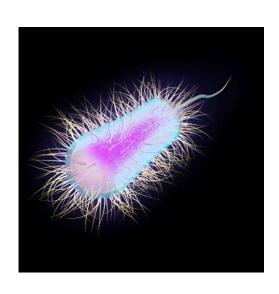


Proteínas Recombinantes – Clonagem e Vetores de Expressão

Aulas 3 e 4

Objetivo da Aula

No contexto da produção de proteínas recombinantes, conhecer as etapas de clonagem e expressão usando-se *E coli* como sistema de expressão.

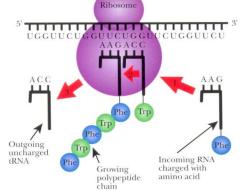


Condições de crescimento

Fonte: Adaptado de Finkbeiner, M. (2009)

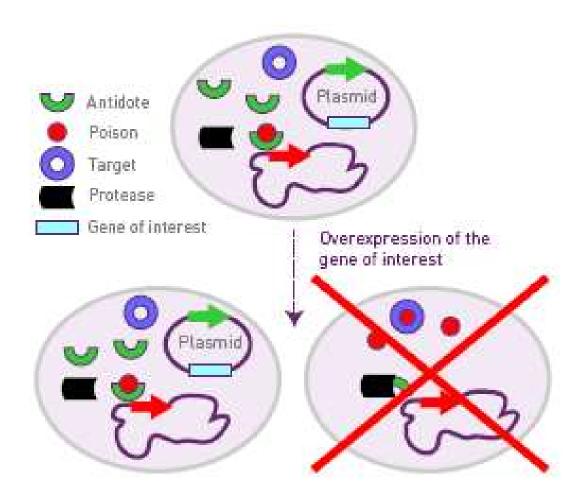
A *E. coli* como Sistema de Expressão de rProteínas

- Amplamente estudada do ponto de vista biológico
- Linhagens seguras (não patogênicas)
- Rápido crescimento a baixo custo
- Mutantes próprios para expressão de rProteínas
 - Deficientes em proteases
 - Próprias para códons raros (tRNAs)
 - Sistema redox modificado
 - Controle rígido sobre a expressão
 - Manutenção plasmidial sem o uso de antibióticos



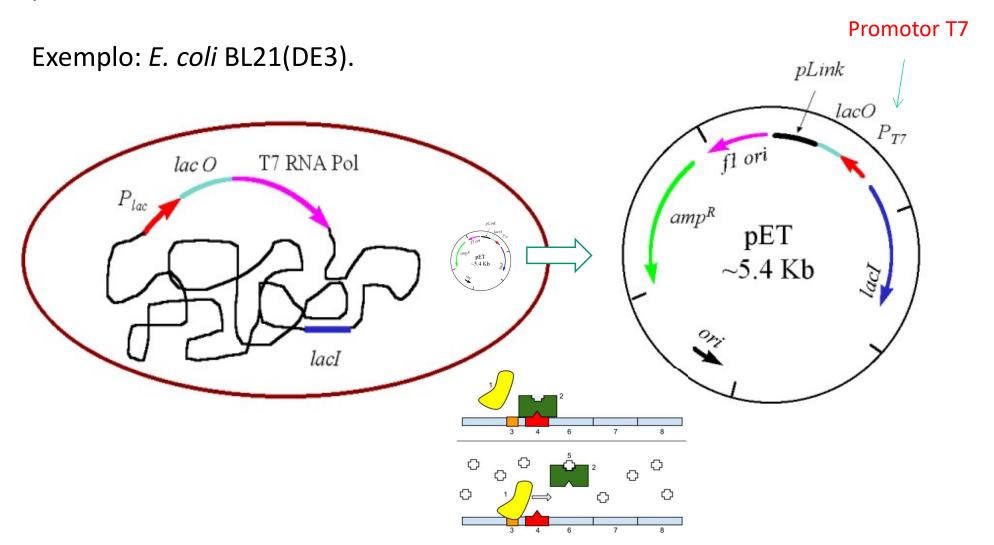
1. Linhagens próprias para proteínas de organismos Eucariotos (códons raros)

amino acid	codon	fraction in all genes	fraction in Class I
Arg	AGG	0.022	0.003
Arg	AGA	0.039	0.006
Arg	CGG	0.098	0.008
Arg	CGA	0.065	0.011
Arg	CGU	0.378	0.643
Arg	CGC	0.398	0.330
Gly	GGG	0.151	0.044
Gly	GGA	0.109	0.020
Gly	GGU	0.337	0.508
Gly	GGC	0.403	0.428
Ile	AUA	0.073	0.006
Ile	AUU	0.507	0.335
Ile	AUC	0.420	0.659
Leu	UUG	0.129	0.034
Leu	UUA	0.131	0.055
Leu	CUG	0.496	0.767
Leu	CUA	0.037	0.008
Leu	CUU	0.104	0.056
Leu	CUC	0.104	0.080
Pro	CCG	0.525	0.719
Pro	CCA	0.191	0.153
Pro	CCU	0.159	0.112
Pro	CCC	0.124	0.016

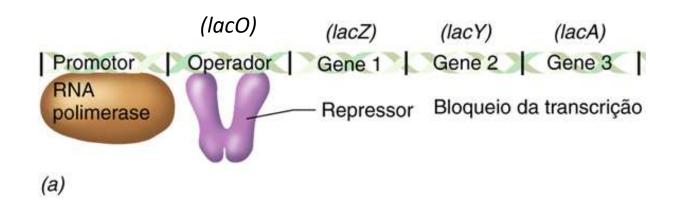


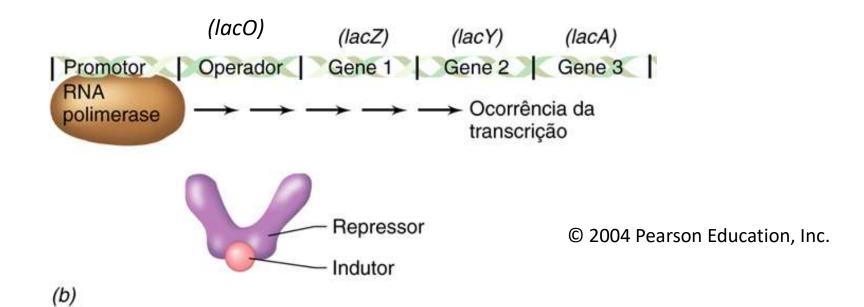
Linhagem E. coli BL21(DE3)Rosetta

Fonte: David P. Clark. Molecular biology. Understanding the genetic revolution. Elsevier (2005)


2. Linhagens capazes de manter o vetor de expressão sem o uso de antibióticos

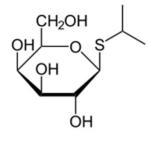
Sistema Staby Express™ (Eurogentec, Bélgica)


3. Linhagens modificadas para expressão controlada da rProteína


• Inserção do gene que codifica para a T7 RNA polimerase sob controle do promotor *lacUV5*

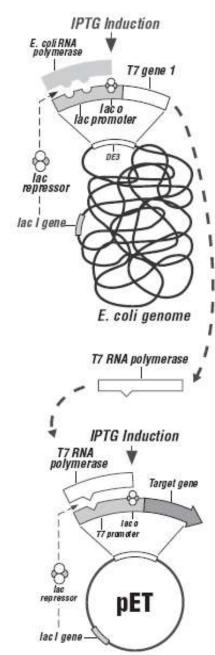
Regulação da Transcrição

Indução – O operon *lac* e a síntese da b-galactosidase



Indução da Expressão em Vetores Baseados no LacUV5/T7 RNA

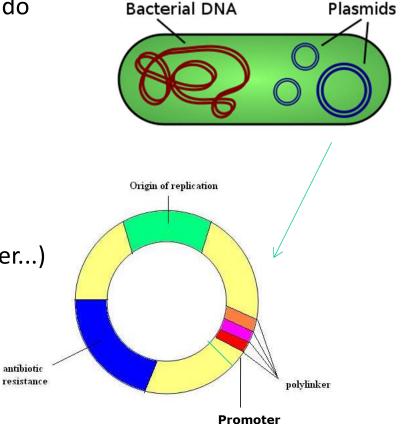
Polimerase


Passos para a expressão gênica:

- 1. Adiciona-se IPTG ao meio de cultivo
- 2. O IPTG liga-se ao repressor lac, liberando a transcrição do gene *T7 RNA polimerase*
- 3. A T7 RNA polimerase liga-se ao promotor T7 do vetor e inicia a transcrição do gene de alvo

IPTG

(Isopropyl β-D-1-thiogalactopyranoside)



Vetores para expressão de rProteínas em *E. coli*

Em geral, são plasmídeos especialmente modificados para este fim. Plasmídeos são moléculas de DNA, geralmente circulares, encontradas separadas do DNA cromossômico e capazes de se multiplicar independentemente. São elementos genéticos de transferência, geralmente portando genes que conferem alguma "vantagem competitiva" ao hospedeiro.

Possui elementos de controle e replicação, além do gene de interesse:

- Origem de replicação
- Gene de seleção
- Promotor
- Região de clonagem (multicloning site, polylinker...)
- Outros elementos dependendo da aplicação...

Características importantes na escolha do vetor:

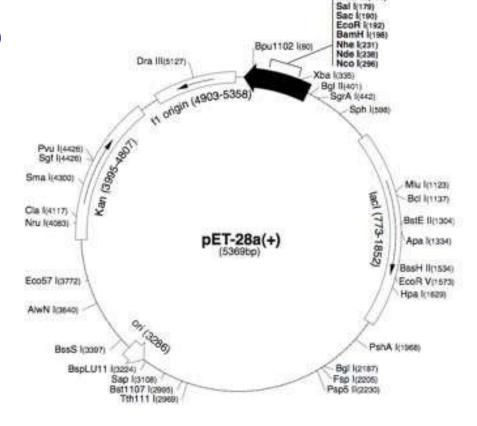
1. Expressão no Periplasma ou Citoplasma? Existem vetores com sequências para exportação da proteína recombinante para o periplasma.

- 2. Produzir a proteína na forma "nativa" ou como "proteína de fusão"? Pode-se, em um primeiro momento do desenvolvimento, adicionar sequências que codificam para proteínas altamente solúveis, como a Trx (thioredoxin), MBP (maltose binding protein) ou sequências de histidina (His.Tags) para facilitar purificação ou detecção da proteína recombinante.
- 3. Qual será a forma de seleção (antibiótico)?

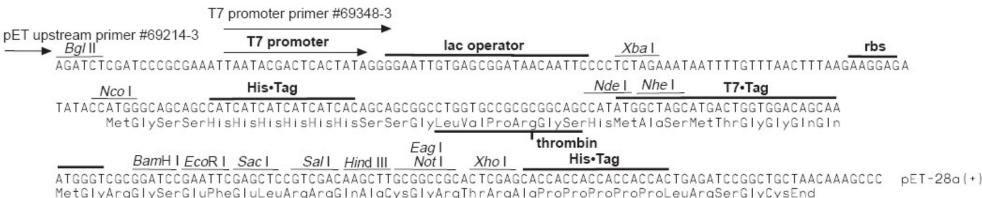
 Kanamicina, ampicilina ou outro antibiótico, dependendo da linhagem de expressão e da finalidade (pequena ou larga-escala?). Outras formas de seleção também existem...
- 4. Proteína tóxica para a célula? Expressão como fusão ou com vetores e linhagens com forte controle da expressão.

Características importantes na escolha do vetor:

1. Expressão no Periplasma ou Citoplasma? Existem vetores com sequências para exportação da proteína recombinante para o periplasma.

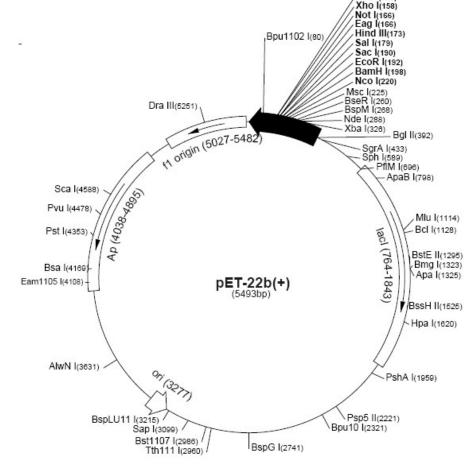

- 2. Produzir a proteína na forma "nativa" ou como "proteína de fusão"? Pode-se, em um primeiro momento do desenvolvimento, adicionar sequências que codificam para proteínas altamente solúveis, como a Trx (thioredoxin), MBP (maltose binding protein) ou sequências de histidina (His.Tags) para facilitar purificação ou detecção da proteína recombinante.
- 3. Qual será a forma de seleção (antibiótico)?

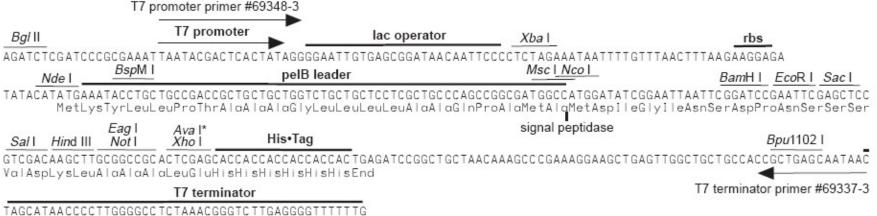
 Kanamicina, ampicilina ou outro antibiótico, dependendo da linhagem de expressão e da finalidade (pequena ou larga-escala?). Outras formas de seleção também existem...
- 4. Proteína tóxica para a célula? Expressão como fusão ou com vetores e linhagens com forte controle da expressão.


Exemplo de Vetor de Expressão

pET-28a, Novagen (Merck)

Expressão intracelular


Eag ((188) Hind III(173)


Exemplo de Vetor de Expressão

pET-22b, Novagen (Merck)

Expressão direcionada para Periplasma ("potencial")

Ava I(158)

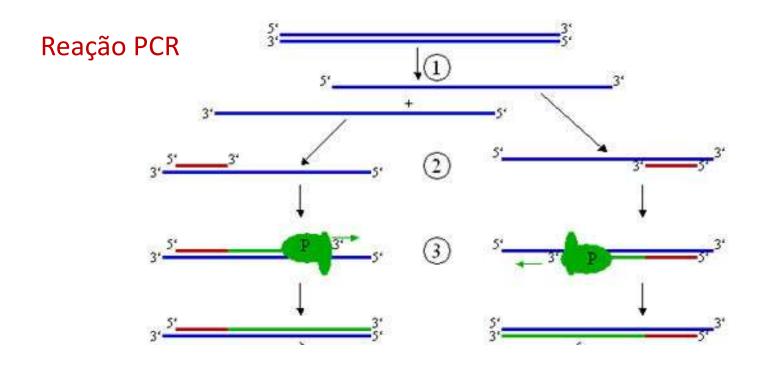
Amplificação Gênica e Clonagem

Estudo de Caso: amplificação e clonagem da proteína humana X utilizandose o vetor pET-28a

1º Passo: Obtenção da sequência de nucleotídeos na literatura (em bancos de dados, como o GenBank®)

Aminoácidos (89aa):

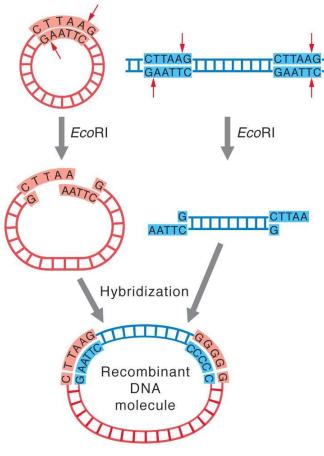
MCDRKAVIKNADMSEEMQQDSVECATQALEKYNIEKDIAAHIKKEFDKKYNPTWHCI VGRNFGSYVTHETKHFIYFYLGQVAILLFKSG

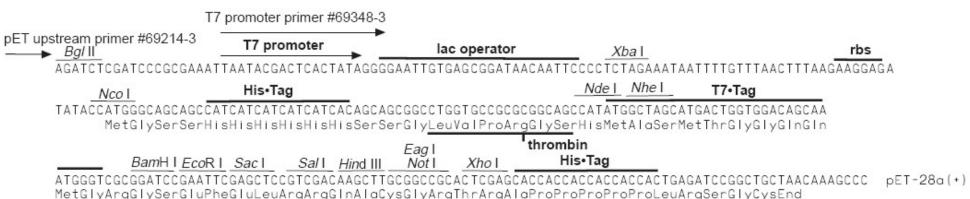

Nucleotídeos (267pb):

ATGTGCGACCGAAAGGCCGTGATCAAAAAATGCGGACATGTCGGAAGAGATGCAACAGGACTCGGTGGAGAGTGCGCTACTCAGGCGCTGGAGAAATACAACATAGAGAAGGACATTGCGGCTCATATCAAGAAGGAATTTGACAAGAAGTACAATCCCACCTGGCATTGCATCGTGGGGAGGAACTTCGGTAGTTATGTGACACATGAAACCAAACACTTCATCTACCTTCTGCCAAGTGGCCAAGTGGCCATTCTTCTGTTCAAATCTGGTTAA

2º Passo: desenho dos primers para amplificação

O que é um primer?


Uma fita de DNA que serve como ponto de início para replicação de DNA. A DNA Polimerase só pode adicionar a uma fita de DNA existente.



2º Passo (cont.): desenho dos primers para

Quais enzimas de restrição usar para cortar o vetor e o gene amplificado por PCR?

Exemplo: Ndel (CATATG) e EcoRl (GAATTC)

2º Passo (Cont.): desenho dos primers para amplificação

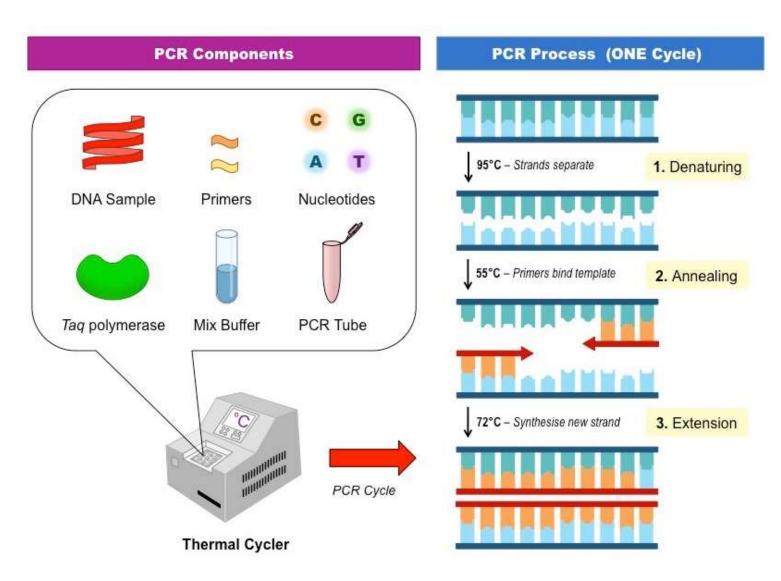
Definidas as enzimas, os primers podem ser desenhados

Nucleotídeos:

ATGTGCGACCGAAAGGCCGTGATCAAAAATGCGGACATGTCGGAAGAGATGCAA CAGGACTCGGTGGAGTGCGCTACTCAGGCGCTGGAGAAATACAACATAGAGAAG GACATTGCGGCTCATATCAAGAAGGAATTTGACAAGAAGTACAATCCCACCTGGC ATTGCATCGTGGGGAGGAACTTCGGTAGTTATGTGACACATGAAACCAAACACTT CATCTACTTCTACCTGGGCCAAGTGGCCATTCTTCTGTTCAAATCTGGTTAA

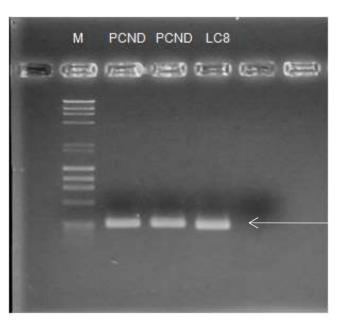
Primer Direto: 5´- GAC AAT CAT ATG TGC GAC CGA AAG GCC — 3´

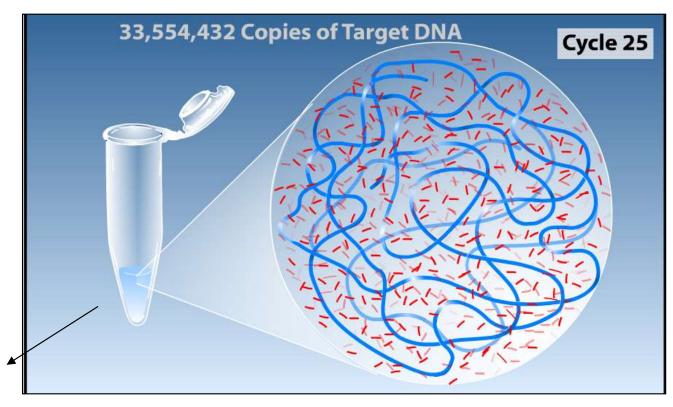
Sítio de restrição reconhecido pela Ndel


Região de ligação ao gene a ser amplificado

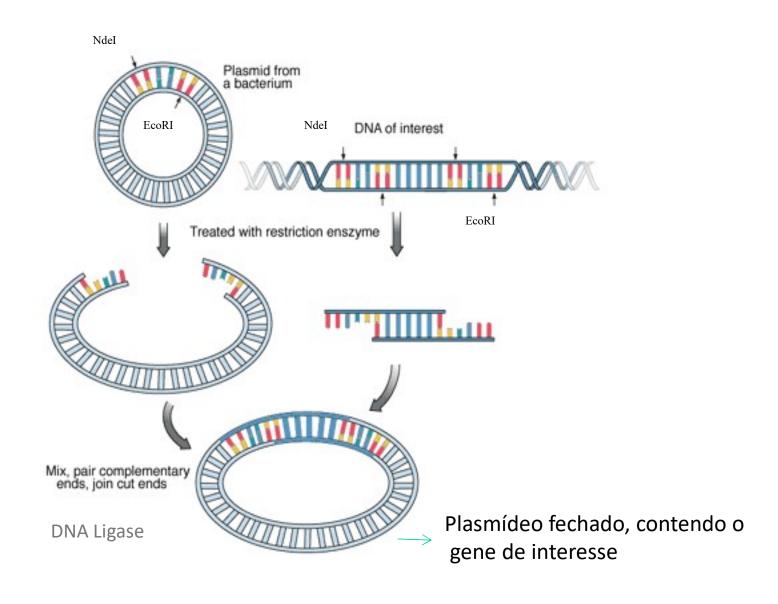
Primer Reverso: 5´- CAG CCG GAA TTC TTA ACC AGA TTT GAA CAG - 3´

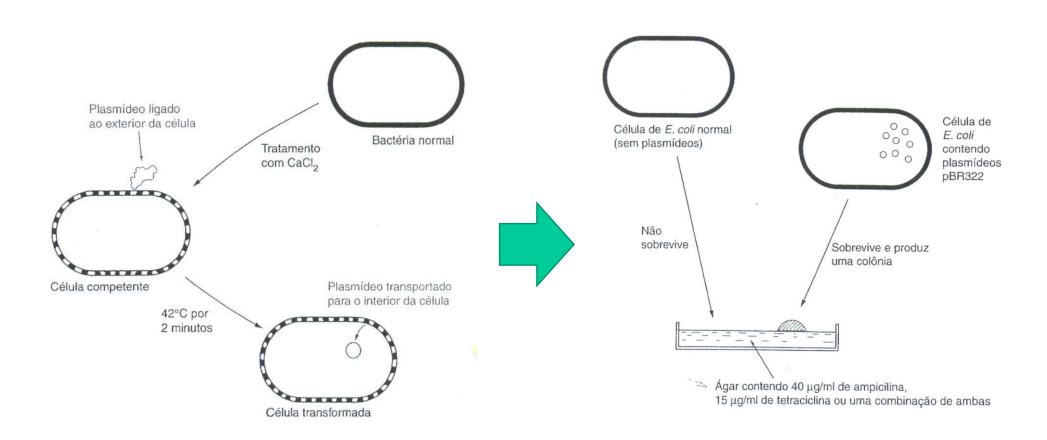
Sítio de restrição reconhecido pela EcoRI


3º Passo:


Amplificação do gene de interesse através da técnica de PCR (Polymerase Chain Reaction)

Fonte: https://longroadtoinnovation.wordpress.com/2018/11/01/polymerase-chain-reaction-innovation-that-revolutionized-molecular-biology/

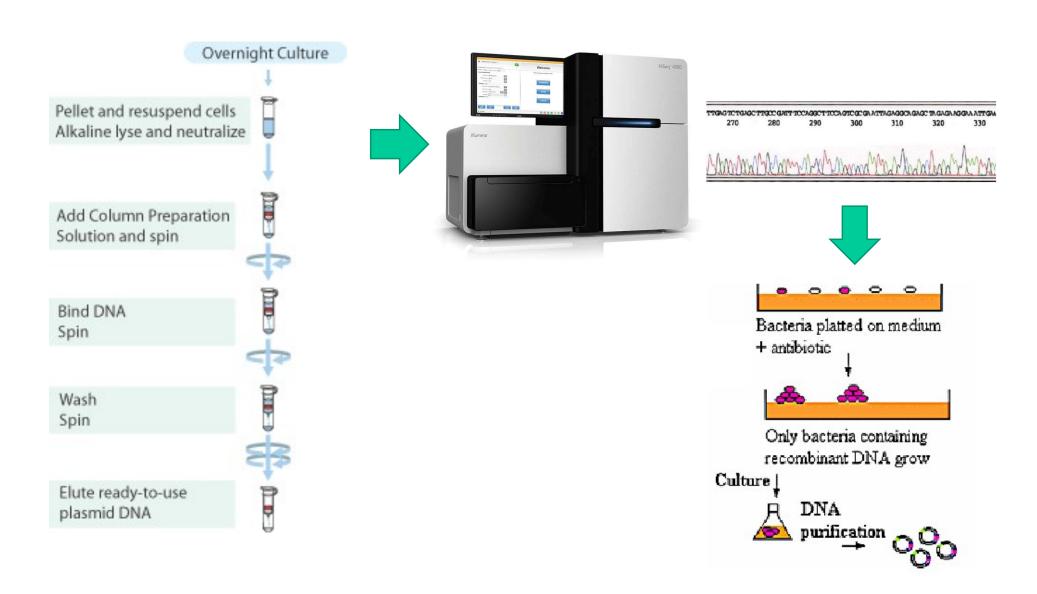

Os ciclos de PCR se repetem por 25 ou até 30 vezes, gerando milhões de cópias a partir de um único gene.



291 pb (gene amplificado visualizado por eletroforese em gel de agarose)

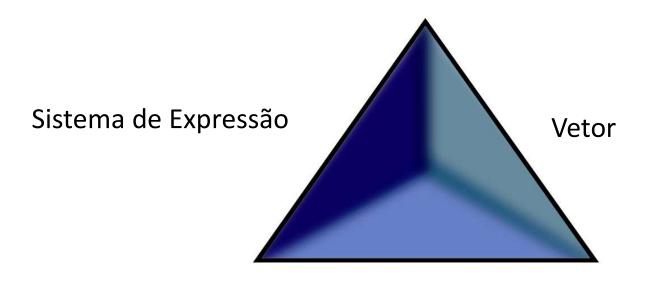
4º Passo: Corte com as enzimas de restrição e ligação (vetor + inserto) utilizando a enzima DNA Ligase

5º Passo: Inserção do vetor contendo o gene de interesse em *E. coli* "competente" (Transformação) para multiplicação dos plasmídeos


Fonte: Brown (2003)

5º Passo (cont.): Inserção do vetor contendo o gene de interesse em *E. coli* "competente" (Transformação) para multiplicação dos plasmídeos

- Utilizar "linhagem de clonagem",
 mutante para endonuclease (Ex. E. coli DH5a)
- Bactérias que recebem o plasmídeo se tornam resistentes ao antibiótico
- Pode-se então multiplicar as bactérias em frascos agitados (Erlemeyers) e purificar os plasmídeos visando à análise por sequenciamento, armazenamento e futura inserção em linhagens de produção, por exemplo, a *E. coli* BL21(DE3) comentadas anteriormente neste curso.


Fonte: Brown (20)

6º Passo: Após a Purificação e o Seqüenciamento, é feita a inserção do vetor contendo o gene de interesse em *E. coli* (linhagens de Expressão)

Avaliações Iniciais de Expressão e Análise da rProteína

Efeito das Condições de Crescimento (avaliação preliminar)

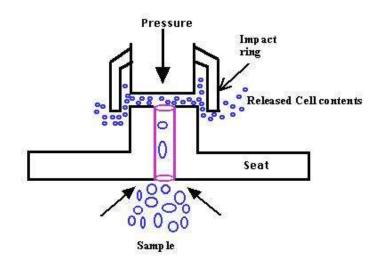
Condições de Crescimento

Avaliação Preliminar das Condições de Crescimento e Expressão

São estudos geralmente realizadas em Erlenmeyers ou pequenos biorreatores

Variáveis geralmente estudadas nos "Estudos de Expressão":

- Composição do meio de cultura (fonte de carbono, nitrogênio, aminoácidos, etc)
- Temperatura de crescimento e indução
- Concentração do indutor
- Tipo de indutor (ex. IPTG vs Lactose)
- Tempo de indução
- Aeração e agitação



Rompimento Celular

Uma vez determinada a melhor condição de expressão, parte-se para a produção em maior quantidade. A metodologia depende da escala de trabalho. Em pequena escala é geralmente feita por sonicação. Em maior escala, são bastante usados os homogeneizadores a alta pressão. Extração de proteínas presentes no periplasma é feita normalmente por *shock* osmótico.

Ultrassom

Homogeneizador de alta pressão

Purificação e Caracterização de Proteínas Recombinantes (exemplos)

His • Tag

 – 6, 8, or 10 aminoácidos, N ou C-terminal (Purificação por IMAC)

T7•Tag

– 11 aminoácidos, N-terminal(Purificação por Afinidade/anticorpos)

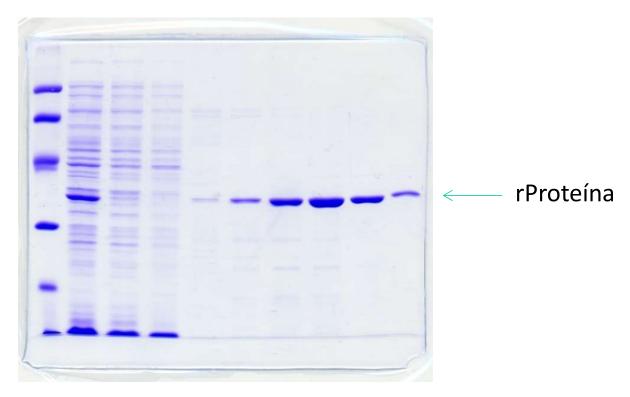
GST•Tag ou MBP•Tag

N ou C-terminal

(Purificação em resinas de Glutationa ou Amilose)

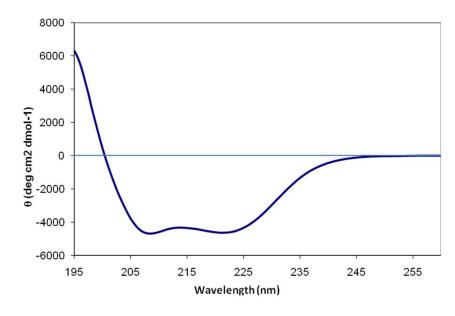
Desvantagen:

Remoção do "Tag"!


Obs: "Tags" não são usados em biofármacos comerciais (alta imunogenicidade)

Purificação de Proteínas Recombinantes (exemplo)

Purificação de rProteína (com His.tag) por IMAC utilizando resina de níquel imobilizado


Gel de eletroforese "SDS-PAGE" contendo diferentes frações de uma cromatografia

Caracterização de proteínas recombinantes

Uma vez purificada, a proteína pode ser analisada por inúmeros métodos visando a verificar sua identidade, integridade, tamanho, enovelamento, estabilidade, atividade biológica, etc.

Alguns dos principais métodos utilizados são:

- SDS-PAGE
- -Dicroísmo circular
- Espectrometria de massa
- Cromatografia de exclusão molecular
- Espalhamento de raio X a baixo ângulo
- Espalhamento de luz
- Sequenciamento
- Outros... (Segundo normas das agências reguladoras)

Análise por dicroísmo circular de uma proteína recombinante

