Laboratório 8 Multiplicador Analógico

Referências

Veronese PR, **Multiplicador Analógico** - Notas de Aula ", EESC – USP, Departamento de Engenharia Elétrica e de Computação, 2015.

Seabra AC, Amplificadores Operacionais, Editora Érica.

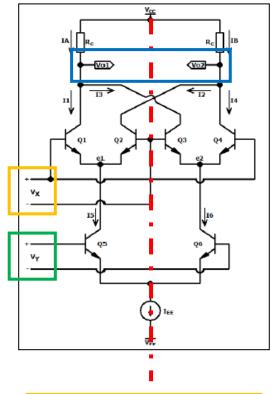
Roteiro Experimental

Célula de Gilbert com BJT

A **Célula de Gilbert** é um circuito complexo capaz de efetuar a **multiplicação analógica com bastante qualidade**.

Esse circuito exige um fino balanço entre seus ramos diferenciais e as fontes de corrente controladas por tensão, além de níveis de tensão pequenos em suas entradas, o que além de sua complexidade torna complicado o estudo prático desse tipo de circuito.

Sendo assim, o circuito pode ser **estudado em simulação**.



$$V_{out} = V_{o2}$$
- V_{o1} =K $V_x V_y$

Objetivo

Análise em simulação com o LTSPice das seguintes aplicações envolvendo o produto de dois sinais utilizando uma Célula de Gilbert com BJT:

- 1 Amplificador de Tensão Controlado por Tensão
- Quadrador de Tensão ou Dobrador de Frequência
- Modulação em Amplitude com Portadora Suprimida
- 4 Misturador de Frequência

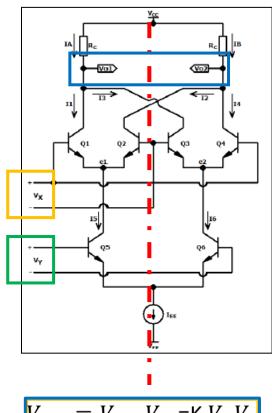
6

5 Detecção de Fase entre Dois Sinais

Em simulação uma fonte V=V(vx)*V(out) é usada com função idêntica a de uma célula de Gilbert. Exemplos da aplicação desta fonte são a divisão e a raiz quadrada de dois números.

Cálculo da Divisão e da Raiz Quadradas de 2 Números

Célula de Gilbert com BJT



$$V_{out} = V_{o2}$$
- V_{o1} =K $V_x V_y$

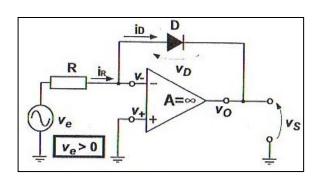
Em várias aplicações da eletrônica analógica surge a necessidade de um circuito para calcular o produto entre dois sinais.

Para aplicações em baixas frequências o uso de amplificadores log e antiLog (implementados com amp op) podem cumprir muito bem o papel de cálculo de produtos de sinais analógicos.

Para aplicações em frequências mais altas esses amplificadores são muito lentos e uma solução mais sofisticada deve ser utilizada.

Produto de Sinais (Baixa Frequência)

Amplificador Log



1
$$I_D = I_S(e^{\frac{q}{nkT}v_D} - 1)$$

 $I_{D \cong I_S} e^{\frac{v_D}{nV_T}}$ $\longrightarrow v_D = nV_T \ln\left(\frac{I_D}{I_S}\right)$

$$I_R = \frac{v_e - v_-}{R}$$

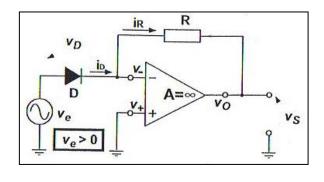
3 Assumindo amp op ideal: $I_R = i_D$

$$v_D = v_- - v_S \quad \Longrightarrow \quad v_- - v_S = nV_T \ln \frac{v_e - v_-}{\frac{R}{I_S}}$$

4 Terra virtual ($v_1 = v_+ = 0$):

$$v_{S} = -nV_{T}ln\left(\frac{v_{e}}{I_{S}R}\right)$$

Amplificador Antilog



$$1 \quad v_D = nV_T \ln \left(\frac{ID}{IS} \right)$$

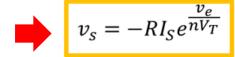
$$I_R = \frac{v_- - v_s}{R}$$

3 Assumindo que A.O. é ideal, então $I_R = i_D$

$$v_D = v_e - v_- \qquad \qquad v_e - v_- = nV_T \ln \frac{v_- - v_s}{\frac{R}{I_s}}$$

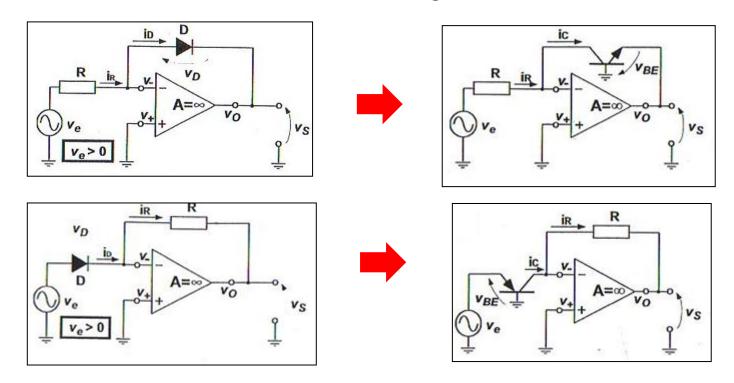
4 Terra virtual ($v_1 = v_+ = 0$):

$$ve = nV_T \ln \left(\frac{-\frac{vs}{R}}{IS} \right)$$



Amplificador Log/AntiLog

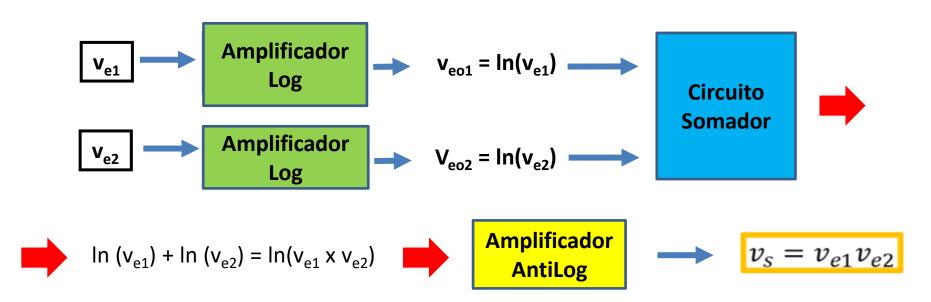
Na prática verifica-se que os dois circuitos apresentados têm melhor desempenho e maior faixa dinâmica se utilizarmos BJT no lugar de diodos.



Esses circuitos podem realizar uma série de funções matemáticas não-lineares e por isso são empregados em computação analógica.

Aplicação

Para se obter a função $v_s = v_{e1}x v_{e2}$ pode-se supor v_s como um sinal de saída e v_{e1} e v_{e2} como dois sinais de entrada. Então:



Produto de Sinais (Alta Frequência)

Multiplicadores Analógicos

Multiplicador Analógico é um dos sub-circuitos fundamentais em projetos de eletrônica. São particularmente importantes em eletrônica de comunicações e em processamentos de sinais.

Algumas aplicações importantes desses blocos são:

Processamento analógico não linear de sinais

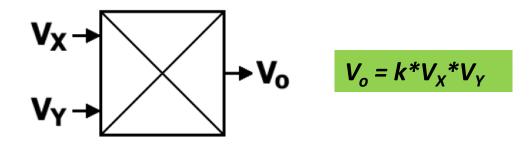
Detecção de fase

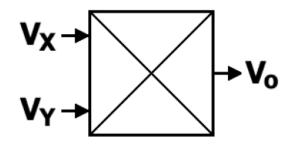
Modulação e demodulação de sinais

Misturadores de RF

Translado e multiplicação de frequências

Esses blocos, que são verdadeiros computadores analógicos, executam a função de multiplicar dois sinais, como mostra a Figura abaixo, onde $V_o = k^*V_x^*V_y$.





Em termos de circuitos analógicos, esses multiplicadores podem ser de:

Um quadrante

 $V_X \ge 0$ e $V_Y \ge 0$

Dois quadrantes

 V_X for qualquer e $V_Y \ge 0$

Quatro quadrantes

 V_X e V_Y podem ser quaisquer

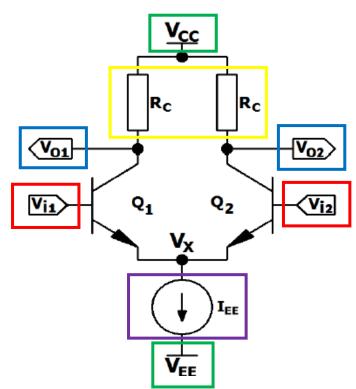
isto é, podem ser positivos ou negativos, embora com amplitudes controladas dentro de uma certa faixa de atuação.

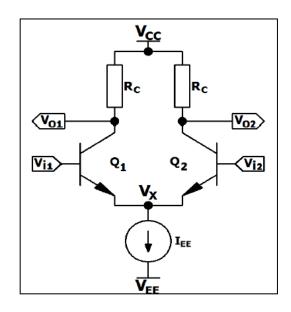
Multiplicador Analógico com Circuito Acoplado por Emissor (*ECC*)

O circuito abaixo mostra a topologia de um *ECC* que é um amplificador diferencial bipolar simétrico, com fonte de corrente (I_{FF}) e cargas passivas de coletor (RC).

As fontes de alimentação, V_{cc} e V_{EE} , são, positiva e negativa, , respectivamente, mas não necessariamente com o mesmo módulo de tensão.

Os transistores Q_1 e Q_2 são casados e com β 's elevados o suficiente para que se possa considerar $I_E \simeq I_C$.





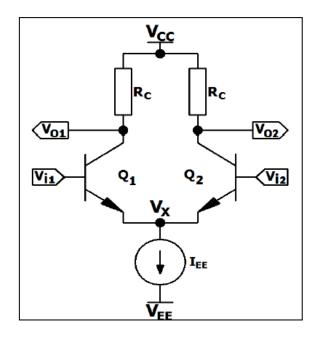
2 Considerando-se a junção pn do coletor, pode-se equacionar:

$$I_{C(Q1)} = I_S \left(e^{\frac{V_{i1} - V_X}{V_t}} - 1 \right) \cong I_S e^{\frac{V_{i1} - V_X}{V_t}}$$
 [1]

$$I_{C(Q2)} = I_S \left(e^{\frac{V_{i2} - V_X}{V_t}} - 1 \right) \cong I_S e^{\frac{V_{i2} - V_X}{V_t}}$$
 [2]

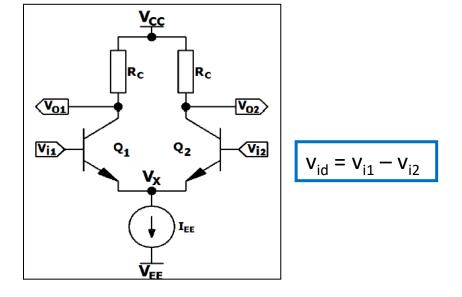
Definindo-se a corrente de saída do circuito como $I_{out} = I_{C(Q1)} - I_{C(Q2)}$ obtem-se:

$$I_{out} \cong I_S \left(e^{\frac{V_{i1} - V_X}{V_t}} - e^{\frac{V_{i2} - V_X}{V_t}} \right) \quad [3]$$



4 Como $I_{EE} \cong I_{C(Q1)} + I_{C(Q2)}$, então:

$$I_{EE} \cong I_{S} \left(e^{\frac{V_{i1} - V_{X}}{V_{t}}} + e^{\frac{V_{i2} - V_{X}}{V_{t}}} \right) \qquad \blacksquare \qquad I_{S} = \frac{I_{EE}}{\left(e^{\frac{V_{i1} - V_{X}}{V_{t}}} + e^{\frac{V_{i2} - V_{X}}{V_{t}}} \right)}$$
 [5]



5 Substituindo-se [5] em [3]:

$$I_{out} \cong I_{S} \left(e^{\frac{V_{i1} - V_{X}}{V_{t}}} - e^{\frac{V_{i2} - V_{X}}{V_{t}}} \right)$$

$$I_{S} = \frac{I_{EE}}{\left(e^{\frac{V_{i1} - V_{X}}{V_{t}}} - e^{\frac{V_{i2} - V_{X}}{V_{t}}} \right)} \times I_{EE} = I_{EE} \times tanh\left(\frac{V_{i1} - V_{i2}}{2V_{t}} \right) = I_{EE} \times tanh\left(\frac{\theta_{id}}{2V_{t}} \right)$$

$$\left(e^{\frac{V_{i1} - V_{X}}{V_{t}}} - e^{\frac{V_{i2} - V_{X}}{V_{t}}} \right) \times I_{EE} = I_{EE} \times tanh\left(\frac{\theta_{id}}{2V_{t}} \right) = I_{EE} \times tanh\left(\frac{\theta_{id}}{2V_{t}} \right)$$

$$\left(e^{\frac{V_{i1} - V_{X}}{V_{t}}} - e^{\frac{V_{i2} - V_{X}}{V_{t}}} \right) \times I_{EE} = I_{EE} \times tanh\left(\frac{\theta_{id}}{2V_{t}} \right) = I_{EE} \times tanh\left(\frac{\theta_{id}}{2V_{t}} \right)$$

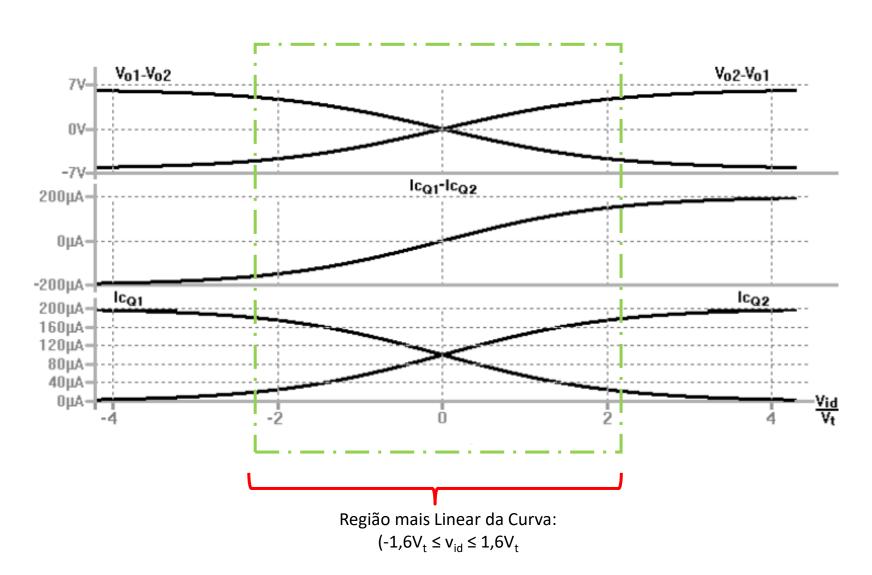
$$\left(e^{\frac{V_{i1} - V_{X}}{V_{t}}} - e^{\frac{V_{i2} - V_{X}}{V_{t}}} \right)$$

$$\left(e^{\frac{V_{i1} - V_{X}}{V_{t}}} - e^{\frac{V_{i2} - V_{X}}{V_{t}}} \right)$$

Esse circuito é um multiplicador de dois quadrantes, isto é, v_{id} pode ser positiva ou negativa, mas deve possuir uma amplitude pico-a-pico muito baixa.

A corrente I_{EE}, embora possa ter amplitude elevada, deve ser apenas positiva (I_{EE}>0).

A Figura mostra as curvas características de transferência do circuito em função da relação v_{id}/V_t .



$$I_{out} = \frac{\left(\frac{v_{i1} - v_X}{v_t} - e^{\frac{v_{i2} - v_X}{v_t}}\right)}{\left(\frac{v_{i1} - v_X}{v_t} + e^{\frac{v_{i2} - v_X}{v_t}}\right)} \times I_{EE} = I_{EE} \times tanh\left(\frac{v_{i1} - v_{i2}}{2v_t}\right) = I_{EE} \times tanh\left(\frac{\vartheta_{id}}{2v_t}\right)$$

O circuito só será linear se $|v_{id}| \ll V_t$ e nesse caso $tanh(x) \simeq x$. Então:

$$I_{out} = \frac{1}{2V_t} \times I_{EE} v_{id=K} I_{EE} v_{id}$$
 [5]

CONCLUSÃO: se um sinal diferencial (v_{id}) for aplicado às entradas do *ECC* o circuito fornecerá uma corrente de saída proporcional ao produto de duas grandezas elétricas $(I_{EE} e v_{id})$, caracterizando-se, portanto, como um multiplicador analógico.

Com as cargas R_C de coletor, a corrente de saída (I_{out}) será transformada em uma tensão de saída (V_{out}):

$$I_{out} = I_{C(Q1)} - I_{C(Q2)} \longrightarrow I_{out}R_c = R_c I_{C(Q1)} - R_c I_{C(Q2)}$$

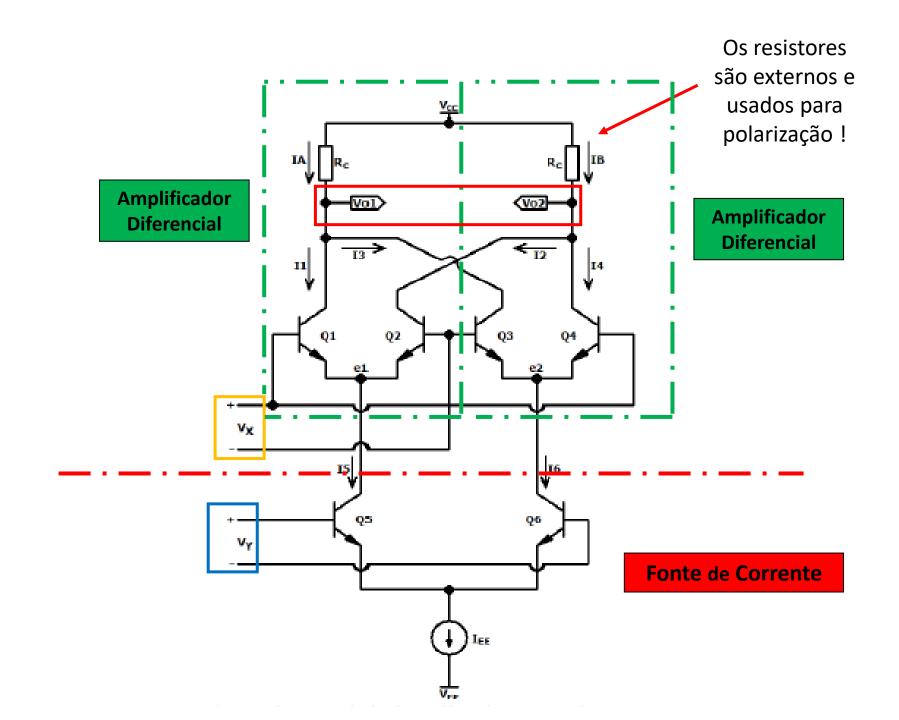
$$I_{out}R_c = V_{01} - V_{02} = V_{out}$$

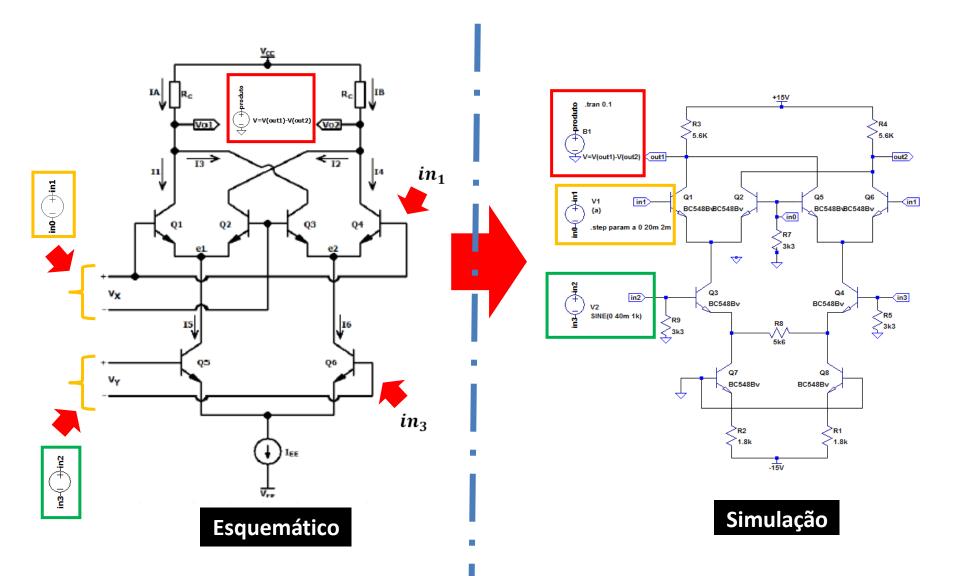
Célula de Gilbert

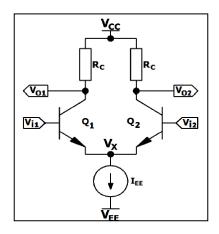
Para contornar o problema da restrição do sinal algébrico de I_{EE} e para que dois sinais de mesma natureza possam ser multiplicados, deve-se usar o circuito multiplicador conhecido como célula de Gilbert.

Esse circuito é formado por dois amplificadores diferenciais cujas saídas são conectadas como somadoras de corrente em contra-fase.

Combinando as correntes de saídas dos dois estágios diferencias o circuito permite operações em quatro quadrantes.





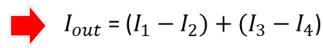


Multiplicador Analógico

$$I_{EE} \cong I_{C(Q1)} + I_{C(Q2C)}$$
 $I_{out} = I_{C(Q1)} - I_{C(Q2)}$

Na célula de Gilbert a corrente diferencial de saída do multiplicador é definida como:

$$I_{out} = (I_A - I_B) = (I_1 + I_3) - (I_2 + I_4)$$



No multiplicador analógico mostrou=se que:

$$I_{out} = I_{EE} tanh \left(\frac{v_{id}}{2v_t}\right)$$

Por analogia:

3

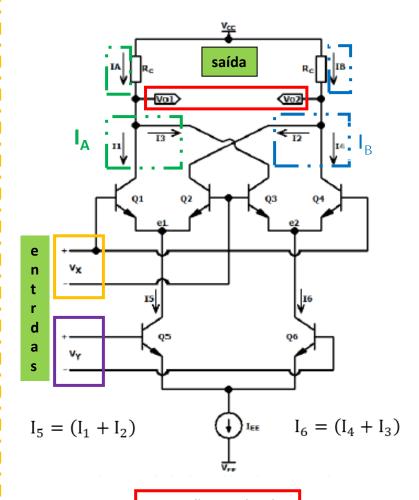
$$I_{out} = I_5 \tanh\left(\frac{v_x}{2v_t}\right) + I_6 \tanh\left(\frac{-v_x}{2v_t}\right)$$

ECC aplicado em I_1 e I_2 ECC aplicado em I_3 e I_4 $V_x = V_{baseQ1} - V_{baseQ2}$ $V_x = -(V_{baseQ3} - V_{baseQ4})$

Como tanh(x) = -tanh(-x), então:

$$I_{out} = (I_5 - I_6) tanh \left(\frac{v_{\chi}}{2_{Vt}}\right)$$

Célula de Gilbert



A tensão v_x aplicada em Q_1 e Q_2 tem polaridade oposta aplicada em Q_3 e Q_4 . As correntes I_5 e I_6 estão em contra-fase, portanto, $I_{EE} = I_5 - I_6$. Como I_5 e I_6 são dependentes de V_γ e como I_{EE} é a corrente dos dois diferenciais inferiores, também em analogia com o *Multiplicador Analógico*,

pode-se escrever que:

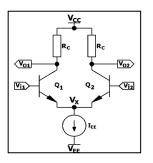
$$I_{out} = (I_5 - I_6) tanh\left(\frac{v_\chi}{2_{Vt}}\right)$$

$$ECC \text{ aplicado em } I_5 \text{ e } I_6$$

$$I_{out} = I_{EE} \times tanh\left(\frac{V_Y}{2V_t}\right) \times tanh\left(\frac{V_X}{2V_t}\right)$$

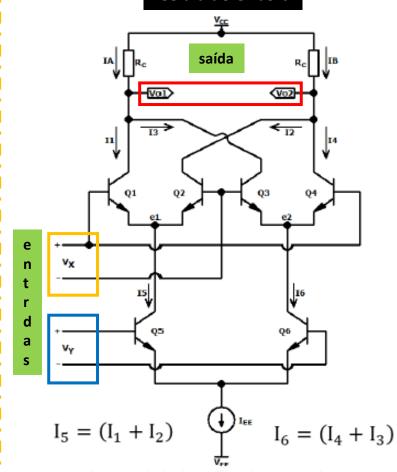
Se, $|V_X| \ll |V_Y| \ll |V_Y| \ll |V_t|$ então $tanh(x) \simeq x$. Logo:

$$I_{out} = K_1 V_x V_y$$
$$K_1 = \frac{I_{EE}}{4V_r^2}$$



$$\begin{aligned} \mathbf{v}_{id} &= \mathbf{v}_{i1} - \mathbf{v}_{i2} \\ \mathbf{I}_{EE} &\cong \mathbf{I}_{C(Q1)} + \mathbf{I}_{C(Q2)} \\ \mathbf{I}_{out} &= \mathbf{I}_{EE} tanh \left(\frac{\mathbf{v}_{id}}{2\mathbf{v}_{t}} \right) \end{aligned}$$

Célula de Gilbert



6

Para transformar a corrente de saída do multiplicador em tensão usa-se a colocação das cargas de coletor, R_C . Então:

$$I_{out} = I_{C(Q1)} - I_{C(Q2)}$$

$$I_{out}R_C = R_C I_{C(Q1)} - R_C I_{C(Q2)}$$

$$V_{out2}$$

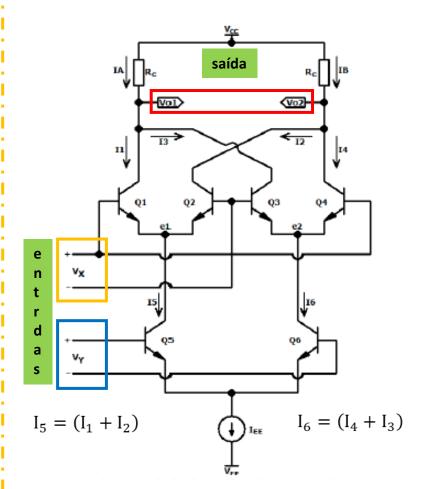
$$K_1 V_x V_y R_C = V_{out1} - V_{out2}$$

$$I_{out}$$

$$V_{out} = K_2 V_x V_y$$

$$K_2 = \frac{I_{EE} R_C}{4V_t^2}$$

Célula de Gilbert



Aplicações

Resultados de Simulação

Amplificador de Tensão Controlado por Tensão

Quadrador de Tensão ou Dobrador de Frequência

Modulação em Amplitude com Portadora Suprimida

Misturador de Frequência

Detecção de Fase entre Dois Sinais

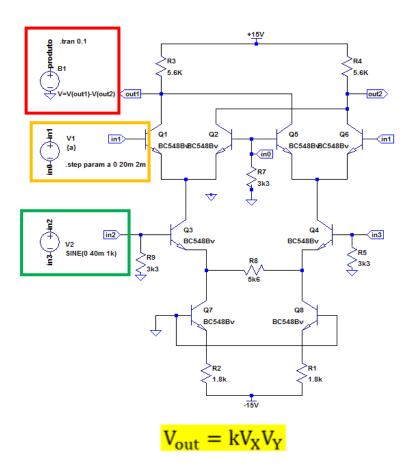
Divisão de dois Números

Raiz Quadradas de dois Números

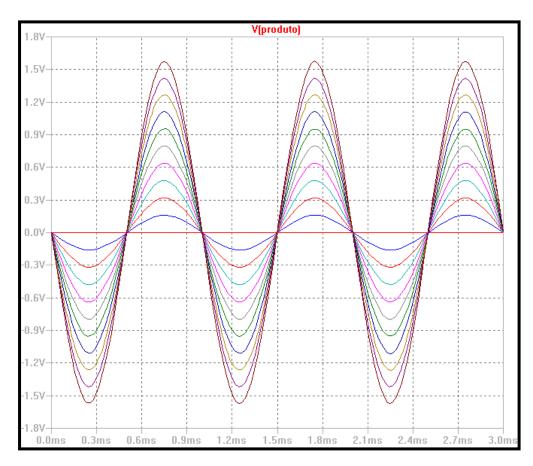
Em simulação uma fonte V=V(vx)*V(out) é usada com função idêntica a de uma célula de Gilbert. Exemplos da aplicação desta fonte são a divisão e a raiz quadrada de dois números.

Amplificador de Tensão Controlado por Tensão DC

Amplificador de Tensão Controlado por Tensão DC $(v_x \text{ \'e uma tensão DC e } v_y \text{ \'e senoidal})$



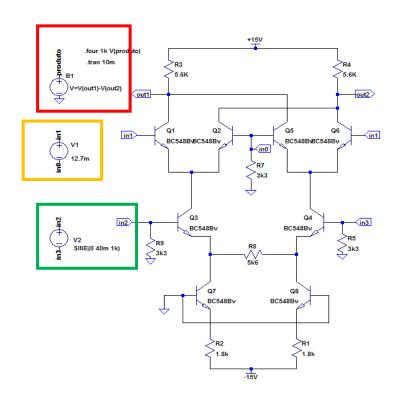
<u>**Obs**</u>: as entradas tem baixa tensão mas o ganho de tensão é elevado.

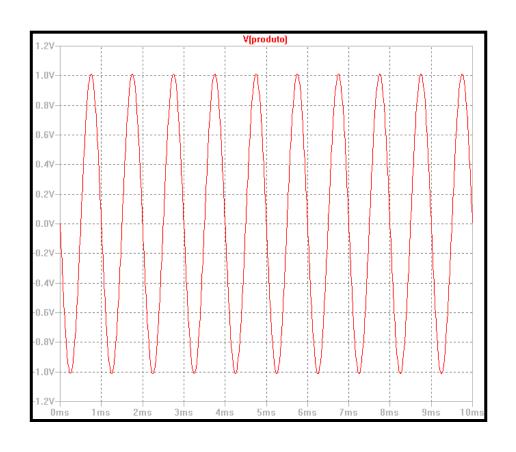


Qual é o valor de K?

O ganho K é determinado a partir de V₁ , V₂ e V_{out} :

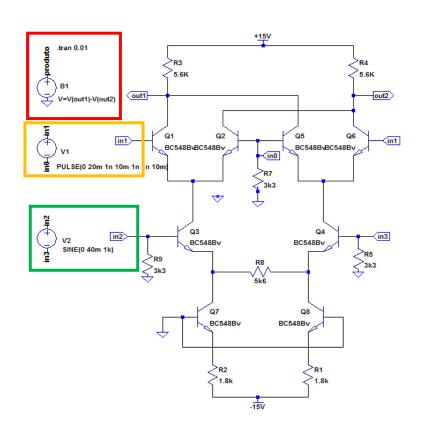
$$\mathbf{k} = \frac{V_{produto}}{V_1 V_2}$$

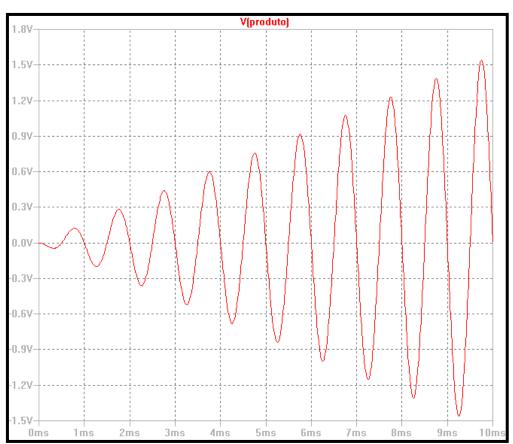




Amplificador de Tensão Controlado por Tensão DC

v_x - entrada senoidal v_v - rampa ascendente

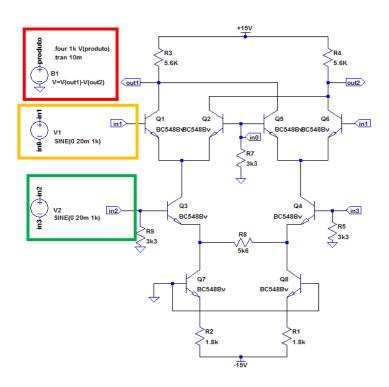




V_{out} controlada pela tensão de uma rampa ascendente (V₁)

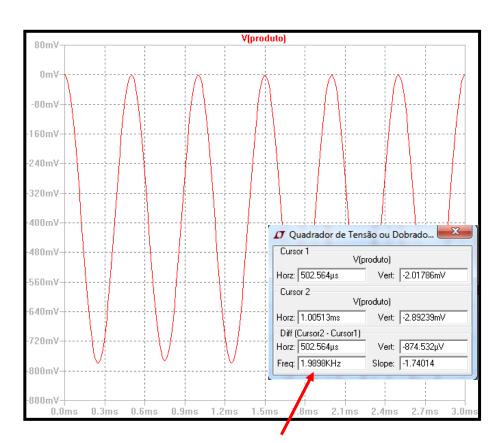
Quadrador de Tensão ou Dobrador de Frequência

v_x e v_y são senoidais e com mesma frequência



<u>**Obs**</u>: as duas entradas são senoidais

$$sen^2(wt) = \frac{1}{2} - \frac{1}{2}cos(2wt)$$

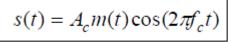


V_{out} com dobro da frequência e nivel DC

Modulação em Amplitude com Portadora Suprimida (Modulação AMDSB-SC)

Modulação em Amplitude com Portadora Suprimida

Dominio do Tempo

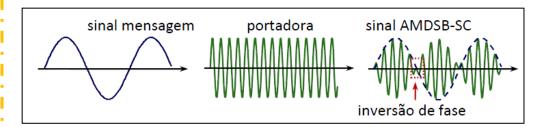


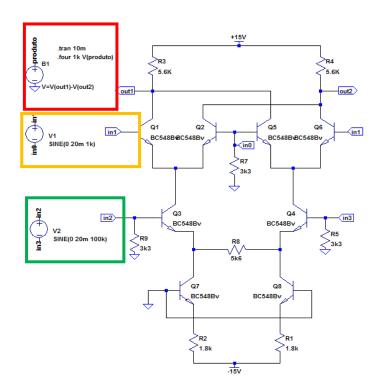
Modulante portadora (sinal)

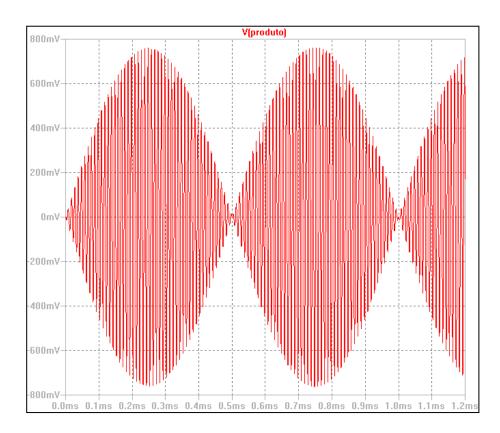
Dominio da Frequência

$$S(f) = \frac{A_c}{2} \{ M(f - f_c) + M(f + f_c) \}$$

Sinal AM com portadora suprimida







sinal AM com portadora suprimida

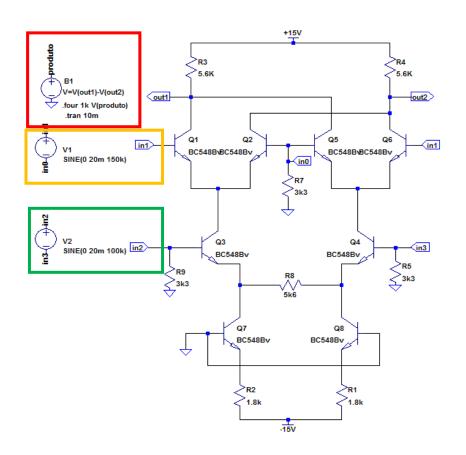
(Modulante de 1KHz e portadora de 100KHz)

A FFT permite visualizar as compontes $(f_c - f)$ e $(f_c + f)$.

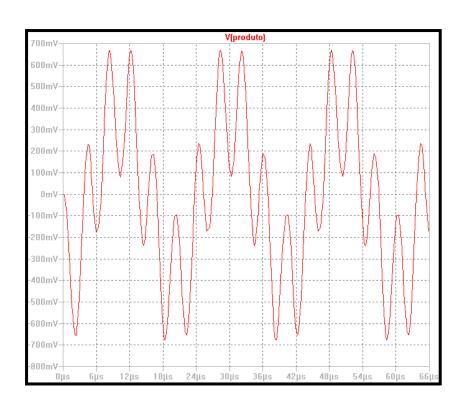
Misturador de Frequência

v_x e v_y são senoidais com frequências diferentes

Misturador de Frequência (v_x e v_y são senoidais com frequências diferentes)



$$cos(w_1t) cos(w_2t) = \frac{1}{2} [cos(w_1 - w_2)t + cos(w_1 + w_2)t]$$



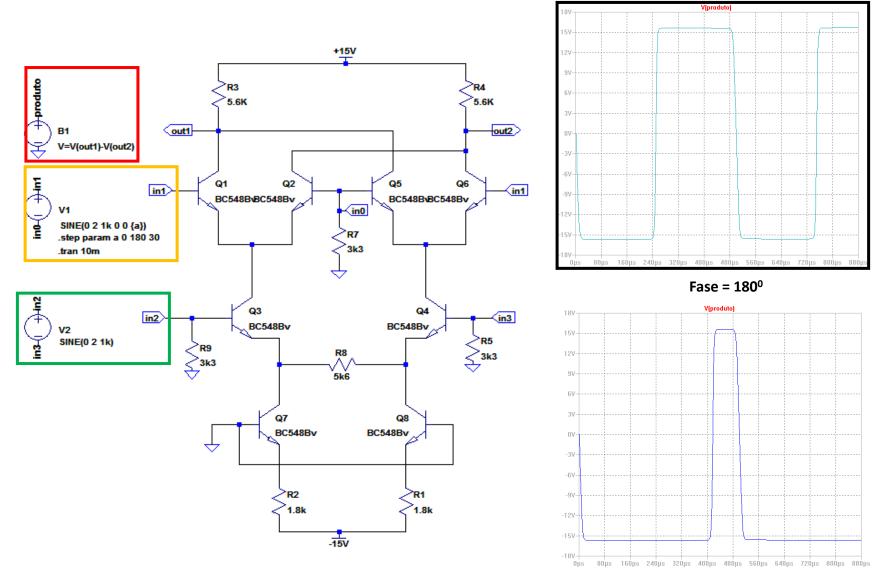
sinal de saída no domínio do tempo $(f_1 = 150 \text{KHz e} = 100 \text{KHz})$ A FFT permite visualizar as compontes $(f_1 - f_2)$ e $(f_1 + f_2)$.

Detector de Fase

Na detecção de fase entre dois sinais será gerado na saída um sinal com nível médio proporcional à diferença de fase.

Aplicação: circuitos sincronizadores PLL (phase locked loop) usados em uma infinidade de aplicações essenciais à

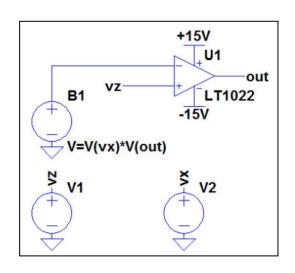
eletrônica moderna.



Fase = 90°

Divisão de 2 Números

Em simulação a fonte V=V(vx)*V(out) é usada com função idêntica a de uma célula de Gilbert. Exemplo de aplicação desta fonte é a divisão de dois números.



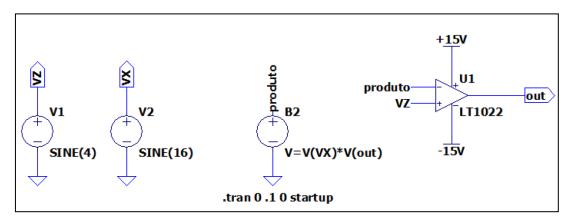
$$V_{out} = A(V_Z - V_{produto})$$

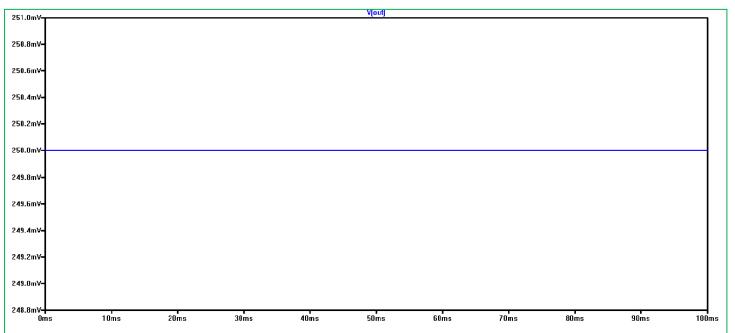
$$\rightarrow V_{out} = A(V_Z - (V_{out} * V_X))$$

$$\rightarrow V_{out} + AV_{out}V_X = A * V_Z$$

$$\rightarrow V_{out} = \frac{A * V_Z}{1 + AV_X}$$
Idealmente tem-se: $A \rightarrow \infty$

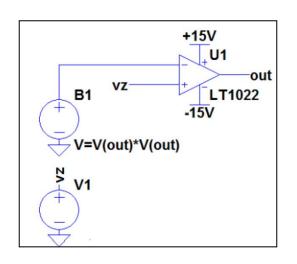
Cálculo de 4/16





Raiz Quadrada de 2 Números

Em simulação a fonte V=V(vx)*V(out) é usada com função idêntica a de uma célula de Gilbert. Exemplo da aplicação desta fonte é a raiz quadrada de dois números.



$$V_{out} = A(V_Z - V_{produto})$$

$$\rightarrow V_{out} = A(V_Z - (V_{out} * V_{out}))$$

$$\rightarrow V_{out} + AV_{out}^2 = A * V_Z$$

$$\rightarrow \frac{V_{out}}{A} + V_{out}^2 = V_Z$$
Idealmente tem-se: $A \rightarrow \infty \rightarrow V_{out}^2 = V_Z$

$$\downarrow V_{out} = \sqrt[2]{V_z}$$

Cálculo da Raiz Quadrada de 4

