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Rasch Model

Matthias von Davier

3.1 Introduction

The Rasch model (Rasch, 1960, 1966a,b) is widely used and highly praised by some 
researchers but criticized by others who prefer more highly parameterized models for 
item response data. The reason behind both of these con!icting viewpoints is that the 
Rasch model can be derived from a small number of simple assumptions. Proponents say 
these assumptions form a mathematically elegant foundation of the model, while oppo-
nents say they are rather restrictive.

Even though this divide exists, many researchers in educational measurement, psy-
chometrics, patient-reported outcomes (including quality-of-life research), and other 
domains are at least familiar with the name of the Rasch model and are aware that it is an 
important approach in the "eld that has inspired many applications and methodological 
developments.

The amount of research on the Rasch model is almost impossible to summarize in a 
single chapter. For more information, readers are referred to edited volumes on the Rasch 
model, its extensions, and diagnostics (e.g., Fischer and Molenaar, 1995; von Davier and 
Carstensen, 2007) or the detailed chapter by Fischer (2006). This chapter focuses on an 
introduction of the model, highlighting its derivation and links it to other models. In doing 
so, it touches only lightly on some of the most important results on speci"c objectivity and 
parameter separability (e.g., Rasch, 1960, 1966a,b), as well as on consistent estimation (e.g., 
Kiefer and Wolfowitz, 1956; Andersen, 1972; Haberman, 1977; de Leeuw and Verhelst, 1986; 
Follmann, 1988; Lindsay et al., 1991), "t diagnostics, model testing (e.g., Andersen, 1973; 
Molenaar, 1983; Glas, 1988a, 2007; Rost and von Davier, 1994, 1995), and attempts to put the 
effects of model misspeci"cation in context (Molenaar, 1997).
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3.2 Presentation of the Model

Tasks in which examinees are asked to read sentences aloud are an example of the type 
of items for which the Rasch model was originally developed, as is a series of problems 
requiring the use of essentially the same mathematical operation but with different num-
bers. In the motor domain, the Rasch model could be used to analyze repeated attempts of 
trials, such as the high jump with different heights of the bar or free throws with different 
distances from the basket. With the advent of the computer, we could also add repeated 
matches of chess players against computer programs of different strengths to this list. The 
commonality is that these examples confront a test taker (or athlete or player) with a series 
of very similar trials or items to be mastered, with success or failure expected to depend 
only on a speci"c skill of the examinee and stable common characteristics of the different 
items.

The following notational conventions are used: Let U = (U1, …, UI) denote a vector of 
discrete observed variables, with Ui ∈ {0,1} and 1 indicating success and 0 indicating  failure. 
For  each test taker p = 1, …, P, let Upi ∈ {0,1} denote the test taker’s response in terms 
of success or failure on item i. Rasch (1966a) introduces the model using the following 
assumptions:

 1. The probability that an examinee p succeeds in trial i is
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  which implies that Pr{Ui = 1|p} = (τp/ξi + τp) and Pr{Ui = 0|p} = (ξi/ξi + τp).
 3. Stochastic independence of these probabilities holds for examinee p attempting 

multiple trials i = 1, …, I.

Note that with the transformation θp = ln(τp) and βi = ln(ξi), we obtain an equivalent form 
of the Rasch model:
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which relates more readily to other logistic models (Volume One, Chapter 2).
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Parameters τp and ξi are unknown quantities that describe the level of skill or pro"ciency 
of examinee p and the dif"culty of item i, respectively. Presenting the Rasch model as in 
Equations 3.1, 3.2, or 3.3 may be less familiar but helps to relate the model to a wider range 
of approaches for the analysis of (multivariate) binary data. Also, the fractions in Equation 
3.3 relate the Rasch model in a straightforward way to the simple estimate of success prob-
abilities based on sample frequency of successes and failures for repeatable trials. Further, 
note that the ratio of parameters τp and ξi in the second assumption are the (betting) odds 
for a binary variable, that is, the ratio of the probabilities of success and failure. A few very 
important properties of the Rasch model (as well as some of more general item response 
theory, or IRT, models) can conveniently be illustrated based on this representation of the 
model. If the Rasch model holds for all examinees p in a given population and for items 
i = 1, …, I, it can be shown that

• Comparisons of examinees can be carried out independent of the items involved. 
For any item i, the ratio of parameters for two examinees p and p′ equals
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• Similarly, comparisons of items i and i′ can be carried out independently of the 

examinees involved. For any examinee p, we have
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• Likewise, a direct comparison of item dif"culties or examinee pro"ciencies is 
possible even when two sets of observations overlap only partially, or if two sets 
of observations are connected only through a third set of observations (items or 
examinees). For example, if examinee p took only items i and i′ while examinee q 
took items i′ and i″, how do we compare between item i and i″? The answer is eas-
ily obtained if the different λip parameters are known. This follows because
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 even though the two items have never been taken together, provided that there 
is a item i′ taken by two (groups of) examinees that links items i and i″. This 
feature can be utilized for comparisons among items or test takers in the same 
way. As an example, Glas (1988b) shows how the Rasch model can be applied to 
multistage testing with a large number of different test forms assigned to different 
examinees.

There is only one issue: The parameters λij are unknown, and naïve estimators are 
not available because each test-taker-by-item interaction is, in a typical testing situation, 
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observed only once. The solution to this problem is an approach that capitalizes on the 
suf"ciency (parameter separability) properties of the Rasch model. For any two items i and 
i′, consider the conditional probability of solving i given that exactly one of the two items 
was solved:

 Pr{ | }.U U Uip ip i p= + =′1 1

If the Rasch model holds, local stochastic independence can be used. Then, applying 
Equation 3.3, the probability can be written as
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which, upon some simpli"cation, yields
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for any examinee p. This is a central result, which we will discuss for the case of more than 
two items below. For now, we only note that Equation 3.5 shows that by conditioning on 
the total score on any two items, the examinee parameter τp is effectively eliminated from 
the conditional probability.

Now assume that p = 1, …, P test takers with parameters τp were sampled randomly 
from the population for which the Rasch model holds. Consider the sample estimate of the 
marginal conditional probability of observing success on item i given that exactly one of 
the two items i and i′ was solved:
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Taking the expectation yields
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Inserting Equation 3.4 for each of the expected values inside the sum and simplifying 
yields
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Note that this is the expected value of the sample estimate of the marginal conditional 
probability Pr |{ }! U U Ui i i= + =′1 1  of observing success on item i given that exactly one of 
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the two items i and i′ was solved. By symmetry, the ratio of this estimator and its comple-
ment yields
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This means that the ratio of any two item parameters can be compared by marginal two-
way counts independent of the sample of test takers that was used.

As Rasch (1966a) stated:

Our aim is to develop probabilistic models in the application of which the population 
can be ignored. It was a discovery of some mathematical signi"cance that such models 
could be constructed, and it seemed remarkable that data collected in routine psycho-
logical testing could be fairly well represented by such models (p. 89).

The results presented in Equations 3.7 and 3.8 allow comparisons of item dif"culties 
without looking at properties of the sample of examinees that were used to obtain the 
sample statistics in Equation 3.6. In a testing situation, we typically have many more test 
takers than items in the test. These results are particularly useful in this situation: If the 
Rasch model holds, the only requirement to be ful"lled is a large enough sample size from 
the population of interest in order to obtain estimates of desired accuracy for Equations 3.6 
and 3.8. By symmetry, in a situation in which there are few test takers but a large number 
of randomly chosen items, examinees can be compared independent of the sample of items 
they took.

This particular feature of the Rasch model is sometimes referred to as “parameter sepa-
rability” or “speci"c objectivity.” The same feature is not found in most other higher para-
metric item response models, with only a few exceptions (e.g., Verhelst and Glas, 1995). The 
feature, which is more generally based on the fact that the Rasch model is an exponential 
family model with simple suf"cient statistics, is important in derivations of conditional 
maximum likelihood (CML) estimation methods that can be established simultaneously for 
all item parameters without introducing bias by nuisance parameters or assumptions about 
the distribution of unobserved test-taker parameters (e.g., Andersen, 1972; Verhelst and 
Glas, 1995). The feature can also be used to estimate pairwise relationships between item 
parameters (Zwinderman, 1995). Moreover, this feature puts the Rasch model—or better, its 
ability to compare two items (or two test takers) independent of the others—in the context 
of exponential family models for paired comparisons in incomplete designs (Zermelo, 1929; 
Bradley and Terry, 1952). The connection to paired comparison models also allows stating 
conditions for the existence of maximum likelihood estimators (Fischer, 1981). It is of par-
ticular importance for linking or equating multiple test forms using the Rasch model as it 
allows comparisons across a large set of items or test takers without the requirement that all 
test takers have responded to all the items, for example with multistage tests (Glas, 1988b).

3.3 Parameter Estimation

Several estimation methods are available for the Rasch model. This chapter focuses on 
maximum likelihood methods and presents a short description of each method while 
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providing more detail on one that can be considered as most directly utilizing the math-
ematical properties of the Rasch model. Commonly discussed estimation methods for the 
Rasch model are

 1. Joint maximum likelihood (JML): This method attempts to estimate all parameters 
τp and ξi for items i = 1, …, I and respondents p = 1, …, P simultaneously. There are 
well-known results that show that a joint estimation of parameters leads to biased 
estimates if I ≪ P (Kiefer and Wolfowitz, 1956). For the Rasch model, the main 
result given by Andersen (1972) and Haberman (1977) is that the bias is of order 
(I/(I − 1)). Haberman (1977, 2004) notes that besides this bias of JML estimates, JML 
estimation is often problematic because ("nite) estimates do not exist (see also 
Fischer, 1981) when there are respondents with perfect scores or with a vector of 
all incorrect responses. It should be noted that alternatives exist that do not share 
these issues, so there is no need to use JML methods in typical testing situations.

 2. Maximum marginal likelihood (MML): This method is, among maximum likeli-
hood methods, the most commonly used approach for higher parameterized item 
response models. In order to apply MML estimation, an assumption concerning 
the distribution ϕ(θ) of examinee parameters is necessary to enable the calculation 
of the marginal probability:
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  While MML is a commonly used approach in IRT also available for the Rasch 
model (Thissen, 1982), there is an issue of choice of the distribution ϕ(θ). For 
example, many software packages allow only normal distributions here and also 
approximate the integral in the equation using numerical quadrature. Note, how-
ever, that the distribution does not need to be normal (Andersen and Madsen, 
1977; Thissen, 1982) and that the MML approach can be used with more general 
distributions (e.g., Xu and von Davier, 2008; Xu and Jia, 2011).

 3. Pairwise (conditional) estimation: As shown in Equations 3.7 and 3.8, simple ratios of 
probabilities can be used to eliminate the parameters associated with respondents to 
obtain estimates of parameters τp and ξi (e.g., Zwinderman, 1995; Andrich, 2001).

 4. Nonparametric or semi-nonparametric estimation using located latent classes 
(LLCA): de Leeuw and Verhelst (1986), Lindsay, Clogg and Grego (1991), Follmann 
(1988), and Formann (1994) describe an estimation method that is based on approx-
imating the integral in Equation 3.9 by a sum over a small number of unobserved 
groups instead. This approach estimates the marginal probability as a "nite sum:
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  over g = 1 … G latent groups with locations θg and relative sizes πg with ∑ =g gπ 1. 
Heinen (1996) describes these approaches for the Rasch model in more detail, and 
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Haberman et al. (2008) describe an extension of this approach to multidimensional 
item response models, while Kelderman (1984) describes log-linear-type Rasch 
models.

 5. CML: This is the estimation approach that can be considered most fundamen-
tally based on the existence of simple suf"cient statistics (i.e., what Rasch called 
speci"c objectivity) in the Rasch model. That is, the CML approach is based on 
a general version of result presented in Equation 3.5 capitalizing on the fact that 
the sum of correct responses on the number of items i = 1, …, I to which an exam-
inee p responds is a suf"cient statistic for his or her parameter θp (e.g., Andersen, 
1977; Bickel and Doksum, 1977). Consequently, utilizing the factorization theo-
rem of suf"ciency allows the construction of estimation equations for β1, …, βI 
that do not contain any examinee parameters. Fischer (1981) provides necessary 
and suf"cient conditions for the existence and uniqueness of CML estimates in 
the Rasch model, while Eggen (2000) describes minimal loss of information due 
to the conditioning on this suf"cient statistic in CML relative to JML and MML. 
It is important to note that, unlike the approach in Equations 3.9 and 3.10, CML 
allows item parameter estimation without making any assumption about the dis-
tribution of θ.

The remainder of this section presents the CML estimation method in more detail. 
For the Rasch model, using local stochastic independence, the probability of a vector of 
responses u = (u1, …, uI) is
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Let S ui
I

i= ∑ =1  denote the sum of correct responses for the vector. Then, we have
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Further, let Pr{S|p} denote the probability of score S when testing examinee p, which can 
be written as
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The conditional probability of the response vector given the sum score S is de"ned as
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Inserting Equations 3.12 and 3.13 into Equation 3.14 and rearranging the result, we obtain
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which does not contain the examinee parameter θp. Introducing the symmetric functions 
(e.g., Andersen, 1972; Gustafsson, 1980)
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and marginalizing over the sample distribution of the examinees, we obtain
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for the conditional probability of a response vector u = (u1, …, uI) given total score S. Note 
that Pr{0, …, 0|0} = Pr{1, …, 1|I} = 1 holds for the extreme score groups 0 and I because there 
is a unique single pattern of responses that produces each of these scores.

It is important to note that all items are not required to be taken by all respondents: 
The same approach to conditional estimation can be applied using a generalized version 
of the symmetric functions and Equation 3.17 in which an indicator vector Jp = (jp1, …, jpI), 
with jpi ∈ {0, 1} associated with each test taker p showing the subset of items taken by this 
person. We can then de"ne

 

Pr{ | , }
exp

exp
:

u

v

S p
j u

j
J

i pi i
i

I

v S
i p

p

i Jpi
I

=
−





∑
−

=

={ }

∑
∑

=

β

β

1

1

ii i
i

I
v

=∑



1

 

(3.18)

with S j uJ i
I

pi ip = ∑ =1  de"ning the total score based on the subset of items actually taken 
by p. All subsequent calculations can be adjusted similarly to realize this more general 
approach, with the advantage of, for instance, estimation of all parameters across multiple 
test forms in incomplete block designs on the same scale. Minimal requirements for this 
type of model-based linking were published as early as 1929 by Zermelo.

Note that the symmetric functions in Equation 3.16 can be written in a recursive 
manner as

 γ β γ γS i
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where γ s
i( )( )β  is de"ned as the symmetric function calculated under omission of item i 

(e.g.,  Andersen, 1973; Gustafsson, 1980; van der Linden, Volume Two, Chapter 6). 
Moreover, application of some basic calculus shows that the derivative of γS() with 
respect to βi is

 

∂
∂

= − − −
γ

β
β γS

i
i

i
S

( ) ( ).exp( ) ( )β β1

 
(3.20)

The conditional likelihood function for p = 1, …, P independently observed respondents, 
each responding to i = 1, …, I items, can be written as
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with score probabilities Pr{S} = πS that can be based on relative sample frequencies Hs/P of 
the examinees’ total scores Sp = 0, …, I. The right-hand side of Equation 3.21 holds because 
Pr{u|T} = 0 if T ≠ Sp. Dropping the terms lnπS that do not contain any item parameters and 
inserting Equation 3.17 into Equation 3.21 yields
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Collecting the terms in Equation 3.22 into score groups S = 1, …, I − 1 (the terms for the 
extreme score groups vanish), we obtain
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with Fi denoting the count of the correct responses for item i in score groups S = 1, …, I − 1, 
and HS denoting the frequency of score S in the sample.

The partial derivatives of Equation 3.23 with respect to βi are
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which upon transformation, simpli"cation, and insertion of Equation 3.19 into Equation 
3.24 yield
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Note that this is a result to be expected for exponential families (Bickel and Doksum, 
1977; Andersen, 1980; Haberman, Volume Two, Chapter 4) because
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holds for the conditional form of the Rasch model. The derivatives in Equation 3.25 can 
be used either for the Newton–Raphson algorithm or with gradient (von Davier and Rost, 
1995) or quasi-Newton methods (e.g., Dennis and Schnabel, 1996) to obtain maximum like-
lihood estimates of β1, …, βI. When Newton methods are used, the second-order deriv-
atives of Equation 3.25 are easily derived. Solving Equation 3.19 for exp(−βi)γ(i)

S−1() and 
inserting the result into Equation 3.26 yields
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Using the quotient rule for differentiation, along with some collecting of the terms and 
further simplifying, provides
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Alternatively, applying some of the properties of exponential families to the Rasch 
model (Bickel and Doksum, 1977; Haberman, 1977; Andersen, 1980) in order to "nd the 
second-order derivative of Equation 3.24 with respect to βi will produce the equivalent 
result
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Once item parameter estimates ˆ ˆ, ,β β1 … I  are available, they can be plugged into the 
joint likelihood equations. Solving the equations while holding ˆ ˆ, ,β β1 … I  constant pro-
vides estimates of the examinee parameters. Alternatively, bias-corrected estimators 
can be found by maximizing a penalized likelihood function while holding the item 
parameters "xed (Warm, 1989; Firth, 1993). Finally, Bayesian estimates of the examinee 
parameters can be generated using their posterior modes or expectations, for instance, 
by adopting some “weakly informative” (Gelman et al., 2003; Gelman, 2007) prior distri-
butions for them.
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3.4 Model Fit

Numerous approaches to test the "t of the Rasch model are available (e.g., Andersen, 1973; 
Martin-Löf, 1973; van den Wollenberg, 1982; Molenaar, 1983; Glas, 1988a). Only a selection 
of tests speci"cally developed for this particular model will be discussed. More recent "t 
measures based on generalizations of Pearson χ2 statistics have been developed for the 
Rasch model by Glas (1988a, 2007) and Glas and Verhelst (1995). For a more comprehensive 
overview of these methods, refer to Glas (Volume Two, Chapter 10).

Many of the early attempts to test the "t of the Rasch model were based on the fact that 
if the model holds, its item parameters can be estimated consistently regardless of the 
population involved (Rasch, 1966a; Andersen, 1973). These tests typically split the sample 
into two or more groups and estimate the parameters of the conditional model in each of 
them separately. The rationale behind these tests is that if parameter estimates differ sub-
stantially in different subsamples, then the Rasch model cannot adequately describe the 
whole sample and hence has to be rejected for the population from which the sample was 
drawn. Rasch (1960) utilized a graphical representation in the form of a simple scatterplot 
to determine whether separately estimated parameters line up without any obvious devia-
tions. This approach is sometimes referred to as Rasch’s graphical model test.

Andersen (1973) proposed a more rigorous statistical test of the Rasch model. This 
approach requires splitting the sample into groups of respondents according to their 
sum score S and estimating the Rasch model in each of the (nonextreme score) groups 
separately. Note that CML estimation is possible even if all respondents have the same 
( nonextreme) sum score, because the likelihood function in Equation 3.23 maximized with 
respect to the item parameters does not depend on the actual total scores observed. If we 
split the sample by score groups, we may de"ne
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where F uiS p S pi= ∑ |  denotes the count of the correct responses for item i only for respon-
dents with sum score S and HS is de"ned as above.

Maximizing ln | , ,( )LS β ′ … ′u uHs1  with respect to the item parameters for each score group 
S = 1, …, I − 1 separately yields score-group-based estimates ˆ ˆ ˆ( , , ).βs s Is= …β β1  As a test for 
the Rasch model, Andersen (1973) proposed evaluation of the likelihood ratio
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This expression evaluates the gain in likelihood based on separate estimation of item 
parameters in score groups, β̂s, against single estimates based on the total sample, β̂ .

Alternatively, the model can be tested splitting the sample into groups using background 
variables, such as level of education (e.g., years of schooling in broad categories) or gender. 
Rost and von Davier (Rost and von Davier, 1995; Volume One, Chapter 23) proposed using 
a mixture distribution Rasch model as the alternative hypothesis in a test of parameter 
invariance, introducing a split of the sample of examinees into latent groups.
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Another test of the Rasch model is the Martin-Löf test (e.g., Glas and Verhelst, 1995; 
Verguts and De Boeck, 2000). This test is one of the few that checks on the unidimensional-
ity assumption for the Rasch model (Verhelst, 2001). Unlike the previous tests, which split 
the examinee sample into subsamples to check on its homogeneity, the Martin-Löf test 
splits the item set into two subsets and then addresses their dimensionality.

Some other "t measures discussed in the literature are based on response residuals:

 r u U ppi pi i= − =Pr{ | }.1

These residuals are aggregated either by "rst squaring and then adding them or by "rst  
adding them, and then squaring the result. Aggregation across items yields a measure of 
person "t; across persons, it yields a measure of item "t. Depending on the type of aggre-
gation, different types of standardization have been proposed (Wright and Stone, 1979); 
however, the exact null distribution of these standardized statistics is unknown (Wells 
and Hambleton, Volume Two, Chapter 20).

Fit measures based on CML inference have also been presented (e.g., Rost and von Davier, 
1994). More recent approaches to model "t include the work by von Davier and Molenaar 
(2003) on person "t indices for Rasch models and its extensions to multiple populations 
and mixture distributions. Klauer (1991) developed a uniformly most powerful test for the 
person parameter in the Rasch model, while Ponocny (2000) presented an exact person "t 
index. Verhelst (2001) compared the Martin-Löf test with van den Wollenberg’s (1982) as 
well as Molenaar’s (1983) splitter item technique. He also proposed a new test statistic that 
addresses some of the statistical issues involved with the latter.

An important issue is the effect of mis"t of the Rasch model on its use. Molenaar (1997) out-
lined a rationale to evaluate whether the increase in model complexity involved in replacing 
the Rasch model by a more highly parametrized model is justi"ed. Also, person parameters 
estimates will still correlate highly, often substantially above 0.9, between different unidi-
mensional IRT models applied to the same data. Finally, if the Rasch model is found not to 
"t the data well, more general models are available that preserve many of its characteristics, 
including the one-parameter logistic model (OPLM) (Verhelst and Glas, 1995) and logistic 
mixture models (Rost and von Davier, 1995; Volume One, Chapter 23).

3.5 Empirical Example

This empirical example is based on 10 items taken from a cognitive skills test for children 
ages 9–13. The dataset is available through the exercises in the textbook by Rost (2004). In 
the current example, the focus is on parameter recovery using different estimation meth-
ods. The item parameter estimates from the original dataset were treated as the generating 
parameters for a simulated dataset with known characteristics. These generating param-
eters (in Table 3.1 denoted by “Truth”) served as the targets that were to be recovered by 
the different estimation methods. The dataset was simulated with 10 item responses for 
each of 15,000 test takers drawn from a normal ability distribution with mean 0.0 and 
standard deviation 1.5.

The item parameters were estimated utilizing the CML and JML estimation methods 
in WINMIRA 2001 (von Davier, 1994, 2001) and BIGSTEPS (Wright and Linacre, 1991), 
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respectively, and a semiparametric approach (Heinen, 1996). The latter was implemented 
specifying four different latent classes (LLCA) and estimating the model with the mdltm 
software (von Davier, 2008).

The comparison focused primarily on the differences among the CML, JML, and LLCA 
methods for the estimation of item parameters and between JML and weighted likelihood 
estimation (WLE; Warm, 1989) for the estimation of the person parameters. Table 3.1 shows 
the generating item parameters and their CML, LLCA, and JML estimates along with the 
standard errors as provided by the programs.

The estimated standard errors for the three methods were comparable, while the esti-
mates for CML and LLCA were virtually identical and appeared to be closer to the true 
values of the parameters than the JML parameter estimates. Since CML and LLCA are 
virtually identical, we focus our discussion and compare the CML and JML estimates only.

Figure 3.1 shows the differences between the CML and JML estimates and the true item 
parameters.

TABLE 3.1

Generating Parameters (Truth) and CML, LLCA, and JML Item Parameter Estimates 
for the Example Data

Item Truth CML S.E. LLCA S.E. JML S.E.

1 −0.941 −0.921 0.021 −0.921 0.020 −1.030 0.020
2 −0.457 −0.461 0.020 −0.462 0.020 −0.520 0.020
3 0.265 0.241 0.020 0.242 0.019 0.270 0.020
4 0.919 0.917 0.021 0.917 0.020 1.030 0.020
5 1.335 1.350 0.022 1.351 0.021 1.520 0.020
6 −1.223 −1.235 0.022 −1.235 0.021 −1.390 0.020
7 0.022 0.033 0.020 0.033 0.019 0.040 0.020
8 −0.457 −0.429 0.020 −0.430 0.020 −0.480 0.020
9 0.832 0.816 0.021 0.817 0.020 0.910 0.020
10 −0.295 −0.310 0.020 −0.311 0.020 −0.350 0.020
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FIGURE 3.1
Differences between CML and true parameters (diamonds) and JML and true parameters (squares) for the 
dataset.
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As Figure 3.1 shows, the bias of JML estimates correlated negatively with the true param-
eter, while much smaller differences were seen for CML with no visible correlation with 
the true parameter values.

Table 3.2 shows the person parameter estimates obtained using subsequent maximum 
likelihood estimation (MLE) with the CML item dif"culties as "xed constants (MLE), 
WLE, and the estimates when jointly maximizing the item and person parameters (joint 
maximum likelihood estimation, or JMLE).

While it is possible to calculate means and variances of the JML and ML estimates across 
score groups 1–9, it is questionable whether anything is gained given that 1530 cases in 
the data were found to be in extreme score groups for which ("nite) estimates do not exist 
(Haberman, 1977, 2004; Fischer, 1981). Also, note that the entries in the table for JML and 
score groups 0 and 10 were extrapolated—not estimated—values, so it is meaningless to 
evaluate their average and variance as well. The mean estimate for the person distribution 
for the LLCA approach was 0.001, with a standard deviation of 1.423. The average of the 
WLEs was 0.001 and their standard deviation was 1.567, respectively. These values need to 
be compared to the generating values of 0.00 and 1.5, respectively.

3.6 Discussion

This chapter presented an introduction to the Rasch model and the estimation of its param-
eters using a customary method that capitalized on the parameter separability offered 
by the existence of simple suf"cient statistics for this exponential family model. It was 
pointed out that, while there are alternative unbiased estimation methods, only CML esti-
mation makes use of this property to the fullest extent. However, the conditional approach 
is only applicable to the Rasch model and a few of its extensions, while the LLCA approach 
presented above can also be used for more highly parameterized IRT models (e.g., Heinen, 
1996; Haberman et al., 2008; von Davier, 2008).

The Rasch model is used operationally in international as well as national test and 
assessment programs. A variety of software programs for consistent estimation (e.g., 

TABLE 3.2

Person Parameter Estimates Obtained Using Three Different Methods

Score Frequency MLE S.E. WLE S.E. JMLE S.E.

0 780 −3.348 1.564 (−3.27) (1.47)
1 1162 −2.429 1.079 −2.094 0.961 −2.49 1.08
2 1493 −1.565 0.824 −1.415 0.795 −1.61 0.83
3 1556 −0.970 0.730 −0.894 0.721 −1.00 0.74
4 1637 −0.472 0.689 −0.440 0.687 −0.49 0.70
5 1702 −0.007 0.678 −0.009 0.678 −0.01 0.69
6 1621 0.459 0.692 0.424 0.690 0.47 0.70
7 1591 0.964 0.735 0.886 0.726 0.99 0.75
8 1510 1.567 0.830 1.417 0.801 1.61 0.84
9 1198 2.442 1.084 2.109 0.969 2.50 1.09
10 750 3.377 1.574 (3.29) (1.48)

Note: JML estimates and standard errors for the extreme-score groups were not estimated but extrapolated.
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Pfanzagl, 1994) of its parameters are available, including Conquest (Wu et al., 1997; Adams 
et al., Volume Three, Chapter 27), LPCM-WIN (Fischer and Ponocny-Seliger, 1998), Logimo 
(Kelderman and Steen, 1988), Multira (Carstensen and Rost, 2003), RSP (Glas and Ellis, 
1994), RUMM2010 (Andrich, 2001), and WINMIRA (von Davier, 1994, 2001). Most of these 
software packages also offer model extensions such as the ability to estimate Rasch mod-
els for polytomous data (e.g., Volume One, Chapters 1 and 7), models with covariates of 
person parameters (Volume One, Chapters 32 and 33), and (dichotomous as well as poly-
tomous) models for multiple populations (Volume One, Chapter 23). In addition, there 
exist add-ons to general-purpose statistical software such as R (R Core Team 2012), STATA, 
and SAS; for example, the eRm (Mair and Hatzinger, 2007) and ltm packages (Rizopoulos, 
2006). These add-ons, due to their nature of being implemented as interpreted scripts in 
a general-purpose software package, are typically somewhat less suitable for very large 
datasets as they offer lower computational performance than dedicated programs.

The Rasch model will remain the model of choice for some researchers, while it will 
remain the “too restrictive” IRT model “that never "ts the data” (de Leeuw, 1997) for oth-
ers. While it is often found that a more general IRT model will "t the data better, Molenaar 
(1997) reminds us that even with some mis"t, use of the Rasch model may still be war-
ranted when the conclusions drawn from this model differ little from a higher parameter-
ized unidimensional IRT model. This does not mean that the issue of model "t should be 
ignored. As with any other model, it is imperative to examine whether the Rasch model 
"ts the data satisfactorily.
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