SEL393 – Laboratório de Instrumentação Eletrônica I Escola de Engenharia de São Carlos - USP Departamento de Engenharia Elétrica

Filtros Ativos Passa-Baixa

Introdução

As arquiteturas de filtros passa-baixa de 1a e 2a ordem disponíveis no kit educacional ME3000 / M2 para implementação de filtros de 1ª, 2ª, 3ª, 4ª e 5ª ordem são mostradas nas figuras 1a, 1b, 1cm, 1d e 1e.

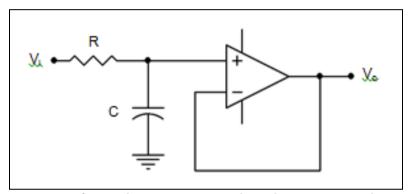


Fig. 1a – Esquemático Filtro Passa-Baixa de ordem 1 com ganho unitário

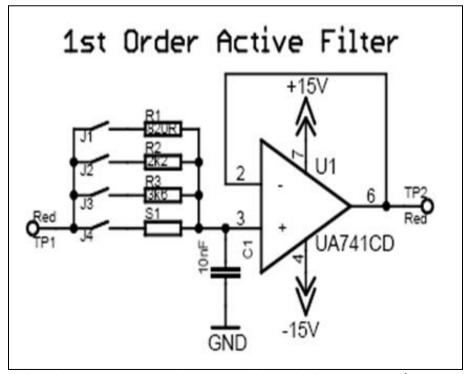


Fig. 1b – Filtro Passa-Baixa de ordem 1 disponível no Kit 3000 / M2

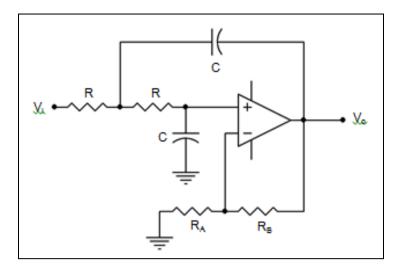


Fig. 1c – Esquemático Filtro Passa-Baixa de ordem 2 com ganho não unitário e arquitetura Sallen-Key

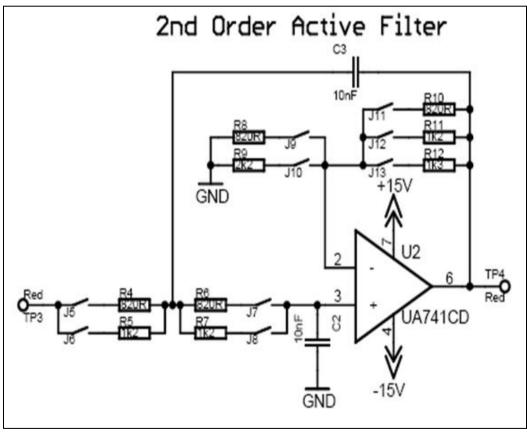


Fig. 1d – Filtro Passa-Baixa de ordem 2 com ganho não unitário e arquitetura Sallen-Key disponível no Kit 3000 / M2

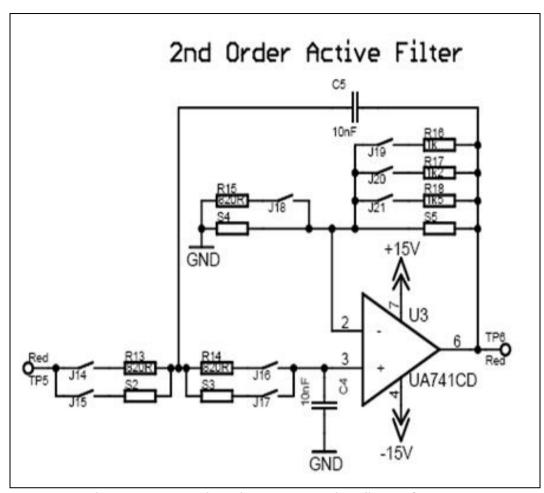


Fig. 1e – Filtro Passa-Baixa de ordem 2 com ganho não unitário e arquitetura Sallen-Key disponível no Kit 3000 / M2

No kit educacional ME3000 / M2 da Dream Catcher é possível implementar filtros passa-baixa com as especificações descritas na Tabela 1.1.

Tabela 1.1

Filtro	Passa-Baixa	Ordem Filtro	Frequência de corte (f _c - KHz)	Capacitor C (nF)
1	Butterworh	3 <u>ª</u>	7.25	10
2	Butterworh	3 <u>ª</u>	19.8	10
3	Butterworh	5ª	19.8	10
4	Chebyshev, 2dB ripple	3ª	14.5	10
5	Chebyshev, 2dB ripple	3ª	22	10
6	Chebyshev, 2dB ripple	5ª	20	10

Procedimento Experimental

Projete um dos filtros passa-baixa de 3ª ordem e um dos filtros passa-baixa de 5ª ordem com as especificações descritas na tabela 1.1 e com os componentes disponíveis nos circuitos das figuras 1a à 1e.

Implemente em protoboard os filtros projetados utilizando o kit educacional ME3000 / M2. Meça os seguintes parâmetros:

- Ganho total na faixa de passagem (A_O).
- Frequência de corte do filtro (f_c).
- Determine as frequências onde ocorrem os picos de ripple.

Simulação

- 1) Simule no LTSPice os filtros projetados. Meça os seguintes parâmetros:
- Ganho total na faixa de passagem (A₀).
- Frequência de corte do filtro (f_c).
- Determine as frequências onde ocorrem os picos de ripple.
- 2) Compare os resultados experimentais e de simulação
- 3) Simule no LTSPice filtros passa-baixa de ordem 2 de Butterworth, Tchebychev (ripple de 3dB) e Bessel com topologia de Sallen-Key, ganho não unitário e frequência de corte de 20KHz. Utilize C=10nF.

Comente sobre a resposta de cada filtro na banda de passagem.