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Unidimensional Logistic Response Models

Wim J. van der Linden

2.1 Introduction

The family of models discussed in this chapter is for responses to dichotomous items. This 
family of models has a long tradition of successful applications in educational and psycho-
logical testing as well as several other areas of behavioral and cognitive measurement. In 
fact, it is by far the most frequently used family of models for these applications.

The most general member of the family, known as the three-parameter logistic (3PL) 
model, was introduced by Birnbaum (1968). It seems fair to ascribe the origins of a special 
version of it, known as the two-parameter logistic (2PL) model, to Lord (1952). Although 
he actually used the normal-ogive instead of the logistic response function, his model 
had a parameter structure identical to that of the 2PL model. The one-parameter logistic 
(1PL) model is a special case of the 2PL model. It can be shown to be equivalent to the 
Rasch model. Rasch (1960, Section 6.8) was aware of this option but invariably used the 
simpler representation of it with exponential versions of the dif!culty and ability param-
eters in this chapter. However, as the Rasch model is an exponential family model from 
which it borrows special statistical properties, it deserves a separate review (Volume One, 
Chapter 3). In this chapter, we therefore review the 1PL model only to the extent that it 
shares statistical properties with the other two models.
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2.2 Presentation of the Models

All three models exist as versions with !xed-effects and random-effects parameters. 
Historically, the introduction of the former preceded the latter. The main reason for the 
introduction of the latter was to overcome the computational issues associated with the 
!xed-effects models discussed later in this chapter.

2.2.1 Fixed-Effects Models

The distributions addressed by the !xed-effects versions of the three models are for the 
dichotomous responses Upi = 0,1 by test takers p = 1, …, P on items i = 1, …, I. The prime 
examples of this type of responses are items scored as correct or incorrect. The distribu-
tions are Bernoulli with probability functions

 f u p P i Ipi pi pi
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where πpi ∈ [0,1] are the success parameters for the distributions; that is, the probabilities of 
a response Upi = 1 by the test takers on each of the items (Casabianca and Junker, Volume 
Two, Chapter 2).

Making the usual assumption of independence between the responses by the same test 
taker (“local independence”), and assuming they all worked independently, the probabil-
ity function of the joint distribution of a complete response matrix, U  ≡ (Upi), is the product 
of each of these Bernoulli distributions:
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(2.2)

with parameter vector  ≡ (π11, …, π1I, …, πP1, …, πPI).
The 3PL model explains each πpi as a function of parameters for the effects of the test 

taker’s ability and the properties of the item. More speci!cally, let θp denote the parameters 
for the effects of the individual abilities of the test takers and ai, bi, and ci the effects of the 
items generally interpreted as representing their dif!culties, discriminating power, and 
success probabilities when guessing randomly on them, respectively. For a given response 
matrix, the 3PL model equations are
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(2.3)

with θp ∈ (−∞, ∞), ai ∈ (0, ∞), bi ∈ (−∞, ∞), and ci ∈ [0,1] as ranges for the values of their 
parameters. The model thus consists of P × I nonlinear equations, one for each of the 
success parameters. In other words, rather than a single-level probabilistic model, it is 
a system of second-level mathematical equations. (The statistical literature is somewhat 
ambiguous in its assignments of the number of levels to a model; some sources count the 
levels of parameters as we do here, while the others count the levels of randomness that 
are modeled.)
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It is common to introduce the 3PL model graphically instead of as the system of equa-
tions in Equation 2.3, emphasizing the shape of the success probabilities πpi as a function 
of a mathematical variable θ. Figure 2.1 shows these response functions for 40 arithme-
tic items estimated under the 3PL model. For each of these functions, the ci parameter 
represents the height of the lower asymptote to it. More formally, these parameters are 
de!ned as

 
ci pi
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(2.4)

Naively, for a multiple-choice item with A alternatives, one might expect to !nd ci = 1/A. 
But in practice, guessing turns out to be somewhat more complicated than a test taker just 
picking one of the alternatives completely at random; empirical estimates of the ci parame-
ters typically appear to be slightly lower than 1/A. The bi parameters represent the location 
of the curves on the scale for θ. Formally, they are the values of θ with success probability

 πpi ic= +( ) ,1 2/  (2.5)

that is, the probability halfway between their maximum of 1 and minimum of ci. Finally, 
the αi parameters can be shown to be proportional to the slope of the response functions at 
θ = bi, at which point the slopes take the value
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Although graphs of response functions as in Figure 2.1 de!nitely add to our under-
standing of the 3PL model, they are also potentially misleading. This happens especially 
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FIGURE 2.1
Response functions for a set of 40 arithmetic items estimated under the 3PL model.
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when, mainly for didactic reasons, the model is introduced by explaining the graph of 
the response function for one !ctitious item only. For the case of one item, the system 
of equations is not identi!ed. Consequently, as its parameters cannot be estimated, the 
model does not have any empirical meaning (see below). For the case of multiple items, as 
in Figure 2.1, the graph nicely reveals the relative values of the parameters of each of the I 
items in Equation 2.3 but still hides those of the P ability parameters.

Use of Equation 2.3 as the representation of the model also reveals that, in spite of its 
wide acceptance, the adoption of the quali!er “3PL” in the name of the model is poten-
tially confusing as well. It suggests a restriction of the parameter count to the param-
eters of one item only, ignoring both those of all other items and the ability parameters. 
However, replacing it by the more appropriate quali!er “(P + 3I)PL” would still leave 
us with a misnomer. The shapes of the response functions shown in Figure 2.1 are not 
those of a logistic function. Only the 2PL and 1PL models below have logistic response 
functions.

Finally, it is still not uncommon to !nd a version of the model with a scale constant 
D = 1.7 added to it, giving it 1.7ai(θp − bi) as its core structure. The original purpose of this 
practice was to bring the shape of the response functions close to that of the normal-ogive 
model, generally believed to be the “true model” that would give us a scale with “equal 
units of measurement” in the early days of test theory (Volume One, Chapter 1). However, 
as discussed below, the scale for the θp parameters is arbitrary up to a nonmonotonic trans-
formation, and the practice of bringing it close to the scale of a normal ogive is a relict from 
a distant past, bound to create communication problems between users of item response 
theory (IRT) rather than add to their understanding of it.

The 2PL model follows from Equation 2.3 upon the choice of ci = 0 for all items. It has
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as its system of model equations. Observe that this model does assume the logistic function
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as response function. For this choice, location parameters bi simplify to the point on the θ 
scale with success probability πpi = 0.5 for each item, which now also is the point at which 
the slope of the response functions in Equation 2.6 specializes to 0.25ai. A more substantive 
assumption underlying the 2PL model is thus absence of any guessing—an assumption 
that may hold when there is nothing at stake for the test takers. However, the model is 
sometimes applied in cases where the assumption is clearly untenable, typically with the 
claim that the ci parameters are generally dif!cult to estimate. But even if this claim were 
valid (it is not), it would empirically be more defensible to set these parameters equal to a 
value somewhat larger than zero to better account for the effects of guessing.

The 1PL model follows upon the additional assumption of ai = 1 for all items, yielding
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as its system of model equations. As already alluded to, reparameterizing the model 
through substitution of

θ τ
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into it gives us
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which is the version typically used as representation of the Rasch model (Volume One, 
Chapter 3).

Attempts have been made to add an upper asymptote to the model in Equation 2.3 to 
make it robust against careless response behavior in addition to guessing (Barton and Lord, 
1981), but this “4PL” model just has not made it. An empirically more successful model may 
be the Rasch model extended with the structure for the guessing parameters in Equation 
2.3 added to it; for details on this 1PL-G model, see San Martín et al. (2006). Finally, the suc-
cess of the family of logistic models in this chapter has led to its generalization to items with 
polytomous scoring and multidimensional ability parameters; examples of such general-
izations are reviewed by Masters (Volume One, Chapter 7), Muraki and Muraki (Volume 
One, Chapter 8), Tutz (Volume One, Chapter 9), and Reckase (Volume One, Chapter 12).

2.2.2 Random-Effects Models

In spite of the convincing nature of the logistic models, their initial number of applications 
was extremely low. For the Rasch model, the favorite method of parameter estimation 
was maximum conditional likelihood (CML) estimation (Volume One, Chapter 3), but 
due to the limited computational power available in the 1960–1970s, it appeared 
impossible to deal with its elementary symmetric functions for longer tests, even for 
Fischer’s efficient summation algorithm (van der Linden, Volume Two, Chapter 6). The 
typical estimation methods in use for the 3PL and 2PL models were maximum joint 
likelihood (JML) meth-ods. It is still not fully clear why these methods occasionally 
failed to show convergence, even for larger datasets and shorter test lengths. Although 
lack of convergence may be caused by lack of model identifiability, it is now clear that 
the major computer programs imposed effective additional restrictions to prevent this 
from happening (see below). In hindsight, these disturbing results might have been just 
due to limited numerical precision and/or the presence of the ability parameters as 
incidental parameters during item calibra-tion (Volume Two, Chapter 9).

One of the !rst attempts to neutralize the possible role of incidental parameters was 
Bock and Lieberman’s (1970) reformulation of the !xed-effects three-parameter normal-
ogive model as a model with random ability parameters. Their reformulation applies 
equally well to the logistic models.

The reformulation involves the adoption of a different probability experiment. Instead of 
a set of P !xed test takers, it assumes these test takers to be randomly and independently 
sampled from the same probability distribution. Let Θ be the random ability parameter 
assumed to have a common density f(θ) for the test takers and πi(θ) be the probability of a 
correct response to item i by a test taker with realization Θ = θ.
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The focus is on the random response vector to be observed for each random test taker 
(observe that we now have two levels of randomness). We use uv ≡ (uv1, …, uvI), v = 1, …, 2I 
to denote each possible realization of this vector. Because of local independence, the con-
ditional probability of observing Uv = uv given Θ = θ is equal to
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Continuing the argument, the marginal probabilities of observing Uv =  uv are equal to
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A random sample of P test takers amounts to an equal number of independent draws 
from the space of all possible response vector. Let Xv denote the number of times vector 
v is observed, with ∑vXv = P. The probability model for this experiment is a multinomial 
distribution with probability function
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where x ≡ (xv) and now  ≡ (πv).
Treating p = 1, …, P as index for the order in which the test takers are sampled, and using 

U ≡ (Upi) again to denote the response matrix, the function can also be written as
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with πpi given by Equation 2.3, which is the form usually met in the IRT literature. This 
form hides the crucial difference between the !xed-effects and random-effects models as 
a consequence of their different sampling distributions, though. The former is the second-
level system of P  × I equations for the Bernoulli parameters πpi in Equation 2.3. The latter 
is a system at the same level but now with the 2I equations for the multinomial parameters 
πv in Equation 2.12.

Somewhat later, Bock and Aitkin (1981) introduced an application of the expectation–
maximization (EM) algorithm for the estimation of the item parameters in the 3PL model 
based on the marginal likelihood associated with Equation 2.14, which has become one 
of the standard procedures for item calibration in IRT. A description of the logic underly-
ing the EM algorithm is provided by Aitkin (Volume Two, Chapter 12). For an application 
of the algorithm, it is not necessary for the test takers to actually be randomly sampled; 
in principle, a statistical model can produce good results even if not all of its assumptions 
are met. And extensive parameter recovery studies of item calibration with maximum 
marginal likelihood (MML) estimation with the EM algorithm have certainly proven the 
random-effects models to do so, in spite of their imposition of a mostly arbitrary common 
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density f(θ) on the ability parameters. But for the issue of model identi!ability addressed 
in the next section, it is crucial to be aware of the precise sampling model underlying it.

It is not necessary to treat the ability parameters as the only random parameters in the 
model, leaving the item parameters !xed. Several advantages may be related to the adop-
tion of random-effects parameters for the items as well (De Boeck, 2008). A natural appli-
cation of random-item IRT is modeling of the distributions of the item parameters in the 
different families of items produced by different settings of a rule-based item generator; 
for details, see Glas, van der Linden and Geerlings (Volume One, Chapter 26).

2.2.3 Model Identifiability

The problem of lack of model or parameter identi!ability arises when different combina-
tions of parameter values are observationally equivalent, that is, imply the same distri-
bution for the observed data. As it is generally impossible to use identically distributed 
data to distinguish between different parameter values, any attempt at statistical inference 
with respect to the parameters then breaks down.

Fortunately, the product of Bernoulli functions in Equation 2.2 is an example of a fully 
identi!ed sampling model. For any shift in any combination of the components of its 
parameter vector  ≡ (π11, …, π1I, …, πP1, …, πPI), the model yields a distinct joint distribu-
tion of the responses. Conversely, for any distinct response distribution, it is thus pos-
sible to infer a unique combination of values for this vector. This last statement has only 
theoretical meaning though; in the practice of educational and psychological testing, due 
to memory or learning effects, it is mostly impossible to get more than one response per 
test taker to the same item without changing the ability parameters, leaving us with the 
extreme values of zero and one as direct estimates of each success parameter.

It is at this point, however, that second-level systems of model equations as in Equations 
2.3, 2.7, and 2.8 show favor. Basically, they enable us to pool the data from multiple test tak-
ers and responses into estimates of each of the success parameters. Because of their feature 
of parameter separation (“different parameters for every p and i in the joint index of πpi”) as 
well as their cross-classi!ed nature (“multiple equations with the same parameters”), these 
systems enable us to adjust the data on the test-taker parameters for the differences between 
the items, and conversely. As a result, we effectively have multiple data points per ability and 
item parameter, and are able to combine their estimates into estimates of each of the indi-
vidual success parameters. (The problem of incidental parameters is intentionally ignored 
here.) As discussed below, these success parameters are key parameters in item response 
modeling which provide us with the empirical interpretation of the test takers’ scores.

These systems of equations are only able to do their job, however, if they are identi!ed 
themselves; that is, when, for the 3PL model, each distinct combination of values for the 
model parameters (θp, ai, bi, ci) corresponds with a distinct value of πpi. Generally, math-
ematical systems of equations are only identi!able if the number of equations is at least 
as great as the number of unknowns. Thus, at a minimum, it should hold for this model 
that P × I ≥ P + 3I—a condition which implies, for example, that for a !ve-item test we are 
unable to produce any !xed parameter estimates unless the number of test takers is at least 
equal to four.

However, the condition is not suf!cient. For one thing, as is well known, no matter the 
numbers of test takers and items, it is always possible for some subset of the model param-
eters to compensate for certain changes in the others. More speci!cally, the addition of 
the same constant to all bi and θp parameters in Equation 2.3 does not lead to a change in 
any of the πpi. Likewise, multiplying all ai parameters by a constant has no effect on these 
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success parameters when all θp and bi parameters are divided by it as well. The identi!abil-
ity problem is more fundamental, though. Deeper analysis has revealed cases for which 
the ci parameters are not identi!able either (Maris, 2002; van der Linden and Barrett, 2016). 
A more comprehensive review of identi!ability issues in IRT is provided by San Martín 
(Volume Two, Chapter 8).

For a response matrix with !xed dimensions, the only way to make the system of model 
equations identi!able is by adding more equations to it. A recent result by van der Linden 
and Barrett (2016, Volume Three, Chapter 2, Theorem 3) can be used as a check on the suf-
!ciency of such identi!ability restrictions for the logistic models in this chapter. The result 
is a formal characterization of the class of observationally equivalent parameters values 
for the 3PL model in the form of a mapping φ which, for an arbitrary test taker and item, 
for any given solution to the model equations gives us all other solutions. The mapping can 
be shown to be the vector function

 ϕ θ θ( , , , ) ( , , , )a b c u v u a ub v c= + +−1
 (2.15)

with u ≡ [φθ(θ) − φβ(β)]/(θ − β), θ ≠ b, and v ≡ φ(b) − ub = φ(θ) − uθ.
The critical quantities in this result are the (unknown) parameters u and v. Given any 

arbitrary combination of values for (θp, ai, bi, ci), they index all other combinations with 
identical values for (π11, …, π1I,  , πP1, …, πPI) in Equation 2.3.

Observe that for the choice of (u,v) = (1,0) the function just returns its input. It follows that 
adding equations to the system that effectively restrict u and v to this pair of values does 
restrict it to have only one solution as well—in other words, makes the model identi!able. 
As an example, suppose we set θp = κ1 and θ κ′ =p 2 for two arbitrary test takers p and p′ 
and constants κ1 and κ2. The !rst component of Equation 2.15 can then only take the form
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for these two test takers, leaving (u,v) = (1,0) as the only admissible values.
These two restrictions are de!nitely not the only option. More generally, it can be shown 

that in order to make the !xed-effect 3PL model identi!able, it is suf!cient to add (i) one 
linear restriction on one of the ai parameters in combination with another on one of the bi 
or θp parameters or (ii) two independent linear restrictions on the θp and/or bi parameters 
(van der Linden, 2016, Theorem 1).

The sets of identi!ability restrictions for the 3PL and 2PL model are identical. The restric-
tions for the 1PL model follow if we ignore the ai parameters. As for the ci parameters, 
the fact that they do not need to be restricted does not imply that they are automatically 
identi!able though. The mapping in Equation 2.15 is a vector function with components 
that hold only simultaneously; we should not isolate one of the components and declare 
it to hold independently of the others. The correct conclusion from Equation 2.15 is that 
the ci parameters are identi!able once all other model parameters are. In fact, our earlier 
references to speci!c cases for which the ci parameters have shown to lack identi!ability 
already implied the necessity of additional conditions.

A similar analysis for the random-effects versions of the logistic models has not resulted 
in any !nal conclusions yet. Remember that their sampling distribution is multinomial 
with the vector of marginal probabilities π = ( , , )π π1 2… I  in Equation 2.12 as parameters. 
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The good news is that the multinomial model is identi!able as well; its family of distribu-
tions is known to have distinct members for distinct vectors of success probabilities. The 
problematic part, however, is the more complicated system of equations for these success 
probabilities as a function of the model parameters in Equation 2.12, which now includes 
the unknown parameters of the density f(θ) as well.

A common practice for the 3PL and 2PL models is to set the mean and variance of the 
ability parameters equal to zero and one, respectively:

 µ σθ θ= =0 12and .  (2.16)

For the !xed-effects versions of these models, these restrictions were typically imple-
mented by renorming all ability parameters estimates upon each iteration step in the JML 
estimation procedure. It is easy to show that these restrictions pass our earlier check on 
the validity of the identi!ability restrictions for these models (van der Linden, 2016). For 
the random-effects versions, the restrictions are typically implemented through the choice 
of the standard normal density for f(θ) in Equation 2.14. Although, a formal proof is still 
missing, numerous parameter recovery studies have invariably supported the validity of 
this practice.

2.2.4 Parameter Linking

One of the consequences of the fundamental lack of identi!ability of the logistic response 
models is the necessity to link parameter values obtained in different calibration studies 
through common items and/or test takers. This is necessary even when formally identical 
identi!ability restrictions are imposed.

A simple case illustrates the necessity. Suppose the same test taker responds to differ-
ent items in two calibration studies, both with Equation 2.16 as identi!ability restrictions. 
Owing to the presence of other test takers, the restrictions have a differential effect on the 
ability parameter for this common test taker. For example, if the test taker would be among 
the most able in the !rst study but the least able in the second, the use of μθ = 0 would force 
his parameter value to be positive in the former but negative in the latter. A similar analy-
sis is possible for common items in different calibration studies.

Observe that the issue has nothing to do with the impact of estimation error; all changes 
are in what commonly is referred to as true parameter values. “True” should not be taken to 
mean unique, though. Lack of identi!ability means that each parameter has an entire class of 
observationally equivalent values. Identi!ability restrictions are necessary to reduce each of 
these classes to a unique value. These restrictions do not operate on each parameter in isola-
tion but, as an integral part of the system of model equations, have a joint effect on all of them.

The close relationship between the lack of model identi!ability and the necessity of 
parameter linking suggests an equally important role of the characterization of the equiv-
alent parameter values in Equation 2.15 with respect to the latter. Indeed, the linking 
functions required to map the unique parameters values in one calibration onto those 
in another have to be derived from Equation 2.15 as well; details are provided in van der 
Linden and Barrett (Volume Three, Chapter 2).

2.2.5 Model Interpretation

Several times so far, we have emphasized the formal nature of the response models as a 
system of equations for the test takers’ success probabilities on the items. These success 
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probabilities are the “empirical reality” explained by the models. Conversely, in order to 
empirically interpret the features of the model, we have to restrict ourselves to the given 
set of probabilities. Any appeal to a reality outside of it is speculative at best.

It follows that formal features of the response models that can be changed without 
changing the success probabilities for the test takers are meaningless. Only features that 
remain invariant under such changes can have a valid empirical interpretation. A prime 
example of features of the logistic models that are not invariant are the values of their 
parameters. As just noted, each of them can be made to vary as a result of the in!nitely 
many choices for the identi!ability restrictions that have to be imposed on the models. 
Hence, statements as “John’s ability score on this test is equal to 50” or “the dif!culty of 
this item is equal to −2” should not be taken to have any absolute meaning.

Actually, the same lack of invariance holds for the entire parameter structure of the 
model. As already demonstrated, it is possible to use Equation 2.9 to reparameterize 
the 1PL model into the Rasch model. Both representations have a completely differ-
ent structure. But empirically, it is impossible to tell one from the other; for the same 
test takers and items, they imply the same probabilities of success and thus identical 
response distributions. This observation forces us to extend our earlier notion of obser-
vational equivalence to include equivalence across reparameterizations of the model as 
well.

Note that it is possible to go back and forth between the 1PL and Rasch models because 
the logarithmic transformation in Equation 2.9 has the exponential as its inverse. More 
generally, it is always possible to reparameterize probabilistic models provided the vec-
tors of old new and parameters are of the same dimension and have a reversible (bijective) 
relationship. The logistic models are monotone, continuous functions in their parameters 
(the only exception to the monotonicity is when θ ≠ b, which case we exclude). If we want 
to keep these features, the required relationship reduces to a similar function between the 
old and new parameters (van der Linden and Barrett, 2016, theorem 3). Hence, the follow-
ing conclusion: For the logistic models, it is always possible to replace their parameters by 
new parameters provided the old and new parameters are monotone continuous functions 
of each other.

For each of these in!nitely many possible reparameterizations, the response probabili-
ties for the test takers remain the same but the response functions look entirely different. 
Figure 2.2 illustrates the impact of a few reparameterizations of the Rasch model. Its !rst 
plot shows the response functions for 20 items for the original version of the model in 
Equation 2.10. Following S. S. Stevens’ (1946) classi!cation of different levels of measure-
ment, the choice is sometimes claimed to yield an absolute zero for the ability scale, and 
thus measurement on a ratio scale. The second plot shows the shapes of the response func-
tions for the same items for the standard parameterization of the 1PL model. The fact that 
the curves now run “parallel” seems to suggest equal measurement units along the ability 
scale and this feature has led to claims of measurement on an interval rather than a ratio 
scale. These two claims are already inconsistent. But actually, almost every claim of special 
features for the scale of ability parameters can be “reparameterized away.” The third plot 
shows the shift in response functions obtained for an alternative parameterization of the 
Rasch model, using
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for all p and i. The result is
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which now has a scale for the ability parameters with the earlier “zero” at the point λ = 1. 
Our last example is
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FIGURE 2.2
Four different parameterizations of the Rasch model, each with the same goodness of !t to the same response 
data. (a) Equation 2.10; (b) Equation 2.8; (c) Equation 2.18; (d) Equation 2.20.
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for all p and i, which gives us
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as another representation of the Rasch model. The result has the same shift of “zero” but 
now gives us ogive-shaped response functions squeezed together at the lower end of 
range of possible values for the ability parameters. The squeeze clearly illustrates how the 
same interval of values for the ability parameters at different positions along the scale is 
associated with different changes in success probability. (Actually, the same observation 
could already have been made directly for the standard 1P model. The “parallelness” of 
its response functions in the second plot is just an optical illusion. How could monotone 
curves each mapping the real line onto [0,1] ever be made to run completely parallel?)

Figure 2.2 illustrates how dangerous it is to ascribe absolute meaning to apparent fea-
tures of the logistic response models. The possibilities of reparameterization are virtually 
endless. Other choices could have been made with more surprising changes in the shapes 
of the response functions, especially if we would include other transformations of the item 
parameters than with the identify functions above. The same conclusions hold for the 2PL 
and 3PL models, with even a larger variety of changes due to the possibility to play with 
their ai and ci parameters as well.

What, if any, features of the logistic models are invariant across all possible reparameter-
izations and thus allow for absolute interpretation? There are three. The !rst is the order 
of the ability parameters. Although their scale does have an arbitrary zero and unit, the 
models do order all ability parameters identically across all possible parameterizations—a 
fundamental prerequisite for measurement of a unidimensional variable.

The second is the quantile rank of the test takers in any norm group for which the test 
is in use. The feature follows from a simple statistical fact. Let qp ∈ [0,1] be the rank of test 
taker p with score θp in a norm group with any distribution FΘ(·) de!ned as the proportion 
of test takers below this person; that is, FΘ(θp) = qp. For any monotone reparameterization 
ϑ(·), it holds that

 F Fp pϑ ϑ θ θ( )( ( )) ( ).Θ Θ=  (2.21)

Thus, Fϑ(Θ)(ϑ(θp)) = qp as well, and p has the same quantile rank in the new as in the old 
distribution.

The !nal feature, not surprisingly, is the invariant link between each of the test tak-
ers and their probabilities of success on the items. No matter how we reparameterize the 
model, for the same items, it always assigns the same probability of success to each of 
the test takers. The feature can be used to map the content of the items along the current 
ability scale, providing it with a point-by-point empirical interpretation. Graphically, each 
reparameterization of the model amounts to local stretching or shrinking of the scale, 
but the order of all points remains the same and so does their empirical interpretation. 
Item maps have been shown to be key to IRT-based test score interpretation (Hambleton 
and Zenisky, Volume Three, Chapter 7), standard setting (Lewis and Lord-Bessen, Volume 
Three, Chapter 11), and more generally item writing and test construction (Wilson, 2005). 
In our example below, we use a logistic response model to construct an item map that 
illustrates the behavioral meaning of the variable of body height.
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In educational testing, it is common to distinguish between norm-referenced and cri-
terion-referenced interpretations of test scores. The former refers to the quantile ranks of 
test scores in the distributions of the norm groups for which the test is in use; the latter 
to empirical information on what test takers with a given score can and cannot perform. 
From the preceding discussion, we are able to conclude that the logistic response models 
in this chapter provide us with measurement of a unidimensional variable on scale that, 
except for nonmonotone transformation, is entirely arbitrary but nevertheless has absolute 
norm- and criterion-referenced interpretations.

The fact that the parameter structure of the logistic response models is arbitrary should 
not lead to relativism or carelessness. As highlighted by Hand (2004), measurement in 
any science has both a representational and pragmatic aspect. The pragmatic aspect is the 
result of the necessity to make arbitrary choices with respect to such steps as the design of 
the measurement instrument, the actual measurement operations, de!nition of the data, 
and auxiliary assumptions required to infer the measurements from them. These choices 
are entirely separate from the empirical features the measurements present, but are neces-
sary to map them on numbers.

As for the item parameters, the standard parameterization of the 3PL model in Equation 
2.3 involves parameters (ai, bi, ci) that, strictly speaking, do not have any meaning beyond 
their formal de!nitions in Equations 2.4 through 2.6. Our references to them as parameters 
for the discriminating power, dif!culty, and probabilities of successful guessing on an 
item are just empirical metaphors. Although fundamentally arbitrary, these metaphors are 
well established and have helped us to carefully communicate differences between test 
items. Any other choice of parameterization would lead to loss of these metaphors and 
seriously disrupt our communications.

2.3 Parameter Estimation

The most frequently used methods for estimating the parameters in the logistic models 
are Bayesian and MML methods, where the former have taken the lead due to the current 
popularity of its Markov chain Monte Carlo (MCMC) methods. This handbook has several 
other chapters exclusively devoted to these methods, which use one or more of our logistic 
models to illustrate their ideas, equations, and algorithms, and highlight important details 
of their implementation. It is pointless to duplicate their materials in this chapter.

A general introduction to Bayesian statistical methods, explaining their logic of infer-
ence with its focus on the joint posterior distribution of all model parameters, is pro-
vided by Johnson and Sinharay (Volume Two, Chapter 13). As a continued example, these 
authors use the one-parameter normal-ogive model. The treatment of their example easily 
transfers to the 1PL model though. Junker, Patz and VanHoudnos (Volume Two, Chapter 
15) should be consulted for a comprehensive introduction to the theory and practice of 
MCMC methods for sampling posterior distributions. Speci!cally, they introduce the his-
tory of general ideas underlying these methods, address all choices that have to be made 
when implementing them, and use the 2PL model extensively to illustrate how to use a 
Metropolis–Hastings algorithm to sample the parameters in the 2PL model. Readers inter-
ested in R code to run the algorithm !nd it in their example.

Glas (Volume Two, Chapter 11) offers an extensive introduction to MML estimation of 
item parameters in IRT models, including the logistic models in this chapter, based on 
Fisher’s identity as organizing principle. The identity equates the derivatives of the log of 
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the marginal likelihood in Equation 2.14 with respect to the parameters to their  posterior 
predictive expectation across the missing ability parameters. The resulting systems of 
 estimation equations can be solved numerically or using an EM algorithm. The use of 
the EM algorithm in this context is carefully explained in Aitkin (Volume Two, Chapter 
12). Unlike the Bayesian methods, MML estimation only provides us with estimates of 
the item parameters. Estimates of the ability parameters are typically obtained either 
through a second maximum-likelihood step treating the item parameters as known con-
stants or in a Bayesian fashion that accounts for their remaining uncertainty.

Almost every computer program in an extensive section with reviews of programs in 
Handbook of Item Response Theory, Volume 3: Applications can be used to estimate the current 
logistic models, including programs that embed them in larger modeling frameworks, 
such as Mplus, generalized linear latent modeling (GLLAM), and Latent GOLD.

2.4 Model Fit

Bayesian model !t methodology for item response models is reviewed in Sinharay (Volume 
Two, Chapter 19). The methodology enables us to check on such features of the models as 
monotonicity of their response functions, local independence between the responses, dif-
ferential item function across subgroups of test takers, or an assumed shape for the ability 
distribution (given the current parameterization). The methods include Bayesian residual 
analysis (i.e., evaluation of the size of the observed upi under the posterior distribution of 
πpi) and predictive checks on a variety of test quantities given the prior or posterior distri-
butions of the parameters. The chapter also shows how easy it is to implement these meth-
ods for MCMC sampling of the posterior distribution of the parameters, and extensively 
demonstrates an implementation for the 1PL model.

Glas (Volume Two, Chapter 17) shows how to test the validity of each logistic models against 
a variety of alternative hypotheses using a coherent framework of Lagrange multiplier (LM) 
tests. His chapter also reviews alternatives based on likelihood-ratio and Wald tests.

For a more descriptive analysis of model !t based on the classical residuals Upi − πpi aggre-
gated across the test takers and/or items, the reader should consult Wells and Hambleton 
(Volume Two, Chapter 20). This review is built entirely around a demonstration of the 
application of their methods to an empirical dataset for the 3PL model.

The logistic models in this chapter are nested in the sense that a version with fewer 
parameters is obtained constraining a version with more. For comparison with alternative 
models outside this nested family, the information criteria in Cohen and Cho (Volume 
Two, Chapter 18) or Bayes factors in Sinharay (Volume Two, Chapter 19) can be used. The 
chapter by Cohen and Cho has an entire section reviewing the applications of information 
criteria for model comparison throughout the most recent IRT literature.

2.5 Empirical Example

The purpose of the example is to illustrate the use of a logistic response model for the mea-
surement of body height. The application is somewhat unusual in that body height seems a 
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physical variable only to be measured by a yardstick. However, differences in body height 
do have behavioral consequences. Conversely, it is thus perfectly possible to treat these 
consequences as indicators of body height and infer measurements from them.

The measurement instrument used to collect the current dataset was a test of 32 
dichotomous items, each formulating a different behavioral consequence. Examples of 
the items are given in Figure 2.3. The subjects were 214 students in a class on test theory 
at Free University, Amsterdam, who were asked to respond to each of the items indicat-
ing whether or not they endorsed the experience formulated in them. As nothing was at 
stake for the test takers, guessing was not expected to play any role, and the responses 
were analyzed using the 2PL model. The method of estimation was MML estimation with 
the EM algorithm as implemented in BILOG-MG, version 3 (Volume Three, Chapter 23; 
Zimowski et al., 2003), using its default option of a standard normal distribution for the θp 
parameters.

Three of the items yielded values for the residual-based chi-square type statistic in 
BILOG-MG with probabilities of exceedance lower than 0.10. The items were “I often sit 
uncomfortably in the back seat of a car” (p = 0.08), “When people were chosen for a school 
basketball team, I was usually chosen last” (p = 0.04), and “When I sit at a table, I usu-
ally have trouble with legroom” (p = 0.05). It is tempting to speculate about the reasons 
of mis!t—Dutch students generally bike? Not too many Dutch schools with a basketball 
team? Other people at the same table creating the problem?—but we just accepted the lack 
of !t of these items as a statistical fact. In addition, we removed two items with rather 
skewed response distributions from the analysis. One had only seven zeroes among its 
214 responses, which resulted in an estimate of its bi parameters of −4.62 with a standard 
error of estimation equal to 1.34. The other had only 15 ones, with a bi estimate of 6.18 and 
a standard error equal to 2.19. These extreme values were taken to point at poor identi!-
ability of the parameters from the given data.

The estimates of the bi parameters of the remaining 27 items varied across [−2.23, 3.55] 
with standard errors in the range of [0.09, 0.90]. Likewise, the estimates of the ai parameters 
ran between [0.36, 2.94] with standard errors of [0.10, 0.76].

Figure 2.4 shows the item map for a selection from the remaining items with brief con-
tent descriptions at their points of 0.50 probability of endorsement. Our selection is largely 
arbitrary; in an electronic version of the map, we would have put all items in it, with the 
options to zoom in on certain portions of the map, click on them to see full items or an 
interval of uncertainty about their location, etc. But the current version already illustrates 
how much richer a plain variable as body height becomes when it is presented lined with 

I bump my head quite often
For most people, my shoes would be too large
When a school picture was taken, I was always asked to stand in the

first row
In bed, I often suffer from cold feet
When walking down the stairs, I usually take two steps at a time
I think I would do reasonably well in a basketball team
As a police officer, I would not make much of an impression
In most cars, I sit uncomfortably
I literally look up to most of my friends
I often have to stand on my toes to look in the mirror
Seats in theaters are usually too small for me

FIGURE 2.3
Sample items from 32-item test of body height.
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behavioral consequences rather than a single number for each subject. Unfortunately, our 
dataset did not include physical measurements of the body heights of its subjects. Otherwise 
we could have used the arbitrariness of the scale of the 2PL model to introduce a transforma-
tion of it that would have mapped the item content along the physical scale used to obtain 
the measurements.

2.6 Discussion

The logistic models in this chapter belong to the best-researched and most frequently used 
models in the !eld of IRT. At times, however, their use has led to debates between support-
ers of the 1PL and 3PL model pleading an a priori preference for their model. The former 
have typically supported their plea by pointing at such unique properties of the 1PL model 
as the presence of sum scores as suf!cient statistics for its model parameter, measurement 
on interval or ratio scales, and similar ordering of the response functions across the abil-
ity scale. The latter have pointed at a higher likelihood of !t of their model to empirical 
response data and its better accounting for the presence of guessing on test items, espe-
cially in high-stakes testing.

Either position has both something against and in favor of it. The 1PL model belongs to the 
exponential family and consequently does have suf!cient statistics for its parameters, a fea-
ture that gives us the option of conditional inference about them. Except for the elegance of 
its estimation equations and the expressions of its goodness-of-!t statistics, conditional refer-
ence does not have any serious advantages though. It certainly does not have any computa-
tional advantages, a criterion that, given the overwhelming computational power currently 
at our disposal, has lost its signi!cance anyhow. More importantly, the 2LP and 3PL mod-
els have suf!cient statistics too—the complete response vectors—that contain all statistical 
information available about their ability and item parameters. In fact, if we condition on sum 
scores for the 1PL model, some of the information in the response vectors (not much) is lost 
because their distribution still depends on the parameters we try to eliminate (Eggen, 2000).

As for the unique scale properties claimed to hold for the 1PL model, Figure 2.2 illustrates 
that none of the logistic models has any of them. The common thing they provide are mea-
surements of a unidimensional variable on a scale with an invariant order of the test takers.
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Example of an item map for a test of body height (locations of the items at 0.50 probability of their endorsement).
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The 1PL model does have one invariant property in addition to those shared with the 
other logistic models though—similar order of its response functions across all possible 
reparameterizations. This feature of noncrossing functions, which is not a prerequisite 
for the identical ordering of the test takers, de!nitely allows for an easier choice of the 
response probability necessary to create an item map, in the sense that each choice leads 
to the same ordering of the item content in the map. For the other two logistic models, the 
order may change locally as a result of crossing response functions, a fact sometimes dif-
!cult to understand by consumers with lack of statistical training (for more on this issue, 
see Lewis and Bessen-Lord, Volume Three, Chapter 11).

The 3PL does offer free parameters to account for the possibility of guessing on test 
items. However, though empirical estimates of these parameters do a better job of catching 
the effects of guessing than versions of the model with these parameters set to zero, the 
assumption of knowledge-or-random guessing on which they are based is de!nitely too 
simple to represent all the subtle processes that may go on in test takers who are uncertain 
about their answers (von Davier, 2009).

As the 3PL is more #exible than the two other logistic models, it does have a higher 
likelihood of !tting a given response matrix. But it does not automatically follow that its 
ability parameter estimates are therefore always better. For smaller datasets (short test 
lengths and/or few test takers), its greater #exibility actually make it adjust to random 
peculiarities in the data that better be avoided. The statistical issue at play here is the 
bias-accuracy trade-off fundamental to all statistical modeling: For a given dataset, if 
we increase the #exibility of a model by adding more parameters, the likelihood of bias 
in their estimates as a result of mis!t decreases, but always at the price of a greater inac-
curacy due to a smaller number of observations per parameter. For small datasets, it may 
therefore pay off to choose a more constrained model as the 1PL model. Lord caught this 
point exactly when he gave his 1983 article the title “Small N Justi!es Rasch Model.”
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