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2.14 Analysis and Design of Feedback Control Systems

Understanding Poles and Zeros

1 System Poles and Zeros

The transfer function provides a basis for determining important system response characteristics
without solving the complete differential equation. As defined, the transfer function is a rational
function in the complex variable s = σ + jω, that is

H(s) =
bms

m + bm−1s
m−1 + . . .+ b1s+ b0

ansn + an−1sn−1 + . . .+ a1s+ a0
(1)

It is often convenient to factor the polynomials in the numerator and denominator, and to write
the transfer function in terms of those factors:

H(s) =
N(s)
D(s)

= K
(s− z1)(s− z2) . . . (s− zm−1)(s− zm)
(s− p1)(s− p2) . . . (s− pn−1)(s− pn) , (2)

where the numerator and denominator polynomials, N(s) and D(s), have real coefficients defined
by the system’s differential equation and K = bm/an. As written in Eq. (2) the zi’s are the roots
of the equation

N(s) = 0, (3)

and are defined to be the system zeros, and the pi’s are the roots of the equation

D(s) = 0, (4)

and are defined to be the system poles. In Eq. (2) the factors in the numerator and denominator
are written so that when s = zi the numerator N(s) = 0 and the transfer function vanishes, that is

lim
s→zi

H(s) = 0.

and similarly when s = pi the denominator polynomial D(s) = 0 and the value of the transfer
function becomes unbounded,

lim
s→pi

H(s) = ∞.

All of the coefficients of polynomials N(s) and D(s) are real, therefore the poles and zeros must
be either purely real, or appear in complex conjugate pairs. In general for the poles, either pi = σi,
or else pi, pi+1 = σi±jωi. The existence of a single complex pole without a corresponding conjugate
pole would generate complex coefficients in the polynomial D(s). Similarly, the system zeros are
either real or appear in complex conjugate pairs.
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Example

A linear system is described by the differential equation

d2y

dt2
+ 5
dy

dt
+ 6y = 2

du

dt
+ 1.

Find the system poles and zeros.

Solution: From the differential equation the transfer function is

H(s) =
2s+ 1

s2 + 5s+ 6
. (5)

which may be written in factored form

H(s) =
1
2

s+ 1/2
(s+ 3)(s+ 2)

=
1
2

s− (−1/2)
(s− (−3))(s− (−2))

. (6)

The system therefore has a single real zero at s = −1/2, and a pair of real poles at
s = −3 and s = −2.

The poles and zeros are properties of the transfer function, and therefore of the differential
equation describing the input-output system dynamics. Together with the gain constant K they
completely characterize the differential equation, and provide a complete description of the system.

Example

A system has a pair of complex conjugate poles p1, p2 = −1 ± j2, a single real zero
z1 = −4, and a gain factor K = 3. Find the differential equation representing the
system.

Solution: The transfer function is

H(s) = K
s− z

(s− p1)(s− p2)
= 3

s− (−4)
(s− (−1 + j2))(s− (−1− j2))

= 3
(s+ 4)

s2 + 2s+ 5
(7)

and the differential equation is

d2y

dt2
+ 2
dy

dt
+ 5y = 3

du

dt
+ 12u (8)
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Figure 1: The pole-zero plot for a typical third-order system with one real pole and a complex
conjugate pole pair, and a single real zero.

1.1 The Pole-Zero Plot

A system is characterized by its poles and zeros in the sense that they allow reconstruction of the
input/output differential equation. In general, the poles and zeros of a transfer function may be
complex, and the system dynamics may be represented graphically by plotting their locations on
the complex s-plane, whose axes represent the real and imaginary parts of the complex variable s.
Such plots are known as pole-zero plots. It is usual to mark a zero location by a circle (◦) and a
pole location a cross (×). The location of the poles and zeros provide qualitative insights into the
response characteristics of a system. Many computer programs are available to determine the poles
and zeros of a system from either the transfer function or the system state equations [8]. Figure 1
is an example of a pole-zero plot for a third-order system with a single real zero, a real pole and a
complex conjugate pole pair, that is;

H(s) =
(3s+ 6)

(s3 + 3s2 + 7s+ 5)
= 3

(s− (−2))
(s− (−1))(s− (−1 − 2j))(s− (−1 + 2j))

1.2 System Poles and the Homogeneous Response

Because the transfer function completely represents a system differential equation, its poles and
zeros effectively define the system response. In particular the system poles directly define the
components in the homogeneous response. The unforced response of a linear SISO system to a set
of initial conditions is

yh(t) =
n∑

i=1

Cie
λit (9)

where the constants Ci are determined from the given set of initial conditions and the exponents λi

are the roots of the characteristic equation or the system eigenvalues. The characteristic equation
is

D(s) = sn + an−1s
n−1 + . . .+ a0 = 0, (10)

and its roots are the system poles, that is λi = pi, leading to the following important relationship:
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Figure 2: The specification of the form of components of the homogeneous response from the system
pole locations on the pole-zero plot.

The transfer function poles are the roots of the characteristic equation, and also the
eigenvalues of the system A matrix.

The homogeneous response may therefore be written

yh(t) =
n∑

i=1

Cie
pit. (11)

The location of the poles in the s-plane therefore define the n components in the homogeneous
response as described below:

1. A real pole pi = −σ in the left-half of the s-plane defines an exponentially decaying component
, Ce−σt, in the homogeneous response. The rate of the decay is determined by the pole
location; poles far from the origin in the left-half plane correspond to components that decay
rapidly, while poles near the origin correspond to slowly decaying components.

2. A pole at the origin pi = 0 defines a component that is constant in amplitude and defined by
the initial conditions.

3. A real pole in the right-half plane corresponds to an exponentially increasing component Ceσt

in the homogeneous response; thus defining the system to be unstable.

4. A complex conjugate pole pair σ ± jω in the left-half of the s-plane combine to generate a
response component that is a decaying sinusoid of the form Ae−σt sin (ωt+ φ) where A and
φ are determined by the initial conditions. The rate of decay is specified by σ; the frequency
of oscillation is determined by ω.

5. An imaginary pole pair, that is a pole pair lying on the imaginary axis, ±jω generates an
oscillatory component with a constant amplitude determined by the initial conditions.
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6. A complex pole pair in the right half plane generates an exponentially increasing component.

These results are summarized in Fig. 2.

Example

Comment on the expected form of the response of a system with a pole-zero plot shown
in Fig. 3 to an arbitrary set of initial conditions.

Figure 3: Pole-zero plot of a fourth-order system with two real and two complex conjugate poles.

Solution: The system has four poles and no zeros. The two real poles correspond to
decaying exponential terms C1e

−3t and C2e
−0.1t, and the complex conjugate pole pair

introduce an oscillatory component Ae−t sin (2t+ φ), so that the total homogeneous
response is

yh(t) = C1e
−3t + C2e

−0.1t +Ae−t sin (2t+ φ) (12)

Although the relative strengths of these components in any given situation is determined
by the set of initial conditions, the following general observations may be made:

1. The term e−3t, with a time-constant τ of 0.33 seconds, decays rapidly and is
significant only for approximately 4τ or 1.33seconds.

2. The response has an oscillatory component Ae−t sin(2t + φ) defined by the com-
plex conjugate pair, and exhibits some overshoot. The oscillation will decay in
approximately four seconds because of the e−t damping term.

3. The term e−0.1t, with a time-constant τ = 10 seconds, persists for approximately
40 seconds. It is therefore the dominant long term response component in the
overall homogeneous response.
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Figure 4: Definition of the parameters ωn and ζ for an underdamped, second-order system from
the complex conjugate pole locations.

The pole locations of the classical second-order homogeneous system

d2y

dt2
+ 2ζωn

dy

dt
+ ω2

ny = 0, (13)

described in Section 9.3 are given by

p1, p2 = −ζωn ± ωn

√
ζ2 − 1. (14)

If ζ ≥ 1, corresponding to an overdamped system, the two poles are real and lie in the left-half
plane. For an underdamped system, 0 ≤ ζ < 1, the poles form a complex conjugate pair,

p1, p2 = −ζωn ± jωn

√
1− ζ2 (15)

and are located in the left-half plane, as shown in Fig. 4. From this figure it can be seen that the
poles lie at a distance ωn from the origin, and at an angle ± cos−1(ζ) from the negative real axis.
The poles for an underdamped second-order system therefore lie on a semi-circle with a radius
defined by ωn, at an angle defined by the value of the damping ratio ζ.

1.3 System Stability

The stability of a linear system may be determined directly from its transfer function. An nth order
linear system is asymptotically stable only if all of the components in the homogeneous response
from a finite set of initial conditions decay to zero as time increases, or

lim
t→∞

n∑
i=1

Cie
pit = 0. (16)

where the pi are the system poles. In a stable system all components of the homogeneous response
must decay to zero as time increases. If any pole has a positive real part there is a component in
the output that increases without bound, causing the system to be unstable.
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In order for a linear system to be stable, all of its poles must have negative real parts,
that is they must all lie within the left-half of the s-plane. An “unstable” pole, lying in
the right half of the s-plane, generates a component in the system homogeneous response
that increases without bound from any finite initial conditions. A system having one
or more poles lying on the imaginary axis of the s-plane has non-decaying oscillatory
components in its homogeneous response, and is defined to be marginally stable.

2 Geometric Evaluation of the Transfer Function

The transfer function may be evaluated for any value of s = σ + jω, and in general, when s is
complex the function H(s) itself is complex. It is common to express the complex value of the
transfer function in polar form as a magnitude and an angle:

H(s) = |H(s)| ejφ(s), (17)

with a magnitude |H(s)| and an angle φ(s) given by

|H(s)| =
√
	{H(s)}2 + �{H(s)}2, (18)

φ(s) = tan−1
(�{H(s)}
	{H(s)}

)
(19)

where 	{} is the real operator, and �{} is the imaginary operator. If the numerator and denomi-
nator polynomials are factored into terms (s− pi) and (s− zi) as in Eq. (2),

H(s) = K
(s− z1)(s− z2) . . . (s− zm−1)(s− zm)
(s− p1)(s− p2) . . . (s− pn−1)(s− pn) (20)

each of the factors in the numerator and denominator is a complex quantity, and may be interpreted
as a vector in the s-plane, originating from the point zi or pi and directed to the point s at which
the function is to be evaluated. Each of these vectors may be written in polar form in terms of a
magnitude and an angle, for example for a pole pi = σi +ωi, the magnitude and angle of the vector
to the point s = σ + ω are

|s− pi| =
√

(σ − σi)2 + (ω − ωi)2, (21)

� (s− pi) = tan−1
(
ω − ωi

σ − σi

)
(22)

as shown in Fig. 5a. Because the magnitude of the product of two complex quantities is the product
of the individual magnitudes, and the angle of the product is the sum of the component angles
(Appendix B), the magnitude and angle of the complete transfer function may then be written

|H(s)| = K

∏m
i=1 |(s− zi)|∏n
i=1 |(s− pi)|

(23)

� H(s) =
m∑

i=1

� (s− zi) −
n∑

i=1

� (s− pi). (24)

The magnitude of each of the component vectors in the numerator and denominator is the distance
of the point s from the pole or zero on the s-plane. Therefore if the vector from the pole pi to the
point s on a pole-zero plot has a length qi and an angle θi from the horizontal, and the vector from
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Figure 5: (a) Definition of s-plane geometric relationships in polar form, (b) Geometric evaluation
of the transfer function from the pole-zero plot.

the zero zi to the point s has a length ri and an angle φi, as shown in Fig. 5b, the value of the
transfer function at the point s is

|H(s)| = K
r1 . . . rm
q1 . . . qn

(25)

� H(s) = (φ1 + . . .+ φm)− (θ1 + . . .+ θn) (26)

The transfer function at any value of smay therefore be determined geometrically from the pole-zero
plot, except for the overall “gain” factor K. The magnitude of the transfer function is proportional
to the product of the geometric distances on the s-plane from each zero to the point s divided by
the product of the distances from each pole to the point. The angle of the transfer function is the
sum of the angles of the vectors associated with the zeros minus the sum of the angles of the vectors
associated with the poles.

Example

A second-order system has a pair of complex conjugate poles a s = −2± j3 and a single
zero at the origin of the s-plane. Find the transfer function and use the pole-zero plot
to evaluate the transfer function at s = 0 + j5.

Solution: From the problem description

H(s) = K
s

(s− (−2 + j3))(s− (−2 − j3))
= K

s

s2 + 4s+ 13
(27)

The pole-zero plot is shown in Fig. 6. From the figure the transfer function is

|H(s)| = K

√
(0 − 5)2√

(0− (−2))2 + (5− 3)2
√

(0 − (−2))2 + (5 − (−3))2

= K
5

4
√

34
(28)
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Figure 6: The pole-zero plot for a second order system with a zero at the origin.

and

� H(s) = tan−1(5/0) − tan−1(2/2) − tan−1(8/2)
= −310 (29)

3 Frequency Response and the Pole-Zero Plot

The frequency response may be written in terms of the system poles and zeros by substituting jω
for s directly into the factored form of the transfer function:

H(jω) = K
(jω − z1)(jω − z2) . . . (jω − zm−1)(jω − zm)
(jω − p1)(jω − p2) . . . (jω − pn−1)(jω − pn) . (30)

Because the frequency response is the transfer function evaluated on the imaginary axis of the
s-plane, that is when s = jω, the graphical method for evaluating the transfer function described
above may be applied directly to the frequency response. Each of the vectors from the n system
poles to a test point s = jω has a magnitude and an angle:

|jω − pi| =
√
σ2

i + (ω − ωi)2, (31)

� (s− pi) = tan−1
(
ω − ωi

−σi

)
, (32)

as shown in Fig. 7a, with similar expressions for the vectors from the m zeros. The magnitude and
phase angle of the complete frequency response may then be written in terms of the magnitudes
and angles of these component vectors

|H(jω)| = K

∏m
i=1 |(jω − zi)|∏n
i=1 |(jω − pi)| (33)

� H(jω) =
m∑

i=1

� (jω − zi) −
n∑

i=1

� (jω − pi). (34)
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Figure 7: Definition of the vector quantities used in defining the frequency response function from
the pole-zero plot. In (a) the vector from a pole (or zero) is defined, in (b) the vectors from all
poles and zeros in a typical system are shown.

As defined above, if the vector from the pole pi to the point s = jω has length qi and an angle θi
from the horizontal, and the vector from the zero zi to the point jω has a length ri and an angle
φi, as shown in Fig. 7b, the value of the frequency response at the point jω is

|H(jω)| = K
r1 . . . rm
q1 . . . qn

(35)

� H(jω) = (φ1 + . . .+ φm)− (θ1 + . . .+ θn) (36)

The graphical method can be very useful for deriving a qualitative picture of a system frequency
response. For example, consider the sinusoidal response of a first-order system with a pole on the
real axis at s = −1/τ as shown in Fig. 8a, and its Bode plots in Fig. 8b. Even though the gain
constant K cannot be determined from the pole-zero plot, the following observations may be made
directly by noting the behavior of the magnitude and angle of the vector from the pole to the
imaginary axis as the input frequency is varied:

1. At low frequencies the gain approaches a finite value, and the phase angle has a small but
finite lag.

2. As the input frequency is increased the gain decreases (because the length of the vector
increases), and the phase lag also increases (the angle of the vector becomes larger).

3. At very high input frequencies the gain approaches zero, and the phase angle approaches π/2.

As a second example consider a second-order system, with the damping ratio chosen so that the
pair of complex conjugate poles are located close to the imaginary axis as shown in Fig. 9a. In this
case there are a pair of vectors connecting the two poles to the imaginary axis, and the following
conclusions may be drawn by noting how the lengths and angles of the vectors change as the test
frequency moves up the imaginary axis:

1. At low frequencies there is a finite (but undetermined) gain and a small but finite phase lag
associated with the system.

2. As the input frequency is increased and the test point on the imaginary axis approaches the
pole, one of the vectors (associated with the pole in the second quadrant) decreases in length
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Figure 8: The pole-zero plot of a first-order system and its frequency response functions.

and at some point reaches a minimum. There is an increase in the value of the magnitude
function over a range of frequencies close to the pole.

3. At very high frequencies, the lengths of both vectors tend to infinity, and the magnitude of the
frequency response tends to zero, while the phase approaches an angle of π radians because
the angle of each vector approaches π/2.

The following generalizations may be made about the sinusoidal frequency response of a linear
system, based upon the geometric interpretation of the pole-zero plot:

1. If a system has an excess of poles over the number of zeros the magnitude of the frequency
response tends to zero as the frequency becomes large. Similarly, if a system has an excess of
zeros the gain increases without bound as the frequency of the input increases. This cannot
happen in physical energetic systems because it implies an infinite power gain through the
system.

2. If a system has a pair of complex conjugate poles close to the imaginary axis, the magnitude
of the frequency response has a “peak”, or resonance at frequencies in the proximity of the
pole. If the pole pair lies directly upon the imaginary axis, the system exhibits an infinite
gain at that frequency.

3. If a system has a pair of complex conjugate zeros close to the imaginary axis, the frequency
response has a “dip” or “notch” in its magnitude function at frequencies in the vicinity of the
zero. Should the pair of zeros lie directly upon the imaginary axis, the response is identically
zero at the frequency of the zero, and the system does not respond at all to sinusoidal
excitation at that frequency.

4. A pole at the origin of the s-plane (corresponding to a pure integration term in the transfer
function) implies an infinite gain at zero frequency.

5. Similarly a zero at the origin of the s-plane (corresponding to a pure differentiation) implies
a zero gain for the system at zero frequency.
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Figure 9: The pole-zero plot for a second-order system and its its frequency response functions.

3.1 A Simple Method for constructing the Magnitude Bode Plot directly from
the Pole-Zero Plot

The pole-zero plot of a system contains sufficient information to define the frequency response
except for an arbitrary gain constant. It is often sufficient to know the shape of the magnitude
Bode plot without knowing the absolute gain. The method described here allows the magnitude
plot to be sketched by inspection, without drawing the individual component curves. The method
is based on the fact that the overall magnitude curve undergoes a change in slope at each break
frequency.

The first step is to identify the break frequencies, either by factoring the transfer function or
directly from the pole-zero plot. Consider a typical pole-zero plot of a linear system as shown in Fig.
10a. The break frequencies for the four first and second-order blocks are all at a frequency equal
to the radial distance of the poles or zeros from the origin of the s-plane, that is ωb =

√
σ2 + ω2.

Therefore all break frequencies may be found by taking a compass and drawing an arc from each
pole or zero to the positive imaginary axis. These break frequencies may be transferred directly to
the logarithmic frequency axis of the Bode plot.

Because all low frequency asymptotes are horizontal lines with a gain of 0dB, a pole or zero does
not contribute to the magnitude Bode plot below its break frequency. Each pole or zero contributes
a change in the slope of the asymptotic plot of ±20 dB/decade above its break frequency. A complex
conjugate pole or zero pair defines two coincident breaks of ±20 dB/decade (one from each member
of the pair), giving a total change in the slope of ±40 dB/decade. Therefore, at any frequency ω,
the slope of the asymptotic magnitude function depends only on the number of break points at
frequencies less than ω, or to the left on the Bode plot. If there are Z breakpoints due to zeros to
the left, and P breakpoints due to poles, the slope of the curve at that frequency is 20 × (Z − P )
dB/decade.

Any poles or zeros at the origin cannot be plotted on the Bode plot, because they are effectively
to the left of all finite break frequencies. However, they define the initial slope. If an arbitrary
starting frequency and an assumed gain (for example 0dB) at that frequency are chosen, the shape
of the magnitude plot may be easily constructed by noting the initial slope, and constructing the

12



Figure 10: Construction of the magnitude Bode plot from the pole-zero diagram: (a) shows a
typical third-order system, and the definition of the break frequencies, (b) shows the Bode plot
based on changes in slope at the break frequencies

curve from straight line segments that change in slope by units of ±20 dB/decade at the breakpoints.
The arbitrary choice of the reference gain results in a vertical displacement of the curve.

Figure 10b shows the straight line magnitude plot for the system shown in Fig. 10a constructed
using this method. A frequency range of 0.01 to 100 radians/sec was arbitrarily selected, and a
gain of 0dB at 0.01 radians/sec was assigned as the reference level. The break frequencies at 0, 0.1,
1.414, and 5 radians/sec were transferred to the frequency axis from the pole-zero plot. The value
of N at any frequency is Z − P , where Z is the number of zeros to the left, and P is the number
of poles to the left. The curve was simply drawn by assigning the value of the slope in each of the
frequency intervals and drawing connected lines.
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