

Escola Politécnica da Universidade de São Paulo

PME 3344

Termodinâmica Aplicada

Aula de exercícios 01

Para um sistema que passa por uma mudança infinitesimal de estado, podemos realizar um balanço de energia:

Variação da energia do sistema = no processo

Energia que entra no sistema durante o processo

Energia que sai do sistema durante o processo

Assim: $dE = \delta Q - \delta W$

1^a Lei da Termodinâmica

Para entender os sinais que aparecem na expressão diferencial da 1^a Lei, precisamos relembrar da convenção de sinais adotada.

$$dE = \delta Q - \delta W$$

 $\star \delta Q > 0$ quando o calor é "transferido" da vizinhança para o sistema;

 $\star \delta Q < 0$ quando o calor é "transferido" do sistema para a vizinhança;

 $\star \delta W > 0$ trabalho realizado pelo sistema sobre a vizinhança;

 $\star \delta W < 0$ trabalho realizado sobre o sistema pela vizinhança.

Podemos integrar a expressão entre o estado 1 e 2 e obter a expressão da 1^a Lei para um sistema:

$$E_2 - E_1 = \int_1^2 dE$$

$$Q_{1-2} = \int_{1}^{2} \delta Q \qquad \longrightarrow \qquad E_{2} - E_{1} = Q_{1-2} - W_{1-2}$$

$$W_{1-2} = \int_1^2 \delta W$$

Podemos também realizar um balanço em um determinado instante de tempo, e assim temos:

Taxa de variação da energia do sistema

Taxa com queenergia queentra no sistema

Taxa com que energia sai do sistema

Assim:
$$\frac{dE'}{dt} = \dot{Q} - \dot{W}$$

1^a Lei da Termodinâmica

Na expressão:
$$\frac{dE}{dt} = \dot{Q} - \dot{\dot{W}}$$
Taxa de realização de

Temos uma equação diferencial ordinária (EDO), cuja solução exige o conhecimento da energia no instante inicial.

As seguintes relações são válidas:

$$Q_{1-2} = \int_{t_1}^{t_2} \dot{Q} dt$$

$$W_{1-2} = \int_{t_1}^{t_2} \dot{W} dt$$

Taxa de transferência

trabalho pelo sistema

Resumo

1^a Lei para um processo (1-2):
$$\Delta E = Q_{1-2} - W_{1-2}$$

1^a Lei para um instante:

$$\frac{dE}{dt} = \dot{Q} - \dot{W}$$

1^a Lei da Termodinâmica

Simplificações

$$E_1 = E_2$$

$$E_1 = E_2$$
 $\therefore \Delta E = 0$ $\therefore Q = W$

$$\therefore Q = W$$

Podemos escrever de outra forma:

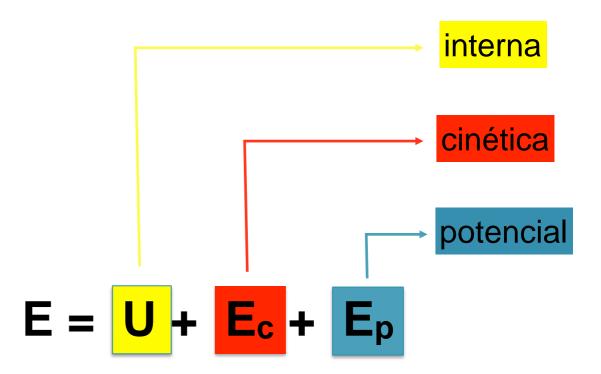
Regime permanente (propriedades não variam com o tempo):

$$\frac{dE}{dt} = \dot{Q} - \dot{W}$$

Escrevemos expressões para a conservação da energia sem nos preocuparmos sob quais formas encontramos a energia.

Anteriormente vimos:

A energia total (E) de um sistema composto por uma substância compressível simples em um dado estado é:

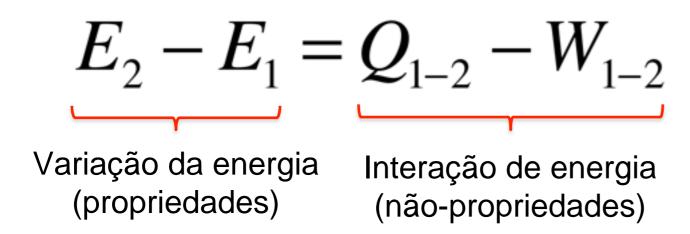


$$\Delta E = \Delta U + \Delta E_c + \Delta E_p$$
 ou $dE = dU + dE_c + dE_p$

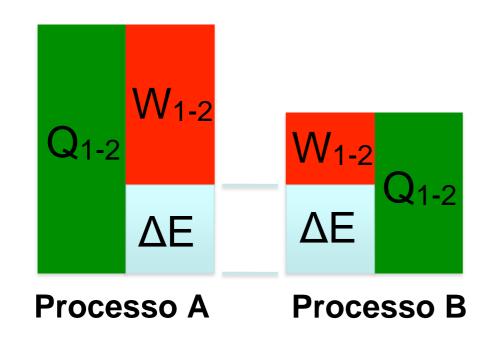
As igualdades são válidas pois Energia é uma função de ponto!

1^a Lei da Termodinâmica

Voltando à questão de função de ponto e caminho:



Observe a figura:



Fica claro que apesar de seguirmos por processos em que trabalho e calor são diferentes, a variação de energia do sistema é a mesma!

Lembrando de Mecânica:

$$\Delta E_c = \frac{1}{2} m \left(V_2^2 - V_1^2 \right)$$

$$\Delta E_p = mg(z_2 - z_1)$$

Completamos a apresentação da conservação da energia para um sistema. Veremos como avaliar a propriedade energia interna!

U - energia interna (energia)

u – energia interna específica (energia / massa)

Para uma mistura líquido vapor:

$$U = U_{liq} + U_{vap} \quad \text{ou} \quad \underline{mu = m_{liq}u_l + m_{vap}u_v}$$

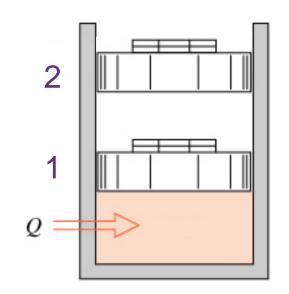
Dividindo por m e introduzindo o título:

$$u = (1 - x)u_l + xu_v \text{ ou } u = u_l + xu_{lv}$$

sendo u_I a energia específica do líquido saturado, u_V a energia do vapor saturado e u_{IV} a diferença entre a primeira e a segunda.

A propriedade entalpia

Considere o gás no conjunto cilindro-pistão como sistema. Vamos aquecer o sistema lentamente:



•1^a lei:
$$E_2 - E_1 = Q_{1-2} - W_{1-2}$$

Simplificando:
$$E_2 - E_1 \simeq U_2 - U_1$$
 Por que?

$$W_{1-2} = \int pdV = P_1(V_2-V_1)$$

Combinando as expressões: $U_2 - U_1 = Q_{1-2} - P_1(V_2-V_1)$

Define-se H = U + PV Assim: $Q_{1-2} = H_2 - H_1$ entalpia como:

H - entalpia (energia)

h – entalpia específica (energia / massa)

Para uma mistura líquido vapor:

$$H = H_{liq} + H_{vap} \quad \text{ou} \quad mh = m_{liq}h_l + m_{vap}h_v$$

Introduzindo o título:

$$h = (1 - x)h_l + xh_v$$
 ou $h = h_l + xh_{lv}$

sendo h_I a entalpia específica do líquido saturado, h_V a entalpia do vapor saturado e h_{IV} a entalpia de vaporização.

Aproximações para o líquido comprimido usando as propriedades do líquido saturado

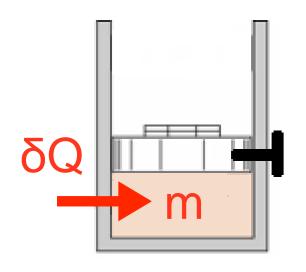
$$V_{liq\;comp}(T,P) \approx V_{l}(T)$$
 $U_{liq\;comp}(T,P) \approx U_{l}(T)$
 $h_{liq\;comp}(T,P) \approx U_{l}(T) + P.V_{l}(T)$
Ou
 $h_{liq\;comp}(T,P) \approx h_{l}(T) + V_{l}(T).[P - P_{sat}(T)]$

Apresentamos novas propriedades, agora precisamos aprender a determiná-las!

Calores Específicos

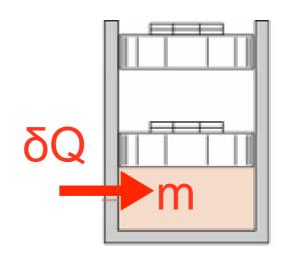
Para calcular as variações de entalpia e energia interna precisamos definir duas novas propriedades termodinâmicas, os calores específicos a pressão constante e a volume constante.

Considere os dois experimentos com um fluido:



Calor específico a volume constante

$$c_v = \frac{\delta Q}{m dT}$$



Calor específico a pressão constante

$$c_p = \frac{\delta Q}{m \ dT}$$

Concluímos que:

Calor específico a volume constante
$$c_v = \frac{\delta Q}{m dT}$$

Calor específico a pressão constante
$$c_p = \frac{\delta Q}{m dT}$$

Podemos aplicar a 1^a Lei para os dois casos considerando a substância como sistema:

$$\delta Q = dU + \delta W (=0)$$

$$\delta Q = dU + \delta W (=pdV)$$

Combinando com as expressões dos calores específicos:

$$c_{V} = \frac{dU}{m dT} \longrightarrow c_{V} = \frac{\partial u}{\partial T}\Big|_{V}$$

$$c_{V} = \frac{dU}{m dT} \longrightarrow c_{V} = \frac{\partial u}{\partial T} \Big|_{V} \qquad c_{p} = \frac{dU + pdV}{m dT} \longrightarrow c_{p} = \frac{\partial h}{\partial T} \Big|_{D}$$

Substância incompressível

O modelo considera que:

$$v = \text{cte}$$

$$u = u(T) \Rightarrow c_v(T) = \frac{du}{dT}$$

Derivando a definição de entalpia:

$$\frac{\partial h}{\partial T}\Big|_{p} = \frac{du}{dT} \Rightarrow c = c_{p} = c_{v} \Rightarrow u_{2} - u_{1} = \int_{T_{1}}^{T_{2}} c(T) dT$$

Considerando adicionalmente calor específico constante:

$$u_2 - u_1 = c(T_2 - T_1)$$

Quando podemos fazer essa hipótese?

Determinação de propriedades

Gás perfeito

O modelo considera que:

$$pv = RT$$

$$u(T)$$

Considerando a definição da entalpia:

$$h = h(T) = u + RT \Rightarrow dh = du + RdT$$

Combinando a equação anterior com as definições dos calores específicos:

$$c_{v0}(T) = \frac{du}{dT}$$

$$c_{v0}(T) = \frac{dh}{dT}$$

Obtém-se: $c_{p0} = c_{v0} + R$

maior que c

indica g.p.

Gás perfeito: Aproximações

$$c_{p0} \in c_{v0}$$
 constantes:
$$c_{p0}(T) = \frac{du}{dT} \text{Integrando}$$

$$u_2 - u_1 = c_{v0}(T_2 - T_1)$$

$$h_2 - h_1 = c_{p0}(T_2 - T_1)$$

Em alguns problemas aparecem u e h isolados, isto é, não aparecem diferenças de u e h. Nessa situação como determinamos as propriedades?

Definimos um <u>estado de referência</u> para *u*, por exemplo. Nesse estado estabelecemos um <u>valor arbitrário</u> para *u* e calculamos *h* correspondente! Vejamos como fazer isso na sequência.

Gás perfeito: Aproximações

Vamos definir o estado de referência. Considere a expressão:

$$u = u(T_{ref}) + \int_{T_{ref}}^{T} c_{v} dT$$

Por simplicidade vamos estabelecer que para T = 0 K, u = 0:

$$u = u(0) + \int_0^T c_v dT$$
 — $u(T) = c_{v0} T$

Agora calculamos *h*:

$$h(T_{ref}) = u(T_{ref}) + Pv$$
 $h = 0 + RT_{ref}$: $h(OK) = 0$

Analogamente:
$$h(T) = c_{po}T$$

Gás perfeito: Tabelas de gás ideal

Fizemos a integração usando a hipótese de calores específicos constantes

$$c_{v0}(T) = \frac{du}{dT}$$
$$c_{p0}(T) = \frac{dh}{dT}$$

$$c_{p0}(T) = \frac{dh}{dT}$$

Nas tabelas de gás ideal a integração é feita a partir de um estado de referência considerando a dependência dos calores com a temperatura!

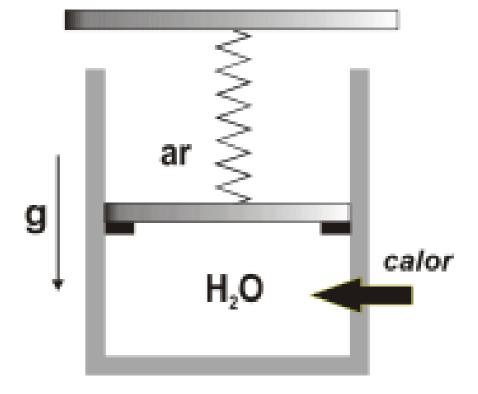
Prefira usar as Tabelas de Gás Ideal a considerar calores constantes!

 TABELA A.7 Prop <u>riedades termodinâmicas do ar (gás ideal; pressão de</u> referência para a <u>entropia é 0,1 MPa ou 1 bar</u>)												
T[K]	u kJ/kg	h kJ/kg	s ⁰ ₇ kJ/kg × K	P _r	V_{r}							
200	142,77	200,17	6,46260	0,2703	493,47							
220	157,07	220,22	6,55812	0,3770	389,15							
240	171,38	240,27	6,64535	0,5109	313,27							

Extra 1:

Um conjunto cilindro-êmbolo contém 1 kg de água. A mola encontra-se comprimida na posição inicial, de modo que é necessária uma pressão de 300kPa no fluido para ergue-la. Para um volume de 1,5 m³ a força exercida pela mola é tal que a pressão no fluido é de 500 kPa. No estado inicial a água está a 100 kPa e ocupa um volume de 0,5m³. Calor é então transferido até que a pressão atinja 400 kPa. Pede-se:

- (a) representar o processo em um diagrama p-v, incluindo as linhas de saturação;
- (b) calcular o trabalho;
- (c) determinar calor transferido no processo.



Extra 1: Solução

Hipóteses:

- 1.O sistema é a água contida no conjunto;
- 2.Os processos são de quase-equilíbrio;
- 3.Os estados 1, 2 e 3 são estados de equilíbrio;
- 4. Não há atrito entre o pistão e o cilindro;
- 5.A mola é linear;
- 6. Sistema estacionário (sem variação de energia cinética);
- 7. Variação desprezível da energia potencial.

Extra 1: Solução

◆Estado 1: Definido, pois conhecemos v e P.

$$v_1 = 0.5/1 = 0.5 \text{ m}^3/\text{kg}$$

Para identificar o estado 1 devemos consultar a tabela de saturação com $P_1 = 100 kPa$ ($T_{sat} = 99,62$ °C) e comparar o valor de v_1 com $v_1 = 0,001043$ e $v_2 = 1,694$ m³/kg.

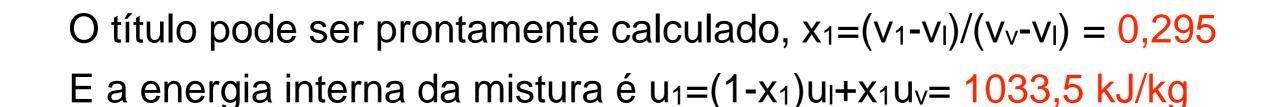
Tabela Água sa		tabela em	função da	pressão								
		Volume específico (m³/kg)		Energia interna (kJ/kg)			Entalpia (kJ/kg)			Entropia (kJ/kg K)		
Pressão kPa	Temp. °C	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
Р	Т	V _I	V_{ν}	u _I	u _{lv}	u _v	h _I	h _{Iv}	h _v	s _I	s_{lv}	s_{v}
75	91,77	0,001037	2,21711	394,29	2112,39	2496,67	384,36	2278,59	2662,96	1,2129	6,2434	7,4563
100	99,62	0,001043	1,69400	417,33	2088,72	2506,06	417,44	2258,02	2675,46	1,3025	6,0568	7,3593
125	105,99	0,001048	1,37490	444,16	2069,32	2513,48	444,30	2241,05	2685,35	1,3739	5,9104	7,2843

Extra 1: Solução

◆Estado 1: Definido, pois conhecemos v e P.

Como $v_1 < v_2$, temos líquido + vapor. Logo $T_1 = T_{sat}$. Aproveitamos a oportunidade para buscar da tabela u_1 =417,33 e u_2 =2506,1kJ/kg.

		Volume es (m ³ /		co Energia interna (kJ/kg)				Entalpia (kJ/kg)		Entropia (kJ/kg K)			
Pressão kPa	Temp. °C	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	
Р	T	v_l	V_{V}	u _l	u _{lv}	u_{v}	h _l	h _{Iv}	h _v	Sı	SIV	s_{v}	
75	91,77	0,001037	2,21711	394,29	2112,39	2496,67	384,36	2278,59	2662,96	1,2129	6,2434	7,4563	
100	99,62	0,001043	1,69400	417,33	2088,72	2506,06	417,44	2258,02	2675,46	1,3025	6,0568	7,3593	
125	105,99	0,001048	1,37490	444,16	2069,32	2513,48	444,30	2241,05	2685,35	1,3739	5,9104	7,2843	



Extra 1: Solução

◆Estado 2 (batente sem atuação): Definido, pois conhecemos v e P.

$$v_2 = v_1 = 0.5 \text{ m}^3/\text{kg}$$

Para identificar o estado 2 devemos consultar a tabela de saturação com $P_2 = 300 kPa$ ($T_{sat} = 133,55^{\circ}C$) e comparar o valor de v_2 com $v_1 = 0,001073$ e $v_2 = 0,6058$ m³/kg. Como $v_1 < v_2 < v_2$, temos líquido + vapor. Logo $T_2 = T_{sat}$.

Aproveitamos a oportunidade para buscar da tabela u_i=561,13 e u_v=2543,6kJ/kg.

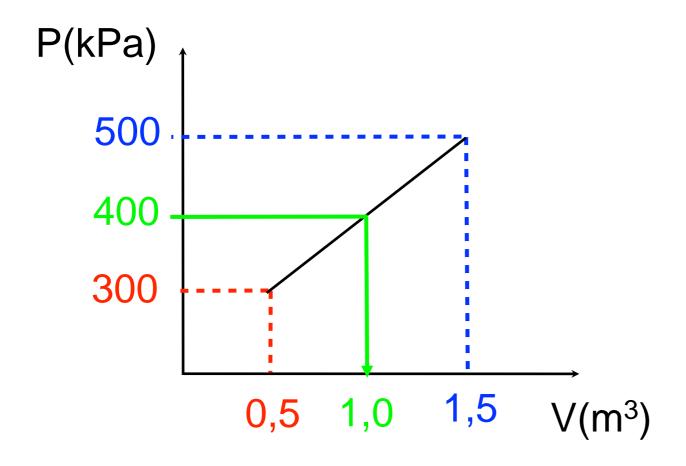
O título pode ser prontamente calculado, $x_2=(v_2-v_1)/(v_v-v_1)=0.825$

E a energia interna da mistura é u₂=(1-x₂)u₁+x₂u_v= 2196,7 kJ/kg

Extra 1: Solução

Estado 3: Definido, pois conhecemos v e $P_3 = 400$ kPa. Como?

Analisando a mola!



$$v_3 = 1/1 = 1 \text{ m}^3/\text{kg}$$

Extra 1: Solução

◆Estado 3: Definido, pois conhecemos v e P.

$$v_3 = 1 \text{ m}^3/\text{kg}$$

Para identificar o estado 3 devemos consultar a tabela de saturação com $P_3 = 400 kPa$ ($T_{sat} = 143,69^{\circ}C$) e comparar o valor de v_3 com v_1 e $v_2 = 0,46246$ m³/kg.

		Volume específico (m³/kg)		Energia interna (kJ/kg)				Entalpia (kJ/kg)		Entropia (kJ/kg K)		
Pressão kPa	Temp. °C	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
Р	T	v_l	V_{V}	u _I	u _{lv}	u _v	h _I	h _{lv}	h _v	s_l	SIV	s_{ν}
375	141,32	0,001081	0,40137	594,38	1956,93	2551,31	594,79	2140,79	2735,58	1,7527	5,1647	6,9174
400	143,63	0,001084	0,46246	604,29	1949,26	2553,55	604,73	2133,81	2738,53	1,7766	5,1193	6,8958
450	147,93	0,001088	9,41309	622,75	1934,87	2557,62	623,24	2120,67	2743,91	1,8206	5,0359	6,8565

Como $v_3 > v_v$, temos vapor superaquecido.

Extra 1: Solução

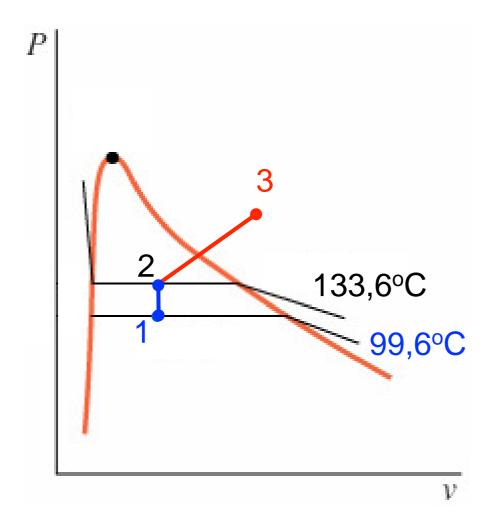
◆Estado 3: Definido, pois conhecemos v e P.

Da tabela de vapor superaquecido com $P_3 = 400 kPa$ e $v_3 \approx 1,0056 m^3/kg$, temos $T_3 = 600$ °C e $u_3 = 3300,2 kJ/kg$.

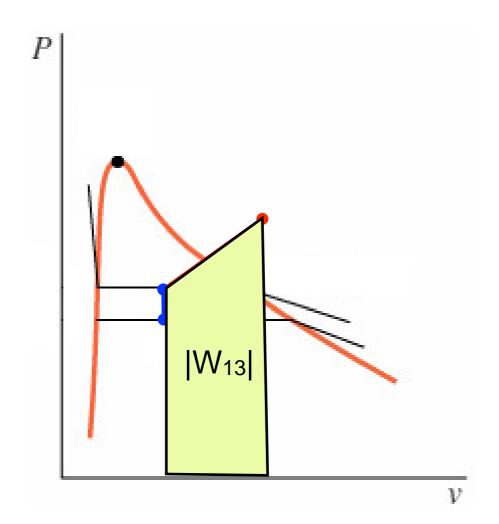
Vapor T	V	и	h	s	V	и	h	s	V	и	h	S
1	(m^3/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m^3/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m^3/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)
	F	P = 200 kP	a (120,23)		P = 300 kF	Pa (133,55	5)		P = 400 kP	a (143,63)
Sat.	0,88573	2529,49	2706,63	7,1271	0,60582	2543,55	2725,30	6,9918	0,46246	2553,55	2738,53	6,8958
150	0,95964	2576,87	2768,80	7,2795	0,63388	2570,79	2760,95	7,0778	0,47084	2564,48	2752,82	6,9299
200	1,08034	2654,39	2870,46	7,5066	0,71629	2650,65	2865,54	7,3115	0,53422	2646,83	2860,51	7,1706
250	1,19880	2731,22	2970,98	7,7085	0,79636	2728,69	2967,59	7,5165	0,59512	2726,11	2964,16	7,3788
300	1,31616	2808,55	3071,79	7,8926	0,87529	2806,69	3069,28	7,7022	0,65484	2804,81	3066,75	7,5661
400	1,54930	2966,69	3276,55	8,2217	1,03151	2965,53	3274,98	8,0329	0,77262	2964,36	3273,41	7,8984
500	1,78139	3130,75	3487,03	8,5132	1,18669	3129,95	3485,96	8,3250	0,88934	2129,15	3484,89	8,1912
600	2,01297	3301,36	3703,96	8,7769	1,34136	3300,79	3703,20	8,0002	1,00555	3300,22	3702,44	8,4557
700	2,24426	3478,81	3927,66	9,0194	1,49573	3478,38	3927,10	8,8319	1,12147	3477,95	3926,53	8,6987
800	2,47539	3663,19	4158,27	9,2450	1,64994	3662,85	4157,83	9,0575	1,23722	3662,51	4157,40	8,9244
900	2,70643	3854,49	4395,77	9,4565	1,80406	3854,20	4395,42	9,2691	1,35288	3853,91	4395,06	9,1361
1000	2,93740	4052,53	4640,01	9,6563	1,95812	4052,27	4639,71	9,4689	1,46847	4052,02	4639,41	9,3360
1100	3,16834	4257,01	4890,68	9,8458	2,11214	4256,77	4890,41	9,6585	1,58404	4256,53	4890,15	9,5255
1200	3,39927	4467,46	5147,32	10,0262	2,26614	4467,23	5147,07	9,8389	1,69958	4466,99	5146,83	9,7059
1300	3,63018	4683,23	5409,26	10,1982	2,42013	4682,99	5409,03	10,0109	1,81511	4682,75	5408,80	9,8780

Extra 1: Solução

♦ Diagrama P-v e o trabalho.



Processo a v constante



 $W_{13} = (P_3+P_2)(V_3-V_2)/2=175kJ$

Extra 1: Solução

♦Cálculo do calor

Aplicando a 1ª Lei para o sistema, considerando sistema estacionário a variação da energia potencial desprezível em face da variação da energia interna:

$$U_3 - U_1 = Q_{1-3} - W_{1-3}$$

$$Q_{1-3} = m(u_3 - u_1) + W_{1-3}$$

$$Q_{1-3} = 1(3300, 2 - 1033, 5) + 175$$

$$Q_{1-3} = 2442kJ$$

Substância pura: Exercícios

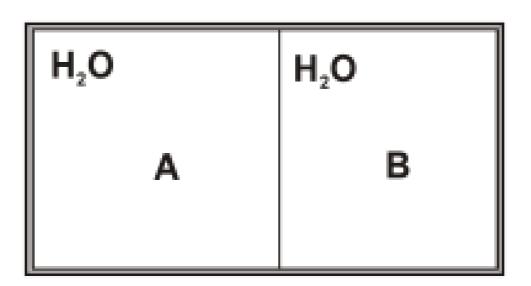
Extra 1: Observações

♦O sinal do trabalho é positivo pois temos o sistema realizando trabalho sobre a vizinhança;

◆O sinal do calor é positivo pois transferimos para o sistema.

Extra 2:

Um tanque rígido está dividido em dois compartimentos por uma membrana. Ambos os lados contêm água. O compartimento A, com volume de 1 m³, está a 400 kPa e o fluido nele contido tem volume específico de 1 m³/kg. O compartimento B contém 0,5kg de água a 100kPa e 150 °C. A membrana rompe, ocorrendo transferência de calor com o ambiente até que a água contida no tanque atinja uma temperatura uniforme de 100 °C. Pede-se para determinar o calor transferido entre o fluido no tanque e o ambiente.



Extra 2: Solução

Hipóteses:

- 1.O sistema é a água contida no conjunto;
- 2. O trabalho de rompimento da membrana é nulo;
- 3.Os estados 1 e 2 são estados de equilíbrio;
- 4. Variação desprezível da energia potencial;
- 5. Sistema estacionário.

Extra 2: Solução

◆Estado 1 / Volume A: Definido, pois conhecemos v e P.

$$v_{A1} = 1 \text{ m}^3/\text{kg}$$
 $P_{A1} = 400 \text{ kPa}$

Da tabela de saturação $T_{sat} = 143,63^{\circ}C$ e $v_v=0,4265$ m³/kg. Como $v_{A1} > v_v$, temos vapor superaquecido.

Da tabela de vapor superaquecido com P = 400kPa e v = $1,0056m^3/kg$, temos $T_{A1} = 600^{\circ}C$ e $u_{A1} = 3300,2kJ/kg$.

Tabe	la B.1.3													
Vapor	Vapor d'água superaquecido													
т	V	и	h	S	V	и	h	S	V	и	h	S		
ı	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m^3/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)		
	P = 200 kPa (120,23)					P = 300 kP	Pa (133,55	5)	P = 400 kPa (143,63)					
Sat.	0,88573	2529,49	2706,63	7,1271	0,60582	2543,55	2725,30	6,9918	0,46246	2553,55	2738,53	6,8958		
150	0,95964	2576,87	2768,80	7,2795	0,63388	2570,79	2760,95	7,0778	0,47084	2564,48	2752,82	6,9299		
200	1,08034	2654,39	2870,46	7,5066	0,71629	2650,65	2865,54	7,3115	0,53422	2646,83	2860,51	7,1706		
250	1,19880	2731,22	2970,98	7,7085	0,79636	2728,69	2967,59	7,5165	0,59512	2726,11	2964,16	7,3788		
300	1,31616	2808,55	3071,79	7,8926	0,87529	2806,69	3069,28	7,7022	0,65484	2804,81	3066,75	7,5661		
400	1,54930	2966,69	3276,55	8,2217	1,03151	2965,53	3274,98	8,0329	0,77262	2964,36	3273,41	7,8984		
500	1,78139	3130,75	3487,03	8,5132	1,18669	3129,95	3485,96	8,3250	0,88934	2129,15	3484,89	8,1912		
600	2,01297	3301,36	3703,96	8,7769	1,34136	3300,79	3703,20	8,0002	1,00555	3300,22	3702,44	8,4557		
700	2,24426	3478,81	3927,66	9,0194	1,49573	3478,38	3927,10	8,8319	1,12147	3477,95	3926,53	8,6987		

Extra 2: Solução

◆Estado 1 / Volume B: Definido, pois conhecemos T e P.

$$T_{B1} = 150^{\circ}C$$
 $P_{B1} = 100 \text{ kPa}$

Da tabela de saturação $T_{B1} > T_{sat}$ a 100 kPa temos vapor superaquecido.

Da tabela de vapor superaquecido $v_{B1} = 1,9364 \text{ m}^3/\text{kg}$ e $u_{B1} = 2582,7 \text{ kJ/kg}$.

Calculamos então $m_{A1} = 1 \text{ kg e V}_{B1} = 0,9682 \text{ m}^3$.

Extra 2: Solução

◆Estado 2: Definido, pois conhecemos T e v.

$$T_2 = 100$$
°C $v_2 = 1,9682 / 1,5 = 1,31 \text{ m}^3/\text{kg}$

Da tabela de saturação com $T_2 = 100^{\circ}\text{C}$ ($P_{sat} = 101,35 \text{ kPa}$) $v_1 = 0,001044 \text{ e } v_v = 1,6729 \text{ m}^3/\text{kg}$. Como $v_1 < v_2 < v_v$, temos líquido + vapor. Logo $P_2 = P_{sat}$.

Aproveitamos a oportunidade para buscar da tabela u_i=418,91 e u_v=2506,5kJ/kg.

O título pode ser prontamente calculado, $x_2=(v_2-v_1)/(v_v-v_1)=0.784$

E a energia interna da mistura é por u₂=(1-x₂)u₁+x₂u_v= 2055,6 kJ/kg

Extra 2: Solução

♦Cálculo do calor

Aplicando a 1^a Lei para o sistema A + B:

$$U_2 - (U_{A1} + U_{B1}) = Q_{1-2} - W_{1-2}$$

$$Q_{1-2} = m_2 u_2 - m_{A1} u_{A1} - m_{B1} u_{B1}$$

$$Q_{1-2} = -1508kJ$$

Extra 3 (4.82 da lista de exercícios):

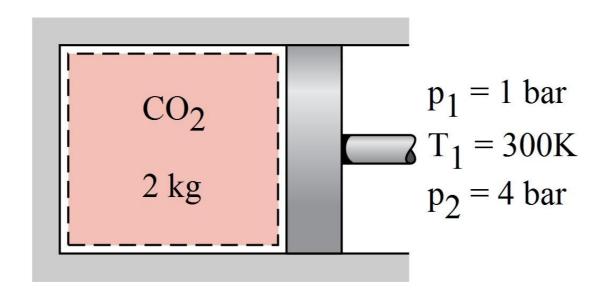
Um sistema consiste de 2 kg de dióxido de carbono inicialmente no estado um, onde $p_1 = 1$ bar, $T_1 = 300$ K. O sistema é submetido a um ciclo motor consistindo nos seguintes processos:

Processo 1-2: volume constante para $p_2 = 4$ bar

Processo 2-3: expansão com $pV^{1,28}$ = constante

Processo 3-1: compressão a pressão constante

Admitindo modelo de gás ideal e desprezando os efeitos das energias cinética e potencial, (a) esboce o ciclo em um diagrama p-v e (b) determine a eficiência térmica do ciclo.

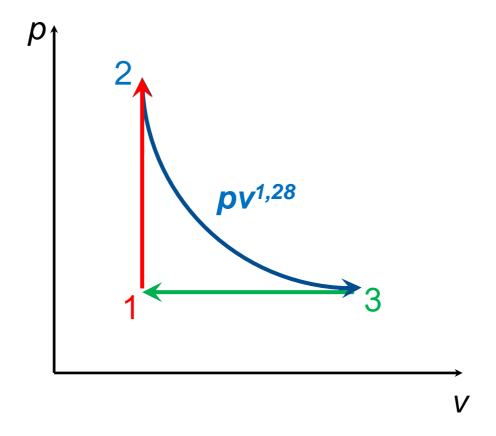


Extra 3: Solução

Hipóteses:

- 1. O sistema é o CO₂ contido no cilindro;
- 2. O CO₂ se comporta como gás perfeito;
- 3. O processo 2-3 segue a relação $pV^{1,28} = cte$;
- 4. Variação desprezível das energias cinética e potencial.

(a) A partir das informações sobre os processos que compõem o ciclo, temos:



(b) Para avaliar a eficiência do ciclo, vamos precisar determinar as transferências de calor e trabalho nos três processos, pois essa eficiência é dada por:

$$\eta_{ciclo} = W_{líquido}/Q_{fornecido}$$

$$W_{liquido} = W_{1-2} + W_{2-3} + W_{3-1}$$

Para o processo 1-2: como o volume é constante, temos que $W_{1-2} = 0$. Já para os processos 2-3 e 3-1, temos:

$$W_{2-3} = \int_{2}^{3} p dV = m \frac{\left(p_3 v_3 - p_2 v_2\right)}{1-n} = m \frac{R\left(T_3 - T_2\right)}{1-n}$$
(gás perfeito)

$$W_{3-1} = \int_{3}^{1} p dV = mp_3 (v_1 - v_3) = \underbrace{mR(T_1 - T_3)}_{\text{(gás perfeito)}}$$

Da hipótese de que o CO₂ é gás perfeito vem:

$$\frac{\text{processo}}{2\text{-3}} \Rightarrow \begin{cases} pV = mRT \\ pV^n = \text{constante} \end{cases} \Rightarrow T_3 = T_2 \left(\frac{p_3}{p_2}\right)^{(n-1)/n} \Rightarrow T_3 = 886K$$

Com os valores de T_2 e T_3 , podemos calcular W_{2-3} e W_{3-1} :

$$W_{2-3} = m \frac{R(T_3 - T_2)}{1 - n} = 2 \frac{0,1889(886 - 1200)}{1 - 1,28} = 423,7 \text{kJ}$$

$$W_{3-1} = mR(T_1 - T_3) = 2.0,1889(300 - 886) = -221,4kJ$$

Aplicando agora a Primeira Lei da Termodinâmica para os processos 1-2, 2-3 e 3-1:

$$m(u_2 - u_1) = Q_{1-2} - \underbrace{W_{1-2}}_{=0} \Rightarrow Q_{1-2} = m(u_2 - u_1)$$

$$m(u_3 - u_2) = Q_{2-3} - W_{2-3} \Rightarrow Q_{2-3} = m(u_2 - u_1) + W_{2-3}$$

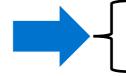
$$m(u_1 - u_3) = Q_{3-1} - W_{3-1} \Rightarrow Q_{3-1} = m(u_1 - u_3) + W_{3-1}$$

Extra 3: Solução

Com os valores de T_1 , T_2 e T_3 , podemos obter os valores de u_1 , u_2 e u_3 na Tabela A.8:

$$u_1 = 157,70 \text{ kJ/kg}$$

interpolação: u₃ = 663,43 kJ/kg



 $u_2 = 996,64 \text{ kJ/kg}$

T (K) -	$R = 0,1889 \text{ kJ/kg} \times \text{K}$ $M = 44,010 \text{ kg/kmol}$		
	u (kJ/kg)	h (kJ/kg)	$S_T^0(kJ/kg \times K)$
200	97,49	135,28	4,5439
250	126,21	173,44	4,7139
300	157,70	214,38	4,8631
350	191,78	257,90	4,9972
400	228,19	303,76	5,1196
450	266,69	351,70	5,2325
500	307,06	401,52	5,3375
550	349,12	453,03	5,4356
600	392,72	506,07	5,5279
650	437,71	560,51	5,6151
700	483,97	616,22	5,6976
750	531,40	673,09	5,7761
800	579,89	731,02	5,8508
850	629,35	789,93	5,9223
900	676,69	849,72	5,9906
950	730,85	910,33	6,0561
1000	782,75	971,67	6,1190
1100	888,55	1096,36	6,2379
1200	996.64	1223.34	6.3483

Dióxido de carbono (CO₂)

Tendo determinado W_{2-3} , W_{3-1} , u_1 , u_2 e u_3 , podemos determinar:

$$Q_{1-2} = m(u_2 - u_1) = 2(996, 64 - 157, 7) = 1677, 9kJ$$

$$Q_{2-3} = m(u_3 - u_2) + W_{2-3} = 2(663, 43 - 996, 64) + 423, 7 = -242, 7kJ$$

$$Q_{3-1} = m(u_1 - u_3) + W_{3-1} = 2(157, 7 - 663, 43) - 221, 4 = -1232, 9kJ$$

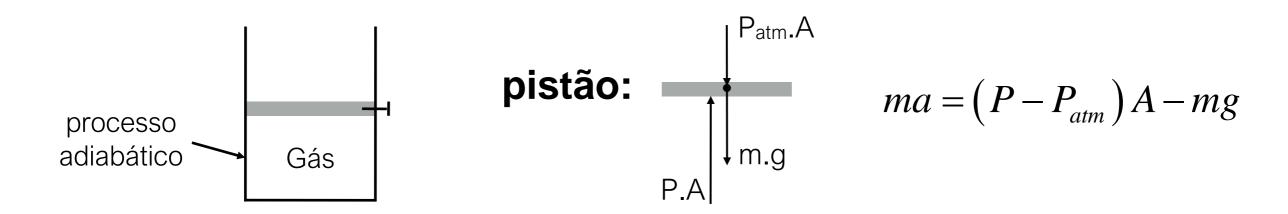
Como Q_{2-3} e Q_{3-1} são negativos (transferidos do sistema para o meio externo), concluímos que $Q_{\text{fornecido}} = Q_{1-2}$. Assim:

$$\eta = \frac{W_{\text{líquido}}}{Q_{\text{fornecido}}} = \frac{W_{2-3} + W_{3-1}}{Q_{1-2}} = \frac{423,7 + (-221,4)}{1677,9}$$

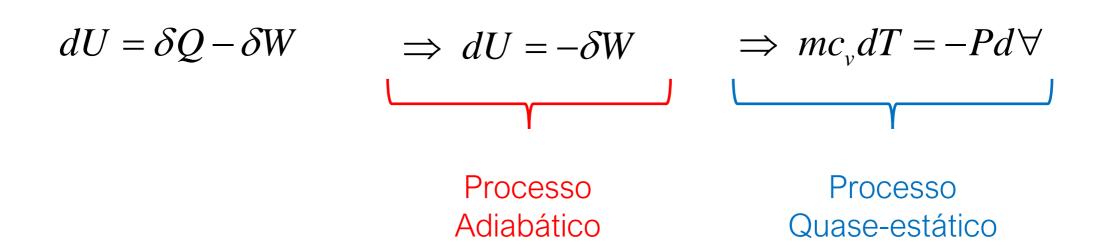
$$\eta = 0.121 (12.1\%)$$

Sugestão: refaça os cálculos para p_2/p_1 variando de 1,05 a 4 e trace a curva $\eta = f(p_2/p_1)$

Considere um gás contido em um conjunto cilindro-pistão:



1^a lei para gás na forma diferencial (calores específicos constantes):



1^a lei para gás na forma diferencial:

$$mc_{v}d\left(\frac{P\forall}{mR}\right) = -Pd\forall \implies \frac{mc_{v}}{mR}d\left(P\forall\right) = -Pd\forall$$

$$\frac{c_{v}}{R}d(P\forall) = -Pd\forall \implies d(P\forall) = -\left(\frac{c_{p} - c_{v}}{c_{v}}\right)Pd\forall \implies d(P\forall) = (1 - k)Pd\forall$$

$$\forall dP + Pd \forall = (1-k)Pd \forall \implies \forall dP = -kPd \forall \implies \frac{dP}{P} = -k\frac{d\forall}{\forall}$$

$$\int_{1}^{2} \frac{dP}{P} = -k \int_{1}^{2} \frac{d\forall}{\forall} \implies P_{1} \forall_{1}^{k} = P_{2} \forall_{2}^{k}$$

Portanto, a partir da 1ª lei verificamos que um processo adiabático e quase-estático de um gás perfeito com calores específicos constantes é um caso particular de processo politrópico com

$$n = k = c_p/c_v$$