Laboratório 3 Filtros Ativos Passa-Baixa

Roteiro Experimental

ME3000 – Analog Electronic Courseware

ME3000 Analog Electronics Courseware

Out-of-Box Teaching Solution for Analog Electronics

Quick Start Guide

revision 1.31 Printed on 20 September 2012

Op-Amp Module (Module 2)

- 1st Order Active Filter
- 2nd Order Active Filter
- Buffer
- Inverting/Summing Amplifier
- o Non-Inverting Amplifier
- Differential Amplifier

cw.enquiry@dreamcatcher.asia

3.3 Lab Sheets

No	Lab Sheet	Objective	Duration
1	Diode Characteristics	To understand the characteristics of diodes	3 Hours
2	Rectifier Circuits	To understand the basic operations of rectifier circuits	3 Hours
3	BJT Characteristics	To understand the characteristics of a bipolar junction transistor (BJT)	3 Hours
4	DC Biasing	To demonstrate the effects of DC biasing on the AC operation of a common-emitter amplifier	3 Hours
5	Practical Op-Amp Circuits	To understand the typical configurations of operational amplifier circuits and their characteristics	3 Hours
6	RF Class A Tuned Amplifiers	To demonstrate the practical issues in designing an RF tuned amplifier and perform AC measurements on a Class A amplifier	3 Hours
7	555 Multivibrator Circuits	To understand the basic operations of a 555 Timer IC and design astable and monostable multivibrators using 555 timers	3 Hours
8	Active Filters	To understand the working principles of active filters and design an active low pass filter	3 Hours

1

SEL393 – Laboratório de Instrumentação Eletrônica I Escola de Engenharia de São Carlos - USP Departamento de Engenharia Elétrica

Filtros Ativos Passa-Baixa

Introdução

As arquiteturas de filtros passa-baixa de 1a e 2a ordem disponíveis no kit educacional ME3000 / M2 para implementação de filtros de 1², 2², 3², 4² e 5² ordem são mostradas nas figuras 1a, 1b, 1cm, 1d e 1e.

Fig. 1a - Esquemático Filtro Passa-Baixa de ordem 1 com ganho unitário

Fig. 1b - Filtro Passa-Baixa de ordem 1 disponível no Kit 3000 / M2

Fig. 1c – Esquemático Filtro Passa-Baixa de ordem 2 com ganho não unitário e arquitetura <u>Sallen</u>-Key

Fig. 1d – Filtro Passa-Baixa de ordem 2 com ganho não unitário e arquitetura Sallen-Key disponível no Kit 3000 / M2

Fig. 1e – Filtro Passa-Baixa de ordem 2 com ganho não unitário e arquitetura Sallen-Key disponível no Kit 3000 / M2

No kit educacional ME3000 / M2 da Dream <u>Catcher</u> é possível implementar filtros passa-baixa com as especificações descritas na Tabela 1.1.

Tabela 1.1

Filtro	Passa-Baixa	Ordem Filtro	Frequência de corte (f _s - KHz)	Capacitor C (<u>nF</u>)
1	Butterwork	33	7.25	10
2	Butterwork	33	19.8	10
3	Butterworh	52	19.8	10
4	Chebyshev, 2dB ripple	3≇	14.5	10
5	Chebyshev, 2dB ripple	33	22	10
6	Chebyshev, 2dB ripple	5≗	20	10

Procedimento Experimental

Projete um dos filtros passa-baixa de 3º ordem e um dos filtros passa-baixa de 5º ordem com as especificações descritas na tabela 1.1 e com os componentes disponíveis nos circuitos das figuras 1a à 1e.

Implemente em protoboard os filtros projetados utilizando o kit educacional ME3000 / M2. Meça os seguintes parâmetros:

- Ganho total na faixa de passagem (A₀).
- Frequência de corte do filtro (f_c).
- Determine as frequências onde ocorrem os picos de ripple.

Simulação

- 1) Simule no LTSPice os filtros projetados. Meça os seguintes parâmetros:
- Ganho total na faixa de passagem (A₀).
- Frequência de corte do filtro (f_e).
- Determine as frequências onde ocorrem os picos de ripple.
- 2) Compare os resultados experimentais e de simulação
- Simule no LTSPice filtros passa-baixa de ordem 2 de <u>Butterworth</u>, <u>Tchebychey</u> (ripple de 3dB) e Bessel com topologia de <u>Sallen</u>-Key, ganho n\u00e3o unit\u00e1rio e frequ\u00encia de corte de 20KHz. Utilize C=10nF.

Comente sobre a resposta de cada filtro na banda de passagem.

Comparação Teoria x Experimento

Active Filters: Theory x Experimental

Filtro passa-baixas de Tchebychev de ordem 2

Resposta em frequência do filtro passa-baixas de Tchebychev de ordem 2

Active Filters: Theory x Experimental

Filtro Passa Baixa Butterwork, ordem n=5, f_c= 19.8KHz

Active Filters: Theory x Experimental

Resposta em frequência do filtro rejeita-banda de ordem 2 implementado.

Introduciton

1 What is a filter?

A filter is a device that passes electric signals at certain frequencies or frequency ranges while preventing the passage of others. — Webster.

- 2 Applications (few examples):
- In telecommunications band pass filters are used in the audio frequency range (0 20 KHz).
- In telephone centrals high frequency band-pass filters are used for channel selection.
- There are filters that do not filter any frequencies of a complex input signal, but just add a linear phase shift to each frequency component, thus contributing to a constant time delay. These are called all-pass filters.

- At high frequencies (> 1 MHz), all of these filters usually consist of passive components such as inductors (L), resistors (R), and capacitors (C). They are then called LRC filters.
- In the lower frequency range (1 Hz to 1 MHz), however, the inductor value becomes very large and the inductor itself gets quite bulky, making economical production difficult.
- Active filters are circuits that use an operational amplifier (op amp) as the active device in combination with some resistors and capacitors to provide an LRC-like filter performance at low frequencies.

Second-Order Passive Low-Pass

Second-Order Active Low-Pass

(passivo)

(ativo)

Determinação de Função de Transferência

Filtro Ativo Genérico na Configuração Realimentação Múltipla

- O ganho de tensão deste circuito pode ser facilmente obtido utilizando-se a LCK nos nós **a** e **b**, supondo que o amp op é ideal e aplicando-se a técnica de terra virtual.
- 2 Nó a:

$$\frac{v_a}{Z_2} - \frac{v_e - v_a}{Z_1} - \frac{v_s - v_a}{Z_4} + \frac{v_a}{Z_3} = 0 \longrightarrow v_a \left(\frac{1}{Z_1} - \frac{1}{Z_2} - \frac{1}{Z_3} + \frac{1}{Z_{34}}\right) - \frac{v_e}{Z_1} = \frac{v_s}{Z_4}$$

Filtro Ativo Genérico na Configuração Realimentação Múltipla

3 Nó b:

$$\frac{v_S}{Z_5} + \frac{v_a}{Z_3} = 0 \longrightarrow v_a = -\frac{Z_3}{Z_5} v_S \longrightarrow$$

$$G = \frac{v_S}{v_e} = \frac{\frac{1}{Z_1 Z_3}}{\frac{1}{Z_5} \left(\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \frac{1}{Z_4}\right) + \frac{1}{Z_3 Z_4}}$$

Filtro Passivo X Filtro Ativo

Mostrar que o filtro ativo passa-faixa com realimentação múltipla abaixo tem a mesma função de transferência do filtro passivo RLC.

O ganho de tensão do circuito passivo é dado por:

$$G = \frac{v_S}{v_e} = \frac{R}{\left(jwL + R + \frac{1}{jwC}\right)} = \frac{\frac{jwR}{L}}{-w^2 + \frac{jwR}{L} + \frac{1}{LC}} = \frac{\frac{jww_o}{Q}}{-w^2 + \frac{jww_o}{Q} + w_o^2}$$
[1]

$$w_o^2 = \frac{1}{LC}$$

$$Q = \frac{w_o L}{R}$$

O ganho de tensão do circuito ativo, como demonstrado, é dado por:

$$Z_{1} = R_{1} Z_{4} = 1/jwC_{4}$$

$$Z_{2} = R_{2} Z_{5} = R_{5}$$

$$Z_{3} = 1/jwC_{3}$$

$$G = \frac{v_{S}}{v_{e}} = \frac{\frac{1}{Z_{1}Z_{3}}}{\frac{1}{Z_{5}}(\frac{1}{Z_{1}} + \frac{1}{Z_{2}} + \frac{1}{Z_{3}} + \frac{1}{Z_{4}}) + \frac{1}{Z_{3}Z_{4}}}$$

$$\longrightarrow G = \frac{v_{S}}{v_{e}} = -\frac{jwC_{3}}{-w^{2}C_{3}C_{4} + jw\frac{C_{3} + C_{4}}{R_{5}} + \frac{1}{R_{5}}(\frac{1}{R_{1}} + \frac{1}{R_{2}})}$$

3 Se $C_3 = C_4 = C e R_5 = 2R_1$ resulta:

$$G = \frac{v_S}{v_e} = \frac{jw/(R_1C)}{-w^2 + jw\frac{2}{R_5C} + \frac{1}{R_5C^2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)} = \frac{\frac{jww_0}{Q}}{-w^2 + \frac{jww_0}{Q} + w_0^2}$$

$$w_0^2 = \frac{1}{2R_5C^2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \quad Q^2 = \frac{R_1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

$$G = \frac{v_S}{v_e} = \frac{R}{\left(jwL + R + \frac{1}{jwC}\right)} = \frac{\frac{jwR}{L}}{-w^2 + \frac{jwR}{L} + \frac{1}{LC}} = \frac{\frac{jww_o}{Q}}{-w^2 + \frac{jww_o}{Q} + w_o^2}$$
[1]

$$w_o^2 = \frac{1}{LC} \quad Q = \frac{w_o L}{R}$$

$$G = \frac{v_S}{v_e} = \frac{jw/(R_1C)}{-w^2 + jw\frac{2}{R_5C} + \frac{1}{R_5C^2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)} = \frac{\frac{jww_0}{Q}}{-w^2 + \frac{jww_0}{Q} + w_0^2}$$
 [2]

$$w_0^2 = \frac{1}{2R_5C^2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \quad Q^2 = \frac{R_1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

- Rather than resembling just another filter book, the individual filter sections are written in a cookbook style, thus avoiding tedious mathematical derivations. Each section starts with the general transfer function of a filter, followed by the design equations to calculate the individual circuit components.
- 2 Introduction to three main filter optimizations (Butterworth, Tschebyscheff, and Bessel).
- Description of the most common active filter applications:

low-pass high-pass band-pass band-rejection all-pass filters

filtro passa-baixa

filtro passa-faixa

filtro rejeita-faixa

filtro passa-baixa

Active Filter
Sallen-Key Topology

Passive Filter

Active Filter
Multiple Feedback Topology

Passive Filter

Active Filter
Sallen-Key Topology

Passive Filter

filtro passa-faixa

filtro rejeita-faixa

Active Filter Twin-T Topology

Passive Filter

banda de passagem é todo o espectro de frequências mas com defasagens diferentes ao longo do espectro!

filtro passa-tudo

Low Pass Filters

Butterworth

Low Pass Filter

Chebyshev

Bessel

Low Pass Filter

General Transfer Function

$$A(s) = \frac{A_0}{\prod_{i} (1 + a_i s + b_i s^2)}$$

- The filter coefficients **a**_i and **b**_i distinguish between **Butterworth**, **Tschebyscheff**, and **Bessel** filters. The coefficients for all three types of filters are tabulated.
- The order \mathbf{n} determines the gain rolloff above \mathbf{f}_{c} ($\mathbf{n} \cdot \mathbf{20}$ dB/decade)

Butterworth Low Pass Filter

The Butterworth low-pass filter provides passband flatness.

 $\Omega = f / f_C$

Chebyshev Low Pass Filter

The Tschebyscheff low-pass filters provide an even higher gain rolloff above f_C . However, the passband gain is not monotone, but contains ripples of constant magnitude instead. For a given filter order, the higher the passband ripples, the higher the filter's rolloff.

$$\Omega = f / f_C$$

$$\Omega = f / f_C$$

- For a given filter order, the higher the passband ripples, the higher the filter's rolloff.
- 2 Each ripple accounts for one second-order filter stage.
- Filters with even order numbers generate ripples above the 0-dB line.
- Filters with odd order numbers create ripples below 0 dB.

Bessel Low Pass Filter

- The passband gain of a Bessel low-pass filter is **not as flat as that of the Butterworth** low-pass
- The transition from passband to stopband is by far not as sharp as that of a Tschebyscheff low-pass filter

 $\Omega = f / f_C$

The Bessel low-pass filters have a **linear phase response** over a wide frequency range

 $\Omega = f / f_C$

The Bessel low-pass filters have a **linear phase response** over a wide frequency range

(monolog scale)

(linear scale)

Cascade Filters

The first-order and second-order filter stages are the building blocks for higher-order filters.

Designing Low Pass Filters

Filters Coefficients

$$A(s) = \frac{A_0}{\prod_{i} \left(1 + a_i s + b_i s^2\right)}$$

Butterworth Coefficients

n	i	a ₁	Ь	k _i = f _{CI} / f _C	Q ₁
1	1	1.0000	0.0000	1.000	_
2	1	1.4142	1.0000	1.000	0.71
3	1	1.0000	0.0000	1.000	_
	2	1.0000	1.0000	1.272	1.00
4	1	1.8478	1.0000	0.719	0.54
	2	0.7654	1.0000	1.390	1.31
5	1	1.0000	0.0000	1.000	_
	2	1.6180	1.0000	0.859	0.62
	3	0.6180	1.0000	1.448	1.62
6	1	1.9319	1.0000	0.676	0.52
	2	1.4142	1.0000	1.000	0.71
	3	0.5176	1.0000	1.479	1.93
7	1	1.0000	0.0000	1.000	_
	2	1.8019	1.0000	0.745	0.55
	3	1.2470	1.0000	1.117	0.80
	4	0.4450	1.0000	1.499	2.25
8	1	1.9616	1.0000	0.661	0.51
	2	1.6629	1.0000	0.829	0.60
	3	1.1111	1.0000	1.206	0.90
	4	0.3902	1.0000	1.512	2.56
9	1	1.0000	0.0000	1.000	_
	2	1.8794	1.0000	0.703	0.53
	3	1.5321	1.0000	0.917	0.65
	4	1.0000	1.0000	1.272	1.00
	5	0.3473	1.0000	1.521	2.88
10	1	1.9754	1.0000	0.655	0.51
	2	1.7820	1.0000	0.756	0.56
	3	1.4142	1.0000	1.000	0.71
	4	0.9080	1.0000	1.322	1.10
	5	0.3129	1.0000	1.527	3.20

Bessel Coefficients

n	i	a ₁	b ₁	k _i = f _{CI} / f _C	Qı
1	1	1.0000	0.0000	1.000	_
2	1	1.3617	0.6180	1.000	0.58
3	1	0.7560	0.0000	1.323	_
	2	0.9996	0.4772	1.414	0.69
4	1	1.3397	0.4889	0.978	0.52
	2	0.7743	0.3890	1.797	0.81
5	1	0.6656	0.0000	1.502	_
	2	1.1402	0.4128	1.184	0.56
	3	0.6216	0.3245	2.138	0.92
6	1	1.2217	0.3887	1.063	0.51
	2	0.9686	0.3505	1.431	0.61
	3	0.5131	0.2756	2.447	1.02
7	1	0.5937	0.0000	1.648	_
	2	1.0944	0.3395	1.207	0.53
	3	0.8304	0.3011	1.695	0.66
	4	0.4332	0.2381	2.731	1.13
8	1	1.1112	0.3162	1.164	0.51
	2	0.9754	0.2979	1.381	0.56
	3	0.7202	0.2621	1.963	0.71
	4	0.3728	0.2087	2.992	1.23
9	1	0.5386	0.0000	1.857	_
	2	1.0244	0.2834	1.277	0.52
	3	0.8710	0.2636	1.574	0.59
	4	0.6320	0.2311	2.226	0.76
	5	0.3257	0.1854	3.237	1.32
10	1	1.0215	0.2650	1.264	0.50
	2	0.9393	0.2549	1.412	0.54
	3	0.7815	0.2351	1.780	0.62
	4	0.5604	0.2059	2.479	0.81
	5	0.2883	0.1665	3.466	1.42

Tschebyscheff Coefficients (0.5 dB Passband ripple)

n	i	aı	b ₁	k _i = f _{CI} / f _C	Q ₁
1	1	1.0000	0.0000	1.000	_
2	1	1.3614	1.3827	1.000	0.86
3	1	1.8636	0.0000	0.537	_
	2	0.0640	1.1931	1.335	1.71
4	1	2.6282	3.4341	0.538	0.71
	2	0.3648	1.1509	1.419	2.94
5	1	2.9235	0.0000	0.342	_
	2	1.3025	2.3534	0.881	1.18
	3	0.2290	1.0833	1.480	4.54
6	1	3.8645	6.9797	0.366	0.68
	2	0.7528	1.8573	1.078	1.81
	3	0.1589	1.0711	1.495	6.51
7	1	4.0211	0.0000	0.249	_
	2	1.8729	4.1795	0.645	1.09
	3	0.4861	1.5676	1.208	2.58
	4	0.1156	1.0443	1.517	8.84
8	1	5.1117	11.960 7	0.276	0.68
	2	1.0639	2.9365	0.844	1.61
	3	0.3439	1.4206	1.284	3.47
	4	0.0885	1.0407	1.521	11.53
9	1	5.1318	0.0000	0.195	_
	2	2.4283	6.6307	0.506	1.06
	3	0.6839	2.2908	0.989	2.21
	4	0.2559	1.3133	1.344	4.48
	5	0.0695	1.0272	1.532	14.58
10	1	6.3648	18.369 5	0.222	0.67
	2	1.3582	4.3453	0.689	1.53
	3	0.4822	1.9440	1.091	2.89
	4	0.1994	1.2520	1.381	5.61
	5	0.0563	1.0263	1.533	17.99

Tschebyscheff Coefficients (1 dB Passband ripple)

n	i	a ₁	b ₁	k _I = f _{CI} / f _C	Q,
1	1	1.0000	0.0000	1.000	_
2	1	1.3022	1.5515	1.000	0.96
3	1	2.2156	0.0000	0.451	_
	2	0.5442	1.2057	1.353	2.02
4	1	2.5904	4.1301	0.540	0.78
	2	0.3039	1.1697	1.417	3.56
5	1	3.5711	0.0000	0.280	_
	2	1.1280	2.4896	0.894	1.40
	3	0.1872	1.0814	1.486	5.56
6	1	3.8437	8.5529	0.366	0.76
	2	0.6292	1.9124	1.082	2.20
	3	0.1298	1.0766	1.493	8.00
7	1	4.9520	0.0000	0.202	_
	2	1.6338	4.4899	0.655	1.30
	3	0.3987	1.5834	1.213	3.16
	4	0.0937	1.0432	1.520	10.90
8	1	5.1019	14.760	0.276	0.75
	2	0.8916	8 3.0426	0.849	1.96
	3	0.2806	1.4334	1.285	4.27
	4	0.0717	1.0432	1.520	14.24
	7	0.0717	1.0432	1.520	14.24
9	1	6.3415	0.0000	0.158	_
	2	2.1252	7.1711	0.514	1.26
		0.5624	2.3278	0.994	2.71
	4 5	0.2076	1.3166	1.346	5.53
	5	0.0562	1.0258	1.533	18.03
10	1	6.3634	22.746 8	0.221	0.75
	2	1.1399	4.5167	0.694	1.86
	3	0.3939	1.9665	1.093	3.56
	4	0.1616	1.2569	1.381	6.94
	5	0.0455	1.0277	1.532	22.26

Tschebyscheff Coefficients (2 dB Passband ripple)

n	i	a ₁	b ₁	k _I = f _{CI} / f _C	Qı
1	1	1.0000	0.0000	1.000	_
2	1	1.1813	1.7775	1.000	1.13
3	1	2.7994	0.0000	0.357	_
	2	0.4300	1.2036	1.378	2.55
4	1	2.4025	4.9862	0.550	0.93
	2	0.2374	1.1896	1.413	4.59
5	1	4.6345	0.0000	0.216	_
	2	0.9090	2.6036	0.908	1.78
	3	0.1434	1.0750	1.493	7.23
6	1	3.5880	10.464 8	0.373	0.90
	2	0.4925	1.9622	1.085	2.84
	3	0.0995	1.0826	1.491	10.46
7	1	6.4760	0.0000	0.154	_
	2	1.3258	4.7649	0.665	1.65
	3	0.3067	1.5927	1.218	4.12
	4	0.0714	1.0384	1.523	14.28
8	1	4.7743	18.151 0	0.282	0.89
	2	0.6991	3.1353	0.853	2.53
	3	0.2153	1.4449	1.285	5.58
	4	0.0547	1.0461	1.518	18.39
9	1	8.3198	0.0000	0.120	_
	2	1.7299	7.6580	0.522	1.60
	3	0.4337	2.3549	0.998	3.54
	4	0.1583	1.3174	1.349	7.25
	5	0.0427	1.0232	1.536	23.68
10	1	5.9618	28.037 6	0.226	0.89
	2	0.8947	4.6644	0.697	2.41
	3	0.3023	1.9858	1.094	4.66
	4	0.1233	1.2614	1.380	9.11
	5	0.0347	1.0294	1.531	29.27

Tschebyscheff Coefficients (3 dB Passband ripple)

n	1	aı	ρl	k _I = f _{CI} / f _C	Q I
1	1	1.0000	0.0000	1.000	_
2	1	1.0650	1.9305	1.000	1.30
3	1	3.3496	0.0000	0.299	_
	2	0.3559	1.1923	1.396	3.07
4	1	2.1853	5.5339	0.557	1.08
	2	0.1964	1.2009	1.410	5.58
5	1	5.6334	0.0000	0.178	_
	2	0.7620	2.6530	0.917	2.14
	3	0.1172	1.0686	1.500	8.82
6	1	3.2721	11.677	0.379	1.04
	2	0.4077	1.9873	1.086	3.46
	3	0.0815	1.0861	1.489	12.78
7	1	7.9064	0.0000	0.126	_
	2	1.1159	4.8963	0.670	1.98
	3	0.2515	1.5944	1.222	5.02
	4	0.0582	1.0348	1.527	17.46
8	1	4.3583	20.294 8	0.286	1.03
	2	0.5791	3.1808	0.855	3.08
	3	0.1765	1.4507	1.285	6.83
	4	0.0448	1.0478	1.517	22.87
9	1	10.175 9	0.0000	0.098	_
	2	1.4585	7.8971	0.526	1.93
	3	0.3561	2.3651	1.001	4.32
	4	0.1294	1.3165	1.351	8.87
	5	0.0348	1.0210	1.537	29.00
10	1	5.4449	31.378 8	0.230	1.03
	2	0.7414	4.7363	0.699	2.94
	3	0.2479	1.9952	1.094	5.70
	4	0.1008	1.2638	1.380	11.15
	5	0.0283	1.0304	1.530	35.85

All Pass

n	-	aı	ρl	f _I /f _C	۵۱	Tgr0
1	1	0.6436	0.0000	1.554	_	0.204
						9
2	1	1.6278	0.8832	1.064	0.58	0.518
-						1
3	1	1.1415	0.0000	0.876	_	0.843
	2	1.5092	1.0877	0.959	0.69	7
	2	1.5052	1.0077	0.555	0.09	
4	1	2.3370	1.4878	0.820	0.52	1.173
	2	1.3506	1.1837	0.919	0.81	
5	1	1.2974	0.0000	0.771	_	1.506
						0
	2	2.2224	1.5685	0.798	0.56	
	3	1.2116	1.2330	0.901	0.92	
6	1	2.6117	1.7763	0.750	0.51	1.839
	2	2.0706	1.6015	0.790	0.61	
	3	1.0967	1.2596	0.891	1.02	
7	1	4 2725	0.0000	0.700		0.477
'	1	1.3735	0.0000	0.728	_	2.173 7
	2	2.5320	1.8169	0.742	0.53	
	3	1.9211	1.6116	0.788	0.66	
	4	1.0023	1.2743	0.886	1.13	
8	1	2.7541	1.9420	0.718	0.51	2.508
	2	2.4174	1.8300	0.739	0.56	4
	3	1.7850	1.6101	0.788	0.71	
	4	0.9239	1.2822	0.883	1.23	
9	1	1.4186	0.0000	0.705	_	2.843 4
	2	2.6979	1.9659	0.713	0.52	-
	3	2.2940	1.8282	0.740	0.59	
	4	1.6644	1.6027	0.790	0.76	
	5	0.8579	1.2862	0.882	1.32	
10	1	2.8406	2.0490	0.699	0.50	3.178
	2	2.6120	1.9714	0.712	0.54	
	3	2.1733	1.8184	0.742	0.62	
	4	1.5583	1.5923	0.792	0.81	
	5	0.8018	1.2877	0.881	1.42	

Quality Factor

Band Pass Filters

$$\rightarrow$$

$$Q = \frac{f_0}{f_2 - f_1}$$

Low and High Pass Filters

$$\rightarrow$$

$$Q = \frac{\sqrt{b_i}}{a_i}$$

Example: low pass filter with 5 stages (Tschebyscheff – 2dB) 40

$$Q = \frac{\sqrt{b_i}}{a_i}$$

ripple with 5 peaks

$$Q_5 = \frac{\sqrt{b_5}}{a_5}$$

$$Q_5(dB) = 20 \log Q_5$$

Tschebyscheff Coefficients (2 dB Passband ripple)

n	i	aı	Ьı	k _I = f _{CI} / f _C	Qı
1	1	1.0000	0.0000	1.000	_
2	1	1.1813	1.7775	1.000	1.13
3	1	2.7994	0.0000	0.357	_
	2	0.4300	1.2036	1.378	2.55
4	1	2.4025	4.9862	0.550	0.93
	2	0.2374	1.1896	1.413	4.59
5	1	4.6345	0.0000	0.216	_
	2	0.9090	2.6036	0.908	1.78
	3	0.1434	1.0750	1.493	7.23
6	1	3.5880	10.464 8	0.373	0.90
	2	0.4925	1.9622	1.085	2.84
	3	0.0995	1.0826	1.491	10.46
7	1	6.4760	0.0000	0.154	_
	2	1.3258	4.7649	0.665	1.65
	3	0.3067	1.5927	1.218	4.12
	4	0.0714	1.0384	1.523	14.28
8	1	4.7743	18.151 0	0.282	0.89
	2	0.6991	3.1353	0.853	2.53
	3	0.2153	1.4449	1.285	5.58
	4	0.0547	1.0461	1.518	18.39
9	1	8.3198	0.0000	0.120	_
	2	1.7299	7.6580	0.522	1.60
	3	0.4337	2.3549	0.998	3.54
	4	0.1583	1.3174	1.349	7.25
	5	0.0427	1.0232	1.536	23.68
10	1	5.9618	28.037 6	0.226	0.89
	2	0.8947	4.6644	0.697	2.41
	3	0.3023	1.9858	1.094	4.66
	4	0.1233	1.2614	1.380	9.11
	5	0.0347	1.0294	1.531	29.27

Transfer Function

First order filter

$$\mathsf{A}(\mathsf{s}) = \frac{\mathsf{A}_0}{1 + \mathsf{a}_1 \mathsf{s}}$$

Second order filter ->

$$A(s) = \frac{A_0}{1 + a_i s + b_i s^2}$$

Low Pass Filters (First Order Topology)

Inverting

$$A(s) = \frac{-\frac{R_2}{R_1}}{1 + \omega_c R_2 C_1 s}$$

$$a_1$$

$$A_0 = -\frac{R_2}{R_1} \quad \text{(DC gain)}$$

Noninverting

$$A(s) = \frac{1 + \frac{R_2}{R_3}}{1 + \omega_c R_1 C_1 s}$$

$$A_0 = 1 + \frac{R_2}{R_3}$$
 (DC gain)

Designing Low Pass Filters (First Order Topology)

Inverting

Noninverting

- Specify f_C , A_0 , C_1
- $R_2 = \frac{a_1}{2\pi f_c C_1}$
- $R_1 = -\frac{R_2}{A_0}$

- Specify f_C , A_0 , C_1
- $R_1 = \frac{a_1}{2\pi f_c C_1}$
- $R_2 = R_3(A_0 1)$

(Ganho = 1)

- **1** Specify f_C , C_1
- $R_1 = \frac{a_1}{2\pi f_c C_1}$

Low Pass Filters (Second Order Topology)

Sallen-Key Topology

Multiple Feedbak Topology

Sallen-Key Topology (A_o≠1)

The SK topology is commonly used in filters.

$$A(s) = \frac{A_0}{1 + \omega_c \left[C_1 (R_1 + R_2) + (1 - A_0) R_1 C_2 \right] s + \omega_c^2 R_1 R_2 C_1 C_2 s^2}$$

$$a_1$$

Sallen-Key Topology (A_o=1)

The SK topology is commonly used in filters.

$$A(s) = \frac{1}{1 + \omega_{c}C_{1}(R_{1} + R_{2}) s + \omega_{c}^{2} R_{1}R_{2}C_{1}C_{2}s^{2}}$$

$$a_{1} = \omega_{c}C_{1}(R_{1} + R_{2})$$

$$b_{1} = \omega_{c}^{2}R_{1}R_{2}C_{1}C_{2}$$

Multiple Feedbak Topology

The MFB topology is commonly used in filters that have high Qs and require a high gain.

$$A(s) = -\frac{\frac{R_2}{R_1}}{1 + \omega_c C_1 \left(R_2 + R_3 + \frac{R_2 R_3}{R_1}\right) s + \omega_c^2 C_1 C_2 R_2 R_3 s^2}$$

$$a_1 \qquad b_1$$

$$A_0 = -\frac{R_2}{R_1}$$

$$a_1 = \omega_0 C_1 \left(R_2 + R_3 + \frac{R_2 R_3}{R_1} \right)$$

$${\rm b_1} = {\omega_{\rm c}}^2\,{\rm C_1C_2R_2R_3}$$

Designing Low Pass Filters (Second Order) Sallen-Key Topology

Sallen-Key Topology (A_o = 1)

- 1 Pick C₁
- Determine filter coefficients $a_1 e b_1$
- In order to obtain real values under the square root, C2 must satisfy the following condition:

$$C_2 \ge C_1 \frac{4b_1}{a_1^2}$$

4 Calculate R₁ and R₂

$$R_1 = \frac{a_1 c_2 - \sqrt{a_1^2 c_2^2 - 4b_1 c_1 c_2}}{4\pi f_c c_1 c_2}$$

$$R_2 = \frac{a_{1}c_2 + \sqrt{a_1^2 c_2^2 - 4b_1 c_1 c_2}}{4\pi f_c c_1 c_2}$$

Exemple 1:

Design a second order unity gain Tschebyscheff low pass filter with a corner frequency of 3KHz and a 3dB passband ripple

- $1 \mid Pick C_1 = 22nF$
- Get the Tschebyscheff filters coefficient tables: $a_1 = 1.0650$ and $b_1 = 1,9305$

Qı	k _I = f _{CI} / f _C	b ₁	a ₁	i	n
_	1.000	0.0000	1.0000	1	1
1.30	1.000	1.9305	1.0650	1	2
_	0.299	0.0000	3.3496	1	3
3.07	1.396	1.1923	0.3559	2	

$$C_2 \ge C_1 \frac{4b_1}{a_1^2}$$

3
$$C_2 \ge C_1 \frac{4b_1}{a_1^2}$$
 $C_2 \ge C_1 \frac{4b_1}{a_1^2} = 22 \cdot 10^{-9} \text{nF} \cdot \frac{4 \cdot 1.9305}{1.065^2} \cong 150 \text{ nF}$

Calculate R₁ and R₂

$$R_1 = \frac{1.065 \cdot 150 \cdot 10^{-\theta} - \sqrt{\left(1.065 \cdot 150 \cdot 10^{-\theta}\right)^2 - 4 \cdot 1.9305 \cdot 22 \cdot 10^{-\theta} \cdot 150 \cdot 10^{-\theta}}}{4\pi \cdot 3 \cdot 10^3 \cdot 22 \cdot 10^{-\theta} \cdot 150 \cdot 10^{-\theta}} = 1.26 \text{ k}\Omega$$

$$R_2 = \frac{1.065 \cdot 150 \cdot 10^{-9} + \sqrt{\left(1.065 \cdot 150 \cdot 10^{-9}\right)^2 - 4 \cdot 1.9305 \cdot 22 \cdot 10^{-9} \cdot 150 \cdot 10^{-9}}}{4\pi \cdot 3 \cdot 10^3 \cdot 22 \cdot 10^{-9} \cdot 150 \cdot 10^{-9}} = 1.30 \text{ k}\Omega$$

Sallen-Key Topology (A_o ≠ 1)

$$(R_1=R_2=R \text{ and } C_1=C_2=C)$$

$$A(s) = \frac{A_0}{1 + \omega_c [C_1(R_1 + R_2) + (1 - A_0) R_1 C_2] s + \omega_c^2 R_1 R_2 C_1 C_2 s^2}$$

$$a_1 \qquad b_1$$

$$A(s) = \frac{A_0}{1 + \omega_c RC(3 - A_0)s + (\omega_c RC)^2 s^2}$$

$$A_o = 3 - \frac{a_n}{\sqrt{b_n}}$$

$$A_0 = 1 + \frac{R_4}{R_3}$$

$$a_1 = \omega_c RC(3 - A_0)$$

$$b_1 = (\omega_c RC)^2$$

Sallen-Key Topology (A_o ≠1)

- **1** Get a_n and b_n
- Pick C and get R

$$R = \frac{\sqrt{b_1}}{2\pi f_c C}$$

Calculate
$$A_0$$
 and R_4/R_3

$$A_0=3-\frac{a_1}{\sqrt{b_1}}$$

$$A_0 = 1 + \frac{R_4}{R_3}$$

$$Q = \frac{1}{3 - A_0}$$

Designing Low Pass Filters (Higher Order) Sallen-Key Topology

Exemple 1:

Design a fifth order unity gain Butterworth low pass filter with a corner frequency of 50KHz.

Get Butterworth Coefficients

n	i	a _i	b _i	k _i = f _{Ci} / f _C	Qi
1	1	1.0000	0.0000	1.000	_
2	1	1.4142	1.0000	1.000	0.71
3	1	1.0000	0.0000	1.000	_
	2	1.0000	1.0000	1.272	1.00
4	1	1.8478	1.0000	0.719	0.54
	2	0.7654	1.0000	1.390	1.31
5	1	1.0000	0.0000	1.000	_
	2	1.6180	1.0000	0.859	0.62
	3	0.6180	1.0000	1.448	1.62

First Filter: first order

$$R_1 = \frac{a_1}{2\pi f_c C_1} = \frac{1}{2\pi \cdot 50 \cdot 10^3 \text{Hz} \cdot 1 \cdot 10^{-9} \text{F}} = 3.18 \text{ k}\Omega$$

Second Filter: Sallen-Key second order

4 Pick
$$C_1 = 820pF$$

$$C_2 \ge C_1 \frac{4b_1}{a_1^2}$$

$$C_2 \ge C_1 \frac{4b_2}{a_2^2} = 820 \cdot 10^{-12} \text{F} \cdot \frac{4 \cdot 1}{1.618^2} = 1.26 \text{ nF}$$

With
$$C_1$$
 = 820pF and C_2 = 1.5nF calculate R_1 and R_2
$$R_1 = \frac{a_1c_2 - \sqrt{a_1^2c_2^2 - 4b_1c_1c_2}}{4\pi f_c c_1c_2} = 1.87 \text{K} \Omega$$
$$R_2 = \frac{a_1c_2 + \sqrt{a_1^2c_2^2 - 4b_1c_1c_2}}{4\pi f_c c_1c_2} = 4.42 \text{ K}\Omega$$

$$R_1 = \frac{a_{1C_2} - \sqrt{a_1^2 C_2^2 - 4b_1 C_1 C_2}}{4\pi f_c C_1 C_2} = 1.87 \text{K }\Omega$$

$$R_2 = \frac{a_{1C_2} + \sqrt{a_1^2 C_2^2 - 4b_1 C_1 C_2}}{4\pi f_c C_1 C_2} = 4.42 \text{ K}\Omega$$

Third Filter: Sallen-Key second order

7 Pick
$$C_1 = 330pF$$

8
$$C_2 \ge C_1 \frac{4b_1}{a_1^2}$$
 $C_2 \ge C_1 \frac{4b_3}{a_3^2} = 330 \cdot 10^{-12} F \cdot \frac{4 \cdot 1}{0.618^2} = 3.46 \text{ nF}$

9 With $C_1 = 330$ pF and $C_2 = 4.7$ nF calculate R_1 and R_2

Designing Low Pass Filters (Second Order) Multiple Feedback Topology

Multiple Feedbak Topology

1 Choose C_1 , C_2

Calculate R_1 , R_2 , R_3

$$R_2 = \frac{a_1 C_2 - \sqrt{{a_1}^2 C_2^2 - 4b_1 C_1 C_2 (1 - A_0)}}{4\pi f_c C_1 C_2}$$

$$R_1 = \frac{R_2}{-A_0}$$

$$R_3 = \frac{b_1}{4\pi^2 f_c^2 C_1 C_2 R_2}$$