is impossible to provide a structure 
with low vibration for the entire range. There are two main approaches to 
deal with structural vibration problems. If the frequency spectrum of loads 
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is very well defined with distinguishable frequencies, the manipulation of 
the natural frequency spectrum is the better approach. Moving up or down 
natural frequencies can be achieved using topology optimization techniques. 
However, if the frequency spectrum of loads is very dense, with almost white 
noise characteristics, the reduction of the magnitude of vibrations is the bet-
ter approach. This can be done when the simulation is performed as a forced 
frequency vibration problem (cf., Sect. 2.1.2, [14]), rather than a free (eigen-
value) vibration problem (cf., Sect. 2.1.1, [14]). The former approach works 
on the cause of the problem, while the latter works on the symptoms. 

Design for stress reduction - durability Durability is the term used to 
describe the fatigue phenomena in the automotive industry. The goal is to 
build a vehicle with a useful life span of several hundred thousands kilometers 
without experiencing any fatigue problems. The main difficulty lies in the 
prediction of life (number of loading cycles) for the random loads acting 
during the life time of the vehicle. Even more difficult is to compute sensitivity 
coefficients of life with respect to changes in the thickness of p anels or changes 
in curvature. In addition, there has always been a controversy about including 
local constraints in topology optimization problems. One side of the argument 
is that topology is a global property of the structure and should not be subject 
to point-wise constraints. On the other h and, local topology features (such 
as holes) are often dominated by local structural behavior (e.g., stresses). 
Nevertheless, there has been several attempts to include local stresses into 
the problem formulation (cf., Sect. 2.3, [16]). 

Topology of embossed ribs in structural shells One technique used to 
increase local stiffness of structural shells is the addition of embossed ribs 
(also knows as beading). These are stamped indentations with given length, 
depth and separation to provide directional rigidity to the shell. The differ-
ence between doing the standard topology optimization and embossed rib 
optimization is that the goal is not to look for isotropic material layout, but 
for a layout and orientation of a fixed orthotropic stiffness property. More 
specifically, when the design variable is close to zero, the local stiffness prop-
erty (membrane and bending components) must be of an isotropic material 
plate of given thickness; and when the design variable is close to one, the lo-
cal stiffness properties must be that of an orthotropic ribbed plate. In order 
to achieve this a new model is needed to simulate the structural behavior 
of embossed ribs (see Soto & Yang (1999)) based on orthotropic plate mod-
elling (cf., Chap. 3). Since the local stiffness properties then depend on the 
amount and location of the embossed ribs and also depend on their orien-
tation, the optimization problem is posed with two design variables, namely 
local rib-amount and orientation. See the paper (Soto 2002) for examples. 

Topology optimization for crashworthiness In crashworthiness anal- 
ysis of transportation vehicles there is a long list of complex phenomena: 



158 	2 Extensions and applications 

non-linear materials (plasticity, hardening, etc.); non-linear geometry (large 
deformations and displacements, buckling); dynamics (inertial forces); sur-
face contacts (including self-contact of members); and strain rate effect due 
to the speed of the crash, just to mention some of them. One of the main 
difficulties in the crashworthiness design is the simulation of the phenomena. 
A single simulation may take 24 to 30 hours on a supercomputer, and days in 
a 2002-model workstation, hence, any attempt to do topology optimization, 
where each finite element has at least one design variable, must carefully 
consider the use of more CPU time. See also the discussion in Sect. 2.12.2. 



3 Design with anisotropic materials 

In Chapters 1 and 2 we have concentrated on the generation of optimal 
topologies based on the use of isotropic materials within the framework of 
"classical" black-white (or 0-1) structures. Early developments in topology 
optimization were build around the employment of composite materials as an 
interpolation of void and full material. This was founded on theoretical work 
that had lead to the understanding that the issue of existence of solutions can 
be resolved by extending the design space to include relaxed designs, here in 
the form of composites. 

When introducing composites as part of the solution method in topology 
design one has to deal with a number of aspects of materials science and 
specifically methods for computing the effective material parameters of com-
posites. Thus homogenization is an intrinsic part of topology design together 
with the area of material science which is concerned with bounds on the prop-
erties of composites. The latter deals with the limits on the possible effective 
material behaviour and directly gives information on the optimal use of local 
material properties. 

What is thus named the homogenization approach for topology design 
constitutes the basis for many studies in topology design. One can here dis-
tinguish between the use of the methodology mainly as a tool for interpolation 
of properties and studies where existence of solutions is a central aspect. One 
will find that many of the developments in Chap. 2 have a counterpart based 
on the homogenization method as an interpolation tool. On the other h and, 
the complete theoretical insight of the existence issue has presently only been 
gained for problems involving compliance and fundamental frequency opti-
mization [4]. 

Design with composite materials is, of course, an  important area in its 
own right [24]. This involves such issues as the optimal choice of orientation 
of an  orthotropic material and especially the optimal layup of laminates. 
Moreover, one can choose to work with a completely free parametrization of 
the stiffness tensor in order to find the optimal design where any material 
can be used. The homogenization method and such aspects of the optimal 
use of material in a broad sense is the topic of this Chapter. 
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Fig. 3.1. A structure made of materials with micro structure. Notice how the micro 
structure is rotated by a rotation of the unit cells. 

3.1 The homogenization approach 

3.1.1 Parametrization of design 

We have already noted that the original 0-1 problem statement of topology 
design lacks existence of solutions in the continuum setting (the distributed 
problem) [34], [25]. We have hitherto used a restriction method to assure 
existence of solutions. On the other hand, existence studies shows that non-
convergent, minimizing sequences of admissible designs with finer and finer 
geometrical details that can be found for the original "0-1" problem and that 
these limits should be interpreted as designs where composites made from 
the original material (and void) are integral parts of the optimal structure. 

If we decide to work with an extension of the design space, the key to 
assuring the existence of solutions to our basic shape optimization problem 
with unknown topology is thus the introduction of composite materials con-
structed from the given isotropic material (as defined by E kt  of (1.3)) [4], 
[5], [34], [25]. The design variable is then the continuous density of the base 
material in these composites. We immediately note that such a relaxation of 
the problem in itself provides an interpolation for use in computations, as 
the composites allows for a density of material, i.e., a definition of "grey" 
Introducing a composite material consisting of an infinite number of infinitely 
small holes periodically distributed through the base material, the topology 
problem is consequently transformed to the form of a sizing problem where 
the sizing variable is the material density p. As in S1MP, the on-off nature of 
the problem is avoided through the introduction of this density, with p = 0 
corresponding to a void, p = 1 to material and 0 < p < 1 to the porous 
composite with voids at a micro level. We thus in this situation have a set of 
admissible Ead stiffness tensors given in the form: 
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Fig. 3.2. Layered materials for single load cases in dimension 2. The build-up of 
a second rank layered material, by successive layering of mutual orthogonal layers, 
resulting in an orthotropic material. 

Geometric variables µ,'y,.. E L°°(S2), angle 0 E L°°(12) 

Eijkt (x) = Fijkt (U(x), "Y(x), .. , 0(x)), 

density of material p(x) = p(µ(x), y(x), ...) 
	

(3.1) 

f„ p(x)(1S2 < V - 0 < p(x) < 1, x E S2 , 

where Êijkt  (x) are the effective material parameters for the composite. These 
quantities can be obtained analytically or numerically through a suitable mi-
cro mechanical modelling (cf., Sect. 2.10 on material design; see also below). 
The composite material will, in general, be anisotropie (or orthotropic) so the 
angle of rotation 0 of the directions of orthotropy enters as a design variable, 
via well-known transformation formulas for frame rotations. Observe that the 
density of material p is, in itself, a function of a number of design variables 
which describe the geometry of the holes at the micro level and it is these 
variables that should be optimized. This means that one typically will have 
more than one design va riable per spatial point (or mesh element). 

Note that for any material consisting of a given linearly elastic material 
with microscopic inclusions of void, intermediate values of the density of the 
base material will provide the structure with strictly less than proportional 
stiffness (see Fig. 3.4). In an optimal structure one could then expect to find 
p-values of 0 and 1 in large areas. On the contrary, the optimal application 
of the microstructures (see later) usually results in a very efficient use of 
intermediate densities of material and the resulting designs have large areas 
of "grey" One central aspect of this optim al  employment of composites is 
the possibility to adapt to the directions of strain/stress — in a manner of 
speech, isotropic materials "waste" material also on non-loaded directions. 
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Fig. 3.3. A 3-dimensional cell of a rank-3 layering, with orthogonal layerings at 
three different scales. This microstructure is useful for single load problems in 3 
dimensions. 

In the initial studies of the homogenization approach, composites consist-
ing of square or rectangular holes in periodically repeated square cells were 
used for planar problems, and these still play a central role in many appli-
cations. Later so-called ranked laminates (layers) have also become popular, 
both because analytical expressions of their effective properties can be given 
and because existence of solutions to the minimum compliance problem for 
both single and multiple load cases in this case can be formally proved (with-
out any additional constraints on the design space). 

Figure 3.1 shows a two-dimensional continuum structure made of a ma-
terial with microstructure and illustrates how the rotation of the unit cells 
influences a microscopic view of the material. Figures 3.2, and 3.3 show lay-
ered microstructures that are regularly used for optimal design 1 .The figures 
show the unit cells for a material with a periodically distributed microstruc-
ture, so the cells in the structure are considered as being infinitely small, 
but infinitely many. Finally, Fig. 3.4 shows the non-linear density-stiffness 
relation for a composite with square holes aligned with the axes of reference. 
Also shown in this figure is the dependence of the effective properties on the 
angle of rotation of the cells. 

3.1.2 The homogenization formulas 

The "homogenization approach" to topology design of continuum structures 
as described above relies on the ability to model a material with microstruc-
ture, thus allowing for the description of a structure by a density of material. 
Here one takes an  approach where the porous material with microstructure 
is constructed from a basic unit cell, consisting at a macroscopic level of 
material and void. The composite, porous medium then consists of infinitely 
many of such cells, now infinitely small, and repeated periodically through 
the medium. At this limit, we can also have continuously varying density of 

It is common in the theoretical materials science literature to see these structures 
denoted as laminates. However, to avoid confusion with the use of this word in 
a structures context we call these structures "layerings". 
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Fig. 3.4. The dependence of the effective material properties of a periodic com-
posite with square holes in square cells on the size of hole and the angle of rotation 
of the cell. a): The effective properties in a frame aligned with the directions of the 
sides of the cell. Dependence on material density p. The dependence on cell rotation 
(seen from a fixed frame), b) for a small sized hole with density of material in the 
cell of 0.91 and c) for a large sized hole with density of material 0.36 (from Bendsoe 
& Kikuchi 1988). 

material through the structure. The resulting medium can be described by 
effective, macroscopic material properties which depend on the geometry of 
the basic cell, and these properties can be computed by invoking the formulas 
of homogenization theory. 

The computation of these effective properties play a key role for the topol-
ogy optimization. Also, the formulas are central for comparing the different 
choices of cell structure and they form the basis for the topology design of 
the materials themselves, cf., Sect. 2.10 where the formulas have already been 
presented. However, for the sake of completeness of the presentation in this 
Chapter, the formulas of homogenization will again be briefly presented here 
for the case of dimension 2. For details, the reader is referred to the refer-
ences quoted in the bibliographical notes [4], [20]. Suppose that a periodic 
micro structure is assumed in the neighbourhood of an arbitrary point x of 
a given linearly elastic structure (cf., Fig. 3.1). The length of periodicity is 
represented by a parameter b which is very small and the elasticity tensor 
Elikl is given in the form 

Ea k1(x) = Eijk1(x, ) 

where y —+ E:jkl  (x, y) is Y-periodic, with cell Y = [Yin, Yid x [Y2R, Y2L] 
of periodicity. Here x is the macroscopic variation of material parameters, 
while x 1 gives the microscopic, periodic variations. Now, suppose that the 
structure is subjected to a macroscopic body force and a macroscopic surface 
traction. The resulting displacement field n (x) can then be expanded as 

ua (x) = n0 (x) + big (x .75 ) + 	 
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where the leading term no(x) is a macroscopic deformation field that is in-
dependent of the microscopic variable y. It turns out that this effective dis-
placement field is the macroscopic deformation field that arises due to the  

applied forces when the stiffness of the structure is assumed given by the  

effective stiffness tensor  

/
// 
	 k! 

 

EHki (x) 
= 1\7 1  ✓ v [

Fé7k! (x, y) — Ez7p4 (^, y) ay, 
  

dy  

Here Xkl  is a microscopic displacement field that is given as the Y-periodic  

solution of the cell-problem (in weak form):  

f LEZipa (x, y) 	
aygl  ] 8v dy  = 

f Eijkt (x, y) aye 
dy for all ça E Uy ( 3 . 3)  

where Uy denotes the set of all Y-periodic virtual displacement fields.  

With y11 	(yi , 0),  y12  = (y2,  0), y21  = (O, yi) and 
y22 	

(0, y2),  the  
variational form for the definition of the effective properties is:  

1  
Ek̂l ( x) = min 	ay(y23  — go, y kl — V)  vEUy 1Y1  

while the form of the equations (3.2) and (3.3) in compact notation is 

(3.2)  

(3.4)  

E ,kl (x) = II,I ay (y z3  — ykl Xkl)  (3.5)  

ay (y" — X" ,  (p) = 0 for all çp E Uy 	 (3.6) 

From Equations (3.2) and (3.3) we see that the effective moduli for pl ane 
problems can be computed by solving three analysis problems for the unit cell 
Y For most geometries this has to be done numerically using finite element 
methods [20] or, as  can be advantageous, by use of boundary element methods 
or spectral methods. For use in a design context the homogenization process 
should be implemented as an easy-to-use pre-processor (Guedes & Kikuchi 
1991). Equations (3.2) and (3.3) hold for mixtures of linearly, elastic materials 
and for materials with voids (Cioranescu & Paulin 1979). Figure 3.4 shows 
the variation of the effective moduli for a material consisting of square cells 
with square holes. 

It is important here to underline that the use of homogenized material 
coefficients is consistent with a basic property of the minimum compliance 
problem as  formulated in (1.1). To this end, consider a minimizing sequence 
of designs in the set of 0-1 designs defined in (1.3) and assume that this se-
quence of designs consists of microcells given by a scaling parameter b > 0. 
In the limit of b -+ 0, the sequence of designs has a response governed by the 
homogenized coefficients. It is a fundamental property of the homogenization 
process that the displacements u 6 (x) of the sequence of designs will converge 
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weakly to the displacement uo(x) of the homogenized design (cf., [4]). As the 
compliance functional is a weakly continuous functional of the displacements 
this implies the convergence of the compliance values. We can thus conclude 
that inclusion of homogenized materials in the design formulation does not 
provide for a jump in performance, but rather provides (some) closure of 
the design space. Moreover, at the same time we achieve a design descrip-
tion by continuous variables, and can avoid the recourse to any additional 
interpolation scheme. 

We remark that layered materials have analytical expressions for the ef-
fective moduli (see below) and this is a distinct advantage for optimization. 
For other types of micro voids the effective moduli have to be computed 
numerically for a number of dimensions of the voids in the unit cell, and 
for other values of densities the effective moduli can be interpolated using 
for example Legendre polynomials or splines; this gives an easy method for 
computing design derivatives as well. Note that the interpolation only needs 
to be carried out for different values of Poisson's ratio, as Young's modulus 
enters as a scaling factor. The plot in Fig. 3.4 was generated this way. 

Layered material We now consider a layered material (cf., scale 2 of Fig. 3.2 
rotated 90°) with layers directed along the y2-direction and repeated peri-
odically along the y l -axis. The unit cell is [0, 1] x R, and it is clear that the 
unit cell fields x'  are independent of the variable y2. Also note that in Equa- 
tion (3.2), the term involving the cell deformation field xkt  is of the form 

ax kl 
Eijpq  (x, y) â  , so an  explicit expression for xk`  is not needed. Using period-

icity and appropriate test functions and assuming that the direction of the 
layering coalesces with the directions of orthotropy of the materials involved, 
the only non-zero elements E1111, E2222, E1212 (= E1221 = E2121 = E2112), 

E1122 (= E2211) of the tensor E2jki  can be calculated as shown in Appendix 
5.4. Specifically, for a layering of two isotropic materials with the same Pois-
son ratio v, with different Young's moduli E+ and E—  and with layer thick-
nesses -y and (1 — -y) , respectively, the layering formulas (in plane stress) 
reduce to the following simple expressions: 

Elf 11 = It , 
E .1222 = I2 + v211, E11.212 = 1 	2  v lt, -.'1122 = 1111  

I1 = 1 	1 v2 yE_ 	F(1 —7)E+ , I2 - -yE++ ( 1  — y)E 

It has been noted earlier that layered materials (so-called rank-N layered 
materials) play an  important role as a class of composites for use in the 
homogenization approach. Such materials are created by successive layering 
of one material with composites already constructed. For example, the con-
struction of a rank-2 layering is as follows. First, a (first order) layering of 
the strong and the weak material (void in the following) is constructed (see 
scale 2 of Fig. 3.2). This resulting composite material is then used as one 

(3.7) 



166 	3 Design with anisotropic materials  

of two components in a new layered material, with layers of the isotropic,  

strong material and of the composite just constructed; the layers of this com-
posite material are placed at an angle to the direction of the new layering. 
The effective material properties of the resulting material can be computed 
by recursive use of the effective material parameters for a layering and the 
moduli are computed as the material is constructed, bottom up. The rank-N 
construction is analogous, and just includes more steps. For a rank-2 layering 
of material and void, with perpendicular layerings and with primary layer-
ings of density p in the 2-direction and the secondary layer of density -y in 
direction 1 (as in Fig. 3.2), the resulting material properties are: 

H  

E^i^i — pry(1 — 1/ 2 ) + (1 — µ)' E>>22 = µv 	ii , 	
(3.8)  

E2222 =  µE+ µ 2v2EH1 1, E1212 = °  

where E is Young's modulus and v is Poisson's ratio of the b ase material.  
Also,the total density of the strong material in the unit cells of this rank-2  

layered material is  

P=µ+(1— µ)'Y=µ+ry — µ'Y 

A detailed derivation of the layer formul as  is described in Appendix 5.4,  
where the relation of the homogenization theory to traditional engineering  

smear-out techniques is also underlined.  

The importance of the layered materials not only hinges on the analytical  

formulas for the effective material parameters. Of equal significance, studies  

on bounds on the effective material properties of composite mixtures made of  

two isotropic materials have shown that for elasticity the stiffest (or softest)  

material for a single load or multiple load problem can be obtained by a  

layered medium, with layering at several microscales 2  [4], [25]. For single load  
problems the stiffest material consists of orthogonal layers, with no more  

than 2 layers for dimension 2 and no more than 3 layers for dimension 3.  
For multiple load problems the stiffest material (for the weighted average  

formulation) consists of layers that are not necessarily orthogonal, up to 3  

for dimension 2 and up to 6 for dimension 3. The rank-2 materials are not  

the only composites which in 2-D achieves the upper bound on stiffness of a  

mixture of two materials [25]. The layered materials are thus not special in  

the sense of being uniquely optimal, but they are special in the sense that  

their effective material properties can be expressed analytically.  

Parametrization by moments The formul as  presented above become very  
cumbersome if one employs rank-N layerings with many non-perpendicular  

layers. In this case it is more convenient to work with the so-called moment  
formulation for the effective material properties [25].  

2  It is known that single scale microstructures cannot generate the stiffest structure  

in all situations (Allaire & Aubry 1999).  
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It turns out that the full range of effective material properties for all 
rank-N layerings in 2-D can be described by just 5 parameters (see Appendix 
5.4). These are the bulk density p of material together with four moments 
(ml , m2, m3, m4) that are parameters of the form 

m1 = ET` 1  tir cos(20'r), m2 = E;,"1 µ,. cos(49'')  

m3 = ET` 1 µr  sin(20T), m4 = Er i i  r  sin(40r) , 
with E µr = 1 

r=1 

In terms of these moments and the density p, the effective compliance tensor 
can for example be written as (in plane stress and for layerings of material 
and void) 

CH  = C+ + (1  — P) [Dr -1 	 (3.9) 
pE 

where the entries of the tensor D are 

D1111 = â(3+ m2 -4m1) 	D2222 = $(3+m2+4m1) 

D1122 = D2211 = g (1 - m2) 

D1112 = D1121 = D2111 = g (m3 - m4) , 

D1222 = D2221 = D2122 = D2212 = g (m3 +m4) 
1 

D1212 = D1221 = D2112 = D2121 = g (1  - m2) 

When considering all possible layer combinations as well as layer directions, 
the tensor CH  will be parametrized by (mi , m2, m 3 , m4 ) belonging to the 
convex set M given as 

mi+m3<1,-1<m2 <l, 
.M = m E R4  2mi(1 - m2) + 2m3(1 + m2)+ 	 (3.10) 

+(m2 + m4) - 4m 1 m3 m4 < 1 

This convex set also encompasses the material tensors of rank-2 and rank-
3 layerings. However, compared to a rank-3 layering described by 2 rela-
tive densities and 3 directions of layerings, by introduction of the moments 
(m 1 , m2 , m3 , m4) there is one less variable to worry about. If optimization is 
carried out using these moments one may wish to recover a composite from 
the optimal moments - it turns out that for any given set of moments, a 
composite with at most three layers can be can be constructed analytically, 
see Lipton (1994a). For 3-D a parametrization in terms of moments can also 
be given. Here one has to work with 15 moments and a characterization of 
the set of moments in terms of matrix-inequalities, see Diaz & Lipton (2000). 

3.1.3 Implementation of the homogenization approach 

The homogenization approach to design of a structure with composites can 
be implemented using the same flow of computations as for the material 
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distribution method with isotropic materials, see sections 1.2.2 and 1.2.3. 
However, two additional aspects have to be considered. First, a database of 
material properties as functions of the design variables should be generated, 
with one set of data for each allowed value of Poisson ratio. For layered 
materials no database is required, only a suitable subroutine. Second, the 
optimization routine should also cater for angles of rotations of the unit cells. 
Finally, the implementation should be able to remove checkerboard patterns 
as these also appear in this setting. 

The homogenization approach has been used as the basis for many design 
studies, encompassing many of the problems dealt with in Chaps. 1 and 2. 
Compared to use of for example SIMP, the homogenization approach requires 
additional design variables to describe the structure. On the other hand, one 
always works with microstructures of a given type, giving a direct physical 
understanding and in many cases a formal framework (homogenization the-
ory [4]) for computing the behaviour for intermediate densities when more 
involved physical situations are involved. 

In many cases the homogenization approach is actually used as a ba-
sis for computing black and white designs, and the extended design space 
that encompasses composites is not employed to obtain information about 
the optimal micro-scale use of material as well. Also, to obtain such "classi-
cal" designs, explicit penalties on the density (as discussed in Sect. 1.5.2) is 
typically needed to steer the design to a 0-1 format; in some circumstances 
neglecting the rotation angle of the cells in the composite constitutes a suffi-
cient penalization that results in such designs. For compliance design it is also 
known that the use of such sub-optimal microstructures consiting of square 
holes in square cells give rise to rather well defined designs consisting almost 
entirely of areas with material or no material and very little area with inter-
mediate density of material, i.e. very little composite material. This favours 
the use of this micro geometry for obtaining 0-1 designs and the success of 
the material distribution method in applications would probably never have 
come about if such sub-optimal microstructures had not been used in the 
initial numerical studies of the method (this was before the optimality of the 
layered materials had been proven). 

On the other hand, one of the main interest in using composites in the 
design formulation is to see how this can influence the effectiveness of a 
structure, and ultimately, to understand what constitutes the best structure. 
That composites have a big part to play in such design studies can be seen 
when computing minimum compliance designs with layered materials where 
the result usually consists of large areas of intermediate densities ("grey" 
areas of composite). 
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Fig. 3.5. Optimal design using a rank-2 material. Left: The optimal design using an  
element wise const ant density function and a 8-node displacement model. Right:  
The unstable checkerboard solution obtained when using a 4-node displacement  
model (from Jog et al. 1994).  
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Fig. 3.6. Optimal design using a rank-2 material strain energy density with penal-
ties on intermediate densities and on perimeter. a) shows the density distribution  
for the unpenalized case. In b) intermediate densities are penalized. In c) and d) in-
termediate densities and perimeter are penalized, with d) being a fine mesh variant  

of c) (from Jog et al. 1994).  

3.1.4 Conditions of optimality for compliance optimization - 
rotations and densities  

In the following we shall derive the necessary conditions of optimality for  
the minimum compliance design problem that employs composite materials  

in the parametrization of design. For this design formulation there are now  

two distinct types of design variables. First, the composite material is an  

anisotropic (normally orthotropic) material for which the angle of rotation of  

the unit cell is an important unconstrained design variable, and second, the  

sizes describing the unit cells constitute a different type of variables which  

are globally constrained through the volume constraint. For the latter, the  

derivation of the conditions of optimality follows directly from the devel-
opments in Sect. 1.2.1, so we will here concentrate on the problem for the  

directions of orthotropy.  

Optimal rotation of orthotropic materials The composites with cell  
symmetry described in the preceding sections are orthotropic, and the angle  

of rotation of the material axes of this material will influence the v alue of  
the compliance of the structure. It turns out that the optimal rotation can  

be found analytically and this is of great importance for computations and  
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it is interesting in its own right. Thus the optimal rotation of an orthotropic  
material is not only of importance for the present setting, but is equally sig-
nificant in the design of composite structures, laminates, etc. For this reason  

we will here derive the conditions of optimality for material rotations in plane  

stress/strain problems (i.e. 2-D) [24].  
Assume an orthotropic material as given. Then in the frame of reference  

given by the material axes of this material we have a stress-strain relation  

cr,3  = Etikjekl  

with E1111, E2222, E1122, E1212 being the only non-zero components of the  
stiffness tensor Ezjkl. We assume that E1111 > E2222 , and assume that a 
given set E ,  k = 1,... , M, of strain fields for a number of load cases are 
specified. With compliance design in mind, we see from the formulations 
(1.6) and (1.34) of the minimum compliance problem that our interest is to 
maximize the weighted sum of a number of strain energy densities: 

M 

VI' = 2 E  wk [E1111E11 2  +  E2222E222  + 2E1122e11E22 + 4E1212Ej^2 2 ^ 
k=1  

We now express the strains in terms of the principal strains eÎ, Eiji , where  
we choose IEi I > IEir I for convenience:  

k 

 

1 
 

Ell  

k  

E22 
 

[(e l; + efl) + (el; — e!r) cos 21» k ]  

[ (Er + E/r) — (Er  — Eli) COS 2111 
 

1 k 	k 
E 1 k2 = — —

2 
(e l;— 4 1 )  sin 20k 

 

Here 1jik is the angle of rotation of the material frame relative to the frame of  

the k'th principal strains. We are interested in the angle e of rotation of the  

material relative to a chosen frame of reference which maximizes the function  

W Each angle 7,bk is thus written as Ok = O — ak , where ak  is the angle of 
rotation of the k'th strain field (see Fig. 3.7).  

Inserting the expressions for the strains expressed in terms of the refer-
ence principal strains into the equation for W and differentiating, we get the 
condition of stationarity as: 

Wk  [Ak  sin 2(0 — ak ) + Bk  sin 2(0 — ak ) cos 2(0 — ak )] = 0 ,  
k=1  

Ak  = (EÎ 2  — E/r 2 )(E1111 — E2222)  

Bk  = (e — e )2(E2222  + E1111 — 2 E1122 — 4E1212)  

Stationarity is thus achieved if the following fourth order polynomial in sin 20 
is zero: 
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Fig. 3.7. The definition of angles of rotation of material and principal strain axes. 

P(sin 20) =a4 sin 4  20 + a3  sin3  20 + a2 sine  O + a l  sin 20 + ao 
2 

a4 =z3  + z4 a3 = 2z1 z4 — 2z3z2 

Z2 

2 	2 	2 	2 a2  =zl  + z2  — z3  — z4  

z1 = E w k  A k  sin 2ak  

Z32 	2 al = z2z3 — 2z l z4 i  ao = 4
— z l  

_ E wkAk cos 2a k  

	

k=1 	 k=1 

	

M 	 M 

z3 =2  E. Bk sin 4ak  z4 = 2 E w k  B k  cos 4ak  

	

k=1 	 k=1 

(3.11) 

The energy IV is periodic so there exist at least two real roots of P Also, as 
the order of P is four, the roots of P can be given analytically. The actual 
minimizer of the compliance is found by evaluating W for the four or eight 
stationary rotations. This feature is of great import ance for the numerical im-
plementation of the homogenization approach for optimal topology design, 
as the iterative optimization of a periodic function with several local min-
ima and maxima is very likely to give the wrong result. Also, the analytical 
derivation of the optimal angles saves considerably in computational time. 

For the single load case we can express directly the stationary angle z/) 
(using the principal strain axes as the reference system): 

sin 20 = 0 , or cos 27,b = --y,  with 7 = 
a Er 

+Err  and 

/3 

 

Er —Err 
3 a = (E1111 — E2222) > 0 , 	= (E2222 + E1111 — 

Inserting these values in the second variation of 14' with respect to zb 
(Pedersen 1989), it can be seen that the maximizing V) (i.e. the compliance 
minimizer) depends on the sign of the parameter /3. The parameter /.i is a 
measure of the shear stiffness of the orthotropic material. For low shear stiff-
ness, that is, /3 > 0 , the globally minimal compliance is achieved for z/i = 0, 

2E1122 — 4E1212) 
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i.e. the intuitive result that the numerically largest principal strain is aligned 
with the stiffer material axis; also, from the stress-strain relation, we see that 
in this case these axes are aligned with the axes of principal stresses. The 
materials used in topology design (as described in Sect. 3.1.1) are weak in 
shear i.e., ,3 > O. For certain (engineering) laminates with ply-angle f¢, 
22, 5° < < 45°, we can have the situation of high shear stiffness, i.e. 3 < 0 
(Pedersen 1989). In this case, cos 20 = —ry is the global minimum for com-
pliance as long as —1 < y <0( ly has the sign of f3 ), and for y<-1, =0 
is again the global minimum. Note that a similar analysis can be carried out 
based on given stresses (here the complementary energy should be minimized, 
c.f., (1.7), (1.35)). 

For three dimensional elasticity we have three angles of rotations possible 
for the axes of orthotropy (e.g. using Euler angles) and the expressions above 
for first variations with respect to angles become much more complicated. 
For the materials used for design, it is possible to show stationarity of the 
alignment of material axes, principal strain axes and principal stress axes. 
The full answer to the 3-D cases is still open [24]. 

For the materials involving multi-layered media (the rank-N laminates 
or layerings) the result on the optimal rotation follows by alternative means 
from the studies on optimal bounds on effective moduli of materials [25]. For 
these materials it is thus proven that for the single load case, the optimal 
rotation of the material is consistent with an alignment of the layerings with 
the principal stresses/strains and this holds in dimension two and three. 

We remark here that the problem of optimal design of the spatially varying 
angle of rotation of a fixed orthotropic material is not, in itself, well-posed 
in general. Relaxation is needed for this case also, as the introduction of for 
example layered materials consisting of the orthotropic material at various 
rotations extends the range of available materials. This is discussed in Fedorov 
& Cherkaev (1983); see also Thomsen (1991). 

Optimality conditions for density The conditions of optimality for the 
density parameters describing the stiffness of a composite can be derived 
exactly along the lines of Sect. 1.2.1. For the problems at hand we note 
that the tensor Ewa  now depends on geometric quantities which define the 
microstructure. For a square, 1 by 1, micro cell with a rectangular hole of 
dimension (1—µ) times (1--y) the density of material is given as p = µ+ry—try 
and the constraints on the design variables µ,'y are 

(µ + y — µy) (x,)df2 = V, 0 < µ(x) < 1 , 0 < ry(x) < 1 	(3.12) 

This relation also holds for the rank-2 layered material with layers of density 
µ and  -y.  For the present setting the optimality criterion update derived in 
Sect. 1.2.1 then has the format: 
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{max{ (1 — K, 0} if µK  BK < max{(1 — OAK, 0} 

µK+1 = 	

0µ

µKBK if max{(l — ()µK, 0} < µKBK < min{(1 + ()AK, 1 } ,  

min{(1 + ()pK, 1} if min{(1 + ()µK,1} < µKBK  

max{(l — 0710 0} if 1KEK < max{(1 — O7K, 0} , 

7K+1 = 7K EK if max {(1 - ()7x , 0} < ryKEK < min{(1 + ()7K,1} ,  

min{(1 +O7K,1}if min{(1+()7K,1} < 7KEK  

Here µK, 7K  denotes the variables at iteration step K , and B, E are  

nr 	̂
EZ 

BK = [!1K ( 1 — 7K)] - 1 E4llk 
	 P9 

 Gil ,7K)E4j(uK)eP9( uK)  
k=1  
n^ 	

8Ei  
EK = [AK (1 —  E^K)]

-1 
E

wk 	4   
(AK)7K)eij ( U K)EP9(uK) O 

k-1=1 	7  

Also here, A is a Lagrange multiplier that should be adjusted in an inner 
iteration loop in order to satisfy the active volume constraint. 

In an  implementation, the density update above can be combined with a 
parallel, but separate update that caters for the optimization of the rotations 
of the composites, using the roots of the polynomial (3.11). For stability of 
such a scheme it is typically best to rely on the use of the principal stresses. 

The parametrization (3.9) in terms of moments, together with the con-
straints (3.10) is not suited for use of the optimality criterion method. Also, 
for a straightforward application of for example MMA it is troublesome that 
the constraints (3.10) adds two extra constraints per element that are not 
simple bounds. However, as the effective tensor is concave in the moments 
(Lipton 1994c) this parametrization is perfectly suited for a hierarchical ap-
proach where locally optimal material properties are found (numerically) as 
solutions to a set of inner optimization problems. Such an approach will de-
scribed in the following section. 

3.2 Optimized energy functionals  

The introduction of composite materials as part of the design formulation 
signifies that the goal of the optimization is both to determine the opti-
mal spatial distribution of material as well as the optimal local use of this 
material. If we allow the material variables to vary from point to point it 
seems reasonable to accentuate this local optimal choice of microstructure, 
and this perspective gives the inspiration for some alternative formulations 
of optimization problems involving composites [26]. 
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3.2.1 Combining local optimization of material properties and 
spatial optimization of material distribution 

In the following, we will consider the material distribution method for general 
anisotropic materials where an  extra set of local variables (for example cell 
rotation and some geometric parameters) define the material tensor E of the 
problem. In turn the local variables also determine the pointwise density p of 
material (the bulk density), or rather, the density p determines the volume 
of material available for the pointwise (local) construction of E. Within this 
framework we can then write the minimum compliance design problems (1.6) 
and (1.7) as 

	

max 	max 	min (
1 
 f Eijki(x)Eij(u)Ekl(u)d 1l — 1(u)}

dnsity 	E for 	uEU l 2 Z 	 )))  
p (x ) xEg microstructure 

f 
pdO<v of density p(x) 

n 

(3.13) 

	

min 	min 	min 
diva+ 	

{ 
1 

J Cijkt(x)vijvkid1l } 	(3.14) 

	

density 	E for 	 111 

	

p(x), xES2, microstructure 	!_0 2  S2 

fr, pdSZ<V 

	

of density p(x) 	a .n=2  

The basic idea is then to interchange the optimization over the design of 
the microstructure and the optimization over stresses or displacement. This 
interchange gives valuable insight in problem structure and provides us with 
a basis for constructing some alternative solution procedures and computa-
tional schemes. 

The interchange of min-min in the stress formulation (3.14) results in 
an equivalent problem as the constraint sets for the two operators in the 
inf-inf problem are given entirely in terms of the variable over which each 
individual infimum is sought. Introduction of, for example, stress constraints 
at the outer design level of problem (3.14) would destroy this feature. For the 
displacement formulation (3.13) the interchange will in general not result in 
an equivalent problem. Nonetheless, as we hava that 

sup inf (k(x, y) < inf sup 0(2, y) , 
x Y 	 Y x 

for any function of two parameters, the interchange will provide us with an 
upper bound on the optimal objective in (1.6) and thus a lower bound for the 
compliance of the optimal structure. In situations where the problem satisfies 
conditions for the existence of a saddle value (saddle point), the interchange 
will result in an  equivalent problem also for the strain case this holds if 
we work in the framework of layered materials (see Sect. 3.3), for a free 
parametrization of the tensor E (see section 3.4), and for laminated plates 
(see Sect. 3.5.2). 
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The interchange of equilibrium analysis and optimization of local material 
properties results

( 

 in a reformulated displacement based problem 

	

max min { f W(p, Eij (u))dSl — l(u) 5 	 (3.15) 
p(x), xEi2, uEU l 2 	 111 
f^ pdi2<V 

where W (p, E) denotes the pointwise optimal strain energy density expression  

given by  

N' (p> E) =  max 	{ 2EijktE ijEkt 7 
E for 	l 	 J  

microstructure  
of density p(x)  

(3.16)  

Here we have used that the optimization of microstructure is pointwise, so  

that one can move this extremization under the integration over the domain.  

In the stress based casecaase we have a problem form 

min 	min { 
J 

iI(p,aij )d1l l } 	 (3.17) 
p(x), sen, 

divo,n
a} f=o L. f2 	 1)) 

.^n pdo<V 	— t  

with an optimized complementary energy density  

11(p,aij ) = 	min 	{Ciiktoii crk!}
E for  microstructure  

of density p(x)  

(3.18)  

For the optimization problems consisting of (3.15)-(3.16) and (3.17)-(3.18) we 
have two coupled optimization problems, which we label the local anisotropy 
and the material distribution optimization problems, respectively. The ma-
terial distribution problems are the problems (3.15), (3.17). These are the 
"master" problems (the outer problems) of this hierarchical formulation and 
they deal with the spatial distribution of resource/material (a global prob-
lem). The local anisotropy problems are the problems (3.16) and (3.18). These 
inner "slave" problems address the question of optimal choice of material (a 
local problem). 

The local anisotropy problems (3.16) and (3.18) correspond to finding the 
pointwise stiffest material for a given fixed strain or fixed stress field and a 
given density of material. This is a standard problem setting in the theory of 
variational bounds on effective moduli of anisotropic materials. It is of great 
importance in its own right and has been the subject of intense studies in 
material science. 

The equilibrium problem in (3.15) seeks kinematically admissible equi-
librium displacements for the locally optimum energy functional, for a given 
distribution of resource p , while the equilibrium problem in (3.17) seeks stati-
cally admissible equilibrium stress fields which minimize the locally optimum 
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Fig. 3.8. Optimal design using a hierarchical approach. The resulting structure is 
here a low volume solution to the problem shown in Fig. 3.5. 

energy functional, again for a given distribution of resource p . It should be 
noted that, since the locally optimum energies depend on the displacement 
and stress fields in a complex fashion via the optimization problems (3.16) and 
(3.18), the inner equilibrium statements of the problems (3.15) and (3.17) are 
in fact constitutively non-linear and non-smooth elasticity problems, except 
in very special cases. However, as we shall see in the coming sections, there 
are important cases of material modelling where these equilibrium problems 
become problems in linear elasticity or where the non-smoothness is isolated 
to unimportant strain/stress values. For the strain based problem, it is worth 
remarking that the equilibrium problem remains a convex problem after the 
optimization over local material properties. The optimal strain energy den-
sity W (p, e) is derived as a maximization of convex functions in the strains 
and is thus in itself convex in these variables. 

3.2.2 A hierarchical solution procedure 

The problem separation described above naturally leads one to consider a 
different computational implementation as compared to the procedure de-
scribed in Sect. 3.1.3. Such an implementation can for example work with 
problem (3.15) in the displacements and density only. We accordingly con-
sider the solution to (3.16) as given, either through an analytical or a com-
putational procedure. Then (3.15) has exactly the format of the compliance 
problem dealt with in Chap. I for the SIMP model, that is, the compliance 
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is a function of the density and is given by the solution of a minimum po-
tential energy problem. This problem can then be solved for example by 
an optimality criterion method or by MMA. Here one needs sensitivity in-
formation of the compliance, i.e., derivative information for the equilibrium 
problem of (3.15), which is given by the derivative of the optimized strain 
energy W with respect to the density. For an analytically derived optimal 
strain energy functional this derivative is straightforward to obtain, while for 
a computationally derived optimal strain energy functional this derivative is 
given simply as the Lagrange multiplier for the volume constraint of prob-
lem (3.16), i.e., the derivative is given directly from the computation of the 
optimal energy. The equilibrium problem in (3.15) is in general a non-linear 
problem, so the equilibrium problem requires an  inner iteration loop at this 
point, but computational experience has shown that, as the optimization over 
the bulk density is in itself iterative, only one (or a few) equilibrium iterations 
need to be used for each design update. 

One of the advantages of the computational program just described is 
that the main flow of the procedure is independent of the modelling of the 
material used for the description of design. This latter information is added 
as  an external module (the solution of (3.16)). This feature makes it possible 
to generate flexible procedures, where the material model can be changed 
easily. 

In many implementations the non-linear analysis iterations are avoided 
[26]. Thus linear analysis is applied for the equilibrium problem with fixed 
material parameters and problem (3.16) is used to generate the parameters 
of the optimal stiffness tensor for each displacement iteration. The direct 
coupling between the material parameters and the displacements is there-
fore ignored in the implementation of the linear equilibrium analysis. This 
computational procedure is especially attractive for multiple load problems 
where the use of the linear analysis also circumvents the coupling between 
the displacements for the different loads that is introduced via (3.16). 

The procedure described here has been implemented for a broad variety 
of models [26]. It is particularly well suited for the parametrization by mo-
ments (3.9) of the effective parameters for rank-N layered materials needed 
for multiple load cases. Here the inner problem (3.16) becomes a convex 
problem that can be solved efficiently by computational means. In other sit-
uations, as we shall see in the following sections, this inner problem can ac-
tually be solved analytically. One can go one step further and solve the inner 
anisotropy problem by the material design method described in Sect. 2.10. In 
this situation one uses only microstructures which involve one length-scale, 
and the microstructure is designed by a topology design method as  described 
in Sect. 2.10. The computations involved in this approach are quite m assive: 
the number of local topology design problems equals the number of finite 
elements in the mesh defining the material distribution p. However, all these 
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Fig. 3.9. The MBB beam. The optimal distribution of material and associated mi-
crostructures obtained from a hierarchical approach. The local material anisotropy 
problem (3.16) has here been solved numerically, using topology design of the unit 
cell of a composite. The cell is not rotated - the necessary rotation arises from the 
material design (from Rodrigues et al. 2002). 

local problems are independent and can be solved simultaneously using par-
allel processing methodologies. 

Additional problem reduction In the development above we could have 
performed one further interchange for the stress case' namely the inter- 
change of the optimization over density and the extremum form of the equi- 
librium problem. Such an interchange results 

f

in the problem

min {II(a)}, 	fl(a) = min 	II(p , a)d1l 	(3.19) 
? diva+f=o 

 -n=t 	 p(x), xE12, 
fn  pdi2<V 

We have written problem (3.19) in a form which underlines that this re-
duced problem should be interpreted as an equilibrium only problems for 
a globally optimized complementary energy expression. The optimized en-
ergy is non-smooth and couples all degrees of freedom through the volume 
constraint. This latter complication can be circumvented by considering the 
volume constraint of the original problem (3.14) in the form of a penalization 
and not a constraint (Allaire & Kohn 1993, Allaire & Francfort 1993). With 
this interpretation problem (3.19) becomes 

min {HA (a)} , 1h(a) = min Fl(p, ) + Ap] dit , 	(3.20) 
density 

diva+f=0 	 p(x), xES2 -n=t  

3  Examples show that this typically does not make sense for the strain based 
setting. 
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where A is now a fixed penalty factor. For a computational procedure for 
problem (3.20) one could solve the inner problem by analytical or computa-
tional means and implement a non-smooth optimization method for solving 
the equilibrium problem. Such a procedure for layered microstructures is 
described in Allaire & Kohn (1993), while Allaire & Francfort (1993) have 
implemented a method, as outlined above, based on linear analysis, where 
both the material properties and the density is updated based on the alge-
braic solution of the optimization of the complementary energy (see section 
3.3 for the derivation of these expressions). Further details can also be found 
in Allaire (2002). 

3.3 Optimized energy functionals for the  
homogenization modelling  

In the following we will compute the optimal strain and complementary ener-
gies for rank-2 layered materials in 2-D, corresponding to the local anisotropy  
optimization problem for single load minimum compliance design. That is,  

we will develop the solution to problems. (3.16) and (3.18) for the class of  

composites that are rank-2 layered materials.  
We use here the parametrization of the stiffness of the rank-2 material by  

the two layer-thicknesses it and  -y,  see Sect. 3.1.2. If the primary layerings of  
density µ are placed in the 2-direction of our reference frame, the effective  

material properties in plane stress are (cf., (3.8))  

EH 

 

= 	
yE 

t111 - µ,y(l. - v2 ) + (1 - p)'  

E2222 = µE + iL2112 411 , 	E1212 =  0 

when the weak material is void, i.e. E-  -4 0. It is straightforward to verify 
that such a material is weak in shear, i.e. that the material parameters satisfy 

EH11 + E2222 - 2EH22 - 4E812 > 0 (cf., definition in Sect. 3.1.4). 

3.3.1 The stress based problem of optimal layered materials 

The results on optimal rotation of orthotropic materials shows that for the 
minimum compliance problem with a material which is weak in shear, the axes 
of orthotropy should be aligned with the axes of principal stresses  (71, 011  

This gives a complementary energy of the form 

H - 2C4̂ kl ai,j ak l = 2I  DI  ^Elllla7/ + E2222aj - ZEH22arall ]  

H 	H 
E1122 = µvE1111 ,  

with IDI = Eii11E2â22 — (E1î22)2 Here, we have the well-known relations  
between principal stresses and stresses in an arbitrary frame:  
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ar = 2 (all + a22 + Oar!  - a22) 2  + 442J 

all = 
2 

l al] + 0.22 - V(0.11 - a22) 2  + 442  

We see that the alignment of axes is consistent with the fact that E1212 = 0 
 for the layered material; the vanishing shear stiffness for the layered material 

plays no role as the material automatically rotates to a frame of zero shear. 
Note that the material law described by the energy expression above rep-

resents a non-linear material, by virtue of the optimal rotation and the fact 
that Erin   E2z22 . Here and in the following we use the term "material 
law"  to describe the characteristics of the optimized energy expressions. This 
should not be interpreted as properties of the layered materials in a phys-
ical sense, but expresses the peculiarity of the energy of a structure which 
automatically assigns the real material in accordance with the applied load 
(stress/strain field). 

We now fix the density p and express -y in terms of p from the relation 
p = p + -y — pry Stationarity of the energy with respect to the layer density 
p can now be found by standard but fairly lengthy calculations. We find the 
stationary layer density p and corresponding layer density y given as 

Pl atil 	 PI al  
= 

lard +( 1— P)larl , 7fall  + 

 values turn out to represent minimizing values if the value of p sat-
isfy the constraints 0 < p < p. This implies that the stresses should satisfy 
ajar/ # 0 and for such values of stress the optimal layering is a true rank-2 
layering. If ajar] = 0 we have a region with an unidirectional, single layer-
ing or a solid region corresponding to p = 0, -y = p or p = p, ry = O. The 
numerical values of stresses in the formula above indicate that there for the 
rank-2 regions are two distinct types of layerings depending on the sign of the 
quantity ajar/. We denote the two types of stationary layerings as mode I 

(a/an < 0) and mode II (gran > 0) materials, and the rank-1 materials as 
 mode III materials. Note that the expressions above were derived under the 

assumption that the direction of the outer layer of the rank-2 layering (cor-
responding to p) is aligned with an j , and that no restrictions where imposed 
on the relative sizes of ar and an The analysis shows that the optimization 
over layer densities automatically assures that the axis of maximal stiffness 
is aligned with the axis of the largest stress, in accordance with the result 
on optimal rotations. Also note that a second, equally optimal layering can 
be obtained by aligning the outer layerings with the stress ai ; the formulas 
above now hold with ar and art interchanged. The effective complementary 
energy for both optimal microstructures is given by the expressions 
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Mode I II = 2Ep  [ar  + air  — 2(1 — p + pv)a ref r1] 

Mode II II = 2Ep  [al + al 1   + 2(1 — p — pv)araII] 	 (3.21) 

2 	 2 
Mode III 17 = 2Ep  if au = 0 , IÎ = Zip  if  or = 0 

The material properties of the now optimized microstructure are completely 
given in terms of the density and the principal stresses. Noting that 

c2  + aIr = ail + a22 'au 2ai2 , ararr = all (722 — ai2 

we observe the surprising fact that the optimized energy corresponds to a 
material law which for the regions with two layerings is linearly elastic and 
quasi isotropic. For the single layering regions the material law is non-linear. 
Note that the isotropy of the optimized material law is natural in view of the 
rotation of the rank-2 material. The linearity and isotropy of this extremal 
material law can be understood in a broader context from the so-called trans-
lation method for obtaining optimal bounds on effective moduli of composite 
materials (Cherkaev 1993, Milton 1990). 

The expression (3.21) is the solution to the problem (3.18) for the single 
load case we consider. For the stress based problem (3.17) a further reduction 
to a design-free problem is possible, cf., problem (3.19) defined in Sect. 3.2.2. 
To this end we should optimize with respect to the density of material also. 
Taking the volume constraint into account for the inner problem of (3.19), we 
minimize with respect to the bulk density p the expression H+Ap , where A > 
0 is a Lagrange multiplier for the volume constraint. By fairly straightforward 
algebraic manipulations, we get the following optimality condition for the 
bulk density p: 

1°11+1°111  
P 	

N/2AE 

In (3.22) the absolute value operators indicate that we have different expres-
sions for mode-1 and mode-II. The corresponding densities y and µ are 

AE —Iarl ' y—  AE 

and the optimal distribution of the bulk density should satisfy the volume 
constraint 

I pdSi = % min lai  + l ard 
 1 d1l = V 	 (3.23) 

Jo 	Jo 	2AE 

This constraint determines the value of the Lagrange multiplier A for any 
relevant volume constraint. Thus the volume constraint, implies that we can 

in all modes 	 (3.22) 

lard 	 larl 
I = 



if 
Er +  Err 

<p<1,  

(1 - v)Er  

if 
El -  E/r  
(1 + v)Er  

<p<1,  
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consider A as a function of the principal stresses, given via the equation (3.23). 
Taking this feature into consideration, the optimal complementary energy 
density can be expressed in terms of stresses only, and we have reduced the 
stress based design problem (1.7) to a design independent non-linear, non-
smooth elasticity problem of the form 

min 	 II(cr)d1t } 	 (3.24) If 
	JJJde+ivf=0 	2  

a•n=t  

Details of a numerical procedure for solving the stress based problem (3.24)  

can be found in Allaire & Kohn (1993) and Allaire (2002).  

3.3.2 The strain based problem of optimal layered materials  

The algebra involved in optimizing the microstructure for the strain based  

formulation is much more complicated than for the stress case and for simpli-
fication of presentation in this case, it turns out to be convenient to impose  

the choice  cil  _> IEriI for the principal strain directions. The steps of the 
analysis are all analogous to the procedure for the stress case, but the al-
gebraic manipulations now become very involved, and the use of symbolic 
manipulations is recommended. 

The optimal density it and corresponding density -y are again given by 
different expressions, depending on the relative values of the principal strains 
el, err as well as the size of the bulk density p. We again denote the different 
expressions as Mode-I, Mode-II and Mode-III regions (there is a one-to-one 
correspondence with the stress energy modes). The optimal values are 

_  El(l+vp-p)+Err  
-  vet+(2 — p—v+vp)Eli  

^y _ 
 

Er+Eu( 1 +vp— P)  
/ — (1—v)(Ej—Ell) 

 

_ Er(vp+p -1 )+E7!  
µ  ver±(2—p+v—vp)Ell  

1. 
N  _ E, +Er! vp+p-1 )  

( 1 +0 El+Eli)  

ModeIII( µ- O y if 0<p < E r —  Err 
or 0< p< 	 

ll ry = P JJJJ 	- 	( 1  + v)Er 	 (1 - v)Er  

The effective strain energy corresponding to either optimal layering is given  

by the expressions  

I i^V(p, E) = 2(1 — v) (2 —p+vp) LEi + E^r +  2(1  - p + pv)EIEIr]  

II W (AE) = 2(1+0(z— p — vp) LEi +  E^ r —  2(1 - p - pv)ErErr]  

MAO= P 2Er 
 if IErI > kill,  W(P,E) = pE2ir  if 	

IErI <- IErrI  

Mode I 

Mode II 

El + Elf  

III 

In the Mode-III regions with single layers, the material law is non-linear and, 
as for the stress based analysis, the rank-2 layered regions of Modes I and  
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Fig. 3.10. Optimal design using an optimized rank-2 material strain energy density. 
Optimized designs computed using element wise constant density function and a 
8-node displacement model. Center: the optimal density distribution, and Right: 
the associated principal stress distribution for a volume fraction of 20%. Note that 
grey area is not limited to biaxial response. The bicycle wheel like design has an 
area with radial uniaxial stress as well as a rim of circumferential uniaxial stress 
(the rim of a 'wheel') (from Jog et al. 1994). 

II correspond to a linearly elastic material law which has the same stiffness 
matrix as the optimal material obtained in the stress case. This is consistent 
with a duality principle for the optimized strain and complementary energies 

min  1
r 

17(p, a)dIl = max { l(u) — 
	

W (p, e(u))(1Q y 
diva+f=0 l 	 ) 	uEU l 	2 	 11  

a-n=1 

that holds when the bulk density p is kept fixed (Lipton 1994c). 
The optimization of the strain energy with respect to layer directions 

as well as layer densities results in an optimized strain energy W which is 
convex in the density p; this is readily checked by examining the second 
derivative of the energy for the different modes. This excludes the possibility 
of interchanging min and the max in the reduced problem 

max min 
S 

{ W (p, e(u))d9 — l(u)
1 	

(3.25) 
density p uEU l 2 
fn  pdS2=V 

and this is thus the final reduced form of the strain based formulation (com-
pare with (3.24)). 

3.3.3 The limiting case of Michell's structural continua 

The lay-out theory of Michell frames and its extensions to flexural systems is 
the classical approach to topology and lay-out design of structures [3], [27]. 
It has been illustrated earlier that the material distribution method predicts 
structures that resemble truss-type lay-outs and Michell continua type lay-
outs, when constrained to small volumes of available material. We show here 
that this limiting process can be formalized through an asymptotic expansion 
of the problem under rescaling of the geometric and load data. 
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A Michell frame is a continuum in dimension two consisting of two mutu-
ally orthogonal fields of tension/compression only members that are directed 
along the principal strain. The total amount of material used is described 
by two independent densities of material, constrained to satisfy some volume 
constraint. The problem is a continuum analogue to the single-load truss op-
tional design problem, and there are a number of equivalent stress or strain 
based problem statements. The frame is described by a specific strain energy 
of the form 

147  = 
2 [0E1 + OEM  

where cr, el and /3, Err are the densities and corresponding principal strains 
in the two directions of the continua, and the optimization problem is the 
one of minimizing compliance for a given volume of material, or equivalently, 
maximizing of compliance for given constraints on the strains in each bar, cf., 
Hemp (1973), Bendsoe, Ben-Tal & Zowe (1994). Lay-out theory for grid-type 
structures in general, as treated by Prager and Rozvany, deals with problems 
with a wider scope of objectives and constraints, but with basically the same 
energy definition as above. 

The Michell frame is usually understood as a limiting case for low densities 
of material, where the interaction of thin members in a planar frame can be 
ignored. Thus, we are concerned with the limiting situation where the layers 
in a layered material become "thin" relative to the cell size of the problem. 
This can be modelled by letting the density of material tend to zero in an 
asymptotic expansion. Taking the limit of zero density of material requires a 
complementary resealing of the loads and tractions to make the energy limit 
well posed. We thus introduce a scaling parameter which reduces the layer 
densities by resealing the dimensions of the microstructure relative to the 
unit cell (see Fig. 3.11). The resealed densities are 

A  = S 2 µ1 i = 4i, P = S 2 p 

We now use the resealed densities together with an  expansion of the stresses 
and strains in the expressions for the optimized energies described above, 
using only the terms of zero order in and requiring that the energies remain 
finite in the limit of -+ 0. For the stress based case the stress exp ansion 
reads 

For the energy to remain finite in the limit, the expansion in stresses must 
be of order greater than or equal to 1. The zero-order part of the optimized 
complementary energy H (see Sect. 3.3.1) then becomes (for all modes) 

HM = 2F,p G 0 11 + 10 n0 , 
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resealed layers, 

material volume 
reduced 

loads resealed so 
energy is preserved 

Fig. 3.11. The resealing of the layerings that leads to the Michell frame limit. 

corresponding to a rescaling of stress given by a2j This is expected from 
equilibrium considerations for the unit cell. 

The rescaling at the limit of 	0 implies that the upper constraint on 
bulk density p is not active. Thus the optimization over p under the volume 
constraint results in the stress based problem (3.17) reducing to the form 

min If ( l a,I + Iatrl)dSZ} a 
diva+f=o 	S 2 

an=t 

This is the classical Michell problem formulated in stresses. Here the specific 
reference to the volume constraint is not present, as  the Lagrange multiplier 
for this constraint only enters as  a scaling parameter which has no influence 
on the form of the optimal solution. The problem corresponds to a lay-out 
problem, where the cost, of carrying the principal stresses is minimized over 
all statically admissible stress fields. This corresponds directly to the classical 
stress-based truss optimization problem stated as 

7n l 

min 	- (q? + q» 
+ 4 ,4 i_7 

s.t. B(q+—q )=f, e >0,qz  >0,i=1,...,m, 

which is a problem in plastic design. Here, qZ , q;—  are the truss bar member 
forces in compression and tension, respectively, B is the compatibility matrix, 
1, the lengths of the bars and 5- ,  the yield limit for bar number i . This problem 
is equivalent to the problem of fixed volume, minimum compliance design of 
an elastic truss structure with Young's moduli E2 = i72 and a volume equal 
to the optimal volume for the pl astic problem, thus taking the development 
"full circle" Truss topology design is treated in detail in Chap. 4. 

One can also perform an analysis as above for the strain based c ase where 
the relevant scaling of strain iseij , consistent with the stress scaling (see 
Bendsoe & Haber (1993)). Also, an alternative to the development above is to 
consider the stress-based formulation (3.24). Here one obtains that the limit-
ing case of infinitely large Lagrange multiplier A for the volume constraint (i.e. 
small density) corresponds to the stress-based Michell frame lay-out problem 
formulation (Allaire & Kohn 1993). 

1 
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Fig. 3.12. The shape of single inclusions of void in a cell of a homogenized, periodic  
medium minimizing complementary energy (Vigdergauz-like structures for v = 1/3  

and a density p= 0.5). Results for a range of principal stress ratios of a macroscopic 
stress field (from Bendsoe & Sigmund 1999).  

3.3.4 Comparing optimal energies  

A key question for understanding the nature of the results that can be ob-
tained from optimization of material distribution is a comparison of the stiff-
ness parameters of various microstructures at hand. For compliance design 
the local anisotropy problems (3.16) and (3.18) give the relevant measures to 
consider, i.e., one works in terms of strain or complementary energies. 

It is known from work in the theoretical materials science [25] that the 
optimal complementary energy (3.21) derived in Sect. 3.3.1 for rank-2 layered 
materials constitutes the attainable lower bound on the complementary en-
ergy of any composite constructed from void and an isotropic, linearly elastic 
material with Young's modulus E and Poisson's ratio v. This means that any 
elasticity tensor EHk,  related to the given material satisfies that 

{ 2Ép {al + aq1  — 2(1 —  p+ pv)a'af'] if alum < 0 , 

l 2Fp [al  + cif  +  2(1 — P —  pv)Qrold if vwn > 0 ,  

(3.26)  

for any stress tensor a with principal stresses a!, of/. We have seen in  
Sect. 3.3.2 that this upper bound on the stiffness of a composite can also  
be expressed in terms of strain energy. As we have seen, the bound (3.26)  
can be attained by a rank-2 layering that have two length scales. For stresses  
with ala» > 0, single scale, single inclusion microstructures which attain the  
bounds have been presented in Vigdergauz (1989), Grabovsky & Kohn (1995).  
For illustration, Fig. 3.12 shows a r ange of single inclusion Vigdergauz-like  

LE^k
_ 1 

 t] mari  > 
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— Lower bound  
Vigdergauz-like structures 
Square holes 
Rectangular holes 
Power law (p=2) 
Power law (p=3) 
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3.0  
> m 
am  
c 

^ 

^ 

2.0  

Fig. 3.13. Comparison of the optimal (minimal) complementary energy as  a func-
tion of the ratio of the principal stresses, for a density p = 0.5 , and for various types  
of microstructures and interpolation schemes (material and void mixtures). The  

Vigdergauz-like structures are shown in Fig. 3.12 (from Bendsoe & Sigmund 1999).  

microstructures for a range of positive as well as negative values of af
t ;  these  

structures have been computed by the inverse homogenization methodology  

described in Sect. 2.10. Note, however, that for ajvjj < 0 no single scale  
periodic composite can obtain the bounds, and any composite obtaining the  
bound (in 2-D) must be degenerate (i.e. has a singular stiffness tensor) (see  

Allaire & Aubry (1999)); this effect is also seen in Fig. 3.13.  
For their use in optimal topology design it is useful to compare ener-

gies attainable by other microstructures and interpolation schemes with the  

bound (3.26). Figure 3.13 thus shows (for p = 0.5) a comparison of the  
optimal bound, achievable by the ranked layered materials, with the range  

of minimal complementary energies' which can be obtained by the SIMP  

interpolation, by microstructures with square holes, by microstructures with  

rectangular holes, and by the Vigdergauz microstructures. What is noticeable  

is how close the various energies are for stress fields close to pure dilation,  

while shearing stress fields demonstrates a considerable difference. In the  

latter case, the microstructural based models are considerably stiffer than  

the SIMP model. Moreover, the microstructure with square holes is notably  

less stiff for uni-axial stresses compared to the other microstructures, since  

4  We compare complementary energies as this gives more informative plots.  
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p=0.5 

- • Bound 
— Computed 

Fig. 3.14. Comparison of the complementary energy of optimized base cells for a 
multiload situation with p = 0.5 (see text). The single scale composites are obtained 
with square b ase cells (from Guedes et al. 2001). 

the imposed symmetry of this microstructure here hinders an efficient use of 
material. 

The plots of the complementary energy explains many features of compu-
tational experience with the various interpolation schemes. For compliance 
optimization, the complementary energy should be minimized. As ranked 
laminates are efficient also at intermediate densities, optimal design with 
this material model leads to designs with typically rather large areas of in-
termediate density. This is also the case when using the microstructures with 
rectangular holes and the Vigdergauz microstructures. Thus if such materials 
are used for obtaining black-and-white designs, some other form of penaliza-
tion of intermediate density has to be introduced, as discussed earlier. On the 
other hand, the SIMP model and the microstructure with square holes usu-
ally lead to designs with very little "grey", as intermediate values of density 
tend to give poor performance in comparison with cost. 

The rnultiload case For the local anisotropy problems for multiple loads 
one works with a weighted average of strain or complementary energies. Also 
here the optimal bound (i.e., the lowest average complementary energy) can 
be found by using rank-N layered materials [25]. This situation is studied 
in detail in Cherkaev, Krog & Kucuk (1998), and one can here benefit by 
working with the moment-based parametrization of stiffness by moments (see 
Sect. 3.1.2). As above, it is instructive for this situation also to compare 
this optimal energy with computational results (inverse homogenization) that 
approximate the energy bounds by use of single scale microstructures. 

The example in Fig. 3.14 considers four load cases. The same weight factor 
is used for each pair of load c ases, where the first pair gives tension and the 
second pair gives shear. The weighting factors on the energies are written 
as w 1  = A and w2  = (1 — A) where A varies from zero to one, where zero 
corresponds to the tension load situations and A equal to one corresponds to 
shear. 
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3.3.5 Optimal energies and the checkerboard problem  

In Sect. 1.3.2 we showed by example that a checkerboard of material in a 
uniform grid of square Q4 elements has a stiffness which is comparable to 
the stiffness of a p = 1/2 variable thickness sheet. Let us here formalize this 
in light of the energy considerations carried out so far, following the ideas of 
Diaz & Sigmund (1995). 

For exemplification, consider the optimal design of a planar, infinite and 
periodic medium with an average density of material equal to 1/2 and subject 
to an average, macroscopic strain €. The minimization of compliance then 
corresponds to the problem 

	

max 	min 	(p, u)  
p,<p>-0.5 u, periodic  

with IP(E, p, u) = f PP E°kt (ë — e(u)) ij (€ —  e(u)) kt d^ 
z  

where we use a SIMP interpolation. Assuming now that the displacement is  

restricted to the space of Q4 discretizations for a square mesh we first note  

that if p is distributed in a 0-1 checkerboard pattern in this mesh (denoted  
as pp), then (this can be derived analytically, see Diaz & Sigmund (1995))  

	

min 	̂(PP, u) = 1 E° kt Eij Ekt 
uEQ4, periodic 	 2  

This can also be understood as follows: the Q4-homogenized properties of a 
checkerboard pattern is â  E°  By Q4-homogenized we mean the homogenized 
properties that one obtains if the displacement fields are restricted to Q4 
discretizations at the level of the checkerboard. 

For the design problem (3.27) we also have: 

	

min 	IP(P,  u) < f PPE° kiEii^kidg 
uEQ4, periodic 	 S2 

= E°ktEtiEkl dI <_ 2E°jkIEij ekt 
S2 

Y 
 

Thus the checkerboard pattern is an optimal design, for the model with Q4-
displacements. This is unphysical for several reasons. First, the true homoge-
nized material parameters for a checkerboard of material and void is actually 
zero (Berlyand & Kozlov 1992). Second, the stiffest material that can be con-
structed is the rank-2 layered composite, which has a strain energy W given 
in Sect. 3.3.2. Comparing, we obtain that 

W (P = 0.5, E) < 21 E° ktEijekt 

where equality only holds if the principal strains satisfy Éf,  = —v (with the 
convention feu > I€jjI). This means that a Q4-checkerboard grossly overes- 
timates the stiffness, to the extend that it is "stiffer" than the stiffest lay-out 

(3.27)  
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of material (the stiffness corresponds to the Voigt bound, which cannot be 
realized by a composite). 

If one carries out a similar analysis for displacements in a Q9 discretiza-
tion, the checkerboards instead have a stiffness which is smaller than that of 
a rank-2 material, so here these patterns are not advantageous; see Diaz & 
Sigmund (1995) for details. 

3.4 Design with a free parametrization of material 

The goal of this section is to formulate a structural optimization problem in 
a form that encompasses the design of structural material in a broad sense, 
while also encompassing the provision of predicting the structural topologies 
and shapes associated with the optimum distribution of the optimized ma-
terials. This is accomplished by representing as design variables the material 
properties in the most general form possible for a (locally) linear elastic con-
tinuum namely as  the unrestricted set of positive semi-definite constitutive 
tensors [28]. 

In the modelling of the optimization problem the parameters which de-
scribe the structure are, as in the preceding sections of this chapter divided 
into two sets: the parameters defining the local material tensor and those that 
describe the specific cost of the material. In parallel with the developments 
for layered materials, see Sect. 3.3, it can be shown that the minimum compli-
ance optimization of a structure with respect to these two sets of parameters 
can be performed independently. Furthermore, the optimization with respect 
to the local material tensor parameters can be performed analytically. This 
derivation is fairly simple for both the single load case and the multiple load 
problem and for any dimension of the spatial domain. Thus the more general 
problem statement is considerably simpler as  compared to the homogeniza-
tion topology problem (see Sect. 3.3). 

The very general framework of optimizing directly on a free parametriza-
tion of the material tensor results in developments which provide an attain-
able global lower bound on the performance of any structure designed for the 
same loads, boundary conditions and ground structure. At the same time, it 
provides an attainable global upper variational bound on the effective moduli 
of any elastic material, within the cost measures defined. Also, the consid-
erable simplifications that can be demonstrated indicate that the broader 
form of a material design problem, as described and analyzed in this section, 
constitutes effective means for studying the global structural optimization 
problem involving sizing, shape, topology and material selection. 

The results that we can obtain within the assumption of a locally un-
constrained configuration of material are informative towards gaining insight 
into the nature of efficient local structures. This is useful for theoretical as  
well as  practical purposes. As an example of the latter, recent work has thus 
employed the framework of free material design to generate procedures for 
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tape-lay-up in composites. Also, the original theoretical work on the subject 
laid the seeds for the very successful use of topology design methodology for 
design of materials, as described in Sect. 2.10. Here one tries, for practical 
reasons, to understand how to match a particular local microstructure to the 
specific form of a elasticity tensor, for example the ones predicted here. 

3.4.1 Problem formulation for a free parametrization of design 

Modelling considerations In the homogenization method, the total vol-
ume of material, defined at the micro level, provides a natural cost function 
for the optimization problem. There is not at first glance a natural cost func-
tion for the general material design formulation we consider here, where we 
allow for all possible positive semi-definite constitutive tensors. Instead, we 
use certain invariants of the stiffness tensor as  the measure of cost, thus en-
suring that the optimal design solutions are independent of the choice of 
reference frame. 

For physical reasons, the possible stiffness tensors in the design formu-
lation are restricted to the set of positive semi-definite, symmetric tensors. 
Also, suitable cost functions must have the property of frame indifference. 
Since the goal is to optimize the local material properties as well as  the 
global structural response, we choose to consider cost in terms of invariants 
of the constitutive tensor itself. Specifically, we choose for the developments 
in the following two invariants as  examples of local cost (Bendstee, Cuedes, 
Haber, Pedersen & Taylor 1994) 

Case A TA (E) = EZ.ii.i 	Case B 'YB(E) = [EdjklEi,jkl] 2  

i.e., respectively, the trace and the Frobenius norm of the 4-tensor E . 
Note that these measures are homogeneous of degree one. Thus comparing 
to the conventional 2D problem for the design of material distribution in a 
sheet (where total cost is proportional to the volume of material), the above 
"cost measures" correspond in their role to the sheet thickness. More general 
considerations are also possible, combining several invariants of the tensor to 
provide for generalized cost measures which can be varied to cater for specific 
design goals, for example governed by available fiber composites (see [28]). 

Problem statement The problem we consider is the multiple load minimum 
compliance problem (1.33) (cf., Sect. 1.5.1) generalized to the situation where 
the material properties themselves appear in the role of design variables. This 
means that we consider a design parametrization (a definition of E ad) in the 
forms  

E r 0 in St , Eu ki E L°°(SZ), for all ijkl , 
 f 

 LY(E)dS2 < V 	(3.28) 
2 

5  We use the notation E > 0 to signify that E is positive semidefmite. 
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Thus we take the minimization over all positive, semi-definite stiffness tensors 
Eijkl (with the usual symmetry properties) and use the integral over the 
domain of some invariant 'P(Eijkl) of the stiffness tensor as the measure of 
cost. For the the sake of simplifying the derivation, we introduce the resource 
density functions, pA = TA (E) and pB TB(E) and state the minimum 
compliance problem for a multiple load setting in terms of potential energy 
as 

max 	max 	min 	J 147 (E,  IL)d1-2 — l(û) 
density p 	stiffness E>-O  

0<P 
 f

_P<Pn,rx<oc W(E)<p u" eu k= ...,M 
,, 
 poll<V 

(3.29) 

k=l 

1(9û = 	wklk(uk), 	û = {n1, .. , 21,M} 

k=1 

with M load cases (body forces f k, boundary traction t k , and weighting 
factors wk). Here we have, as in Sect. 3.2.1, provided a separation between 
the properties of the tensor E that can be optimized locally (at each point 
in the structure) and those that must be treated as a distributed parameter 
problem over the full domain. 

In the max-min problems above we have introduced an upper bound on 
the resource densities in order to ensure that the problem is well posed. A 
possible non-zero lower bound is also catered for. Note that the resource 
constraints are convex for both case A and B. 

In the developments to follow, we show that an  analytical optimization 
actually can reduce the number of free design variables from 6 in dimen-
sion two and 21 in dimension three to only one in both dimensions (in any 
dimension that is). 

Splitting the problem into a series of sub-problems Analogous to 
the developments in Sect. 3.2.1 we can rearrange problem (3.29) and split 
it into two coupled optimization subproblems ( the local anisotropy problem, 
and the material distribution problem). The interchange of the min and max 
for the inner problems of (3.29) here gives an equivalent problem as (3.29) 
satisfies the conditions for existence of a saddle point: the objective function 
is concave (linear) in E and convex in the displacements uk  and the set 
{E1T(E) < p, E >- 0} is closed, convex and weak"-compact in L°°(f2) (see 
also Appendix 5.2). 

3.4.2 The solution to the optimum local anisotropy problems 

In this section we study the solution to the local anisotropy optimization 
problem. To this end we define the positive semi-definite, symmetric 4-tensor 

W (E, u) = 2  E wkEijpg(x)Eij(uk)Epg(uk) 



3.4 Design with a free parametrization of material 	193  

A as  

Ai7pq = E wk A 7Dq '  A i7pq 
= 

 ei7(T1k ) epq (uk ) 
k=1  

and write the optimization of the energy IV (E, î1) of (3.29) as 

max 1—E• jpg A ijpq 
E>-O 2  

ü (E)<p  

The Frobenius norm case. For the norm resource measure, problem (3.30)  

corresponds to finding the tensor E of given norm that has the largest stan-
dard inner product with the given tensor A. The optimal stiffness tensor is  
thus proportional to A and because of the resource constraint it is (uniquely)  

given as  

B 	A ijpq  
Er-pq  P ✓ArnnrsA,nnrs  

The corresponding extremal energy functional is 

M 

W B (P, it) = PWB (û) = 1;1/AWN Aij„ =  21 E wkwl lE i.7 (uk ) E
i.7 (ul )? 

 
k , l=1  

We have denoted by W the optimum energy density function per unit amount 
of resource p . Here and elsewhere we embellish with an upper inverted "hat" 
(W) quantities per unit amount of resource. 

Note that the optimized material properties represented by ERpq  do not 
possess any specific symmetry properties and the material is thus generally 
anisotropic for all but very special cases. The optimized material tensor can 
have zero eigenvalues, and this happens always if the number of load cases 
that we consider is one or two in dimension 2 or one to five in dimension 
3. For more than this number of load cases, the material will generically be 
stable, with zero eigenvalues only appearing if the strain fields are linearly 
dependent.  

The trace case. For the trace resource measure, problem (3.30) corresponds 
to solving a linear programming problem, with objective given by the tensor 
A In order to find the solution to this problem, introduce the spectral de- 
compositions of E and A.  Now let 0 < 111 < 	< 11N, 

	
= P> and ^i=11)i  

0 < a l  < 	< ÀN be the ordered eigenvalues of E and A , respectively 
(N = 3 in dimension 2 and N = 6 in dimension 3). From a result on the  
eigenvalues of positive symmetric mat rices (Mirsky 1959), it follows that  

N 	N 

Ei7pq Ai7pq  E rid,.  < E 1)i% = 	,  
i=1 	i=1 

(3.30)  
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where X denotes the largest eigenvalue of the tensor A , with orthonormal  

eigentensors E, a = 1, ... ,P We observe that the right hand side of these  

inequalities is achieved by any stiffness tensor E of the form  

E  ^p9 

 

= P  E  u"EZEpa9 , with E µ" = 1  
"=1 	 "=1  

so we conclude that the optimal energy in the trace case is  

117A(P,û) = PtiFA(v,) = 2% = 
2 

maxxeig ^ wkEii(uk)Ep9(uk)  
k=1  

( 

 

If X is a simple eigenvalue, EA  is unique and it corresponds to an orthotropic 
material, but in the generic case the form of an optimal EA  is only determined 
when the full problem is solved (the parameters µ" of the expansion of EA 

 is found from this "outer" problem). 

The single load case For the case of a single load c ase (M = 1), the optimal 
energy in the trace and norm case reduce to the same expression, namely 

Pl7o(u 1 ) = 2 PEi7(u1 )Ei7(u 1 ) = 2PiijklEij(u1 )Ekl(fl 1 )  

corresponding the energy of an  isotropic, zero-Poisson-ratio material, with 
stiffness tensor pl , which is p times the identity tensor. This matrix has 
norm %B(p1) = 1,/7Np and trace'P A(pI) = Np (N = 3 in dimension 2 and 
N = 6 in dimension 3). Note however, that the bound W  is achieved with 
the (unique) tensor  

E!` = EA _ EB 	Eij jEki 
Ijki 	 ^kl — 	 kl — 

PEp4(111)Ep4(u1)  

which has norm as well as  trace equal to p. The optimized material repre-
sented by E* is orthotropic, with axes of orthotropy given by the axes of  

principal strains (and stresses) for the field Ei7  (n1 ) , in analogy to the results  
on optimal rotations of orthotropic materials as  described in Sect. 3.1.4.  

For completeness of presentation, we write for dimension 2 the resulting  
optimal stiffnesses in terms of and in the frame of the principal strains Er, Eli  

of the single strain field Ei7  (u) (for convenience we have dropped the index  
"1" for this load case)  

E* 	 P 
)matrix = — 2 	2  E I  + EIl  

[El  
E[E// E3 1  0  

0 	0 0  

P 	 P 

Note again that the optimized material 's indeed orthotropic, and that the  

material stiffness tensor has two zero eigenvalues. Thus, the extremization  
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of the strain energy density results in a material which is at the utmost  
limit of feasibility for satisfying the positivity constraint, and the material  
can only carry strain fields which are direct scalings of the given strain field  
for which the optimization was undertaken. This underlines the true optimal  
nature of the material. Such behaviour of extremized materials was also seen  
in the homogenization method for topology design with one given material,  
as described in Sect. 3.3; in that c ase the optimized material has one zero  
eigenvalue corresponding to vanishing shear stiffness.  

For the single load case, we have for both resource measures obtained the  
reduced equivalent problem statement in the form  

max 	min 1 J  peij(u)Eii(u)dS2 — l(u)} 
 

density p 	uEU 2 t  

f^ pd2 < V  

which not only gives the optimal distribution of material, but also the dis-
placements, strains, stresses and material properties of the optimal structure.  
For this problem we can return to the original form of the minimum compli-
ance problem as stated in (1.6) taking the development "full circle"  

min 1(u)  
u, p

J peij(n)eij(v)d S. t. 
	

S1 = 1(v) for all v E U  

 J pdIl<V  0Ai-6n<P<Pmax,  
Z 

This reduced problem is exactly equivalent to the variable-thickness design  
problem for a sheet made of an isotropic zero-Poisson-ratio material, with  
the density p playing the role of the thickness of the sheet. This problem is  
discussed in detail in Sect. 5.2.1, and in Appendix 5.2 where the existence of  
optimal solutions is proved by a fairly straightforward development.  

Let us briefly for the single load case consider the stress based formulation  
(1.7) for the design parametrization used here. This problem can be stated  
as  

inf 	min 	
jl2 /si 

Eijkt aij aktdS2 
E}-00 	divv+f=0 l  

ff, W(E)dS2<V o .n=t on  FT  

(3.31)  

where we take the infimum with respect to all positive definite stiffness 
tensors, in order to give meaning to ELjktaijakt  Interchanging the equilib-
rium minimization with the local minimization of complementary energy (cf.  
Sect. 3.2.1) and using that we from a spectral decomposition can derive that  

1  
inf 	Eijktaijakt — — aij aij ,  

E}0, tY(E)=p 	 p 
(3.32)  
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for both of our resource measures, we see that the stress based case has a  

reduced formulation 

inf 	min 	
( 1 J 1  vijakldD 

`Z ^ density p diva+f=0  in SZ l 	p  
o•rt= l on I' ,  

fR  pdSt<V  

as  expected in light of the form of the displacements based formulation above. 

3.4.3 Analysis of the reduced problems  

The equilibrium problem for the optimized energy The solution to the 
local anisotropy problems has shown that the equilibrium problem with the 
optimized strain energy functions for both c ases we consider can be written 
as  

min 	̂ f pli/(i2)(111   — l(û) 
1111 ̂  	

(3.33) 
^={ ul 	utii} l 

 

uk EU, k =1,...,M  

This is a coupled, non-linear problem for all the load cases at once, the  
coupling arising through the optimized strain energy functional.  

We note here that the function 4 7 (u1 , ... , um ) of the displacements is  
homogeneous of degree two, that is, under proportional loadin% the opti-
mized material behaves as a linearly elastic material. Moreover, W is a con-
vex function. This follows from the fact that W is given as  a maximiza-
tion of convex functions of the displacements. For the Frobenius norm re-
source measure, we note that Wu  is a smooth function, except at the origin  
(u l , ... , u^') = (0, . . , 0) when all displacements are zero. For the trace re-
source measure the optimized strain energy functional involves an eigenvalue  
problem, which implies that the functional W'A is only differentiable at sets  
of displacements for which the maximal eigenvalue of the tensor A is not  
repeated, and it is non-differentiable at displacements for which the maxi-
mal eigenvalue is multiple. This includes the origin (u 1 , .. , um) = (0, ... , 0)  
where all displacements are zero. Remark that for the single load case, the  
equilibrium problem (3.33) is just a single linear equilibrium problem for a  
structure made of a zero-Poisson-ratio material with varying Young moduli,  
as described through the variable p .  

The optimization problem in resource density The reduced optimiza-
tion problem is as described earlier  

max 	̂ (p) = 	
l 

{ min 1  ^ ^^ pW(û)dS2 — l(ft)  	(3.34) 
density p 	û=  

OGp.,,i.,<P<Pmnx 	 ukEU, k=1,...,M 
pdt2< V  
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Fig. 3.15. The design of a bearing pedestal using optimal materials. The single 
load, boundary conditions etc. are described in Fig. 1.25. Left: Distribution of 
resource. Right: Directions and sizes of principal strains. Compare with Fig. 1.25 
(from Bendspe & Guedes 1994). 

This is of the form of a variable thickness sheet problem for a sheet made of a 
non-linear elastic material. Here the function 4)(p) of the density distribution 
p is defined through the non-linear equilibrium problem discussed in the 
previous section. Since 41(p) is given as  a minimization of concave (linear) 
functions in p, 4i (p) is in itself concave. Thus (3.34) is a convex minimization 
problem in the density variable p, where the condition of optimality is that 
the energy W (u l  , ... , um) is constant in the region of intermediate density. 

The reduced problem (3.34) is also a saddle point problem in the resource 
density p and displacements Ink} The existence of a saddle point is also 
here assured and we can thus find an  optimal solution of the optimization 
problem (3.34) by solving 

min 	{W (û) — l(û) } , 11'(û) = 	max 	
f 

 pW (û)dIZ 
density p  

uk  EU,k=1....,M 	
o<<p.,,in<p<pm„„ 

fn  pd12<V 

(3.35) 

Using a Lagrange multiplier A for the resource constraint, the globally opti-
mized weighted strain energy functional W(û) can then be expressed as 

W(û) = min {f  max {Pmin[û(û) — A], P,naX [W(û 	
J

) — A]} dit + AV}  
A>0 	2  

(3.36) 

This implies that the design variables can be removed entirely from the prob-
lem, and the resulting problem becomes a non-linear and non-smooth, convex, 
analysis-only problem. Similar results are also developed for truss design in 
Chap. 4. 

An extension to contact problems It is clear from the analysis above 
that all steps can be performed without restriction for problems that include 
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design independent, convex displacement constraints in the equilibrium state-
ment. Thus design problems including unilateral contact can be treated by a 
similar analysis. 

Now let  rc denote the boundary of potential contact and let n • n > 0 on 
Fc be the unilateral contact condition; this is a convex constraint. Then the 
design problem for minimum compliance under multiple loads can be stated 
as (see also Sect. 4.2.3) 

max 	min 
stiffness EYO 	ft={ u l  ,...,u ^'1  } 

În W(E)dS2<V 
uk E U, uk .n>O on rc 

U,. 

W (E, û)dS2 — l(û) 
 

where the inner problem is the minimum potential energy principle expressed 
for a contact problem. For both resource measures this problem can be re-
duced to the forms seen earlier, the only change being the addition of the 
contact condition on the admissible displacements. Also, the optimal mate-
rials are given by the same expressions. 

Materials with piecewise linear elastic behaviour The general frame-
work of free material optimization can also be extended to cover the design 
of a structure and associated material properties for a system composed of 
a generic form of nonlinear softening material. Here the optimal distribution 
of material properties depends on the magnitude of load, in contrast to the 
case with linear material. 

The relevant mechanics is now represented in terms of a generalized com-
plementary energy principle and the design objective is likewise based on 
complementary energy. Net  material properties of the softening medium re-
flect a superposition of properties associated with each of a number of ma-
terial constituents, and the collection of these properties, expressed through 
the stiffness tensors for each of these constituents, provides the problem with 
a set of design parameters. It is the availability of an extremum problem 
formulation for the analysis part of the problem that makes it possible to 
treat the design of nonlinear materials conveniently. The formulation used 
amounts to a generalized form of the complementary energy principle, and 
is stated here in stresses alone (a mixed formulation in terms of stress and 
deformation fields is in other situations convenient, see Taylor (1993)). With 
the superposition of M softening components and one purely elastic basis 
component to make up the total stress, the analysis problem has the form: 
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max a  

s.t. 
 div(y ij + Eat) +af = 0,  

k=1  

k  
k=1  

crk E/Ck, k=1, ..,M  

f (Dijrs'yij'irs + E C ijrsQijQrs )dh1  <  

k=1  

Here C,. 5  = [E Srs ] -1  are the compliance tensors for the M softening compo-
nents and Diirs = [Fijrs]-1 is the compliance tensor for the basis component. 
The stresses for the softening components are denoted ak  and the stress of the 
basis component is -y. The convex sets of admissible stresses for the softening 
components are denoted by )Ck. This problem statement is a parametrized 
complementary energy formulation for the general softening material. The 
solution to this problem predicts a bound to the equilibrium load within the 
limit rl on total complementary energy. 

The formulation above leads one naturally to consider the design of the 
nonlinear material for maximization of load carrying capacity within the 
framework of free material design. Up to a rescaling factor on the load this 
problem is equivalent to the convex problem: 

inf min i f  2 
( [Fi  rs] 1 Îijirs + E[Ejrs ] 1aak)dS2 

- 	
k=1  

M 

s.t. div(ryij  +E at)+ a f  = 0,  
k=1  

(ryij +^a) n = at on 
k=1  

k ElCk,k =1,. ,M  

F>0Ek >0,k=1,.. ,M  

f (F)dc< V0 f (Ekd9 <  Vk ,k = l,...,M   

where each phase has a limited total amount of resource. This is a generalized 
complementary energy formulation of the design of structures with piecewise 
linear behaviour. 

In the formulation above it is assumed that the softening constraints for 
the softening components ak  of total stress are design independent. Thus the 
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solution predicts the optimal distribution of stiffnesses within these specified  

softening limits. With this assumption we can now perform the minimization 
with respect to the pointwise variation of the stiffness tensors, using the result 
(3.32). With the introduction of these optimal local energy expression, the 
problem can be reduced to the convex problem: 

1 	M  1  
inf min2 f

2 ( PO
/iij-irs+ ^

Pk
a^ a;s)df2 

Pk 'PO a k ,7  
k=1  

s.t. div(ryzj +E at)  +ixf = 0 ,  
k=1  

(72j+Ea^) n=ctiionFT  
k=1  

ak EKk, k= 1 ,... , M  

	

F 	Ek r0,k= 1,...,M  

	

po dSt < Vo  f pkdf2 < Vk ,k =  1, ..., M
Si 	 Z 

where the energy measure for each constituent corresponds to the comple-
mentary energy of a linear elastic, zero-Poisson-ratio material of density equal 
to the locally assigned resource value.  

The analysis above can also be performed for an analogous problem of 
designing a structure made of a general type of elastic/stiffening material 
(see Bendspe, Guedes, Plaxton & Taylor (1996); here computational examples 
can also be found). The analysis model in this c ase is a displacement based 
equivalent to the models used above. A detailed description of the analysis 
model can be found in Taylor (1994). For further discussions on analysis 
models and sizing and shape design for elasto-plastic problems we refer to 
the bibliographical notes [31] and the references of the literature mentioned 
there.  

3.4.4 Numerical implementation and examples 

Computational procedure for the single load case For the single load 
case, both the trace and Frobenius norm resource measures lead to the same 
reduced problem of what amounts to a variable thickness sheet problem for 
a sheet made of a zero-Poisson-ratio material. In this c ase we have a design 
problem that shares important features with minimum compliance problems 
for trusses, and the problem can be efficiently solved using one of the al-
gorithms presented in Sect. 4.3 on truss topology optimization (Zowe, Koc-
vara & Bendsve 1997). This is based on the format of the problem formula-
tion (3.36), which in discretized FE form can be rewritten as a smooth and 
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Fig. 3.16. The design of a L-shaped cantilever a) using optimal materials. Single 
load case. The upper, black part at the support is considered as fixed. b): Distribu-
tion of resource. c): Distribution of E1111 d): Distribution of E2222 e): Distribution 
of  1E11221.  f) Directions and sizes of principal strains; directions correspond to di-
rection of material axes (from Bendsoe & Guedes 1994). 

convex optimization problem in displacements only (with the notation of, 
e.g., (1.14)): 

min { T - fTu+ AV} 
u,A,r 

S.t. pmin[ZUT I{eu — A] < T e = 1, ... , N 

pmax[2uT  'Ce ti — A] < T e= 1,..., N 

This format is well-suited for solution by the so-called PBM interior point 
methods (see Appendix 5.5). Note that (3.37) only involves the displacement 
variables (and two auxiliary variables), that it is a linear optimization prob-
lem with quadratic constraints, and that the Lagr ange multipliers for the 
constraints determines the values of the density p (see Ben-Tal & Bendspe 
(1993) and Achtziger, Bendspe, Ben-Tal & Zowe (1992)). 

(3.37) 

Computational procedure for the general case The presence of mul- 
tiple load cases introduces significant complications if the reduced energy 
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expressions are applied. These complications arise because the locally opti-
mal material couples deformations associated with the different load cases in 
a complex way that, as we have already seen, involves non-linear, non-smooth 
energy functionals which depend on all the load cases simultaneously. This 
stands in sharp contrast with the solution of the problem of design for a sin-
gle load case. Early numerical work for the multiple load scenario employed 
an iterative secant method method for solving the inner non-linear equilib-
rium problem and an optimality criteria method for the density optimization 
(Bends0e, Diaz, Lipton Si Taylor 1995). This can be applied for the Frobenius 
norm case, but experience has shown that the complicated non-smoothness 
for the trace resource case prevents the use of this approach. 

An efficient alternative is to apply the formulation (3.35) also in the mul-
tiple load case. Limiting ourselves to the trace case, a reformulation in the 
spirit of (3.37) is also possible, but it now involves constraints stating that 
certain matrices are positive definite; in the trace c ase the optimal specific 
energy WA is the largest eigenvalue of the tensor A and this can be expressed 
as 

T VA = 	inf 	T 
+JY9 -A i)Y4 YO 

This also means that YVA is bounded by a const ant k if and only if idii„ —
A iipq  r O. This can, as A is the sum of dyadic products, be rewritten as a 
condition that a certain matrix, which is linear in the strains E(nk), is positive 
semidefinite (see Sect. 5.5.4 for details). Based on (3.35) it is thus possible to 
write a FE discretized version of the problem as  a semidefinite program in the 
displacements only (see Ben-Tal, Kocvara, Nemirovski & Zowe (1999) where 
also contact conditions are treated). The advantage of this reformulation is 
that such problems can be solved very efficiently by modern mathematical 
programming methods, see Appendix 5.5. 

3.4.5 Free material design and composite structures 

The result of the free parametrization of material is in a sense the ultimately 
best physically attainable material and it is natural to utilize the full informa-
tion obtained in the results in an attempt to design an attainable advanced 
material. This obviously depends on the type of the advanced material avail-
able and on the manufacturing technology. 

Realization by tape-lay-up First we consider a procedure that relies on 
the free material optimization for design of composite materials manufactured 
by the so-called tape-laying technology. In a post-processing ph ase one can 
here generate curves which indicate how to lay the tapes and how to organize 
the thickness of the tapes. This gives a good initial approximation for an 
optimization procedure that also takes into consideration all the technological 
restrictions of the tape-laying process. 
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Fig. 3.17. Tape-laying example. Top left is the stress directions from the free 
material optimization and a super-posed Michell solution. Top right shows the 
laying of the first tape. Bottom pictures show two tape layers obtained by post-
processing of the top left design. By courtesy of M. Kocvara and H.R.E.M. Harnlein. 

The post-processing uses that the optimal material for the single load free 
material design is orthotropic and that the axes of orthotropy correspond 
point-wise to the orthogonal directions of principal strains or stresses. This 
allows an interpretation where this governs the direction of fibres in a (weak) 
resin material. To get an  impression of the lay-out of these fibres and the 
thickness, a graphical post-processing tool cari be employed that plots the 
vector fields of principal strain direction by means of smooth curves. The 
optimal load path is interpreted as that of a fibre reinforced material, for 
example in the form of pre-pregs of Carbon Fibre Reinforced Plastic (CFRP) 
tapes. Tape-laying is thus a way to bridge the gap between free material 
design and the preliminary design phases for structures constructed from 
such tapes. Further details can be found in HSrnlein, Kocvara & Werner 
(2001). 

Realization by materials with microstructure Alternatively, skele-

tal bar structures could be used to generate microstructures that mimic 
the behaviour of the optimized material tensors, see figures below. These 
results are obtained numerically by an inverse homogenization operation 
(see Sect. 2.10) that works with unit cells constructed from truss elements 
(Sigmund 1994b, Sigmund 1995). The results substantiates the theoretical 
finding ((Milton & Cherkaev 1995)) that any stiffness tensor can be con-
structed from layered materials made from an infinitely strong phase and an 
infinitely weak phase. 
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Fig. 3.18. Minimum weight 2-D microstructures (upper row shows the unit cells,  

lower row an assemblage of cells) for obtaining materials with the indicated stiffness  

in the axis of the cell, corresponding the optimal material for a single strain field  

E = (1, 1, 0). This is an isotropic material with Poisson's ratio 1.0. The three designs  

all have the sanie weight and are obtained using a 4 by 4 equidistant nodal lay-out in  

a square cell. All 120 possible connections between the nodal points are considered  

as potential members. Members not shown for the optimum cell (and structure)  

are at the minimum gauge which is 10 5  times smaller than the maximum gauge.  
The different designs are obtained by penalization of the lengths of the bars (from  

Sigmund 1994b).  

3.5 Plate design with composite materials 

3.5.1 The homogenization approach for Kirchhoff plates  

In analogy with the topology design problem treated so far, a relaxation of  
the Kirchhoff plate design problem requires that one considers plates with  
infinitely many, infinitely thin integral stiffeners ([29]). This can be in the  
form of a rank-2 structure of stiffeners of height hmax on a solid plate of  
variable thickness h , i.e. a planar rank-2 layering of the weak tensor 1E9 kl  

and the strong tensor h  -E°  ki  (see Fig. 3.20).  
For the relaxed design problem we thus need to state the homogenization  

formulas for Kirchhoff plates, more specifically the effective material param-
eters for rib-stiffened plates. With these formul as  at hand (see Sect. 5.4.5 of  
Appendix 5.4), the computational procedure for computing optimal designs  
is completely analogous to the procedure described in Sect. 3.1.3. The opti-
mality criteria for the densities are equivalent to those derived in Sect. 3.1.4,  
with strains and stresses interpreted as  curvatures and moments. However,  
extra care is required for use of the result on optimal rotations.  

6  We refer to Sect. 1.5.3 for notation. 
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Fig. 3.19. Minimum weight microstructures in dimension 3 for obtaining materials 
which corresponds to the optimal material for a single strain field e = (1,1,1, 0, 0, 0). 
The three designs all have the same weight and are obtained using a 4 by 4 by 4 
equidistant nodal lay-out in a cubic cell. All 2016 possible connection between the 
nodal points are considered as potential members. Members not shown for the 
optimum cell (and structure) are at the minimum gauge. The different designs are 
obtained by penalization of members with certain lengths. The topologies in a) and 
b) have full cubic symmetry. The topology in c) has bars on the surface of the cell 
only and is not cubic symmetric, even though the effective parameters are isotropic. 
Notice the similarity between the 3-D microstructures and the 2-D microstructures 
shown in Fig. 3.18 (from Sigmund 1995). 

In order to exemplify the difference to the plane stress situation, consider 
a constant thickness, perforated plate with an orthogonal rank-2 system of 

3 

stiffeners. The effective bending stiffness is then D = h 1D with (see Ap-
pendix 5.4) 
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Fig. 3.20. Cross-section of the upper half of a rib-stiffened plate with one field of 
stiffeners running along the normal of the cutting plane. 

ryE  
Dtttt = 

lr?'(1 - 1,2)  + (1 - µ)'  
E  

D2222 = l^E  + 112 U2 E1111 ) D7212 = (y +11  + /lry) 2(1 + 
 L ) 

where the primary layering of density /.c is in the 2-direction and the secondary  
layer has density -y. This material law satisfies that Dtttt + D2222 - 2D1122 -

4D1212 < 0 (see discussion in section 3.1.4), meaning that the analysis of 
the  minimum compliance plate problem is more tricky than the pl ane stress 
case. As an example, there may be regions in a plate where an optimal, 
orthogonal rank-2 layering is not aligned with the principal curvatures. We 
will not treat the plate problem in further detail, as this is a major subject 
(see the monograph by Lewinski & Telega (2000) and [29]). 

We do mention, however, that the optimal design of plates takes an extra 
twist when the analysis modelling is taken into account. The design problem 
and its associated relaxation can be viewed as a purely mathematical ques-
tion of achieving well-posedness, but as any plate model is an approximate 
model, it is natural to question the validity of the relaxation in relation to 
the modelling restrictions/assumptions made to achieve the plate model un-
der consideration [29]. Thus the use of thin, high stiffeners in a Kirchhoff 
plate model is in fact a violation of the assumptions under which this model 
can be derived from 3-D elasticity. This means that the developments above 
should be seen in the framework of achieving regularization strictly within 
the Kirchhoff plate framework, ignoring eventual modelling restrictions. The 
modelling problem should by no means be dismissed but lies outside the scope 
of this presentation. The reader is referred to the literature [29] for further 
information on this problem as well as to studies of optimal thickness design 
of Mindlin plates within the framework of the homogenization modelling. 

3.5.2 Minimum compliance design of laminated plates  

This section is concerned with the optimal design of the lay-up of laminated 
plates for maximum stiffness. We consider optimization with respect to the 
ply thicknesses, fiber orientations and the stacking sequence of the laminates, 
keeping the ply material properties and the shape of the plate fixed. Instead 
of working directly with this mix of integer and real design parameters we 

D1122 = tivEllll>  

(3.38)  
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Fig. 3.21. Plate design of a clamped Kirchhoff plate subject to uniform trans- 
verse load. Left: Optimal thickness design (ill-posed). Right: Optimal distribution 
of material with two fields of stiffeners. The design data is hm ;,,/hm, = 5.0 and 

= 2.84. In both illustrations only the variation over the minimum gauge 
h,,,; n  is shown. 

employ a design parametrization through the so-called lamination parame-
ters [30]. These represent the effective, integrated properties of the laminate 
and are given as moments relative to the plate mid-plane of the trigonomet-
ric functions entering in the frame rotation formulas for stiffness matrices. In 
this way the properties related to the stiffness of the laminates are empha-
sized in the optimization model, while the realization of the optimal effective 
properties is postponed for subsequent post-processing. 

The developments below are strongly related to the free material design 
and to the homogenization approach discussed earlier, and also here we can 
carry out an analytical derivation of the optimal local properties of mate-
rial. Moreover, we choose to extend the design space to include "chattering" 
designs, thereby allowing infinitely many small variations of the fiber ori-
entation in each point through the thickness for each design domain of the 
plate (Hammer, Bendspe, Lipton & Pedersen 1996). This corresponds to the 
introduction of periodic composites for topology design and the use of rib-
reinforced plates in plate design.  

Parametrization by lamination parameters Before defining the lam-
ination parameters we first need to express the constitutive relations for a 
single ply of material in convenient form. Thus the elasticity tensor E;jkt will 
for convenience be written as a matrix 

E1111 	E1122 	E1112 

	

Ex = 
^ 	

V L

E1122 ^E2222 V 

V L 

LE2212 

	

', L 	

(3.39) 

E1112 	E2212 2E1212 x  

The index indicates that the constitutive parameters are given in the coordi- 
nate system X. In another coordinate system æ rotated the angle 0 positive  
anti-clockwise relative to the X-system, E x  is most easily expressed using  
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Fig. 3.22. Sketch of a laminate with the global coordinate systems z and z' ,  a  
material system X and orientations of the plies shown.  

the material parameters El _7, (Tsai & Hahn 1980). To ease the formulations 
later on, the constitutive matrix E x  is written in terms of five symmetric  
matrices containing the material parameters as:  

Ex  = To + 7'1  cos 245 

El E,4 	0 

+ 7"2  cos 4zy + T3 sin 25 + T'4 

E2 	0 	4E6  

sin 40 	(3.40)  

To = E4 E1 	0  T1 = 0 	— E2 ^E6  
0 	0 2E5 4E6  f  E6 0  

E3 	— E3 	4E7  2E6 	 E2  

T'2 = —E3 	E3 	— 4E7 7'3 = 0 	—2E6 — AE2 

fE7 — 4E7 — 2E3  —*E2 —*E2 	0  

E7 	—E7 — 4E3  
T4 = —  E7 	E7 	4E3  

—4E3 E3 -E3  —2E7  

where the material parameters E1_7 are expressed as  

El = 2 (Elul + E2222)x — E3 E2 = 2  (E1111 — E2222)x  
E3 =  (E1111 + E2222 — 2E1122 — 4E1212)x  

E4 = (E1122)x + E3 E5 = (E1212)x +E3  =  (El — E4)  

E6 =  (E1112 + E2212)x E7 =  (E1112 —  E2212)x  
If the material is orthotropic in the X-system E6 = E7 = 0 and in the case 
of an isotropic material E2 = E3 = 0 as well. 

We consider a laminate of the fixed thickness h made from several plies. 
Here the orientation of the i'th ply with respect to a suitable, fixed frame of 
reference is specified by Pi  and zi gives the location (dimensionless) of the  
interface between ply i and i + 1, see Fig. 3.22. All the plies consist of the  
sanie anisotropie material.  

In the classical plate theory the global relation between the membrane  

forces and moments per unit length {N}, {M} and the mid-plane strains  

{E°} and curvatures {K} is  
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[ {M} ]- [ B D ] [ {EIC } ]  

where a \/-notation  is used ({N} = {N11, N22, v -2N12
T

} etc. see e.g.  
(Pedersen 1995b). The stiffness matrices for the whole laminate can be ex-
pressed in a very similar way as the constitutive matrix in equation (3.40).  

The symmetric membrane, coupling and bending stiffness matrices A, B and  

D, respectively are in terms of the material parameters E1_7 and the lami-
nation parameters eA'B' n  given as  

A = h (r0 +1.10 + r20 +1'30  + r4^â ) 
B = h2  (r1 er + 7-2e + 1-30+ r4e) 	 (3.41)  

D = h3  (izr° +r l ^jo  +r2 14 + r3a)  T4 a) )  
The lamination parameters in a global coordinate-system a are defined as  
the weighted trigonometric integrals over the thickness (compare with the  

definition of the moments used for parametrization of the stiffness rank-1\  

layered materials, see Sect. 3.1.2):  

C[  
S[1 ,  ,3, ] = f  z° ' 1,2  [ cos 20 (z) , cos 41ÿ (z) , sin 20 (z) , sin 40 (z)] dz  

This compact notation implies for instance that 4-p is given as  

z 
69= 	z sin 20 (z) dz  

Generalized lamination parameters In the following we will consider  
lamination parameters arising from any arbitrary variations of the ply an-
gles through the thickness of the plate, including limits of rapidly varying  

oscillations. We thus extend the definition of the lamination parameters to  

2 	0,1,2 
'N[1,2,3,4]   _ _ z 	P[l z 3 4] (z)  dz (3.42)  

where P is the vector  

P[1,2,3,4] (z) = 	[ cos 20, cos 40, sin 20, sin 40] dB, (0) 	(3.43)  ° 
corresponding to a microscopic lay-up defined by a probability measure B z  (zÿ)  
with support in [0,7r].  

The set of lamination parameters D constitutes a convex and compact set  
in R 12 , (Crenestedt & Gudmundson 1993), and this property is expressed  

in the representation given by equations (3.42) and (3.43); convexity, for  
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example, follows from the possible use of a chattering design with a density 
of two laminate angles (see also below). 

The advantage of expressing laminate plate design in terms of the lami-
nation parameters is that one obtains a reduction in the number of variables 
to twelve (per point or per design area), irrespective of the number of plies. 
Moreover, one avoids a troublesome optimization over periodic functions of 
the rotation angles, as well as working with a discrete number of plies. In the 
sense of topology design of choosing between plies, the lamination parameters 
thus constitute the basis for an interpolation model. Also, the convexity of 
the set of lamination parameters together with the linear dependence of the 
stiffnesses on these parameters also leads to further simplifications as seen 
also for the free material optimization problem. 

The lamination parameters are obviously not independent, as there ex-
ist trigonometric relations between the functions over which the weights are 
taken. This is completely equivalent to the situation for the moments used in 
the expression (3.9) for layered materials. Also here the the range of admissi-
ble weights P (z) are given by the solution to the geometric moment problem 
as developed in Krein & Nudelman (1977). We thus have that P (z) is an 
L°°-snap from the interval [ — 2, 2] to the set M defined by (cf., (3.10)) 

y?+y3 <1, —1<y2 <1 
.A4 = y E R4  2a(1 - y2 ) + 2y3 (1 + y2) + 	 (3.44) 

+y3 + et — 4yiy3y4 < 1 

The set M is the convex hull (bounded by the supporting hyperplanes) of 
the closed curve (cos 20, cos 47,G, sin 20, sin 40), E [0, 7r] in R4  We can thus 
conclude that the set D is also compact as well as convex in R 12  

The constraints on P (z) are inherited directly by the lamination param-
eters e1î,2,3,4]  governing the membrane stiffnesses, so we have that e A 

E M. 

The sanie conditions hold for the four bending parameters e° 4 when pure 
bending is considered. Various necessary conditions for different combina-
tions of e's can be found in the literature, but the complete set of sufficient 
conditions for all twelve parameters is still not known [30]. 

in general the solution to the problem of finding a combination of ply 
thicknesses ti's and ply angles 4'J i 's for prescribed lamination parameters e's 
is not unique. The problem can therefore be formulated and solved as an 

 inverse optimization problem with the possibility of adding additional con-
straints as for example on the total thickness and/or on the variation of the 
orientation from ply to ply [30]. This is similar to the use of an  inverse homog-
enization problem for finding specific material properties of a material with 
microstructure. Regarding the number of plies, it can be shown that when 
only the coefficients fi 4 governing the membrane stiffness are considered, all 
points within the feasible domain given by M can be realized by a laminate 
with at most three plies (see Lipton (1994a) for a possible algorithm). 
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Minimum compliance of laminated plates The problem of minimizing 
the compliance of a laminated plate can now be analyzed along the lines used 
previously for free material design and for layered media. The design variables 
are the lamination parameters varying from point to point throughout the 
plate and we will base the developments on the multiple load case. As the 
stiffness matrices A, B and D are all linear in the lamination parameters, 
the strain energy is linear (and thus concave) in the lamination parameters. 
As seen for the free material case the problem thus satisfies the conditions 
for existence of a saddle point and we can perform our analysis by solving 
the local anisotropy problem together with the equilibrium problem. Here 
there is no material distribution problem, unless one chooses also to consider 
a variable thickness h as a design variable. 

The local anisotropy problem for laminates The local anisotropy prob- 
lem of finding the pointwise best use of material is for laminates of the form 

M 
max E wk wk 	with 
OED 

k=1 

Wk  2h 
Oe° }k A {E0 } k  + 2  {el k B {tc } k  + {KIT B {tc}

k ) 

Here the displacement field at equilibrium Uk  for the load case k enters via 
the strain energy density Wk (w k  is the weight factor for this load case). We 
note here that the objective function of problem (3.45) is linear and that the 
constraint set is convex and compact. There thus exists a solution among the 
extreme points of the convex set D. 

The energy density can also be written directly in terms of the total 
strains {e (z)} k 	{e° } k  + zh {tc} k  as (setting P0  = 1 and using the matrix 
definitions in

/

equation

( 

	(3.40)) 	

1 
Wk = 

2 
J 	le (z)}k T i  {e (z)} k  Pi  (z) I dz 	 (3.46) 

i—o 	 / 

As we also will allow for any variation of the ply lay-up through the thickness 
of the plate, we see that in order to solve (3.45) we have for each position z 
through the thickness to maximize the expression 

E wk (E {e (z)}7 Y {e (z)} k  Pi  (z)) 	 (3.47) 
t=1 	2=o 

over the parameters Pi . Thus the optimal lay-up of the laminate (for maxi-
mum stiffness) for each position (x1, x 2 , z) in the plate domain can be found 
by solving the problem 

/ 	 4 

 max E wk CE {E (z) }k 	/ Yi  {E lz) } k  yi 
1l 

 l 
yEM 

1-1 	2=1 

(3.45) 

(3.48) 
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over the well-known set M given earlier. Problem (3.48) is also, like problem  
(3.45), a linear optimization problem with convex and compact constraint set.  

There thus exists a solution among the extreme points of the convex set M  

which is the convex hull of the curve (cos 21/', cos 4z/,, sin 2zy, sin 40) , E [0, zr],  
so we conclude that for each position (z 1 , x2, z) in the plate there exist a  
solution to (3.48) which corresponds to a single ply rotated at a given angle.  

However, as this solution is not unique, we cannot make this conclusion about  
the optimal design. This will be elaborated in the following.  

The pure membrane case Let us now consider the situation of designing  

the lay-up for a situation of only in-plane loading, i.e. the pure membrane  

case. In that setting the strain energy density of the plate reduces to  

Wk = 1 fz 
( {E0}Tr {E0}P.(Z)) dz 	 (3.49)  

2 i-o  

Thus the optimization over the variables Pi gives the same result at any cross-
sectional position z of the plate. Together with the fact that the stacking  

sequence is of no consequence for the membrane stiffness and the fact that  

any element of the set M can be constructed as a convex combination of at  

most three points on the curve (cos 27fi, cos 4zfi, sin 20, sin 40), E [0, zr] (see  
e.g., Lipton (1994b), Lipton (1994b)), this implies that the optimal plate can  
be constructed from at most three plies. This holds for the single as well as  
the multiple load case. In the single load case this can be reduced to at most  

two plies, as will be shown below.  
Let us now for exemplification of the use of lamination parameters solve  

(3.48) for the case of a single load case and an orthotropic material. For  

simplicity, we use the directions of principal strains, Ej,Ejj, as a local frame  
of reference, while for the ply material we assume that the directions of  

orthotropy are ordered so E2 > 0, i.e. so E1111 > E2222. Problem (3.48) then 
reduces to 

max (E2 (Ei — Ei i )  yl + E3 (EZ - E  )2  yz)  yEJVI  

Furthermore, as the third and fourth lamination parameters do not enter in 
(3.50), we can reduce the constraint set to the range of the trigonometric 
averages P1, P2, that is, to the set 

M={yER2 1-1< yi<1,-1<y2<1,20(1—y2)+y2<1,} 

so that (3.50) is reduced to  

z 	z max _ (E2 (E^ — E^^) yl + E3 (E .] —  E11) 2  y2 	 (3.51) 
(yi,y2)ElN  

(3.50)  

Assume first that E3 > 0; this is a material which has low shear stiffness, cf. 
Sect. 3.1.4 and Pedersen (1990). As  E3 (E - Eu1) 2  > 0, E2 > 0, the optimal 
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energies will depend on the sign of (E? — e?/ ) and  will be given by the energies 
obtained from the lamination parameters (yr, y2]) = (1, 1) (if (E3 - Ej / ) _> 0) 
and (yi, y2) = (-1,1) (if (e3 - e? / ) < 0). If (E? — Eh) # 0, the design is 
unique and corresponds to a single ply rotated so the numerically largest 
principal strain is aligned with the material axis corresponding to Elm  (we 
have assumed E1111 > E2222). The optimal energy (i.e. the optimal value of 
(3.51)) becomes 

which is non-smooth at strains which satisfy e? = e3/, i.e. uniform dilation 
or pure shear (in terms of strains). The resulting reduced minimum potential 
energy problem (the reduced equilibrium problem, cf., (3.15)) is then a non-
smooth, convex problem, for which the necessary conditions of optimality at 
points with e = e will involve a convex combination of the gradients of the 
two smooth branches of $. This implies that at points where the strains of the 
optimal plate satisfy e? = eh, the optimal design can consist of some cross-
ply consisting of two plies rotated at 0 and 90 degrees relative to the principal 
strain axes, with thicknesses decided through the conditions of equilibrium. ? 

 The relative thicknesses of the two plies can actually be determined by con-
sidering the complementary energy formulation of the compliance problem. 
In terms of principal membrane forces N I , N//  (with IN > IN//!) one gets 
(see Hammer (1999a)) that the optimal [0U90i_ t] laminate has a relative 
thickness t (t E [2 , 1]) of the zero degree ply given as: 

N7+Nrr  E1111+E2022-2E1122 
 for 

 NIf  < E2222 - E1122  
NI - N Ir 	E1111—E2222 	 Nr - E1111 - E11z2 

2t — 1 — 	
NI - Nrr  E1111+E2222+2E1122  {Qr  %Vff > E2222+E1122  
Nf+Nrr 	Ell] l - E2222 	 Nr — Ellll+El122 

1 	 otherwise 

(3.53) 

Then consider the case E3 < 0 (a material with high shear stiffness). Here 
the algebra becomes somewhat messier. In this case we get unique solutions 
to (3.51) if  e l  # e//, with the solution corresponding to a single ply rotated 

at an angle i,1 given by cos 20 = - E2 E1+Erf  if E2 E1 -1- el r  < 1 and given as 4E3 El—Et/ 	1 4E3 EI — Eff - 

zJ = 0 if E2 E1+Err > 1. In the case e/ = E// we have a non-unique solution 
4E3 E1 —Err - 

and the optimal energy becomes non-smooth, resulting in an  optimal design 
which also in this case must consist of some cross-ply at 0 and 90 degrees 
relative to the principal axes (formulas similar to (3.53) can be found in 
Hammer (1999a)). 

7 We remark here that the displacement field of the optimal plate is unique; this 
follows from the strict convexity of each energy appearing in the inner maximiza-
tion of (3.52). 

0 ({E}) - Inax 
l 

E2 (E / — E /1) + E3 (E/  — 
E/4)2 

 -E2 (e, — E %1)+E3 (e, - E//) 2 
 (3.52) 
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A  
Fig. 3.23. Optimal three ply laminate for a plate with three independent single  
loads applied.  

The analysis above is consistent with the result on the optimal rotation  

of an orthotropic material derived by different means in Sect. 3.1.4. It was 
remarked there that this problem does not have existence of solutions in 
general and that some type of additional microstructure is necessary. Here 
we use lamination parameters, and find that just two plies are required as part 
of the optimal solution that we know exists. This simpler situation is possible 
as we work with effective material parameters given directly as a summation 
of stiffness via the out-of-plane stacking of the different plies ("materials"). 

Computational example The computational procedure used here for a 
multiple load problem follows the algorithm outlined in Sect. 3.2.2. That is, 
one iterates between the inner local anisotropy problem and the outer equi-
librium problem. The deformations and strains of the plate are determined 
using the finite element method in which a set of lamination parameters is 
related to each finite element. Based on fixed strains the local anisotropy 
problem (3.48) is then solved in each finite element using a standard SQP 
algorithm (Schittkowski 1985). 

The example here is a "bridge"-structure with three independent loads 
all given the same weight factors. It is a laminate built of graphite/epoxy 
plies and the total plate thickness is kept constant. The method described 
in Lipton (1994a) is applied after the iteration process to find a three ply 
laminate with the optimal properties. The final three ply design is shown in 
Fig. 3.23. The hatch direction in each element marks the orientation of each 
of the three plies, the density of the hatching varying as  the ply thickness. 
The more dense, the thicker the ply. As the loading is in-plane, the order of 
the plies is non-important. 

3.6 Optimal topology design with a damage related  
criterion  

In this section we discuss an attempt at introducing damage related criteria  

in topology design of continuum structures. We use an interpretation of con- 
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tinuum damage models from Francfort & Marigo (1993), where a variational  
statement is adopted to replace the standard internal variable representation 
pioneered by Kachanov (see, e.g., Krajcinovic (1996), Lemaitre (1996)). The 
model is represented in the form of an optimal remodelling problem, where a  
damaged material of reduced stiffness is distributed in a healthy structure so 
as to maximize the compliance, i.e., to minimize overall stiffness, for a given 
set of damage loads. Thus the treatment of the damage model is in itself a 
study of optimal structural design. Evolution would be described as a time-
series of such static remodelling models, but we accept here the limitation of 
only considering the onset of damage. 

3.6.1 A damage model of maximizing compliance 

The damage model takes the form of a design problem involving the lay-
out of a structure made from two materials, a stiff material and a flexible, 
damaged material. The structure we consider is made of a linearly elastic 
material with elasticity tensor E+ Under the action of the damage loads 
the material is damaged in some parts of the structure, leaving there a more 
compliant material with elasticity tensor E-  By more flexible, it is meant 
here simply that we in terms of tensors have that E+ - E-  >- 0, i.e., for 
any strains, the specific strain energy of the flexible material is strictly less 
than that of the stiffer material. When damage occurs, energy is released, 
and we denote by K the energy release per unit volume. Interpreting the 
distribution of damage as a material distribution design problem, we impose 
that for a certain load, the damage is distributed so that the compliance of 
the structure is maximized, making the structure as  flexible as possible among 
all distributions of damage. 

The damage problem is thus formulated as a "design" problem as 

( 1 	 f 
min min { - 	E^^ ,^t (x)E2^ (u ) eki (u)dS2 - 1(u) + K 

J  1
0 - d12 	(3.54) 

EEEad  uEU l `L ^ 	 ^  

where ft is the damaged zone, and where the set of admissible tensors Ead  
is given by the relations:  

^ E+ 
EZjki = 	 + ( 1-1 Q - )Ei+iki = 

 Ezikt  

if x E S2 \  S2 
ifx ES2-  

(3.55)  

We note that (3.54) could alternatively be written as a fixed volume maximum  

compliance problem, where K is the Lagrange multiplier for the volume con-
straint. Thus our problem is just a variant of the 0-1 topology design problem,  

now with an objective of minimizing stiffness.  
Here, we will not go into details on the relation between model (3.54) and  

other types of models used in continuum damage mechanics. However, the  
close relationship is evident if one solves in (3.54) for the minimization over  
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stiffness tensors. One then obtains a minimum potential energy principle for 
the damaged structure in the form 

min 	 (3.56) 
 

where the specific strain energy 24.(u) in the damaged structure is given by 

_ Eiykc E i • (1)Ekl (u) 	if QijktEij (u)Ekl (u) < 2K 

- Eijkl Eij(u)Ekt(u)+ 2K if QijklEij(u)ekl(u) > 2K 

where o = E+ - E-  In an internal variable representation of damage, in 
the spirit of the equivalent stress principle of Kachanov (Krajcinovic 1996, 
Lemaitre 1996), one represents the reduced stiffness of a partially damaged 
material as 

Eijkl (t) = (1 — t)qkl + tEijkl = Eijkl — tAijkl, O < t G 1 

Here t is interpreted as a volume fraction of the damaged state. The reduced 
problem (3.56) then also appears from a damage model in the form  

min min { z f Eijkl (t)Eij (u)ekl (u)dS2 - 1(u) + K f t(x)dS2
l  
} 

t(x) 	uEU l 	l 	 JJJ  
0<t(x)<1 

when one solves for the internal parameter t. 
Note that the model (3.54) as stated does not distinguish between tension 

and compression, but it is fairly straightforward to also include such effects in 
the model (Allaire, Aubry & Jouve 1997, Achtziger, BendsOe & Taylor 1998). 

We finish by noting that model (3.54) lacks any notion of history of the 
development of damage. As such, the model is in philosophy related to holo-
nomic elasto-plastic models for proportional loading. A notion of history de-
pendence and time dependency can be introduced through a time-stepping 
procedure where a sequence of problems is considered (as in semi-static, 
elasto-plastic modelling). A sequence of loads fi , f2, 	, fn , 	 can model 
a time dependent load, while the irreversibility of damage requires the in-
troduction of an additional constraint for the (i + 1)'th problem of the form 
[D,7] *  C 04, , where [R71 *  is the domain of damage for the i'th problem. 
Thus history dependence is achieved through the formulation of a series of 
optimal remodelling problems in the spirit of Olhoff & Taylor (1979). 

Relaxed problem statement Just as for the minimum compliance topol-
ogy design problem, the damage models (3.54) and (3.56) are not well-posed 
and we have to relax the problem by introducing composite mixtures of the 
two phases in a development that is completely parallel to that for the mini-
mum compliance problem (Allaire & Kohn 1994, Bendsoe & Diaz 1998). Thus 
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rank-2 materials also provide for a realization of the most flexible composites, 
and the corresponding "optimal" energy can be derived as  in section 3.3. 

We will write these expressions for a c ase where the healthy material and 
the damaged material have the same Poisson's ratio v, and only the Young 
moduli E+, E—  are distinct. For given principal strains EI, EII (ordered so  
that 1E/1 > 1E//1) and a local volume fraction of damage 19, the relaxed specific 
strain energy z '(u,19), including here the released energy due to damage, is 
given through the formulas [31]: 

4. 1(u,19) + 2K19 if EIEII < 0  
(i(u,19) _ $2 (u, 79)+21N if EIEII > 0 and 19 < V 	 (3.57) 

;:i3 (u09) + 2109 if EIEII > 0 and 19 > 19  

1 — 1 —v^ (1—^ EE+19E+ (63- + EJI  + 2vE 7E77)  

	

(D2 _ 
(1 - 19)E+

vz 
^E 

 E2  +E2  + 2 1/EIEII 	
1.9(1-1,9) 	(E+ —,9E — ) 2  x  

— 	

/

( I 	II 	 ) 	(1 —/9)E — +19E+ 2(1—v 2 ) 

X I (1 + v2 )(EJ + EL-)  + 4vEIEII  + (1 — v2 )IEI — EII I  

3(u ^) 

 

E—  
(EI — E !I) 2  + E —  2E+— ,9(1 —v)(E+ —E ) 

 E 	
2 

= 2(1 +v) 	 2(1—v) 2E- -F19(1+v)(E+ —E — ) ( I + EII)  

where  

= 	2E 	( JEI+EII ` 	1) 
(1 —v)(E+ —E — ) lei — EIf I  

The first and second regimes of the strain energy correspond to the use 
of an optimal rank 1 material consisting of one system of layers of the two 
materials, at one microscale. The third regime corresponds to an orthogonal 
rank-2 layering, consisting of two systems of layerings, at two scales. The inner 
layering consists of the stiff and damaged material, the outer layering of this 
material layered with the damaged material. Thus in the rank-2 structure 
the stiff material is surrounded by flexible material, shielding this material 
in order to weaken the material as much as  possible (for the fixed volume 
fraction) (thus, in Fig. 3.2 the weak material constitutes in this c ase the 
black areas). Moreover, the energy is minimized when the angle between 
the principal strain directions and the material coordinate system (layering 
directions) is 	 1 ±7/2 in regimes 2 and 3 and ± 1  arccos(1 — y), -y = IEI+:311  

^ 	g^ 	 2 	 E,EIII  
in regime 1. This is in accordance with the well-known results on rotation  

of an orthotropic material for maximum flexibility (this can be seen as in  

Sect. 3.1.4, cf., Pedersen (1989)). Finally note that 4 is convex as a function  

of 19.  
The functional above constitutes the relaxed form for the problem (3.54).  

Here we can go one step further (compare with the developments in Sect. 3.2.1)  
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Fig. 3.24. Optimal reinforcement of a frame. Left: The frame and loads, etc. with  

the standard minimum compliance solution. Mid: the solution of the design problem  

with damage taken into consideration, Right: the corresponding distribution of  

damage 19(x) (from Bendsae & Dfaz 1998).  

and compute the final relaxed specific strain energy for the damaged struc-
ture, i.e., the relaxed form of the energy appearing in (3.56). It is obtained by 
minimizing 4) with respect to the volume fraction r9. This can be solved an-
alytically (use of symbolic manipulation software is strongly recommended). 

 Its solution provides the optimum value of i9 for the given strain field, along 
 with details of the optimum material orientation, and provides an analyti-

cal form of the effective, relaxed strain energy density ■ (E) of the damaged 
structure, with no reference to O. Thus (3.54) becomes the non-linear and 
non-smooth problem 

min 
{

-
1

fo ^e(u)^dS2 — l(u) } 
  ^ 
	

11  

Its solution provides the displacements and indirectly the spatial distribution 
of i9 over the domain Q.  

3.6.2 Design problems 

In the topology design problem that we consider, the design is parametrized 
by the SIMP model. This is assumed for both the healthy as  well as  the 
damaged phase. The minimum potential energy principles governing a fully 
healthy structure and a damaged structure are thus written as 

min 
{ 

2 f  P
PE ̂kl (x)Eij (us)Ekl (us)d 12  — /s(us)} 

   
us EU l   

(3.58)  

(3.59)  

{f(E(uD))d — lo (uo)} 	 (3.60)  min  
up Et/  
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Topology design of reinforcement to reduce damage effects In the  
first problem we consider the design of the reinforcement of a structure so  

as to minimize the effect of damage on the reinforced structure. The existing  

structure is part of the ground structure and occupies the domain OG, where  
we have p(x) = 1, x E QG,  and the reinforcement can be placed in any part  

of the remainder SI \ QG of the reference domain. The effect of the damage is  

measured by the compliance of the damaged structure under some damage  

loads fD. The design problem thus takes the form  

max 	m 
Û  {

f0 PPuDd_f0fDuD}  

p(x)=1,xEd2 c   

f^ Rc 
pdS2<Vol  

0<Pnn,n<p<1  

where we maximize the potential energy of the damaged structure, for im-
proved overall stiffness. 

Design of structural topology with a constraint on damage effect  
In the second problem we seek designs that make use of a prescribed amount 
of material and are of minimum compliance under a set of service loads pS . 

 In addition, we require that the structure retain a certain amount of stiffness 
under the action of a separate set of damage loads fD. The effect of damage 
is measured by the compliance of the damaged structure under the damage 
loads pp. The optimization problem thus reads 

min 
P 

fn  pdO<V  
0<Prnin<p<1  

^

fsusdS2  
SZ 

(3.62)  

s.t. — 2 min { f0  1  pp^(e(uD))dS2 — J  fDUD } < cm.
uD E U 	 Sl 

where us is a solution to (3.59) with load fs. Here the objective function  
states that the structure (for a given amount V of material) should be as stiff  

as possible under the service loads, while the constraint is a restriction on  

the amount of damage allowed under the damage loads, measured in terms  

of compliance (under the damage load).  

Implementation The topology design problems can be solved along the  
lines described in Chapter 1 (all objectives and constraints are compliance  

values, simplifying derivative calculations). The extent of damage 19(x) as-
sociated with the damage loads is determined by solving a non-linear finite  

element problem so the process is iterative in the displacements. At each  

iteration step, the given displacements and associated strains are used to  

find, within each finite element, a9 and the details of the local orthotropy  

and orientation of the rank-2 material that is consistent with the extremal  

energy expression (3.58). The update of the displacements then consists of a  

(3.61)  
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Fig. 3.25. Minimum compliance design. Left: In the absence of damage loads, 
Mid: With a constraint on the effect of damage loads , and Right: the distribution 
of damage in this optimal design (from Bendsoe & Diaz 1998). 

linear finite element analysis with this material data. A similar scheme was 
described in Sect. 3.2.2 for the stress-based minimum compliance problem. 



4 Topology design of truss structures 

Topology optimization of trusses in the form of grid-like continua is a classical 
subject in structural design. The study of fundamental properties of optimal 
grid like continua was pioneered by Michell (1904), but this interesting field 
has only much later developed into what is now the well-established lay-out 
theory for frames and flexural systems [3], [27]. The application of numerical 
methods to discrete truss topology problems and similar structural systems 
has a shorter history with early contributions in, for example, Dorn, Gomory 
& Greenberg (1964) and Fleron (1964) (see also [32]). The development of 
computationally efficient methods is not only of great importance for the truss 
topology problem in itself. It is likewise of interest for solving the reduced 
problems which arise in the study of simultaneous design of material and 
structure, as  described in Chap. 3.4. 

The optimization of the geometry and topology of trusses can conveniently 
be formulated with the so-called ground structure method. In this approach 
the layout of a truss structure is found by allowing a certain set of connec-
tions between a fixed set of nodal points as potential structural or vanishing 
members. For the truss topology problem the geometry allows for using the 
continuously varying cross-sectional bar areas as design variables, including 
the possibility of zero bar areas. This implies that the truss topology prob-
lem can be viewed as a standard sizing problem. This sizing reformulation is 
possible for the simple reason that the truss as a continuum geometrically is 
described as  one dimensional. Thus for both planar and space trusses there 
are extra dimensions in physical space that can describe the extension of the 
truss as  a true physical element of space, simplifying the basic modelling for 
truss topology design as compared to topology design of three dimensional 
continuum structures. 

Truss topology design problems were in early work formulated in terms 
of member forces, ignoring kinematic compatibility to obtain a linear pro-
gramming problem in member areas and forces. The resulting topology and 
force field are then often employed as  a starting point for a more complicated 
design problem formulation, with heuristics, branch and bound techniques, 
etc. being used to link the two model problems [32]. Alternatively, when dis-
placement formulations are used, then (small) non zero lower bounds on the 
cross-sectional areas have been imposed in order to have a positive definite 
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Fig. 4.1. Ground structures for transmitting a vertical force to a vertical line of  

supports. Truss ground structures of variable complexity in a rectangular domain  

with a regular 5 by 3 nodal layout. In c) all the connections between the nodal  
points are included.  

stiffness matrix. This means that standard techniques for optimal structural 
design can be used. Also, it allows for the use of optimality criteria methods 
for large scale design problems involving compliance, stress, displacement and 
eigenvalue objectives. In the simultaneous analysis and design approach the 
design variables and state variables are not distinguished, so the full problem 
is solved by one unified numerical optimization procedure. However, unless 
specially developed numerical solution procedures are used, only very small 
problems can be treated [33]. The use of simulated annealing and genetic 
algorithm techniques for the topology problems in their original formulation 
as discrete selection problems, has also been pursued but also these fairly 
general approaches are with the present technology restricted to fairly small 
scale problems [33]. 

In this chapter we will investigate various formulations of truss topol-
ogy design and outline some options for their numerical processing [32], [33]. 
We seek specifically to be able to handle problems with a very large num-
ber of potential structural elements, using the ground structure approach. 
For this reason we consider primarily the simplest possible optimal design 
problem, namely the minimization of compliance (maximization of stiffness) 
for a given total mass of the structure where a very detailed examination 
of the properties of the problems is possible. The analysis is general enough 
to encompass multiple load problems in the worst-case and weighted-average 
formulation, the case of self-weight loads and the problem of determining the 
optimal topology of the reinforcement of a structure as for example seen in 
fail-safe design. Also, variable thickness sheet, sandwich plate and free ma-
terial problems are covered by the developments. In direct analogy with the 
continuum setting, these problems can be given in a number of equivalent 
problem statements, among them problems in the nodal displacements only 
or in the member forces only. With these reformulations at hand it is possible 
to devise very efficient algorithms that can handle large scale problems. Also, 
as we have seen in earlier chapters, the formulations can be obtained through 
duality principles and the resulting formulations in displacements or stresses 
correspond to equilibrium problems for an optimally global strain energy and 
an optimally global complementary energy, respectively. 
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4.1 Problem formulation for minimum compliance truss 
design 

The ground structure approach allows the truss topology design problem to 
be viewed as  a sizing problem. However, the topology problem is unusual as 
a structural optimization problem as the number of design variables is typi-
cally several magnitudes bigger than the number of state variables describing 
the equilibrium of the structure. For most structural optimization problems 
described in the literature the opposite is the c ase. Also, for truss topology 
design the stiffness matrix of the full ground structure with certain members 
at zero gauge can be singular. This implies that most optimal designs have a 
singular stiffness matrix when described as part of the full ground structuref. 

4.1.1 The basic problem statements in displacements 

In the ground structure approach for truss topology design a set of n chosen 
nodal points (N degrees of freedom) and in possible connections are given, 
and one seeks to find the optimal substructure of this structural universe. 
In some papers on the ground structure approach, the ground structure is 
always assumed to be the set of all possible connections between the chosen 
nodal points, but here we allow the ground structure to be any given set of 
connections (see Fig. 4.1). This approach may lead to designs that are not 
the best ones for the chosen set of nodal points, but the approach implicitly 
allows for restrictions on the possible spectrum of possible member lengths 
(see Fig. 4.1) as well as for the study of the optimal subset of members of a 
given truss-layout. 

Let a,, 1, denote the cross-sectional area and length of bar number i , 
respectively, and we assume that all bars are made of linear elastic materials, 
with Young's moduli Ei . The volume of the truss is V = E t"' 1  ail,. In order 
to simplify the notation at a later stage, we introduce the bar volumes t, = 
ail,, i = 1, . ,m , as  the fundamental design variables. Static equilibrium is 
expressed as 

Bq = f  

where q is the member force vector and f is the nodal force vector of the free 
degrees of freedom. The ground structure is chosen so that the compatibility 
matrix B has full rank and so that in > N, excluding mechanisms and rigid 
body motions. The stiffness matrix of the truss is written as 

K(t) = E t iK, 

i_i 

where tiK i  is the element stiffness matrix for bar number i, written in global 
coordinates. Note that K, = q.b ibT where bi is the i'th column of B. 
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The problem of finding the minimum compliance truss for a given vol-
ume of material (the stiffest truss) has the well-known formulation (cf., the 
continuum setting Sect. 1.1) 

min fTu 
u,t 

m 	 m 	 (4.1) 
s.t. E tiKiu = f, E ti  = V, ti > 0, i = 1, . , m 

i=i

Problem 4.1 is well studied in the c ase of an imposed non-negative lower 
bound on the volumes ti [32]. In this case the stiffness matrix K(t) is positive 
definite for all feasible t and the displacements can be removed from the 
problem. The resulting problem in bar volumes turns out to be convex and 
existence of solutions is assured (cf. Svanberg (1984); see also discussion of 
the variable thickness sheet problem in Sect. 1.5.2). Allowing for zero lower 
bounds complicates the analysis, but it also provides valuable insight. The 
zero lower bound on the variables ti thus means that bars of the ground 
structure can be removed and the problem statement thus covers topology 
design. Problem (4.1) can result in an optimal topology that is a mechanism; 
this mechanism is in equilibrium under the given load, and infinitesimal bars 
can be added to obtain a stable structure. Also, if the optimal topology has 
straight bars with inner nodal points, these nodal points should be ignored. 
The resulting truss maintains the stiffness and the equilibrium of the original 
optimal topology. 

The zero lower bound in problem 4.1 implies that the stiffness matrix is 
not necessarily positive definite and the state vector u cannot be removed by 
solving K(t)u = f. Removing u from the formulation is not very important 
for the size of the problem, as, typically, the number m of bars is much greater 
than the number of degrees of freedom. In the complete ground structure we 
connect all nodes, having m = n(ri — 1)/2, while the degrees of freedom are 
only of the order 2n or 3n (for planar and 3-D trusses). For the complete 
ground structure we also have a fully populated stiffness matrix lacking any 
sparsity and bandedness. 

Our aim here is to develop methods which can be applied to large scale 
truss topology problems and for this reason we employ the simplest possible 
design formulation as  stated in problem (4.1). More general problem state-
ments are briefly covered in Sect. 4.4. Nonetheless, a number of extended 
design settings can be covered within the framework of (4.1). In the case 
of multiple loads, we formulate also for trusses the problem of minimizing 
a weighted average of the compliances. For a set of M different load cases 
fk, k = 1, ... , M , and weights wk, k = 1, ... , M , the multiple load problem 
reads 
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min \---` w k f k
T 
 ük 

 u,t 
k=1 

s.t. E tiKiuk = ft, k = 1, . ,M 	 (4.2) 
i=1 

E ti = V, ti > 0, i =1 , .,7T6 
i=1 

Note that in problem (4.2) it is possible to refer each load case to a distinct 
ground sub-structure, and that it thus is possible to cover fail- safe design 
along the lines described in Taylor (1987). Let us introduce an extended 
displacement vector 

u = (u' , . ,uM ) 

of all the displacement vectors Ilk  , k = 1,. , M , an extended force vector 

f = (w i f1 , ,wM fM ) 

of the weighted force vectors w k  fk , k = 1, .. ,M , and the extended element 
stiffness matrices as the block diagonal matrices 

w 

wMK 1 
Then problem (4.2) can be written as 

min fTû 
û,t 

m 	 m 

s.t. E t i Kiû = f, E ti  = V, ti > 0, i = 1, 	, rrc 
i=1 	 i=1 

which is precisely of the same form as problem (4.1). 
The problem of worst case minimum compliance design for multiple loads 

fk, k =1, . , M , reads 

(4.3) 

min 	max f kT  uk  = 	max 
uk,t 	k=1, ,M 	 A k >0, k=1, .,M 

E iak=1 

E Akf kT uk  
k=1 i 

(4.4) 
s.t. E t i Kiuk = ft, k = 1, . ,M  

i=1 

Eti =V, ti >0, =  
i=1 
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where uk , k = 1, . , M are again the displacements corresponding to the  
different load cases. Note how the discrete optimization over the compliance  
values can be converted into a smooth maximization by introducing a convex  
combination of weighting parameters a k , k = 1, . , M  

We note that the problem formulation (4.1) covers the finite element  
formulation of the minimum compliance design of continuum problems that  
exhibit a linear relation between stiffness and the relevant design variable,  
as exemplified by design of variable thickness sheets, the design of sandwich  
plates or the free material design (cf. Chap. 3). In these cases the matrices 

 Ki  should be interpreted as the specific element stiffness matrices, and the  
design variables are the element thicknesses (volumes). For these cases and for  
the multiple load formulation (4.3), the element stiffness matrices no longer  
have the form of dyadic products. In order to cover all three cases by one  
formulation we will write in the following (4.1) in a generalized form  

min fTu  
u,t  

(4.5)  
s.t. E t i K i ll  = f , E ti  = V, t i  > ^ , i = 1 , . , m 

i= 1 	 i= 1  

where K i  are positive semi-definite, symmetric matrices that satisfy that the 
matrix K(t) = 1  t i K i  is positive definite if all the design variables ti's  
are positive. For trusses this means that the number of bars in the ground 
structure exceeds the number of degrees of freedom and that the compatibility 
matrix of this ground structure has full rank. 

In analogy to the continuum problems treated earlier in Chaps. 1 and 3, 
it is also in this discretized case convenient to rewrite the problem statements 
in terms of a minimum potential energy formulation of the equilibrium con-
straint. Thus problem (4.5) can be rewritten as a max-min problem in the 
form' 

max min 

__ 	

{ 2uT ( tiKi I u — fT
U} 	

(4.6) 
t>o 	u l 	\ 	1 

E, t,=v 	i—'  

This is a saddle point problem for a concave-convex problem, and we shall  

also for the truss problem in the following use that the max and min operator  

in (4.6) can be interchanged.  

4.1.2 The basic problem statements in member forces  

For the continuum formulations of topology design we formulated a stress  

based minimum compliance problem using the minimum complementary en-
ergy principle (cf. problem (1.7) in Sect. 1.1.3). Writing here for the single  

load truss problem we have the problem  

1  We write t > 0 for the condition ti > 0,  
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Fig. 4.2. The influence of the ground structure geometry on the optimal topology. 
Optimal truss topologies for transmitting a single vertical force to a vertical line of 
supports. The ground structures consist of all possible non-overlapping connections 
between the nodal points of a regular mesh in rectangles of varying aspect ratios 
R = a/b. a): 632 potential bars for 5 by 9 nodes in a rectangle with R = 0.5.  
Optimal non-dimensional compliance 4, = 4.000. b): 2040 potential bars, 9 by 9 
nodes, R = 1.0, 4i 5.975. c): 4216 potential bars, 13 by 9 nodes, R = 1.5, 
4i = 9.1676 d): 7180 potential bars, 17 by 9 nodes, R = 2.0, 4i = 12.5756. e): 
10940 potential bars, 21 by 9 nodes, R = 2.5, 4i = 16.4929 (from Bendsoe, Ben-Tal 
& Zowe 1994). 

inf min  2 ^ 
^ 

(42)2  

2 	t  i=1 

s.t. Bq = f ,  E ti = V,  ti > 0, i = 1, . ,m  
(4.7)  

i=1  

where we have to take the infimum over all positive bar volumes in order to  

have a well-posed problem. In (4.7), q is the vector of member forces. For a  

given t the solution q* to the inner problem of (4.7) satisfies q2 = tibT u* 

where u* is the displacement of the truss, i.e., u* is the solution to the inner  
problem of (4.6). Note that problem (4.7) is a problem which is simultaneous 
convex in member forces and member volumes.  

The traditional formulation of truss topology design in terms of member  
forces is for single load, plastic design [32]. This problem is normally stated as  
a minimum weight design problem, for all trusses that satisfy static equilib-
rium within certain constraints on the stresses in the individual bars. With  
the same stress constraint value QZ for both tension and compression, the  
formulation is in the form of a linear programming problem  
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min E ti 
q,t 

i=1 

s.t. Bq = f ; — Qiti < ligi < &iti 	i = 1, 	, m 

ti > 0, i = 1, .. , m 

Notice that in problem (4.8) the stress constraints are written in terms of 
member forces. This turns out to be important in order to give a consistent 
formulation. For some truss problems, the stress in a number of members 
will converge to a finite non-zero level as the member areas converge to zero, 
but the member forces will converge to zero, Cheng & Jiang (1992), Kirsch 
(1990a). This fact should be observed for any truss design problem involving 

stress constraints (see also Sect. 4.4.4 for further discussion on this issue). 
Problem (4.8) is a formulation purely in terms of statics, with no kine-

matic compatibility included in the formulation. However, a basic solution to 
this LP problem will automatically satisfy kinematic compatibility, a rather 
puzzling fact. We note here that (4.8) can be extended to cover cost of sup-
ports and to problems involving local stability constraints (buckling etc.) 
while maintaining the basic properties of (4.8), albeit not the LP form, see 
Pedersen (1993b), and Pedersen (1993c). This extension will not be discussed 
here (see Sect. 4.4.4). 

With the change of variables ti = (q-if  + qi q = (q+ - q- )  we can 
write (4.8) in standard LP form, as 

min E 
ti  - (gi+ + qi ) 

g+ 	i=1  Qi (4.9) 

s.t. B(q+ — q ) = f 	qi > 0, qi > 0, i = 1, 	, m 

Here q .,4", qi can be interpreted as the member forces tension and compres-
sion, respectively. It is easy to see from the necessary conditions of optimality 
that the problem (4.8) gives rise to fully stressed designs, i.e. designs for which 
all bars with non-zero bar area have stresses at the maximum allowed level 
Qi . Thus one can often in the literature find (4.9) stated directly without ref-
erence to (4.8), as for a fully stressed design, the objective function of (4.9) 
is precisely the weight of the structure. We shall in a later section revert to 
these formulations and will show that (4.8), (4.7), and (4.1) are all equivalent 
in a certain sense. 

The plastic design formulation can easily be extended to a multiple load 
situation as 

(4.8) 
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min Ek 4 ' t i= 1 
m 

s.t. Bqk  = fk  + E tigi , k = 1, . , M 	 (4.10) 
i=1 

— viti < 	< Qiti >  i = 1 , 	 , m, k = 1 , • ,M  
ti>0, i = 1,...,m, 

where self-weight loads in the form E? `  tigi are also considered (see below 
for details on notation). This problem is also a linear programming prob-
lem. However for this case the precise relation between this problem and the 
minimum compliance problem is not known. 

4.1.3 Problem statements including self-weight and reinforcement 

The formulations given above in Sect. 4.1.1 lend themselves to natural exten-
sions, such as to the problem of finding the optimal topology of the reinforce-
ment of a given structure and the optimal topology problem with self-weight 
taken into consideration. 

For the reinforcement problem, see, e.g. Olhoff & Taylor (1983), using the 
ground structure approach, we divide a given ground structure into the set 
S of bars of fixed size and the set R of possible reinforcing bars. Typically S 
and R will be chosen as disjoint. We prefer here to allow R to contain (a part 
of) S as a subset; in this way non-zero lower bounds on the design variables 
can easily be included in the general problem analysis. The bars (elements) 
of the given structure have given bar volumes si, i E S , and the optimal 
reinforcement t i , i E R, is the solution of the minimum compliance problem 

min fTu 
u,t 

s.t. I  E t iK i  + E siKi u = f, E ti = V, ti > 0, i E R 
aER 	iES 	 iER 

(4.11) 

This problem can be solved by analogous means as can be used for the other 
topology design problems formulated above. Note that a reinforcement for-
mulation in connection with a multiple load formulation with distinct sub-
ground structures of a common ground structure will allow for a very general 
fail-safe design formulation. 

For the important case of optimization where loads due to the weight of 
the structure are taken into account, we employ the standard assumption 
that the weight of a bar is carried equally by the joints at its ends, thus 
neglecting bending effects. With gi denoting the specific nodal gravitational 
force vector due to the self-weight of bar number i the problem of finding 
the optimal topology with self-weight loads and external loads takes the form 
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min If+ Eti 
u,t [  

j=1 
m 	 m 	m 

s.t. E t iKiu = f + E tigi; E ti = V, t i  > 0, i = 1,  • , in 
i=1 	 i=1 	i=1 

Note that for the problem with self-weight, any feasible truss design for which 
the self-weight load equilibrates the external load is an optimal design with 
compliance zero and zero displacement field (compliance is non-negative in 
all cases). Thus to avoid trivial situations, it is natural to assume that such 
designs are not possible: 

Eti =V, ti>0, i = 1,. ,m, f + Etigi =0
1

= Q1 
i=1 	 i=1 

We complete this exposition of problem statements by stating the reinforce-
ment problem, with self-weight loads, and general stiffness matrices and loads, 
so that all cases above are covered as special cases 

[f+tjgj+sjgj] T u  

min  
iER 	iES 

s.t. EtiKiu+ESiKiu = f + Etigi+E sigi 
iER 	 iES 	 iER 	iES 

Eti =V, t>0, iE R 
iER 

Here a max-min formulation as in (4.6) can also be formulated, maintaining 
the concave-convex nature of the basic problem (4.6). 

4.2 Problem equivalence and globally optimized energy 
functionals 

4.2.1 Conditions of optimality 

For the sake of completeness of the presentation and as one gains extra in-
formation in the truss case, we will in this section derive the optimality 
conditions also for the minimum compliance truss topology problem (in the 
formulation (4.12) with self-weight). As for the continuum problems treated 
earlier, these conditions constitute the basis for the well-known computa-
tional scheme named the optimality criteria method (cf., Sect. 1.2.1); we will 
describe this under a general discussion on computational procedures in a 
later section. 

m 

u 

(4.12) 

{ 

(4.13) 
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Fig. 4.3. The effect of self-weight loads. Optimal truss topologies for transmitting 
a single vertical force to a vertical line of supports. The figures show the variation 
for increasing specific self-weight loads, corresponding to increasing real lengths 
of the structures. The self-weight is in b) increased by 2 times compared to to 
the design a). These designs are obtained for a 9 by 6 equidistant nodal lay-out 
in a rectangular domain of aspect ratio 1.6, and all 919 possible non- overlapping 
connections. If all 1431 possible connections are used, the design b) is modified to 
the design c). Compare with Fig. 1.8 (from Bendsoe, Ben-Tal & Zowe 1994). 

In order to obtain the necessary conditions for optimality for problem 
(4.12) we introduce Lagrange multipliers û, A, hi,  i = 1, . , m , for the equi-
librium constraint, the volume constraint and the zero lower bound con-
straints, respectively. The necessary conditions are thus found as the condi-
tions of stationarity of the Lagrangian 

m 	 m 	 m 

L = (f + E tigi) T u — 	tiI u—f — E tig ) 

i=1 	 i=1 	 i=1 
m 	 m 

+A(Eti - V)  + E lli( — ti) 
i=1 	i=o 

By differentiation we obtain the necessary conditions 
m 	 m 

E ti Kill = f + E tigi ûT (Ki u — 2gi) = A — µi 
i=1 	i=1 
lei>_ d 	ltiti=fi 	i=1, 	,m 

If we impose a small non-negative lower bound on the areas, the stiffness 
matrix K is positive definite and thus u is the unique Lagrange multiplier for 
the equilibrium constraint, but the situation without a lower bound is not so 
straightforward. 

Now let A*(u) denote the maximum of the specific energies uT(Kiu-2gi) 
(with self-weight) of the individual bars, i.e. 

A*(u) = max {uT (Ki u — 2gi) i = 1, , m} 

and let J(u) denote the set of bars for which the specific energy attains this 
maximum level 
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J(u) = {
i ^ uT (K iu — 2gi) = A * (u)}  

We also define non-dimensional element volumes ti = ti/V Then the neces-
sary conditions are satisfied with  

ü = u; ti = tiV, i E J(u); ti = 0, i J(u); A = A*(u);  

= 0, i E J(u); Iii = A*(u) — uT  (Kiu — 2gi), i J(u) 
 

provided that there exist a displacement field u with corresponding set J(u)  

and non-dimensional element volumes ti, i E J(u) , such that  

V E t iT{iu = f + V E t igi  E ti = 1 	 (4.15)  

	

iEJ(u) 	 iEJ(u) 	iEJ(u)  

The optimality condition (4.15) states that a convex combination of the gra-
dients of the quadratic functions V(2u T Kiu — g2 u), i E J(u) , equals the  
load vector f  

It can be shown (see Sect. 4.2.3 below) that there does indeed exist a pair  

(u, t) which is a solution to the reduced optimality conditions (4.14, 4.15).  
This implies that there exists an  optimal truss that has bars with constant  

specific energies and the set J(u) is the set of these active bars. Note that a  

pair (u, t) satisfying the necessary conditions (4.14), (4.15) for problem (4.5)  

is automatically a minimizer for the non-convex form (4.12) of the minimum  
compliance problem. This can be shown by copying the proof of Taylor (1969).  

For any design 4i, i = 1, . . , m , satisfying the volume constraint and with  
corresponding displacement field v , we have that  

	

916 	 m  

(f + E  tigi) T  u = 2fTu — E tiuT  (Kiu — 2gi)  
i=1 	 i= 1  

771  

= 2fTu — E t iA*(u)  
i=1  

= 2f Tu— VA* (u) = 2f Tu— E 4i A* (u) 
i=1  

7rl  

<2fTu— ESiuT(Kiu- 2gi)  
i=1  

^ 	 1 m 
< 2 max (f + E sigi)T  w — 

2 ^  siwT  Kiw 
} 

— w 
i= 1 	 i= 1  

f/d 	 m 	 TIL 

= 2 (f + E sigi)T  u — E sivTKiv = (f + E Sigi)T  v  
i=1 	 i=1 	 i=1  

(4.14)  

where we have invoked the extremum principle for equilibrium. Note that the 
existence of solutions to the optimality conditions (4.14), (4.15) shows that 
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there always exists an optimal solution with no more active bars than the  
degrees of freedom (dimension of u) plus 1; this follows from Caratheodory's  

theorem on convex combinations (see, e.g. Achtziger et al. (1992); see also  

McKeown (1997)). Finally we also remark that such a design only has active  

bars that attain the maximum energy level, as measured by A*, in accordance  

with what we have seen for the continuum problems as well.  

4.2.2 Reduction to problem statements in bar volumes only  

It was noted earlier that the truss topology problem is an unusual structural  

optimization problem, as the acceptance of zero bar volumes implies that  

the stiffness matrix of the problem can be singular. Thus the standard gra-
dient/adjoint methods of structural optimization which view the problems  

as optimization problems in the design variables only cannot be invoked di-
rectly. However, if we accept to consider the topology optimization problem  

as a limes inferior problem for a series of optimal design problems with de-
creasing positive lower bounds on the design variables we can remove the  

displacements from the formulation (this has consistently been the approach  

for the continuum structures).  

Rewriting (4.5) and imposing positive element volumes as a perturbation  
of the original problem, we can remove the displacement variables by solving  

for the now unique displacements  

inf 	{(t)  fTK(t) 1 f = max [2fT u  — uT  E tiiu]} 
	

(4.16) 
t ; =v 	i=1 	J  

Note that we have exchanged the min-operator with the inf-operator as well  

as changing the constraint t i  > 0 to ti > O. Problem (4.16) is a formula-
tion which, as discussed before, is more st andard in structural optimization.  
Nonetheless, it is still unusual from a computational point of view, as the  

stiffness matrix in truss topology optimization typically will be dense.  

It was earlier pointed out that problem (4.16) is convex (see also Svanberg  

(1984)). This follows from the fact that the compliance function (1)(t) , as a  
function of the design variables by the second expression in (4.16) is expressed  

as the supremum (maximum) over a family of convex (linear in this case)  

functions (cf., Sect. 1.5.2). Note that the gradient of the objective function  

4i(t) is easy to compute and is given as (as seen in Sect. 1.2.3):  

ôd) = —uTK i u, with E  t 1K i u = f 
t̂i  i=1  

Note that we for the multiple load problem in its worst-case setting also have 
a convex formulation in bar volumes only 

m  

m  

inf  
t i  >o, i= 1,...,m  

E%i ti -V  

max fkTK(t)_1 fk 
k=1,...,M  

(4.17)  
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Semidefinite programs The structure of the minimum compliance truss  
problem also allows for yet another formulation in the displacements only.  

These fall in a class of mathematical programming problems named semidef-
inite programs, with the acronym SDP. If we rewrite problem (4.16) in terms 
of a bound variable ^, which is the value of the compliance, we can write the 
optimization problem as 

min 0  
u,t,' 

s.t. max S 2fTU — uT E tiKiu 1 <  

° l 	 i=1  

Et, =V, ti>0, i =1 ,  ..,m  
i=1  

(4.18)  

Here the constraint on the potential energy is actually equivalent to a condi-
tion that the symmetric matrix 

_  
A(t, ^ ) 

— [ f K] — [ f 0 ]  +^ 

is positive semidefinite (Ben-Tal & Nemirovski 1994), which we write as A r  
O. The matrix A is linear in the variables t i , and the inequality A >- 0  
is then referred to as a linear matrix inequality, an LMI (Boyd, Ghaoui,  
Feron & Balakrishnan 1994). The linearity implies that A >- 0 is a convex  
constraint, which is most directly seen by the definition: A 0 if and only  

if A is symmetric and u TAu > for_ all u (this characterization can also 
be used to show that the condition A >- 0 is equivalent to the condition  
2fTu — uTKu < di for all u, see Ben-Tal & Nemirovski (1994)).  

Our optimization problem (4.18) can thus be rewritten as a convex prob-
lem in the variables t, sT. only (this has now become a standard test problem in  

mathematical programming, see for example Vandenberghe & Boyd (1996)):  

min 0 

s.t. 	0, E  t i  = V,  ti > 0, i = 1, . ,m 
	 (4.20)  

i=1  

This reformulation may seem as adding to the complexity of the problem,  

as initially a constraint like A >- 0 seems difficult to handle. However, this  

is not the case. Modern interior point algorithms make the solving of SDP's  
like (4.20) comparable to solving linear programming (LP) problems [33].  

As the single load case problem is actually equivalent to an LP problem  

(see Sect. 4.2.4) this feature is more interesting for the multiple load case  

which does not have an equivalent LP format. For the worst case situation  

we actually write the SDP form as:  
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Fig. 4.4. The difference between multiple load and single load case problems.  
Optimal truss topologies for transmitting three vertical forces to two fixed supports.  
The truss is optimized with the loads treated as a single load (left) as well as  
three individual load cases for a min-max, worst case design situation (right). The  
ground structures consist of all 8744 possible non-overlapping connections between  
the nodal points of a regular 13 by 13 mesh in a square domain. We do not show  
the uppermost rows of nodes, as these are not part of the optimal structure (from  
Bendst e, Ben-Tal & Zowe 1994).  

min  
t,.  

^T 
s.t. ^ K  r 0 k =1, 	M  

(4.21)  

E ti =V, t i >0, i =1,. ., m 
i=1  

Also remark that the SDP form can be employed for truss design with bounds  
0 < tmin < ti < tmax  on the truss volumes; in this situation an LP form is  
not known either.  

If we alternatively consider the compliance c as given and consider the  
minimum weight design for an upper bound on compliance, an alternative  
SDP problem can be written as (Brannlund & Svanberg 1997a, Brannlund 

 & Svanberg 1997b):  

min E  ti 
i=1  

s.t. çb E  tiKi — fk fkT  ›- 0, k = 1, . ,M  
i=1  

t i > 0, i =1, 	,m  

4.2.3 Reduction to problem statements in displacements only  

(4.22)  

We will now use the max-min formulation (4.6) of the truss topology design  
problem to derive a globally optimal strain energy functional that describes  
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the energy of the optimal truss. This leads to an alternative, equivalent con-
vex formulation of the problem for which a number of computationally very 
efficient algorithm can be devised. The derivation is in concept and results 
similar to the derivation for simultaneous design of structure and material as 
described in Chap. 3, but the dyadic nature of the stiffness matrix for trusses 
means that one can go somewhat further, as will be shown in the coming 
sections. 

We will for notational simplicity not cater for the reinforcement situation, 
so that the version of problem (4.13) that we consider has the form (cf., (4.6)) 

max min 2 E tiuT Kiu - (f + E t i gi) T  u 	 (4.23) 
t>o 	u  j=1 	 i=1 

and this problem is linear in the design variable and convex in the displace-
ment variable. Thus the problem is concave-convex (with a convex and com-
pact constraint set in t) and we can interchange the max and the min oper-
ators, to obtain 

	

min max 	1  E tiuTKiu - (f + E t i gi ) T  u 
u 	mt>o 	2  

t ;  v 	i=1 	 i=1 

The inner problem is now a linear programming problem in the t variable. 
To solve this problem, note that with ti > 0, >i ` 1  t i  V we have the 
inequality 

m 
E ti(uT Kiu - 2giT  u) < V max {u TKi u — 2gi T  u} 

i-1 m 
i=1 

Here the equality holds if all material is assigned to a bar with maximum 
specific energy uTKiu — 2gTu . Thus we see that the problem (4.23) can be 
reduced to (Ben-Tal & Bendsoe 1993) 

min max { V [uTKiu — 2gTu] — fT
U} u i=1 , ... , m l 2 

This is an unconstrained, convex and non-smooth problem, in the displace-
ment variable u only, with optimal value minus one half of the optimal value 
for the problem (4.12). It can equivalently be written as the smooth, con-
strained and convex problem 

min {r2  — fTU} 
U,T 

SA. 2 [uT  K iu — 2gi Tu] < r2 , i = 1, . . , m 

m 	 Tn 

m 	 m 

(4.24) 

(4.25) 

This problem has a large number of constraints, but these can be efficiently 
handled via interior point methods, see Sect. 4.3.3. For completeness let us 
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state the equivalent problems for the weighted average, multiple load truss  
case  

M 

min max JE ,^k( uk TK iuk  — fkT Uk )  2  
uk 	z= 1,...,m llll

ll  k=1  

One can think of the resulting displacements only problems shown above 
as equilibrium problems for a structure with a non-smooth, convex strain 
energy. Philosophically speaking, this strain energy is the strain energy for 
a "self-optimized" structure which automatically adjusts its topology and 
sizing so as to minimize compliance for the applied load(s) (cf. Chap. 3). 

It is possible to show existence of solutions to the problems (4.24)-(4.26) 
and to prove the equivalence between problem statements of the form (4.1)-
(4.5) and (4.24)-(4.26) (Ben-Tal & Bendsoe 1993). The solutions are not 
unique and it is quite well-known that there are normally "many" solutions 
(actually subspaces of solutions). The equivalence of the problems is under-
stood in the sense that for a solution u to for example problem (4.24) and 
the corresponding set J(u) of active bars, there exists a corresponding set of 
bar volumes t satisfying the optimality condition 

E  tiÊiu = f + E  tigi 	E ti = V  
iEJ(u) 	 iEJ(u) 	iEJ(u)  

ti = 0, i 	J(u); 	ti > 0, i = 1, ... , m ,  

and these optimality conditions are precisely the optimality conditions for 
the min-max problem (4.24). 

For the worst case multiple load problem it is possible to generate a 
displacements only formulation in the form (Achtziger 1993, Achtziger 1998) 

(4.26)  

min 
uk ,A k >0  

na 

 
),k=1  ^k=1 

M  
max  j k ( V ukTKuk

--1 
2 	— fkT uk ) 

i=1,,m 
 k=1  

(4.27)  

 

where we have used weighting parameters )k > 0, k = 1, , M Solutions 
to this problem can likewise be proved to exist and the optimal value of 
problem (4.27) equals minus one half the extremal value of problem (4.4) 
The direct equivalence between the two problems (in the sense discussed for 
the single load problem) may fail if a multiplier A i' equals zero in the optimal 
solution to problem (4.27). In this case we cannot guarantee equilibrium for 
this load condition, as the equilibrium will not necessarily be enforced by 
the necessary conditions of optimality. However, a set of bar areas can be 
identified by considering the loads with non-zero multipliers, and a minimum 
compliance truss will be generated for these loads. This makes it natural to 
consider a slightly perturbed version of (4.4) and (4.27), where the multipliers 
are constrained as Ak > e > 0 ,  k = 1, . , M . For the resulting perturbed 
version of problem (4.27) we can write 
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Fig. 4.5. The difference (and similarity) between multiple load case treated in  
the weighted average formulation (equal weights) (top) and treated in the worst  
case min-max formulation (below). Optimal truss topologies for transmitting three  
vertical forces to two fixed supports for a long slender rectangular ground structure  
of aspect ratio 16 (like a long span bridge), with 33 by 3 equidistant nodes and  
all 2818 possible non-overlapping connections. In this figure, the vertical scale has  
been distorted in order to being able to show the results (from Bendsoe, Ben-Tal 

 & Zowe 1994).  

M 

min (min max E A
k(  2 

V T 
uk  Kiu 	Tk  — fk  uk )  }I ) 

)^ k ie 	uk 	i=1 .,m  
M k 	 k=1 

^k-1 ^ _ -1  

(4.28)  

indicating that the inner problem in the displacements could be solved using  
the methods that can be used for the single load case, with the outer problem  
solved using algorithms for convex non-differentiable optimization problems;  
this is described in detail in Achtziger (1993) and (1998).  

4.2.4 Linear programming problems for single load problems 

In the preceding section the minimum compliance truss topology problem  
was reformulated as a non-smooth, convex problem in the displacements only.  
This can now be used as a basis for generating a range of other equivalent  
problem statements.  

The starting point is actually the bound formulation (4.25), which for the  
simpler case of no self-weight becomes, up to a scaling,  

min {—fTu}  
(4.29)  

s.t. 
2 

u Ki u < 1, i = 1, . , m  

i.e. a maximization of compliance, with constraints on the specific strain  
energies.  

For the single load truss problem the element stiffness matrices are dyadic  
products and we get for the specific energies  



4.2 Problem equivalence and globally optimized energy functionals 	239 

EZ 

T 
l z 

uTK2u  = 	b2 u/ 

This special form implies that (4.29) can be written in LP-form as  (Achtziger 
et al. 1992) 

min { —fTu} 

VEi bi Tu 
s.t. — 1< 2 	l  	< 1, i = 1, . 

Z 

which is a problem of maximizing the compliance with constraints on the 
strains ei = li

_1 bjT u in all bars. For suitable stress constraint values â i  it 
turns out that problem (4.30) is the dual of the force formulation (4.9) 

m li + 

	

min 	E _ (qi  - 	 (4.31) 
q±>0, q; >0, z=1  Qi 

B(q+-q )=f 

(cf., Sect. 4.1.2). Here the tension/compression forces q, qi are the mul-
tipliers for the strain inequality constraints of (4.30). As seen in section 
4.1.2, problem (4.31) is, after a change of variables, precisely the traditional 
minimum mass plastic design formulation (4.8). The developments described 
above show that the minimum compliance design problem for a single load 
case is equivalent to a minimum mass pl astic design formulation, in the sense 
that for a solution t, q to the minimum mass plastic design problem with 
data V, Qi  , there corresponds a solution tc, tic to the minimum compliance 
problem with data Vc, E i  The precise relations are (cf. Achtziger et al. 
(1992)) 

	

Qi= ✓
/ 	Vc 	Vc Et , 

tc = Vt, uc= Vu 

where ü is the dual variable of the minimum mass pl astic design problem 
corresponding to the static equilibrium constraint Bq = f. 

The member force formulations (4.8) and (4.9) are, as described earlier, 
the traditional formulations for single load truss topology optimization. These 
are, of course, very efficient formulations and could be solved using sparse, 
primal-dual LP-methods. The force methods are at first glance problems in 
plastic design, as kinematic compatibility is ignored, and their use in elastic 
design is justified by the possibility of finding statically determinate solu-
tions. The equivalence between the force methods and the minimum compli-
ance problem for the single load case shows that any solution to the force 
LP-formulation leads to a minimum compliance topology design, within the 
framework of elastic designs. Such designs are uniformly stressed designs, as 
well as having a const ant specific energy in all active bars. The existence of 

(4.30) 
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basic solutions to the linear programming problem (4.9) implies that there 
exist minimum mass truss topologies with a number of bars not exceeding the 
degrees of freedom. If there exists such a basic solution with only non-zero 
forces (areas), this is a statically determinate truss. Otherwise, the truss will 
have a unique force field for the given load but will be kinematically indeter-
minate. In other words the truss may have rigid body (mechanism) response 
to certain loads other than the load for which it is designed; this may be the 
case even after nodes with no connected bars are removed (see also Kirsch 
(1989a), Kirsch (1989b) for a discussion on this). 

The equivalence between problems (4.8), (4.9) and (4.30) can also be 
found in Dorn et al. (1964), and the equivalence between problems (4.1) and 
(4.8) is indicated in Hemp (1973), among other places. In  Dom  et al. (1964) 
one can also find a lengthy discussion on how the force formulations are 
convenient for studying an eventual static determinacy of the solutions. 

The derivation of the linear programming formulations above holds only 
for the case of pure topology truss design with unconstrained design vari-
ables, a single load case and excluding self-weight. Thus, the natural ex-
tension of the plastic design situation to problem (4.10) which caters for 
multiple loads and self-weight loads does not seem to have a natural equiv-
alent statement in terms of displacements and compliances. Also, it is well 
known that in the case of multiple load plastic design, it is most common 
that statically indeterminate solutions result, thus imposing a requirement 
for further redesign if kinematic compatibility is required, as for elastic design 
(Kirsch 1989b, Kirsch 1993a, Topping 1992). 

For the sake of completeness of presentation, note that in the reinforce-
ment case without self-weight, the single load case problem can be reduced 
to a quadratic optimization problem with linear constraints 

min  {  2 uT  1 2E siKi I u — fTu + T2 
} 

s.t. — T<1Jb TuVE i 2 <T, i E R 
 2li 

Notice here that the matrix EiEs siKi is positive semi-definite, but usually 
not positive definite. The problem statement (4.32) also represents a simpli-
fication of the minimum compliance problem for a single load case with lower 
bounds on the variables; the vector s represents the vector of lower bounds 
on the design variables. 

4.2.5 Reduction to problem statements in stresses only 

In the following we will base our developments on the worst-case multiple load 
design formulation (4.28). In order to simplify notation we will refrain from 
covering the problem of reinforcement and the self-weight problem will also 

(4.32) 



4.2 Problem equivalence and globally optimized energy functionals 	241  

play a minor role in the following. However, we begin with a general treatment 
that covers truss, variable thickness sheet and sandwich plate design. 

Now returning to problem (4.28) we note that by a change of variables of 
uk  to auk  this problem can be stated as 

	

( M 	 111 

Ent 	

(min max { L(V ukT  Ki uk  — 
f 

 uk 

 ) ^J 
	(4.33) 

a >o 	u 	i=1,...,m l 	2 A  

i; = 	=1 k= 1  

which is now jointly convex on the feasible set in both the multipliers Ak  and 
the displacements. Here we have used the inf-operator to indicate the use of 
a decreasing sequence of lower bounds on the multipliers A k  The presence 
of the infimum over the multipliers indicates that it is a natural choice to use 
interior penalty methods for a computational procedure for solving of this 
problem, as will be described later. 

We shall now show that by deriving the dual formulations of (4.33) one 
can for the truss case generate what amounts to stress based min-max min-
imum compliance formulations. The basis for this derivation is again, as in 
the earlier development, the dyadic structure of the individual member stiff-
ness matrices. Expressing the maximization over the bar numbers (the inner 
problem) with a bounding variable and using auxiliary variables c = b i T  uk  

(the member elongations), the equivalent convex dual problem can be derived  
to have the form  

inf min 
L 

max 
 l 

l m li (q^)2 

 1J t qk k=1,... ,m  l 2 ^ Eg ti 
i=1  

s.t. Bqk  = fk , k = 1, 	, M  (4.34)  

E ti=V, ti>0, i=1, ,m  
i=1  

With Vk, llk  denoting the Lagrange multipliers for a bound constraint formu-
lation of the maximization over k and the equilibrium constraint, respectively,  
we can for an optimum qk , t of (4.34) with Ak > 0, k = 1, , M , identify 
uk = nk /Ak , t as a solution to our original problem statement (4.4) in dis-
placements and bar areas. Also, we can show, from the Karush-Kuhn-Tucker 
optimality conditions that qk _ tibT uk , i.e. compatibility of stresses and 
displacements is automatically assured. 

The problem (4.34) is actually the minimum compliance problem for-
mulated in terms of the complementary energy, written for the worst-case 
multiple load situation. For the single load situation, the formulation (4.34) 
reduces to problem (4.7) which was stated in Sect. 4.1.2. 

Finally, we will consider the elimination of the bar volumes from the 
problem (4.34), by directly solving for these variables. This corresponds to the 
elimination of bar volumes in the displacements (strain) based formulation 
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as carried out in the preceding Sect. 4.2.2. Expressing the maximization over  

load cases by a maximization over a convex combination of weighting factors  

	

min 	inf  

	

k 	t>o 
Bqk=fk ^i _ i ti =V  

2 	k2 

l ^ ^
k  1 

^ 
I? 

 ) 

 J 
max 	

^ 

^k >o l 	2 	E t i  
yf 	k=1 	i=1 

Ek-^ a=1  

(4.35)  

we can derive the optimal values of the bar volumes as  

t x  V
1  

2 M 	 m  

^. 4-4Ak 1g)2 E 
 1 a k=1 	 i=1  

2 M l i  ^^k(qk)2  

Eg 
k=1  

 

(4.36)  

Inserting in (4.35) we obtain the following problem in the member forces only 

  

} 

 

^ 

min  max 	
1 	 li 
 1 9k 	ak>o 	2V i=1 	

E2  \ 
^k= 1 Àk=1  

s.t. Bqk  = fk , k = 1,. . , M  

E  )`k  (qk) 2  
k-1  (4.37)  

For the single load case we recover the traditional linear programming for-
mulation (4.9) in the disguised form 

2 
2  

	

1 ( 		l 	1 

	

[En'1 	̂4Z^ Imin\ 	/ 
Bq f 2V 

i-1   

Rescaling the objective function and taking the square root of the objective 
function results in (4.9). Note that we have again seen that the stress con-
straint values for the plastic topology problem should be chosen as Ei 
Also, as (4.38) was obtained by direct duality without rescaling, one can see 
that the optimal value H of the optimal compliance will relate to the optimal 
value \Y of the minimum mass plastic design problem as 

4,2 Hy  

This relation has also been reported in Rozvany (1993). 
Note that (4.38) is the natural formulation for the stress only reformu-

lation of the minimum compliance problem stated as a corresponding equi-
librium problem for a structure with a non-smooth, convex complementary 
energy. This is again completely analogous to the situation described for con-
tinuum problems in Chap. 3. 

4.2.6 Extension to contact problems  

} 

	

(4.38)  

The discussion above can be extended to problems involving unilateral con- 
tact, as we shall briefly outline in the following (cf., Sect. 3.4.3). Truss 
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topology design in this context has been studied by Klarbring, Petersson 
& Rbnngvist (1995), Petersson & Klarbring (1994), Kocvara, Zibulevsky & 
Zowe (1998). The most natural setting for unilateral contact problems is a 
displacement based formulation. For an unilateral contact condition of the 
form Cu < 0 , the minimum compliance problem (4.6) for contact problems 
becomes 2  

	

max min ! 1 E tiuT Kiu - fTU } 	 (4.39) t u 	
l 	 JJJ Cu E;=, 
	<0 t;—V 	x- 1  

where only the inner equilibrium problem is altered. In Klarbring et al. (1995),  

the problem of finding the stiffest structure among all structures with con-
stant contact pressure is also considered and in this case the unilateral con-
straint should be of the scalar form lcCu < 0 , corresponding to a total gap  

constraint lcd = 0, where d is an initial gap which is designed to achieve  

constant pressure (see also Klarbring (1992)). This case is also covered by  

the statement (4.39), by proper choice of C.  

The introduction of design independent constraints in the inner problem of  
(4.39) does not change the saddle point property of the problem. As shown in  

Klarbring et al. (1995), it does not make sense for contact problems to assume  

that the stiffness matrix is positive definite for at least one design. Instead,  

one has to assume that the applied force does not give raise to rigid body  
motions and that the applied force is not entirely applied at the potential  

contact nodes. With this assumption we have existence of solution and an  

equivalent displacements only problem in the form  

min max 5 - uTK2 
cu<o 2 	7n l=1,...,  

— fTU}  (4.40)  

This problem can be solved by equivalent means as (4.25): the extra linear 
constraints Cu < 0 does not influence the efficiency (Kocvara et al. 1998). 
Consider now the worst-case multiple load problem in the formulation which 
includes contact 

inf 	min max ^((
2 k 

ukT K2uk — fk TUk ) 
A k i() 	uk 	2=1, . ..,72  

^M ak =1  C k uk <o 	 k-1  

(4.41)  

Here we have related each load case to a potentially different contact condi-
tion. Computing the dual of the equilibrium problem, we obtain the comple-
mentary energy formulation in the form 

2  The formulation for the reinforcement problem with self-weight is analogous. 
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inf min I max  { 1 m l2  (qk)2 
 11 

t gk pk k= 1,...,M 2 ^  Ei ti 	J i= 1  

Bqk  = fk  — CkTpk ,  p   >  0 , k  = 	M 
m 

>ti=V, ti>0, i =1,  .,m 

i=1  

where the contact forces pk  also enter as variables. As for the non-contact  
case we can compute the optimal bar volumes (given again by formula (4.36)) 
and the resulting force-only formulation only change by the addition of the 
contact forces in the equilibrium constraint. For the single load case we get 
the disguised linear programming problem 

1 
	

li  min 
q, p>0 	2V ^ Ei  
=f-CT 	 i-1 

For the displacement formulation one has, likewise, the LP formulation 

min { — fTu}  

—1< / VEibTu
<1  

V 	2 	li 

taking the development "full circle" 
We close this section by remarking that the minimum compliance problem 

with unilateral contact formulated as a 

t>ô 
 [ (t)   = min S tuTKu-fTU}

J  ° l tt—v 	Cu<d 	i= i  

for positive definite stiffness matrices is actually a C 1 -smooth problem in the 
bar volumes (see also Haslinger & Neittaanmki (1996)). Here we consider 
that an  initial non-zero gap d is given. The derivatives of the functional 4i(t) 
(it is minus one half of the compliance) are given as 

ô
Ct) = 2 uTKiu., with u. = arg min 

^ 

2
E tiuT K iu - fTu 

âti 	 Cu<d i=1  

Note, however, that the displacements are not differentiable as functions of 
bar volumes, as the displacements are non-smooth at designs were there are 
active contact nodes with zero contact forces. This feature means that most 
other design problems which involves contact conditions are non-smooth 
problems. Nonetheless, directional derivatives can be computed (Bends0e, 
Olhoff & Sokolowski 1985). 

s.t.  

Bq 	p  

s.t. Cu < 0;  i =1, 	,m  

m 
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Fig. 4.6. The flexibility in choice of ground structure. Optimal design of a well-
known structure. Left hand picture shows the ground structure and the right hand 
picture the optimal topology for a single downward load at the top of the structure. 
The example shows that it is crucial to consider multiple load cases for realistic 
structures. By courtesy of M. Kocvara and J. Zowe. 

4.3 Computational procedures and examples 

The availability of efficient methods to solve large (sparse) LP problems 
makes it natural to solve the single load truss topology design problem us-
ing the LP formulations. For problems with multiple loads and/or bounded 
bar areas, for the reinforcement problem as well as for the FEM case, we 
cannot obtain a linear programming formulation of the minimum compliance 
problem and we are forced to solve such problems by other means. 

Problems of the form (4.1)-(4.5) and (4.11)-(4.13) generalize most eas-
ily to more general design situations involving stress and displacement con-
straints but they are large scale and non-convex. The optimality criterion 
method is a good and easily programmed option for solving this problem in 
the minimum compliance setting, if suitable lower bounds on the bar vol-
umes are imposed. Problems (4.24)-(4.28) and (4.25), (4.29) are convex and 
have the size of the degrees of freedom of the ground structure; the former 
are non-differentiable and unconstrained and the bound formulations are dif-
ferentiable, but at the cost of a high number of constraints. Below we shall 
present a specialized and physically intuitive algorithm for solving problem 
(4.24); it can be easily implemented to take advantage of the sparsity of the 
matrices Ki , but is actually not efficient compared to other methods based 
on the smooth formulations. Problem (4.24) has for some time been used as 
a "difficult" test case for general purpose algorithms for min-max optimiza- 
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tion or non-differentiable optimization. The most efficient approach (when 
LP-codes cannot be applied) is to use modern penalty methods for problems 
(4.25), (4.29) which can be solved by such general purpose algorithms. Al-
ternatively, the SDP format (4.20)-(4.22) can be used. In both cases sparsity 
and the fact that the number of variables is much lower than the number of 
constraints should be utilized. 

It should be emphasized that the truss topology design problem is a very 
challenging mathematical programming problem with structure and proper-
ties which are a test for even the best of algorithm. 

4.3.1 An optimality criteria method 

For the continuum problems treated earlier the optimality criteria method 
is an effective and general mean for solving minimum compliance problems. 
Also for truss topology design this is a simple computational procedure, but 
it is not as effective as other approaches based on interior point or SDP 
techniques. However, it is physically intuitive as the method assigns material 
to members proportionally to the specific energy of each member in order to 
reach the situation of constant specific energy in the active bars. Thus each 
iteration step consists of the following 

For tK -1  given, compute ux_ i  from the equilibrium eqs. 
m 	 T " 

Find A K  so E max tK -1 
ux-1 Kiux-1 

 tmin = V 
AK 	

, 
i=1 

T  
Update tK = max { t _1 ux-1 Kiux-1  train AK 

The linearity of stiffness and volume in the bar areas implies that the optimal-
ity criteria algorithm for the single load case can be viewed as a fully stressed 
design algorithm, and it is as such a fix point algorithm (Levy 1991). Also, the 
method can be viewed as an implementation of a sequential quadratic pro-
gramming technique; this is discussed in detail in Svanberg (1994b), Svanberg 
(1994a). Also, the similarity to convex approximation techniques as MMA has 
been outlined in Sect. 1.2.3. 

The optimality criteria method involves assembly of the global stiffness 
matrix as well as solving the equilibrium problem at each iteration step, 
and this part of the algorithm is the most time consuming. Note, that for 
t ra i n  0.0 the algorithm can utilize that the volume is linear in the design 
variables, so that satisfying the volume constraint is just a rescaling of vari-
ables. However, the algorithm does not take advantage of the fact that also 
the stiffness matrix is linear in the design variables. Also for the single load 
case truss topology problem (4.1) we have that the matrices K i  are dyadic 
products and this is not used either. 

(4.42) 
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4.3.2 A non-smooth descent method 

One can also devise physically intuitive algorithms that work with the dis-
placements as the primary variables. The basis is then the equivalent prob-
lems (4.24)-(4.28). We will here describe an "c-steepest descent" method 
for these non-smooth problems (Demyanov & Malozemov 1974, Ben-Tal & 
Bendsoe 1993). The algorithm is actually inefficient, but, as mentioned, it is 
physically intuitive, and it is closely related to the optimality criteria algo-
rithm. Even though the algorithm solves a problem in the displacement vari-
ables it generates the solution u as well as the bar volumes t. This contrasts 
to the standard procedure in optimal structural design where one solves for 
the design variables, with the displacements removed via the state equation 
and adjoint equation. 

We describe the algorithm for the topology design problem with external 
loads as well as loads due to self-weight. Thus the algorithm for problem 
(4.24) 

min [F(u)  = V max {uTKi u — 2gTu} — fTU] 
2 i=1,. .., m. 

consists of the following very intuitive steps (for details consult Ben-Tal & 

Bendsoe (1993)): 

O. Compute an initial guess of displacement field u, for example by solving 
the equilibrium equations for a feasible set of bar volumes t. 

1. For present u, compute A*(u) = maxiER {u TKiu — 2gTu}, and indices 

J(u) = { i E RIuTI{iu — 2gT > A*(u) — E} 

2. Compute descent direction d as d = — >iE J ti [Kiu — gi] + f , where 

ti, i E J are found from 

I
IIEti [Kiu- gi] -fII2-Et i uT [Kiu- 2gi]} 

EiEJ ti=V 	iEJ 	 iEJ 

3. If IIdHI < 5, stop. Else go to 4. 
4. Compute a step size a* for the update u := u + ad, by a line search 

(Golden Section method) with the function 

11 (a) = F(u + ad) = max {âia 2  + Lot + ci } 

âi  = 
2d

nKid, bi = [V(Kiu — gi) — f] d 

 = [(ju_2gj)_f] T u
. 

min 
t ; >0, iEJ 
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Fig. 4.7. An example of a complicated ground structure geometry, with 156 nodal 
points and 660 potential bars. The ground structure, supports and five loads are 
shown at the top. The resulting topology for a weighted average, multiple load 
problem formulation is shown below. The ground structure was generated by an 
interactive CAD-based programme, see da Silva Smith (1996) (from Bendsoe, Ben-
Tal & Zowe 1994). 

5. Update, u := u + a*d, and go to step 1.  

Here, e is a relaxation on the activity set J which is crucial to guarantee the 

convergence of the algorithm, and 8 determines the accuracy of the solution  
(one works with decreasing sequences of these parameters). Each iteration  
loop of the algorithm consists of first finding the set of almost active bars  
(Step 1). The descent direction (Step 2) is then found by first finding the  
bar volumes of these bars which minimizes the error in equilibrium for the  
given estimate of displacement. The error is measured in a least squares sense  
and the descent direction is proportional to the residual of the equilibrium  
for this best fit of bar volumes. The algorithm can be implemented to take  
full advantage of sparsity, both in storage and in computations. For example  
one notes that the full stiffness matrix is not required. For a proof of the  
convergence of the algorithm, we refer to Ben-Tal & Bendsbe (1993). An  
example of the use of this algorithm for the layout design of aircraft wings  
can be found in Balabanov & Haftka (1996).  

4.3.3 SDP and interior point methods 

Methods working with bar volumes It is the provision of a lower bound  
on the bar volumes that allows for the use of the very effective optimality  
criterion method. A similar efficiency can be obtained by considering the  
problem of taking the infimum of the compliances for all truss structures  
with positive bar volumes  

inf 
t,>o 

^;= i t = =v 

^(t) = fT  
r  

I EtiKti] 
L 

z_ 1  

—1  
f (4.43)  

As shown earlier this problem is convex and this in combination with the 
inf-form makes it ideally suited for interior point barrier methods (Ben-Tal 
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& Nemirovski 1993, Ben-Tal & Nemirovski 1994, Ringertz 1993), as this will  
imply that the positivity constraint on the bar volumes will be satisfied auto-
matically. Problem (4.43) does not lend itself to the use of sparse techniques, 
as the Hessian of the objective function 4(t) is full. However, the Hessian 
of the constraint Ei `  t ik iu = f is sparse. Sparsity can thus be utilized if 
the problem (4.5) in both the displacement and design variables is solved 
using an interior point method. Even though the latter problem is not con-
vex, finding a stationary solution provides also a stationary point for problem 
(4.43), and thus a minimizer for this convex problem (Ringertz 1993). This 
approach extends readily to all the problem types described above. The use 
of an  interior barrier method for problem (4.43) involves the use of a suitable 
sequence of penalty parameters, which in effect corresponds to imposing a 
constraint of the type ti > t ra i n  > 0, i = 1, . . , m for a suitable small lower 
bound value train.  This can make it troublesome to identify precisely which  

bars are active in the optimal topology. However, convergence of the designs  

(and relevant displacements) as we take the limit t rain  -* 0 is guaranteed, see 
Achtziger (1998).  

For the worst-case multiple load problem (4.4), formulated as a smooth 
problem using a bound formulation with bounding variable a, a possible 
logarithmic barrier function is of the form 

-1 M 	 m 

mmin - E ln(a - 
fkT ^m 

 tit('  i 	fk ) — E ln(ti) - ln(IXmax - a)  
k=1 	 i-1 	 i=1  

where amax  is a suitable guaranteed upper bound on the optimal value of 
the problem. Further details on the use of such interior point methods can 
be found in for example Ben-Tal & Nemirovski (1994). We also note that the 
SDP variations of the topology design problem (cf., (4.20) and (4.21)) can be 
solved by algorithms developed for such problems [33]; such techniques have 
many common features with the logarithmic barrier approach just outlined. 

Methods working with displacements Barrier function methods and 
especially the so-called "Penalty/Barrier/Multiplier (PBM) Method" can also 
to great advantage be used for the displacements only formulations of the 
form (4.24) [33]. This type of algorithms are described briefly in appendix 
5.5.  

In order to apply the PBM method to for example the min-max multiple 
load truss topology design problem, the formulation (4.33) is used in a form 
where the discrete maximization over bar numbers is removed by a bound 
formulation 
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T inf 	VT  — E  fk  uk  
A k >0, Uk ,T 

 

k=1  
(4.44)  

E Z ak  
k=1  

Note that (4.44) is a smooth convex optimization problem. It can be shown  

from the Karush-Kuhn-Tucker conditions of problem (4.44) that the Lagrange  

multipliers for the constraints on the specific energies are precisely the op-
timal volumes of the bars in the optimal topology. Hence the optimal bar  

volumes are approximated directly at each iteration step of the PBM method  

by the Lagrange multipliers for these constraints. Notice that a further refor-
mulation is handy, namely the formulation  

f 	M 	 1 

inf  

['^ 
Sk^Xk,T 

Lk=1 (Sk)2 =1  

s.t. E  xkT  Ai x k  — 2T < 0, i = 1, , m  
k=1  

which is derived from (4.44) by the transformation s k  = NAT, xk = uk/ V  
of variables.  

For a truss with N degrees of freedom, in potential bars and M load  
cases, the single load problem (4.29) has N variables and m constraints, while  

problem (4.45) has NM +M +1 variables and m non-linear constraints. The  
main computational effort in applying the PBM method is the minimization  

of the unconstrained penalty/barrier function. This is done using a Newton  

method, and it is interesting to note that the method does not require an  

increase in the number of Newton steps as the problem size increases 3  Note  
that each Newton step corresponds to solving a linear system of equations,  

which for the single load case is comparable in size to the linear system solved  

for one full equilibrium analysis step of the "Optimality Criteria Method"  

4.3.4 Examples 

We have throughout this chapter illustrated some of the features of truss  

topology design. The main purpose is to illustrate the effect of various mod-
elling choices on the geometry of the lay-outs. Space does not permit an  

exhaustive discussion on this subject, as many features influence the final  

3  Experiments have shown that up to 70 steps are sufficient for 6 digits of accuracy  

of the objective function for problems with for example 3 load cases, m = 16290  

and N = 458 [33].  

M k ^k=1  ^ = 1  

s.t.  
M  

1 ukTKiuk — T < 0, i = 1 ,  . „Tit m  
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designs, such as the choice of nodal points as well as the geometry and con-
nectivities of the ground structure, the geometry of the loads, the geometry 
of the supports, etc. Many more examples of large scale truss topology opti-
mization can be found in the literature [32], [33]. 

For the truss topology problem with a single load case it is possible to 
generate a catalogue of optimal topologies. Problem (4.1) is made up of ex-
pressions that are element wise linear in all variables, except geometric data. 
Thus, for a specific choice of ground structure geometry and load vector 
direction, the optimal topology needs only to be computed for one set of as-
signed values of Young's modulus E, volume V, load size, and one geometric 
scale; for any other values of these variables, the optimal values of the design 
variables t, the deformation u, and the compliance fTu can be derived by a 
simple scaling; the non dimensional parameter 

(fT u)V E  

!if UI 2 L 2  

is a constant for optimal topologies generated with equivalent topologies 
of the ground structure, with L being a measure of scale. A similar non-
dimensional parameter can be devised for the multiple load case, the case of 
self-weight loads, etc., but here the catalogue will depend on a further range 
of parameters, such as the ratios between the sizes of the different applied 
loads. 

A very important feature of the truss topology method is the prediction of 
Michell frame type lay-outs in certain cases, if such a structure is natures best 
topology with the given loads, supports and ground structure, as illustrated 
in Fig. 4.2. This illustrates the varied topologies that can be created for 
the simple problem of transmitting a single vertical load to a vertical line 
of supports, through ground structures of rectangular lay-out of different 
aspect ratios. The range of topologies goes from the optimal two-bar truss 
with two bars at ±45° to long slender Michell frame lay-outs which at a 
global scale behaves like a sandwich beam in bending. The transition from 
"true" trusses to Michell truss continua for this setting has been studied by 
analytical means in Lewiriski, Zhou & Rozvany (1993). Note that we in these 
examples (as in all cases) clearly see that the topology optimization not only 
predicts the optimal lay-out of the structures, but also finds the optimal use 
of the prescribed possible support conditions. 

It was mentioned earlier that truss topology compliance optimization un-
der a single load condition leads to statically determinate solutions, but the 
resultant structures are more often than not mechanisms, which are stable 
under the applied load. This unfortunate feature can in most cases be avoided 
by designing the truss for multiple load cases, either in the weighted average 
formulation or in the worst c ase, min-max formulation. Figure 4.6 shows that 
it is important to consider multiple load situations and Fig. 4.4 shows the 
difference between treating three nodal loads as one, combined load, or as 
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Fig. 4.8. A detailed study of the design of a wheel with a 29 by 15 nodal lay-out 
with all 57770 possible non-overlapping connections. Compare with Fig. 3.10 (from 
Bendsoe, Ben-Tal & Zowe 1994). 

three independent load cases. Note that we through the multiple load for-
mulation avoid the mechanisms, at the expense of much more complicated 
topologies. In Fig. 4.5 we show, for a similar load and support condition in 
a different ground structure the (small) difference between multiple load de-
signs achieved through the weighted average formulation and the min-max 
formulation. It should be noted that multiple load conditions can also sim-
plify the lay-out of the optimal topology. In all examples with multiple load, 
worst case design, the nature of the applied loads is here such that all loads 
have compliance value at the maximal value. This is usually not the case for 
problems where the optimal structure for one of the applied loads can carry 
the other loads. 

4.4 Extensions of truss topology design 

4.4.1 Combined truss topology and geometry optimization 

The topology design methods considered so far all employ the basic idea of 
a ground structure or reference design domain to obtain problem statements 
that are sizing problems for a fixed geometry. The choice of this reference 
geometry influences the result of the topology optimization making it impor-
tant to consider sensitivity analysis of the optimal designs with respect to 
variation of the reference geometry, and even optimal design of this reference 
geometry may be fruitful in some situations. 

In the ground structure approach to topology design of trusses the posi-
tions of nodal points are not used as design variables. This means that a high 
number of nodal points should be used in the ground structure to obtain effi-
cient topologies. A drawback of the method is that the optimal topologies can 
be very sensitive to the layout of nodal points, at least if the number of nodal 
points is relatively low. This makes it natural to consider an extension of the 
ground structure approach and to include the optimization of the nodal point 
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Fig. 4.9. An example of a 3-D topology and geometry optimization for a beam 
carrying a single load. In a) we show the ground structure of nodal points and poten-
tial bars. Note that the ground structure has non-equidistant nodal point positions 
along the length axis of the "beam" In a) we see the optimal topology for the fixed 
nodal lay-out of the ground structure, in c) a combined geometry and topology 
optimization with nodal positions restricted to move along the length axis of the 
`beam" Finally, in d) the result of a combined geometry and topology optimization 
with totally free nodal positions is shown. The (non-dimensional) compliance val-
ues of the optimized designs are 1.00, 0.945 and 0.911, respectively (from Bendsoe, 
Ben-Tal & Zowe 1994). 
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location for a given number and connectivity of nodal points [32]. With very 
efficient tools at hand for the topology design with fixed nodal positions it 
seems natural to treat the variation of nodal positions as an outer optimiza-
tion in a two-level hierarchical formulation. As the optimal value function of 
the topology compliance depends on the geometry variables in a non-smooth 
way, this outer minimization requires non-smooth optimization techniques. 

For the combined topology and geometry problem for trusses we have as 
the simplest formulation 

min fTu 
u,a,x 

s.t. E aili(x)Ki(x)u = f 
i=1 

E ai/i(x) = V, ai > 0, i = 1, . . . , m 
i=1 

< x3iF < 	j = 1, 	, n,, k = 1, 2, (3) 

which is just problem (4.5) rewritten as a problem depending also on the 
nodal positions xj , j = 1, . . , u . The nodal positions are restricted to lie 
within certain bounds that should be chosen to make the resultant trusses 
realizable. As the member volumes are dependent on the nodal positions we 
have here reverted to the cross-sectional areas of the individual bars as de-
sign variables. Problem (4.46) can be solved as a unified problem considering 
the problem either as a unified analysis and design problem or as a stan-
dard structural optimization problem that can be solved through an adjoint 
method in the areas and nodal positions only (this requires the application 
of small lower bounds on the cross sectional areas ). An alternative solution 
procedure is to apply a multilevel approach to the combined problem, treat-
ing the topology problem as the inner problem. Because of the size of the 
topology problem, earlier work has usually involved some form of heuristics 
to speed up the very significant amount of computations involved [32]. Here 
we consider combining the effective truss topology design methods described 
earlier with appropriate tools from non-smooth analysis. 

For a fixed set of nodal positions we choose here the displacements only 
form (4.24) of the topology design problem (without self-weight) and thus 
write (4.46) as a two-level problem 

min (— min [ max { V  uTK-(x)u — fTu JJJy] 
x 	 u 	z=1,...,m 	2  

X<x<x 
(4.47) 

The inner topology problem in the displacements u can effectively be solved 
(for fixed x) by one of the computational methods described in Sect. 4.3. 
The main part remaining is then, of course, the minimization of the so-called 
master function 

(4.46) 
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F(x) = — min [ max j V  uTA i (x)u — fTull u 	z=1,.. . ,m. l 2 	 1 

on the outer level. The number of variables (the nodal positions) in this outer 
problem will usually be moderate. However, there are two decisive drawbacks. 
There is no reason for .F to be convex and .7-  is not differentiable everywhere. 
Hence we cannot expect to find more than a local minimum of .F and we 
have to work with codes from non-smooth optimization (e.g., bundle methods 
(Schramm & Zowe 1992)). These codes require that for each iterate x we can 
compute a so-called sub-gradient as  a substitute for the gradient. Using tools 
from non-smooth calculus it is easily seen that this causes no difficulties for 
the above min-max function .F We add that it is straightforward to show 
that each local minimizer x* of .F together with the associated t* and u* 
which solve the topology problem for the fixed nodal positions x*, gives a 
local minimizer [u*, a*, x*] (with az = ti /li (x*)) for problem (4.47). 

The two-level approach becomes especially attractive if we consider the 
single load truss topology problem for which the member stiffness matrices are 
dyadic products. Then .F(x) reduces to a parametrized linear programming 
problem (cf., problem (4.30)) 

.F(x) = max S fTu 
l 

/VEi bi (x) Tu 
— 1 < 1/ 

2 	/i (x) 
	 < 1, i = 1 , ...,m 

The sub-gradient in this case is basically the derivative with respect to x of 
the Lagrange function for this LP-problem. Hence we get a sub-gradient "for 
free" when solving (4.30) for a given set of nodal positions x. For details we 
refer to Ben-Tal, Kocvara & Zowe (1993). 

4.4.2 Truss design with buckling constraints 

In this section 4 we formulate a problem of optimum truss topology design 
including a constraint on the global stability of the structure. We use here the 
so-called linear buckling model as the model of stability. This means that we 
can express the stability condition as the condition K(t) + G(u, t) >- 0, where 
u solves the small-deflection equilibrium equation K(t)u = f and where 
G is the standard geometric matrix of the truss. Note that local buckling 
constraints require a separate treatment, see Sect. 4.4.4. 

Now we can add this stability constraint to the compliance constrained 
minimum weight truss topology problem to obtain a problem of the form 

min E  ti t,u 
i=1 

s.t. K(t)u = f, fTu < 

K(t) + G(u, t) r 0, ti > 0„ i = 1, 

(4.48) 

,m 
4  This and the following section is based on material kindly provided to us by M. 

Kocvara. 
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Here is the given maximal value of the compliance, as in (4.22). Note that 
we can always find a feasible pair (t, u) to (4.48), as one can always make the 
truss stable and also stiff enough by adding enough material to each member 
(in this sense compliance and stability are not competing objectives). 

We have in Sect. 4.2.2 seen that one can use a linear matrix inequality 
to eliminate the displacement vector from an equilibrium equation that is 
combined with a compliance constraint. We also here rewrite (4.48) using 
this idea and arrive at new problem in the variable t only: 

771 

inf E t i  
t >o 

i=1 

s.t. A(t, ) 0, A(t) + G(t) > 0 

t i  > 0, i = 1,. .,m 

where A is defined in (4.19) and where G(t) = G(K(t) -1 f,t). This problem 
is, due to the buckling constraint, not a standard convex SDP. However, it 
can still be solved efficiently by a non-convex version of a PBM algorithm for 
SDP problems (details can be found in Ben-Tal, Jarre, Kocvara, Nemirovski 
& Zowe (2000), Kocvara (2002)). 

An example of what can be achieved with this formulation is illustrated 
in Fig. 4.10. Here the initial design has ti = 1000/m, i = 1, . , m, with a 
corresponding compliance of 0.177 and a critical force (0.397) that is smaller 
than one, meaning that the truss is unstable. The standard truss optimization 
without stability constraint gives a design that is twice as light as the previous 
one but absolutely unstable. Finally, by truss optimization with stability 
constraint one can obtain a design that at a volume of 1179.6 is a bit heavier 
than the first one. However, it is stable under the given load. To see fully the 
effect of the stability constraint, we have for this example chosen the upper 
bound for the compliance so that the compliance constraint is not active. For 
truss (and frame) models local buckling of the individual members is also an 
important aspect to take into consideration 

4.4.3 Control of free vibrations 

The SDP approach from the previous section can easily be adapted to op-
timization of trusses with constraints on the free vibration frequencies [33]. 
Here we formulate the problem of minimizing the weight (volume) of a truss 
subject to a compliance constraint and such that the lowest eigenfrequency 
is bigger than or equal to a prescribed value. This latter condition is written 
as 

ai > A, 	i = 1, .,n, 	 (4.50) 

where Ai are the eigenvalues of the problem (K(t) - ÀM(t))u = 0. Here 
M(t) = M 3 (t) + Mo is the mass matrix of the truss; Mo is the part corre- 

(4.49) 
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(a) 

 

 

(d) 

Fig. 4.10. The effect of a constraint on the global buckling load. a) shows the 
initial truss with its buckling mode in b). c) is the optimal truss without stability 
constraint and, d) is the optimal truss with a stability constraint. By courtesy of 
M. Kocvara. 

sponding to non-structural mass and the (lumped) structural mass matrix is 
denoted by Ms (t). _ 

The condition (4.50) can be written as a matrix inequality K — .\M >- 0, 
and, in parallel to problem (4.49), a minimum weight truss design problem 
with free vibration constraints can be formulated as follows (see also Ohsaki, 
Fujisawa, Katoh & Kanno (1999)): 

m 

min  Et,  
t >o 

—  
s.t. K(t) — AM(t) ›.- 0, A(t, -çt.) ›.- 0 

(4.51) 

This problem includes only linear matrix inequalities (the mass matrix does 
not depend on u) and is then much easier to solve than the stability problem 
(4.49). However, note that, in contrast to the stability problem, we may now 
have problems with feasibility. When .X is too big one may not be able to find 
any design t satisfying the vibration constraint; both of the matrices A(t) 
and M(t) are positive semidefinite and their eigenvalues grow with the same 
rate for increasing t. 

Note that the formulation (4.51) avoids the technicalities of a formulation 
that directly and explicitly involves the eigenvalues. The non-differentiability 
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(b)  ===> ===>(c)  
Fig. 4.11. Initial truss (a) and two optimal trusses with respect to free vibration  

constraint with = 5.0.10 -5  (b) and  = 1.0.10 -4  (c). By courtesy of M. Kocvara.  

of eigenvalues is circumvented by the application of interior point methods 
to the matrix-inequality constraint. 

As an example we consider again a slender truss fixed on the left-hand 
side and subject to axial force on the right-hand side; there is a non-structural 
mass 1.0 at the column tip. The lowest eigenfrequency corresponding to the 
truss shown in Figure 4.11(a) is A m i n  = 5.0.10 -5 , while Amir,  corresponding to  
the optimal truss without vibration constraint is zero (the truss is a mecha-
nism, cf., Fig. 4.10c). If we solve (4.51) with X = 5.0 10 -5 , the resulting truss  
weighs 0.5684 (see Figure 4.11(b)). When we try to increase the minimum  
eigenvalue, setting A = 1.0 10 -4 , we get the truss shown in Figure 4.11(c)  
that weighs 0.8746.  

4.4.4 Variations of the theme 

Stress and local buckling constraints The original problem (4.1) can be  
generalized in a number of ways to cover also local stress and buckling con-
straints for the truss member. If all members are made of the same material  
and have the same cross-sectional geometry we can formulate a minimum  
weight design problem where we include constraints on compliance, displace-
ments, element stresses, slenderness, and local buckling, given by data 4,  

umin,umax, ^ ,  amin, and s, respectively:  
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qi = aibTU) i = 1,. .,m 
li 

fTu < 

umin < u < umax 

— aid < qi <aiQ , i = 1,  
2 ai  > am1na2) i = 1, .., m 

s 2 
gi>_ l2 ai , i =1,. .,m 

: 
O< ai < amax) 2= 1, .., m 

Here the constraints on stress, slenderness, and buckling should only be en-
forced if ai # 0, but this "unpleasant twist" is easily circumvented here by 
multiplying the relevant constraints by ai. Thus the stress and buckling con-
straints are written in terms of member forces rather than member stresses. 

If kinematic considerations are ignored, simplex like algorithms can be 
used to generate solutions that operate only with statically determinate de-
signs [32]. In the general situation the same "singularity" problems as noted 
for the stress constrained continuum problem arises; the techniques outlined 
in Sect. 2.3 should then be applied here also. However, for a proper model of 
the local buckling one should take into account the effect of "chains" By this 
we mean straight connections of several bars, where inner nodes are not con-
nected to any other bars. Such chains appear in most truss topology results. 
For such chains, the buckling constraint should be evaluated with a different 
length than the (short) individual bar lengths. This is tricky to formulate 
and even more tricky to solve — here the perturbation technique for stress 
constraints does not work (Achtziger 2000) [33]. 

Discrete optimization In this chapter we have used that the area of a 
truss bar can be used as a continuous variable for defining the truss topology 
problem. This means that we accept any cross-sectional area. In may practical 
situation this is not possible and one would, for example, require that we only 
can work with discrete values, for example a i  E {0, 1} (in this case problem 
(4.52) without the slenderness constraint can be written as  a mixed, linear 0-1 
program, see Stolpe & Svanberg (2002)). An even more complicated situation 
arises if the design optimization also has to cater for the use of different 
standard sections, as  constraints may then change form with the variables 
(as for buckling) and there is no method to interpolate between the design 
variables. Thus one is here forced to use algorithms for discrete optimization 
in their most general form [33]. 

min E aili 
a,q,u 

i= 1 

s.t. Bq = f 
E 

(4.52) 

., m 





5 Appendices 

5.1 Appendix: Matlab codes 

Despite of the apparent complexity of the topology optimization method it 
can actually be programmed in surprisingly few lines of code. For example, if 
using a high level programming language like Matlab, the code for solving the 
basic compliance minimization problem discussed in Chap. 1 may be written 
in only 99 lines (Sigmund 2001a). In this appendix we first discuss the Matlab 
implementation of the minimum compliance problem in some detail (based 
on Sigmund (2001a)). Afterwards, we briefly discuss the extensions of the 
code to a 105-line compliant mechanism synthesis code and a 91-line code for 
topology optimization of conductivity problems. 

The big advantage of Matlab is that codes can be written very compactly 
and that, when programming more complex problems, one has direct access 
to a large number of built-in routines like eigenvalue solvers, complex solvers, 
optimization routines and graphics libraries. However, this versatility and 
userfriendliness is obtained on the cost of decreased computational speed. 
Our experience is that Matlab can be up to five times slower than a low-
level programming language like Fortran77 Therefore, Matlab is good for 
educational purposes and for testing of ideas, but when it comes to practical 
problems involving tens or hundreds of thousands of elements, one has to 
program the codes in lower level languages. 

5.1.1 A 99 line topology optimization code for compliance 
minimization 

This appendix shows how the code for solving linear compliance minimization 
problems discussed in Chapter 1 can be written in just 99 lines of Matlab code 
including optimizer and Finite Element subroutine. The 99 lines are divided 
into 36 lines for the main program, 12 lines for the Optimality Criteria based 
optimizer, 16 lines for a mesh-independency filter and 35 lines for the finite 
element code. In fact, excluding comment lines and lines associated with 
output and finite element analysis, it is shown that only 49 Matlab input 
lines are required for solving a well-posed topology optimization problem. By 
adding three additional lines, the program can solve problems with multiple 
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load cases. The Matlab code is given in Sec. 5.1.4 and can be down-loaded 
from the web-site  http://www.topopt . dtu . dk. 1  Note that the code has been 
optimized for speed compared to the original code presented in Sigmund 
(2001a). 

5.1.2 Matlab implementation 

The Matlab code, is built up as a standard topology optimization code (c.f. 
Sec 1.2.2 and Fig. 1.5). The main program is called from the Matlab prompt 
by the line 

top(nelx,nely,volfrac,penal,rmin) 

where nelx and nely are the number of elements in the horizontal and ver-
tical directions, respectively, volfrac is the volume fraction, penal is the 
penalization power and rmin is the filter size (divided by element size). Other 
variables as well as boundary conditions are defined in the Matlab code itself 
and can be edited if needed. For each iteration in the topology optimization 
loop, the code generates a picture of the current density distribution. Fig-
ure 5.1 shows the resulting density distribution obtained by the code when 
called with the input line 

top(60,20,0.5,3.0,1.5) 

The default boundary conditions correspond to half of the 'MBB-beam' 
(Fig. 5.1). The load is applied vertically in the upper left corner and there 
is symmetric boundary conditions along the left edge and the structure is 
supported horizontally in the lower right corner. 

Important details of the Matlab code are discussed in the following sub-
sections. 

Main program (lines 1-36) The main program (lines 1-36) starts by dis-
tributing the material evenly in the design domain (line 4). After some other 
initializations, the main loop starts with a call to the Finite Element sub-
routine (line 12) which returns the displacement vector U. Since the element 
stiffness matrix for solid material is the same for all elements, the element 
stiffness matrix subroutine is called only once (line 14). Following this, a 
loop over all elements (lines 16-24) determines objective function and sensi-
tivities (1.17). The variables ni and n2 denote upper left and right element 
node numbers in global node numbers and are used to extract the element 
displacement vector Ue from the global displacement vector U. The sensitiv-
ity analysis is followed by a call to the mesh-independency filter (line 26) 
and the Optimality Criteria optimizer (line 28). The current compliance as 
well as  other parameters are printed by lines 30-33 and the resulting density 

In the period October 1999 to May 2002, the code has been downloaded by 1230 
distinct users. 
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Fig. 5.1. Topology optimization of the MBB-beam. Top: full design domain, mid-
dle: half design domain with symmetry boundary conditions and bottom: resulting 
topology optimized beam (both halves). 

distribution is plotted (line 35). The main loop is terminated if the change 
in design variables (change determined in line 30) is less than 1 percent' 
Otherwise above steps are repeated. 

Optimality Criteria based optimizer (lines 37-48) The updated design 
variables are found by the optimizer (lines 37-48). Knowing that the material 
volume (sum (sum (xnew) )) is a monotonously decreasing function of the La-
grange multiplier (lag), the value of the Lagrangian multiplier that satisfies 
the volume constraint can be found by a bi-sectioning algorithm (lines 40-48). 
The bi-sectioning algorithm is initialized by guessing a lower 11 and an upper 
12 bound for the Lagrangian multiplier (line 39). The interval which bounds 
the Lagrangian multiplier is repeatedly halved until its size is less than the 
convergence criteria (line 40). 

Mesh-independency filtering (lines 49-64) Lines 49-64 represent the 
Matlab implementation of Eq. (1.27). Note that not all elements in the design 
domain are searched in order to find the elements that lie within the radius 
min  but only those within a square with side lengths two times round(rmin) 

around the considered element. By selecting rmin less than one in the call of 
the routine, the filtered sensitivities will be equal to the original sensitivities 
making the filter inactive. 

2  This is a rather 'sloppy' convergence criterion and could be decreased if needed 
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Finite Element code (lines 65-99) The finite Element code is written in 
lines 65-99. Note that the solver makes use of the sparse option in Matlab. 
The global stiffness matrix is formed by a loop over all elements (lines 70-
77). As was the case in the main program, variables n1 and n2 denote upper 
left and right element node numbers in global node numbers and are used to 
insert the element stiffness matrix at the right places in the global stiffness 
matrix. 

As mentioned before, both nodes and element are numbered column wise 
from left to right. Furthermore, each node has two degrees of freedom (hori-
zontal and vertical), thus the command F(2,1)=-1. (line 79) applies a ver-
tical unit force force in the upper left corner. 

Supports are implemented by eliminating fixed degrees of freedom from 
the linear equations. Matlab can do this very elegantly with the line 

84 U(freedofs,:) 	K(freedofs,freedofs) \ F(freedofs,:); 

where freedofs indicate the degrees of freedom which are unconstrained. 
Mostly, it is easier to define the degrees of freedom that are fixed (f ixeddof s) 
thereafter the freedofs are found automatically using the Matlab operator 
setdif f which finds the free degrees of freedoms as the difference between 
all degrees of freedom and the fixed degrees of freedom (line 82). 

The element stiffness matrix is calculated in lines 86-99. The 8 by 8 matrix 
for a square bi-linear 4-node element was determined analytically using a 
symbolic manipulation software. The Young's modulus E and the Poisson's 
ratio nu can be altered in lines 88 and 89. 

5.1.3 Extensions 

The default Matlab code solves the problem of optimizing the material dis-
tribution in the MBB-beam (Fig. 5.1) such that its compliance is minimized. 
A number of extensions and ch anges in the algorithm can be thought of, a 
few of which are mentioned in the following. 

Other boundary conditions It is very simple to change boundary condi-
tions and support conditions in order to solve other optimization problems. 
In order to solve the short cantilever example shown in Fig. 5.2, only lines 
79 and 80 must be changed to 

79 F(2*(nelx+1)*(nely+1),1) 	-1; 
80 fixeddofs 	[1:2*(nely+1)]; 

With these changes, the input line for the case shown in Fig. 5.2 is 

top(32,20,0.4,3.0,1.2) 
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Fig. 5.2. Topology optimization of a cantilever beam Left: design domain and 
right: topology optimized beam. 

Multiple load cases It is also very simple to extend the algorithm to 
account for multiple load cases. In fact, this can be done by adding only 
three additional lines and making minor changes to another 4 lines. 

In the case of two load cases, force and displacement vectors must be 
defined as  two-column vectors which means that line 69 is changed to 

69 F = sparse(2*(nely+1)*(nelx+1),2); U = sparse(2*(nely+1)*(nelx+1),2); 

The objective function is now the sum of two compliances, i.e. 

2 

c(x) _ E uTKui  
i-1 

thus lines 20-22 are substituted with the lines 
19b 	dc(ely,elx) 
19c 	for i = 1:2 
20 	Ue = U([2*n1-1;2*nl; 2*n2-1;2*n2; 2*n2+1;2*n2+2;2*n1+1;2*n1+2),i); 
21 	 c 	c + x(ely,elx) -penal*Ue'*RE*Ue; 
22 	dc(ely,elx) = dc(ely,elx) 	penal*x(ely,elx)"(penal-1)*Ue'*RE*Ue; 
22b 	end 

To solve the two-load problem indicated in Fig. 5.3, a unit upward load 
in the top-right corner is added to line 79, which then becomes 

79 F(2*(nelx+1)*(nely+1),1) 	F(2*(nelx)*(nely+1)+2,2) 

The input line for Fig. 5.3 is 

top(30,30,0.4,3.0,1.2) 

Passive elements In some cases, some of the elements may be required to 
take the minimum density value (e.g. a hole for a pipe). 

An nelyxnelx array passive with zeros at elements free to change and 
ones at elements fixed to be zero can be defined in the main program and 
transferred to the OC subroutine (adding passive to the call in lines 28 and 
38). The added line 

42b 	xnew(find(passive)) 	0.001; 

in the OC subroutine looks for p assive elements and sets their density equal 
to the minimum density (0.001). 

Figure 5.4 shows the resulting structure obtained with the input 

(5.1) 
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Fig. 5.3. Topology optimization of a cantilever beam with two load-cases. Left: 
design domain, middle: topology optimized beam using one load case and right: 
topology optimized beam using two load cases. 

Fig. 5.4. Topology optimization of a cantilever beam with a fixed hole. Left: design 
domain and right: topology optimized beam. 

top(45,30,0.5,3.0,1.5),  

when the following 10 lines were added to the main program (after line 4) in  
order to find passive elements within a circle with radius nely/3. and center  

(nely/2., nelx/3.)  

for ely 	1:nely  
for elx 	1:nelx  

if sqrt((ely-nely/2.)"2+(elx-nelx/3.)'2) < nely/3. 
passive(ely,elx) 	1; 
x(ely,elx) 	0.001; 

else 
passive(ely,elx) 	0; 

end 
end 

end 

The MMA optimizer Admittedly, the Optimality Criteria based optimizer  
implemented here is only good for a single constraint and it is based on  
a heuristic fixed point type updating scheme. In order to install a better  

optimizer, one can obtain (free of charge for academic purposes) the Matlab  
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version of the MMA-algorithm (Svanberg 1987) from Krister Svanberg, KTH, 
Sweden. The MMA code is called with the following input line 

mmasub(INPUT-variables, 	OUTPUT-variables) 

where the total number of input/output variables is 20, including objective 
function, constraints, old and new densities, etc.. Implementing the MMA-
optimizer is fairly simple, but requires the definition of several auxiliary vari-
ables. However, it allows for the solving of more complex design problems 
with more than one constraint. The Matlab optimizer will solve the standard 
topology optimization problem using less iterations at the cost of a slightly 
increased CPU-time pr. iteration. 

5.1.4 Matlab code 

The following is a transcript of the Matlab code that can be down-loaded 
from the web-site http: //www.topopt . dtu. dk  

1 %'%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, OCTOBER 1999 %%% 
2 function top(nelx,nely,volfrac,penal,rmin); 
3 % INITIALIZE 
4 x(1:nely,1:nelx) 
5 loop = 0; 
6 change = 1.; 
7 % START ITERATION 
8 while change > 0.01 
9 	loop = loop + 1; 

10 	xold = x; 
11 % FE-ANALYSIS 
12 	[U]=FE(nelx,nely,x,penal); 
13 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 
14 	[KE] 	lk; 
15 	c = 0. 
16 	for ely = 1:nely 
17 	for elx = 1:nelx 
18 	nl 	(nely+1)*(elx-1)+ely; 
19 	n2 = (nely+1)* elx 	+ely; 
20 	Ue = U([2*n1-1;2*nl; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); 
21 	c = c + x(ely,elx) -penal*Ue'*KE*Ue; 
22 	dc(ely,elx) = -penal*x(ely,elx) - (penal-1)*Ue'*KE*Ue; 
23 	end 
24 end 
25 % FILTERING OF SENSITIVITIES 
26 	[dc] 	check(nelx,nely,rmin,x,dc); 
27 % DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD 
28 	[x] 	= OC(nelx,nely,x,volfrac,dc); 
29 % PRINT RESULTS 
30 	change = max(max(abs(x-xold))); 
31 	disp([' It.: ' sprintf('%4i',loop) 	Obj.: 	sprintf('%10.4f', 
32 	' Vol.: 	sprintf('%6.3f',sum(sum(x))/(nelx*nely)) 
33 	 ch.: 	sprintf('%6.3f',change )]) 
34 % PLOT DENSITIES 
35 	colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6); 
36 end 
37 %%'%,%'%,%%%,%% OPTIMALITY CRITERIA UPDATE %%%y.%%%%%%%%%%%%%' 
38 function [xnew]=0C(nelx,nely,x,volfrac,dc) 
39 11 	0; 12 	100000; move = 0.2; 
40 while (12-11 > le-4) 
41 	lmid = 0.5*(12+11); 
42 	xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid))))); 
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43 	if sum(sum(xnea)) 
44 	11 = lurid; 
45 	else 
46 	12 = lmid; 
47 end 
48 end 
49 %%%%%%%%%% MESH-INDEPENDENCY FILTER %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% 
50 function [dcn]=check(nelx,nely,rmin,x,dc) 
51 dcn=zeros(nely,nelx); 
52 for i = 1:nelx 
53 	for j 	1:nely 
54 	sum=0.0; 
55 	for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx) 
56 	for 1 = max(j-floor(rmin),1):min(j+floor(rmin),nely) 
57 	fac = rmin-sgrt((i-k) - 2+(j-1)"2); 
58 	 sum = sum+max(0,fac); 
59 	dcn(j,i) = dcn(j,i) + max(0,fac)*x(1,k)*dc(1,k); 
60 	end 
61 	end 
62 	dcn(j,i) = dcn(j, 	,i)*sum); 
63 end 
64 end 
65 333%%%%%%% FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
66 function [U]=FE(nelx,nely,x,penal) 
67 [KE] = lk; 
68 K = sparse(2*(nelx+l)*(nely+1), 2*(nelx+l)*(nely+l)); 
69 F = sparse(2*(nely+1)*(nelx+l),1); U = sparse(2*(nely+i)*(nelx+1),1); 
70 for elx = 1:nelx 
71 	for ely = l:nely 
72 	nl = (nely+1)*(elx-1)+ely; 

73 	n2 = (nely+1)* elx 	+ely; 
74 	edof = [2*n1-1; 2*nl; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 
75 	K(edof,edof) = K(edof,edof) + x(ely,elx) -penal*KE; 
76 end 
77 end 
78 % DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM) 
79 F(2,1) = -1; 
80 fixeddofs 	= union([1:2:2*(nely+l)],[2*(ne1x+1)*(nely+1)]); 
81 alldofs 	[1:2*(nely+l)*(nelx+1)]; 
82 freedofs 	= setdiff(alldofs,fixeddofs); 
83 % SOLVING 
84 U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,: 
85 U(fixeddofs,:)= 0; 
86 %%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
87 function [KE]=1k 
88 E = 1.; 
89 nu 
90 k=[ 1 
91 	-1 

0.3; 
/2-nu/6 	1/8+nu/8 
/4+nu/12 -1/8-nu/8 

-1/4-nu/12 -1/8+3*nu/8 
nu/6 	1/8-3*nu/8]; 

92 KE = E/(1-nu - 2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 
93 k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 
94 k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 
95 k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 
96 k(5) k(6)  k(7)  k(8)  k(1) k(2) k(3) k(4) 
97 k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 
98 k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 
99 k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)]; 
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Fig. 5.5. Topology optimization of the inverter. Left: half design domain with 
symmetry boundary conditions and right: resulting topology. 

5.1.5 A 105 line MATLAB code for compliant mechanism 
synthesis 

The Matlab code for compliance minimization described in the previous sec-
tion can be changed to a code for mechanism synthesis by changing 12 lines 
and adding 6 new lines of code. 3  

As the default problem, we consider the inverter design problem sketched 
in Fig. 5.5. The optimization problem for compliant mechanism synthesis 
was discussed in Sec 2.6. The solution obtained by running the modified code 
which is named `topm' with the command line input 

topm(40,20,0.3,3.0,1.2) 

is seen in Fig. 5.5(right). 
Instead of listing the whole program we just show a list of the changes. 

This list is obtained by comparing the compliance minimization program 
`top.m' with the inverter design program 'topm.m' using the UNIX com-
mand `duff top.m topm.m' This results in output where `<' means lines in 
`top.m' and `>' means lines in 'topm.m' In the following we briefly discuss 
the changes. 

First we rename the code from `top' to `topm' 
1,2c1,2 
< % /.% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, OCTOBER 1999 %%% 
< function top(nelx,nely,volfrac,penal,rmin); 

> %%1% A 105 LINE COMPLIANT MECHANISM DESIGN CODE BY OLE SIGMUND, MAY 2002 %%% 
> function topm(nelx,nely,volfrac,penal,rmin); 

The expression for the sensitivities (2.23) depend on the solution to the 
adjoint load case (second column of the displacement matrix U) 

20,22c20,23 
< 	Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); 
< c = c + x(ely,elx) -penal*Ue' *ICE*Ue; 

3  Note that the code described uses linear analysis. Therefore, it can only be used 
to gain insight into compliant mechanism synthesis by topology optimization. 
For practical problems one should modify the code to include geometrically non-
linear modelling (c.f. Sec. 2.6.5). 
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dc(ely,elx) = -penal*x(ely,elx) - (penal-1)*Ue'*KE*Ue; 

> Uel 	U([2*n1-1;2*nl; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); 
> Ue2 = U([2*n1-1;2*nl; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],2); 
> c = c + x(ely,elx) -penal*Ue2'*KE*Uel; 
> dc(ely,elx) = penal*x(ely,elx)"(penal-1)*Ue2'*KE*Uel; 
39,40c40,41 

We improve the convergence criteria for the bi-sectioning algorithm 
< 11 	0; 12 = 100000; move 	0.2; 
< while (12-11 > le-4) 

> 11 = 0; 12 = 100000; move = 0.1; 
> while (12-11)1(12+11) > le-4 & 12 > le-40 

To stabilize convergence we use a damping factor of 0.3 instead of 0.5 and 
we take care of the possibility of positive sensitivities 

42c43 
< xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sgrt(-dc./lurid))))); 

> xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*(max(1e-10,-
69c70 

We allocate force and displacement vectors for the real and the adjoint 
load cases 

sparse(2*(nely +1) *(nelx+1),1); U = sparse(2*(nely +1) *(nelx+l),1); 

= sparse(2*(nely+l)*(nelx+1),2); U 	sparse(2*(nely+1)*(nelx+0,2); 

Finally, we define the boundary conditions and the input and output 
points. Furthermore, we add external springs with stiffness 0.1 to the input 
and output points. 

78,80c79,86 
< 7. DEFINE LOADS AND SUPPORTS (HALF EBB-BEAM) 
< F(2,1) 	1; 
< fixeddofs 	= union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]); 

> % DEFINE LOADS AND SUPPORTS (HALF FORCE INVERTER) 
> din=1; 
> dout=2*nelx*(nely+1)+1; 
> F(din,l) 	1; 
> F(dout,2) 	1; 
> K(din,din) = K(din,din) + 0.1; 
> K(dout,dout) = K(dout,dout) + 0.1, 
> fixeddofs 	= union([2:2*(nely+1): [2*(nely+1):-1:2*(nely+1)-37); 

5.1.6 A 91 line MATLAB code for heat conduction problems 

This appendix discusses the modification of the original Matlab code for com-
pliance minimization to heat conduction problems. The FE-solver solves the 
Laplace differential equation on a plane domain and the code may therefore 
also be used to model problems such as elastic torsion, electric conduction, 
magneto statics, potential flow, pressurized membranes and others by chang-
ing boundary conditions and loads. 

The default problem is sketched in Fig. 5.6. We consider the distribution 
of two material phases with isotropic conductivities 1 and 0.001, respectively. 
The square plate is evenly heated (constant source term in all nodes) and 
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T=0 

Fig. 5.6. Topology optimization of heat conduction problem. Left: half design 
domain with symmetry boundary conditions and right: resulting topology. 

the center of the left edge is a heat sink, i.e. the temperature is set to zero. 
Figure 5.6(right) shows the results of running the code with the input line 

toph(40,40,0.4,3.0,1.2) 

Below we list the necessary changes to the Matlab code from Sec. 5.1.4 
in order to convert it to a code for topology optimization of heat conduction 
problem. We leave it to the reader to interpret the changes. 

20,22c20,22 
< 	Ue = U([2*n1- 1;2*n1; 2 *n2-1;2*n2; 2+n2+1;2 *n2+2; 2 *n1+1;2 *n1+2],1); 
< c = c + x(ely,elx)'penal*Ue'+KE*Ue; 
< dc(ely,elx) _ -penal*x(ely,e1x)"(penal -1) +Ue'*KE+Ue; 

Ue = U([nl; n2; n2+1; n1+1],1); 
> c = c + (0.001+0.999*x(ely,e1x) -penal)*Ue'*KE*Ue; 
> dc(ely,elx) = -0.999 *penal +x(ely,elx)'(penal- 1) *Ue'*KE*Ue; 
68,69c68,69 
< K = sparse(2*(nelx +1) *(nely+1), 2*(nelx+1)*(nely +1)); 
< F = sparse(2*(nely +1) *(nelx+1),1); U = sparse(2*(nely+1)*(nelx +0 , 1 ); 

> K 	sparse((nelx+1) *(nely+1), (nelx+1) *(nely+1)); 
> F = sparse((nely +l) *(nelx+1),1); U = sparse((nely+1) *(nelx+l),1); 
74,75c74,75 
< edof 	[2*n1-1; 2 *nl; 2*n2-1; 2 +n2; 2 +n2+1; 2*n2+2; 2+n1+1; 2*n1+2]; 
< K(edof,edof) = K(edof,edof) + x(ely,e1x)"penal*KE; 

> 	edof = [nl; n2; n2+1; nl+l]; 
> K(edof,edof) = K(edof,edof) + (0.001+0.999*x(ely,elx)"penal)+KE; 
78,81c78,81 
< % DEFINE LOADS AND SUPPORTS (HALF MBB -BEAM) 
< F(2,1) = -1; 
< fixeddofs 	= union([1:2:2*(aely+l)],[2*(nelx+1)*(nely+1)]); 
< alldofs 	[1:2*(nely+1)*(nelx+1)]; 

> % DEFINE LOADS AND SUPPORTS (SQUARE PLATE WITH HEAT SINK) 
> F(:,1) 	0.01; 
> fixeddofs 	= [nely/2+1-(nely/20):2:nely/2+1+(nely/20)]; 
> alldofs 	[1:(nely+1)*(nelx+1)]; 
88,99c88,91 
< E = 1.; 
< nu = 0.3; 
< k=[ 1/2-nu/6 	1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ... 
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< -1/4+nu/12 -1/8-nu/8 nu/6 	1/8-3*nu/8]; 
< KE = E/(1 -nu "2) *[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 

k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 
k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 
k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 
k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4) 
k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 
k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 
k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)]; 

> KE _ [ 2/3 -1/6 -1/3 -1/6 
> 	-1/6 2/3 -1/6 -1/3 
> -1/3 -1/6 2/3 -1/6 
> -1/6 -1/3 -1/6 2/3]; 

5.2 Appendix: The existence issue 

This appendix discusses two fundamental approaches to prove existence of 
solutions for problems in optimal topology design. The proofs involve funda-
mental theorems and techniques from functional analysis. 

5.2.1 Variable thickness sheet design: Existence 

The variable thickness sheet problem reads: 

min 1 (u) 
u,h 

 
s.t.:ah (u,v) - J h(x)E°klei 3 (u)Ekj (v)df2 = 1(v), for ally E U, 

h E Lœ(52), 
f 

 h(x)dS2 < V, 0 < hmin < h < hmax < 00 

Here E° kl  is the fixed stiffness tensor for a given linearly elastic material and 
h is the thickness distribution of the sheet. It is a classical result in the field 
of distributed optimal control that there exists a solution to this problem 
(Cea & Malanowski 1970). This follows from the fact that the admissible 
thickness function h belongs to a closed and bounded and thus weak* compact 
set in L°° (II) and the fact that the compliance, as a function of h given 
through the equilibrium equation is a lower weak*-semi-continuous function. 
The latter property is seen by considering the following calculation for a set of 
feasible thickness functions h h , n E NU {0} and corresponding displacements 
uh ,nENU{0}: 

1(un ) — 1(uo ) = 1(un ) — 21(uo ) + 1(uo) 

= ah„ (u., 	— 2ah„ (u71, u0) + aho (u0, u0) 

= ah (tin — u0, un — up) + aho—h„ (u0 ,  u0) 

As the bilinear forms ah are uniformly elliptic on our set of admissible de- 
signs it follows that: lim inf [l (a n) — /(u0)] > 0 whenever 	fo  [h. — 
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h°] (pd12 = 0 for all yo E L 1 (S2), so the compliance is a lower weak*-semi-
continuous function of h. 

The existence of solutions is easily extended to any problem for which 
the volume constraint is of the form f 0  f (h)dS2 < V with a convex function 
f R -* R (such constraints are lower weak*-semi-continuous). Unfor-
tunately, the penalties needed to generate solid-void designs require the use 
of concave functions f However, employing a penalty of intermediate thick-
nesses via the functional 

W(p) = f(h  * K)(x)(1 — (h * K)(x))d
z  

is possible, as this functional is weak*-continuous (see Borrvall & Petersson 
(2001b)) (here one filters the thickness h; for notation, see section 1.3.1). 

Note that the existence of solutions could also be proved by considering 
the equivalent formulation (cf. problem (1.6)) 

hELI  ), 	
min { (h , v) = 2 f 

,,; 	

h(x)Ejkl 6ij (v)Etl (v)dS1 — l (v)} 
0<h,,, <h_<h,,,„x  Goo 	 J  

fn h(a)dÇ2<Vol 

This problem is a max-min problem for a concave-convex functional I(h, v). 
The functional and the constraint sets satisfy conditions for the existence of a 
saddle point, thus proving the existence of solutions to the variable thickness 
sheet problem. The topologies we invoke on the spaces are here the weak* 
topology on L°°(Sl) and the standard norm topology on U (i.e., on H 1 42)). 
Then the following conditions for the existence of a saddle point are satisfied: 

The set G = {h E L°°(S2) 0 < hmin < h < hmax < CO, f0  h(x)df2 < V} is 

convex and compact in L°°(S2)-weak* 	
JJJ  

'Y(., y)  is concave and continuous on L°°(12)-weak*, for all v E U 

41(h, .) is convex and continuous on U, for all h E G. 

There exists an element h°  E G, so that T(h° ,v) -+ co for 	oo, 
that is, there exists an admissible thickness distribution for which the po-
tential energy is coercive. 

Compared to the proof above we can here accept thickness distributions with 
vanishing thickness (the uniform coercivity is not required). Also, remark that 
the saddle point problem considered here is somewhat different from such 
problems encountered in analysis (in, e.g., mixed finite elements). First, the 
function 4i(h, v) in not quadratic and second, we are not working on reflexive 
spaces. This means that we have to invoke a general minimax theorem (e.g., 
Moreau (1964), Ekeland & Temam (1976), Lipton (1994c)). 
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Note that if we do impose the constraint h > hm i n  > 0 we have unique-
ness of the displacement of the optimal solution (the thickness may not be 
unique). If h > hmi n  > 0, the functions 'I(h, •) are strictly convex for all 
h, implying that minvE u maxhEG (h, y) is a strictly convex problem in the  

displacements.  
This result on existence of solutions for the variable thickness sheet prob-

lem is used at several points in this monograph.  

5.2.2 Density design with a gradient constraint: Existence  

One possible variation of the penalized density design problem with a gradient  

constraint on the allowable density variations reads:  

min 	1(u)  
u,pEH' (Q)  

s.t. :a
pr

(u, v) = l(v), for all y E U C H 1  (S2)  

J p(x)dS2 < V 	0 < pmin < P(x) <1, x E fl  
s^ 

IIPIIH' _ [ f (p2  +(Vp)2)d]  
^ 	 J  

where ap  (u, v) = fQ  p9  (x)E°  ki ei, (u)eki (v)dSl, and 1 < q < n/ (n — 2) depend-
ing on the spatial dimension n. 

Now consider this problem in the following setting. As the objective func-
tion does not depend explicitly on the design variable, the problem can be 
considered as a minimization of a function over a set U* of displacements 
arising from each of the admissible designs (as is also the approach used in 
the computational schemes described in section 1.2): 

U* ={uEUI2pEGp  ap (u,v)=l(v), for all vEU}  

Here the set of admissible designs is 

GP = {p E Hl (SZ)  
IIPIIH' < M; fo  p(x)dSl < V  
0 < pmin < P(x) < 1, x E  S2 

  

From 0 < pm i n  < p(x), it follows that the family { ap (•, •)I p E Gp } of forms is 
uniformly elliptic, that is, there exists a c > 0, so 

ap (u, u) > cllufil', forall p E Gp  

Equilibrium then gives that  

CIIuIIH' < ap(u,u) = 1(u) <  11f 11211u112 	C-1 IIf II2, for u E U*  

This means that the set U* is bounded and thus weakly pre-compact in the 
reflexive space U. Since the objective function is weakly continuous in the 
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displacements, existence of solutions to the problem would be assured if the  

set U* was weakly closed as well. This is the case here.  
That the set U* is weakly closed follows from the Sobolev embedding  

theorem, which implies that the bounded set Gp is imbedded as a compact  
set in L2q(1). As U* is bounded in U, we thus for any sequence (u n) of 
displacements in U* with corresponding designs (pn ) have a subsequence (for 
convenience denoted by (u n ), (pn ) as well), for which  

pqn  ^ pô, in L2  (S2), strongly; un  —> uo , in U, weakly, as n —3 0o  

where po  is in Gp. From this it follows that  

ap„ (un , ,o) -* apo  (uo, cp) as n -* CO, for all cp E C,°° 0-2)  

Thus apo  (uo , (p) = l((p) for all 	E Cc' (Q) , and uo is in U*, and we have  
proved that U* is weakly closed.  

We note that the properties of Gp shown here not only imply existence of  

solutions for the minimum compliance problem. Existence of solutions holds  

for a whole range of problems, encompassing minimizing the average de-
flection, minimizing the average stresses, minimizing the maximum displace-
ment, maximizing the minimum eigenfrequency of free vibrations as well as  

maximizing the minimum in-plane buckling load (see, e.g., Bendsoe (1983),  

Bendsoe (1984)).  
We remark here that we have obtained existence of solutions by restrict-

ing the set of admissible designs. For the 0-1 formulation of shape design,  

with admissible designs given as in (1.3) the corresponding set of displace-
ments is not closed under weak convergence. This can be seen from taking a  

sequence of increasingly rapidly varying layered designs, for which the corre-
sponding displacements do converge weakly (follows from homogenization),  
but where the limiting design is an orthotropic material not covered by the set  

of admissible designs. As layered designs may be stronger than a macroscopic  
variation of material and void then means that the existence of solutions is  

not assured.  
Note that we above actually have proved that the set Gp is G-closed (or  

closed under H-convergence) [5], [25]. Here the G-topology is the topology on  

designs induced by the weak convergence of solutions to the corresponding  

equilibrium equations. We thus say that (pn ) G-converges to po if, for all load  
linear forms, the solutions  

apn  (un , v) = /(v) for all v E U 	apo  (uo, v) = /(v) for all v E U  

satisfy un  —3 uo, weakly, as n 	oo. The set of designs (1.3) is not G-closed,  

and the full description of its G-closure is still not known for elasticity. The  

existence of solutions for the minimum compliance problem that is obtained  

through the introduction of finite rank layerings is achieved by extending  

the set of designs with designs that contain the G-limits of the minimizing  
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sequences for the specific design problem at hand, thus generating only part 
of the G-closure. We mention that the finite rank layerings in the case of the 
scalar problem of conduction provides a complete description of the G-closure 
for 0-1 designs [25]. For a complete coverage of the problem of existence of 
solutions, the relation to G-converge, H-convergence, homogenization and T-
convergence, we refer the reader to the vast literature on this subject [4], [5], 
[34] and [25]. 

5.3 Appendix: Aspects of shape design: The boundary 
variations method 

5.3.1 Design parametrization in shape design 

For completeness we will in the this appendix outline the basic concepts re- 
quired for implementing a boundary variations shape design procedure. But 
first we shall briefly describe how also this type of problem fits into the gen- 
eral framework for design over a given choice of admissible stiffness tensor, as 
formulated in section 1.1. To this end, we refer all admissible domains to a ref- 
erence domain4  f2 through differentiable one-to-one maps (C 1 -diffeomorfisms) 

It - (1)(f2) Ç R 2  Thus all domains are of the form c(f2), with the volume 
constraint being expressed as 

	f 
Vol(4)(f2)) = 

f 2 
14, ( Q)dx < V = 

z 
lndx = Vol(f2) 

This parametrization means that the topology of all admissible domains is 
given by the choice of reference domain fl and no change in lay-out is possible. 
Also, note that in this setting the state variables and the integrals in the 
problem statements (1.1), (1.6) and (1.7) are all defined on varying domains. 
For sensitivity analysis and comparison of for example displacements it is 
crucial to have a formulation on a common domain of reference. The standard 
technique to obtain this is to use a transformation of coordinates in order 
to express the equilibrium conditions for the domains 4)(f2) on the reference 
domain f2. This  results in a formulation (1.1) for which [2] 

1(u) 
= 

f pu I det V p 1 1 df2 + 
f 

 to ladjV9p -1 I dF 
2 	 r 

and the stiffness tensors are of the form 

Eula = Epk4( 7 P 1)jp(V'P-1)1g1 det Op 

These formulas express the form of the transformed energy and load expres- 
sions. The problem is still basically of the form of (1.1), but now the loads 

4  This is analogous to the approach when using isoparametric elements. 
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rd sro , r0  is a traction free boundary 

Fig. 5.7. The setting of a boundary shape design problem, indicating a shape 
perturbation. 

are also design dependent. Also, the stiffness tensor depends in an intricate 
way on the design parametrization. Note that for existence of solutions one 
can often also in this setting refer to restriction methods (compactness ar-
guments) by restricting the admissible diffeomorfisms to have bounded first 
and second derivatives [2]. 

The variation of shape is in implementations of the boundary variations 
method often controlled via a discrete parametrization of the boundary for 
example through the control points of splines. The solution of the shape op-
timization problem using FEM has to be able to handle the changes in shape 
introduced after each optimization iteration. These changes often require the 
construction of a new discrete model of the structure after each optimization 
step. The new mesh should be generated automatically and directly from 
the design variables used to parametrize the shape. The complications in 
the boundary shape variations method thus lies almost entirely in the anal-
ysis and design sensitivity, while the optimization in itself is simplified by 
the small number of design variables typically used for these problems. The 
methodology is, as mentioned, well established and there exist for this type 
of problem also several commercially available software systems for boundary 
shape design of structures ([2], [35]). 

5.3.2 The basics of a boundary shape design method 

In the following we will summarize some aspects of a specific approach to 
boundary shape design. It contains the generic features of such methods and 
allows for a comparison with the material distribution method for topology 
design (generalized shape design). The method that is described is based on 
standard shape sensitivity analysis and boundary shape variations, with the 
required precision of local data (including stress values) being obtained with 
a mixed finite element method (Rodrigues 1988, Bendsoe & Rodrigues 1991). 
In order to be able to handle moderately large shape variations, a remeshing 
scheme is also used, in the form of an elliptic mesh generator. For further 
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literature on boundary shape design and boundary shape design sensitivity 
analysis, the reader is referred to the vast literature on the subject [2], [[35]. 

Problem formulation We view here boundary shape optimization as a 
methodology for post-processing of results from the topology design method. 
That is, the optimal topology and initial boundary shape are defined and 
the objective is to refine this initial shape, in this case so that the von Mises 
equivalent stress in the body is minimized. For a two dimensional linear 
elastic body the objective is to find, by means of the boundary variation, 
the shape of the domain S2 C R 2  such that the maximum value of the von 
Mises equivalent stress is minimized subject to a resource constraint and a 
compliance constraint. We formulate the problem by a bound formulation 
in order to remove the non-smoothness of the max-stress function (see for 
example Olhoff (1989) and references therein for other structural optimization 
applications of this idea). The problem is then 

min Q 
QED  
7,Q,u  

s.t. J Ezjk^^yijKkidS2 — f -y 
^ t 

Tkl dS2+  

+  f az^e z^ (v)df2 + f 
Tzjeij  (u)dS2 — 1(u) = 0 for all K, T, v 

	

z 	z 
Qeq (x) < Q for all x E  S2 

	

/(u) < 	f dIl<V  

Here D denotes the set of admissible shapes, defined through local geometric  

constraints. The equilibrium is given via the stationarity condition in weak  
form for the Hu-Washizu variational principle (Washizu 1983), using indepen-
dent fields ry ,  a, u of strains, stresses and displacements. The computational  

scheme will thus make use of a mixed finite element method to provide for  

accurate computation of stresses and strains at the element nodes.  

The methods which can be used to obtain the set of necessary conditions,  

to be satisfied at the optimal domain, S2* are well documented in the lit-
erature and follow the lines of sensitivity analysis already described, so we  

restrict our presentation to the statement of the type of results that can be  

obtained [2]. The derivation of the necessary conditions employ the so-called  

speed method for boundary shape variations. This is an infinitesimal version  
of the mapping method for shape parametrization, as outlined in above. We  

thus define a perturbation of the optimal domain as  

Sg t  = (I + t9)(Ir )  

where 9 is the domain perturbation vector field (see Fig. 5.7). The set Do of  

admissible perturbation fields is defined via,  

(5.2)  
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Do = {OK? = (I+ tG)(S2*) E D, for t small enough} 

The optimality condition associated with this variation of the domain can be 
stated as a boundary integral condition 

L 	 — u f + A1+ n2Qiji'ij] (B • n,)dT = 0 	 (5.3) 

where Al  > 0, A2 > 0 are Lagrange multipliers for the volume and compli-
ance constraints, respectively. Also, in this equation ryij is the adjoint strain 
field, that is, it is the solution of the adjoint equation, written in mixed 
variational form as, 

J. Eijkl?ij Kktdfl — 
f 

-yijTijdSt — f Ki jâij dS2 + 
J 

"drijetij (v)dS2 

+  J Tijeij (Et)d(2 + j î a---ic, ) d12 = 0 for all K, T, v 
S2 	 S2 	\\\  077,j 

Here g > 0 is the Lagrange multiplier associated with the bound constraint 
in (5.2) on the von Mises stress (71 satisfies fo  i dS2 = 1). For the case without 
local geometric constraints on the design domains and without the compliance 
constraint, the optimality condition becomes 

— Al] (8 • n)dr = 0 for all 
rd 

According to this result, the mutual energy ui 3 4 has constant value along 
the design boundary Td . We remark here that it may not be convenient to 
use (5.3) in its boundary integral form, but instead a domain integral should 
be used. This will depend on the quality of the prediction of the stress at the 
boundary. Note also that in concrete discretizations, (5.3) should be used in 
a form that is consistent with the discretization. These aspects are discussed 
in detail in the literature ([2], [35]). 

Numerical model For the example problem at hand (given in (5.2)), the 
discrete version of the mixed variational formulation can be achieved through 
a discretization of stress, strain and displacement fields using for example 
four node isoparametric finite elements. The mixed variational form leads 
to an indefinite system of equation in the nodal values of the stress, strain 
and displacement fields. Once this system is solved, the adjoint displacement 
field can be found from the adjoint equation, discretized using the same finite 
element interpolation fields as defined for the primal problem. Note that we 
need the solution of the primal problem to define the force term of the adjoint 
problem. The Lagrange multiplier i > 0 can be interpolated using bilinear 
shape functions within each element where stresses are at the maximum level. 

The discretization of the design perturbation field 0 can be obtained 
through a range of different approaches. In order to maintain smoothness 
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of the design, interpolation using splines or global design functions are com-
monly employed ([2], [35]). The shape of the body is then given through a 
discrete set of design variables {di}, which for example are the lengths of the 
position vectors of the respective spline interpolation nodes, expressed with 
respect to a pre-defined origin. The design perturbation field is expressed 
through the perturbations {ai} of the lengths of the position vectors. 

With these discretizations, the design variables for the optimal bound-
ary shape can be computed iteratively, for example by employing well-known 
gradient type algorithms, in a scheme that is analogous to that described in 
section 1.2.3. However, this disguises the need for procedures to update the 
FE grid during the iterative procedure. Thus, in order to solve numerically 
the shape optimal design problem, there is for large design changes a need 
for an automatic grid generator for the finite element model. The choice of 
an automatic grid generator should relate sensibly to the problem type to be 
solved. In the case of shape optimal design the sensitivity analysis (and the 
optimality conditions) require accurate stress and adjoint strain estimates 
along the design boundary. To minimize the interpolation error of the finite 
element solution there is a need for grid smoothness and orthogonality. Also, 
during the domain shape variation, geometric singularities can develop along 
the design boundaries. The grid generator should minimize the propagation 
into the domain of mesh non-uniformities, due to these singularities. Finally, 
we note that the initial shapes can be quite arbitrary. The grid generator 
should be able to operate on quite general shapes and permit interior bound-
aries. To cater for these requirements a number of various grid generation 
techniques for shape design have been used for shape design, and for the 
methods that have been integrated with topology design, free-mesh, design-
element and elliptical mesh generators have been used with good results [10]. 

5.4 Appendix: Homogenization and layered materials 

We shall here discuss various derivations of the effective moduli of layered 
materials in planar elasticity, mainly to draw a parallel between the homoge-
nization method and the traditional engineering smear-out techniques. Also, 
we shall see how a specific algebraic form of the formulas of effective moduli 
leads to a design parametrization that does not involve angles of rotation. 
These latter formulas were originally derived in the materials science litera-
ture as a tool for showing the optimality of bounds on the effective properties 
of composite materials, but they are also extremely useful for topology de-
sign. The reader is referred to [4], [20], [25] for a list of literature on the 
subject of layering formulas and the relationship to optimal bounds. 
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Fig. 5.8. The layered material. 

5.4.1 The homogenization formulas  

In the following we consider a (single-layer) layered material constructed from  
two different orthotropic materials with stiffness tensors E+, E — , respectively. 
The layers are in the unit direction t, with the unit normal to the layering 
direction being denoted by n (see Fig. 5.8), and the thickness of material E+ 

 is µ, while the thickness of material E—  is (1 — ti). For the local frame of 
reference given by (n, t) we choose coordinates (yi , y2 ), and the unit cell we 
consider is [0, 1] x R. We assume that the axes of orthotropy of the materials 
are aligned with the layer directions, so that the only non-zero elements of 
the stiffness tensors for the materials (and the homogenized material) in the 
chosen frame are the elements with indices 1111, 2222, 1212 (1221, 2121, 
2112) and 1122 (2211).  

We will first work directly on the homogenization formulas, using suitable 
test fields. The homogenization formulas reads 

E ,k^ (x) = Ê inr 
lyl a Y (y z^ — P ,  y

kt 
— P) = II  l 

ay 
 (y 2j  — X Zj  y kl  — X ki )  

_ _ 1 	
f 	 a DC  l 

l Yl Ŷ 
I Eijkd (x> y ) — EiJpg (x^ y) 

ay,
I dy  

(5.4)  

with cell problem  

aY (y" — X t  , So) = 0 or  

fY [Eijpq(x, y) ]   â dy = fY Eiiki (x, y) â dy 
d(p E  Uy 	(5.5) 

 

where yli = (y,,()),  y 12  = (yz , 0),  y2'  = (0 , yi) and y22 = (0, y2)•  
Let us now derive the expression for E ski  (x) for the layered material we  

consider. It is clear that the unit cell fields Xki  are independent of the variable  
y2 . Also note that in equation (5.4), the term involving the cell deformation  
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ki  field Xkl  is of the form E,,,„  (x, y) â  , so an explicit expression for Xkl  is not 

needed. Using or

'

thotropy, the homogenization formula for E kl  (x) reads 

Eiill (x) = J
f
o (E1111 — E1111 ax0 y

1 )dyl 

EA22(x) = Jo ( E2222 — E1122 ax ây
(yi ) )dy1 

412 (s) = Jo (E1212 — E1212 
aX y(y1)  )dy1 

EH  1122 	= fo (E1122 — E1111 
ax 91'i  )dyl  

and the corresponding cell problems written with test functions of the form 
(40(y 1 ), 0) forX11 x22  and test functions of the form (0,1(yi)) for X kt , have 
the form: 

f0 E1111 -̀9  110 	
)  a1(Y1)dyi = f0 E1111 

awa(yyl )
dy l , all <p 

L.,' 1111
ax12(yi)  aW y1) dyl 	i  E1122

aW(y1) d fo 	 yl , all ço ay, 	ay1 	= fo 	ay1 
ri
0 E1212 axayl

yl) aayyl)d
y1  = 

rio E,212 aayyl) dy1 , ally 

This means that 

E1111 
axay(y1) = E1111 + C11 

axi2 (y1) 
E1111 a y1 	= E1122 + C22 

aX2 2 (yi)  
E1212 ay , 	= E1212 + C12 

and the periodicity condition restricts the constants c11, c22, c12 to satisfy: 

Cil = —[M(Ev11)] 	C12 = — [M  (E71272 

22 = 	
E2211  C22 — [M 	M 	 
E1111 

	
( E111  

where M() denotes the average over the unit cell. 
Inserting these expression in the formul as  in (5.6) and using that 

E1122 
axi 2  (y1)  —_ E1122  Ellll axi

2 (y1)  I —_ E112z  
E1111 	

rr

.,

1122 + C22] , a y1 	 ay 1 	E1111 L 

we obtain the result for EH  (cf., section 3.1.2): 

(5.6) 

-1 	 —1 

—1 
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E1122 = M
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	[M(Elll )] 

 

 + ( 1— p)Ellz2 	Eli11E111,  [AE11-122 

 E1î11 	Elul 	pEllll+(1— p) Ei111  

r 	
1 

E212 — I LMI 
j/E 
	1  )] 
	= 	_E1212 E1212 +  

lz,2 	 pE1212+(1-p)E1212  

For a layering of two isotropic materials with the same Poisson ratio v, with  

different Young's moduli E+ and E—  respectively, we have that E1212  
1(1 — v)Eiiii and E1122 	vE1111 in both materials, so the formulas (in  

plane stress) reduce to the simple expressions given in (3.7).  

5.4.2 The smear-out process 

We will now consider a different method for solving the homogenization for-
mulas for the layered case by means that relates directly to more traditional  

ways of computing effective moduli for such materials. To this end we inter-
pret the homogenization formulas in the following way. Let ë be any macro-
scopic strain. Then the homogenized material coefficients are defined by the  

energy relation (with no macroscopically varying parameters)  

E ̂  tEij^kl = min 1  f Eijkt (y) (eu — Eij  (y')) (ekt — ek1(V)) dy 	(5.7) 
ço EUy IY  

For the minimization over the periodic test fields cp, we have the minimizer  

cp* given as a solution to the cell problem  

I 
1 

I 

 

LEiiki(y)(ei  Y 
— Eij(cp* ))Ekl(C)dy , for all E  Uy 	 (5.8) 

From this it follows, that 

1  
EHkIEijEkl 

= IYI f
Eijkl(y)(Eij —Eij(^P*))Ek tdy , =O for all € 	(5.9)  

so that the macroscopic stress field defined as F:r = EHki ekt satisfies  

1  aij = E k lEkl = 
	
f  IYI 	

Eijkl(y) (^kt — Ekl ((p * ))dy  • (5.10)  
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We will now show that (5.8) for the layered case is solved by a field cp*, 
for which 	— Ei3  ((p* )) is constant in each material region, that is  

_ ( E+  in material + 
(60(E — Ezi (`p*  ) )  (y) 	t E in material —  

where E + ,  E -  are constant fields. Remembering now that we have that  

E,+kl  in material +  
Eijkl (Y) — E 	in material — zjkl  

together with (5.11) implies that the cell problem is solved for such a field cp*,  

provided the interface conditions along the layer interface are satisfied. 5  The  
natural boundary condition is that the normal component of stress along the  

interface is continuous. This follows directly from the variational statement  

(5.8). Moreover, because of regularity of the solution (see, e.g., Escauriaza  

& Seo (1993)), the tangential component of strain must be continuous (this  

latter property could also be posed as an ansatz, which is then proven to  

be true after we have shown that such a condition gives a solution). The  

continuity conditions are thus:  

a ^nin^ = az^nin^ or Ei,+jktEklnin9 = EijktEktnin9  

a ̂ nitJ = a2^nit^ or Ei,+jktEk[nit7 — Eijkl Ekt ni t7  

Etitit ,j = ETi titj  

Also, remark that from (5.11), (5.12) and (5.10) and from periodicity, 
follows that 

1 
= Ezi 	

Y 1/71I 	
(EZa — EZa (cP * ))dy = µE ^+ (1 — µz^ )E  

1  
aij = E )k t ^kl = I

^I£ 
 Ejikl(y)(k1 — Ekl(^* ))dy  

= µE jkt 6  i + (1 — id)EijklEkl  

Here (5.14) and (5.15) express that the homogenized coefficients describe the 
linear stress-strain relation between the average strain and the average stress, 
and (5.13) expresses continuity conditions for the stresses and strains in the 
individual constituents. The equations (5.14), (5.15), and (5.13) are precisely 
the equations used in standard smear-out calculations, and it is from these 
equations that we will calculate E+ ,  E -  (i.e. prove that we have a solution) 

5  The property of piece-wise constant and compatible strain and stress fields is 
related to the optimality of the microstructure and is also seen in the analytical 
derivations of a new class of optimal materials as described in Sect. 2.10.3 (for 
details see Sigmund (2000b) and Gibiansky & Sigmund (2000)). 

(5.11)  

(5.12)  

(5.13)  

(5.14)  

(5.15)  
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and in the process we will also derive the homogenized stiffness tensor E1 kl . 
We can now write the constant tensors e+ ,  e in terms of the average strain 
E.  and the basis vectors n, t:  

e = eij + aininj + 
2 

 [niti + tinj] + a3titi  

= ^ij + bininj + 22  [nitj + tinj] + b3titj  

In this expression ai, bi, i 	1, 2, 3 are constants to be determined; when 
determined, we have the solution e+ ,  e To this end, note that (5.14), (5.15), 
and (5.13) constitute nine dependent, linear equations, from which we can 
find ai, bi, i = 1, 2, 3 

First, the continuity of the tangential component of strains imply that 
a3 = b3 = O. Then, from the average strain expression in (5.14) we get 

pal + (1 — µ)b1 = 0 or b1 = — al 

µa2+(1 — µ)b2=0 or  b2=-1 a2  

It is now convenient to introduce the following notation: 

MU) = µf+ + (1- µ)f , N(f) _ (1- µ)f+ + µf 

when 	_  	in material + 	 (5.16) 
f (y) — 

 
{f+ 
 f - in material —  

and also to use the shorter Ennnn for a contraction like Eijkt ninjnknt. With  
this, inserting b1, b2 in the conditions of continuity of the normal stress, we get  

the following two expressions for determining a l , a2  (here and in the following  
we use the symmetry properties of the stiffness tensors):  

aiN(Ennnn) + a2N(Ennnt) = (1 — p) [Eijkt — Eijkl] ninj e kt 

 a1 N(Ennnt) +a2 N(Entnt) = (1 — µ)[Eijkt — E ijkl]niVkt  

We see that a l , a2 and thus the fields e+, e-  can be written linearly in terms 
of E, and in terms of geometric data. To write al, a2 explicitly, we use the 
additional notation 

D = N(Ennnn)N(Entnt) — N(nnnt) 2  

so that with 	=ô [E — ijkt 	Eijkt] 

al = 4jkt [N(Entnt)ninj — N(Ennnt)nitj]kt  

a2 = Qijkl [N(Ennnn)ninj — N(Ennnt)ninj]kl  

Now write the average stress in terms of e+, e-  and al, a2 (using symmetry)  
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aij = 	+ (1 —  /L)EijklEkl 

= µEykl [ Ekl + ¢lnknl + ¢2nktl] + (1 — /L)Eijkl [^kl + bin Olt + b21-1kt11  

= M(Eijkl )Ekl + µ [E ^P9 —  EijP9]  [¢lnPnq + a2nptq] 	

jj  
— (M(Eiik l ) 

— µ(1 — 
 µ

) 
 [E^Pq — EijP9^ [Emnkl — EmnklJ`"mnpq IEkt D 	 / 

where to achieve symmetry of the homogenized tensor we have set 

Smnpq  = N(Entnt)mmnnnpnq  

+ 
4 
 N(Ennnn) (n m tnnpt q  + tmnnnptq  + nm tn tpnq  + tmnntpnq )  

— 4N(Ennnt) (tmnnnpnq  + nm tnnpnq  + mmnntpnq  + mmnnnpt q )  

From these equations it follows that the homogenized stiffness matrix is given  

as  

Eijkl = M (Eijkl) — iL(1 
— 

 /4  [E^Pq — Ei7P9] [ELM —Emnkl] mnPq , (5.17)  
D  

and this holds for anisotropic constituents as well. Equation (5.17) expresses 
that the effective tensor is given as the average of the stiffnesses of the con-
stituents plus some correction terms. For the case of orthotropic constituents 
which have their axes of orthotropy along the directions n, t, terms of the 
form Ennnt are all zero, and the effective material parameters can be written 
somewhat simpler. It can be verified by inspection that (5.17) are equal to 
the formulas shown earlier. 

Let us now perform the same type of operations for the compliance tensor, 
i.e.  

E kd = C2̂ kl ay7 , Ekl = Câjkl aij ,  Ekl = Ckl aij  
Here the continuity conditions are, as before 

a  i+i ninj  = aij ninj  

0-t niti  =  aij ni tj 

Et.titj = Ei .titj or Ctkl a ^titj =  Cijkl aij titj 

From this we see that we can write the constant tensors a+, a —  in terms of 
the average stress 8 and the basis vectors n, t:  

= aij +C3ti tj 	aij ninj = aij — 
µ 

 c3titj 	 (5.18) 
1— µ  

where we have used the continuity of the normal component of stress and the  

average stress expression. Inserting this in the conditions of continuity of the  

tangential strain, we get the following expression for determining c3  
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c3N(Ctttt) = (1 — ,a) [Cijkl — C jkl] titjckl 	 (5.19)  

Now write the average strain in terms of a+,  a— , c3  and Sijpq  = C  9Pq  Cijpq  

Eii = Aqkl a  + (1  — µ) Cijkl akl  

= M(Cijkl)akl + Sijpg C3tptq  

= 
(M(c.. 

	1 - 	 l\1
•  zlkl) 	 N(Ctttt) Sz^pqSmnkltmtntptqJ akl  

SO  

zki = 	( 2kl) — l̂ (1 	-  FL)  C 	M C 	
N(Ctttt) 

52^pgsmnkltm tn tp t g  

This is the inverse of the tensor given in (5.17). For the case of orthotropic  
constituents, the different elements of Ci kl  are given as  

Cz \ 
 22 - [M 02222 / ] 	C1122 = 

LM 

2212222 

 / ] {M(  02222 

1212 = M (C121.2)  

Note the similarity with the stiffness case, except for the 1212 term. This  

plays a role for using plane elasticity results for plate problems, see section  

5.4.5 below.  

5.4.3 The moment formulation  

Let us now write the effective compliance tensor in a different form, which is  

suitable for iterated homogenization. These formulas have played an impor-
tant role in the theoretical materials science [25], and were for the elasticity  

case derived in Francfort & Murat (1986). Here we compute the formulas in  

the spirit of the smear-out process just carried out. We do, however, proceed  

in a somewhat different manner.  
With the notation of above we have from the average of stresses that  

1  
— ( 1  — Iz ) aij)  

Now insert this expression in the average over strains, to achieve 

Ci klaij = pCZEi 	
/ klaij + ( 1 — u)Ciikl aij  

= C lklaij — (1 — ,u)C klaij + (1 —  p)Cijklaij 

Rearranging, we get the equation  

(5.20)  

2 

 C11111 = M(C1111) [M(%2222  /] + LM  cE222 /][M(C2,E2 J]
_1 
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[Cijkl — C ijkl] agj = (1 — /l) [Cijkl —  Cijkl] aij 

If [Cijkl -qkl]  is invertible (this is the case if the materials are well-ordered, 

i.e. if [C 	- Ckl] is positive or negative definite), we can write this as 

(1  -  p)  [C - C+] 	[CPgkl Cygkl] akl  

From the conditions of continuity, we have that  

ate = aij  + Atitj  

Cijkl aij tk tl =  Cijkl (aij + Atitj)tktl = Cijkl aij tk t l  

where the constant A then must be given as 

- C+
i
tttt Cijkl  

Now using again the average of stresses we can express v as  

= pail;  + (1  — µ)azi = azj + µ C tttt [Cngk l - Cygkl ] t k tl avg t i tj  

Inserting in (5.21) we get that  

(1  1  µ)  [C - C1-1  tjl  [a- , + 
C+ ttt [Cpgrs - ±Cpgrs] trtsaPg t,,.t^.]  

As this must hold for all stresses a-  we get after a little rearranging and  

using index-free notation  

[CH 
 - C1-

1 
 (1- 

	

1  µ)  [[C- - C1
-1  + µr c (t)] 	 (5.22) 

where the tensor rC(t) is defined as Fc. kl  = c+t
tttt,tjtktl.  Equation (5.22)  

can also be written as  

-1 
 CH  =  C+ + (1 -  IL)  [[C- - C+1-1  + µF° (t)] 	 (5.23)  

We remark here that the form (5.22) is particularly well suited for com-
puting effective moduli for multiple layered materials. To this end let the  

material indexed as C -  in itself consist of a layering in a direction f of the  
material C+ and the material C ° , in proportion -y (1 -'y). Then from (5.22)  

[C  _  C+]  -1  (1 1 	ry) [ [C
°  - CT' + ryFc(t)] 

 

Now insert this in the formula for CH  to obtain  

1  
(5.21)  

+ 
Cijkl vij tk tl 
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Rank-5 
	

Rank-4 
	

Rank-3 	Rank-2 
	

Rank-1  

Fig. 5.9. Construction of a rank-5 layered material. The layers of the black C+  

material are the same for each layering in this case.  

[CH  -  C+] 1 	( 1 1  µ) L (1 1 ry) L
[C° - C+] 1  + ryI'°(t)J + Arc (01 

 

( 1  — µ)( 1  — ry) 

[[Co  — C+ 1 
	
+-yrc (t) + (1 — ry)µr c (t)] 

 

This is similar to the expression (5.22), and we note that 19 °  = (1—µ)(1— y) is  
the amount of material C ° , while i9+ = 1-0°  = 1— (1—p)(1--y) = ry+ (1—µ)ry 
is the amount of material C+ Repeating this process, we see that for any  
multiple layering constructed from an initial layering of C °  and C+ which is  
then layered consecutively with C+ the effective parameters can be written  

as (with Er  1  µ,. = 1)  

[CH  — C+ ] —1  = 
	

[[Co  (1
^

+) 	— C+1-1  + 19 + 	µr I'C(tr)1 	(5.24) 
r= 1 	 J  

for a total density i9+ of C+ placed in m layers in directions t r ; these layers 
need not be perpendicular. 

Now let us very briefly show how a similar formula is achieved for the 
stiffness tensors, assuming that the material E+ is isotropic, so that any 
term of the form E+nnnt is zero. As above, we get 

[E kl — Eijkl]E^7 = (1 — µ) [Eijkl — Eijkl]Eij  

while we from the conditions of continuity have (using isotropy of E+)  

1  
= E ij 

+.^i n inj + À2 (ni tj +tint ) 

E+kl E2̂ nknl = Eî kl (E ij + À l n inj )nk nl = EijklEijnknl  

E+iikl eijn k tl = E+ (e+ + Alnitj)nktl = Eijkleijnktl  

giving constants A l , A2  as  
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A1 	E+nnnn [Eijkl —Eijkl ]^ijnknl+ a2 = 
E+ntnt [Ezjkl

— E jkl] EZjnkti  

Repeating the calculations as above, we finally get for the rank-m layering 
(cf., eq. (5.24)), that 

[EH  — E+] —1  = (1
1

19+)  [[E°  — E+] —1  + i9+ E,arFE ( tr )1 

LL r=1  J  

with ErL  Pr  = 1. Here the tensor rE(t) for symmetry reasons is defined as  
(E+ is assumed isotropic) as  

1 	 1  

r ki = 	nznjnknl+ 	+ (n Z t^nkti+ni tjtkni+tinjnkti +tinj tkni) 
Eilu 	4E1212  

From ((5.25) one now have the effective material properties of any rank-m 
layering given in terms of 2m parameters, namely the bulk density /9+ of C+ 

 material, the m relative layer thicknesses Pr  (of which (m-1) are independent) 
and the m layer directions given by the angle of rotations of the layers,  

fir  = (cos Br , sin 9r) t r  = (— sin Br , cos 9r ). We will now see that a reduction 
in the number of describing parameters is actually possible. To this end notice 
that every element of the tensors 

m 	 m 

rrjkl = 	µrfE(tr)> F kl = 	tyrF°(tr)  
r=1 	 r=1  

are simple affine combinations of parameters (moments) of the form  

ml =E^  i  µr  cos(20r ), m2 =E^ 	 with i µr  cos(4Br) l i 

m3  = Er=1 /ir sin(20r ), m4 = ^,r=1 ékr sin(48r ) J 	E µr = 1  

Moreover, if we consider design over all possible layer combinations as  
well as layer directions, the tensors rE(t),Fc(t) will be parametrized by  
(m 1 , m2 , m3 , m4) E R4  belonging to the convex hull M of the curve  

(cos 20, cos 40, sin 20, sin 40), 9 E R ,  
in 4-space. This convex hull will also encompass the material tensors of rank-
2 and rank-3 layerings. However, compared to a rank-3 layering described  
by 2 relative densities and 3 directions of layerings, by introduction of the  
moments (mi, m2 i  m3, m4) we have one less variable to worry about. This is 
of little importance in an optimization procedure unless an explicit charac-
terization of  M can be given. Fortunately, the solution of the trigonometric 
moment problem (Krein & Nudelman 1977) let us write the convex set M 
as (Avellaneda Sc Milton 1989) 

M = (ml,m2,m3> m4) E R4  
mi + m3 < 1 , —1 < m2 < 1,  
2174 (1 — m2) + 2m3 (1 + m2)+  
+(m2 +m4) — 4m 1 m3m4 < 1  

  

(5.25)  

r=1  
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In terms of these moments, the effective compliance tensor for the case of 
void as the second phase (E° = 0) can for example be written as (in plane 
stress) 

CH = C+ + ( 1  - P)  [I'c0]-1 
pE 

Here the entries of the tensor Î'c° are 

co 	1 
11111=$(3 +m2 -4m1), 	12222 = g(3+ m2 +4m1) 

11122 = 122°11 — g (1 — m2) 

1111 2 = 11121 = 1211 1 — 1 (m s — 7714 ) 

1 1122 2 = 1222 1 — 1 co 
2 — 122°12 — g(m3 +m4) 

CO = 	C° 	CO 	1 
11212 	11221 — 	1 2112 — 	1 2121 = ( 1  m2) 

We keep here the bulk density p = 19+, 0 < p < 1, of the C+ material as a 
suitable design variable (a volume constraint is expressed as In p(x)(112 < V). 

The moment description used above was first used in Avellaneda & Milton 
(1989), for studying bounds on effective moduli. In their presentation as well 
as other similar works [25], one of the moduli above are often removed by 
introducing the overall rotation of the composite as a variable. As we here 
seek to avoid periodic functions in the description, all moments are kept 
throughout. 

The moments has, as mentioned, played a significant role for the proof of 
the optimality of rank-2 and rank-3 materials. It is known that the extreme 
points of the set  NI corresponds to rank-1 materials, and the "surface" of 
the set corresponds to rank-2 materials, and all interior points can be found 
by combining these to any rank-3 material. Thus there also exist a direct 
analytical method for constructing a layered material which achieves a certain 
moment combination, see for example Lipton (1994a). 

5.4.4 Stress criteria for layered composites 

For treating stress constraints in topology design it is important to under-
stand how the microlevel stresses depend on the macroscale stress, for inter-
mediate densities [16]. Thus in order to develop a consistent stress criterion 
for a porous, layered composite material we use the smear-out analysis above 
to first establish a relationship between the stresses at the micro-level, the 
macroscopic stresses and the microstructural geometric parameters. Then we 
limit the maximum of local stress state in the microstructure with a relevant 
failure criterion. The overall stress criterion (that we also call a "homoge-
nized" macroscopic stress criterion) is finally established as the expression 
of the local criterion in terms of the macroscopic stresses. Note that this 
approach generates a stress constraint which ensures that the material at 
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all macroscopic and microscopic points is in a safe elastic range (like a first 
failure criterion in laminates). 

The developments below are based on a stress based approach, with ma-
terial properties expressed by the compliance tensor. The results can also be 
obtained in an analogous way for a formulation in strains and stiffness tensor. 

We have seen above that effective elastic properties of layered materials 
can be written analytically and that the micro-strains and the micro-stresses 
in each layers of the composite layered materials are constant. This means 
that the micro-stress state of a layered composite can be determined an-
alytically in terms of the layering parameters and in terms of the overall 
macroscopic stresses <o-ii>. 

We first note that the equations (5.18) and (5.19) make it possible to 
compute the local stresses in a rank-1 layering, from a given average stress Q. 
This means that one for a rank-N material can derive the relationship between 
the local stresses and the averaged stresses in a top to bottom recursive 
procedure. From average stresses, by going down one scale, it is first possible 
to determine the stresses in the solid layers and in the layered material, which 
at this level is considered as a homogenized medium. To its end, the stress of 
this medium is then the given average stress which is necessary to compute 
the stresses in the layers at the second level of scale. For our purpose of 
topology design, we want to deal with rank-2 materials where the second 
phase is void. Thus one has to deal with the technicality that the compliance 
tensor of the void is singular. To circumvent this problem, one works with 
a rank-2 material made of a two isotropic materials with the same Poisson's 
ratio v but different Young's moduli: E+ = E for the solid material under 
consideration and E-  for a soft material. The porous composite is recovered 
by passing to the limit E-  0+ 

Stresses in a rank-2 layered material In the following we work with a 
rank-2 material, with layers aligned as shown in Fig. 5.8. This means that 
material "+" is here the solid material, while the material "-" is a rank 1 
composite made of layers of the solid material and of the soft material, with 
layers in the direction parallel to axis yi. To use the expressions (5.18) and 
(5.19) we first need the elements of the homogenized compliance tensor of 
the inner rank-1 composite: 

H 
C11. 1111 = K2 

Ci2i 2 = 1 	
2 

U Ki 

K1 = (1 - v2) ryE 
 E

+E 7)E+ 	
K2 = (?'E+  + (1 -7)E-  

Since the layering directions are matched with the axes of orthotropy of the 
constituents, all the shear coupling terms of the compliance tensors are zero 
and the equations (5.18) and (5.19) for the local stresses take the following 
simple form: 

H 	 2 
C2222 = Kl + U K2 

H 
Cu22 = —vK2 



ail  = ^ii  

all = 011 
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- 22 =  Q22 + C3 	012 

= 	
µ 

and layered materials 

= a12  

012 = 012 
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(5.26)  

(5.27)  022 	02z — 1 µ C3 

with c3 = ( 1— p)N(C2222) -1  [C22 kk  C22kk] &kk.  The next step is to determine  

the behaviour of the correction term (given by c3) of the local stresses when 
E —  -* 0+ which results in: 

N(C2222) -1  [C2222 — C2F222] 5'22 	
^zz  

Introducing this into (5.26) and using that the upper scale average stress  

is equal to the macroscopic stress (that is, Qij =<02j >) we determine the 
stresses o 2  = 0+  in the solid (outer) layers of the composite as: 

N(C2222) -1  [C2211 — C2z11] 6.11 —> 0 	1 
whenE— 	0+  (5.28)  

all  = <a11>  a22  =<a22> //.G 	0-12 =<012>  (5.29)  

while equation (5.27) gives the average stress in the rank 1 part of the com-
posite:  

011 = <a11> 	a22  =  0 	a12  =<a1 2>  (5.30)  

Equation (5.29) shows that the overall stresses are transfered to the local  

scale with a correction that affects only the 022 term. This is caused by the  

parallel assemblage of the composite. Seen from direction 1 the assemblage  
transfers the integral overall stress <a11 > from one layer to another. Seen  

from direction 2 the overall stress < 022 > is only withstood by the solid  

material which increases the local stress by a factor 1/p.  

In the next step it is the stress state a —  in the rank 1 composite which  
is the information that is required to determine the stress state in the layers  

at the second length scale. The same procedure as used above results here  

in the the following expression for the microscopic stresses 0L1  of the solid  
layers of the rank 1 region (Duysinx & Bendsoe 1998):  

01i1 =<a11 > /Y 	0221-0 	0121 =<a12> 	 (5.31)  

As the macroscopic stress <022>  is entirely supported by the outer layers of  
solid of the rank-2 composite, the inner layers are only loaded by <011> and  
this stress is supported by fibers with a volume fraction y. This increases the  

local stress by a factor 1/y.  

An overall stress criterion for the rank-2 composite For ductile mate-
rials we follow the tradition of assuming that local failure can be predicted by  

a von Mises criterion. To exhibit a criterion in macroscopic stresses, we write  

the von Mises criterion in terms of local stresses and express these in terms  

of the macroscopic stresses and layering parameters. At this stage, we also  
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Fig. 5.10. Overall strength domain of a rank-2 layered materials 

for simplicity assume that the microstructure is rotated in order to align the 
two layer directions with the principal directions of the macroscopic stresses. 

The stress level in the rank-2 microstructure is thus everywhere under the 
material elastic limit 8t if the two following macroscopic stress criteria are 
satisfied: 

I <Oil >/7I < Qt (5.32) 

y <crn> 2  +<a22> 2 /µ2—  <on> <a22>//b < Qt 	 (5.33) 

The criterion (5.32) for the inner layer is similar to the stress limit of a bar 
with a hollow cross-section of relative density y. For the macroscopic observer 
the overall strength is reduced linearly with the density of the cross-section. 
Also, the expression (5.33) for the outer layer is similar to a Hill's criterion 
for orthotropic materials (Hill 1948). Here the stress limit in the direction 
orthogonal to the layer is X 1  = ?it, while it, due to the relative thickness of 
the layers, is reduced to the value X2 = µ81 in the direction of the layering. 
Once again, one observes a macroscopic reduction of the strength. Figure 5.10 
illustrates how the strength domain corresponding to the criteria (5.32) and 
(5.33) shrinks and becomes narrower when the porosity increases. Since there 
are two levels of layering, one considers the stress limits in the different layers 
separately and the overall criterion becomes a 'composite' surface which is 
the inner envelope of the initial strength surfaces in the different layers. This 
approach is similar to Hashin's failure criterion of unidirectional composites 
where failure modes of the matrix and of the fibers are distinguished and 
treated separately (Hashin 1980). It is also identical to the approach adopted 
in Aboudi (1991) to estimate (by the methods of cells) the initial yield surface 
of metal matrix composites. 

Asymptotic behaviour at zero density The asymptotic behaviour of 
stresses at zero density plays a key role in the singularity phenomenon in 
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topology design with stress constraints (see section 2.3). We note here that  

the macroscopic strains of a composite < eii > in a point retains a finite  
value when the density goes to zero, and the macroscopic stresses are also  

continuous, but they vanish at zero density since the homogenized stiffness  

tensor tends to zero. However, the behaviour of the local stresses is completely  

different. The local stresses tend to finite (non zero) values at zero density.  

This is shown by expressing the local stresses in terms of the macroscopic  

strains and the layering parameters only. For the solid, inner layers we have:  

lim vi21 =  E  <e°1 > 	lim v221  = 0  , 	lim 0 121  = 0  
4,7 -40+ 	 i^7—> 0+ 	 4,?' —f0+  

while the outer layers have stresses  

lim vii = 0 , 	lim 022 = E <42 > 	lim 0±2 = 0 	(5.35)  
p,7 -40+ 	 1i,7 —/o+ 	 1i,7 —f0+  

These stresses are similar to the stresses in a network of fibers intersecting at 
90 degrees and in which over-stressing at the intersections is omitted because 
of a dilute assumption. From the simple analysis above we conclude that 
topology design with stress constraints for rank-2 materials are subject to 
the so-called "singularity" phenomenon. This problem is addressed in section 
2.3.  

5.4.5 Homogenization formulas for Kirchhoff plates  

The homogenization formulas for Kirchhoff plates can be derived by an 
asymptotic expansion approach, as outlined for pl ane elasticity in section 
3.1.2. With D denoting the plate bending stiffness tensor and 1c the curva-
ture tensor, the homogenization result is that effective properties DHk1 are 
given as (see Duvaut & Metellus (1976), Duvaut (1976)): 

DHkt = min 1  J  D pEUY 	P9TS(y)KP911JZ7 — ^)lcrs(y^ 1 — (P)dY 
IYI Y  

1
D 	

(^ 	̂̂ _ ^^ rs 	k1 _ xkt) dy  
I Yi Y 

P4rs 9)  P9(9 	X ) rs(9 	X )  

Here Uy denotes the space of Y-periodic virtual displacement fields on the  

unit cell Y, while )( k1  is a microscopic deflection that is given as the Y-periodic  
solution of the scalar cell-problem  

1  f D 	( 1£ 	Z^ — 

IYI Y 
Pgrs 9) P9(9  

with reference deflections 

3 )1c,. s ((p)dY = 0 for all 1p E Uy , 	(5.37)  

1 
9 11  = 291 2 , 912  = 921  = 9192, and y2 2 

= 
2 92 2  

(5.34)  

(5.36)  
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reflecting that the Kirchhoff plate equation is scalar and of order four. For  

a plate with one field of stiffeners, the effective bending stiffness can be  
computed from these formulas in a way analogous to the method used for 
plane elasticity in section 5.4.1. However, it is more instructive to con-
sider the smear-out approach, as described in section 5.4.2. To this end let 

Dxiki = z E° kl denote the bending stiffness of the solid core of the plate 

and let D kl  = h E° kl  denote the bending stiffness of the stiffened part of 
the plate, with stiffeners of density it in the direction t (coordinate 2) with 
normal n (coordinate 1). For the developments it is now important that the 
plate equation under consideration is a scalar equation and of fourth order 
in the deflection. This implies that the continuity conditions across the in-
terface holds for the tangential part of the curvature (a regularity condition) 
and for the normal component of the normal moment (the variational jump 
condition) (compare with (5.13), section 5.4.3): 

t2t9 =  K t%t . • 	i 9tin  • = is tini, M ÿnzn
. • =  Mif nin • 	(5.38)  

Compared to plane elasticity, the algebraic form of these interface conditions 
are such that the moment tensor plays the role of the strain tensor, the cur-
vature tensor plays the role of the stress tensor and the roles of the vectors n,  
t defining the interface are reversed (cf. conjugate beam theory). However, 
the similar structure allows us to obtain the homogenized stiffness compo-
nents directly from the results obtained for plane elasticity. Specifically, the 
homogenized bending stiffness can be read off from the homogenized compli-
ance tensor as  

DHkc = M(Dz.iki)  

_  µ( 1  — µ)  

N(Dnnnn)  [D  ^P9 —  D i7Pq] [Dm,nkl —  D^m.nkt] n,nnnnPnq  

Here we have used the notation defined above in section 5.4.2 (cf., (5.16). For  
the case of orthotropic constituents, the different elements of DHkl  are given  
as  

Diill = [M  (D111 ) ]  	
D 	= [M  (1Z 	2121)] [M  (DI111 	)] 

 -1 

D H  = M(D2222) — [M ( D ! î 212)]  + [M (D1t22)]2 [

M  ( D11111  )] 1 
 2222  	 D , i ii 	 Di,ii 	 Di1ii  

D î212 = M (D1 2 12 )  

These expressions are, except for the 1212 term, exactly the same as  for the  
stiffness tensor in the plane elasticity c ase (see section 5.4.3).  

5.4.6 Hashin-Shtrikman-Walpole (HSW) bounds  

The Hashin-Shtrikman upper and lower bounds for electrical and thermal  

conductivity are given by Hashin & Shtrikman (1963) and Walpole (1966)  



where  

0.(1*) = Pc,.(1) + 
	
Q(2)  

(z*) = P2a (1)  + (1 — P2) 0-(2)  

P(3*)  = P2p(1)  + (1 — 092 ) 12 (2)  

p(4*) = P2p (1)  +  (1  —  P2) 12 (2)  
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Hs 	O (1 * )  for Q (1 ) > 0( 2 )  
Qu = 	(2*)  for o (1)  < cr (2)  

and for the bulk modulus as  

HS = {k(1*)   for , (1) >  k (2) 

ku 	K(z*) for k(1)  < k(2)  

HS =  1 o-(2 * )  for 0 (1)  > o(z)  
al 
	

l  Q( 1 * )  for o-(1)  < a( 2 )  

HS =  J k(z * )  for k( 1 ) > k(z)  

K1 	11  k(1 *) for k(1)  < k(z)  

and the Hashin-Shtrikman-Walpole bounds for the shear modulus are given  

by  

>  k( 2 )  
< k(2)  
> k (2)  

< k (2)  

> k( 2 )  
< k (2)  
> k (2)  
< k(2)  

and  
and  
and  
and  

and  
and  
and  
and  

> p( 2 )  
< p( 2 )  
< p( 2 )  
> p ( 2 )  
> p( 2 )  
< p( 2 )  
< p( 2 )  
> p ( 2 )  

P2 ( 1  - 14) (0-(1)  - Q(2))2  

( 1  - 4) 0-(1) + 40 (2)  + 0(1)  ,  

Pâ ( 1  - Pi) (0-(1)  - a(2))2  

( 1  —  Pz)  a(1)  +  Pz^(2)  + a(2)  

P2 ( 1  - 14) (K (1)  - k(2) ) 2  

( 1  — P2 ) k(1)  + P2k(2)  + p(1) ,  

14 ( 1 
 - 4) (k(1) _  K(2))2 

 

( 1  — 4) k(1) +  4k(2) +  p,(2)  

Pz (1 _ P2) (p (1)  -  p(2)) 
z 

( 1  — Pâ) 12 (1)  +  P212 (2)  + ,s(I)+2t   ) µ (1)  

Pâ ( 1  - 14) (12(1)  -)2(2)) 
z  

((1 — p2) 12 (1)  + 412(2)  + 	
 

0 2) +2 0( 2 ) u (^2)  

Pâ ( 1  - P2) (12 (1)  - 12(2) ) 2 
 

((1 — P12 (1)  +  612(2)  + ^ ẑ^2+2  µ) 	(1) 

 

Pz ( 1  - 14 ) (12 (1)  - 12 (2) ) 2  

((1 — P2) p (1)  + P212(2) + 	 0 1) +2 p(2) 
 1 . 
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5.5 Appendix: Barrier methods for topology design 

The purpose of this appendix 6  is to give an outline of the principles of one of 
the most powerful modern methods of numerical optimization, namely barrier 
methods. Detailed descriptions of the ideas and the theory behind can be 
found in a vast literature on interior point methods and in several overview 
papers (see for example Ben-Tal & Nemirovski (2001) and references therein). 

5.5.1 Notation 

We first introduce a generic convex optimization problem, to fix some nota-
tion. Throughout this section we apply st andard notation of mathematical 
programming. The unknown vector in lift is denoted by x = (xi, x2, . , x n ), 
the objective function by f and the constraint functions by g. The gradient of 
a function (say of f) is denoted by Vf and the Hessian by V 2  f We consider 
first a convex mathematical program: 

min f (x) s.t.: gi(x) < 0, i E I 	 (5.39) 
xER^ 

and assume that 

f Rn -* R and gi Rn -3 R, i E I, are twice continuously differentiable 
convex functions, 

—the set of optimal solutions to (5.39) is nonempty and compact, 
—there exist a point z such that gi  (z) < 0 for all i. 

These assumptions are satisfied for a broad r ange of mathematical programs 
coming from topology optimization. The reason that this class of problem is 
particularly attractive is that convex programs are computationally tractable 
in the sense that there exist numerical methods which efficiently solve every 
convex program satisfying "mild" additional assumption. In contrast, no ef-
ficient universal methods for non-convex mathematical programs are known. 
Special types of convex programs that arise from structural analysis analysis 
are convex quadratic program (QP): 

min [ â  xTKx — dTx] s.t.: Cx < b 
xER" 

(with a positive definite matrix K). Also, in topology optimization (truss 
and free material optimization) we have quadratically constrained quadratic 
programs (QQP): 

minxER,n cTx s.t.: xTAix < bi , i E I 

with positive definite semidefinite matrices Ki. 

6  This appendix is based on material kindly provided to us by Michal Kocvara. 
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Newton's method The simplest convex program one can consider is the 
problem without constraints and with a strongly convex objective function, 
meaning that the Hessian matrix V  2 f is everywhere positive definite and 
that f (x) -* co as 1142 —3 oc. In this c ase, Newton's method is always the 
best way to find a solution to min f (x) It is well known, both from the 
theory and practice, that Newton's method is extremely f as t whenever we 
are "close enough" to the solution x* The theory says that the method is 
locally quadratically convergent. However, it is also well known (mainly from 
practice) that when we are not "close enough" to x*, the method may be 
rather slow and may need many steps to get to a close neighborhood of x* 

5.5.2 Interior-point methods 

Interior-point methods are used to transform the "difficult" constrained prob-
lem into an "easy" unconstrained one, or into a sequence of unconstrained 
problems. Once we have an unconstrained problem, we can solve it by New-
ton's method. The idea is to use a barrier function that sets a barrier against 
leaving the feasible region. If the optimal solution occurs at the boundary 
of the feasible region, the procedure moves from the interior to the bound-
ary, hence interior-point methods. The barrier function approach was first 
proposed in the early sixties but the classical barrier approach had its short-
comings. However, new ideas led to the interior-point "revolution" of the 
nineties. 

Classical approach For the constrained convex problem (5.39) we introduce 
a barrier function B that is nonnegative and continuous over the region 
{xlgi (x) < 0}, and approaches infinity as the boundary of this region is 
approached from the interior. One of the most popular barrier functions is 
the logarithmic barrier function 

m. 

B(x) = — E log( — gi(x)) 
—1 

Instead of (5.39) we now investigate a one-parametric family of functions 
generated by our objective and the barrier x(19; x) := f (x) + 19B(x) and the 
corresponding unconstrained convex programs 

min x(19; x) 

Here the penalty parameter 19 is assumed to be nonnegative. 
The idea behind the barrier methods is now as follows. We start with 

some 19, say 19 = 1, and solve the unconstrained auxiliary problem. Then we 
decrease 19 by some factor and solve again the auxiliary problem, and so on. 
We know that, under some mild assumption, the auxiliary problem has a 
unique x(19) for each 19 > 0, and the central path, defined by the solutions 
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x(79), 79 > 0, is a smooth curve and its limit (for /9 —> 0) belong to the set 
of optimal solutions of our original problem. For the solution of the auxil-
iary problems one applies Newton's method. We know that this method is 
extremely efficient if we are already close enough to the solution. So assume 
we solve the auxiliary problem for some initial V. We hope that when we 
decrease the parameter 29 "just a bit" the new solution x(t9 new ) will be close 
enough to the old solution x(19 o1d). So taking x(19 old) as a starting point, we 
can utilize the good convergence behaviour of Newton's method to compute 
x(79 new ) in just a few iterations, thus following the central path from the 
interior to the solution x* of (5.39) by decreasing 29 (under some technical 
assumption x(t9) + x*). Note that we cannot find a solution to (5.39) just in 
one step by setting i9 very small. We have no idea where to start the Newton 
method and with this strategy the Newton method can easily leave the fea-
sible domain (with "catastrophic" consequences as the barrier function may 
not be defined outside the feasible domain, as happens with the logarithmic 
barrier). 

The idea of barrier methods sounds natural and attractive and it is sup-
ported by a solid theory. Nonetheless, in practice, it is disappointing. First, 
the idea to stay on the central path, and thus to solve the auxiliary problems 
exactly, is too restrictive. Second, it turns out that the idea of always staying 
in the region of quadratic convergence of the Newton method may lead to 
extremely short steps. Third, taking longer steps (i.e. to decrease 19 more 
rapidly) makes the Newton method inefficient and we may even leave the 
feasible region. All these problems come from the freedom in the choice of 
the penalty function. The "trick" is to restrict our choice to a certain class 
of functions and to relax the requirement to stay on the central path. 

Modern approach The classical barrier methods were developed in the six-
ties and seventies. After practitioners of nonlinear programming realized the 
numerical difficulties connected with these methods they slowly but definitely 
lost interest and switched to SQP-like methods. 

In the end of the seventies, an interior-point revolution started in a com-
pletely different area of mathematical programming namely linear program-
ming. And it was shown in the mid-eighties that the well-known algorithm 
by Karmakar can be interpreted as a classical barrier method (Gill, Murray, 
Sounders, Tomlin & Wright 1986). The present day understanding of mod-
ern barrier methods is based heavily on the theoretical work in Nesterov & 
Nemirovski (1994). Here it is showed that if we restrict the choice of barrier 
functions to a special class of functions, the so-called self-concordant barrier 
functions, then all the disadvantages of the barrier methods disappear and, 
when using a proper updating strategy of the penalty parameters s9, we get 
a polynomial time method? Thus, if B is self-concordant, one can specify 

7 An algorithm for which the maximal number of operations in which we get the 
solution grows only polynomially with the dimension of the problem. 
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the notion of "closeness to the central path" and the policy of updating the 
penalty parameter 19 in the following way. If an  iterate x i  is close (in the 
above sense) to the point x(29,) on the central path and we update the pa-
rameter 29i to 29 2,+1 , then in a single Newton step we get a new iterate x i+1 

 which is close to x(291+1 ). In other words, after every update of 29 we can 
perform only one Newton step and stay close to the central path. Moreover, 
points "close to the central path" belong to the interior of the feasible region. 
Finally, the penalty updating policy can be defined in terms of problem data: 
29 ,+1 = 29,/ ( 1  + 

 ) B) 
) ,  where the penalty parameter decreases linearly. 

The class of self-concordant function is sufficiently large and contains 
many popular barriers, in particular the logarithmic barrier function. 

There exist today many variations of the basic scheme outlined above. 
One of these is described below; this has proved to be extremely efficient 
when solving problems of topology optimization. Strictly speaking it is not a 
pure "interior-point" method as some of the iterates may be infeasible, but it 
belongs to the family of modern barrier methods. Another advantage of this 
method is that it can be naturally generalized to SDP problems. 

5.5.3 A barrier method for topology optimization  

In this section briefly present the principles of the Penalty/Barrier Multiplier 
(PBM) method (Ben-Tal & Zibulevsky 1997) which has proved to be a very 
efficient tool for solving large scale convex programs of the type (4.24) that ap-
pear in topology design. The method is based on a choice of a penalty/barrier 
function cp R —> R that penalizes the inequality constraints. 

For exemplification (the general situation is dealt with in the literature) 
we consider here the strictly increasing and strictly convex, smooth function 

J8
e s 2 + s 	 if s >-2g 

oe(s) = 1 —o [log(Z) + 2] if  < —20 ,  

composed of a logarithmic branch and a quadratic branch (with 0 < g < 1).  

Since 05 (s) < 0 if and only if  < 0 it follows that the problem (5.39) is 
equivalent to the problem, 

min If (x) I Oe  [9,(x)] < 0, i E I} 	 (5.40) 

The Lagrangian corresponding to problem (5.40) is 

F, (x09) = .f (x) + E 2%i^ e  [gi (x)] 	 (5.41)  
iE I  

and the PBM method consists in minimizing this combined penalty, bar- 
rier and multiplier function. Thus the algorithm combines ideas of (exte- 
rior) penalty and (interior) barrier methods with the Augmented Lagrangian  
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method. At the j -th iteration step of the PBM method the penalty parameter 
Pj > 0 and the current estimate of the Lagrange multipliers {19? i E I} are 
given. The update of xj are computed by a Newton method for the mini-
mization of (5.41), i.e. 

x^+ 1  = arg min Fe; (x09.3 )  
X  

The multipliers are then updated by the rule 

19i+1 	1%i.  ddt 
o 

 [g2 (Xi +1)] ,  

and the penalty parameter P  by the update formula ti+1 = agi with a 
parameter a, 0 < a < 1 For details on motivation, convergence properties 
and implementation of the PBM method we refer to Ben-Tal & Zibulevsky 
(1997).  

The use of the 0e  function combines, in a sense, the advantages of the in-
terior logarithmic penalty function underlying the interior-point polynomial-
time algorithms, and those of external penalty, thus allowing to avoid serious 
computational difficulties arising in pure interior-point methods when they 
come close to the boundary of the feasible domain. The second derivative ¢" 

 is continuous and bounded for all s; this is advantageous when performing the 
minimization step of the algorithm by for example a modified Newton method 
with line-search. The choice of the logarithmic-quadratic penalty function 0  
usually reduces the number of Newton steps 2-3 times compared to a use of  

the pure (shifted) logarithmic penalty, particularly for large-scale problems.  

Also, the line-search needs much less function and gradient evaluations (typ-
ically only 2-3). Moreover, the method is less sensitive to the choice of the  

initial point x°  
The method described above can also be extended to convex SDP prob-

lems and are very efficient for solving such problems from topology optimiza-
tion. We will not elaborate on this here, but refer to the literature [33].  

5.5.4 The free material multiple load case as a SDP problem  

It is shown in section 3.4.4 how it is possible to reformulate the single load  

free material design problem as a convex, quadratically constrained quadratic  

program. However, the multiple load problem is much more complicated, but  
it is, however, possible to convert it to a linear SDP problem (as indicated  

in section 3.4.4). This can, in turn, be efficiently solved by the PBM method  

(for details, see Ben-Tal, Kocvara, Nemirovski & Zowe (2000)).  

In section 3.4.4 it is outlined that the trace version of the multiple load  
problem for minimum compliance for the free parametrization of material can  

be recast as a problem involving constraints on the eigenvalues of a tensor A  

that is the sum of dyadic tensors. In FE discretized form with N elements,  
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we have a problem in the form (for simplicity written for the situation when 
no bounds on the density are enforced) 

inf 	VT  —  2  E(fk)Tuk  

k =1  

s.t. TI — Ae  (u) r 0, e = 1, . , N  

where A e  are the discretized version of the tensor A 

M 	S 	
// Ae  =. 	.^k E^ÏesExe,(uk)Eae,luk)T 

 

k=1 	s=1  

Here x eS , s = 1, • , S, are points of Gaussian integration in element e, 'yes  
are the the corresponding integration weights, e s_ is the discretized strain  
vector at Ses , and wi  are the volumes of the elements. Now, with the matrices 

Ze = ['ye1Eael (u1  ), • • ,`yes€xe, (ul  ), 	• , ^Ïe1Ix , ( 1-1M ), • 	, -yes Exe, (uM)i  
L(\) = diag(À1, • • , À1, 	., Am, . , AM)  

the constraints in (5.42) take the form TI — Z e (u)L(.\)Z e (u) T  >- 0 which  
(by the Shur complement) is equivalent to  

TI 	Z e (u) 1
} 0. 

Z e (u) T  L(.^) -1  

We thus end up with a semidefinite program for the discretization of (3.34) 
in the trace case, here written for the weighted average form of the multiple 
load case. For the min-max variant of this problem a change of variables 
v k  := À1 uk allow us also for this c ase to write a SDP problem in the form: 

inf 	VT — 2 E(fk)TVk  
r, v k  k=1,. . .,M  k=1  

Àki0,Ek =1  Nk =1  (5.43)  

s.t. L
Ze(u) T  Le^ )) J 	

0, e 	1, 	,N  

It should be noted here that the optimal elasticity matrices (tensors) Ek can 
be recovered from the Lagrangian multipliers to the inequality constraints 
in (5.43). Problem (5.43) is a large scale linear SDP with very many rela-
tively small matrix inequalities. As a result, the Hessian of the Lagrangian 
associated with this problem is a large and sparse matrix. As such, it can be 
efficiently solved by the SDP vari ant of the PBM method mentioned above 
(Kocvara & Stingl 2001). Note that, when solving the multiple ldad problems 
by this method, the limiting factor is not so much the CPU time but rather 
the CPU memory. 

uk ,k- 1,...,M  (5.42)  





6 Bibliographical notes 

The bibliography consists of three parts: bibliographical notes, the list of 
references at the end of the book, and an author index. 

The list of references is concentrated on literature central for the develop-
ments described in this monograph, supplemented with background material 
in order to ease access to work in related fields. The list of references is by 
no means complete, and should more be seen as a supplement to dedicated 
survey papers and other monographs. 

The purpose of these bibliographical notes is two-fold. The primary pur-
pose is to serve as  a guide to the literature in the field of topology design and 
related subjects. A secondary purpose is to function as  a list of references 
grouped according to subject. In this way long lists of references have been 
avoided in the main text of the monograph, reference instead being made to 
these bibliographical notes. 

The bibliographical notes cover the various sub-fields of topology design, 
the groups being largely defined by the structure of the presentation in the 
main text of the monograph. The entries are divided into books and survey 
papers and other publications. For the latter category of publications we use 
a more elaborate division into sub-fields and the emphasis here is on work 
from within the last decade; for the historical oriented reader we refer to the 
books and survey papers mentioned below. 

The bibliographical notes do not cover all entries of the list of references, 
as this list also contains specific references used in the main text. 

6.1 Books and survey papers 

[1] On optimal design in general There exist quite a number of excellent 
books treating optimal structural design in a broader sense. As textbooks we 
mention Haftka & Giirdal (1992), Kirsch (1993b), and Eschenauer, Olhoff & 
Schnell (1997). The monograph Haug, Choi & Komkov (1986) is a classical 
text that contains detailed information on sensitivity analysis and Lewidski & 
Telega (2000) covers modelling and design of plate and shells in great detail. 
A general discussion of optimal designs can be found in Pedersen (2002f). An 
overview of the developments in the field over the last two decades can be 
gained by consulting the edited books by Haug & Cea (1981), Morris (1982), 
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Mota Soares (1987), Rozvany (1993), Pedersen (1993d), HSrnlein & Schit-
tkowski (1993), Haug (1993), Herskovits (1995), Bestle & Schielen (1995), 
Arora (1997), and by consulting the proceedings of especially the World Con-
gresses of Structural and Multidisciplinary Optimization (WCSMO) Olhoff 
& Rozvany (1995), Gutkowski & Mr6z (1997), Bloebaum (1999), and Cheng, 
Gu, Liu & Wang (2001). Of books with many analytical results we men-
tion the classical texts Banichuk (1983), Banichuk (1990) and Save & Prager 
(1985), Save & Prager (1990). Recent survey papers are few, but an  overview 
of issues in structural optimization, encompassing topology, shape and sizing 
optimization can be found in Maute, Schwarz & Ramm (1999) and Vander-
plaats (1999). 

Finally, a recent book specializing on design with advanced materials is 
Kalamkarov & Kolpakov (1997), and the crucial influence of material choice 
on design is vividly described in the survey papers Ashby (1991) and Lakes 
(1993). 

[2] On classical shape design methods Example research monographs 
are Pironneau (1984), Bennet & Botkin (1986), and Haslinger & Neittaanmki 
(1996). Sensitivity analysis for shape design problems is treated in detail in 
Sokolowski & Zolesio (1992). A recent overview of mathematical techniques 
can be found in Kawohl, Pironneau, Tartar & Zolesio (2000), while one of 
the most recent monographs in the area is Mohammadi & Pironneau (2001), 
which spezializes in shape design for fluids. Older survey papers are Ding 
(1986), Haftka & Gandhi (1986), and Hsu (1994). A recent survey paper 
dealing with mathematical aspects is Allaire & Henrot (2001). 

[3] On topology design and layout optimization Classical books on 
this subject are Hemp (1973), Rozvany (1976), and Rozvany (1989). Fol-
lowing the edited monographs Rozvany (1992) and Bends0e & Mota Soares 
(1992), the first text Bends0e (1995) on topology design based on the material 
distribution method has been followed by the book Hassani & Hinton (1999), 
which emphasizes the so-called homogenization method. Recent titles which 
cover the field in abroad sense are Rozvany (1997b) and Rozvany & Olhoff 
(2000), with Cherkaev (2000), Allaire (2002) emphasizing more the mathe-
matical aspects of the field. These latter books also cover aspects related to 
composites and relaxation of functionals (see [4], [5]). Finally, the book Xie & 
Steven (1997) describes what is called evolutionary methods for topology de-
sign. Papers on the close correspondance between bone remodelling schemes 
and optimal design can be found in Pedersen & Bends0e (1999). 

The most recent survey on topology design, covering the area in great 
detail, is the very thorough paper (Eschenauer & Olhoff 2001), which con-
tains 425 references. Other example survey papers on classical lay-out theory 
and topology design are Rozvany (1993), Rozvany, Zhou & Sigmund (1994), 
Rozvany, Bends0e & Kirsch (1995), Rozvany (1997a), Sigmund & Petersson 
(1998), Rozvany (2001a). Surveys of numerical methods for truss-type struc- 
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tures can be found in for example Topping (1993) and Kirsch (1989a), and 
Olhoff (1996) and Bendsoe (1997) surveys design with and of materials. 

[4] On homogenization, effective media theory and optimal bounds 
A general introduction on the mechanics of composite materials can be found 
in, e.g., Christensen (1991), Aboudi (1991), Milton (2002), and Torquato 
(2002). Classical books on the theory of homogenization are Bensoussan, 
Lions & Papanicolaou (1978), and Sanchez Palencia (1980); a more re-
cent presentation can be found in Cioranescu & Donato (1999). The edi-
tied monographs Ericksen, Kinderlehrer, Kohn & Lions (1986), Dal M aso 
& Dell'Antonio (1991), Bouchitte, Buttazzo & Suquet (1994), M aso & 
Dell'Antonio (1995), Cioranescu, Damlamian & Donato (1995), and Cherkaev 
& Kohn (1997) contain papers on this subject and its relations to relaxation 
and design and represents collections of papers closely related to the con-
tents of the present monograph. Finally, one should note that the recent 
monographs Cherkaev (2000) and Allaire (2002) on shape and topology op-
timization covers this subject in detail also. 

[5] On relaxation of functionals in the calculus of variations Example 
research monographs are Attouch (1984), Buttazzo (1989), Dacorogna (1989), 
Lurie (1993), Dal Maso (1993) and Braides & Defranceschi (1998). The book 
by Dal Maso (1993) contains a very detailed bibliography. 

6.2 Papers 

[6] The material distribution method for topology design, basic 
methodology The basic idea of finding the topology of a structure by 
searching for the optimal indicator function of the material set is discussed 
briefly in for example Cea, Gioan & Michel (1973), and Tartar (1979). The 
numerical implementation of the material distribution idea (based on ho-
mogenized materials) was first described in Bendsoe & Kikuchi (1988), and a 
closely related idea was pursued in Zochowski (1988). Further early develop-
ments of the homogenization idea can be found in Suzuki & Kikuchi (1991), 
Thomsen (1991); multiple loads were treated in Diaz & Bendsoe (1992), and 
the close relation between continuum and truss topology design in Diaz & 
Belding (1993). 

The idea of using a penalized variable density approach (SIMP) for numer-
ically approximating the 0-1 design problem was tested in Bendsoe (1989), 
Rozvany et al. (1994) and Yang & Chuang (1994) and has since been used 
extensively. That SIMP can be understood as  a material based interpola-
tion was shown in Bendsoe & Sigmund (1999). Related to SIMP as well as 
to the homogenization approach is the use of approximate effective energies 
(Mlejnek 1992, Mlejnek & Schirrmacher 1993). 
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[7] Optimality criteria methods in optimal design The development 
of optimality criteria (OC) algorithms for continuum problems can be traced 
back to for example Wasiutynski (1960), Prager & Taylor (1968), Taylor 
(1969), Masur (1970). The use of such algorithms for continuum design prob-
lems can be found in for example Olhoff (1970), Taylor & Rossow (1977), 
Cheng & Olhoff (1982), Bendsoe (1986), Bendsoe & Kikuchi (1988), Rozvany 
& Zhou (1991), Zhou & Rozvany (1991), and Rozvany et al. (1994). Conver-
gence and sufficiency studies and interpretations of OC and the stress ratio 
method (for trusses) can be found in Levy (1991), Svanberg (1994a), Cheng 
& Pedersen (1997) and Toader (1997). 

For the relation between optimality criteria update schemes, optimal de-
sign and models for bone adaptation (adaptive bone-remodelling), see, e.g., 
Cowin (1990), Weinans, Huiskes & Grootenboer (1992), Cowin (1995), Pet-
termann, Reiter & Rammerstorfer (1997), Jacobs, Simo, Beaupre & Carter 
(1997), Huiskes (2000) and Bagge (2000). 

[8] Restriction methods The perimeter constraint in the basic topology 
design was first implemented in Haber, Jog & Bendsoe (1996), based on the 
theory from Ambrosio & Buttazzo (1993) (see also Petersson (1999b)). Im-
plementations in 2D and 3D can be found in Fern andes, Guedes & Rodrigues 
(1999), Beckers (1999), Borrvall (2001), and Jog (2002b). The anisotropy 
of approximations is addressed in Petersson (1999b) and Petersson et al. 
(2000). Related theoretical work involving a so-called capacity constraint can 
be found in Bucur & Zolesio (1995), Bucur & Zolesio (1996). 

Gradient constrained and slope constrained methods are discussed in Bor-
rvall (2001), Petersson & Sigmund (1998), and Zhou et al. (2001). Filters on 
the density was first used in Bruns & Tortorelli (2001) and analyzed in de-
tail in Bourdin (2001). Minimum length scale control as a constraint was 
introduced in Poulsen (2001a). 

The filtering of sensitivities used extensively in this monograph was intro-
duced in Sigmund (1994a) and Sigmund (1997) (see also Sigmund & Petersson 
(1998) ). 

[9] The checkerboard problem The control of the checkerboards in topol-
ogy design was first discussed in Bendsoe, Diaz & Kikuchi (1993), Jog, Haber 
& Bendsoe (1993), and Rodrigues & Fern andes (1993). Detailed analyses of 
the problem can be found in Diaz & Sigmund (1995) and Jog & Haber (1996). 
Direct checkerboard control is discussed in these papers also. More methods 
are described in Sigmund (1994a), Jang et al. (2001), Poulsen (2001b). The 
books Hughes (1987), and Brezzi & Fortin (1991) gives relevant background 
material for saddle point problems in analysis. 

[10] Integration of boundary shape optimization and topology de- 
sign Integration of the topology design methods and classical shape design, 
mainly for 2D problems, received a lot of attention shortly after the material 
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design method was introduced (Papalambros & Chirehdast 1990, Bendsoe & 
Rodrigues 1991, Bremicker, Chirehdast, Kikuchi & Papalambros 1992, 01-
hoff, Bends0e & Rasmussen 1992b, Olhoff, Lund & R asmussen 1993, Ras-
mussen et al. 1993). Newer developments involve adaptation (Maute & 
Ramm 1997, Bletzinger & Maute 1997, Maute & Ramm 1998) and auto-
matic shape extraction (Marsan & Dutta 1996, Beuzit & Habbal 2001, Lin 
& Chao 2000, Chang 2001, Tang & Chang 2001, Hsu, Hsu & Chen 2001) 
in both 2D and3D. Other recent work can be found in Lin & Chou (1999) 
and Ansola, Canales, Tarrago & Rasmussen (2002). Design of an optimum 
groundstructure (Chen & Lin 2000) and simultaneous thickness and topol-
ogy design (Rietz & Petersson 2001) has also been proposed. Finally, Bulman, 
Sienz & Hinton (2001) has proposed a range of benchmark examples for the 
field. 

[11] Variable thickness sheets, interpolations and design represen-
tation The idea of using a variable thickness sheet model to predict topol-
ogy was first suggested by Rossow & Taylor (1973); see also Didenko (1981), 
and detailed analyses of this problem (FE convergence, etc.) and the associ-
ated contact problem can be found in Petersson (1996), Petersson & Patriks-
son (1997), Petersson & Haslinger (1998), Petersson (1999a), and Golay & 
Seppecher (2001). 

Other interpolation methods than SIMP are presented in Swan & Kosaka 
(1997a), Swan  & Kosaka (1997b), Stolpe & Svanberg (2001a), and Pedersen 
(2002e). The application of wavelets for the design description is proposed 
in Kim & Yoon (2000) and Poulsen (2002), while their use for analysis in 
topology design is described in DeRose Jr. & Diaz (1999) and DeRose Jr. & 
Diaz (2000). 

[12] Discrete valued optimal topology design problems For contin-
uum structures Anagnostou, Ronquist & Patera (1992) and Ghaddar, Maday 
& Patera (1995) discussed the use of a pixel-based discrete optimization pro-
cedure for part design, as  the basis for applying simulated annealing (Shim 
& Manoochehri 1997) or genetic algorithms (Chapman & Jakiela 1996, Kane 
& Schoenauer 1996a, Kane & Schoenauer 1996b, Tanie & Kita 1997, Baron, 
Fisher, Sherlock, Mill & Tuson 1997, Kita & Tanie 1999, Jakiela, Chapman, 
Duda, Adewuya & Saitou 2000). Dual methods for compliance design has 
been applied in Beckers (1997), Beckers (1999), and Beckers (2000) for large 
scale problems. 

[13] Alternative approaches to topology design A whole range of 
methods have been proposed that combine aspects of fully stressed de-
sign, OC methods, element removal or structural growth. Typically sensi-
tivity analysis and mathematical programming is not applied. The meth-
ods often apply the word "evolutionary", which here should not be con-
fused with genetic algorithms. We here mention example papers describ-
ing methods that are named as  shape (Atrek 1993); evolutionary (Riche & 
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Cailletaud 1998, Harasaki & Arora 2001); SKO (Baumgartner, Harzheim 
& Mattheck 1992, Mattheck 1996, Mattheck 1998); self-designing (Christie, 
Bettess & Bull 1998, Reynolds, McConnachie, Bettess, Christie & Bull 1999); 
metamorphic (Liu, Parks & Clarkson 2000); self-organising (Payten & Ben-
Nissan 1997, Payten, Ben-Nissan & Mercer 1998, Payten & Law 1998); and 
ESO (Zhao, Steven & Xie 1997, Chu, Xie, Hira & Steven 1997, Kim, Querin, 
Steven & Xie 2000, Proos, Steven, Querin & Xie 2001, Li, Steven & Xie 2001). 
See Eschenauer & Olhoff (2001) for an overview. 

The bubble method and methods based on topological derivatives are 
closely related to shape design and are discussed in Eschenauer, Kobelev 
& Schumacher (1994), Eschenauer & Schumacher (1997), Sokolowski & Zo-
chowski (1999), and Cea, Garreau, Guillaume & Masmoudi (2000). Also here, 
see Eschenauer & Olhoff (2001) for a detailed overview. Level set meth-
ods have also been applied a few times over the last decade (Kumar & 
Gossard 1992, Kumar & Gossard 1996, Vimawala & Turkiyyah 1995, Hara, 
Zha & Haegawa 1999, Sethian & Wiegmann 2000) and are in a sense re-
lated to the imbedding method of boundary control and the related fictitious 
domain method (Neittaanmki & Tiba 1995). 

[14] Topology design for vibration problems Topology design for im-
proved vibration response of continuum structures using the material design 
method is described in Dfaz & Kikuchi (1992), Soto & Dfaz (1993a), Tenek 
& Hagiwara (1993b) Ma, Kikuchi & Hagiwara (1994), Ma, Kikuchi, Cheng & 
Hagiwara (1995), Ma, Kikuchi & Cheng (1995), Kawabe & Yoshida (1996), 
Cox & Lipton (1996), Krog & Olhoff (1999), Min, Kikuchi, Park, Kim & 
Chang (1999), Min, Nishiwaki & Kikuchi (2000), Kim & Kim (2000a), Ped-
ersen (2000b), Pedersen (2000a), Allaire, Aubry & Jouve (2001), Belblidia & 
Bulman (2001). Also, design with respect to forced vibrations is described in 
Ou & Kikuchi (1996a), Ou & Kikuchi (1996b), Jog (2002a) and Tcherniak 
(2002) and for bandgap structures in Sigmund (2001d), Sigmund & Jensen 
(2002b), and Sigmund & Jensen (2002a) 

The main problem of these types of optimization problems is the non-
smoothness of the eigenvalues (see also [15]). Special optimization algorithms 
to cater for this are described in for example Wardi & Polak (1982) and Over-
ton (1992), with a survey in Lewis & Overton (1996). The non-smoothness 
problem is addressed in detail in Cox & Overton (1992), Seyranian (1993), 
Seyranian et al. (1994), and Rodrigues, Guedes & Bendsoe (1995). 

[15] Topology design for stability problems Structural design under 
stability constraints is a vast subject as can be seen by consulting Zyczkowski 
& Gajewski (1988). For topology design of continuum structures work on 
structural buckling can be found in Neves et al. (1995), Min & Kikuchi (1997), 
Folgado & Rodrigues (1998), Sekimoto & Noguchi (2001), Manickarajah, Xie 
& Steven (1998), and Rahmatalla & Swan (2002), while Neves et al. (2002b) 
and Neves et al. (2002a) deal with buckling in materials. The related problem 



6,2 Papers 	311 

of homogenization of buckling problems is treated in Suquet (1981), and the 
relation between microscopic and macroscopic buckling is discussed in for ex-
ample Bendsoe & Triantafyllidis (1990), Geymonat, Muller & Triantafyllidis 
(1993), and Triantafyllidis & Schnaidt (1993). As for vibration problems, a 
major obstacle in computations is the non-smoothness of the eigenvalues (see 
[14]) in the stability problems at multi-modal solutions (such solutions were 
first discovered by Olhoff & Rasmussen (1977), for columns). 

Finally, for work on non-linear buckling problems consult Kemmler, 
Schwarz & Ramm (2000), Bruns et al. (2002), and Rahmatalla & Swan 
(2002). 

[16] Stress constraints Stress constraints for continuum topology design 
has only received moderate attention, see Sw an  & Arora (1997), Duysinx & 
Bendsoe (1998), Duysinx & Sigmund (1998), Yuge, Iwai & Kikuchi (1999) and 
Duysinx (2000). The stress constraint developed in Duysinx & Bendsoe (1998) 
is based on modelling of a simple microstructure; a more general scheme has 
been developed in Lipton (2001) and Lipton (2002). Note that a similar model 
is needed in elasto-plastic design (Swan & Kosaka 1997b, Maute, Schwarz & 
Ramm 1998, Schwarz, Maute & Ramm 2001). The "singularity" problem 
for stress constraints has mainly been studied for truss structures (Cheng & 
Jiang 1992, Rozvany & Birker 1994, Cheng 1996, Cheng & Guo 1997, Guo, 
Cheng & Yamazaki 2001, Guo & Cheng 2000, Rozvany 1996, Rozvany 2001b, 
Petersson 2001, Stolpe & Svanberg 2001c), but the developments have equal 
importance for the continuum case. 

[17] Geometrically non-linear problems The application of geometri-
cally non-linear analysis has been applied to stiffness design (Jog 1996, Yuge 
et al. 1999, Kemmler et al. 2000, Buhl et al. 2000, Gea & Luo 2001, Pedersen 
2002b, Pedersen 2002c), as well as to mechanism design (Pedersen et al. 2001, 
Bruns & Tortorelli 2001, Bruns & Tortorelli 2001, Sigmund 2001b, Sigmund 
2001c, Sekimoto & Noguchi 2001, Saxena & Ananthasuresh 2001, Buhl 2002). 
The first approaches to synthesize mechanisms with snap-through or bistable 
responses have been presented in Sekimoto & Noguchi (2001), Bruns et al. 
(2002), and Bruns & Sigmund (2001), and problems involving geometrical 
non-linearity and crashworthiness have been solved in Mayer, Kikuchi & Scott 
(1996), Soto (2001), Soto & Diaz (1999), and Pedersen (2002b). 

[18] Synthesis of compliant mechanisms and MEMS The first appli-
cations of topology optimization methods to compliant mechanism synthe-
sis appeared independently in Ananthasuresh, Kota & Gianchandani (1994), 
Sigmund (1996) and Ananthasuresh, Kota & Kikuchi (1994). Later develop-
ments in the area have followed two main directions. One approach initiated 
in Sigmund (1997) models the output load by a spring which allows full con-
trol of the input-output behaviour. Papers following this approach are Larsen 
et al. (1997), Hetrick, Kikuchi & Kota (2000), Jonsmann, Sigmund & Bouw-
stra (1999b), Jonsmann, Sigmund & Bouwstra (1999a), Canfield & Frecker 
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(2000), Tai & Chee (2000), Lau, Du & Lim (2001b), Lau, Du & Lim (2001a), 
Pedersen et al. (2001), Bruns & Tortorelli (2001), Bruns & Tortorelli (2002), 
Sigmund (2001a), Sigmund (2001b), Sigmund (2001e) and Yin & Anantha-
suresh (2001). Another approach is based on the maximization of the ratio of 
two mutual energies based on two different finite element problems as initi-
ated in Frecker, Ananthasuresh, Nishiwaki & Kota (1997). Papers following 
this approach are Nishiwaki, Frecker, Min & Kikuchi (1998), Frecker, Kikuchi 
& Kota (1999), Kota, Joo, Li, Rodgers & Sniegowski (2001), Ejimi, Nishi-
waki, Sekiguchi & Kikuchi (2000) Nishiwaki, Min, Yoo & Kikuchi (2001), 
Chen, Silva & Kikuchi (2001). It seems that the latter approach provides 
limited control of the input-output behaviour of the mechanism and as re-
marked in Hetrick et al. (2000) the objective function is not well bounded. 
Also there are problems with convergence and dependence on the minimum 
element density bound, so therefore Hetrick et al. (2000) suggests to use of 
the spring approach instead. 

Mechanisms for shape control of surfaces has been dealt with in Saggere 
& Kota (1999) and Sigmund (2000b). Since mechanisms intrinsically provide 
large deflections they should be modelled using large displacement theory, 
see 17. 

Path generating mechanisms have been treated in Pedersen et al. (2001) 
and Saxena & Ananthasuresh (2001) and design of structures and mecha-
nisms for snap-through and prescribed buckling behavior is seen in Bruns & 
Sigmund (2001) and Bruns et al. (2002). 

Optimization of (linear) dynamic response of mechanisms and actuators 
has been considered by Du, Lau, Lim & Qui (2000), Nishiwaki, Saitou, Min 
& Kikuchi (2000) and Tcherniak (2002). 

Finally note that the developments on thermal actuators has a counter-
part for structures (Rodrigues & Fernandes 1995). 

[19] Design of supports Inclusion of the distribution of supports in topol-
ogy optimization problems has been done in Buhl (2002) for elastic structures 
and compliant mechanisms using large displacement finite element analysis. 
Optimization of support distribution for fixed plate topologies was consid-
ered in Cox & Uhlig (2001). Similar problems for design of fasteners and 
position of pin joints in structures are seen in Chickermane & Gea (1997), 
Jiang & Chirehdast (1997), and Chickermane, Gea, Yang & Chuang (1999), 
and (indirectly) for fluids in Borrvall & Petersson (2002). 

Analytical results for support locations can be found in Rozvany (1974), 
Mrdz & Rozvany (1975) and Prager & Rozvany (1975). Other results are 
for columns (Rozvany & Mr6z 1977, Olhoff & Taylor 1978) and for buckling 
(Olhoff & Akesson 1991) and vibrations (Akesson & Olhoff 1988). 

[20] Homogenization of periodic media — theory and computations 
Supplementing the books mentioned above, we mention the recent alternative 
two-scale convergence theory for the convergence of homogenized functionals 
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as described in e.g., Allaire (1992). Of interest for design we mention the 
relation between cell symmetries and symmetries of composite media as de-
scribed in, e.g. Lene & Duvaut (1981). Computational implementations of 
the homogenization method for computing effective media characteristics are 
described in for example Bourgat (1977) and Guedes & Kikuchi (1991). The 
use of trusses in the inverse homogenization method applies results for ho-
mogenization of thin structures as treated in e.g., Cioranescu & Paulin (1999) 
and Bakhvalov & Panasenko (1989). 

[21] Material design The technique of inverse homogenization was first de- 
veloped with truss models (Sigmund 1994a, Sigmund 1994b, Sigmund 1995) 
and then for continuum elasticity (Sigmund 1994a, Sigmund 1996, Terada 
& Kikuchi 1996, Swan & Kosaka 1997a, Theocaris & Stavroulakis 1998, 
Sigmund 2000b, Gibiansky & Sigmund 2000, Hyun & Torquato 2000, Neves, 
Rodrigues & Guedes 2000, Guedes et al. 2001, Hoppe & Petrova 2001), for 
conduction (Haslinger & Dvofâk 1995), for three phase elastic and thermoe-
lastic properties (Sigmund & Torquato 1996, Sigmund & Torquato 1997, Fujii, 
Chen & Kikuchi 2001), for piezoelectric transducer design (Silva, Fonseca & 
Kikuchi 1997, Silva, Fonseca & Kikuchi 1998, Sigmund & Torquato 1999), 
and for strength (Swan & Arora 1997) and viscoelastic properties (Yi, Park 
& Youn 2000). The so-called quasiperiodic case has also been considered 
in Chenais, Mascarenhas & Trabucho (1997) and Ryvkin, Fuchs & Nuller 
(1999). 

Also, we note the different proposals for negative Poisson's ratio materials 
that can be found in the literature (Kolpakov 1985, Almgren 1985, Lakes 
1987, Milton 1992, Rothemburg, Berlin & Bathurst 1991, Sigmund 1994a, 
Sigmund 1994b, Sigmund 1995) 

Design with multiple materials is also found in other areas of topology 
design, see Thomsen (1992), Olhoff, Thomsen & Rasmussen (1993), Sigmund 
(2001c) and Selyugin & Chekhov (2001). 

[22] Other areas of applications and variations of the theme The 
basic developments of topology design for elasticity have had a parallel (ac-
tually slightly preceding) history for problems in conduction, see for exam-
ple Goodman, Kohn & Reyna (1986), that contains both numerical work 
and an  extensive list of references. Similar design problems arise also in 
impedance computed tomography as described in, e.g., Kohn & Vogelius 
(1987), in electromagnetic ( and band-gap) problems (Achdou 1993, Dyck & 
Lowther 1996, Dyck & Lowther 1997, Choi, Lowther & Dyck 1998, Lowther, 
Mai & Dyck 1998, Byun, Hahn & Park 1999, Cox & Dobson 1999, Cox 
& Dobson 2000, Byun, Lee, Park, Lee, Choi & Hahn 2000, Chung, Cheon 
& Hahn 2000, Yoo & Kikuchi 2000, Yoo, Kikuchi & Volakis 2000, Poul-
ton, Movchan, McPhedran, Nicorovici & Antipov 2000, Hoppe, Petrova & 
Schulz 2001, Korvink, Greiner & Lienemann 2001), and in nuclear physics 
(Allaire & Castro 2001). Of other subjects not covered here we also men- 



314 	6 Bibliographical notes 

tion work on design of cross-sections of beams and shafts (Chirehdast & 
Ambo 1995, Diaz & Lipton 2000, Kim & Kim 2000b), in biomechaniccal 
design (Hollister & Kikuchi 1994, Folgado & Rodrigues 1997, Folgado, Fer-
nandes & Rodrigues 2001) (the latter also covers contact conditions), and 
in civil engineering applications (Mijar, Swan, Arora & Kosaka 1998, Yin 
& Yang 2000b, Yin & Yang 2000a, Yin, Yang & Guo 2000, Guan, Chen & 
Loo 2001). 

Finally, related to work reported in this monograph we mention design 
in crashworthiness design (Mayer et al. 1996, Soto & Diaz 1999, Soto 2001, 
Pedersen 2002b), and the work taking pressure loads into account (Hammer 
& Olhoff 2000, Hammer & Olhoff 2001, Bing-Chung & Kikuchi 2001, Bourdin 
& Chambolle 2001) (a related problem for distributed surface loads is treated 
in Fuchs & Moses (2000)). 

[23] Industrial applications Some example papers presenting applica-
tions of topology design in an  industrial setting covers aerospace applica-
tions (HSrnlein et al. 2001, Park, Chang & Youn 2001), machine industry 
(Magister & Post 1995, Back-Pedersen 1998, Back-Pedersen 1999) and the 
auto industry (Chirehdast, Sankaranarayanan, Ambo & Johnson 1994, Y ang 
& Chahande 1995, Yang, Chen & Lee 1996, Yang 1997, Schramm 1999, Yang, 
Chuang, Che & Soto 2000, Ruy & Yang 2001). Many more examples on indus-
trial applications can be found on the Internet, for example at the homepages 
of the major software companies (NASTRAN, ANSYS, ALTAIR, etc.). 

[24] Optimal design with anisotropic materials Optimal design with 
orthotropic materials and the problem of finding the optimum angle of ma-
terial rotation is discussed in Rasmussen (1979), Seregin & Troitskii (1982), 
Banichuk (1983), Fedorov & Cherkaev (1983), Pedersen (1989), Pedersen 
(1990), Rovati & Taliercio (1991), Pedersen & Bendsoe (1995), and Banichuk 
& Sharanyuk (1996). Studies on the simultaneous design of thickness and ma-
terial angle can be found in, e.g, Pedersen (1991), Pedersen (1993a), Pedersen 
(1995a), and Pedersen (1998). 

[25] Relaxation, effective media, optimal bounds and optimal de-
sign We refer here to the two recent monographs (Allaire 2002, Cherkaev 
2000) that include comprehensive lists of references that covers this subject 
in great detail. Here we thus just refer to very few papers (see also the main 
text), with example papers Francfort & Murat (1986), Lurie & Cherkaev 
(1997) Avellaneda (1987), Francfort, Murat & Tartar (1995) Avellaneda & 
Milton (1989), Lipton (1994c). Also, the close connection between generalized 
optimal shape design, relaxation and effective media characteristics is dis-
cussed in the example papers and monographs Lurie (1980), Lurie, Cherkaev 
& Fedorov (1982), Lurie (1993), Kohn & Strang (1986), and Murat & Tartar 
(1997). 
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[26] The homogenization method for topology design using opti-
mal energies The explicit derivation of extremal energies for the single load 
minimum compliance design can be found in Allaire & Kohn (1993) and Jog 
et al. (1994) for the 2-D case, in Cherkaev & Palais (1997) for the axisym-
metric 3-D case and in Allaire (1994) for the full 3-D case. Their use for 
computations is also treated in these papers. The saddle point and duality 
principle associated with these calculations is discussed in Lipton (1994c); 
see also Telega & Lewinski (2000). 

The basic idea of working with optimal energies as the basis for compu-
tations has since been widely used. One can distinguish between methods 
that work with explicit expressions (Allaire, Belhachmi & Jouve 1996, Al-
laire, Bonnetier, Francfort & Jouve 1997, Burns & Cherkaev 1997, Jacobsen, 
Olhoff & Ronholt 1998, Olhoff, Ronholt & Scheel 1998, Rodrigues, Jacobs, 
Guedes & Bendsoe 1999), and methods that obtain these energies numeri-
cally, as typically required for multiple loads. Here one can use the moment 
formulations (Diaz & Lipton 1997, Diaz & Lipton 2000) or use inverse ho-
mogenization (Theocaris & Stavroulakis 1999, Rodrigues et al. 2002); the 
latter is also useful for information on bone remodelling (Rodrigues, Jacobs, 
Guedes & Bends0e 1999). 

[27] Classical layout theory The classical reference here is Michell (1904). 
Modern lay-out theory was founded by Prager and Rozvany and is described 
in for example Prager (1985), Prager & Rozvany (1977), as well as  in books 
mentioned above. The mathematical problems involved in lay-out theory 
is discussed in for example Lagache (1981), and Strang & Kohn (1981), 
Stavroulakis & Tzaferopoulos (1994), and Lewinski & Telega (2001), with 
recent computational work to be found in Dewhurst (2001). 

[28] Free material design The initial studies on the use of a free 
parametrization of material was Ringertz (1993), Bends0e, Guedes, Haber, 
Pedersen & Taylor (1994), Bends0e et al. (1995), Bendsoe & Diaz (1993), 
Bendsoe & Diaz (1994), Bends0e & Guedes (1994). Generalizations to more 
general cost measures, as well as the use of penalization schemes for obtaining 
0-1 topologies (of anisotropic phases) can be found in Guedes & Taylor (1997), 
Taylor (1998), Bends0e, Taylor & Washabaugh (1998), Rodrigues, Soto & 
Taylor (1999), and Taylor (2000). The development of f ast algorithms based 
on interior point methods is described in Zowe et al. (1997), Ben-Tal, Koc-
vara, Nemirovski & Zowe (2000), and Kocvara, Zowe & Nemirovski (2000). 

[29] The plate problem This is one of the classical problems in structural 
optimization. Kirchhoff plate design using the thickness only was treated for 
example by Kozlowski & Mr6z (1969), Olhoff (1970). Much of the work re-
lated to this area is covered in the recent book Lewinski & Telega (2000), so 
we will here not try to give a broad background to this vast area. Armand & 
Lodier (1978) found by numerical means certain numerical instabilities and 
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this was investigated in detail by Cheng & Olhoff (1981), leading to the use of 
rib-stiffened plates in design of Kirchhoff plates. Such applications for elastic 
plates were described in Cheng (1981), Olhoff, Lurie, Cherkaev & Fedorov 
(1981), Cheng & Olhoff (1982) (for a recent mathematical treatment, see 
Munoz & Pedregal (1998)). Multiple load problems and random load prob-
lems are studied in for example Lipton (1994b). The use of topology design 
in general and the homogenization approach in particular for Mindlin plates 
and shells is discussed in Soto & Diaz (1993b), Fukushima, Suzuki & Kikuchi 
(1993), Tenek & Hagiwara (1993a), Diaz, Lipton & Soto (1995), Lipton & 
Diaz (1997), Lee, Bae & Hinton (2000), Pedersen (2001), and Belblidia, Lee, 
Rechak & Hinton (2001); Olhoff (2000) contains a comparison of the plate 
model and a 3D model. Finally, stiffener design is the theme of Chung & Lee 
(1997), Gea & Fu (1997), and Luo & Gea (1998). 

Existence of solutions to the plate problem by bounding the variation 
of the thickness has been discussed in in Litvinov (1980), Niordson (1983), 
Sokolowski (1981), and Bendsoe (1983). Homogenization of the plate equa-
tions and the derivation of models of ribbed plates from 3D elasticity has 
been dealt with in a huge amount of papers, see Lewinski & Telega (2000). 

[30] Laminated plates Lamination parameters as the basis for design of 
laminates with respect to global criteria has been widely applied (Fukunaga & 
Vanderplaats 1991, Fukunaga & Sekine 1992, Fukunaga & Sekine 1993, Gren-
estedt & Gudmundson 1993, Miki & Sugiyama 1993, Fukunaga, Sekine & 
Sato 1994, Hammer et al. 1996, Hammer 1999b, Autio 2001), where the lat-
ter deals with thermal properties as well. To obtain the final design, an inverse 
procedure a described in Autio, Laitinen & Pramila (1993) and Autio (2000) 
can produce the final lay-up. Of related work we mention Foldager, Hansen 
& Olhoff (1998), and Hammer (2000), where damage is considered. In spite 
of the advantages of using lamination parameters, an important aspect of 
laminate design remains the handling of discrete variables. Here for example 
genetic algorithms play an important role, see Haftka (1999). 

[31] Material non-linearity and damage problems Topology optimiza-
tion for problems with elasto-plastic response has been considered in Swan & 
Kosaka (1997a), Yuge & Kikuchi (1995), Maute et al. (1998), Schwarz et al. 
(2001), Yuge et al. (1999), and in Mayer et al. (1996), Soto (2001), Soto & 
Diaz (1999), Pedersen (2002b) Pedersen (2002c) for crashworthiness prob-
lems. In the setting of free material design, the study Bendsoe et al. (1996) is 
based on a unified formulation of elasto-plastic problems and limit analysis 
described in Plaxton & Taylor (1994). 

Damage has been considered in Bendsoe & Diaz (1998); the model used 
is described in Francfort & Marigo (1993). This is an energy model which in 
Achtziger & Bendsoe (1995) has been applied for trusses. Finally, an asso-
ciated degradation model (Achtziger et al. 1998) is in Achtziger & Bendsoe 
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(1999) used as the basis for design of trusses (the fully stressed design is also 
here favourable!). 

[32] Classical truss topology design by computational methods 
The classical formulations as LP problems can be found in for example Dorn 
et al. (1964), Fleron (1964), Pedersen (1970), Hbrnlein (1979), Oberndorfer, 
Achtziger & H6rnlein (1996). In for example Ringertz (1985), such LP solu-
tions are used to produce moderate sized initial designs for more complicated 
design formulations. And the simplex format is in Pedersen (1993b), Peder-
sen (1993c), da Silva Smith (1996), da Silva Smith (1997) used to generalize 
the plastic design setting to include multiple loads and local buckling. More 
studies can be found in for example Kirsch (1989b), Kirsch (1990b); see also 
the books and survey papers mentioned above. 

For trusses, integrated geometry and topology design is described in for 
example Pedersen (1970), and Nishino & Duggal (1990), using hierarchical 
methods. The use of gradient information between the different phases has 
been considered in Ben-Tal et al. (1993), Bendsoe, Ben-Tal & Zowe (1994). 

[33] Reformulations of truss topology design Displacements only 
formulations of truss topology problems and other reformulations in terms 
of stresses only have been considered in Achtziger et al. (1992), Ben-Tal 
& Bends0e (1993), Bendsoe, Ben-Tal & Zowe (1994), Achtziger (1996), 
Achtziger (1998), and Muralidhar & Rao (1997), the latter dealing with 
elastoplastic analysis. 

Numerical methods based on interior point algorithms applied on these 
reformulations have been the theme of Ben-Tal & Nemirovski (1994), Ben-Tal 
& Nemirovski (1995), and Jarre, Kocvara & Zowe (1998). Extension to con-
tact problems can be found in Petersson & Klarbring (1994), Klarbring et al. 
(1995), Kocvara et al. (1998), to displacement constraints in Kocvara (1997), 
to robust design in Ben-Tal & Nemirovski (1997), to vibration problems in 
Ohsaki et al. (1999), to buckling problems in Ben-Tal, Jarre, Kocvara, Ne-
mirovski & Zowe (2000), Kocvara (2002), and to local buckling in Achtziger 
(1999a), Achtziger (1999b), 

Background material to the PBM method and SDP methods can be 
found in Vandenberghe & Boyd (1996), Ben-Tal & Roth (1996), Ben-Tal 
& Zibulevsky (1997), Mosheyev & Zibulevsky (2000). 

For trusses with integer design variables a few example references are 
Ringertz (1986), where truss topology problems are solved by branch and 
bound, Beckers & Fleury (1997) that use dual methods, and Stolpe Si Svan-
berg (2002) where it is proved that a broad range of problems in 0-1 topology 
design can be written in mixed integer LP format. Other techniques are ge-
netic algorithms (Hajela Si Lee 1995) and simulated annealing (Topping, 
Khan & Leite 1996). 

Finally, topological derivative methods have also been applied to trusses 
(Bojczuk & Mr6z 1999, Mr6z & Bojczuk 2001). 
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[34] Existence of solutions to optimal design problems Of papers 
addressing in a survey form the problem of non-existence in optimal design 
problems we mention here Murat (1977), Lurie (1980), Stadler (1986), Cabib 
& Maso (1988). These papers also discuss the two possibilities of achieving 
existence of solutions: relaxation or restricting the design space to a compact 
set. The latter is described in a vast number of papers on for example clas-
sical shape design (see books on this subject). A fundamental study on the 
existence of solution in shape design can be found in Chenais (1975). The 
crucial notion of G-convergence of elliptic operators is discussed in for exam-
ple De Giorgi & Spagnolo (1973), Spagnolo (1976), Raitum (1978). Explicit 
calculation of the relaxation of functionals in shape design can be found in for 
example Buttazzo & Maso (1991), Buttazzo (1993). Consult also the books 
mentioned above. 

[35] On boundary shape design methods The principal introduction 
to this field can be found in the books and survey papers mentioned above. 
For some of the original work on shape sensitivity analysis we refer to Murat 
& Simon (1976), Simon (1980), Rousselet & Haug (1983). 
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