Laboratório 3 Filtros Ativos Passa-Tudo

Referência

OP AMPs for Everyone

Newnes, 2009

Roteiro Experimental

SEL393 – Laboratório de Instrumentação Eletrônica I Escola de Engenharia de São Carlos - USP Departamento de Engenharia Elétrica

Laboratório 3 - Filtros Ativos Passa-Tudo

Implemente em simulação um filtro passa-tudo para gerar um atraso de 2ms em um sinal com espectro de frequência 0 < f < 1 kHz. Para minimizar a distorção de fase a frequência de corte deve ser maior que 1 kHz.

- Plote em representação cartesiana a fase (Ø) em função da frequência.
- Plote em representação Bode e meça o atraso de grupo não normalizado (<u>T</u>_{ECO}) de cada estágio do filtro.

- Compare o valor medido do atraso de grupo não normalizado (Tgg) de cada estágio do filtro com o valor teórico.

 Plote em representação Bode e meça o atraso de grupo não normalizado (<u>T</u>_{ECO}) do filtro projetado.

- Compare o valor medido do atraso de grupo não normalizado (T_{ero}) do filtro projetado com o valor teórico.

 Verifique que a defasagem muda linearmente com a frequência utilizando para este parâmetro uma escala linear.

To achieve **equal temporal delays** for all the frequencies, we need every frequency to have a different phase shift—namely, a phase shift that results in the same delay for every frequency. More specifically, we need a phase-shift response that *increases* linearly with frequency.

An **ideal linear-phase filter**, then, exhibits phase shift that increases linearly with frequency, and it thereby provides constant temporal delay (this applies primarily to the frequencies within the passband, i.e., the frequencies of interest).

Group delay (t_{gr}) is proportional to the derivative of the phase response with respect to frequency.

The derivative of a linear function is a constant, which explains why a linear phase response is also referred to as constant group delay.

$$t_{gr}=\,-\,\frac{\text{d}\varphi}{\text{d}\omega}$$

Now consider a situation in which a filter will see signals composed of various different frequencies that work together. Problems could arise if these different frequencies experience different delays.

All-pass filter has a constant gain across the entire frequency range, and a phase response that changes linearly with frequency.

2 All-pass filters are used in circuits referred to as "phase equalizers" or "delay equalizers." As discussed in <u>Understanding Linear-Phase Filters</u>, it is sometimes important to ensure that all the frequency components in a signal experience equal temporal delay.

Audio applications: Frequencies representing different pitches must remain synchronized to ensure proper sound reproduction.

Pitch is an auditory sensation in which a listener assigns <u>musical tones</u> to relative positions on a <u>musical scale</u> based primarily on their perception of the <u>frequency</u> of vibration. Pitch is closely related to frequency, but the two are not equivalent. Frequency is an objective, scientific attribute that can be measured. Pitch is each person's subjective perception of a sound wave, which cannot be directly measured. However, this does not necessarily mean that most people won't agree on which notes are higher and lower.

Digital communications: The sinusoidal harmonic frequencies that constitute a square wave must experience constant delay to avoid distortion of the digital signal.

3 Similar to the low-pass filters, all-pass circuits of higher order consist of cascaded first-order and second-order all-pass stages.

$$A(s) = \frac{\prod\limits_{i}^{\Pi} \left(1 - a_i s + b_i s^2\right)}{\prod\limits_{i}^{\Pi} \left(1 + a_i s + b_i s^2\right)}$$

(a_i and b_i being the coefficients of a partial filter)

It is the time by which the all pass filter delays each frequency within a band.

$$t_{gr}=\,-\,\frac{d\varphi}{d\omega}$$

Normalized Group Delay (T_{gr})

The frequency at which the normalizzed group delay drops to $\frac{1}{\sqrt{2}}$ times its initial value is the corner frequency (f_c) which corresponds to Ω =1.

$$T_{gr} = \frac{t_{gr}}{T_c} = t_{gr} \cdot f_c = t_{gr} \cdot \frac{\omega_c}{2\pi}$$

$$T_{gr} = -\frac{1}{2\pi} \frac{d\phi}{d\Omega}$$

$$T_{gr} = -\frac{f_c}{2\pi} \frac{d\phi}{df}$$

6 The T_{gro} is the value of T_{gr} when $\Omega < 0.1$

$$T_{gr0} = \frac{1}{\pi} \sum_{i} a_{i}$$

All Pass

Examples:

n=1
$$\longrightarrow$$
 $T_{gr0} = \frac{1}{\pi}(0,6436) = 0,2049$
n=3 \longrightarrow $T_{gr0} = \frac{1}{\pi}(1,1415 + 1,5092)$
 $T_{gr0} = 0,8437$

n		a _l	D I	f _l /f _c	Q	Tgr0
1	1	0.6436	0.0000	1.554	-	0.204 9
2	1	1.6278	0.8832	1.064	0.58	0.518 1
3	1	1.1415	0.0000	0.876	_	0.843 7
	2	1.5092	1.0877	0.959	0.69	
4	1	2.3370	1.4878	0.820	0.52	1.173 8
	2	1.3506	1.1837	0.919	0.81	
5	1	1.2974	0.0000	0.771	_	1.506 0
	2	2.2224	1.5685	0.798	0.56	
	3	1.2116	1.2330	0.901	0.92	
6	1	2.6117	1.7763	0.750	0.51	1.839 5
	2	2.0706	1.6015	0.790	0.61	
	3	1.0967	1.2596	0.891	1.02	
7	1	1.3735	0.0000	0.728	_	2.173 7
	2	2.5320	1.8169	0.742	0.53	
	3	1.9211	1.6116	0.788	0.66	
	4	1.0023	1.2743	0.886	1.13	
8	1	2.7541	1.9420	0.718	0.51	2.508 4
	2	2.4174	1.8300	0.739	0.56	
	3	1.7850	1.6101	0.788	0.71	
	4	0.9239	1.2622	0.003	1.23	
9	1	1.4186	0.0000	0.705	_	2.843
	2	2.6979	1.9659	0.713	0.52	
	3	2.2940	1.8282	0.740	0.59	
	4	1.6644	1.6027	0.790	0.76	
	2	0.0579	1.2002	0.002	1.52	
10	1	2.8406	2.0490	0.699	0.50	3.178 6
	2	2.6120	1.9714	0.712	0.54	
	3	2.1733	1.8184	0.742	0.62	
	4	1.5583	1.5923	0.792	0.81	
	5	0.8018	1.2677	0.881	1.42	

First Order Topology

$$T_{gro}$$
= 2RCf_C
 R_1 = R

Second Order Topology

$$T_{gro} = 4RCf_{C}$$

Designing All Pass Filters (First Order Topology)

First Order Topology

$$\mathsf{A}(\mathsf{s}) = \frac{1 - \mathsf{RC}\omega_c{\cdot}\mathsf{s}}{1 + \mathsf{RC}\omega_c{\cdot}\mathsf{s}}$$

Designing All Pass Filters (Second Order Topology)

Second Order Topology

$$A(s) = \frac{1 + (2R_1 - \alpha R_2)C\omega_c \cdot s + R_1R_2C^2\omega_c^2 \cdot s^2}{1 + 2R_1C\omega_c \cdot s + R_1R_2C^2\omega_c^2 \cdot s^2}$$

Exemple 2:

Implemente no LTSPice um filtro passa tudo de ordem 1 com frequência de corte de 1KHz. Utilize C=10nF.

1

Specify f_C and C and take a₁

f_c = 1KHz, C=10nF, a₁ = 0,6436

2 Calculate R

R =
$$|\frac{a_i}{2\pi f_c \cdot C}|$$
 $R = \frac{0,6436}{2\pi x 10^3 x 10 x 10^{-9}} = 10243$

LTSPice Simulation

How to measure Ø and T_{gr} in the LTSPice ???

Normalized delay group (T_{gr})

$T_{gr} = (1/(2*pi))*d(\arctan(Im(V(out))/Re(V(out))))*1000Hz$

- - X 🚞 Filtro Passa Tudo.asc (1/(2*pi))*d(arctan(lm(V)/Re(V(out))*1000Hz 220m 180.24° T_{gro} -180.20° 200m 180m 180.16° 🍠 Filtro Passa Tudo.asc T_{gro} Cursor 1 (1/(2*pi))*d(arctan(lm(V(out))/Re(V(out))))*1000Hz -180.12° 160m-13.130449Hz Mag: 204.90699m Freq: ۲ Phase: 180° Group Delay: 0s Cursor 2 -180.08° 140m-(1/(2*pi))*d(arctan(Im(V(out))/Re(V(out))))*1000Hz ۲ Freq: 991.78097Hz 145.60413m Mag: Phase: 180° Group Delay: 0s -180.04° 120m-Ratio (Cursor2 / Cursor1) Freq: 978.65052Hz Mag: 710.58646m Phase: -0° Group Delay 0s -180.00° 100m-80m--179.96° 60m--179.92° 40m -179.88° -179.84° 20m +-i+−179.80° 0m 100Hz 1KHz 10KHz 1Hz 10Hz 100KHz 1MHz

Medida do T_{gro}

Normalized delay group (T_{gr})

$T_{gr} = (1/(2*pi))*d(\arctan(Im(V(out))/Re(V(out))))*1000Hz$

Verificação da queda de 3dB em f_c 1KHz

Fase (Ø)

Ø x f (utilizando representação cartesiana no LTSPice)

Filtro Passa Tudo.raw - C X 1.0m arctan = 90°. 0.8mi 0.6mi 60r 0.4mi 40r 0.2mi 20r 0.0mi -0.2mi 40 0.4n valor imaginário da arctan é nulo -0.6m em todas as frequências. -0.8mi $\arctan = -90^{\circ}$. 10Hz 100Hz 1KHz 10KHz 1Hz 100KHz 1MHz

Eixo vertical direito:

valor imaginário (i) do arctan que tem ser nulo em todas as frequências porque arctan é um número real.

Eixo vertical esquerdo:

valor real (r) do arctan em função da frequência

O valor de arctan varia de 90° à - 90° .

Exemple 1:

A signal with the frequency spectrum, 0 < f < 1 kHz needs to be delayed by 2 ms. To keep the phase distortions at a minimum, the corner frequency of the all-pass filter must be $f_c \ge 1$ kHz. Design a 2-ms delay all-pass filter.

1

The figure below shows a seventh-order all-pass is needed to accomplish the desired delay.

O filtro de ordem 6 tem Tgro=2. Sendo tgr=2ms resulta que a frequência de corte é $f_c = 1$ KHz. No entanto $f_c \ge 1$ kHz e, portanto, o filtro escolhido deverá ter ordem 7.

$$T_{gr0} = 2.1737$$

tgr=2ms
 $f_{c} = \frac{T_{gr0}}{t_{gr0}} = 1.087$ kHz

All Pass Filter – 7th Order

All Pass Filter – 7th Order

