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Abstract
This paper presents a MATLAB code with the implementation of the Topology Optimization of Binary Structures (TOBS)
method first published by Sivapuram and Picelli (Finite Elem Anal Des 139: pp. 49–61, 2018). The TOBS is a gradient-
based topology optimization method that employs binary design variables and formal mathematical programming. Besides
its educational purposes, the 101-line code is provided to show that topology optimization with integer linear programming
can be efficiently carried out, contrary to the previous reports in the literature. Compliance minimization subject to a volume
constraint is first solved to highlight the main features of the TOBS method. The optimization parameters are discussed.
Then, volume minimization subject to a compliance constraint is solved to illustrate that the method can efficiently deal
with different types of constraints. Finally, simultaneous volume and displacement constraints are investigated in order to
expose the capabilities of the optimizer and to serve as a tutorial of multiple constraints. The 101-line MATLAB code and
some simple enhancements are elucidated, keeping only the integer programming solver unmodified so that it can be tested
and extended to other numerical examples of interest.

Keywords Topology optimization · Binary variables · Integer linear programming · Educational code

1 Introduction

Topology optimization (TO) has exceeded the level of
maturity to start pushing the engineering design beyond
its previous capabilities. A considerable contribution in
the dissemination of the TO methods can be granted to
educational papers and codes, such as the well-known 99-
line work by Sigmund (2001a). Educational papers help
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to ease the learning curve and attract new practitioners
to the field. Other methods are also documented in the
form of educational papers or published compact codes
(Allaire 2009; Challis 2010; Zuo and Xie 2015; Zhang et al.
2016; Ansola et al. 2018; Xia et al. 2018; Wei et al. 2018;
Liang and Cheng 2020), shedding light on TO knowledge.
This paper aims to advocate the use of TO using binary
design variables and integer linear programming, a rare
combination in the TO literature which presents potential
advantages in several applications.

The idea of TO is to solve a material distribution problem
via numerical optimization. When it comes to the design
of elastic structures, the aim is to find optimized layouts
by defining a set of binary {0, 1} design variables, where
0 means the absence of material (void) and 1 represents
the location of solid material. The binary problem has been
considered very hard or even impossible to be solved using
formal mathematical programming (Deaton and Grandhi
2014). Hence, the idea of relaxing the binary constraint
by allowing intermediate densities became very popular
with the Solid Isotropic Material with Penalization (SIMP)
formulation (Rozvany et al. 1992). The SIMP method
usually starts with intermediate (grayscale) densities and
during optimization it steers the solution to a nearly
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solid/void design, or actual black and white solutions with
the aid of projection schemes (Guest et al. 2004).

The first attempt to carry out TO of continuum structures
using binary variables was made by Xie and Steven
(1993). The idea is that, starting from a full solid design,
inefficient material can be systematically removed from the
structure using sensitivity information. This method was
called Evolutionary Structural Optimization (ESO). The
ESO method was based only on the removal of material.
A few attempts were made to develop a bi-directional
version of the ESOmethod (BESO), in which material could
also be added to the structure (Querin et al. 1998). The
BESO method became what it is today after convergent
and mesh-independent solutions were presented by Huang
and Xie (2007). In the standard BESO algorithm, the
structure is usually (but not necessarily) first considered as
a full solid design and a target volume is used to quantify
the amount of removed/added material until convergence,
only allowing {0, 1} variables. This volume-based update
scheme, however, implies that a volume constraint should
be always present in the optimization formulation. This
precludes problems such as mass minimization or multiple
constraints to be solved in a schematic way. Therefore, how
to include formal mathematical programming in the binary
TO framework is still a research topic.

Beckers (1999) first introduced formal mathematical
programming to solve a structural topology optimization
problem with binary {0, 1} variables. Beckers’ method
was based on sequential approximate programming and a
Lagrangian dual-method optimizer. A perimeter constraint
was used to make the problem well-posed and the use
of sensitivity filtering was also investigated, although it
was reported to be expensive back at that time. Beckers’
solutions were convergent and mesh independent, showing
examples with up to 30,000 elements. Svanberg and Werme
(2005) found that when only one element is completely
removed from the structure, the new global stiffness
matrix is a low-rank modification of the old one, which
validates the use of discrete sensitivities. Relying on that,
Svanberg and Werme (2006) introduced integer linear
programming to solve a sequentially approximate problem
with binary variables. However, their method needs to
hierarchically refine the finite element mesh, so only a
few layers of material are removed at each step, leading
to solutions that are highly dependent on the mesh used.
Beckers (1999) and Svanberg and Werme (2006) were
great contributors to the idea of doing TO with binary
{0, 1} variables with mathematical programming, being
the topic rarely explored since then. To the best of our
knowledge, we presented the first convergent and mesh-
independent solutions for TO with {0, 1} variables and
integer programming in Sivapuram and Picelli (2018).
The method so-called Topology Optimization of Binary

Structures (TOBS) combines four numerical ingredients:
sequential problem linearization, constraints’ relaxation,
sensitivity filtering, and an integer programming solver.
These well-known numerical ingredients build up a more
general scheme for binary TO than Beckers (1999) and
Svanberg and Werme (2006). The TOBS method was
extended to 3D microstructural optimization problems with
multiple (up to 6) non-volume constraints by Sivapuram
et al. (2018). One year later, Liang and Cheng (2019)
proposed a method for binary TO using the Canonical
Duality Theory (CDT) originally developed by Gao and
Zhang (2010) to solve the integer problem. In contrast, the
TOBS method uses a branch-and-bound solver (Williams
2009). Liang and Cheng (2020) recently published further
elaborations on their work, including a compact code
with their implementation. It is also important to mention
that Liang and Cheng (2020) present the mathematical
validity for using discrete sensitivities when turning a solid
element into void. In comparison with TOBS, the CDT-
based method involves some assumptions which make the
topologies obtained at each iteration not perfectly discrete,
i.e., some elements can have intermediate densities or
even densities greater than unity. This might make their
method retain the disadvantages of SIMP-based methods
for e.g. design-dependent load problems. On the other
hand, the CDT-based solver seems to be as fast as MMA
and other solvers in SIMP, while commercial branch-and-
bound solvers as used in TOBS are slower. The control
of constraints via move limits in the TOBS method is not
present in Liang and Cheng (2020). For further comparisons
with Liang and Cheng (2020) and other methods, including
direct numerical results, the reader is referred to Picelli
and Sivapuram (2019). Sivapuram and Picelli (2020)
extended TOBS to design topologies in the presence of
design-dependent pressure loads and thermal loads acting
simultaneously. Sivapuram and Picelli (2020) also presented
a computational time study that shows the time needed
to solve the integer programming problems via a branch-
and-bound algorithm increases much slowly with the mesh
size as compared to the time needed by the FEA solver.
Therefore, FEA is the main computational bottleneck in
topology optimization using TOBS.

One advantage of using binary {0, 1} variables in TO
relies on having explicitly defined structural boundaries.
In contrast with methods with intermediate densities, the
location of the boundaries at each step of the optimization
is directly defined by the {0, 1} configuration. This is
advantageous in problems where the structure interacts with
other physics via its boundaries, such as acoustic-structure
(Vicente et al. 2015) and fluid-structure interaction (Picelli
et al. 2020). In such cases, interface conditions can be
modeled straightforwardly. Another advantage can be in
avoiding issues due to numerical interpolation. Although a
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material model (e.g., SIMP) can be used in TOBS to aid the
sensitivity analysis, the finite element model is only built
with the {0, 1} variables by which interpolation does not
change the physics of the problem. This might be important
when dealing with problems involving design-dependent
body loads, such as thermoelastic design (Sivapuram and
Picelli 2020), or in problems with complex numerical
analysis such as fluid flow optimization (Yoon 2020).
The Level Set Topology Optimization (LSTO) represents
another class of methods that inherently produce crisply
defined structural boundaries (Emmendoerfer et al. 2018;
Picelli et al. 2019). However, the boundaries still require
extra modelling techniques when extending LSTO to
design-dependent physics problems as they are approximate
and interpolated from a rational level-set function (Feppon
et al. 2019; Neofytou et al. 2020). Besides, LSTO is
generally more complex than density-based and binary
methods.

The 101-line code provided in this paper borrows the effi-
cient finite element and sensitivity analysis implementation
from Andreassen et al. (2011), who provided a modifica-
tion of the original 99-line code by Sigmund (2001a). This
paper aims to give in detail all the steps of the TOBS
method, both mathematically and numerically. Although
one of the main advantages in using the binary frame-
work from TOBS is in handling design-dependent and
multiphysics loads, the present work focuses on the com-
pliance and volume minimization problems with fixed point
loads in single and multiple constraints examples for edu-
cational purposes. For an implementation of hydrostatic
pressure loads, the reader is referred to www.github.com/
renatopicelli/tobs. The present 101-line code uses the built-
in MATLAB function intlinprog for solving the integer
programming subproblems. This solver is chosen so the
reader can run the code without installing external libraries.
However, an example of a more efficient commercial solver
implementation is also suggested. The remainder of the
paper is organized as follows. Section 2 describes the mathe-
matical background of the TOBSmethod. Section 3 presents
the MATLAB implementation in detail. Section 4 presents
numerical results and discussions and Section 5 concludes
the manuscript.

2 Topology Optmization framework

The TOBS method is formulated in order to align the
use of binary design variables with formal mathematical
programming. The following sections describe the theoret-
ical background of the topology optimization with integer
programming.

2.1 The TOBSmethod

A generic binary optimization problem with inequality
constraints is given by:

Minimize
x

f (x),

Subject to gi(x) ≤ gi, i ∈ [1, Ng],
xj ∈ {0, 1}, j ∈ [1, Nd ], (1)

where x is the vector of design variables (densities in case
of topology optimization) of size Nd , f is the objective
function, gi is the ith inequality constraint, gi is the
associated upper bound, and Ng is the number of inequality
constraints in the optimization problem.

Since general topology optimization problems are highly
non-linear and non-convex, the TOBS method gener-
ates approximate integer linear suboptimization problems
sequentially and solves the generated integer linear pro-
grams. Using Taylor’s series approximation, the objective
and constraint functions can be written as:

f (x) = f (xk) + ∂f (xk)

∂x
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where (·)k indicates the value of quantity (·) at the iteration
k and O(

∣
∣
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∣
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2) corresponds to superlinear terms. TOBS

employs truncated linear approximations of the objective
and constraint functions:

f (x) ≈ f (xk) + ∂f (xk)

∂x
· �xk,

gi(x) ≈ gi(x
k) + ∂gi(x

k)

∂x
· �xk, (3)

with the truncation error being O(
∣
∣
∣
∣�xk

∣
∣
∣
∣2
2). One can use

�xk as the vector of change in design variables in order
to solve the optimization problem in (1). For instance, in
structural topology optimization, xj = 1 represents a solid
element. In this case, one can choose �xj ∈ {−1, 0} to
prescribe that the element j either turns void (xj = 0) or
remains solid. The same goes for void elements: one can
choose �xj ∈ {0, 1} prescribing that the element j either
turns solid or remains void after solving the integer linear
subproblem. This guarantees that the structural topology is
clear ({0, 1}) at any given iteration k. The set �xj is fed to
the optimizer as a bound constraint, e.g.:
{

0 ≤ �xk
j ≤ 1 if xk

j = 0,

−1 ≤ �xk
j ≤ 0 if xk

j = 1,
(4)
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or, in the unified form,

�xk
j ∈ {−xk

j , 1 − xk
j }. (5)

Thus, the optimizer picks optimal �xk
j while satisfying

the problem constraints and also satisfying integer-only
constraints.

In order to maintain the linear approximation (3) valid,
the truncation error O(

∣
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∣
∣
∣
∣2
2) cannot be large. The

truncation error is controlled by adding an extra constraint
that restricts the number of flips �xk from 1 to 0 and vice
versa. This constraint can be written as:

∣
∣
∣

∣
∣
∣�xk

∣
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∣
∣
1

≤ βNd . (6)

For topology optimization, this means that the number of
elements evolving from solid to void and vice versa in each
iteration is restrained to a β fraction of the total number
of design variables Nd . Using small values of the control
parameter β ensure that the number of flips remains low at
each iteration k, thereby keeping the truncation error small.

Using the sequential linear approximations from (3)
in the original optimization problem (1) and the extra
constraints from (5) and (6), one can write the approximate
integer linear subproblem as:

Minimize
�xk

∂f (xk)

∂x
· �xk,

Subject to
∂gi(x

k)

∂x
· �xk ≤ gi − gi

(

xk
)

:= �gk
i , i ∈ [1, Ng],

∣
∣
∣

∣
∣
∣�xk

∣
∣
∣

∣
∣
∣
1

≤ βNd,

�xk
j ∈ {−xk

j , 1 − xk
j }, j ∈ [1, Nd ]. (7)

Equation (7) expresses the sequential suboptimization
problems in the standard form solved by TOBS. The term
f (xk) from the linearization (3) is dropped out in (7)
since scalar addition to the objective function does not
alter the optimum design variables. The same is not valid
for the constraints and gi(x

k) is used to compute the
right-hand side of the constraint �gk

i . The truncation error
constraint (6) restrains the topology from undergoing great
changes. This might lead to the infeasibility of some of
the constraints gi in the current iteration k when the bound
�gk

i = gi − gi

(

xk
)

is used. This can be avoided by
modifying the upper bounds of constraints �gk

i so that the
suboptimization problems yield feasible solutions. This also
helps in generating feasible subproblems when the initial
solution given to the optimizer is far from being feasible,
for instance, starting with a fully solid design domain and

having a small volume constraint in the problem. The
constraint bounds are modified using:

�gk
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(

xk
)

,

(8)

where εi is the relaxation parameter corresponding to
constraint gi . These parameters are selected such that the
suboptimization problems obtained through linearization
yield feasible solutions. The modifications are made such
that after the linearized subproblem is solved, the constraint
value is expected to remain close enough to the constraint
value before solving the subproblem. For instance, when
gi

(

xk
)

is far from gi and approaches it from above, the
upper bound of the linearized constraint gi is −εgi

(

xk
)

.
This means the change of gi

(

xk
)

at the iteration k is
a fraction εi of gi

(

xk
)

and should enforce a decrease
in gi

(

xk
)

so that it gradually comes close to gi . This
will be demonstrated and further discussed with numerical
examples.

The integer suboptimization problems generated using
sequential linearization (7) can be solved using Integer
Linear Programming (ILP). An ILP problem is the
same as a Linear Programming (LP) problem with
additional constraints that the design variables can only
have integer solutions. This leads to ILP-based solutions
being suboptimal with respect to the LP-based solutions.
Nevertheless, topology optimization requires a {0, 1}
solution and so integer programming is a sensible option.
In this work, the ILP problem is solved using the branch-
and-bound algorithm implemented in the MATLAB built-
in intlinprog function, which solves mixed integer
linear problems. The branch-and-bound method is an
algorithm based on the heap data structure. The ILP is
first solved without any integer constraints using some
linear optimization techniques, e.g., Simplex method. Then
branches of LPs are created with additional inequality
constraints on the design variables, with a motive that
integer solutions are finally yielded, as illustrated in Fig. 1.
The integer solutions of subproblems Rn are stored for
further evaluation of the optimal point; therefore, recursive
investigation of the optimization tree can be carried out
(Land and Doig 1960; Vanderbei 2014). In the TOBS
method, we use the ILP solver as a black box with some
selected options for better performance.

2.2 Topology optimization: formulation

The minimum compliance problem subject to a volume con-
straint is used to illustrate structural topology optimization.
The corresponding optimization problem P1 is formulated
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Fig. 1 Illustration of an optimization problem with objective function
ϕ and {x1, x2} design variables solved with the branch-and-bound
algorithm. Boxes with bold line indicate end nodes (also called leaf ) of
the optimization tree where no more subdivisions of the Rn problems
are possible

as follows:

P1: Minimize
x

C(x) = uT Ku,

Subject to
V (x)

V0
≤ V ,

Ku = F ,

xj ∈ {0, 1}, j ∈ [1, Nd ], (9)

where C(x) is the structural compliance function, K is
the global stiffness matrix, F is the vector of applied loads,
u is the structural displacements field, V (x) is the volume
of the structure, V0 is the volume of the initial fully solid
design domain, and V is the upper bound specified on the
structural volume fraction. Finite Element Analysis (FEA)
is used to solve for the state variables u under the structural
equilibrium condition Ku = F .

In order to illustrate the handling of different types of
constraints using TOBS, a volume minimization problem
subject to a compliance constraint is used. The correspond-
ing optimization problem P2 is given as:

P2: Minimize
x

V (x)

V0
,

Subject to C(x) ≤ C,

Ku = F ,

xj ∈ {0, 1}, j ∈ [1, Nd ], (10)

where C is the specified upper bound for compliance.
Finally, in order to illustrate the handling of multiple con-

straints, the problem of compliance minimization subject
to volume and displacement constraints is implemented. A
problem P3 is formulated as follows:

P3: Minimize
x

C(x) = uT Ku,

Subject to
V (x)

V0
≤ V ,

u∗ ≤ ū,

Ku = F ,

xj ∈ {0, 1}, j ∈ [1, Nd ], (11)

where u∗ is the displacement at a prescribed point of the
structure and ū is the allowed displacement of that point.

2.3 Sensitivity analysis

The TOBS method is a gradient-based optimization
algorithm. Therefore, the sensitivities (derivatives) of the
objective and constraint functions are required. In fact,
these sensitivities are explicitly present in the linearized
suboptimization problem in (7).

The compliance sensitivities with respect to the structural
densities xj can be derived using the adjoint method (Haftka
and Gürdal 1991). First, an extended function is written:

L = uT Ku + λT (Ku − f ), (12)

where λ is a vector of arbitrary multipliers. Deriving L is
equivalent of deriving C(x) as Ku − f = 0. The derivative
of L can be expressed as:

∂L
∂xj

= 2uT K
∂u

∂xj

+uT ∂K

∂xj

u+λT ∂K

∂xj

u+λT K
∂u

∂xj

. (13)

The derivative of f in this case is 0 since the load does
not change with the element densities xj . The derivatives

of the state variables
∂u

∂xj

in (13) are usually expensive to

be numerically computed. Adding the equilibrium equation
into (12) works as such it helps in getting rid of this term in
the analytical expression. Grouping the terms depending on
∂u

∂xj

and making them 0, one can write:

2uT K
∂u

∂xj

+ λT K
∂u

∂xj

= 0. (14)

In this case, we can conclude λ = −2u so (14) is
satisfied. This substitution is possible to be carried out as
the structural compliance function is self-adjoint. For more
complex problems, e.g., stress, the expression in (14) might
yield a system of equations required to be solved. Choosing

λ = −2u and knowing the terms depending on
∂u

∂xj

are now
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canceled out, (13) can be rewritten as:

∂L
∂xj

= uT ∂K

∂xj

u − 2uT ∂K

∂xj

u, (15)

and, finally,

∂C(x)

∂xj

= ∂L
∂xj

= −uT ∂K

∂xj

u. (16)

In order to analytically compute the term
∂K

∂xj

in (16), we

interpolate the structural stiffness as:

K =
Nd∑

j=1

E(xj )k0, (17)

where k0 is the element stiffness matrix of a solid element
and E(xj ) is an interpolation function on Young’s modulus.
This function can be expressed via the modified SIMP
approach (Sigmund 2007) as:

E(xj ) = Emin + x
p
j (E0 − Emin), (18)

where E0 is the stiffness of the solid material, Emin is a
very small stiffness assigned to void regions in order to
prevent singularities in the global stiffness matrix, and p is
a positive penalization factor. Deriving (17) with respect to
xj and substituting its value in (16), the final expression for
the compliance sensitivities can be obtained:

∂C

∂xj

= −1

2
px

p−1
j (E0 − Emin)u

T
j k0uj , (19)

where uj is the vector of element displacements.
The expression in (18) can also be called material model.

With that, the compliance function could be rewritten as a
function of design variables:

C(x) =
Nd∑

j=1

E(xj )u
T
j k0uj . (20)

Although the TOBS method is restricted to integer
variables, the material model is employed to aid the
derivation of sensitivities. The penalty factor however does
not affect FEA computations because of the use of binary
variables. When, xj = 1, E(xj ) = E0, and when
xj = 0, E(xj ) = Emin, thus independent of penalty p.
The use of binary variables naturally avoids intermediate
densities that create numerical issues when dealing with
more complex physics, e.g., fluid flow optimization or
multiphysics interactions (Vicente et al. 2015). We advocate
that any sensitivity analysis method can be used to find
the required sensitivities by the TOBS method, as long
as they are only evaluated at the {0, 1} bounds. Herein,
the penalty factor p does not affect the FEA but it is
present in the compliance sensitivity computations in (19).
In this particular case, p ≥ 2 so the element density xj is
not canceled out in (19). It is important to point out that

Liang and Cheng (2020) provide mathematical validation
of discrete sensitivities when compared with sensitivities
computed via SIMP-based interpolation.

Similarly to the compliance case, the adjoint problem and
sensitivity of the displacement from problem P3 (11) with
respect to xj are, respectively, given by:

Kλ = −P , (21)

and,

∂u∗

∂xj

= px
p−1
j (E0 − Emin)λ

T
j k0uj , (22)

where λ is the vector of adjoint variables, and has the same
size as that of the global displacement vector u, P is the
vector having only one non-zero entry 1 at the location
corresponding to displacement u∗, and λj is the vector of
adjoint variables corresponding to finite element j .

The sensitivities of the volume fraction function are also
required to be computed. In this work, the semi-analytical
method via the following finite difference operation:

∂g

∂xj

= g(xj = 1) − g(xj = 0)

1 − 0
, (23)

is employed, yielding:

∂g

∂xj

= 1

V0

V (xj = 1) − V (xj = 0)

(1 − 0)
= Vj

V0
, (24)

where Vj is the volume of the finite element j .

2.4 Filtering

Numerical filtering is employed in density-based topology
optimization approaches to avoid the well-known checker-
board problem and obtain mesh-independent solutions. In
topology optimization with binary {0, 1} design variables,
it makes more sense to apply sensitivity filtering instead of
other common types of filtering, such as density filtering.
Although feature size control is not fully guaranteed, sen-
sitivity filtering sufficiently provides some control over the
length of the structural members in TOBS similarly as in
other methods. Furthermore, as the density field is always
{0, 1}, no projection methods are required and sensitivity
filtering is practically the only filtering scheme used in the
binary topology optimization.

The filtered sensitivities for an element j are obtained
using a weighted average of element sensitivities over the
neighborhood of the finite element j defined by a filter

radius rmin (see Fig. 2). The filtered sensitivity field
∂̃f

∂xj

is

given as:

∂̃f

∂xj

= 1
∑

m∈Nm
Hjm

∑

m∈Nm

Hjm

∂f

∂xm

, (25)
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N1

N2

rmin1

2
rmin

Fig. 2 Spatial filter scheme illustration

where Nm is the set of elements m for which the center-
to-center distance dist(xj , xm) from element j is smaller
than the filter radius rmin and Hjm is a weight factor given
by:

Hjm = max(0, rmin − dist(xe, xm)) (26)

The weights are defined such that elements closer to an
element j contribute larger to the filtered sensitivities of
element j compared with elements farther away from

element j . The filtered sensitivities
∂̃f

∂xj

and
∂̃g

∂xj

are used

in place of
∂f

∂xj

and
∂g

∂xj

respectively in the linearized

suboptimization problem in (7).
Other types of filters can be used. One example

is the BESO filter, which employs nodal averaging of
the sensitivity field before using a spatial filtering to
recover element sensitivity field from the nodal sensitivity
field (Huang and Xie 2007). Different from the standard
sensitivity filter in SIMP-based topology optimization, the
element densities do not take part in the spatial filtering
procedure (25) as the TOBS method uses binary densities.
Filtering sensitivities plays an important role in binary
topology optimization as it smoothens out the original
sensitivity field and extrapolates it to void regions. This
increases the chances of void elements to return to solid
state, especially near highly stressed solid regions, although
it might lead to inaccurate assessment of the sensitivities in
the void regions. One way to mitigate this is to employ time
stabilization for the sensitivity field as proposed by Huang
and Xie (2007). In practice, the filtered sensitivity field is

averaged over two consecutive iterations as:

∂̃f

∂xj

k

←−
∂̃f

∂xj

k

+ ∂̃f

∂xj

k−1

2
. (27)

3MATLAB implementation

The 101-line MATLAB code with the implementation of
the TOBS method is provided in the Appendix and as a
supplementary material to the manuscript. The code can be
called from the MATLAB command window using:

tobs101(nelx,nely,gbar,epsilons, ...

beta,rmin)

where nelx and nely are the number of elements in
the horizontal and vertical directions, respectively, gbar
includes the prescribed constrained values, epsilons
includes the move limits for the constraint functions, beta
is the truncation error constraint parameter, and rmin is
the filter radius (divided by the element size). The 101-line
code consists in four parts: the FEA, the sensitivity filter
matrix preparation, the optimization loop, and the TOBS
solver. The FEA and the sensitivity evaluation are carried
out using the implementation presented in the 88-line code
by Andreassen et al. (2011). The ILP solver is the key
function in the code and its details are given throughout this
manuscript.

3.1 Finite element analysis

The code starts with the definition of the material properties
(line 4), where E0 is the Young modulus E0 of the solid
material, Emin is the artificial stiffness Emin assigned to
void regions, and ν is the Poisson ratio. The penalty factor
p for the material model is chosen same as that of standard
SIMP, penal = 3.

The design domain is considered to be rectangular and
discretized with unit square elements. Figure 3 illustrates
an example consisting of 12 elements with four nodes per
element and two degrees of freedom (DoFs) per node. Both
nodes and elements are numbered column-wise from top
to bottom, and left to right. The DoFs 2n − 1 and 2n
correspond to the horizontal and vertical displacements of
node n, respectively.

Lines 6–10 compute the element stiffness matrix k0 with
E0 Young’s modulus. This matrix is denoted as KE in the
code. As all elements have the same size and shape, their
stiffness matrix KE can be computed only once. Lines 11–13
build the matrix edofMatwhose j th row contains the eight
DoF numbers corresponding to the j th element. This allows
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Fig. 3 Example of a 4 × 3 design domain with 12 elements and 40
DoFs

for an efficient assembly of the stiffness matrix later in the
optimization loop using the MATLAB function sparse.
Lines 14–15 prepare the row and column index vectors,
iK and jK respectively to assemble stiffness matrix. The
sparse function requires three inputs, iK, jK and the
entries sK of the sparse stiffness matrix. These entries are
computed in line 48 and depend on the design (density)
variables xj and the material model. The element stiffness
matrices KE are reshaped to obtain column vectors and are
multiplied with the corresponding Young moduli E(xj ).

Lines 17–21 define and prepare the boundary conditions.
The 101-line code is written to optimize the MBB
beam depicted in Fig. 4. Extensions to other examples
are explained in the numerical results. The point load
is prescribed using the DoF along which the load
is acting. Line 17 creates the force vector F with
2*(nely+1)*(nelx+1) entries and sparse assembly is
made with a point load at the 2*(nely+1) DoF, the
bottom left corner of the design domain, with load −1 as:

F = sparse(2*(nely+1),1,-1, ...

2*(nely+1)*(nelx+1),1);

Supports are implemented by eliminating fixed DoFs from
the linear equations. The MATLAB function setdiff is

F

Fig. 4 MBB beam design problem

used in line 21 to identify the free DoFs after prescribing the
fixed ones, which for the MBB beam are given by:

fixeddofs = union([1:2:2*(nely+1)], ...

[2*(nelx+1)*(nely+1)]);

As the boundary conditions do not change in the studied
cases of this work, their command lines can be placed
outside the optimization loop. The structural equilibrium
equation is solved to yield displacements; line 50 calls a
standard MATLAB linear solver as:

U(freedofs) = ...

K(freedofs,freedofs)\F(freedofs);

where freedofs is the vector of unrestrained DoFs. For
more details on this FEA implementation, the reader is
directed to Sigmund (2001b) and Andreassen et al. (2011).

3.2 Sensitivity analysis and filtering

The sensitivity filtering in (25) is applied which is a
weighted average over sensitivities of neighboring elements,
and thus is a linear operator. It can be efficiently
implemented as a matrix product of a coefficient matrix H

and a vector containing the original sensitivities
∂f

∂xj

. The

matrix H can be assembled before the optimization loop by
computing the weights Hjm in (26). This is done in lines
23–39. The matrix H is of size (nelx×nely) × (nelx×
nely) containing non-zero entries only at some positions
as the weights are computed only for small neighboring
regions defined by rmin. Consequently, H is sparse and
can also be assembled using the sparse function. Line
40 computes the term

∑

m∈Nm
Hjm of the sensitivity filter

which is the denominator in (25). This term is stored as
Hs in the code and it is the sum of the filter weights
which divides the weighted sum of sensitivities in order to
not change the dimension of the sensitivities. After solving
the equilibrium equation, the sensitivities of the structural
compliance (19) and volume fraction (24) are computed
in lines 52–54 and 55, respectively. The volume of each
element is unity. The compliance sensitivities are filtered
when multiplied by H and divided by Hs, as seen in line
57. Both original and filtered sensitivities are stored in the
variable dc, rewriting the variable during optimization. The
volume sensitivities dv in this case do not need to be filtered
as they have a uniform distribution.

Following the sensitivity computation and filtering, time
stabilization is employed in the 101-line code. This is done
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in line 58 when the kth iteration (variable loop in the code)
is higher than 1. In the first iteration (loop = 1), line 59
stores the filtered sensitivities dc for the next iteration’s
averaging.

3.3 Optimization loop

The optimization loop is built similar to any standard
topology optimization algorithm. It starts by computing the
entries of the stiffness matrix depending on the current
design variables xj , followed by the assembly operation.
After solving for the displacements, sensitivity analysis and
filtering are carried out, herein followed by the sensitivity
time stabilization. The objective function and constraint
function histories are stored in the variables obj and gi,
respectively. The ILP solver is then called to solve the
integer linear suboptimization problem in (7) and update
the binary design variables x. The optimization loop is
repeated until a convergence parameter change is lower
than a small value, prescribed to be 10−4 as default in
this code. The variable change is computed in line 65
by evaluating the change in the objective function along
10 consecutive iterations as proposed by (Huang and Xie
2007). Finally, the information about iteration, objective
function, constraint function, and convergence are printed,
and the current topology is plotted.

3.4 ILP function

The ILP function is the core of the present work and presents
an implementation of the method described in Section 2.1.
The function is called inside the optimization loop as:

[x] = ILP(dfdx,dgdx,gbar,gi,epsilons, ...

beta,x)

where dfdx and dgdx are the objective and constraint
functions sensitivities, respectively, gbar includes the
prescribed upper bounds for the constraint functions,
epsilons includes the constraints move limit parameters
and beta is the truncation error constraint parameter. The
size of dfdx must be Nd × 1, while dgdx is of size
Nd × Ng . The vector sizes for gbar and epsilons are
both 1 × Ng . Therefore, multiple constraints are included
by adding Ng columns in the corresponding variables when
necessary. The ILP function also receives as input the set of
binary design variables x and outputs the updated x.

The truncation error is controlled via the one-norm
constraint on design variable changes (phase flips). The
constraint appears non-linear, but can be written in a linear

fashion:
∑

i

αi�xi ≤ βNd, (28)

where,

αi =
{

1 : xi = 0,

−1 : xi = 1.
(29)

This means that when xj = 0, the positive flip (addition of
a solid element) counts as 1 and when xj = 1, the negative
flip (removal of a solid element) also counts as 1. This is
already built in the ILP function. Lines 75–77 implement
this constraint as:

C1 = (x(:) == 0);

C2 = -(x(:) == 1);

truncation = C1 + C2;

Lines 79–80 normalize the constraint function sensitivi-
ties. This is done by:

norm = max(max(abs(dgdx)), eps);

dgdx = dgdx./repmat(norm,size(dgdx,1),1);

Although not always necessary, normalization is a good
practice to keep the sensitivities in the same order of
magnitude, which helps the optimization solvers find the
solutions faster. Line 82 rewrites the constraint sensitivity
vector, which will now consist of the normalized constraint
sensitivities and the coefficients corresponding to the
truncation error constraint:

dgdx = [dgdx(:)’; truncationˆ{\prime}];

The next step is the relaxation of the constraint functions
by imposing relaxation. The target change for the constraint
function g(x) to satisfy its constrained value g is evaluated
as �g(x) = g − g(x), in line 84:

target = (gbar - gi)./norm;

It can be noticed that normalization must follow the
constraint computation. The current target change can
be too large to yield an integer solution or, sometimes,
compromise the topology optimization convergence. For
instance, starting with an initial full solid design, the volume

fraction constraint g(x) = V (x)

V0
= 1.0. For a prescribed

final volume fraction g = V = 0.5, the target change is
�g(x) = −0.5, which means that the problem requires the
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optimizer to remove 50% of solid material in one iteration
to find a solution. This can make the optimization infeasible
because the truncation error constraint allows only small
changes to the structure in each iteration. In order to avoid
this issue and to enforce gradual changes in the constraint
functions toward the constrained values, the target changes
are multiplied by the relaxation parameters ε as:

deltag = epsilons.*(abs(gi)./norm);

in line 85 of the code. After that, the constraint relaxation
rule from (8) can be computed by:

A = (target > deltag);

B = (target < -deltag);

constlimits = (A - B).*deltag + ...

(1 - (A + B)).*target;

which are the new upper bounds for the constraints gi(x)

in the suboptimization problem (7). To evaluate and include
the constraint on the truncation error (as in (6)), line 89 calls:

constlimits = [constlimits; ...

beta * length(x(:))];

that includes the allowed limit on flips depending on beta.
To complete the setup of the suboptimization problem,

the upper and lower bounds on �xj , expressed by (4), are
computed in lines 91–92 of the code as:

lower_limits = -1.0 * (abs(x(:) - 1) ...

< 0.001);

upper_limits = 1.0 * (abs(x(:)) ...

< 0.001);

Finally, the suboptimization problem can be solved.
We set the options for the intlinprog function of
MATLAB for superior performance and better optimal
solutions from the branch-and-bound solver. The branch-
and-bound optimizer imposes additional constraints on
the solution space called cuts to restrict the design
variables to integral solutions. The CutGeneration
option is set to intermediate which uses the most cut
types (Cornuéjols 2008). We use the primal-simplex
algorithm to solve the LP branches generated in each of
the branches of the ILP optimizer. The number of nodes
searched by the optimizer, HeuristicsMaxNodes, is
chosen to be 100. The decision on whether a design variable
enters the basis is taken by checking if the reduced cost
corresponding to the design variable exceeds a tolerance.
This tolerance is set in the LPOptimalityTolerance

option to be 10−10. These options are used for all the
examples in this work for superior numerical performance.

OptimizerOptions = optimoptions( ...

’intlinprog’, ’CutGeneration’, ...

’intermediate’, ’RootLPAlgorithm’, ...

’primal-simplex’, ’NodeSelection’, ...

’mininfeas’, ’HeuristicsMaxNodes’,

... 100, ’RootLPMaxIter’, 60000, ...

’MaxNodes’, 1e5, ’Display’, ’off’);

The optimizer is then called via MATLAB
intlinprog function as:

[deltax, ˜, ˜, ˜] = intlinprog ...

(dfdx(:), 1:length(x(:)), dgdx, ...

constlimits, [], [], ...

lower_limits, upper_limits, ...

OptimizerOptions);

The function intlinprog solves mixed-integer linear
programming problems via the branch-and-bound algo-
rithm. It can be observed that the output of the solver is a
variable called deltax, the solution �xj for the subopti-
mization problem in (7). Finally, the code updates the set of
design variables x and obtains a new binary topology via:

x(:) = x(:) + deltax;

3.4.1 Alternative optimizer implementation

The standard 101-line code calls the built-in intlinprog
function from MATLAB so it can be used without installing
extra libraries. For a more efficient and robust branch-and-
bound implementation, we advise the use of CPLEX©, a
proprietary optimization package from IBM. Having the
library installed, the following command lines can be used
to call CPLEX in the 101-line code:

OptimizerOptions = ...

cplexoptimset(’cplex’);

[deltax, ObjValue, exitflag, output] ...

= cplexmilp(dfdx(:), dgdx, ...

constlimits, [], [], [], [], [], ...

lower_limits, upper_limits, ...

repmat(’I’, 1, length(x(:))), [], ...

OptimizerOptions);

These previous commands should replace lines 94–99 in
the 101-code. The path to the cplexmilp function of
CPLEX© library is to be added before using the code.
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4 Results

4.1 MBB beam

The provided 101-line code is written to solve the
MBB beam example (see Fig. 4), which has been
extensively studied in the topology optimization literature.
The minimum compliance subject to a volume constraint
problem P1 in (9) is solved. By default, the 101-line code
defines the material properties to be E = 1.0, Emin =
1×10−9 and ν = 0.3. Herein, we prescribe the final volume
fraction to be V = 0.5. The optimization parameters are
ε = 0.01 and β = 0.05 and the filter radius is rmin = 4.
The mesh used is 120 × 40. This problem can be solved by
executing the following command:

tobs101(120,40,0.5,0.01,0.05,4)

Some intermediate topologies yielded by the 101-line code
for this problem are presented in Fig. 5.

The optimization converged in 103 iterations with clear
{0, 1} topologies guaranteed by the use of strict binary
variables. Convergence is smooth, as presented by the
objective function plot in Fig. 6.

In order to investigate the mesh independency of the
optimized solutions, the MBB problem is solved for two
other meshes, 240×80 and 480×160, with totals of 19,200
and 76,800 elements, respectively. These cases are solved
using the following commands:

tobs101(240,80,0.5,0.01,0.05,8)

tobs101(480,160,0.5,0.01,0.05,16)

where 8 and 16 are the filter radii rmin for the respective
cases. The solutions for these problems are presented in
Fig. 7. Such solutions resemble those from the 88-line SIMP
code by Andreassen et al. (2011). In comparison, the TOBS

solutions are strictly binary and crisp without the need of
projection schemes but slower to be obtained. Nevertheless,
a study by Sivapuram and Picelli (2020) shows that the
computational bottleneck in TOBS remains to be the FEA
as the mesh size increases.

4.2 Cantilever

This example solves the short cantilever beam illustrated in
Fig. 8. Changing boundary conditions in the 101-line code is
carried out similarly to other educational codes in topology
optimization (Andreassen et al. 2011; Ansola et al. 2018).

In order to solve the cantilever beam example, line 17 in
the code must be replaced by:

F = sparse(2*(nely+1)*(nelx+1),1,-1, ...

2*(nely+1)*(nelx+1),1);

to prescribe the point load at the bottom right corner of the
domain. Line 19 must be replaced by:

fixeddofs = [1:2*(nely + 1)];

so that it implements the cantilever support. The mesh size
is set to be 160 × 100, the filter radius rmin = 10 and
the prescribed volume fraction V = 0.4. The optimization
parameters are chosen by numerical experience taking into
account the nature of the constraint function. In order to
illustrate the effect of the parameters, we run the cantilever
design problem with ε = 0.005, 0.01, 0.02, and 0.04.
Figure 9 presents the optimized solutions obtained when
each of the four ε’s is used in topology optimization.

In the cantilever solutions in Fig. 9, the final topologies
are identical for the four ε’s considered. This might not
happen for more complex problems or cases with several
local minima and the choice of ε should be made with
care. In this example, the chosen value for the constraint
relaxation parameter ε is 0.01, for instance, implying

54.ti)c(03.ti)b(51.ti)a(

301.ti)f(57.ti)e(06.ti)d(

Fig. 5 Snapshots of the solution for the MBB beam by the 101-line code
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Fig. 6 Convergence history of the compliance objective function for
the MBB beam example

that the constraint function V (x)/V0 can decrease by a
maximum of 1% of the difference between V (xk)/V0 and
V at each iteration k. This is reasonable and logical when
dealing with volume fraction constraints. Using higher ε’s
leads to faster change in constraint values (material removal
in case of volume) toward their prescribed bounds, however,
at the risk of creating convergence issues for large ε’s.
Lower ε’s lead to a slower change in the constraint function
but helps in obtaining smoother convergence. Figure 10
presents the convergence history of the volume fraction
constraint using the four different ε’s.

The truncation error constraint parameter is chosen to be
β = 0.05 for this cantilever optimization example. This
means that the number of flips on design variables (from
1 to 0 and from 0 to 1 summed up) is constrained to be
a maximum of 5% of the total number of elements Nd . In

(a)

(b)

Fig. 7 MBB beams designed with the 101-line TOBS code for (a)
240×80 and (b) 480×160 meshes

F

Fig. 8 Short cantilever design problem

this example, this choice does not influence the optimization
as the minimum compliance solution will always reach the
upper bound of volume fraction prescribed using ε each
iteration. Therefore, the only restriction when choosing ε

and β for a single volume constraint is that ε ≤ β.

4.3 Passive elements

Some applications of structural optimization include some
non-designable regions in the design domain. This means
the elements in these regions must maintain their solid or
void phases from the initial solution, e.g., the deck of a
bridge or the hole in a pipe. This example shows that the
implementation of a non-design domain is straightforward
using the 101-line code. For the cantilever example in
Fig. 11(a), a circular region with radius nelx/3 and center
(nely/2,nelx/3) can be defined in the code by:

passive = zeros(size(x));

for ely = 1:nely

for elx = 1:nelx

if sqrt((ely-nely/2.)ˆ2 + ...

... (elx-nelx/3.)ˆ2) < (nely/3)

passive(ely,elx) = 1;

x(ely,elx) = 0;

end

end

end

where the matrix passive is introduced to account
for passive elements, using the terminology in Sigmund
(2001b) to refer to the elements that can not have their
design variables flipping. This piece of code can also
set void passive regions via x(ely,elx) = 0;. This
piece of code should be written after line 42 and before
the optimization loop in the original code. The ILP
function remains unchanged despite the presence of passive
elements. This is done by setting the objective/constraint
function sensitivities of the design variables corresponding
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Fig. 9 Optimized solutions for the short cantilever problem corresponding to different ε’s

to the passive elements to be zero. The following commands
should be inserted right after sensitivity filtering is done in
line 57:

dc(find(passive)) = 0;

dv(find(passive)) = 0;

Figure 11 (b and c) presents the short cantilever beams
designed with the modified code considering the case where
the circular region must remain void (Fig. 11b) and another
case where it remains solid (Fig. 11c). The design domain
used is 160 × 100, and V = 0.5, ε = 0.01, β = 0.05, and
rmin = 5.

4.4 Symmetric condition

The topology optimization solution is sometimes (anti)
symmetric due to symmetries in geometry and loading. This
is the case of the cantilever beam depicted in Fig. 12 (a).
One of the TOBS features is the formal scheme of relaxing
the constraint functions so the integer programming solver
can yield a feasible solution. The obtained solution can be
asymmetric when the number of design variable flips at an
iteration is an odd number. In such iteration, the update of
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0

0.2

0.4

0.6

0.8

1

 = 0.04

 = 0.02

 = 0.01

 = 0.005

Fig. 10 Convergence histories of the volume fraction constraint
functions for the cantilever example using different ε’s

the cantilever design in Fig. 12 (a) loses symmetry. Instead
of manually controlling the update in order to enforce a
symmetric design, we suggest to solve the problem only for
the symmetric region. In order to do that, the following piece
of code should replace line 62 in the original code, where
the ILP function is called.

dc = dc(1:nely/2,:); dv = 2*dv(1:nely/2,:);

[x_new] = ILP(dc(:),dv(:),gbar, ...

gi(loop),epsilons,beta,x(1:nely/2,:));

x(1:nely/2,:) = x_new;

x(nely:-1:nely/2+1,:) = x_new;

In this case, the ILP function is called only with the design
variables and sensitivities in the top half (1:nely/2)
design domain of the cantilever problem. Volume sensi-
tivities are multiplied by 2, as in 2*dv(1:nely/2,:),
because a flip in one design variable now means the volume
fraction change of two elements. A xnew set of densities are
obtained and the final update is done considering symmetry.
This is carried out for a horizontal line of symmetry and can
be done similarly for a vertical line of symmetry. Figure 12
(b) presents the solution using the modified code with hori-
zontal line of symmetry implementation. The design domain
used is 160 × 100, and V = 0.5, ε = 0.01, β = 0.05, and
rmin = 10. The code corresponding to the force vector of
this cantilever beam is:

F = sparse(2*(nely+1)*(nelx+1)-nely, ...

1,-1,2*(nely+1)*(nelx+1),1);

4.5 Volumeminimization

The integer programming problem is generalized by using
sequential linear approximation. Therefore, in the TOBS
method, the constraint function does not need to be volume-
based, unlike BESO. This example solves problem P2
in (10), volume minimization subject to a compliance
constraint. In order to do that, the following commands
should replace lines 61 and 62 in the original line code.

obj(loop) = mean(x(:)); gi(loop) = c;
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Fig. 11 Short cantilever (a) design problem and solutions for (b) void and (c) solid passive circular regions

Fig. 12 Short cantilever (a)
design problem with known
symmetry and (b) solution via
the modified 101-line TOBS
code considering symmetry
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Fig. 13 Minimum volume optimized solutions for the MBB beam with C = 180 using (a) ε = 0.01, (b) ε = 0.005, and (c) ε = 0.0025
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Fig. 14 Convergence history for the minimum volume problem subject to compliance constraint: (a) volume fraction and (b) structural
compliance, for different ε’s
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F

u*

Fig. 15 Design problem considering a displacement constraint

[x] = ILP(dv(:),dc(:),gbar,gi(loop), ...

epsilons,beta,x);

It can be noticed that, although we kept the same notation
for compliance and volume variables, they have switched
places when prescribing the objective and constraint
functions.

This example solves the MBB beam depicted in Fig. 4.
The mesh size used is 240 × 80, the compliance constraint
C = 180. We run the problem for ε = 0.01, 0.005, and
0.0025, with β = 0.05 and rmin = 8. Figure 13 presents the
structural designs obtained using the three different ε’s.

The optimizations converged smoothly to a final volume
fraction of 0.5283, 0.5344, and 0.5267 when using ε = 0.01,
0.005, and 0.0025, respectively. Figure 14 (a) presents the
convergence of the volume fraction (objective function for
this problem). For ε = 0.01, the material was removed fast
and the solution converged in 57 iterations. However, it can
be mentioned that in the first iteration the volume fraction
moved from 1.0 to 0.95, activating the truncation error
constraint defined by β = 0.05. This shows the importance
of this extra constraint. Lower ε dictates slower evolution
but smoother convergence via finer control of the constraint
change. Figure 14 (b) presents the convergence history of
the normalized compliance C/C as the constraint function.
The three cases converged to C/C = 1. This example
aims to illustrate that the present binary optimization is
generalized so it can address different types of constraints,
which sometimes is hard for other binary methods. This
example might also illustrate that the present TOBS method
approximates from density-based methods via the formal
mathematical programming framework.

4.6 Multiple constraints

This example solves problem P3 from (11). The idea is
to illustrate that considering multiple constraints with the
present code is straightforward. In (15), the authors present
the design problem considering a displacement constraint.
The displacement u∗ at the bottom right corner of the

domain is constrained to be lower or equal than ū in the
horizontal direction.

For the displacement sensitivity computation, the adjoint
load from (21) can be implemented in the code in a second
column of the force vector as:

F(2*(nelx+1)*(nely+1)-1,2) = -1;

where 2*(nelx+1)*(nely+1)-1 is the corresponding
DoF of the displacement illustrated in Fig. 15. Thus,
the adjoint and structural displacement vectors λ and u,
respectively, can be obtained by solving the linear systems
of equations at once. The displacement sensitivities are
computed and filtered similarly to the case of compliance.
The displacement constraint must be passed to the ILP
solver by adding columns in the variables representing the
constraint functions. Thus, the ILP function can be called
via the following line:

[x] = ILP(dc(:),[dv(:) dc_disp(:)], ...

gbar,gi(loop,:),epsilons,beta,x);

where gi is the value of the volume and displacement
constraints, stored as:

gi(loop,1:2) = [mean(x(:)) ...

U(2*(nelx+1)*(nely+1)-1,1)];

Problem P3 is solved for the example in Fig. 15. The
mesh size used is 200 × 200 and the volume constraint
V = 30%. The TOBS parameters are chosen to be ε = 0.01
for the volume constraint and ε = 0.05 for the displacement,
with β = 0.05 for the truncation error constraint. The filter
radius is set as rmin = 2. The time stabilization scheme
from (27) is turned off in this example. That procedure helps
in reducing oscillations in the topology and stabilizing the
binary optimization when solving compliance minimization
subject to a volume constraint (Huang and Xie 2007).
Adding the displacement constraint has a similar effect and
time stabilization is not needed in this case. Furthermore,
when solving multiple constrained problems, it is beneficial
to use the original (not averaged) sensitivities (Sivapuram
et al. 2018), as the solution space is reduced. We run the
code for four different displacement cases, ū = 10, 12,
14, and 100. For example, with ū = 10 and the chosen
parameters, the present code can be called (with the proper
modifications) via:

tobs101(200,200,[0.30 10.0], ...

[0.01 0.05],0.05,2)

Figure 16 presents the topology solutions for the four
different displacements constraints. It can be noticed that
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Fig. 16 Optimized solutions for the design problem with different displacement constraints

the displacement converges to the constrained values in the
cases where ū = 10, 12, and 14. By solving the problem
with a very high value, i.e., the case where ū = 100, the
solution converged with the displacement constraint inactive
(see Fig. 17) as the compliance (objective) function reached
a local minimum. This can show the capabilities of the ILP
procedure to accommodate active and inactive constraints.
The TOBS method solves the multiple constraints problem
via branch-and-bound algorithms, therefore not requiring
the introduction of arbitrary multipliers in the objective
function as carried out in the BESO method, for instance.
This makes the consideration of more than two constraints
easier if compared with BESO. For further discussions on
the capabilities of the TOBS method to address multiple
constraints, the reader is referred to Sivapuram et al. (2018)
who investigated microstructural designs including up to six
non-volume constraints.

0 50 100 150
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10

11

12

13

14

15

16

Fig. 17 Convergence of the displacement constraint when solving
problem P3 for the example from Fig. 15 with the present 101-line
code

5 Conclusions

We presented a 101-line code with the implementation
of the TOBS method for educational purposes. The
finite element analysis presented is based on existing
efficient educational codes. The framework is detailed,
both mathematically and numerically. We illustrated the
use of integer programming in topology optimization and
its practicability. The minimum compliance MBB example
subject to a volume constraint is investigated. We showed
that convergence of the binary topologies was smooth and
the optimized solutions were mesh independent. A case
with 76,800 elements is shown to illustrate that even large
examples can be studied using the proposed implementation
using a personal computer, although we have investigated
larger cases in previous works (Sivapuram and Picelli
2020). The parameters intrinsic to the TOBS method were
discussed in detail. We also presented the modifications
required for passive elements and symmetric designs. A
volume minimization problem subject to a compliance
constraint was solved. The structural compliance and
volume can be switched between objective and constraint
functions by changing a few lines of the code. Finally, a
compliance minimization problem subject to volume and
displacements constraints was solved. This example showed
that multiple constraints can be considered without further
special treatments. Also important to mention, the ILP
function has not been changed for any of the presented
examples and it can be tested and extended for other
applications.
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Replication of results The 101-line code is provided in the
Appendix A. The code and its modified versions to run all examples
in this paper are also provided as supplementary material. A more
detailed implementation of the TOBSmethod is available upon request
by email or for download at https://github.com/renatopicelli/tobs.

Appendix A: 101-line TOBS code
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