Teorias e métodos em melhoramento genético animal

Bases do Melhoramento Genético Animal

Joanir Pereira Eler

Médico Veterinário, Doutor em Ciências

PROFESSOR TITULAR DEPARTAMENTO DE MEDICINA VETERINÁRIA FACULDADE DE ZOOTECNIA E ENGENHARIA DE ALIMENTOS UNIVERSIDADE DE SÃO PAULO

Teorias e métodos em melhoramento genético animal

Bases do Melhoramento Genético Animal

Joanir Pereira Eler

Médico Veterinário, Doutor em Ciências

PROFESSOR TITULAR
DEPARTAMENTO DE MEDICINA VETERINÁRIA
FACULDADE DE ZOOTECNIA E ENGENHARIA DE ALIMENTOS
UNIVERSIDADE DE SÃO PAULO

Pirassununga- SP Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo 2017

Dados Internacionais de Catalogação na Publicação

Serviço de Biblioteca e Informação da Faculdade de Zootecnia e Engenharia de Alimentos da Universidade de São Paulo

Eler, Joanir Pereira E39t Teorias e métodos

Teorias e métodos em melhoramento genético animal : bases do melhoramento genético animal. / Joanir Pereira Eler. -- Pirassununga : Faculdade de Zootecnia e Engenharia de Alimentos da Universidade de São Paulo, 2017. 239 p. : il. -- (Teorias e métodos em melhoramento genético animal ; 1)

ISBN 978-85-66404-12-8 (e-book) DOI: 10.11606/9788566404128

- 1. Modos de ação gênica 2. Genética quantitativa
- 3. Endogamia e parentesco 4. Parâmetros genéticos.
- I. Título.

Está autorizada a reprodução parcial ou total desta obra desde que citada a fonte. Proibido uso com fins comerciais.

Apresentação

Existem, nas bibliotecas brasileiras, bons livros de melhoramento animal, nacionais e estrangeiros. Não temos a pretensão de imaginar que estamos "inventando a roda" do material didático nesta área. Apenas compilamos o material das disciplinas que vimos ministrando há quase trinta anos e, que, em nossa maneira de ver, é direcionado para o desenvolvimento teórico de temas relacionados com os dois pilares do melhoramento genético animal: seleção e sistemas de acasalamento.

Temos enfatizado ao longo desses anos de docência e pesquisa, associados também a uma experiência de muitos anos de trabalho em avaliação genética de reprodutores, seleção e acasalamentos dirigidos, que, se os conceitos forem bem definidos e se as equações empregadas para explicar esses conceitos forem deduzidas de forma adequada, o aluno pode adquirir um embasamento teórico muito importante para suas tomadas de decisão na prática de campo.

Ainda persistem na pecuária brasileira, alguns dogmas e mitos que tiveram origem na tradição e na gestão familiar a que os sistemas de produção foram submetidos durante muitos anos. Mesmo que esses sistemas sejam hoje geridos de forma muito mais técnica, os profissionais recém-formados ainda são confrontados com práticas não respaldadas cientificamente. Se esses profissionais chegarem ao mercado de trabalho sem os conhecimentos teóricos necessários, eles podem sucumbir e mesmo aderir, sem questionamento, a essas práticas não validadas pela ciência.

Por outro lado, o conhecimento prático advindo do sistema de produção é de grande importância na formação do profissional. O produtor, o pecuarista, dono do capital e dos riscos, pode, mais do que qualquer outro, contribuir para o direcionamento do seu próprio sistema de produção. Mas esse produtor precisa estar embasado nos conceitos teóricos ou assessorado por quem tem esse embasamento. O contrário não é válido, ou seja, o profissional não pode abandonar os conceitos teóricos e simplesmente aderir às práticas não comprovadas. E para que isto não ocorra, ele precisa, como egresso da Universidade, levar para o campo os conhecimentos teóricos bem fundamentados, mesmo tendo que adquirir a prática dentro do próprio sistema de produção. De posse do conhecimento teórico, o profissional passa a dispor de um filtro que deixa passar em suas malhas toda a contribuição e experiência dos atores envolvidos no sistema de produção, mas impede a passagem de práticas não respaldadas técnica e cientificamente.

Em relação a essa formação teórica, fazemos aqui um pequeno comentário: nos sistemas de cruzamento em bovinos, uma equação descreve os fatores envolvidos na ocorrência da heterose e explica em que situação ela pode ser maior ou menor ou mesmo pode não ocorrer. Por outro lado, outra equação descreve os fatores envolvidos e explica por que, nos acasalamentos entre animais aparentados, a média da progênie é invariavelmente menor do que a da população base. Os profissionais precisam chegar ao mercado de trabalho conhecendo muito bem essas duas equações, pois, com elas, ele pode, primeiramente, se convencer e depois, convencer o pecuarista a adotar sistemas de acasalamento que comprovadamente levem a resultados positivos em termos de aumento de produtividade. Da mesma forma, muitas outras equações explicam aspectos fundamentais nos sistemas de produção. Infelizmente poucos são os profissionais que já as levam bem fundamentadas a partir da Universidade.

Assim, este livro tem como objetivo principal servir como material básico nas disciplinas de Melhoramento Genético Animal ministradas aos nossos alunos de Graduação e de Pós-Graduação em Zootecnia e Medicina Veterinária, possibilitando o embasamento teórico necessário. Nos três livros que compõem este título, primeiramente definimos os conceitos mais importantes de genética populacional e quantitativa, parentesco e endogamia e aplicamos alguns métodos estatísticos simples, mas fundamentais, na estimação dos parâmetros genéticos, de modo a fundamentar as bases em que repousa o melhoramento genético animal. No segundo livro trabalhamos os conceitos de predição do mérito genético e seleção utilizando diversas fontes de informação. As fontes informação se referem ao desempenho fenotípico relativo

do animal avaliado ou de seus parentes. No terceiro livro, dispondo dos machos e fêmeas selecionados, discutimos alguns sistemas de acasalamento que levam ao aumento de produtividade sem onerar demasiadamente os custos, ou seja, sistemas que resultam em maior retorno econômico.

Algumas instituições foram de suma importância no desenvolvimento da nossa carreira docente e de pesquisa. Entre elas gostaríamos de mencionar o Colégio Agrícola de Santa Teresa (atualmente IFES - Santa Teresa, ES) onde, cursando o Ginasial Agrícola e o Técnico em Agricultura, aprendemos a ser profissionais e recebemos o molde de cidadãos. Ingressamos, em seguida, na Universidade Federal Rural do Rio de Janeiro, onde nos graduamos em Medicina Veterinária. O Mestrado na École Nationale Vétérinaire de Toulouse, França foi a primeira experiência internacional e contribuiu para nosso amadurecimento acadêmico. Devemos muito à Embrapa - Centro de Pesquisas Pecuárias do Sudeste. Foi onde iniciamos a carreira de pesquisador e foi quem nos permitiu obter o Doutorado em outra grande instituição, a Faculdade de Medicina de Ribeirão Preto/USP - Departamento de Genética. Por último, porém não menos importante, citamos a Faculdade de Medicina Veterinária e Zootecnia (FMVZ/USP) e a Faculdade de Zootecnia e Engenharia de Alimentos (FZEA/USP), instituições nas quais nossa carreira de docência e de pesquisa foram estabelecidas em definitivo. São 29 anos nessas duas instituições, incluindo um período de Pós-Doutorado na Universidade do Nebraska - Lincoln, EUA.

Dedicamos este livro a todos os profissionais que, como nós, são verdadeiramente apaixonados pelo Melhoramento Genético Animal.

Joanir Pereira Eler Professor Titular / Departamento de Medicina Veterinária / Pesquisador 1C do CNPq Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo

Sumário

Prefácio	ix
Melhoramento Genético Animal U	Im Breve Histórico 1
Modos de Ação Gênica	3
Efeitos Aditivos e não Aditivos dos Genes	3
Ação Aditiva 3	
Ação não Aditiva 6	
Dominância 6	
Dominância Completa 6	
Dominância Parcial 8	
Sobredominância 10	
Epistasia 11	
Alguns Tipos Especiais de Ação Gênica	13
Modos de Ação Gênica - Resumo	14
Modelo Genético	15
Caracterização do Valor Genético 16	
Composição do Valor Fenotípico 17	
Eexemplo com Características Repetíveis	23
Lista de Exercícios 25	
Resolução dos Exercícios 26	
Introdução à Genética de Populaç	rões 36
Genética de Populações 36	
Conceito de População 37	
Importância da Genética de Populações	36
Cálculo de Frequências Gênicas 36	
Ausência de Dominância 36	
Dominância Completa 38	IX

Equilíbrio de Hardy-Wenberg	38			
Frequências Genotípicas Esp	eradas no Equilíbr	io 43		
Frequências Gênicas Esperad	las no Equilíbrio	43		
Atingimento do equilíbrio de l	Hardy-Wenberg	44		
Verificação do Equilíbrio de l	Hardy-Wenberg Us	sando o Teste de Chi-Q	Quadrado 46	
Cálculo de Frequências Gênia	cas Quando Ocore	Dominância Completa	a 48	
Alelos Múltiplos 49				
Algumas Situações Com	n Alelos Múltiplos	49		
Estimação das Frequênc	ias Alélicas Quando	os Fenótipos são Disting	guíveis 49	
Estimação das Frequênc	ias Alélicas Com Do	ominância Completa 50		
Estimação das Frequênc	ias Alélicas Com Do	ominância e Codominânc	ia 51	
Lista de Exercícios com Reso	lução 53			
Propriedades de Uma Popul	ação em Equilíbrio	de Hardy-Wenberg	55	
Genes Ligados ao Sexo	57			
Introdução	57			
População em Equilíbrio				
Frequências Genotípicas		58		
Frequências Gênicas na				
Estabelecimento do Equ	-			
Frequências Gênicas nas	-		.d	7 2
Cálculo de Frequências Gêni	-	sticas com Genes Liga	dos ao Sexo 7.	3
Exercícios e Respostas	74			
Exercícios Propostos 86				
Fatores que Afetam a Fr	equência Gê	nica	8.	9
Migração 89				
Mutação 90				
Seleção 92				
Noções de Genética Qua	intitativa		97	7
Conceito de Valores 97				
Valor Fenotípico	97			
-	97			
Valor Ambiental	97			

Modelo Genético 97		
Valores Genotípicos Arbitrários	98	
Média da População 100		
Valor Genotípico Dado como Desvio da Me	édia da População 101	
Efeito Médio de um Gene 102		
Efeito Médio de Substituição de A_2 por A_1	104	
Valor Genotípico em Função de α	105	
Valor Genético Aditivo 106		
Conceito 106		
Definição teórica 106		
Definição Prática 106		
Desvios de Dominância 107		
Desvios Epistáticos 107		
Variância 107		
Componentes de Variância 107		
Variância Genética Aditiva 108		
Variância dos Desvios de Dominância	109	
Variância Fenotípica 110		
Variância Ambiental 110		
Exercícios com Respostas 111		
Exercícios Propostos 114		
Endogamia e Parentesco		116
Endogamia 116		
Conceituação 116		
Coeficiente de Endogamia	116	
Coeficiente de Endogamia Segundo Maléco		
Cálculo do Coeficiente de Endogamia		
Definição do Coeficiente de Endogami		
Equação Geral para o Cálculo do Coefi		
Parentesco 125		
Coeficiente de Parentesco Segundo Ma	alécot 125	
Alguns Parentescos Fundamentais	126	
Parentesco do Indivíduo Consigo Mesn	no 126	
Parentesco entre Meio-Irmãos 127		
Parentesco entre Irmãos Completos	128	

Parentesco de Wright ou Covariância Genética 137
Expressão da Covariância Genética com Ancestral Comum Endogâmico 138
Expressão da Covariância Genética com Maid de Um Ancestral Comum 139
Equação Geral para o Cálculo da Covariância Genética 139
Coeficiente dePparentesco de Wright (R _{PQ}) - Estabelecimento da Equação 143
A Lógica da Expressão do Coeficiente de Parentesco (R _{PQ}) 145
Coeficiente de Endogamia Segundo Wright 145
Cálculo da Covariância Genética e do Coeficiente de Endogamia Pelo Método Tabular 146
Exercícios resolvidos 151
Exercícios propostos 162
Estimação de Parâmetros Genéticos 170
Herdabilidade 170
Herdabilidade e Componentes de Variância 170
Estimação da Variância Genética Aditiva com Base na Semelhança Entre Parentes 172
Componentes Observacionais da Variância Fenotípica 172
Componentes Causais da Variância Fenotípica 173
Variância Genética Aditiva 173
Correlação Intra-Classe 174
Cálculo da Variância Genética Aditiva 174
Covariâncias Básicas 175
Covariância Entre Progênie e Pai 175
Covariância de Meio-Irmãos 176
Covariância de Família (Equação geral) 177
Correlações 185
Correlação Genética 185
Correlação Ambiental 185
Correlação Fenotípica 185
Modelos de Análise Para Estimação da Herdabilidade e da Correlação 185
Estimação da Herdabilidade Pelo Método de Correlação Entre Meio-Irmãos Paternos 19
Estimação dos Coeficiente de Correlação 194
Estimação do Coeficiente de Herdabilidade Usando o Modelo Hierárquico 197
Repetibilidade 199

Parentesco entre Indivíduos de Gerações Diferentes

Coeficiente de parentesco segundo Wright 137

Outra Expresão para o Coeficiente de Parentesco Entre Dois Indivíduos

130

136

Efeito Genético Materno Conceituação dos Efeitos Maternais 206	206
Importância dos Efeitos Maternais 206	
Evidenciação dos Efeitos Maternos 206	
Aspectos Biométricos do Efeito Materno 207	
Desenvolvimento do Modelo de Wilham 208	
Covariância Entre Dois Indivíduos, X e Y 209	
Variância Fenotípica 212	
Tabela de Covariâncias Para Características com Influência Materna 214	
Estimação dos Componentes Causais Usando Dados de Campo 215	
Herdabilidade Total 215	
Probabilidade de Detecção de Portadores de Genes Recessivos	217
Informações do Pedigree 217	
Teste de progênie Pra Identificação dos Heterozigotos 217	
Alternativas na Utilização do teste de Progênie 218	
Literatura Citada e Literatura Adicional	225
Tabelas Estatísticas	228

201

199

Coeficiente de Repetibilidade 200

Estimação do Coeficiente de Repetibilidade

Definição

Exercícios Propostos 204

Carcaterização 199

Prefácio

Fazer o prefácio de um livro sobre melhoramento genético animal, escrito por um colega de trabalho de 29 anos é uma enorme responsabilidade.

O Prof. Joanir Pereira Eler, tem uma formação profissional muito interessante. Oriundo da área rural do leste de Minas Gerais, mais especificamente de Conselheiro Pena, vale do Rio Doce, teve sua educação baseada em escolas de formação ligada ao meio rural. Fez os cursos: Ginasial Agrícola e Técnico Agrícola no conceituado Colégio Agrícola de Santa Teresa, ES. Em seguida ingressou na Faculdade de Medicina Veterinária da Universidade Federal Rural do Rio de Janeiro, o famoso "km 47", onde se formou em 1974. Durante a graduação estudou francês na própria Universidade que, nessa época, já se preocupava com internacionalização de suas atividades.

Saindo da UFRRJ, trabalhou por um breve período como Veterinário de campo no Espírito Santo e como Extensionista da EMATER no Paraná e, em seguida, partiu para um programa de mestrado em reprodução animal, em Toulouse, França, onde, agora como funcionário da Embrapa. Ao retornar ao Brasil foi lotado num projeto de melhoramento genético de gado leiteiro, no atual Centro de Pesquisas Pecuárias do Sudeste, em São Carlos, SP. Esse fato foi determinante na sua definição profissional. Inquieto com seus conhecimentos de Genética e Melhoramento Animal, ainda incompletos, tomou a decisão de fazer um doutorado nessa área. Aceito no programa de Genética da Faculdade de Medicina de Ribeirão Preto, da Universidade de São Paulo, sob a orientação do Prof. Dr. Raysildo Barbosa Lôbo e, com grande apoio do Prof. Dr. Francisco Alberto de Moura Duarte, o então pesquisador da Embrapa solidificou seus conhecimentos de genética quantitativa. Terminado seu doutorado, em 1987, Joanir retornou à Embrapa de São Carlos e, em 1988 resolveu alçar novos vôos, tendo sido contratado pela Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, no Departamento de Produção Animal localizado em Pirassununga, SP. Eu fui contratado uma semana depois e nos identificamos de imediato, começando uma colaboração técnico científica que permanece ativa e produtiva até hoje.

Em 1991 eu fui realizar um estágio de Pós Doutorado na Universidade de Nebraska, em pleno meiooeste dos Estados Unidos. Alguns meses antes de meu retorno o Joanir chegou com sua família, lá permanecendo do segundo semestre de 1992 ao começo de 1994, sob supervisão do Dr. L. D. Van Vleck, na época o máximo expoente da aplicação do modelo animal na avaliação genética.

Retornando à USP, em Pirassununga, o Prof. Dr. Joanir Eler optou por ser realocado na Faculdade de Zootecnia e Engenharia de Alimentos, recém-nascida oriunda da Faculdade de Medicina Veterinária. No segundo semestre desse ano Joanir foi procurado por uma grande empresa agropecuária, a Agro-Pecuária CFM Ltda., empresa de capital inglês que solicitou que fizéssemos as avaliações genéticas de seus programas de seleção na raça Nelore e do grupamento de bovinos de corte compostos Montana Tropical. Nascia uma colaboração que já dura mais de 23 anos e que levou à fundação do Grupo de Melhoramento Animal – o GMA, da USP, mais tarde transformado no GMAB – Grupo de Melhoramento Animal e Biotecnologia e, em 2013, no Centro de Pesquisas em Melhoramento Animal, Biotecnologia e Transgenia da USP. Este grupo realizou, em seus 23 anos de existência, dezenas de avaliações genéticas de bovinos de corte e ovinos, lançando sumários de reprodutores que contribuíram de modo muito importante para os avanços da pecuária de corte no Brasil nas últimas décadas.

O Prof. Joanir é autor de mais de 150 artigos científicos, centenas de trabalhos apresentados em congressos, orientou dezenas de estudantes de Iniciação Científica, Mestrado, Doutorado e Pós-Doutorado,

sendo Pesquisador Nível 1 do CNPq, um reconhecimento ao seu valor como desenvolvedor de conhecimentos e formação de recursos humanos de qualidade.

Sua sólida formação em Genética Quantitativa, associada aos 29 anos de docência nas disciplinas ligadas ao Melhoramento Genético Animal e à sua experiência de mais de duas décadas de intensa integração com o meio pecuário, encorajaram o Prof. Joanir a reunir suas notas de aulas, revisá-las e transformá-las num livro em três tomos, ora lançado pelo Portal de Livros Abertos da USP.

Essa obra será, sem a menor dúvida, referência para todos aqueles ligados ao melhoramento animal – técnicos, professores, alunos e criadores, uma obra que traz os principais conceitos técnicos, suas aplicações e importância, essencial num país que firma a cada dia sua importância como grande produtor de alimentos.

Para mim é uma honra ter tido a oportunidade de ser companheiro de trabalho do Prof. Joanir nesses últimos 29 anos e ter sido convidado a escrever esse prefácio. Boas leituras e façam o maior uso possível dos conhecimentos gerados por esse livro.

Pirassununga, Agosto de 2017.

José Bento Sterman Ferraz Professor Titular da FZEA/USP

Melhoramento Genético Animal Um Breve Histórico

BATESON (1906) definiu genética como a ciência que lida com a herança e a variação procurando estabelecer leis que governam similaridades e diferenças em indivíduos relacionados por descendência (definição encontrada em HUTT, 1964). A genética animal é o estudo dos princípios da herança nos animais.

O melhoramento genético animal é um conjunto de processos seletivos que visam ao aumento da frequência dos genes desejáveis na população, diminuindo consequentemente a frequência dos genes indesejáveis. Nada mais é do que a aplicação da genética animal com o intuito de aumentar a média de produção dos animais. Está baseada em dois pilares fundamentais: a seleção e os sistemas de acasalamento. O estudo e a aplicação do melhoramento genético animal convergem obrigatóriamente para três grandes áreas, a saber:

- **1. Genética básica ou mendeliana** princípios de transmissão do material genético de uma geração à outra. Baseada nas leis de Mendel.
- **2. Genética de populações** estudo da genética mendeliana ao nível das populações animais. O fundamento básico da genética de populações é o teorema de Hardy-Wenberg (1908). Usualmente é limitada ao estudo de caracteres qualitativos (pelagem, chifres etc.) os quais são influenciados por pequeno número de genes. Os princípios da genética de populações podem ser usados no delineamento de estratégias de seleção, principalmente no caso de detecção e eliminação de genes deletérios.
- **3. Genética quantitativa -** relacionada a características econômicas (produção de carne, leite, ovos etc), determinadas por muitos pares de genes e nas quais o efeito de cada um raramente pode ser medido. Fatores não genéticos e efeitos aleatórios de ambiente tendem a mascarar os efeitos dos genes que influenciam determinada característica. A base da genética quantitativa é a combinação dos princípios de genética e de conceitos estatísticos.

O melhoramento genético e o melhoramento ambiental devem ser simultaneamente trabalhados uma vez que a produção de cada indivíduo é resultado da ação de seus genes e das forças que agem sobre ele, ou seja: fenótipo = genótipo + ambiente. É, no entanto, de fundamental importância determinar a fração do fenótipo que é devida aos efeitos dos genes e a fração que é devida aos efeitos de ambiente, pois apenas os efeitos dos genes são transmitidos à próxima geração.

A história do melhoramento genético animal inicia-se com a domesticação, muito tempo antes do começo da história escrita, mas bem depois de o homem ter se tornado fabricante de ferramentas e/ou perito em seu uso. Esse início foi, provavelmente, no final do período *paleolítico* (idade da pedra lascada) ou no princípio do *neolítico* (idade da pedra polida), embora tenha variado para diferentes povos em diferentes partes do mundo. De uma forma ou de outra, a seleção foi aplicada para características ligadas ao comportamento animal (afinidade com o homem, por exemplo, pode ter sido uma característica selecionada no cão). Mais tarde

houve a seleção de equinos, principalmente para o transporte de cargas e de pessoas.

Sabe-se, atualmente, que registros de desempenho e identificação confiáveis são os fundamentos para o ganho genético na seleção para caracteres quantitativos. Segundo VAN VLECK (1987), o objetivo do "melhorista animal" é utilizar da melhor forma possível os registros de produção disponíveis, visando a maximizar a probabilidade de selecionar os melhores animais.

O uso de registros de produção como base para o estabelecimento de estratégias para o melhoramento iniciou-se no século XVIII com ROBERT BAKEWELL. Atribui-se o sucesso de Bakewell como criador e "melhorista", ao cuidado que ele tinha em colher, e manter nos arquivos, registros de produção, além do uso da endogamia para fixar determinado "tipo". Com Bakewel foram estabelecidas raças de cavalo, de gado e de ovelhas.

O primeiro livro de registro genealógico (Herd book) surgiu em 1791 para o cavalo Puro-Sange Inglês. O segundo, em 1822, para o gado Shorthorn. A primeira associação de controle leiteiro no mundo, surgiu em 1892, na Dinamarca.

A criação de raças foi um passo para o progresso do melhoramento animal mas, infelizmente, na maioria dos casos, o desempenho dos animais e, principalmente, a avalição genética não têm sido obrigatórios para o registro dos animais. Este tem sido feito com base em critérios específicos de cada associação de criadores e informações de pedigree. Existem atualmente alguns programas de melhoramento baseados na avaliação genética, tanto em animais registrados quanto em não registrados ou "cara limpa". Para estes últimos, foi concedido pelo Ministério da Agricultura Pecuária e Abastecimento (MAPA) a autorização para emissão de um certificado que confere aos melhores animais "status" semelhante aos animais registrados, no que concerne a isenção de ICMS e finaciamento bancário. O Certificado Especial de Identificação e Produção (CEIP) é fornecido aos melhores 20% baseado na avaliação genética.

Na década de 1940, nos Estados Unidos, JAY LUSH, professor da Iowa State University deu conotação prática aos conceitos de melhoramento genético. Métodos de comparação de animais, desenvolvidos por Lush, serão vistos em capítulos a seguir, como, por exemplo, o cálculo da capacidade mais provável de produção (CMPP).

A disponibilidade de registros de produção, o progresso na área de processamento de dados e computação eletrônica, o uso de biotecnologias reprodutivas e, mais recentemente, a genômica, levaram ao desenvolvimento de métodos modernos de predição do mérito genético. LUSH, HENDERSON, ROBERTSON, DICKERSON, VAN VLECK podem ser considerados pioneiros na implantação da moderna avaliação genética dos animais domésticos.

No Brasil, os animais foram introduzidos logo após o descobrimento. Estes passaram então pela fase adaptativa, em que raças formadas em clima temperado lutaram vigorosamente para manter o equilíbrio com o ambiente tropical. Essa adaptação seguiu leis muito semelhantes às que regem o trabalho de seleção natural os animais foram, na verdade, deixados aos rigores dos trópicos, surgindo entre eles alguns tipos clássicos como os cavalos <u>Nordestino</u> e <u>Pantaneiro</u>, os bovinos <u>Curraleiro</u> e <u>Malabar</u> e os ovinos <u>Deslanados de Morada Nova</u>. Muitas vezes, a adaptação foi conseguida com sacrifício de características produtivas e reprodutivas dos indivíduos.

Após a instalação da monarquia iniciaram-se os trabalhos visando ao melhoramento genético dos rebanhos. A base utilizada foi o material genético encontrado nas diversas regiões, usado em cruzamentos com animais de origem européia. Surgiram assim as primeiras raças nativas melhoradas: cavalos Mangalarga, Campolina e Crioulo; bovinos Caracu; suínos Canastra, Piau e Piraptinga e jumento Pega. A importação do gado indiano (zebu), a partir dos anos 1960 e por curto período, foi de suma importância para o melhoramento dos rebanhos bovinos. A seleção de raças zebuínas, principalmente a Nelore, associada ao desenvolvimento de pastagens melhoradas, contribuiram de forma definitiva para o crescimento da pecuária nacional.

Modos de Ação Gênica

Mendel estabeleceu suas leis da herança trabalhando com ervilhas. Teve muita sorte. Se tivesse escolhido, por exemplo, trabalhar com as cores da pelagem do gado Shorthorn, teria tido muito mais dificuldade em seu trabalho. Embora as leis de Mendel sejam completamente válidas para qualquer tipo de ação gênica, elas foram estabelecidas com base em características nas quais a ação era de dominância. Os outros modos de ação gênica só foram identificados mais tarde.

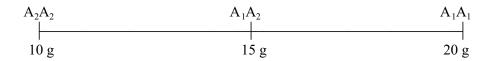
Efeitos Aditivos e Não Aditivos dos Genes

Ação Aditiva

É um tipo de ação gênica em que cada um dos inúmeros genes que constituem o genótipo do indivíduo provoca um pequeno efeito na manifestação da característica, ou seja, causa um pequeno efeito na manifestação do fenótipo do indivíduo, independente da acão dos outros genes que constituem o genótipo. O efeito provocado pela ação independente de cada um dos genes adiciona-se aos efeitos dos demais na determinação do valor fenotípico.

Não se deve nunca falar em "genes de ação aditiva", pois eles não existem. Os genes têm ação aditiva e não aditiva. Uma característica pode ser determinada pela ação aditiva, outra pode envolver ação aditiva somada à ação não aditiva. A ação aditiva é também chamada de ausência de dominância ou codominância.

Se uma característica é determinada por um par de alelos (loco A, por exemplo, com os alelos A_1 e A_2), na ação aditiva o valor expresso pelo genótipo heterozigoto (A_1A_2) é exatamente o valor médio dos genótipos homozigotos $(A_1A_1$ e A_2A_2), como mostrado no gráfico abaixo.



A herança aditiva não condiciona diferenças distintas entre os fenótipos da população. O que ocorrem são gradações entre os tipos extremos. Tome-se como exemplo, a cor da pele humana. Para facilidade didática, adimita que apenas dois pares de genes (**A** e **B**) condicionam a produção de pigmento. Assuma que os alelos **A** e **B** produzam a mesma quantidade de melanina e que os alelos **a** e **b** não produzem melanina. O indivíduo negro tem o genótipo **AABB** e o branco tem o genótipo **aabb**. Do acasalamento entre un indivíduo negro e um branco resultam 100% de mulatos médios, **AaBb** (cor intermediária). Do acasalamento entre dois mulatos médios obtém-se a seguinte gradação de cor,

Número de Indivíduos	Genótipo	Fenótipo
1	AABB	Preto (negro)
2	AABb	Mulato escuro
1	AAbb	Mulato médio
2	AaBB	Mulato escuro
4	AaBb	Mulato médio
2	Aabb	Mulato claro
1	aaBB	Mulato médio
2	aaBb	Mulato claro
1	aabb	Branco

Na Tabela acima são observadas cinco classes fenotípicas com gradação contínua entre o branco e o negro, não existindo distinção nítida entre as classes. A proporção fenotípica no F_2 é: 1 negro : 4 mulatos escuros : 6 mulatos médios : 4 mulatos claros : 1 branco

Esses fenótipos, colocados sob a forma de histograma, mostram uma aproximação da curva normal (Figura 1). Cada gene contribui com certa quantidade de pigmento, de forma independente. Adimitindo-se que a expressão da característica seja determinada pela ação aditiva de mais pares de genes, a distribuição normal seria ainda mais visível graficamente.

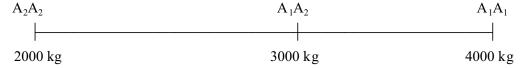
6 A I P ME MM MC B

Figura 1 - Distribuição dos fenótipos resultantes do acasalamento entre dois mulatos médios

Outro exemplo de ação gênica aditiva pode ser dado para uma característica quantitativa. Apenas para efeito de demonstração didática, suponha-se que a produção de leite seja determinada por apenas um par de alelos. Suponha que o gene A_1 seja responável pela produção de 2.000 kg de leite e que seu alelo A_2 produza 1.000 kg. Desta forma, as produções de leite seriam:

Genótipo	Valor Genotípico (kg)
A_1A_1	4.000
A_1A_2	3.000
A_2A_2	2.000

Portanto, a produção do genótipo heterozigoto (A_1A_2) é o valor médio das produções dos dois homozigotos e poderia ser representada graficamente como abaixo.



Considere-se que a mesma característica seja determinada por dois pares de genes, da forma abaixo especificada:

Gene	Efeito na Produção (kg)
A_1	2.000
${ m A_2}$	1.000
B_{l}	1.000
$_$	500

Neste caso, ocorreriam nove genótipos, com as seguintes produções:

Genótipo	Valor Genotípico (kg)
$A_1A_1B_1B_1$	6.000
$A_1A_1B_1B_2$	5.500
$\mathrm{A_1A_1B_2B_2}$	5.000
$A_1A_2B_1B_1$	5.000
$A_1A_2B_1B_2$	4.500
$A_1A_2B_2B_2$	4.000
$A_2A_2B_1B_1$	4.000
$A_2A_2B_1B_2$	3.500
$\mathrm{A_2A_2B_2B_2}$	3.000

Esses mesmos genótipos poderiam ser ordenados da forma abaixo

Genótipo	Valor Genotípico (kg)
$A_1A_1B_1B_1$	6.000
$A_1A_2B_1B_1$	5.000
$\mathbf{A_2}\mathbf{A_2}\mathbf{B_1}\mathbf{B_1}$	4.000
$A_1A_1B_1B_2$	5.500
$\mathrm{A_1A_2B_1B_2}$	4.500
$\mathrm{A_2A_2B_1B_2}$	3.500
$A_1A_1B_2B_2$	5.000
$\mathrm{A_1A_2B_2B_2}$	4.000
$\mathrm{A}_2\mathrm{A}_2\mathrm{B}_2\mathrm{B}_2$	3.000

As produções iriam variar de 3.000 a 6.000 kg e, em todas as situações, os genótipos heterozigotos apresentariam valores correspondentes à média dos dois homozigotos. Isto é característico da ação aditiva.

A produção de leite, assim como outras características quantitativas, é determinada por centenas de pares de genes, cada alelo contribuindo com um pequeno efeito e, por isto, a variação na produção seria muito maior, com valores extremamente baixos até valores extremamente altos.

A herança aditiva é muito importante do ponto de vista do melhoramento genético animal. Se a expressão da característica dependesse apenas da ação aditiva, bastaria selecionar os indivíduos superiores fenotípicamente, para mudar no sentido desejado. A modificação que ocorresse no fenótipo seria correspondente à unidade gênica "introduzida" ou "retirada" do genótipo dos animais. O problema se resumiria, assim, na avaliação do patrimônio genético dos indivíduos e, então, se escolheriam os melhores para a reprodução.

Como as características produtivas não são determinadas apenas por esse tipo de herança, o primeiro passo a ser dado em relação ao melhoramento genético é estimar o quanto da variação da característica é devida à herança aditiva.

Outros exemplos de ação aditiva: cor da pelagem do gado shorthorn (sendo: A_1A_1 = Vermelho, A_2A_2 = Branco, A_1A_2 = Ruão), grupos sanguíneos do tipo ABO.

Ação Não Aditiva

É um tipo de ação gênica resultante da interação entre os alelos fazendo com que o valor expresso pelo genótipo heterozigoto seja diferente da soma dos efeitos independentes de cada gene. Esta interação, também chamada de combinação gênica, pode ser de dois tipos: dominância e epistasia.

Dominância

É a interação entre alelos do mesmo locus. O efeito da dominância expressa-se no genótipo heterozigoto e o valor dessa expressão depende do grau de domominância entre os alelos.

Dominância Completa

O heterozigoto e um dos homozigotos apresentam o mesmo valor fenotípico. O homozigoto que possui o mesmo valor que o heterozigoto caracteriza o gene dominante. O outro homozigoto caracteriza o gene recessivo. Um exemplo desse tipo de ação gênica é a cor da pelagem do gado Aberdeen Angus, que apresenta as seguintes classes (gráfico abaixo):

Dominância Completa - Pelagem do Gado Aberdeen Angus

Genótipo	Fenótipo
BB	Preto
Bb	Preto
bb	Vermelho

A utilização de letras maiúsculas para representar o alelo dominante é uma convenção adotada por Mendel e que permanece até hoje.

Para uma característica quantitativa, o exemplo anterior, de produção de leite, poderia ser utilizado e os valores de produção seriam:

Produção de Leite - Dominância Completa do Alelo A₁

Genótipo	Valor Genotípico (kg)
A_1A_1	4.000
A_1A_2	4.000
A_2A_2	2.000

Neste caso, dominância completa de A₁, o heterozigoto (A₁A₂) produz tanto quanto o homozigoto A₁A₁.

Se a dominância fosse do A_2 , gene de menor efeito na produção, o heterozigoto (A_1A_2) iria produzir tanto quanto o homozigoto A_2A_2 , ou seja:

Produção de Leite - Dominância Completa do Alelo A2

Genótipo	Valor Genotípico (kg)
A_1A_1	4.000
A_1A_2	2.000
A_2A_2	2.000

Portanto, não se pode falar em dominância sem especificar o gene dominante. As expressões utilizadas precisam ser: dominância completa do gene A_1 ou dominância completa do gene A_2 . Graficamente, esses valores poderiam ser assim representados:

$$\begin{array}{c|ccccc} A_2A_2 & \text{Ponto M\'edio} & A_1A_2 \text{ e } A_1A_1 \\ \hline & & & & \\ 2000 \text{ kg} & 3000 \text{ kg} & 4000 \text{ kg} \end{array}$$

Considerando-se dois locos com dominância completa de A₁ e de B₁, tem-se:

Produção de Leite - Dominância Completa dos Alelos A₁ e B₁

Trodação de Leite Bommaneia Completa dos riteros rije B	
Genótipo	Valor Genotípico (kg)
A_1A_1	4.000
A_1A_2	4.000
A_2A_2	2.000
$\mathrm{B_1B_1}$	2.000
$\mathrm{B_{1}B_{2}}$	2.000
$\mathrm{B_2B_2}$	1.000

E os valores das produções seriam:

Produção de Leite - Dominância Completa dos Alelos A₁ e B₁

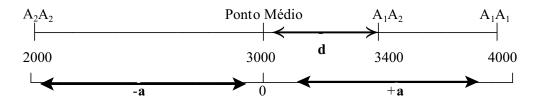
Genótipo	Valor Genotípico (kg)
$A_1A_1B_1B_1$	6.000
$\mathbf{A_1}\mathbf{A_1}\mathbf{B_1}\mathbf{B_2}$	6.000
$\mathbf{A_1}\mathbf{A_1}\mathbf{B_2}\mathbf{B_2}$	5.000
$\mathrm{A_{1}A_{2}B_{1}B_{1}}$	6.000
$\mathbf{A_1}\mathbf{A_2}\mathbf{B_1}\mathbf{B_2}$	6.000
$\mathbf{A_1}\mathbf{A_2}\mathbf{B_2}\mathbf{B_2}$	5.000
$\mathbf{A_2}\mathbf{A_2}\mathbf{B_1}\mathbf{B_1}$	4.000
$\mathrm{A}_2\mathrm{A}_2\mathrm{B}_1\mathrm{B}_2$	4.000
$\underline{\hspace{1cm}} A_2A_2B_2B_2$	3.000

Dominância Parcial

O valor genotípico do heterozigoto apresenta-se entre os valores dos dois homozigotos, mas fora do ponto médio. Um exemplo desse tipo de ação gênica é a coruja Andaluzia Azul, que surge da combinação de alelos para penas pretas e brancas. A determinação da cor numa escala colorimétrica mostra que a cor azul das penas não é o ponto médio entre o preto e o branco.

Para uma característica quantitativa, pode-se novamente recorrer ao exemplo da produção de leite. Neste caso, porém, é necessário saber o grau de dominância, pois se é parcial, o valor do heterozigoto vai ser intermediário, mas dependente desse grau de dominância. A título de exemplo e considerando-se os mesmos efeitos de A_1 e de A_2 , mostrados anteriormente, os valores dos genótipos A_1A_1 e A_2A_2 seriam 4.000 kg e 2.000 kg, respectivamente. O genótipo heterozigoto (A_1A_2) poderia assumir qualquer valor maior que 2.000 kg e menor que 4.000 kg, execeto, 3.000 (ponto médio). Se a dominância for parcial do gene A_2 , o valor do heterozigoto será maior que 2.000 kg e menor que 3.000. Se a dominância for do gene A_1 , o valor do heterozigoto será maior que 3.000 kg e menor que 4.000 kg.

Se o valor do heterozigoto fosse igual a 3.000 kg (Ponto Médio), a ação seria aditiva (é o mesmo que ausência de dominância). A representação gráfica, assumindo que o valor do heterozigoto seja igual a 3.400 kg, é apresentada abaixo.



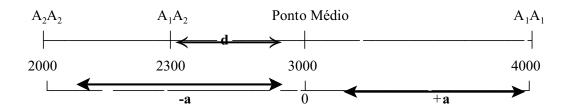
O ponto médio corresponde à média dos valores genotípicos dos dois genótipos homozigotos.

Neste exemplo, Ponto Médio = (4.000 + 2.000)/2 = 3.000.

Observar, também, no gráfico acima, três valores importantes: + a, -a e d.

- $+\mathbf{a}$ = valor genotípico do homozigoto A_1A_1 , dado como desvio da média dos dois homozigotos (+a = 4.000 3.000 = 1.000 kg)
- -a = valor genotípico do homozigoto A_2A_2 , dado como desvio da média dos dois homozigotos (-a = 2.000 3.000 = -1.000 kg)
- \mathbf{d} = valor genotípico do heterozigoto (A_1A_2), dado como desvio da média dos dois homozigotos ($\mathbf{d} = 3.400 3.000 = 400 \text{ kg}$ corresponde ao grau de dominância)

No exemplo acima, o valor de **d** é maior do que 0 (zero) e menor do que $+\mathbf{a}$, ou seja, $(\mathbf{0} < \mathbf{d} < +\mathbf{a})$ (observar o gráfico), pois a dominância é parcial do gene A_1 . Se o grau de dominância fosse outro, o valor de \mathbf{d} também seria outro. No gráfico abaixo, $\mathbf{d} = 2.300 - 3.000 = -600$ kg.



Esse valor negativo de \mathbf{d} indica dominância parcial do gene A_2 (-a < \mathbf{d} < 0). O valor negativo de \mathbf{d} sempre indica dominância do gene que contribui menos (lembrar que, nesta simulação, A_1 contribui com 2.000 kg e A_2 contribui com 1.000 kg para o valor fenotípico da produção de leite.

Se o valor de **d** fosse igual a zero, o valor genotípico de A₁A₂ seria 3.000 kg, exatamente o ponto médio e, neste caso, a ação seria aditiva (o grau de dominância sendo zero, não há dominância. Se não há dominância, a ação é aditiva).

Se o valor de **d** fosse igual a 1.000 kg ($\mathbf{d} = +\mathbf{a}$), o valor genotípico de A_1A_2 seria 4.000, ou seja, igual ao valor genotípico de A_1A_1 . Neste caso, a dominância seria completa do gene A_1 .

Para **d** igual a - 1.000 kg (**d** = - **a**), o valor genotípico de A_1A_2 seria 2.000, ou seja, igual ao valor genotípico de A_2A_2 . Neste caso, a dominância seria completa do gene A_2 .

Poderia ocorrer, ainda, $\mathbf{d} > +\mathbf{a}$ ou $\mathbf{d} < -\mathbf{a}$. Esses casos indicariam sobredominância do gene A_1 ou do gene A_2 , respectivamente. A ação de sobredominância será discutida um pouco mais à frente.

Para o exemplo, com dois pares de genes, assumindo-se que o heterozigoto A_1A_2 produza 3.400 kg (dominância parcial do A_1) e que o heterozigoto B_1B_2 produza 1.200 kg (dominância parcial do B_2), os valores para cada par seriam:

Loco A

Genótipo	Valor Genotípico (kg)	
A_1A_1	4.000	
$\mathrm{A}_{1}\mathrm{A}_{2}$	3.400	
A_2A_2	2.000	
Loco B		
Genótipo	Valor Genotípico (kg)	
B_1B_1	2.000	
$\mathrm{B_1B_2}$	1.200	
$\mathrm{B_2B_2}$	1.000	

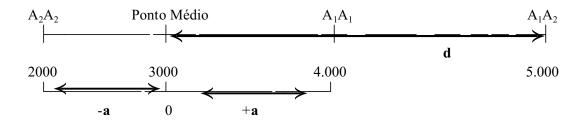
E os valores dos genótipos completos seriam:

Genótipo	Valor Genotípico (kg)	
$A_1A_1B_1B_1$	6.000	
$\mathbf{A_1}\mathbf{A_1}\mathbf{B_1}\mathbf{B_2}$	5.200	
$\mathrm{A_1A_1B_2B_2}$	5.000	
$A_1A_2B_1B_1$	6.000	
$\mathrm{A_1A_2B_1B_2}$	5.200	
$\mathrm{A_1A_2B_2B_2}$	5.000	
$A_2A_2B_1B_1$	4.000	
$\mathrm{A_2A_2B_1B_2}$	3.200	
$A_2A_2B_2B_2$	3.000	

Sobredominância

Ocorre quando o valor fenotípico do heterozigoto é superior a um dos homozigotos. Existem evidências de que as características relacionadas ao "valor adaptativo" são controladas por genes de ação sobredominante. Os heterozigotos seriam mais vigorosos.

Como na dominância parcial, na sobredominância é necessário saber o grau em que ela ocorre. Ainda seguindo o mesmo exemplo, para um par de genes, os valores dos genótipos homozigotos seriam $4.000~\mathrm{kg}$ (A_1A_1) e $2.000~\mathrm{kg}$ (A_2A_2). Se a sobredominância for do gene A_2 , o valor do heterozigoto (A_1A_2) será menor do que $2.000~\mathrm{kg}$. Se a sobredominância for do gene A_1 , o valor do heterozigoto (A_1A_2) será maior que $4.000~\mathrm{kg}$. Assumindo $5.000~\mathrm{kg}$, o gráfico seria:



 $+{\bf a}=4.000$ - 3.000=1.000 kg e ${\bf d}=5.000$ - 3.000=2.000 kg. O valor de ${\bf d}=2.000$ kg (${\bf d}>+{\bf a}$) indica sobredominância do gene A_1 .

Se o valor genotípico de A_1A_2 fosse, por exemplo, 1.400 kg, o valor de $\underline{\mathbf{d}}$ seria dado por: $\mathbf{d} = 1.400 - 3.000 = -1.600$ kg ($\mathbf{d} < -\mathbf{a}$), indicando sobredominância do gene A_2 .

Considerando-se o exemplo com dois pares de genes, e assumindo que a produção do A_1A_2 seja igual a 5.000 kg (sobredominância do gene A_1) e que a produção do B_1B_2 seja igual a 600 kg kg (sobredominância do gene A_2), os valores para cada par seriam:

Genótipo	Valor Genotípico (kg)
A_1A_1	4.000
$\mathrm{A_{1}A_{2}}$	5.000
A_2A_2	2.000
B_1B_1	2.000
$\mathrm{B_{1}B_{2}}$	600
$\mathrm{B_2B_2}$	1.000

E os valores para os nove genótipos completos são:

Genótipo	Valor Genotípico (kg)	
$A_1A_1B_1B_1$	6.000	
$\mathrm{A_1A_1B_1B_2}$	4.600	
$\mathrm{A_1A_1B_2B_2}$	5.000	
$A_1A_2B_1B_1$	7.000	
$\mathrm{A_1A_2B_1B_2}$	5.600	
$\mathbf{A_1}\mathbf{A_2}\mathbf{B_2}\mathbf{B_2}$	6.000	
$A_2A_2B_1B_1$	4.000	
$A_2A_2B_1B_2$	2.600	
$A_2A_2B_2B_2$	3.000	

Epistasia

É a interação entre alelos de diferentes locos, com um loco alterando a expressão de outro. Os locos envolvidos podem estar no mesmo cromossoma ou não.

A ação epistática pode ser observada tanto em características qualitativas, quanto nas quantitativas. Um exemplo clássico deste tipo de ação gênica, para características qualitativas, é a cor da pelagem em cavalos. As cores preta e castanha são básicas e controladas por dois alelos, o **B**, dominante, que condiciona a cor preta e o **b**, recessivo, que condiciona a cor castanha. Portanto, os indivíduos **BB** e **Bb** são pretos enquanto que os **bb** são castanhos.

Cor da Pelagem em Cavalos (Loco B)		
Genótipo	Fenótipo	
BB	Preto	
Bb	Preto	
bb	Castanho	

Seriam. Existe, no entanto, um segundo locus, o locus A, também dominante, que modifica a cor preta para baia e a cor castanha para alazão. A pelagem dos cavalos ficaria, então:

Cor da Pelagem em Cavalos (Locus <u>A</u> e <u>B</u>)		
Genótipo Fenótipo (loco B) Fenótipo (locus A e B)		
aaBB	Preto	Preto
aaBb	Preto	Preto
aabb	Castanho	Castanho
A-B-	Preto	Baio
A-bb	Castanho	Alazão

Ainda não são as pelagens finais. Um terceiro locus, **W**, "mascara" a ação dos outros locus, modificando todas as pelagens para branca. O locus **W** também apresenta ação dominante. O genótipo **WW** é inviável, morrendo na fase embrionária. O genótipo **Ww** impede a expressão do locus **B** e o genótipo **ww** não interfere na sua expressão. Tem-se, assim, para a pelagem dos cavalos, os seguintes genótipos e fenótipos:

Cor da Pelagem em Cavalos (Locus <u>W</u> , <u>A</u> e <u>B</u>)		
Genótipo	Fenótipo (locus A e B)	Fenótipo (locus W, A e B)
wwaaBB	Preto	Preto
wwaaBb	Preto	Preto
wwaabb	Castanho	Castanho
wwA-B-	Baio	Baio
wwA-bb	Alazão	Alazão
Ww	Todos	Branco
WW	Morte Embrionária	Morte Embrionária

Para os especialistas em genética da pelagem dos cavalos, estas pelagens mostradas acima podem não refletir todo a gama de tipos. Trata-se aqui, apenas de um exemplo da ação epistática.

Em características quantitativas as combinações epistáticas podem ser numerosas. Na formação das raças, por exemplo, a seleção natural tende a fixar combinações epistáticas favoráveis, melhorando o desempenho do animal, por isto, admite-se que nas diversas raças existem mais combinações favoráveis do que desfavoráveis.

Considerando-se o exemplo de dominância parcial apresentado nas página 8 a 10, se houver efeito epistático (interação entre alelos do loco **A** com alelos do loco **B**), os valores genotípicos da tabela acima seriam modificados. As modificações iriam depender da forma com que cada alelo interage com o outro, aumentando ou diminuindo as suas expressões.

Alguns Tipos Especiais de Ação Gênica

Pleiotropia

Um locus influenciando mais de um caráter simultaneamente. Ex.: caprinos mochos: do acasalamento de dois animais mochos obteve-se a seguinte descendência:

3 machos mochos (1 PP e 2 Pp); 1 macho chifrudo (pp); 1 intersexo mocho (pp); 2 fêmeas mochas (Pp); 1 fêmea chifruda (pp)

Para características quantitativas, a grande importância da pleiotropia está na possibilidade de causar correlação genética entre as características.

Ligação Gênica

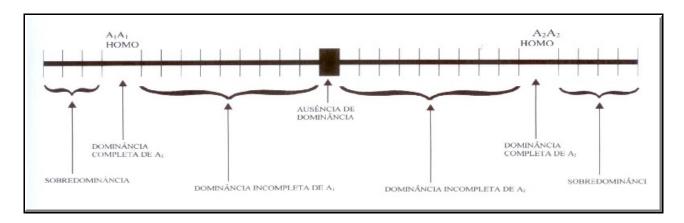
Também conhecida como "*linkage*", ocorre quando dois ou mais locos, localizados muito próximos no mesmo cromossoma, permanecem "ligados", não segregando de forma independente. A herança se processa então, de forma conjunta, alterando a relação mendeliana esperada na progênie. A ligação gênica também pode causar correlação genética entre as características.

Herança Ligada ao Sexo

Ocorre quando os genes que condicionam o caráter estão localizados nos cromossomos sexuais. Um exemplo que pode ser citado é o da cor dos pelos em gatos. A herança ligada ao sexo será tratada em maiores detalhes em capítulo posterior. Não deve ser confundida com duas outras expressões fenotípicas:

- Características limitadas pelo sexo (produção de leite, ovos etc.)
- Características influenciadas pelo sexo (herança de chifres em algumas raças de carneiro)

Modos de Ação Gênica - Resumo



As chaves colocadas abaixo da barra indicam a posição do genótipo A_1A_2 e, consequentemente, o modo de ação gênica. Da esquerda para a direita, os modos variam de sobredominância do gene A_1 , passando por dominância completa de A_1 , dominância parcial de A_1 , ausência de dominância (ação aditiva), dominância parcial de A_2 , dominância completa de A_2 até sobredominâncoa de A_2 .

Modelo Genético

O valor fenotípico de um animal (**P**) é o resultado da expressão do genótipo (**G**) associado aos efeitos do ambiente (**E**) em que esse animal tem sua produção medida e também associado aos efeitos da interação entre o genótipo e esse ambiente (**G** x **E**). Ou seja, $P = \mu + G + E + (G \times E)$.

Descrição e Partição do Valor Fenotípico - Modelo Genético

$$P = \mu + G + E + (G \times E)$$
 (Equação 1)

Sendo:

P = Valor Fenotípico = valor observado ou medido de uma característica. Exemplo: peso à desmama = 187 kg, produção de leite no período de lactação = 5.000 kg.

μ = média geral

G = Componente do valor fenotípico associado ao genótipo do animal

E = Efeito dos desvios causados pelo efeito do ambiente sobre a característica.

G x E = Efeito da interação genótipo x ambiente

Considerando-se, no entanto, que G = A + D + I (modos de ação gênica), em que: A = soma dos efeitos aditivos (efeitos independentes) dos genes para a característica, D = Efeito dos desvios de dominância e I = Efeitos dos desvios epistáticos, a A a equação 1 se modifica para

$$P = \mu + A + D + I + E + (G \times E)$$
 (2)

O termo A (valor genético aditivo) pode ser expresso como VG (valor genético)

A soma D + I pode ser expressa como VCG (valor da combinação gênica)

E, assim, a equação final, do valor fenotípico é dada por,

$$P = \mu + VG + VCG + E + (G \times E)$$

Caracterização do Valor Genético

É o valor do indivíduo como pai (no sentido da transmissão de genes). É o único efeito entre os componentes do valor fenotípico que é herdável. Isto se deve ao fato de que o valor genético é relacionado com a ação aditiva dos genes, ou seja, efeito de cada alelo independente dos outros alelos do genótipo. Na formação dos gametas, apenas um alelo de cada loco é transmitido em determinada geração, portanto, os efeitos dos desvios devido à dominância não podem ser transmitidos, pois dependem da relação entre os dois alelos no loco.O mesmo ocorre com os efeitos epistáticos.

É uma idéia um tanto quanto abstrata, matemática, que não pode ser medido diretamente. Seu valor numérico depende dos valores de todos os outros indivíduos da população (é, portanto, um valor relativo).

Uma forma de demonstrar os valores genético (VG), da combinação gênica (VCG) e genotípico (G) pode ser simular uma característica (peso de abate, por exemplo) influenciada por um loco (\mathbf{B}) com dois alelos (\mathbf{B}_1 e \mathbf{B}_2) com dominância completa de \mathbf{B}_1 . Assumir que o gene \mathbf{B}_1 aumenta 20 kg no peso de abate e que o gene \mathbf{B}_2 aumenta 10 kg. Assim, tem-se:

Genótipo	VG	VCG	G
B_1B_1	40	0	40
B_1B_2	30	10	40
$\mathrm{B_2B_2}$	20	0	20

Para B_1B_1 , o valor genético é a soma dos efeitos independentes dos genes B_1 e B_1 [20 + 20 = 40 kg]. Lembrar que o peso de abate é determinado por muitos pares de genes e que o valor genético seria então a soma dos efeitos de cada um deles. Para facilidade didática foi considerado apenas o aumento no peso de abate condicionado pelo loco **B**.

Para B_2B_2 o valor genético seria a soma dos efeitos independentes de B_2 e B_2 [10 + 10 =20] e para o heterozigoto. B_1B_2 [20 + 10) = 30].

Como se sabe, o efeito da combinação gênica só ocorre no heterozigoto. Como a dominância é completa e do gene B_1 , o valor do heterozigoto (B_1B_2) é o mesmo do homozigoto $B_1B_1 = 40 \text{ kg } (B_1 \text{ dominante faz com que } B_2 \text{ produza o mesmo que ele. Esse é o efeito da combinação ou interação entre os alelos).$

Portanto, os valores genotípicos de B_1B_1 e B_1B_2 são iguais (só no caso de dominância completa). Esperase, assim, que um animal com qualquer um dos dois genótipos seja abatido com 40 kg a mais do que a média da população. Animais B_2B_2 seriam abatidos com 20 kg, também acima da média.

Para o criador comercial, vendedor de desempenho (carcaça), os dois genótipos (B_1B_1 ou B_1B_2) são bons. Ambos vão produzir animais mais pesados. O criador comercial vende VG + VCG + E = valor fenotípico. Só seria pior para ele, o B_2B_2 .

Como o valor genético de B_1B_2 é igual a 30 kg e o valor genotípico é 40 kg, 10 kg resultam do valor da combinação gênica, ou seja, não é resultado da ação aditiva dos genes e, portanto, não será transmitido aos filhos. Só é transmitido aos filhos a metade do valor genético (15 kg). B_2B_2 transmitiria 10 kg aos filhos.

Assim, para o selecionador, que vende reprodutores e matrizes (vende pais da próxima geração), o animal B_1B_2 não seria bom, embora tenha o mesmo valor genotípico do que o B_1B_1 . O selecionador vende apenas valor genético (VG) e, portanto, para ele, o animal a ser utilizado é o B_1B_1 que tem valor genético 40 kg, dos quais 20 kg seriam transmitidos para os filhos.

Como se vê, os animais com os genótipos B_1B_1 e B_1B_2 poderiam ter o mesmo fenótipo e a mesma aparência em um leilão, ou no pasto de uma determinada fazenda. No entanto, um deles seria melhor do que o outro como reprodutor (ou matriz).

Composição do Valor Fenotípico

A título de complementação do raciocínio, são apresentados abaixo, três animais, todos provenientes de populações (ou grupos contemporâneos) com média igual a 200 kg (μ = 200) para peso à desmama. Qual dos três seria o melhor como reprodutor? Assuma-se também que o animal 1 foi criado em um grupo contemporâneo com melhores condições ambientais (pasto, manejo etc) produzindo um efeito desse ambiente de 32 kg acima da média (E = +32). O animal 2 foi criado em um ambiente 16 kg abaixo da média (E = -16) e o animal 3 em um ambiente 34 kg abaixo da média (E = -34).

Animal	Peso à Desmama (kg)
1	240
2	180
3	180

Os animais têm os seguintes genótipos:

	Característica Hipotética - Peso à Desmama Simulação*					
Animal	Genótipo	G	VG	VCG	Е	P
1	AABBccddEeff				32	240
2	aabbccDdEEff				-16	180
3	AABBccDDEeff				-34	180

^{*}G = valor genotípico; VG = valor genético (A); VCG = valor da combinação gênica (D + A)

Assumir ainda os seguintes efeitos aditivos dos genes:

A = 4	D = 4	a = - 2	d = - 2
B = 4	E = 4	b = - 2	e = - 2
C = 4	F = 4	c = - 2	f = - 2

Os valores genotípicos dos homozigotos são, portanto, AA = 8, aa = -4 e, assim, igualmente para os demais homozigotos. A média dos dois homozigotos é = [8 + (-4)]/2 = 2.

Os efeitos de dominância são: Aa = 4, Bb = 4, ..., etc $\rightarrow d = 2$

E = efeito do ambiente (grupo contemporâneo); P = valor fenotípico (peso do animal à desmama).

	Valores Genéticos, Genotípicos e da Combinação Gênica					
Animal	Genótipo	VG	G	VCG		
1	AABBccddEeff	5(4) + 7(-2) = 6	2(8) + (4) + 3(-4) = 8	2		
2	aabbccDdEEff	3(4) + 9(-2) = -6	8 + (4) + 4(-4) = -4	2		
3	AABBccDDEeff	7(4) + 5(-2) = 18	3(8) + 4 + 2(-4) = 20	2		

Valores Para o Peso à Desmama

Na Simulação*

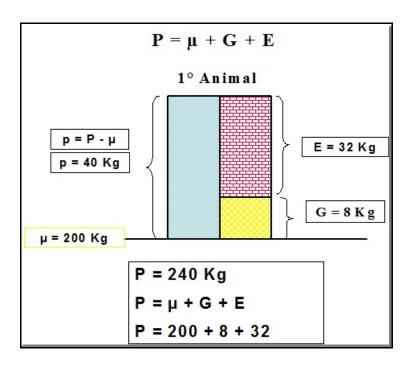
Animal	Genótipo	G	VG	VCG	E	p *
1	AABBccddEeff	8	6	2	32	40
2	aabbccDdEEff	-4	-6	2	-16	-20
3	AABBccDDEeff	14	18	-4	-34	-20

 $p = P - \mu$

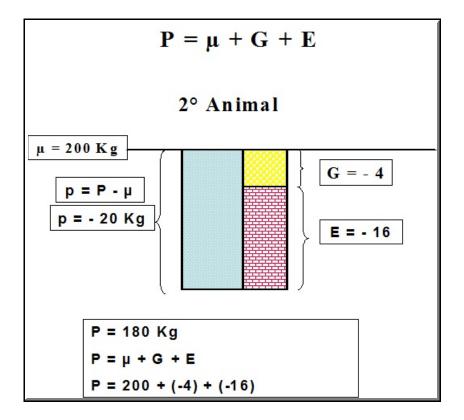
Embora o animal 1 tenha apresentado desempenho de 40 kg acima da média, como reprodutor (pai ou mãe) não é o melhor animal. Seu alto desempenho foi devido ao ambiente favorável em que foi criado.

Os animais 2 e 3 apresentaram desempenhos iguais e abaixo da média. No entanto, o baixo desempenho foi devido ao ambiente desfavorável a que foram submetidos. Entre eles, o animal 2 tem baixo valor genotípico e baixo valor genético, mas o animal 3 tem valores genético e genotípico elevados. O melhor pai (ou mãe) seria, portanto, o animal 3. Veja a representação gráfica para os três animais nas páginas que se seguem.

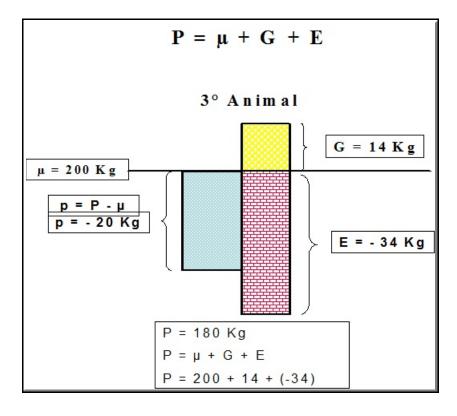
Representação Gráfica do Desempenho do Animal 1



Representação Gráfica do Desempenho do Animal 2



Representação Gráfica do Desempenho do Animal 3



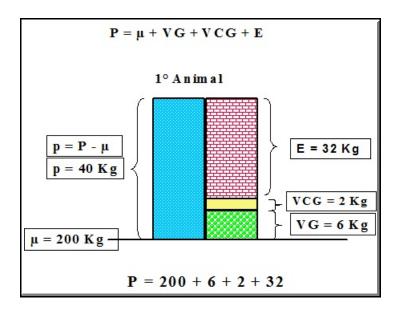
Ordem Animal Va 1^0 AABBccddEeff (1)	ılor Fenotípico (p)
1 ⁰ AABBccddEeff (1)	
	40
2 ⁰ aabbccDdEEff (2)	-20
3 ⁰ AABBccDDEeff (3)	-20

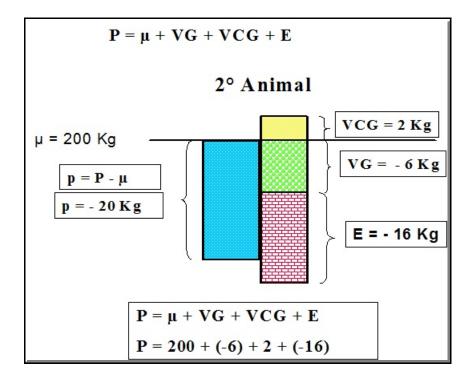
Classificação Pelo Valor Genotípico			
Ordem	Animal	Valor Genotípico (G)	
10	AABBccDDEeff (3)	14	
2^{0}	AABBccddEeff (1)	8	
30	aabbccDdEEff (2)	-4	

Classificação dos Efeitos de Ambiente			
Oordem	Animal	Desvios de Ambiente (E)	
10	AABBccddEeff (1)	32	
2^0	aabbccDdEEff (2)	-16	
30	AABBccDDEeff (3)	-34	

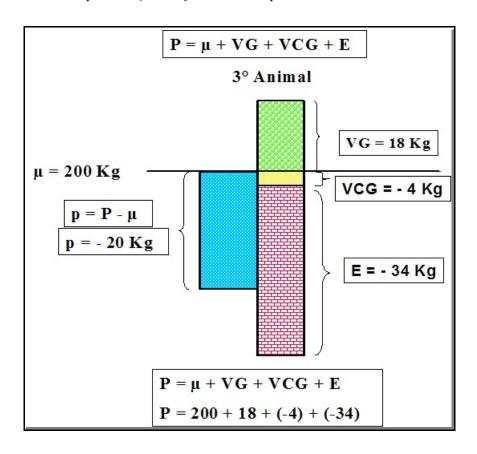
Incluindo o Valor da Combinação Gênica (VCG)

Representação Gráfica do Desempenho do Animal 1





Representação Gráfica do Desempenho do Animal 3



Valores Fenotípico (p), Genético (VG), Combinação Gênica (VCG) e de Ambiental(E) $\mu = 200~kg$

	Classificação Pelo Valor Fenotípico			
Ordem	Animal	Valor Fenotípico (p)		
1°	AABBccddEeff (1)	40		
2^0	aabbccDdEEff (2)	-20		
3 ⁰	AABBccDDEeff (3)	-20		

	Classificação Pelo Valor Genético Ao	ditivo
Ordem	Animal	Valor Genético (VG)
1°	AABBccDDEeff (3)	18
2^{0}	AABBccddEeff (1)	6
30	aabbccDdEEff (2)	-6

Classificação Pelo Valor da Combinação Gênica (kg)			
Ordem	Animal	Valor da Comb Gênica (VCG)	
10	AABBccddEeff (1)	2	
2^{0}	aabbccDdEEff(2)	2	
30	AABBccDDEeff (3)	-4	

	Classificação Pelo Valor dos Efeitos de Ambiente			
Ordem	Animal	Desvios de Ambiente (E)		
1°	AABBccddEeff (1)	32		
2^{0}	aabbccDdEEff (2)	-16		
30	AABBccDDEeff (3)	-34		

Produção de Leite de Duas Vacas

Média da População = 7.200 kg

Vaca 1

 1^a Produção = 9.600 kg e 2^a Produção = 8.000 kg

Modelo Genético - Composição do Valor Fenotípico da Produção de Leite

$$P = \mu + VG + VCG + E_P + E_T$$

 E_P = Efeito do Ambiente Permanente Sobre a Característica

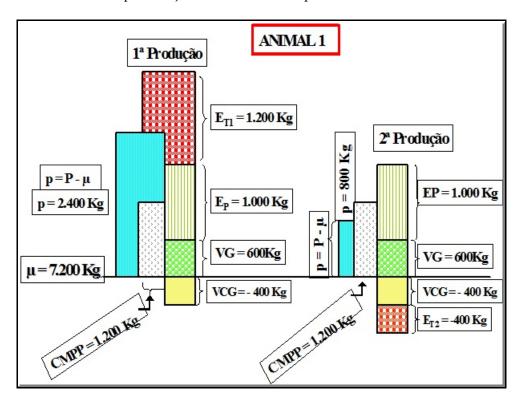
 E_T = Efeito do Ambiente Temporário Sobre a Característica

$$P_{11} = \mu + VG + VCG + E_P + E_{T_1} = 7.200 + 600 + (-400) + 1.000 + 1.200 = 9.600 kg$$

$$P_{12} = \mu + VG + VCG + E_P + E_{T_2} = 7.200 + 600 + (-400) + 1.000 + (-400) = 8.000 kg$$

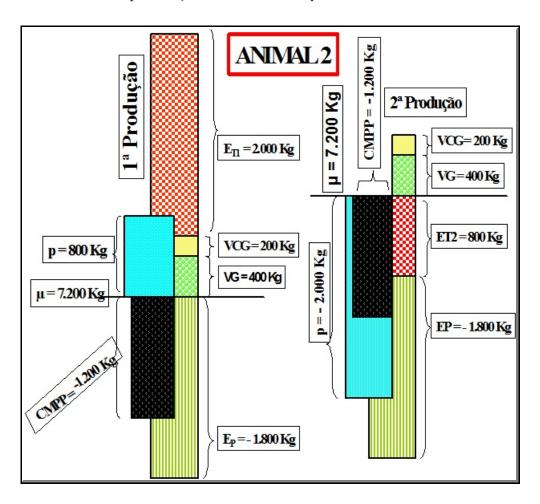
$$CMPP = VG + VCG + E_P = 600 + (-400) + 1000 = 1.200kg$$

Representação Gráfica do Desempenho do Animal 1



$Vaca \ 2$ $1^{a} \ Produção = 8.000 \ kg \quad e \quad 2^{a} \ Produção = 5.200 \ kg$ $Modelo \ Genético - Composição \ do \ Valor \ Fenotípico \ da \ Produção \ de \ Leite$ $P = \mu + VG + VCG + E_{p} + E_{T}$ $P_{21} = \mu + VG + VCG + E_{p} + E_{T_{1}} = 7.200 + 400 + 200 + (-1.800) + 2.000 = 8.000 \ kg$ $P_{22} = \mu + VG + VCG + E_{p} + E_{T_{2}} = 7.200 + 400 + 200 + (-1.800) + (-800) = 5.200 \ kg$ $CMPP = VG + VCG + E_{p} = 400 + 200 + (-1.800) = -1.200 \ kg$

Representação Gráfica do Desempenho do Animal 2



Lista de Exercícios

1. Defina:

a) característica; b) efeito ambiental; c) tipo biológico; d) interação genótipo x ambiente

2. Defina:

- a) ação aditica; b) dominância ou desvios de dominância; c) epistasia; d) valor genético;
- e) valor da combinação gênica; f) valor genotípico
- 3. Considerando uma característica quantitativa (peso à desmama), assuma o seguinte:
 - i) A característica é condicionada por cinco locos (A, B, C, D e E)
 - ii) média (µ) igual a 170 kg
 - iii) efeito independente do gene A igual a 10 kg (idem para B, C, D e E)
 - iv) efeito independente do gene a igual a -5 kg (idem para b, c, d, e)
 - v) efeito do genótipo Aa igual a 3 kg (idem para Bb, Cc, Dd e Ee)

Pede-se:

a) Complete o Quadro 1 (abaixo)

Quadro 1 - Genótipo (Animal), Valor genotípico (G), Valor genético (VG), Valor da combinação gênica (VCG), Desvios ambientais (E) e Valor fenotípico (P) assumindo que a característica seja determinada por cinco locos (valores em kg)

	٠,				
Animal	G	VG	VCG	Е	P
1) AaBbCcDdEE				+ 10,0	
2) AABBCCddEe				- 20,0	
3) AaBbCCDDEE				- 30,0	

- b) Faça um gráfico semelhante aos da página 4 para o loco A. Para os outros locos, será igual.
- c) Qual é o tipo de ação gênica caracterizado pelo valores acima especificados? Explique.
- d) Para o criador de elite (vendedor de touro) qual é o melhor animal?
- e) Para o criador comercial (engorda e vende ao frigorífico) qual é o melhor animal
- 4. Considerando-se uma característica repetível (a produção de leite), assuma o seguinte:
 - i) A característica é condicionada por cinco locos (A, B, C, D e E)
 - ii) média (µ) igual a 7.000 kg
 - iii) efeito independente do gene "A" (A₁) igual a 600 kg (idem para **B**, **C**, **D** e **E**)
 - iv) efeito independente do gene a igual "a" (A_2) -100 kg (idem para b, c, d, e)
 - v) efeito do genótipo Aa igual a 100 kg (idem para Bb, Cc, Dd e Ee)

Pede-se:

a) Complete o Quadro 2 (abaixo)

Quadro 2 - Genótipo (Vaca), valor genotípico (G), valor genético (VG), valor da combinação gênica (VCG), desvios devidos ao ambiente permanente da vaca (E_P) , ordem da lactação (L), desvios devidos ao ambiente temporário atuando sobre a lactação (E_T) e valor fenotípico (P) do animal, assumindo que a característica seja determinada por cinco locos (valores em kg).

Vaca	G	VG	VCG	E_{P}	L	E_{T}	P
1) 1 21 6 2 122				2 000 0		-1.000,0	
1) AaBbCcDdEE				2.000,0	2 ^a	+1.000,0	
2) A A DDCC 11E				0.0	1 ^a	0,0	
2) AABBCCddEe				0,0	2ª	+2.000,0	
A) A DI CODDEE				2 000 0	1 ^a	+1.400,0	
3) AaBbCCDDEE			-2.00		2ª	+3.400,0	

- b) Faça um gráfico semelhante ao do exercício anterior (exercício 3) para o loco A.
- c) Qual é o tipo de ação gênica caracterizada pelos valores acima especificados? Explique.
- d) Qual é a vaca de maior produção média?
- e) Qual é o valor da Capacidade Mais Provável de Produção (CMPP) das três vacas? Se você tivesse que descartar uma delas, com base na CMPP, qual seria?
- **f**) Faça um gráfico de barras representando todos os valores para os registros de produção da 1ª lactação da vaca 3. Repita o gráfico para a 2ª lactação da mesma vaca (vaca 3).
- g) Para o criador de elite (vendedor de reprodutores e matrizes) qual é a melhor vaca? Por quê?
- h) Para o criador comercial (produz leite e entrega no laticínio) qual é a melhor vaca?Por quê?

Resolução dos Exercícios

1. Definições

a) Característica

É qualquer caráter observável ou mensurável em um indivíduo. A característica diz respeito à aparência ou ao desempenho de um animal. Pode ser qualitativa (expressão determinada por poucos pares de genes) ou quantitativa (muitos pares de genes). As características qualitativas podem ser selecionadas com base nos genótipos desejáveis, como, por exemplo, mocho ou com chifres, preto ou vermelho etc.. Para as características quantitativas, os genótipos não são identificáveis e a seleção deve ser feita com base nos valores genéticos.

b) *Efeito ambiental*

Conjunto de fatores externos (não genéticos) que influenciam o desempenho do animal. Exemplos: clima, temperatura, pluviosidade, condições de pastagens, condições fisiológicas da mãe (principalmente relacionadas com a idade da mãe) etc. Animais nascidos em anos diferentes sofrem influências diferentes do meio ambiente, assim como animais nascidos em épocas diferentes do ano. Animais filhos de vacas jovens ou muito velhas são mais leves do que os filhos de vacas na maturidade (cico a dez anos de idade, mais ou menos, nos bovinos). O desempenho de cada animal (peso, por exemplo) deve ser ajustado para esses fatores ambientais para que se possa comparar animais nascidos em anos diferentes ou em épocas diferentes do ano ou comparar animais filhos de vacas jovens com outros filhos de vacas maduras ou com filhos de vacas velhas.

c) Tipo biológico

Os tipos biológicos caracterizam animais com genótipos similares para características de interesse. Existem muitas formas de separar bovinos de corte em tipos biológicos; uma delas consiste em classificálos como zebuínos, adaptados, britânicos e continentais. Os zebuínos, como se sabe são os *Bos indicus*, como Nelore, Guzerá, Gir etc. Os adaptados são *Bos taurus* adaptados aos trópicos, como Caracu, Bonsmara, Senepol etc. Os britânicos, como o nome indica, são bovinos oriundos do Reino Unido e demais ilhas britânicas. São exemplos as raças Angus, Devon, South Devon, Hereford etc. Os continentais são os bovinos da Europa continental, como Charolês, Blond d'Actaine, Limusin, Chianina, Simental, Gelbvieh e muitas outras raças.

Cada tipo biológico apresenta sua peculiaridade. Por exemplo, os zebuínos são rústicos, resistentes aos carrapatos e a outros parasitas tropicais. Os animais britânicos são mais precoces e apresentam boa qualidade de carcaça e de carne. Os animais de raças continentais apresentam grande desempenho ponderal, mas são mais tardios sexualmente do que os britânicos. Os adaptados incluem algumas características dos *Bos taurus* aliadas à adaptação aos trópicos.

d) Interação Genótipo x Ambiente

É um valor relativo da expressão dos genótipos nos diversos ambientes. Pode ser medida pela diferença de desempenho de dois ou mais genótipos em dois ou mais ambientes (Tabelas abaixo)

Nas duas tabelas a seguir, a interação genótipo x ambiente é dada pela diferença 2. Tomando-se a primeira tabela, a diferença entre as produções do Touro 1 e do Touro 2 na Fazenda $1(T_1-T_2)$ foi +30 kg. A diferença entre as produções do Touro 1 e do Touro 2 na Fazenda $2(T_1-T_2)$ foi igual a -10 kg, ou seja, houve mudança de

rank do desempenho dos touros na Fazenda 1 e Fazenda 2. Se a diferença (F_1-F_2) entre as as diferenças (T_1-T_2) tivesse sido igual a 0 (zero), não seria caracterizada a interação. Valores diferente de zero caracterizam a interação, podendo ser mais forte (Tabela 1) ou mais fraca (Tabela 2). Não há necessidade de mudança de rank para caracterizar a interação.

Expressão da Interação Genótipo x Ambiente

	Média de F		
Touros	Fazeda 1	Fazenda 2	Diferença 2 (F ₁ -F ₂)
Touro 1	180	160	'
Touro 2	150	170	
Diferença 1 (T ₁ - T ₂)	+30	-10	40
	Ou ainda,		
	Média de F	Peso da Progênie (kg)	
Touros	Fazenda 1	Fazenda 2	Diferença 2 (F ₁ - F ₂)
Touro 1	180	190	
Touro 2	150	180	
Diferença 1 (T ₁ - T ₂)	+30	+10	20

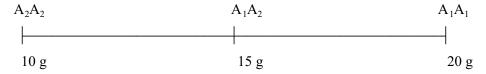
2. Definições

a) Ação aditiva

É um tipo de ação gênica em que cada um dos inúmeros alelos que constituem o genótipo do animal, para a expressão de uma característica, contribuem com determinado efeito. Esta contribuição é independente dos outros alelos do genótipo. O efeito independente de um gene se adiciona ao efeito independente do outro e assim, para todos os alelos. A soma dos efeitos independentes constituem o valor genético do animal para a característica.

Além dos efeitos independentes dos genes (ação aditiva), outros efeitos genéticos podem influenciar o fenótipo do animal (efeitos não independentes, ou interações). A expressão "genes de ação aditiva" é incorreta, pois todo gene tem ação aditiva (ação de um alelo, independete dos demais no genótipo). No entanto, a expressão "ação aditiva dos genes" é correta, pois existem as ações aditiva (independente) e não aditiva (interações entre alelos).

Na ação aditiva o valor genotípico do heterozigoto é igual à média dos valores genotípicos dos dois homozigotos (gráfico abaixo).



b) Dominância

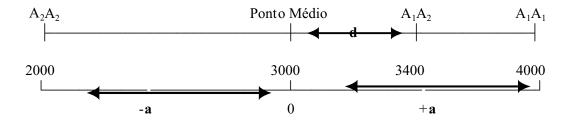
Este tipo de ação gênica não é independente, ou seja, os alelos produzem seus efeitos de forma interativa. A interação entre alelos do mesmo loco é chamada de dominância. Todo gene tem acão aditiva, mas nem sempre eles interagem entre si para apresentarem acão não aditiva, como a dominância. O efeito da dominância ocorre no genótipo heterozigoto, pois é o genótipo que tem os dois alelos diferentes que podem interagir entre si. O efeito de dominância pode ocorrer em vários graus e esse grau de dominância é determinado pelo afastamento do valor genotípico do heterozigoto em relação à média dos dois homozigotos (ponto médio). Pode-se assim ter: dominância parcial, dominância completa e sobredominância.

i) Dominância parcial

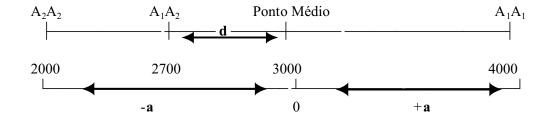
O valor genotípico do heterozigoto situa-se entre o ponto médio e o valor genotípico de um dos homozigotos. A diferença entre o valor genotípico do homozigoto e o ponto médio fornece o grau de dominância (simbolizado por "d").

A diferença entre o valor genotípico do homozigoto A_1A_1 e o ponto médio é simbolizada por "+a" (gráfico abaixo) enquanto que a diferença entre o homozigoto A_2A_2 e o ponto médio é simbolizada por "-a".

Na ação aditiva, \mathbf{d} é igual a zero (não existe dominância). Na dominância parcial \mathbf{d} é diferente de zero, porém menor do que "+a" e maior do que "-a". Se \mathbf{d} for maior que zero e menor que "+a", trata-se de dominância paracial do gene A_1 (gene que aumenta o valor genotípico do animal). Se \mathbf{d} for menor que zero e maior que "-a", trata-se de dominância paracial do gene A_2 (gene que diminui o valor genotípico do animal). No gráfico abaixo está caracterizada a dominância parcial do gene A_1 .

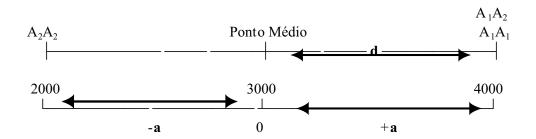


Enquanto que no gráfico a seguir, a dominância parcial é do gene A₂.



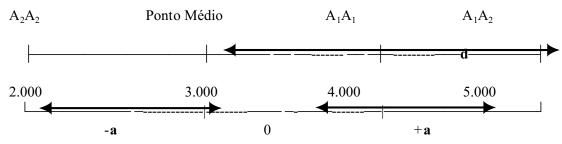
ii) Dominância completa

O valor genotípico do heterozigoto é igual ao valor genotípico de um dos homozigotos ($\mathbf{d} = +\mathbf{a}$ ou $\mathbf{d} = -\mathbf{a}$). O valor de $\mathbf{d} = +\mathbf{a}$ caracteriza dominância completa de A_1 (gráfico abaixo) e $\mathbf{d} = -\mathbf{a}$ catacteriza dominância completa de A_2 .



iii) Sobredominância

O valor genotípico do heterozigoto (A_1A_2) é maior do que o valor genotípico do homozigoto A_1A_1 (gráfico abaixo, em que $\mathbf{d} > +\mathbf{a}$, caracterizando sobredominância do gene A_1 ou menor do que o valor genotípico do homozigoto A_2A_2 , $\mathbf{d} < -\mathbf{a}$, caracterizando sobredominância do gene A_2).



c) Epistasia

Modo de ação gênica em que há interação entre alelos de locos diferentes, no mesmo cromossoma ou em cromossomas diferentes. Um loco altera a expressão de outro loco.

d) Valor genético

O valor genético (VG) é o valor do indivíduo como pai (pai ou mãe, no sentido de transmissor de genes) para uma determinada característica. É dado pela soma dos efeitos independentes dos genes (ação aditiva) responsáveis pela expressão da característica.

e) Valor da combinação gênica

O valor da combinação gênica (VCG) é o valor determinado pela soma dos efeitos de interação entre os alelos, ou seja, soma dos efeitos de dominância (D) e epistasia (I). Pode-se dizer que o VCG é dado pela soma de todos os efeitos dos genes, exceto os efeitos independentes. Na prática, é obtido pela diferença entre o valor genotípico e o valor genético.

e) Valor Genotípico

Valor genotípico (G) é o valor determinado pela soma de todos os efeitos dos genes responsáveis pela expressão de uma determinada característica. Os efeitos da ação aditiva (A) determinam o valor genético (VG). Os efeitos de dominância (D) e de epistasia (I) determinam o valor da combinação gênica. G = VG + VCG.

3. Valores genético e genotípico e valor da combinação gênica

Cálculo do valor genético (VG) para os genótipos:

Valores dos genes: A = B = C = D = E = 10 kg e a = b = c = d = e = -5 kg

Valores Genéticos:

Animal 1 - AaBbCcDdEE: $6 \times 10 + 4 \times (-5) = 40 \text{ kg}$ Animal 2 - AABBCCddEe: $7 \times 10 + 3 \times (-5) = 55 \text{ kg}$ Animal 3 - AaBbCCDDEE: $8 \times 10 + 2 \times (-5) = 70 \text{ kg}$

Cálculo dos valores genotípicos (G) para os genótipos:

Valores dos homozigotos:
$$AA = BB = CC = DD = EE = (10 + 10) = 20$$

 $aa = bb = cc = dd = ee = [(-5) + (-5)] = -10$

Valores dos heterozigotos: Aa = Bb = Cc = Dd = Ee = 3 kg

Valores Genotípicos:

Animal 1 - AaBbCcDdEE: $4 \times 3 + 1 \times 20 = 32 \text{ kg}$ Animal 2 - AABBCCddEe: $3 \times 20 + 1 \times (-10) + 1 \times 3 = 53 \text{ kg}$ Animal 3 - AaBbCCDDEE: $2 \times 3 + 3 \times 20 = 66 \text{ kg}$

Cálculo dos valores da combinação gênica para os genótipos

VCG = G - VG

Animal 1 - AaBbCcDdEE: 32 - 40 = -8 kgAnimal 2 - AABBCCddEe: 53 - 55 = -2 kgAnimal 3 - AaBbCCDDEE: 66 - 70 = -4 kg

Cálculo dos valores fenotípicos

$$P=\mu+G+E=\mu+VG+VCG+E$$

Animal 1 - AaBbCcDdEE: P = 170 + 40 + (-8) + 10 = 212 kgAnimal 2 - AABBCCddEe: P = 170 + 55 + (-2) + (-20) = 203 kgAnimal 3 - AaBbCCDDEE: P = 170 + 70 + (-4) + (-30) = 206 kg

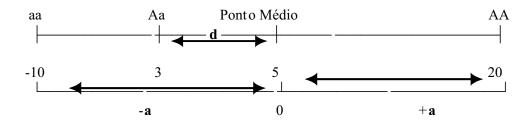
a) Completar o quadro abaixo

Genótipo (Animal), Valor genotípico (G), Valor genético (VG), Valor da combinação gênica (VCG), Desvios ambientais (E) e Valor fenotípico (P), assumindo que a característica seja determinada por cinco locos (valores em kg)

Animal	G	VG	VCG	Е	P
1) AaBbCcDdEE	32	40	-8	+ 10,0	212
2) AABBCCddEe	53	55	-2	- 20,0	203
3) AaBbCCDDEE	66	70	-4	- 30,0	206

b) Gráfico

$$\mathbf{A} = 10 \rightarrow AA = 20 (10 + 10)$$
 e $\mathbf{a} = -5 \rightarrow \mathbf{aa} = -10$
Ponto médio = $(AA + aa)/2 = [20 + (-10)]/2 = 5$ kg



"A" corresponde a "A₁", gene que aumenta mais a produção

"a" corresponde a "A₂", gene que aumenta menos ou que diminui a produção

"AA" corresponde a "A₁A₁"; "Aa" corresponde a "A₁A₂" e "aa" corresponde a "A₂A₂"

c) Tipo de ação gênica

"+a" = valor genotípico de AA - valalor do ponto médio = 20 - 5 = 15 kg

"-a" = valor genotípico de aa - valor do ponto médio = -10 - 5 = -15 kg

"d" = valor genotípico de Aa - valor do ponto médio = 3 - 5 = -2 kg

 $0 < d < "+a" \Rightarrow$ dominância parcial do gene **a** (correspondente ao gene A₂)

d) Melhor animal para o criador de elite

Para o vendedor de genética, o melhor animal é o 3 - AaBbCCDDEE, porque é o que tem o maior valor genético. Apenas o valor genético (metade dele, na verdade) é transmitido para a geração seguinte. A metade do valor genético é igual à DEP (diferença Esperada na Progênie).

e) Melhor animal para o criador comercial

Para o produtor de carne (vende animal para abate), o melhor animal é também o animal 3-AaBbCCDDEE, porque é o que apresenta o maior valor genotípico (G = VG + VCG + E) = "carcaça". No exemplo (quadro 2) o valor fenotípico (206 kg) do animal 3 foi inferior ao do animal 1. Mas isto foi devido ao ambiente ruim a que foi submetido o animal 3. Ele apresenta o melhor genótipo, se for colocado em ambiente adequado terá o melhor fenótipo. O segundo colocado é o animal 2 - AABBCCddEe, embora ele apresente o pior valor fenotípico do grupo. Isto também foi devido ao ambiente ruim. Mas ele tem o segundo maior valor genotípico. Se tivesse sido criado em ambiente melhor teria tido melhor valor fenotípico.

Notar que os dois melhores animais apresentam os piores valores fenotípicos. Isto mostra, portanto, que a escolha com base exclusivamente no fenótipo não funciona corretamente.

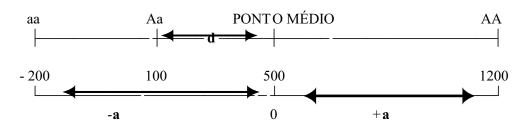
4. Valores genético, genotípico e da combinação gênica com medidas repetidas

a) Completar o Quadro abaixo

Genótipo (VACA), Valor genotípico (G), Valor genético (VG), Valor da combinação gênica (VCG), Desvios devidos ao ambiente permanente da vaca (E_P) , Ordem da lactação (L), Desvios devidos ao ambiente temporário atuando sobre a lactação (E_T) e Valor fenotípico (P) do animal, assumindo que a característica seja determinada por cinco locos (valores em kg)

Vaca	G	VG	VCG	E_{P}	L	E_{T}	P
1) A - DI-C - D-IEE	1 600 0	2 200 0	1 (00 0	2 000 0	1ª	-1.000,0	9.600,0
1) Aaboccode	1) AaBbCcDdEE 1.600,0 3.200,0 -1.600,0 2.000,0	2^{a}	+1.000,0	11.600,0			
2) AABBCCddEe	2.500.0	2 000 0	400.0	0.0	1 ^a	0,0	10.500,0
	3.500,0	3.900,0	-400,0	0,0	2ª	+2.000,0	12.500,0
A) A DI CODDEE	2 000 0	4.600.0	0000	2 000 0	1ª	+1.400,0	10.200,0
3) AaBbCCDDEE	3.800,0	4.600,0	4.600,0 -800,0	-2.000,0	2ª	+3.400,0	12.200,0

b) Gráfico



c) Tipo de ação gênica

Dominância parcial do alelo A₂

d) Vaca de maior produção média

A vaca com maior produção média é a 2 - AABBCCddEe, com 11.500 kg de média nas duas lactações (valor fenotípico, depende do ambiente)

e) Capacidade mais provável de produção

$$CMPP = \mu + VG + VCG + E_{P}$$

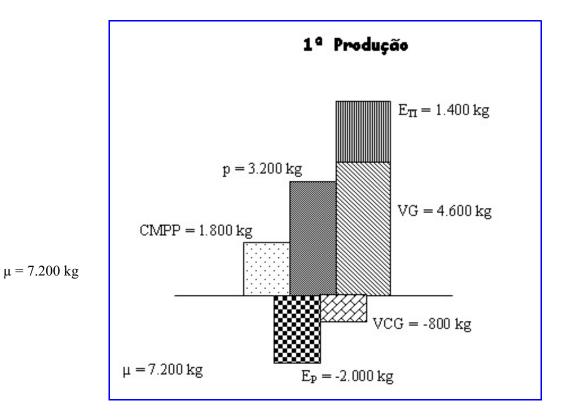
Vaca 1 - AaBbCcDdEE: CMPP = 7.000 + 3.200 - 1600 + 2.000 = 10.600 kg

Vaca 2 - AABBCCddEe: CMPP = 7.000 + 3.900 - 400 + 0 = 10.500 kg

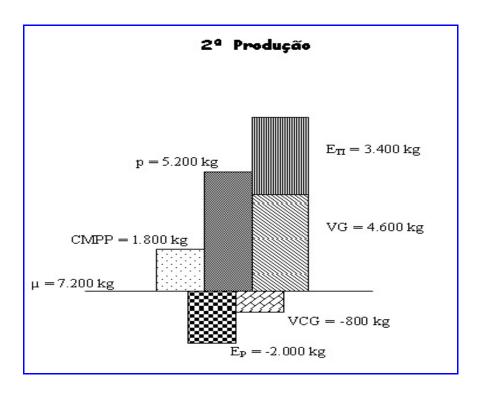
Vaca 3 - AaBbCCDDEE: CMPP = 7.000 + 4.600 - 800 - 2.000 = 8.800 kg

Deveria ser descartada a vaca 3. Para a produção ela ficou prejudicada pelo baixo valor do efeito de ambiente permanente (E_P). No entanto, para a reprodução, ela é melhor do que as outras duas, pois tem o maior valor genético.

f) Desempenho da Vaca 3 na 1ª Produção (1ª Lactação)



f)Desempenho da Vaca 3 na 2ª Produção (2ª Lactação)



g) *Melhor vaca para o selecionador* (vendedor de genética) Vaca 3 - AaBbCCDDEE - o maior valor genético

h) *Melhor vaca para o criador comercial* Vaca 1 - AaBbCcDdEE - melhor CMPP (expectativa para a próxima produção)

Introdução à Genética de Populações

Genética de Populações

É o ramo da ciência que estuda as frequências gênicas e genotípicas nas populações e as forças capazes de alterá-las ao longo das gerações.

Entende-se por *frequência gênica*, a proporção dos diferentes alelos de um gene na população, enquanto que *frequência genotípica* é a proporção dos genótipos.

Conceito de População

- <u>a)</u> do ponto de vista estatístico, é o total de indivíduos de uma espécie ou raça ou de outro grupamento qualquer que habitam determinada área.
- **b)** do ponto de vista genético, é um grupo de indivíduos da mesma espécie, coexistindo em uma área comum e reproduzindo-se. Esta categoria de população recebe o nome de População Mendeliana.

Importância da Genética de Populações

As médias e variâncias das características de interesse econômico (relacionadas com o melhoramento genético) são dependentes das frequências gênicas e genotípicas nas populações.

Cálculo de Frequências Gênicas

O cálculo de frequências gênicas se torna relativamente simples em duas situações: ausência de dominância e dominância completa.

Ausência de Dominância

Neste caso, considerando-se um locus com dois alelos, têm-se três fenótipos distintos. Designando-se a frequência do alelo A_1 por \mathbf{p} e a e a frequência do alelo A_2 por \mathbf{q} , os cálculos são dados por:

$$p = f(A_1) = \frac{\text{n\'umero de alelos } A_1}{\text{n\'umero total de alelos}}$$

$$q = f(A_2) = \frac{\text{n\'umero de alelos } A_2}{\text{n\'umero total de alelos}}$$

Exemplo:

Na herança da pelagem do gado Shorthorn não existe dominância, ou seja, o gene A_1 em homozigose produz a cor <u>vermelha</u> e o gene A_2 em homozigose produz a cor <u>branca</u>. Os indivíduos heterozigotos são <u>ruões</u>. Em um rebanho de 100 animais, em que 50 são vermelhos, 40 ruões e 10 brancos, qual é a frequência dos genes A_1 e A_2 ? Qual é a frequência dos genótipos?

Solução:

Conótino	Conétino Eonétino		Número de genes		
Genótipo	Fenótipo	indivíduos	A_1	A_2	Total
A_1A_1	Vermelho	50	100	-	100
A_1A_2	Ruão	40	40	40	80
A_2A_2	Branco	10	-	20	20
Total		100	140	60	200

Cálculo das Frequências Gênicas
$$p = f(A_1) = \frac{n^0 A_1}{Total} = \frac{140}{200} = 0,7$$

$$q = f(A_2) = \frac{n^0 A_2}{Total} = \frac{60}{200} = 0,3$$

Cálculo das Frequências Genotípicas Observadas

$$f(A_1A_1) = \frac{\text{mímero de genótipos } A_1A_1}{\text{mímero total de genótipos }} = \frac{50}{100} = 0,5 = 50\%$$

$$f(A_1A_2) = \frac{\text{número de genótipos } A_1A_2}{\text{número total de genótipos }} = \frac{40}{100} = 0,4 = 40\%$$

$$f(A_2A_2) = \frac{\text{mímero de genótipos } A_2A_2}{\text{mímero total de genótipos }} = \frac{10}{100} = 0,1 = 10\%$$

A probabilidade de qualquer gameta transportar um determinado gene é igual à frequência desse gene na população. A probabilidade de um espermatozóide portador do gene A_1 fertilizar um óvulo A_1 é, nesse caso, 0,7 x 0,7 = 0,49 (49%).

Dominância Completa

Neste caso, têm-se três genótipos e apenas dois fenótipos distintos e, para o cálculo das frequências gênicas, torna-se necessário pressupor que a população se encontra no equilíbrio de Hardy-Wenberg.

Equilíbrio de Hardy-Wenberg - População 1

Considere-se como característica de estudo, a pelagem de uma certa população de suínos, em que os alelos **R** e r controlam a sua expressão. Os indivíduos homozigotos dominantes (**RR**) e os heterozigotos (**Rr**) são vermelhos e os homozigotos recessivos (**rr**) são pretos. Partindo-se de uma população inicial composta de um número arbitrário de cada genótipo, pode-se prever as frequências gênicas e genotípicas nas gerações que se seguem. considere-se, por exemplo, a geração 0 (zero) composta de 40% de **RR**, 40% de **Rr** e 20% de **rr**. Assumindo-se uma população de 100 animais, tem-se:

Equilíbrio de Hardy-Wenberg

Genótipo	Nº animais	Frequência genotípica	Nº alelos
RR	40	0,40	80
Rr	40	0,40	80
rr	20	0,20	20
Total	100	1,00	200

Cálculo das Frequências Gênicas Usando o Número de Alelos
$$p = f(R) = \frac{\text{número de alelos } R}{\text{número total de alelos}} = \frac{2 \times RR + Rr}{2 \times Total} = \frac{120}{200} = 0,6$$

$$q = f(r) = \frac{\text{número de alelos } r}{\text{número total de alelos}} = \frac{Rr + 2 \times rr}{2 \times Total} = \frac{80}{200} = 0,4$$

Cálculo das Frequências Gênicas Usando as Frequências Genotípicas Observadas
$$p = f(R) = f(RR) + \frac{1}{2}f(Rr) = 0,40 + 0,20 = 0,6$$

$$q = f(r) = \frac{1}{2}f(Rr) + f(rr) = 0,20 + 0,20 = 0,4$$

Considerando-se que a cor da pelagem não interfere nos acasalamentos, ou seja, que estes são feitos ao acaso, os seguintes tipos de acasalamentos com suas respectivas frequências de ocorrência são apresentados abaixo.

Equilíbrio de Hardy-Wenberg

Tipos de a	Tipos de acasalamentos e		Fêmeas	
	as de ocorrência	RR (0,40)	Rr (0,40)	rr (0,20)
	RR (0,40)	0,16	0,16	0,08
Machos	Rr (0,40)	0,16	0,16	0,08
	rr (0,20)	0,08	0,08	0,04

Na primeira geração de acasalamentos, tem-se:

Tipos de acasalamentos e frequências de ocorrência, sob condição de panmixia

		Descendentes		
Acasalamentos	Frequências	RR	Rr	rr
RR x RR	0,16	0,16	-	-
RR x Rr	0,32	0,16	0,16	-
RR x rr	0,16	-	0,16	-
Rr x Rr	0,16	0,04	0,08	0,04
Rr x rr	0,16	-	0,08	0,08
rr x rr	0,04	-	-	0,04
Total	1,00	0,36	0,48	0,16

Cálculo das Frequências Gênicas Usando as Frquências Genotípicas Observadas

Equilibrio de Hardy-Wenberg

1ª Conclusão

- a) Não houve mudança na frequência gênica. A frequência gênica na 1ª geração foi igual à frequência gênica inicial.
- b) Houve mudança na frequência genotípica (de 0,40; 0,40, 0,20 para 0,36; 0,48; 0,16)

Equilíbrio de Hardy-Wenberg - População 2

Considere agora, uma população inicial com 25% RR, 70% Rr e 5% rr.

Genótipo	Frequência genotípica
RR	0,25
Rr	0,70
rr	0,05

Cálculo das Frequências Gênicas Usando as Frequências Genotípicas Observadas

$$p = f(R) = f(RR) + \frac{1}{2}f(Rr) = 0.25 + 0.35 \rightarrow p = f(R) = 0.60$$

 $q = f(r) = \frac{1}{2}f(Rr) + f(rr) = 0.25 + 0.05 \rightarrow q = f(r) = 0.40$

$$q = f(r) = \frac{1}{2}f(Rr) + f(rr) = 0.25 + 0.05 \rightarrow q = f(r) = 0.40$$

Equilíbrio de Hardy-Wenberg

Acasalando-se os genótipos aleatoriamente, tem-se:

Tipos de ac	Tipos de acasalamentos e frequências de ocorrência		Fêmeas			
			Rr (0,70)	rr (0,05)		
	RR (0,25)	0,0625	0,1750	0,0125		
Machos	Rr (0,70)	0,1750	0,4900	0,0350		
	rr (0,05)	0,0125	0,0350	0,0025		

Tipos de acasalamentos e frequências de ocorrência, sob condição de panmixia

Pais		Descendentes				
Acasal	Freq	RR	Rr	rr		
RR x RR	0,0625	0,0625	-	-		
RR x Rr	0,3500	0,1750	0,1750	-		
RR x rr	0,0250	-	0,0250	-		
Rr x Rr	0,4900	0,1225	0,2450	0,1225		
Rr x rr	0,0700	-	0,0350	0,0350		
rr x rr	0,0025	-	-	0,0025		
Total	1,00	0,36	0,48	0,16		

Cálculo das Frequências Gênicas Usando as Frequências Genotípicas Observadas

$$p = f(R) = f(RR) + \frac{1}{2}f(Rr) = 0.36 + 0.24 = 0.60$$

 $q = f(r) = \frac{1}{2}f(Rr) + f(rr) = 0.24 + 0.16 = 0.40$

$$q = f(r) = \frac{1}{2}f(Rr) + f(rr) = 0.24 + 0.16 = 0.40$$

2ª Conclusão

- 1. Sob condição de panmixia (acasalamentos ao acaso) em uma população de grande efetivo, a frequência gênica em determinada geração depende da frequência gênica da geração anterior e não da frequência genotípica.
- 2. A frequência genotípica em determinada geração depende da frequência gênica da geração anterior. Com as frequências gênicas p = 0.60 e q = 0.40, as frequências genotípicas são 0.36; 0.48; 0.16, independente da frequência genotípica inicial.

População 3

(Descendentes da População 2)

Considere-se agora, o acasalamento entre os descendentes da população 2.

As frequências genotípicas nessa população: 36% RR, 48% Rr e 16% rr

Genótipo	Frequência genotípica
RR	0,36
Rr	0,48
rr	0,16

$$f(R) = p = 0.36 + 0.24 = 0.60$$
 e $f(r) = q = 0.24 + 0.16 = 0.40$

Tipos de acasalamentos e			Fêmeas (♀)	
frequê	encias de ocorrência	RR(0,36)	Rr (0,48)	rr (0,16)
	RR (0,36)	0,1296	0,1728	0,0576
ď	Rr (0,48)	0,1728	0,2304	0,0768
	rr (0,16)	0,0576	0,0768	0,0256

Equilíbrio de Hardy-Wenberg

Tipos de acasalamentos e frequências de ocorrência, sob condição de panmixia

Pais			Descendentes	
Acasal	Freq	RR	Rr	rr
RR x RR	0,1296	0,1296	-	-
RR x Rr	0,3456	0,1728	0,1728	-
RR x rr	0,1152	-	0,1152	-
Rr x Rr	0,2304	0,0576	0,1152	0,0576
Rr x rr	0,1536	-	0,0768	0,0768
rr x rr	0,0256	-	-	0,0256
Total	1,00	0,36	0,48	0,16

Frequências Genotípicas

$$f(RR) = 0.36$$
; $(Rr) = 0.48$; $f(rr) = 0.16$

Frequências Gênicas

$$p = f(R) = f(RR) + \frac{1}{2}f(Rr) = 0.36 + 0.24 = 0.60$$

$$q = f(r) = \frac{1}{2}f(Rr) + f(rr) = 0.24 + 0.16 = 0.40$$

Conclusão - População em Equilíbrio

Essas frequências são as mesmas da geração anterior, portanto as frequências gênicas e genotípicas não mudaram mais. Isto comprova que "em uma população panmítica grande, as *frequências gênicas* e *genotípicas* permanecerão constantes de geração a geração, na ausência de <u>seleção, migração</u> e <u>mutação</u>". Ou seja, a população se mantém em equilíbrio de Hardy-Wenberg.

Frequências Genotípicas Esperadas no Equilíbrio - Em Termos Algébricos

Os acasalamentos ao acaso podem ser vistos como a união ao acaso dos gametas. Assim, se f(R) = p e f(r) = q, tem-se:

Uni≋a das Ca	União dos Gametas ao Acaso		Fêmeas	
União dos Gai	metas ao Acaso	R (p)	r (q)	
Markan	R (p)	$RR(p^2)$	Rr (pq)	
Machos	r (q)	Rr (pq)	$\operatorname{rr}(q^2)$	

Portanto, as frequências genotípicas são: $p^2(RR) + 2pq(Rr) + q^2(rr) = (p+q)^2$ (p+q) é a soma das frequências gênicas, portanto, (p+q) = 1 $(p^2 + 2pq + q^2) =$ soma das frequências genotípicas, ou seja, $(p^2 + 2pq + q^2) = 1$

Demonstração

Tipos de ac	Tipos de acasalamentos e		Fêmeas	
frequências	de ocorrência	$RR(p^2)$	Rr (2pq)	rr (q ²)
	$RR(p^2)$	p^4	$2p^3q$	p^2q^2
Machos	Rr (2pq)	$2p^3q$	$4p^2q^2$	$2pq^3$
	$\operatorname{rr}(q^2)$	p^2q^2	$2pq^3$	q^4

Tipos de acasalamentos e frequências de ocorrência, sob condição de panmixia

Pais			Descendentes	
Acasala	Freq	RR	Rr	rr
RR x RR	p^4	p^4	-	-
RR x Rr	$4p^3q$	$2p^3q$	$2p^3q$	-
RR x rr	$2p^2q^2$	-	$2p^2q^2$	-
Rr x Rr	$4p^2q^2$	p^2q^2	$2p^2q^2$	p^2q^2
Rr x rr	$4pq^3$	-	$2pq^3$	$2pq^3$
rr x rr	q^4	-	-	q^4
Total	1,00	p^2	2pq	q^2

Demonstração das Somas

Frequência dos Acasalamentos

$$p^{4} + 4p^{3}q + 2p^{2}q^{2} + 4pq^{3} + q^{4} = p^{4} + 2p^{3}q + p^{2}q^{2} + 2p^{3}q + 4p^{2}q^{2} + 2pq^{3} + p^{2}q^{2} + 2pq^{3} + q^{4} = p^{2}(p^{2} + 2pq + q^{2}) + 2pq(p^{2} + 2pq + q^{2}) + q^{2}(p^{2} + 2pq + q^{2}) = p^{2} + 2pq + q^{2} = 1$$

Frequência dos Descendentes

$$f(RR) = p^{4} + 2p^{3}q + p^{2}q^{2} = p^{2}(p^{2} + 2pq + q^{2}) = p^{2}$$

$$f(Rr) = 2p^{3}q + 2p^{2}q^{2} + 2p^{2}q^{2} + 2pq^{3} = 2pq(p^{2} + 2pq + q^{2}) = 2pq$$

$$f(rr) = p^{2}q^{2} + 2pq^{3} + q^{4} = q^{2}(p^{2} + 2pq + q^{2}) = q^{2}$$

Atingimento do Equilíbrio de Hardy-Wenberg (Corolário de Wentworth-Remick)

Uma população que não se encontra no equilíbrio, alcança tal estado em apenas uma geração de acasalamentos ao acaso.

Considere-se a seguinte população: $\mathbf{RR} = 80$ indivíduos e $\mathbf{Rr} = 20$ indivíduos, ou seja, f(RR) = 0.80; f(Rr) = 0.20; f(rr) = 0.00 ===> f(R) = 0.9 e f(r) = 0.1.

A falta do genótipo **rr** caracteriza uma população que não está em equilíbrio.

Realizando-se uma geração de acasalamentos ao acaso, tem-se:

Atingimento do Equilíbrio de Hardy-Wenberg

Martan	Fêmeas		
Machos	RR (0,80)	Rr (0,20)	
RR (0,80)	0,64	0,16	
Rr (0,20)	0,16	0,04	

Tipos de acasalamentos e frequência de ocorrência, sob condição de panmixia

Pais	3		Descendentes	
Acasal	Freq	RR	Rr	rr
RR x RR	0,64	0,64	-	-
RR x Rr	0,32	0,16	0,16	-
Rr x Rr	0,04	0,01	0,02	0,01
Total	1,00	0,81	0,18	0,01

Frequências Gênicas

$$p = f(R) = f(RR) + \frac{1}{2}f(Rr) = 0.81 + 0.09 = 0.90$$

$$q = f(r) = \frac{1}{2}f(Rr) + f(rr) = 0.09 + 0.01 = 0.10$$

Acasalando-se a população F₁ entre si (segunda geração de acasalamentos ao acaso):

Tipos de acasalamentos e			Fêmeas (♀)	
frequências	s de ocorrência	RR(0,81)	Rr (0,18)	rr(0,01
	RR (0,81)	0,6561	0,1458	0,0081
♂*	Rr (0,18)	0,1458	0,0324	0,0018
	rr (0,01)	0,0181	0,0018	0,0001

Atingimento do Equilíbrio de Hardy-Wenberg

Tipos de acasalamentos e frequências de ocorrência, sob condição de panmixia

Pais		_	Descendentes	
Acasal	Freq	RR	Rr	rr
RR x RR	0,6561	0,6561	-	-
RR x Rr	0,2962	0,1458	0,1458	-
RR x rr	0,0162	-	0,0162	-
Rr x Rr	0,0324	0,0081	0,0162	0,0081
Rr x rr	0,0036	-	0,0018	0,0018
rr x rr	0,0001	-	-	0,0001
Total	1,00	0,81	0,18	0,01

Conclusão Final

As frequências gênicas e genotípicas não mais se alteram, o que prova que a população atingiu o equilíbrio após a 1ª geração de acasalamentos ao acaso.

Verificação do Equilíbrio de Hardy-Wenberg Usando o Teste de Chi-Quadrado

Genótipo	Nº Observado	Freq Esperada	Nº Epearado
RR	40	p ²	?
Rr	40	2pq	?
rr	20	q^2	?

Freuências Gênicas Observadas

$$p = f(R) = f(RR) + \frac{1}{2}f(Rr) = 0.40 + 0.20 = 0.60$$

$$q = f(r) = \frac{1}{2}f(Rr) + f(rr) = 0.20 + 0.20 = 0.40$$

Verificação do Equilíbrio de Hardy-Wenberg

Genótipo	Nº Observado	Frequência Esperada	Nº Esperado
RR	40	$(0,6)^2 = 0,36$	0,36 x 100=36
Rr	40	2 x 0,6 x 0,4=0,48	0,48 x 100=48
rr	20	$(0,4)^2 = 0,16$	0,16 x 100=16
Total	100	1,00	100

Chi-Quadrado

Equação Para o Cálculo do X-Quadrado

$$X^2 = \Sigma \frac{(fo - fe)^2}{fe}$$

Em que:

fo = frequência númérica observada (número de indivíduos)

fe = frequência númérica esperada (número de indivíduos)

Atenção!!!

Não usar as frequências relativas. Usar as frequências absolutas (o número de indivíduos)

Valores de Chi-Quadrado

Genótipo	Nº Observado	Nº Esperado	(fo-fe) ² /fe
RR	40	0,36	0,444
Rr	40	0,48	1,333
rr	20	0,16	1,000
Total	100	1,00	2,777

Chi-Quadrado (x2)

Equação Para o Cálculo do X-Quadrado

$$X^2 = \Sigma \frac{(fo - fe)^2}{fe}$$

Jv

$$X^2 = 0,444 + 1,333 + 1,000 = 2,777$$

Graus de Liberdade (GL)

GL = número de genótipos - número de alelos

$$GL = 3 - 2 = 1$$

X² Tabelado

$$X_{1.1\%}^2$$
 = 6,63

$$X_{1.5\%}^2 = 3,84$$

Comparar na Tabela de X²

Sempre verificar primeiro com α = 1%. Se o valor não for significativo, verificar com α = 5%

Hipótese

H₀: A população está em equilíbrio

Verificação da Hipótese

$$X^2$$
 calculado = 2,777 < $X_{1.1\%}^2$ (6,63) \rightarrow aceitar H_0

(não foi significativo a 1%. Testar a 5%)

$$X^2$$
 calculado = 2,777 < $X_{1,5\%}^2(3,84) \mapsto aceitar H_0$

Conclusão

Conclui-se que a população está em equilibrio de Hardy-Wenberg

(com probabilidade desconhecida de se cometer o erro tipo II)

Cálculo das Frequências Gênicas Quando Ocorre Dominância Completa

Neste caso, assume-se que a população está em equilíbrio.

Exemplo

Em um rebanho bovino de 100 animais, verificou-se que 9 eram chifrudos e 9 mochos. Quais são as frequências dos alelos M (mocho) e m (chifres) na população? E as frequências genotípicas?

Solução

Neste caso, assume-se que a população está em equilíbrio de Hardy-Wenberg

Pela suposição de equilíbrio, as frequências genotípicas esperadas são: $p^2(MM) + 2pq(Mm) + q^2(mm)$ Os genótipos não são todos identificáveis, mas tem-se as seguintes frequências:

$$f(MM + Mm) = p^2 + 2pq = \frac{91}{100} = 0.91$$
 $e f(mm) = q^2 = \frac{9}{100} = 0.09$

Frequências Gênicas

$$f(mm) = q^2 = \frac{9}{100} = 0.09$$

Portanto,

$$q^2 = f(mm) = 0.09 \rightarrow q = f(m) = \sqrt{0.09} = 0.3$$

 $q = 0.3 \rightarrow p = 1 - 0.3 = 0.7$

Frequências Genotípicas

Assumiu-se que a população está em equilíbrio de Hardy-Wenberg. Na suposição de equilíbrio, as frequências genotípicas esperadas são:

$$f(MM) = p^2 = (0,7)^2 = 0,49$$

 $f(Mm) = 2pq = 2 \times 0,7 \times 0,3 = 0,42$
 $f(mm) = q^2 = (0,3)^2 = 0,09$

Os erros decorrentes da suposição de equilíbrio dependem da magnitude do afastamento do equilíbrio. Populações submetidas a processo seletivo podem se afastar do equilíbrio. Ex.: peso à desmama, peso de abate, produção de leite etc. são características geralmente submetidas `a seleção. Algumas características como cor da pelagem, presença ou ausência de chifres, grupos sanguíneos etc. podem, no entanto, não estar sob seleção.

Alelos Múltiplos

Trata-se de mais de dois alelos em um mesmo locus. Considerando-se, por exemplo, três alelos, $\mathbf{A_1}$, $\mathbf{A_2}$ e $\mathbf{A_3}$, com as frequências gênicas f $(\mathbf{A_1})$ = p; f $(\mathbf{A_2})$ = q e f $(\mathbf{A_3})$ = r e sabendo-se que (p + q + r = 1), tem-se, de acordo com o teorema de Hardy-Wenberg, as seguintes frequências: p² $(\mathbf{A_1A_1})$ + q² $(\mathbf{A_2A_2})$ + r² $(\mathbf{A_3A_3})$ + 2pq $(\mathbf{A_1A_2})$ + 2pr $(\mathbf{A_1A_3})$ + 2qr $(\mathbf{A_2A_3})$. Essas frequências genotípicas correspondem ao desenvolvimento do trinômio $(p+q+r)^2$.

Considerando-se uma característica determinada por k alelos, têm-se, então: k tipos homogaméticos e $\frac{k(k-1)}{2}$ tipos heterogaméticos. Total de genótipos = $k + \frac{k(k-1)}{2}$

Algumas Situações com Alelos Múltiplos

1. Estimação das frequências alélicas usando dados de amostra quando todos os fenótipos são distinguíveis

Se a acão gênica é aditiva, todos os fenótipos são distinguíveis. Neste caso, para a estimação da frequência de determinado alelo, soma-se a frequência do homozigoto com a metade das frequências dos heterozigotos que contenham o alelo em questão. Considerando-se uma característica determinada por um loco com três alelos, tem-se a seguinte tabela:

Eraa	Genótipos						
Freq	A_1A_1	A_2A_2	A_3A_3	A_1A_2	A_1A_3	A_2A_3	Total
Esp	p^2	q^2	r^2	2pq	2pr	2qr	1
Obs	a	b	c	d	e	f	N

Cálculo das Frequências Alélicas

Frequências Alélicas

Tendo como base a tabela acima, as frequências gênicas esperadas são:

$$f(A_1) = p^2 + pq + pr = p(p + q + r) = p$$

$$f(A_2) = q^2 + pq + qr = q(p + q + r) = q$$

$$f(A_3) = r^2 + pr + qr = r(p + q + r) = r$$

Usando-se os valores fenotípicos observados (Obs), estimam-se as frequências por meio das

equações abaixo:
$$\hat{p} = \frac{a + \frac{d}{2} + \frac{e}{2}}{N}$$
; $\hat{q} = \frac{b + \frac{d}{2} + \frac{f}{2}}{N}$; $\hat{r} = \frac{c + \frac{e}{2} + \frac{f}{2}}{N}$

2. Estimação das frequências alélicas usando dados de amostra quando ocorre dominância completa

Exemplo de ocorrência

Coloração do Pelo em Coelhos

		Genótipo	S	
Genótipos	$A_1A_1 \\ A_1A_2 \\ A_1A_3$	$\begin{matrix} A_2A_2\\A_2A_3\end{matrix}$	A_3A_3	TOTAL
Fenótipos	Chinchila	Himalaia	Albino	-
Freq Esperada	$p^2 + 2pq + 2pr$	$q^2 + 2qr$	r^2	1
Num Observado	a	b	С	N

Alelos Múltiplos com Dominância

Observa-se, no quadro acima, que a relação de dominância é: $A_1 > A_2$; $A_2 > A_3$; $A_1 > A_3 \rightarrow A_1 > A_2 > A_3$ Em que,

$\mathbf{A_1}$	===>	Chinchila	$f(\mathbf{A_1}) = p$
$\mathbf{A}_2 \text{ (sem } \mathbf{A}_1 \text{)}$	===>	Himalaia	$f(\mathbf{A_2}) = q$
A_3 (sem A_2 ou A_1)	===>	Albino	$f(\mathbf{A_3}) = r$

Frequências Gênicas

Com base nos valores fenotípicos obervados (a, b, c) e no total de observações(N), as frequências gênicas são dadas por:

$$r^{2} = \frac{c}{N} \implies \hat{r} = \sqrt{\frac{c}{N}}$$

$$q^{2} + 2qr + r^{2} = \frac{b+c}{N} \implies (q+r)^{2} = \frac{b+c}{N} \implies \hat{q} + \hat{r} = \sqrt{\frac{b+c}{N}} \implies \hat{q} = \sqrt{\frac{b+c}{N}} - \sqrt{\frac{c}{N}}$$

$$\hat{p} = 1 - (\hat{q} + \hat{r}) \implies \hat{p} = 1 - \left[\sqrt{\frac{b+c}{N}} - \sqrt{\frac{c}{N}} + \sqrt{\frac{c}{N}}\right] \implies \hat{p} = 1 - \sqrt{\frac{b+c}{N}}$$

$$Tem-se, portanto: \hat{p} = 1 - \sqrt{\frac{b+c}{N}} ; \hat{q} = \sqrt{\frac{b+c}{N}} - \sqrt{\frac{c}{N}} ; \hat{r} = \sqrt{\frac{c}{N}}$$

3. Estimação das frequências alélicas usando dados de amostra quando ocorre dominância e codominância

Exemplo de Ocorrência

Grupos sanguíneos ABO: $A_1 = A_2$; $A_1 > A_3$; $A_2 > A_3$

Genótipos, Fenótipos, Frequências genotípicas esperadas (Freq. Esp) e número de observações (N) nos grupos sanguíneos ABO*

*			Genótipos		
	A_1A_2	A_1A_1 A_1A_3	A_2A_2 A_2A_3	A_3A_3	Σ
Genótipos	$\mathbf{I}^{\mathbf{A}}\mathbf{I}^{\mathbf{B}}$	IAIA IAIO	I_BI_B I_BI_O	$I_{o}I_{o}$	-
Fenótipos	AB	A	В	O	-
Freq. Esp	2pq	$p^2 + 2pr$	$q^2 + 2qr$	\mathbf{r}^2	1
Representação	h	a	b	c	N

Dominância e Codominância: Grupos sanguíneos do sistema ABO

Frequências Fenotípicas

Com base na tabela acima, as frequências relativas dos fenótipos observados são dadas por:

$$O' = \frac{c}{N}$$
 ; $B' = \frac{b}{N}$ $e A' = \frac{a}{N}$

Cálculo das Frequências Gênicas

As frequências gênicas podem ser obtidas da seguinte forma:

$$(r')^2 = O' \rightarrow r' = \sqrt{O'}$$

$$(q')^2 + 2q'r' + (r')^2 = B' + O' \mapsto (q' + r')^2 = B' + O' \mapsto q' + r' = \sqrt{B' + O'} \mapsto$$

$$q' = \sqrt{B' + O'} - \sqrt{O'}$$

$$(p^{\prime})^2 + 2p^{\prime}r^{\prime} + (r^{\prime})^2 = A^{\prime} + O^{\prime} \implies (p^{\prime} + r^{\prime})^2 = A^{\prime} + O^{\prime} \implies p^{\prime} + r^{\prime} = \sqrt{A^{\prime} + O^{\prime}} \implies$$

$$p' = \sqrt{A' + O'} - \sqrt{O'}$$

Grupos sanguíneos do sistema ABO

Cálculo das Frequências Gênicas

Ou ainda,

$$p' + q' + r' = 1 \implies p' = 1 - (q' + r')$$

Mas,
$$q' + r' = \sqrt{B' + O'} \implies p' = 1 - \sqrt{B' + O'}$$

$$p' + q' + r' = 1 \Rightarrow q' = 1 - (p' + r')$$

Mas,
$$p' + r' = \sqrt{A' + O'} \implies q' = 1 - \sqrt{A' + O'}$$

Ou seja,

$$p' = 1 - \sqrt{B' + O'}$$

$$q' = 1 - \sqrt{A' + O'}$$

$$r' = \sqrt{O'}$$

Notar que o **h** (frequência do grupo AB), no quadro da página 68, não é utilizado. Então, por estas estimativas, $p' + q' + r' \neq 1$. Isto faz com que seja necessário um ajuste. p', q', e r' são as frequências gênicas não ajustadas

Fator de Ajuste de Bernstein e Frequências Ajustadas

O fator de ajuste para as estimativas, segundo o modelo de Bernstein (1925), é dado por:

$$d = 1 - (p' + q' + r')$$

E as frequências ajustadas são, então, dadas por:

$$\hat{p} = (1 + \frac{1}{2}d)p'$$

$$\hat{q} = (1 + \frac{1}{2}d)q'$$

$$\hat{r} = (1 - \frac{1}{2}d)(r' + \frac{1}{2}d)$$

Lista de Exercícios com Resolução

Exercício 1

O sistema de grupos sanguíneos ABO é governado por um sistema de alelos múltiplos no qual ocorre a seguinte relação de codominância: três alelos: I^A , I^B e I^0 formam a sequência de dominância $I^A = I^B > I^0$.

Supondo-se que tenham sido encontrados em uma população os resultados da Tabela abaixo, pede-se estimar as frequências gênicas.

Canátinas	A_1A_2	A_1A_1 A_1A_3	A_2A_2 A_2A_3	A_3A_3	Total
Genótipos	I^AI^B	$I^AI^A I^AI^0$	I_BI_B I_BI_0	I^0I^0	Total
Fenótipos	AB	A	В	О	-
Número	6	179	35	202	422
Freq Esperada	2pq	$p^2 + pr$	$q^2 + qr$	r^2	1
Representação	h	a	b	c	N

Resolução

Cálculo das Frequências Sem Ajuste

$$O' = \frac{c}{N} = \frac{202}{422} = 0,4787$$

$$B' = \frac{b}{N} = \frac{35}{422} = 0,0829$$

$$A' = \frac{a}{N} = \frac{179}{422} = 0,4242$$

$$r' = \sqrt{O'} = \sqrt{0,4787} = 0,6919$$

$$q' = 1 - \sqrt{A' + O'} = 1 - \sqrt{0,4242 + 0,4787} \rightarrow q' = 1 - \sqrt{0,9029} = 1 - 0,9502 = 0,0498$$

$$p' = 1 - \sqrt{B' + O'} = 1 - \sqrt{0,0829 + 0,4787} \rightarrow p' = 1 - \sqrt{0,5616} = 1 - 0,7494 = 0,2510$$

Cálculo das Frequências Ajustadas

Cálculo do Fator de Ajuste de Bernstein

$$d = 1 - (p' + q' + r') \rightarrow d = 1 - (0.2510 + 0.0498 + 0.6919) \rightarrow d = 0.0077$$

Frequências Ajustadas

$$\hat{p} = (1 + \frac{1}{2}d)p' \mapsto \hat{p} = [1 + \frac{1}{2}x(0,0077)]x 0,2510 = 0,252$$

$$\hat{q} = (1 + \frac{1}{2}d)q' \rightarrow \hat{q} = [1 + \frac{1}{2}x(0,0077)]x 0,0498 = 0,050$$

$$\hat{r} = (1 - \frac{1}{2}d)(r' + \frac{1}{2}d) = (1 - \frac{1}{2}x \ 0,0077)(0,6919 + \frac{1}{2}x \ 0,0077) = (1,0038)(0,69575) = 0,698$$

Soma das Frequências Ajustadas

$$\hat{p} + \hat{q} + \hat{r} = 0.252 + 0.050 + 0.698 = 1.000$$

Exercício 2

O sistema de grupos sanguíneos ABO é governado por um sistema de alelos múltiplos no qual ocorre a seguinte relação de codominância: três alelos: I^A , I^B e I^0 formam a sequência de dominância $I^A = I^B > I^0$.

Supondo-se que tenham sido encontrados em uma população os resultados da Tabela abaixo, pede-se estimar as frequências gênicas.

Genótipos	A_1A_2	$A_1A_1 A_1A_3$	A_2A_2 A_2A_3	A_3A_3	Total
	I^AI^B	$I^AI^A I^AI^0$	I_BI_B I_BI_0	I_0I_0	Total
Fenótipos	AB	A	В	О	-
Número	96	96	96	12	300
Freq Esperada	2pq	$p^2 + pr$	$q^2 + qr$	r^2	1
Representação	h	a	ь	С	N

Resolução

Cálculo das Frequências Gênicass

$$O' = \frac{c}{N} = \frac{12}{300} = 0.04$$

$$B' = \frac{b}{N} = \frac{96}{300} = 0.32$$

$$A' = \frac{a}{N} = \frac{96}{300} = 0.32$$

Frequências Não Ajustadas

$$r' = \sqrt{O'} = \sqrt{0.04} = 0.2$$

$$q' = 1 - \sqrt{A' + O'} = 1 - \sqrt{0.36} = 1 - 0.6 = 0.4$$

$$p' = 1 - \sqrt{B' + O'} = 1 - \sqrt{0.36} = 1 - 0.6 = 0.4$$

Fator de Ajuste (d)

$$d = 1 - (p' + q' + r') \rightarrow d = 1 - (0.4 + 0.4 + 0.2) \rightarrow d = 0.0$$

Portanto, não há necessidade de ajuste

Propriedades de Uma População em Equilíbrio de Hardy-Wenberg com Alelos Múltiplos

- 1. A porcentagem de heterozigotos pode exceder a 50%
- 2. A proporção máxima de heterozigotos é 2/3 e ocorre quando p = q = r = 1/3

Proporção Máxima de Heterozigotos Com Alelos Múltiplos

Proporção Máxima de Heterozigotos - Demonstração

$$H = \frac{1}{2}$$
 de heterozigotos

$$p+q+r=1 \Rightarrow r=1-(p+q)$$

Proporção Máxima de Heterozigotos Com Alelos Múltiplos

Proporção Máxima de Heterozigotos - Demonstração

$$H = pq + pr + qr \mapsto H = pq + p[1 - (p + q)] + q[1 - (p + q)] \mapsto$$

$$H = pq + p(1 - p - q) + q(1 - p - q) = pq + p - p^2 - pq + q - pq - q^2$$

$$H = p - p^2 + q - q^2 - pq$$

$$\frac{\delta H}{\delta p} = \frac{\delta (p - p^2 + q - q^2 - pq)}{\delta p} = 1 - 2p - q$$

$$\frac{\delta H}{\delta q} = \frac{\delta (p - p^2 + q - q^2 - pq)}{\delta q} = 1 - 2q - p$$

Máximo de Uma Função

Para que uma função tenha máximo ou mínimo, sua derivada de primeira ordem deve ser nula. Então:

$$1 - 2p - q = 0$$

$$1 - p - 2q = 0$$

Resolvendo-se o sistema de equações assim formado, tem-se:

$$p = \frac{1}{3}$$
; $q = \frac{1}{3}$ $e r = \frac{1}{3}$

Para que o valor da função seja máximo, a derivada de segunda ordem deve ser negativa.

Derivando-se, portanto:

$$\frac{\delta^2 H}{\delta q^2} = \frac{\delta(1 - p - 2q)}{\delta q} = -p - 2 = -(p + 2) = -\frac{7}{3} \implies \frac{\delta^2 H}{\delta q^2} < 0$$

E, assim,

$$q = \frac{1}{3} = q_{m\acute{a}ximo}$$

Ou seja,

A proporção máxima de heterozigotos é dada para $q = \frac{1}{3} = 0,333$

Genes Ligados ao Sexo

Introdução

Genes ligados ao sexo são genes localizados nos cromossomos sexuais. Quando o gene está ligado ao cromossoma X, a proporção genotípica no sexo que possui o X em dose simples (sexo heterogamético - XY) será igual à frequência do gene. Já no sexo homogamético (XX), a proporção genotípica será a mesma de um gene autossômico. Uma característica cuja expressão depende do gene recessivo ligado ao cromossomo X, terá frequência genotípica no macho igual a q e na fêmea igual a q^2 .

População em Equilíbrio

Pode-se demonstrar que a população abaixo (população panmítica) encontra-se em equilíbrio de Hardy-Wenberg, para uma característica cuja expressão esteja relacionada aos genes **A** e **a**

Frequência genotípica nos machos = p(A) + q(a)

Frequência genotípica nas fêmeas = $p^2(AA) + 2pq(Aa) + q^2(aa)$

No equilíbrio, as frequências gênicas de machos e de fêmeas são iguais.

Demonstração

Tipos e Frequência dos Acasalamentos						
Mashas	Fêmeas					
Machos -	$\mathbf{AA} (\mathbf{p}^2)$	Aa (2pq)	$\mathbf{aa} (q^2)$			
A (p)	p ³	$2p^3q$	pq^2			
a (q)	p^2q	$2pq^2$	q^3			

Frequância dos Acasalamentos e Frequência dos Descendentes Produzidos Sob Condição de Panmixia

Pais		Descendentes				
Al	Enar		Fêmeas		Ma	ichos
Acasalamentos	Freq.	AA	Aa	aa	A	a
A x AA	p^3	p^3	-	-	p ³	-
A x Aa	$2p^2q$	p^2q	p^2q	-	p^2q	p^2q
A x aa	pq^2	-	pq^2	-	-	pq^2
a x AA	p^2q	-	p^2q	-	p^2q	-
a x Aa	$2pq^2$	-	pq^2	pq^2	pq^2	pq^2
a x aa	q^3	-	-	q^3	-	q^3
Total	1	p^2	2pq	q^2	p	q

Frequências Genotípicas na Nésima Geração

Imagine-se uma população inicial com as seguinte frequências genotípicas:

$$Z' = p(A) + q(a)$$
 [nos machos]

$$r(AA) + 2s(Aa) + t(aa)$$
 [nas fêmeas]

Sendo:
$$(p + q) = 1$$
 e $(r + 2s + t) = 1$

Nesta população inicial (geração zero), as frequências gênicas são:

$$f(A) = p$$
 e $f(a) = q$ [nos machos]

е

$$f(A) = (r + s) e f(a) = (s + t) [nas fêmeas]$$

No cálculo das proporções dos vários genótipos da próxima geração, faz-se uso do princípio de que acasalamento ao acaso é equivalente à união aleatória dos gametas.

A fêmea produz dois tipos de óvulos: (r + s) A e (s + t) a.

Quando esses óvulos se unem aos espermatozóides contendo o cromossomo Y, formam os descendentes machos. Quando se unem aos espermatozóides contendo o cromossomo X, formam as fêmeas.

Acasalamentos ao Acaso

	Gametas da Fêmea		
Gametas do macho	X^A $(r+s)$	X^a $(s+t)$	
X^{A} (p)	$p(r+s) X^A X^A$	$p(s+t) X^A X^a$	
X ^a (q)	$q(r+s) X^A X^a$	$q(s+t) X^a X^a$	
Y (1)	$(r+s) X^A Y$	$(s+t) X^a Y$	

Ou seja, as frequências genotípicas dos descendentes ($n^{\acute{e}sima}$ geração) de acasalamentos ao acaso são:

$$Z (Machos) = (r + s)A + (s + t)a$$

$$Z(F\hat{e}meas) = p(r + s)AA + [p(s + t) + q(r + s)]Aa + q(s + t)aa$$

Frequências Gênicas na Nésima Geração

- 1. A frequência gênica dos machos em determinada geração é igual à frequência gênica das fêmeas na geração anterior [f(A) = (r + s)], [f(a) = (s + t)]
- 2. A frequência gênica das fêmeas em determinada geração é igual à média das frequências gênicas de machos e de fêmeas na geração anterior $f(A) = \frac{[p + (r + s)]}{2}$

Demonstração

$$f(A)_{filmeas} = p(r+s) + \frac{1}{2}[p(s+t) + q(r+s)] = pr + ps + \frac{1}{2}[ps + pt + qr + qs]$$

$$f(A)_{filmeas} = \frac{2pr + 2ps + ps + pt + qr + qs}{2} = \frac{pr + pr + 2ps + ps + pt + qr + qs}{2}$$

$$f(A)_{filmeas} = \frac{pr + qr + ps + qs + pr + 2ps + pt}{2} = \frac{r(p+q) + s(p+q) + p(r+2s+t)}{2}$$

$$p + q = 1 \quad e \quad r + 2s + t = 1 \quad \Rightarrow \quad f(A)_{filmeas} = \frac{p + (r+s)}{2}$$

[ou seja, média de machos (p) e fêmeas (r + s) da geração anterior]

Estabelecimento do Equilíbrio

Exemplo

População Inicial (Geração 0)

$$Z_{[MACHOS]} = 0.40(A) + 0.60(a)$$

 $Z_{[F^{\hat{E}MEAS]}} = 0.50(AA) + 0.40(Aa) + 0.10(aa)$

Devido ao complemento cromossomal assimétrico de machos e de fêmeas, o estado de equilíbrio não se estabelece em uma única geração de acasalamentos ao acaso.

Partindo-se de uma população inicial arbitrária, a condição de equilíbrio aproxima-se rapidamente, de forma oscilatória. A diferença entre as frequências gênicas nas fêmeas e nos machos se reduz à metade em cada geração

Estabelecimento do Equilíbrio Com Genes Ligados ao Sexo

Frequências Genotípicas nas Gerações Sucessivas (ger)

g			Descende	ntes		
e – r	Ma	chos	Fêmeas			Diferença
	A	a	AA	Aa	aa	d[f(a)]
0	0,4000	0,6000	0,5000	0,4000	0,1000	?

Frequências Gênicas e Genotípicas

Frequência Gênica na Geração 0 (Zero)

$$f(A)_{[MACHOS]} = p = 0,40$$

$$f(a)_{[MACHOS]} = q = 0,60 = q(x)$$

$$f(A)_{[FEMEAS]} = (r + s) = 0.50 + \frac{1}{2}(0.40) = 0.50 + 0.20 = 0.70$$

$$f(a)_{[FEMEAS]} = (s + t) = \frac{1}{2}(0.40) + 0.10 = 0.20 + 0.10 = 0.30 = q(xx)$$

$$d_0 = q(xx) - q(x) = 0.30 - 0.60 = -0.30$$

Frequência Genotípica na Geração 1

$$Z_1$$
 [MACHOS] = $(r + s)A + (s + t)a = 0.70(A) + 0.30(a)$

$$Z_1$$
 [FÊMEAS] = $p(r + s)AA + [p(s + t) + q(r + s)]Aa + q(s + t)aa $\Rightarrow$$

$$Z_1 [F \hat{E} M E A S] = 0,40(0,70) A A + [0,40(0,30) + 0,60(0,70)] A a + 0,60(0,30) a a \rightarrow$$

$$Z_1 [F\hat{E}MEAS] = 0.28(AA) + 0.54(Aa) + 0.18(aa)$$

Frequências Genotípicas nas Gerações Sucessivas (ger)

g	Descendentes						
e – r	Ma	Machos Fêmeas					
	A	a	AA	Aa	aa	d	
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000	
1	0,7000	0,3000	0,2800	0,5400	0,1800	?	

Frequência Gênica na Geração 1

$$p = f(A)_{[MACHOS]} = 0.70$$

$$q = f(a)_{[MACHOS]} = 0.30$$

$$(r + s) = f(A)_{[F\hat{E}MEAS]} = 0.28 + \frac{1}{2}(0.54) = 0.28 + 0.27 = 0.55$$

$$(s + t) = f(a)_{[F \stackrel{?}{E}ME4S]} = \frac{1}{2}(0.54) + 0.18 = 0.27 + 0.18 = 0.45$$

$$d_1 = q(xx) - q(x) = 0.45 - 0.30 = + 0.15$$

Frequência Genotípica na Geração 2

$$Z_2[MACHOS] = (r + s)A + (s + t)a = 0.55(A) + 0.45(a)$$

$$Z_2[F\hat{E}MEAS] = p(r+s)AA + [p(s+t) + q(r+s)]Aa + q(s+t)aa \Rightarrow$$

$$Z_2[F\hat{E}MEAS] = 0.70(0.55)AA + [0.70(0.45) + 0.30(0.55)]Aa + 0.30(0.45)aa \Rightarrow$$

$$Z_2$$
 [FÊMEAS] = 0,385(AA) + 0,480(Aa) + 0,135(aa)

		Frequências C	Genotípicas nas Ger	ações Sucessivas	s (ger)			
g	Descendentes							
e – r	Machos		Fêmeas			Diferença		
_	A	a	AA	Aa	aa	d		
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000		
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500		
2	0,5500	0,4500	0,3850	0,4800	0,1350	?		

Frequências Gênicas e Genotípicas

Frequência Gênica na Geração 2

$$p = f(A)_{[MACHOS]} = 0.55$$

$$q = f(a)_{[MACHOS]} = 0.45$$

Frequência Gênica na Geração 2

$$(r + s) = f(A)_{[FEMEAS]} = 0.385 + \frac{1}{2}(0.480) = 0.385 + 0.240 = 0.625$$

$$(s + t) = f(a)_{[F\hat{E}MEAS]} = \frac{1}{2}(0.480) + 0.135 = 0.200 + 0.100 = 0.375$$

$$d_2 = q(xx) - q(x) = 0.375 - 0.450 = -0.0750$$

Frequência Genotípica na Geração 3

$$Z_3$$
 [MACHOS] = $(r + s)A + (s + t)a = 0.625(A) + 0.375(a)$

$$Z_3$$
 [FÊMEAS] = $p(r + s)AA + [p(s + t) + q(r + s)]Aa + q(s + t)aa \Rightarrow$

$$Z_3$$
 [FÊMEAS] = 0,55(0,625)AA + [0,55(0,375) + 0,45(0,625)]Aa + 0,45(0,375)aa \Rightarrow

$$Z_3$$
 [FÊMEAS] = 0,3438(AA) + 0,4875(Aa) + 0,1688(aa)

		Frequências (Genotípicas nas Ge	rações Sucessiva	s (ger)			
g	Descendentes							
r Machos Fêmeas						Diferença		
	A	a	AA	Aa	aa	d		
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000		
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500		
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750		
3	0,6250	0,3750	0,3438	0,4875	0,1688	?		

Frequência Gênica na Geração 3

$$p = f(A)_{[MACHOS]} = 0,625$$
 e $q = f(a)_{[MACHOS]} = 0,375$

$$(r + s) = f(A)_{[FEMEAS]} = 0.3438 + \frac{1}{2}(0.4875) = 0.3438 + 0.2435 = 0.5875$$

$$(s + t) = f(a)_{[FEMEAS]} = \frac{1}{2}(0.4875) + 0.135 = 0.2435 + 0.1688 = 0.4125$$

$$d_3 = q(XX) - q(X) = 0.4125 - 0.375 = + 0.0375$$

Frequência Genotípica na Geração 4

$$Z_A$$
 [MACHOS] = $(r + s)A + (s + t)a = 0.5875(A) + 0.4125(a)$

$$Z_4$$
 [FÊMEAS] = $p(r + s)AA + [p(s + t) + q(r + s)]Aa + q(s + t)aa \Rightarrow$

$$Z_{4}[F\hat{E}MEAS] = 0.625(0.5875)AA + [0.625(0.4125) + 0.375(0.5875)]Aa + 0.375(0.4125)aa \rightarrow$$

$$Z_4 [F\hat{E}MEAS] = 0.3672(AA) + 0.4781(Aa) + 0.1547(aa)$$

Frequências Genotípicas nas Gerações Sucessivas (ger)									
g	Descendentes								
e –	Machos			Fêmeas		Diferença			
	A	a	AA	Aa	aa	d			
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000			
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500			
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750			
3	0,6250	0,3750	0,3438	0,4875	0,1688	+ 0,0375			
4	0,5875	0,4125	0,3672	0,4781	0,1547	?			

Frequência Gênica na Geração 4

$$p = f(A)_{[MACHOS]} = 0,5875$$

$$q = f(a)_{[MACHOS]} = 0,4125$$

$$(r + s) = f(A)_{[FEMEAS]} = 0.3672 + \frac{1}{2}(0.4781) = 0.3672 + 0.23905 = 0.6062$$

$$(s + t) = f(a)_{[FEMEAS]} = \frac{1}{2}(0,4781) + 0,1547 = 0,23905 + 0,1547 = 0,3938$$

$$d_4 = q(XX) - q(X) = 0.3938 - 0.4125 = -0.0188$$

Frequência Genotípica na Geração 5

$$Z_5[MACHOS] = (r + s)A + (s + t)a = 0,6062(A) + 0,3938(a)$$

$$Z_5$$
 [FÊMEAS] = $p(r + s)AA + [p(s + t) + q(r + s)]Aa + q(s + t)aa \Rightarrow$

$$Z_s[F\hat{E}MEAS] = 0.5875(0.6062)AA + [0.5875(0.3938) + 0.4125(0.6062)]Aa + 0.4125(0.3938)aa \Rightarrow$$

$$Z_5[F\hat{E}MEAS] = 0.3572(AA) + 0.4814(Aa) + 0.1624(aa)$$

	Frequências Genotípicas nas Gerações Sucessivas (ger)									
g		Descendentes								
e – r	Machos			Fêmeas		Diferença				
	A	a	AA	Aa	aa	d				
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000				
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500				
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750				
3	0,6250	0,3750	0,3438	0,4875	0,1688	+ 0,0375				
4	0,5875	0,4125	0,3672	0,4781	0,1547	- 0,0188				
5	0,6062	0,3938	0,3562	0,4814	0,1624	?				

Frequência Gênica na Geração 5

$$p = f(A)_{[MACHOS]} = 0,6062$$
 $e q = f(a)_{[MACHOS]} = 0,3938$

$$(r + s) = f(A)_{[F \in MEAS]} = 0.3562 + \frac{1}{2}(0.4814) = 0.3562 + 0.2407 = 0.5969$$

$$(s + t) = f(a)_{[FEMEAS]} = \frac{1}{2}(0.4814) + 0.1624 = 0.2407 + 0.1624 = 0.4032$$

$$d_5 = q(xx) - q(x) = 0.4032 - 0.3938 = + 0.0094$$

$$Z_6 [MACHOS] = (r + s)A + (s + t)a = 0.5969(A) + 0.4032(a)$$

$$Z_6[F\hat{E}MEAS] = p(r+s)AA + [p(s+t) + q(r+s)]Aa + q(s+t)aa \Rightarrow$$

$$Z_6[F\hat{E}MEAS] = 0,6062(0,5969)AA + [0,6062(0,4032) + 0,3938(0,5969)]Aa + 0,3938(0,4032)aa \Rightarrow$$

$$Z_6[F\hat{E}MEAS] = 0.3619(AA) + 0.4794(Aa) + 0.1587(aa)$$

		Frequências (Genotípicas nas Ge	rações Sucessiva	s (ger)				
g _	Descendentes								
e r –	Machos			Fêmeas		Diferença			
	A	a	AA	Aa	aa	d			
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000			
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500			
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750			
3	0,6250	0,3750	0,3438	0,4875	0,1688	+ 0,0375			
4	0,5875	0,4125	0,3672	0,4781	0,1547	- 0,0188			
5	0,6062	0,3938	0,3562	0,4814	0,1624	+ 0,0094			
6	0,5969	0,4032	0,3619	0,4794	0,1587	?			

Frequências Gênicas e Genotípicas

Frequência Gênica na Geração 6

$$p = f(A)_{[MACHOS]} = 0,5969$$

$$q = f(a)_{[MACHOS]} = 0,4032$$

$$(r + s) = f(A)_{[FEMEAS]} = 0.3619 + \frac{1}{2}(0.4794) = 0.3619 + 0.2397 = 0.6016$$

$$(s + t) = f(a)_{[FEMEAS]} = \frac{1}{2}(0,4794) + 0,1587 = 0,2397 + 0,1587 = 0,3984$$

$$d_6 = q(xx) - q(x) = 0.3984 - 0.4032 = -0.0047$$

$$Z_7[MACHOS] = (r + s)A + (s + t)a = 0,6016(A) + 0,3984(a)$$

$$Z_7[F \hat{E} M E A S] = p(r+s)AA + [p(s+t)+q(r+s)]Aa + q(s+t)aa \Rightarrow$$

$$Z_7[F \hat{E} M E A S] = 0.5969(0.6016) A A + [0.5968(0.3984) + 0.4032(0.6016)] A a + 0.4032(0.3984) a \Rightarrow$$

$$Z_7 [F \hat{E} M E A S] = 0.3591(A A) + 0.4803(A a) + 0.1606(a a)$$

		Frequências	Genotípicas nas Gei	rações Sucessivas	s (ger)				
g	Descendentes								
e r _	Ma	chos		Fêmeas		Diferença			
	A	a	AA	Aa	aa	d			
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000			
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500			
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750			
3	0,6250	0,3750	0,3438	0,4875	0,1688	+ 0,0375			
4	0,5875	0,4125	0,3672	0,4781	0,1547	- 0,0188			
5	0,6062	0,3938	0,3562	0,4814	0,1624	+ 0,0094			
6	0,5969	0,4032	0,3619	0,4794	0,1587	- 0,0047			
7	0,6016	0,3984	0,3591	0,4803	0,1606	?			

Frequência Gênica na Geração 7

$$p = f(A)_{[MACHOS]} = 0,6016$$

$$q = f(a)_{[MACHOS]} = 0.3984$$

$$(r + s) = f(A)_{[FEMEAS]} = 0.3591 + \frac{1}{2}(0.4803) = 0.3591 + 0.2402 = 0.5993$$

$$(s + t) = f(a)_{[F\hat{E}MEAS]} = \frac{1}{2}(0,4803) + 0,1606 = 0,2402 + 0,1606 = 0,4008$$

$$d_7 = q(xx) - q(x) = 0,4008 - 0,3984 = +0,0024$$

$$Z_8 [MACHOS] = (r + s)A + (s + t)a = 0.5993(A) + 0.4008(a)$$

$$Z_{8}$$
 [FÊMEAS] = $p(r + s)AA + [p(s + t) + q(r + s)]Aa + q(s + t)aa \Rightarrow$

$$Z_8[F \hat{E} M E A S] = 0,6016(0,5993) A A + [0,6016(0,4008) + 0,3984(0,5993)] A a + 0,3984(0,4008) a \Rightarrow$$

$$Z_8 [F \hat{E} M E A S] = 0.3605 (A A) + 0.4798 (A a) + 0.1597 (a a)$$

	Frequências Genotípicas nas Gerações Sucessivas (ger)								
g _	Descendentes								
e r	Machos			Fêmeas		Diferença			
	A	a	AA	Aa	aa	d			
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000			
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500			
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750			
3	0,6250	0,3750	0,3438	0,4875	0,1688	+ 0,0375			
4	0,5875	0,4125	0,3672	0,4781	0,1547	- 0,0188			
5	0,6062	0,3938	0,3562	0,4814	0,1624	+ 0,0094			
6	0,5969	0,4032	0,3619	0,4794	0,1587	- 0,0047			
7	0,6016	0,3984	0,3591	0,4803	0,1606	+ 0,0024			
8	0,5993	0,4008	0,3605	0,4798	0,1597	?			

Frequência Gênica na Geração 8

$$p = f(A)_{[MACHOS]} = 0,5993$$

$$q = f(a)_{[MACHOS]} = 0,4008$$

$$(r + s) = f(A)_{[FEMEAS]} = 0.3605 + \frac{1}{2}(0.4798) = 0.3605 + 0.2399 = 0.6004$$

$$(s + t) = f(a)_{[F\widehat{E}MEAS]} = \frac{1}{2}(0.4798) + 0.1597 = 0.2399 + 0.1597 = 0.3996$$

$$d_8 = q(xx) - q(x) = 0.3996 - 0.4002 = -0.0012$$

$$Z_0$$
 [MACHOS] = $(r + s)A + (s + t)a = 0,6004(A) + 0,3996(a)$

$$Z_0[F\hat{E}MEAS] = p(r+s)AA + [p(s+t) + q(r+s)]Aa + q(s+t)aa \Rightarrow$$

$$Z_0[F\hat{E}MEAS] = 0.5993(0.6004)AA + [0.5993(0.3996) + 0.4008(0.6004)]Aa + 0.4008(0.3996)aa \rightarrow$$

$$Z_0 [F \hat{E} M E A S] = 0.3598(AA) + 0.4800(Aa) + 0.1602(aa)$$

		Frequências (Genotípicas nas Ger	ações Sucessivas	(ger)				
g		Descendentes							
e r –	Ma	ichos		Fêmeas		Dif			
	A	a	AA	Aa	aa	d			
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000			
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500			
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750			
3	0,6250	0,3750	0,3438	0,4875	0,1688	+ 0,0375			
4	0,5875	0,4125	0,3672	0,4781	0,1547	- 0,0188			
5	0,6062	0,3938	0,3562	0,4814	0,1624	+ 0,0094			
6	0,5969	0,4032	0,3619	0,4794	0,1587	- 0,00469			
7	0,6016	0,3984	0,3591	0,4803	0,1606	+ 0,0024			
8	0,5992	0,4008	0,3605	0,4798	0,1597	- 0,0012			
9	0,6004	0,3996	0,3598	0,4800	0,1602	?			

Frequência Gênica na Geração 9

$$p = f(A)_{[MACHOS]} = 0,6004$$
 e $q = f(a)_{[MACHOS]} = 0,3996$

$$(r + s) = f(A)_{[FEMEAS]} = 0.3598 + \frac{1}{2}(0.4800) = 0.3598 + 0.2400 = 0.5998$$

$$(s + t) = f(a)_{[FEMEAS]} = \frac{1}{2}(0,4800) + 0,1602 = 0,2400 + 0,1602 = 0,4002$$

$$d_9 = q(xx) - q(x) = 0,4002 - 0,3996 = + 0,0006$$

$$Z_{10}$$
 [MACHOS] = $(r + s)A + (s + t)a = 0.5998(A) + 0.4002(a)$

$$Z_{10}$$
 [FÊMEAS] = $p(r + s)AA + [p(s + t) + q(r + s)]Aa + q(s + t)aa \rightarrow$

$$Z_{10} \ [F\hat{E}MEAS] \ = \ 0,6004(0,5998)AA \ + \ [0,6004(0,4002) \ + \ 0,3996(0,5998)]Aa \ + \ 0,3996(0,4002)aa \ \Rightarrow$$

$$Z_{10}$$
 [FÊMEAS] = 0,3600(AA) + 0,4800(Aa) + 0,1600(aa)

Frequências Genotípicas nas Gerações Sucessivas (ger)									
g	Descendentes								
e r -	Ma	achos		Fêmeas		Diferença			
	A	a	AA	Aa	aa	d			
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000			
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500			
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750			
3	0,6250	0,3750	0,3438	0,4875	0,1688	+ 0,0375			
4	0,5875	0,4125	0,3672	0,4781	0,1547	- 0,0188			
5	0,6062	0,3938	0,3562	0,4814	0,1624	+ 0,0094			
6	0,5969	0,4032	0,3619	0,4794	0,1587	- 0,00469			
7	0,6016	0,3984	0,3591	0,4803	0,1606	+ 0,0024			
8	0,5992	0,4008	0,3605	0,4798	0,1597	- 0,0012			
9	0,6004	0,3996	0,3598	0,4800	0,1602	+ 0,0006			
10	0,5998	0,4002	0,3600	0,4800	0,1600	?			

Frequência Gênica na Geração 10

Machos

Com pequenos erros de aproximação, tem-se

$$p = f(A)_{[MACHOS]} = 0,5998$$

$$q = f(a)_{[MACHOS]} = 0,4002$$

Fêmeas

Com pequenos erros de aproximação, tem-se

$$(r + s) = f(A)_{[F \stackrel{?}{E}MEAS]} = 0.3600 + \frac{1}{2}(0.4800) = 0.3600 + 0.2400 = 0.60$$

$$(s + t) = f(a)_{[F\hat{E}MEAS]} = \frac{1}{2}(0.4800) + 0.1600 = 0.2400 + 0.1600 = 0.40$$

Diferença (d_{10})

$$d_{10} = q(xx) - q(x) = 0,4000 - 0,4002 = -0,0002$$
 [Devido aos erros de aproximação]

Se tivesse sido usado maior número de casas decimais, o valor de d teria sido a metade do valor obtido na geração 9, ou seja, $d_{10} = q(xx) - q(x) = -0,0003$

Frequência Genotípica na Geração 11

$$Z_{11}$$
 [MACHOS] = $(r + s)A + (s + t)a = 0.60(A) + 0.40(a)$

$$Z_{11}$$
 [FÊMEAS] = $p(r + s)AA + [p(s + t) + q(r + s)]Aa + q(s + t)aa \Rightarrow$

 Z_{11} [FÊMEAS] = 0,5998(0,60)AA + [0,5998(0,40) + 0,4002(0,60)]Aa + 0,4002(0,40)aa \Rightarrow

 Z_{11} [FÊMEAS] = 0,36(AA) + 0,48(Aa) + 0,16(aa)

	Frequências Genotípicas nas Gerações Sucessivas (ger)							
g	Descendentes							
e r -	Ma	achos		Fêmeas		Diferença		
	A	a	AA	Aa	aa	d		
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000		
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500		
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750		
3	0,6250	0,3750	0,3438	0,4875	0,1688	+ 0,0375		
4	0,5875	0,4125	0,3672	0,4781	0,1547	- 0,0188		
5	0,6062	0,3938	0,3562	0,4814	0,1624	+ 0,0094		
6	0,5969	0,4032	0,3619	0,4794	0,1587	- 0,00469		
7	0,6016	0,3984	0,3591	0,4803	0,1606	+ 0,0024		
8	0,5992	0,4008	0,3605	0,4798	0,1597	- 0,0012		
9	0,6004	0,3996	0,3598	0,4800	0,1602	+ 0,0006		
10	0,5998	0,4002	0,3600	0,4800	0,1600	-0,0003		
11	0,6000	0,4000	0,3600	0,4800	0,1600	?		

Frequência Gênica na Geração 11 (Até à Geração Infinita)

Machos

$$p = f(A)_{[MACHOS]} = 0,6000$$

$$q = f(a)_{[MACHOS]} = 0,4000$$

Fêmeas

$$(r + s) = f(A)_{[F \in MEAS]} = 0.3600 + \frac{1}{2}(0.4800) = 0.3600 + 0.2400 = 0.60$$

$$(s + t) = f(a)_{[FEMEAS]} = \frac{1}{2}(0,4800) + 0,1600 = 0,2400 + 0,1600 = 0,40$$

Diferença (d_{11})

$$d_{11} = q(xx) - q(x) = 0,4000 - 0,4000 = 0,0000$$
 (estatisticamente)

$$d_{11} = q(xx) - q(x) = +0,00015$$
 (Se forem mantidas todas as aproximações)

Diferença na Geração Infinita (GER ∞)

$$d_{\infty} = q(xx) - q(x) = 0.4000 - 0.4000 = 0.0000$$
 (matematicamente)

Frequência Genotípica na Geração 11 (Até à Geração Infinita)

$$Z_{\infty}$$
 [MACHOS] = $(r + s)A + (s + t)a = 0,60(A) + 0,40(a)$

$$Z_{\infty}[F\hat{E}MEAS] = p(r+s)AA + [p(s+t)+q(r+s)]Aa + q(s+t)aa \rightarrow$$

$$Z_{\infty}$$
 [FÊMEAS] = 0,60(0,60)AA + [0,60(0,40) + 0,40(0,60)]Aa + 0,40(0,40)aa \Rightarrow

$$Z_{m}[F\hat{E}MEAS] = 0.36(AA) + 0.48(Aa) + 0.16(aa)$$

		Frequências (Genotípicas nas Ge	rações Sucessiva	as (ger)				
g		Descendentes							
e r -	Ma	achos		Fêmeas		Diferença			
	A	a	AA	Aa	aa	d			
0	0,4000	0,6000	0,5000	0,4000	0,1000	- 0,3000			
1	0,7000	0,3000	0,2800	0,5400	0,1800	+ 0,1500			
2	0,5500	0,4500	0,3850	0,4800	0,1350	- 0,0750			
3	0,6250	0,3750	0,3438	0,4875	0,1688	+ 0,0375			
4	0,5875	0,4125	0,3672	0,4781	0,1547	- 0,0188			
5	0,6062	0,3938	0,3562	0,4814	0,1624	+ 0,0094			
6	0,5969	0,4032	0,3619	0,4794	0,1587	- 0,00469			
7	0,6016	0,3984	0,3591	0,4803	0,1606	+ 0,0024			
8	0,5992	0,4008	0,3605	0,4798	0,1597	- 0,0012			
9	0,6004	0,3996	0,3598	0,4800	0,1602	+ 0,0006			
10	0,5998	0,4002	0,3600	0,4800	0,1600	- 0,0003			
11	0,6000	0,4000	0,3600	0,4800	0,1600	0,0000			
-	-	-	-	-	-	-			
∞	0,60	0,40	0,36	0,48	0,16	0,00			

Estabelecimento do Equilíbrio de Hardy-Wenberg - Resumo

Diferença Entre as Frequências Gênicas das \circ e dos \circ

d = q(xx) - q(x)

d = diferença entre a frequência de a [f(a)] nas fêmeas e nos machos

q(xx) = frequência gênica [f(a)] das fêmeas

q(x) = frequência gênica [f(a)] nos machos

q(x) = q'(xx)

$$q(xx) = \frac{1}{2}[q'(x) + q'(xx)]$$

q'(x) = frequência gênica dos machos na geração anterior

q'(XX) = frequência gênica das fêmeas na geração anterior

Estabelecimento do Equilíbrio de Hardy-Wenberg - Conclusão

Diferença Entre as Frequências Gênicas das 9 e dos &

Conclusão

A diferença entre as frequências gênicas das fêmeas e dos machos se reduz à metade em cada geração, de forma oscilatória, ou seja, $d = -\frac{1}{2}d'$

d'= diferença entre a frequência do alelo **a** [f(a)] nas fêmeas e nos machos da geração anterior

No equilíbrio a diferença é igual a zero, ou seja, a frequência gênica nos machos é igual à frequência gênica nas fêmeas.

Cálculo de Frquências Gênicas para Características com Genes Ligados ao Sexo

Frequência dos Genótipos (= Fenótipos)					
Covo					
Sexo	AA	Aa	aa	Total	
Machos	D_{M}	-	R_{M}	N_{M}	
Fêmeas	D_{F}	$\mathrm{H}_{\scriptscriptstyle\mathrm{F}}$	$R_{\scriptscriptstyle F}$	N_{F}	

 $D_M = N$ úmero de machos com o genótipo **AA**

D_F = Número de fêmeas com o genótipo **AA**

H_F = Número de fêmeas com o genótipo **Aa** (nos machos não existe o heterozigoto)

R_M = Número de machos com o genótipo aa

R_F = Número de fêmeas com o genótipo aa

 $N_M = Total de machos$

N_F = Total de fêmeas

Exercícios com Respostas

1. Definir genética de populações

Resposta: Genética de populações é a área da genética que estuda as frequências gênicas e genotípicas nas populações, e as forças capazes de alterá-las ao longo das gerações.

2. Definir população mendeliana

Resposta: População mendeliana é um grupo de indivíduos da mesma espécie co-existindo em uma área comum e reproduzindo-se entre si.

3. Definir equilíbrio de Hardy-Weinberg (H-W)

Resposta: Equilíbrio de Hardy Wenberg é uma situação em que numa população panmítica (acasalamentos aleatórios ou ao caso), sem deriva genética (população grande), as frequências gênicas e genotípicas permanecem constantes ao longo das gerações.

4. Quais são as pré-suposições contidas no equilíbrio de H-W?

Resposta: organismos diplóides, genes autossômicos, dois alelos no loco, reprodução sexuada, população infinita (ou grande), acasalamentos aleatórios, mesmo número de machos e de fêmeas férteis.

- 5. Quais são as condições necessárias para que a lei de H-W se aplique? Resposta: ausência de migração, mutação e seleção.
- 6. Definir frequência gênicas e frequência genotípicas

Resposta

Frequência gênica é a proporção de determinado alelo na população. É a razão entre o número de ocorrências desse alelo e o número total de alelos do loco. As frequências dos alelos A_1 e A_2 são dadas por:

$$freq(A_1) = p = \frac{n\'umero\ de\ alelos\ A_1}{n\'umero\ total\ de\ alelos}$$
 e $freq(A_2) = q = \frac{n\'umero\ de\ alelos\ A_2}{n\'umero\ total\ de\ alelos}$

Frequência genotípica é a proporção de determinado genótipo na população. É a razão entre o número de ocorrências desse genótipo e o número total de genótipos do loco. As frequências dos genótipos A_1A_1 ,

$$A_1A_2$$
 e A_2A_2 são dadas por:

$$freq(A_1A_1) = rac{n\'{u}mero\ de\ gen\'{o}tipos\ A_1A_1}{n\'{u}mero\ total\ de\ gen\'{o}tipos\ } \ freq(A_1A_2) = rac{n\'{u}mero\ de\ gen\'{o}tipos\ A_1A_2}{n\'{u}mero\ total\ de\ gen\'{o}tipos\ } \ freq(A_2A_2) = rac{n\'{u}mero\ de\ gen\'{o}tipos\ A_2A_2}{n\'{u}mero\ total\ de\ gen\'{o}tipos\ } \ freq(A_2A_2)$$

$$freq(A_1A_2) = \frac{número de genótipos A_1A_2}{número total de genótipos}$$

$$freq(A_2A_2) = \frac{m\'umero de gen\'otipos A_2A_2}{m\'umero total de gen\'otipos}$$

- 7. Considerando-se a população diplóide abaixo em que foi determinado o número de indivíduos para cada genótipo para uma característica condicionada por um gene autossômico com dois alelos, pede-se:
 - a) calcular as frequências gênicas
 - b) calcular as frequências genotípicas
- c) verificar, usando o teste de X² (chi-quadrado), se a população está em equilíbrio; caso não esteja, calcular as frequências gênicas e genotípicas na 5ª geração de acasalamentos ao acaso.

Genótipo	Número de indivíduos
A_1A_1	592
A_1A_2	1221
$\mathrm{A}_2\mathrm{A}_2$	37
Total	1850

Resolução

Nnúmero de Alelos

Número total de alelos =
$$2 \times 1850$$
 = 3700

Número de alelos
$$A_1 = 2 \times 592 + 1221 = 2405$$

Número de alelos
$$A_2 = 1221 + 2 \times 37 = 1295$$

a) Frequências Gênicas

$$f(A_1) = p = \frac{\text{número de } A_1}{\text{número total de alelos}} = \frac{2405}{3700} = 0,65$$

$$f(A_2) = q = \frac{\text{m\'umero de } A_2}{\text{n\'umero total de alelos}} = \frac{1295}{3700} = 0.35$$

b) Frequências Genotípicas

$$f(A_1A_1) = \frac{\text{número de genótipos } A_1A_1}{\text{número total de genótipos}} = \frac{592}{1850} = 0,32$$

$$f(A_1A_2) = \frac{\text{número de genótipos } A_1A_2}{\text{número total de genótipos}} = \frac{1221}{1850} = 0,66$$

$$f(A_2A_2) = \frac{\text{número de genótipos } A_2A_2}{\text{número total de genótipos}} = \frac{37}{1850} = 0,02$$

As frequências gênicas, assim como as genotípicas, situam-se sempre entre 0 (0%) e 1 (100%).

c) Verificação do Equilíbrio de Hardy-Wenberg - Usando o Teste de Chi-Quadrado

Genótipo	Nº Observado	Freq. Relativa Obs	Freq. Esperada
A_1A_1	592	0,32	p^2
A_1A_2	1221	0,66	2pq
A_2A_2	37	0,02	q^2

Genótipo	Nº Observado (fo)	Frequência Realtiva Observada
A_1A_1	592	$(0,65)^2 = 0,4225$
A_1A_2	1221	$2 \times 0,65 \times 0,35 = 0,4550$
A_2A_2	37	$(0,35)^2 = 0,1225$

Chi-Quadrado (X2)

$$X^2 = \Sigma \frac{(fo - fe)^2}{fe}$$

fo = frequência númérica (número de indivíduos) observada

fe = frequência númérica (número de indivíduos) esperada

Atenção!!

fo e fe são frequências absolutas (número de indivíduos). Portanto, não usar as frequências relativas.

Cálculo das Frquências Absolutas Esperadas - Número de Indivíduos

Genótipo	Nº Obs (fo)	Frequência Absoluta Esperada (fe)
A_1A_1	592	0,4225 x 1850 = 781,625
A_1A_2	1221	$0,4550 \times 1850 = 841,750$
A_2A_2	37	$0,1225 \times 1850 = 226,625$
Total	1850	1850,000

Genótipo	Nº Obs (fo)	Nº Esperado (fe)	(fo - fe) ² / fe
A_1A_1	592	781,625	46,49
A_1A_2	1221	841,750	170,87
A_2A_2	37	226,625	158,66
Total	1850	1850	375,53

Cálculo do Chi-Quadrado

$$X^2$$
 (Calculado) = $\Sigma \frac{(fo - fe)^2}{fe}$

$$X^2$$
 (Calculado) = 46,49 + 170,87 + 158,66 = 375,53

Graus de Liberdade (GL) para o Teste de X²

GL = número de genótipos - número de alelos = 3-2 = 1

X² Tabelado

$$X_{1,1\%}^2 = 6,63$$
 e $X_{1,5\%}^2 = 3,84$

Comparar na Tabela de X²

Sempre verificar primeiro com $\alpha = 1\%$. Se o valor não for significativo, verificar com $\alpha = 5\%$

Hipótese

H₀: A população está em equilíbrio

Verificação da Hipótese

$$X^2$$
 calculado = 375,53 > $X_{1.1\%}^2$ (6,63) \rightarrow rejeitar H_0

(não é necessário verificar com $\alpha = 5\%$, porque já deu significativo a 1%)

Conclusão

Conclui-se que a população **não está em equilíbrio de Hardy-Wenberg** (com 1% de probabilidade de cometer o erro tipo I)

Frequência Gênica na 5ª Geração de Acasalamentos ao Acaso

A frequência gênica em qualquer geração é igual à frequência gênica da geração anterior. A frequência gênica na 1ª geração é igual à frequência gênica da população inicial (observada), a da 2ª igual à da primeira etc. A frequência gênica não muda se os acasalamentos ocorrem ao acaso e se não houver migração, mutação ou seleção

Frequência Genotípica na 5ª Geração

O corolário de Wentworth-Remick diz que a população que não está em equíbrio, atinge esse equiíbrio com uma geração de acasalamentos ao acaso.

Na 1ª geração as frequências esperadas, nos acasalamentos ao acaso, são:

Genótipo	Nº Obs (fo)	Frequência Esperada (%)
A_1A_1	592	42,25
A_1A_2	1221	45,50
A_2A_2	37	12,25

Essas frequências da 1ª geração continuarão as mesmas nas gerações subsequentes, pois a poulação está em equilíbrio de Hardy-Wenberg. Só mudará se ocorrer um dos fatores que possam alterá-la (migração, mutação, seleção) ou se os acasalamentos deixarem de ser aleatórios (ou seja, deixem de ser ao acaso). Portanto, as frequências genotípicas da 5ª geração são as mesmas da tabela acima.

- 8. Em uma população de 14.345 raposas, 12 eram pretas, 768 intermediárias e 13.655 vermelhas. Pede-se:
- a) calcular as frequências dos genes para as cores vermelha (V_1) e preta (V_2) .
- b) verificar se os números observados são consistentes com os esperados pelo equilíbrio de H-W.

Resolução

Frequências Genotípicas Observadas

Genótipo	Nº Observado	Frequência Observada	Frequência Esperada	
V_1V_1	13.655	0,9519	p^2	
V_1V_2	678	0,0473	2pq	
V_2B_2	12	0,0008	q^2	
Total	14.345	1,0000	1	

Cálculo da Frquência Gênica

$$p = f(V_1) = \frac{2 \times 13.655 + 678}{2 \times 14.345} = \frac{27.988}{28.690} = 0,9755 \quad e \quad q = f(V_2) = \frac{678 + 2 \times 12}{2 \times 14.345} = \frac{702}{28.690} = 0,0245$$

Cálculo da Frquência Genotípica Esperada (Frequência Absoluta = Número de Indivíduos)

$$f(V_1V_1) = p^2 x Total = (0.9755)^2 x 14.345 = 13.650,7$$

 $f(V_1V_2) = 2pq x Total = 2 x 0.9755 x 0.0245 x 14.345 = 685,7$
 $f(V_1V_1) = q^2 x Total = (0.0245)^2 x 14.345 = 8,6$

Chi-Quadrado

Genótipo	Nº Observado (fo)	Nº Esperado (fe)	(fo - fe) ² / fe
V_1V_1	13.655	13.650,7	0,001
V_1V_2	678	685,7	0,086
V_2V_2	12	8,6	1,344
Total	14.345	13.345,0	1,431

Comparar na Tabela de X2

$$X^2 = 1,431 \ e \ GL = 1$$

$$X_{1.1\%}^2 = 6,63$$
 e $X_{1.5\%}^2 = 3,84$

H₀: A população está em equilíbrio

$$X^2$$
 calculado = 1,431 $< X_{1,1\%}^2(6,63) \rightarrow Aceitar H_0$

Não foi significativo a 1%, verificar a 5%

$$X^2$$
 calculado = 1,431 < $X_{1.5\%}^2(3,84) \rightarrow Aceitar H_0$

Conclui-se, então, que a população está em equilíbrio de Hardy-Wemberg (com probabilidade desconhecida de cometer o erro tipo II)

- 9. Supondo-se que em determinada raça de bovinos, 1 bezerro em cada 10.000 tenha a condição recessiva de "hidrocefalia", calcule as frequências:
 - a) do alelo recessivo e do alelo dominante
 - b) a frequência de animais normais, porém portadores do gene recessivo?

Resolução

Estimação de Frequência Gênica Quando Ocorre Dominância Suposição de Equiíbrio de H-W

Para a estimação de f(a), supõe-se que a população está em equilíbrio de H-W. Sabe-se que, em bovinos, os acasalamentos não são ao acaso. Para algumas características pode, portanto, haver afastamento do equilíbrio, levando a erro na estimativa. Para esta característica (hidrocefalia), em uma população grande, o afastamento do equilíbrio deve ser pequeno, não afetando de forma significativa a estimação de f(a). Considerar total de animais =10.000.

Cálculo da Frequência Gênica

Em um total de 10.000 animais,

$$aa = 1$$

$$AA + Aa = 9.999$$

a)
$$f(aa) = \frac{1}{10.000} = 0,0001$$

Assumindo que a população está em equilíbrio de Hardy-Wenberg

$$f(AA) = p^2$$

$$f(Aa) = 2pq$$

$$f(aa) = q^2 = 0,0001$$

$$f(a) = q = \sqrt{q^2} = \sqrt{0,0001} = 0,01$$

b)
$$p + q = 1 \implies p = 1 - q$$

$$f(A) = p = 1 - q = 1 - 0.01 = 0.99$$

c) Normais portadores são os heterozigotos (Aa)

$$f(Aa) = 2pq = 2 \times 0.99 \times 0.01 = 0.0198 = 1.98\%$$

 $10.~{\rm O}$ sistema de grupos sanguíneos ABO é governado por um sistema de alelos múltiplos no qual ocorre uma relação de codominância. Três alelos, ${\bf I}^{A},~{\bf I}^{B},~{\rm e}~{\bf I}^{0}~{\rm formam}$ a sequência de dominância ${\bf I}^{A}={\bf I}^{B}>{\bf I}^{0}.$ Supondo-se que tenham sido encontrados os resultados da tabela abaixo, em uma população, pede-se, para cada amostra, estimar a frequência gênica

Grupo		Núr	nero de Indivíduos	3	
	A	В	С	D	Е
AB	18	16	206	222	96
A	135	56	598	333	96
В	39	56	598	333	96
0	108	72	598	112	12

Resolução

Alelos Múltiplos e Dominância Completa

Nesta questão, a resolução será feita apenas para a população **A**. As demais (**B**, **C**, **D** e **E**) seguem o mesmo padrão.

Fenótipo	AB	A	В	О	Total
Número Observado	18	135	39	108	300
Representação	h	a	b	c	N
Frequência Esperada	2pq	$P^2 + 2pr$	$q^2 + 2qr$	r^2	1

Cálculo da Frequência Genotípica Observada

$$O' = \frac{c}{N} = \frac{108}{300} = 0.36$$

$$B' = \frac{b}{N} = \frac{39}{300} = 0.13$$

$$A' = \frac{a}{N} = \frac{135}{300} = 0.45$$

Frequência Gênica

$$r' = \sqrt{O'} = \sqrt{0.36} = 0.6$$

$$p' = 1 - \sqrt{B' + O'} = 1 - \sqrt{0,13 + 0,36} = 1 - 0,7 = 0,3$$

$$q' = 1 - \sqrt{A' + O'} = 1 - \sqrt{0,45 + 0,36} = 1 - 0,9 = 0,1$$

Ajuste?

$$d = 1 - (p' + q' + r') = 1 - (0.6 + 0.3 + 0.1) = 0$$

Não há necessidade de ajuste, e, portanto:

$$\hat{p} = p' = 0.3$$

$$\hat{q} = q' = 0,1$$

$$\hat{r} = r' = 0.6$$

- 11. Em uma cidade cuja população é de 500 mil habitantes, foram realizados testes de tipagem sanguínea para o grupo ABO. As seguintes frequências gênicas foram obtidas: $I^A = 0.03$ $I^B = 0.01$ $I^0 = 0.96$
 - a) calcular a porcentagem estimada de indivíduos A heterozigotos e B homozigotos.
 - b) qual é o número provável de indivíduos doadores universais e receptores universais?

Resolução

Alelos Múltiplos com Dominância e Codominância

AB	A	В	О	N
h	a	ь	С	500.000
I^AI^B	I ^A I ^A , I ^A I ⁰	I ^B I ^B , I ^B I ⁰	I_0I_0	-
A_1A_2	$\begin{matrix} A_1A_1\\A_1A_3\end{matrix}$	$\begin{array}{c} A_2A_2 \\ A_2A_3 \end{array}$	A_3A_3	-
2pq	$p^2 + 2pr$	$q^2 + 2qr$	r^2	1

Cálculo das Frquências Gênica e Genotípica

Frequência Gênica

$$p = frequência de A_1 = f(I^A) = 0.03$$

$$q = frequência de A_2 = f(I^B) = 0.01$$

$$r = frequência de A_3 = f(I^0) = 0.96$$

a) Frequência Genotípica

$$f(A \ heterozigoto) = f(A_1A_3) = 2pr = 2 \times 0.03 \times 0.96 = 0.0576 = 5.76\%$$

$$f(B \text{ homozigoto}) = f(A_2A_2) = q^2 = (0.01)^2 = 0.0001 = 0.01\%$$

b) Número de Indivíduos do Grupo O e do Grupo AB

$$f(\mathbf{O}) = r^2 \times N = (0.96)^2 \times 500.000 = 0.9216 \times 500.000 = 460.000$$

$$f(AB) = 2pq \times N = 2 \times 0.03 \times 0.01 \times 500.000 = 300$$

12. Genes Ligados ao Sexo

Considere-se uma população inicial com frequências genotípicas (0,30A; 0,70a) e (0,30AA; 0,50Aa; 0,20aa). Sob a hipótese de acasalamentos ao acaso, pede-se:

- a) calcular as frequências genotípicas para machos e para fêmeas nas 12 primeiras gerações.
- b) calcular as frequências genotípicas e gênicas no equilíbrio?

Resolução

a) Cálculo das Frequências Genotípicas

As frequências genotípicas (em qualquer geração ou n^{ésima} geração) são dadas por:

$$Z(Machos) = (r + s)A + (s + t)a$$

$$Z(F\hat{e}meas) = p(r + s)AA + [p(s + t) + q(r + s)]Aa + q(s + t)aa$$

Em que,

(r + s) e (s + t) são as frequências gênicas nas fêmeas da geração anterior

p e q são as frequências gênicas nos machos da geração anterior

$$d$$
 (Diferença) = $q(xx) - q(x) = f(a)$ nas fêmeas - $f(a)$ nos Machos [veja página 60]

Portanto, iniciar a tabela na geração 1, tendo por base as frequências gênicas da geração 0 (zero). Em seguida, calcular a geração 2, tendo por base a geração 1 e, assim, sucessivamente. É melhor rever o tema nas páginas 57 a 73 para melhor entendimento. Depois, acompanhar a tabela abaixo.

Frequências Genotípicas para Genes Ligados ao Sexo - Atingimento do Equilíbrio

Camaaãa	Mac	chos		Fêmeas		
Geração	p	q	r	2s	t	d
0	0,30000	0,70000	0,30000	0,50000	0,20000	-0,250000
1	0,55000	0,45000	0,16500	0,52000	0,31500	0,125000
2	0,42500	0,57500	0,23375	0,50750	0,25875	-0,062500
3	0,48750	0,51250	0,20719	0,49813	0,29469	0,031250
4	0,25625	0,54375	0,22242	0,49891	0,27867	-0,015625
5	0,47188	0,52813	0,21529	0,49754	0,28717	0,007812

Geração	Machos		Fêmeas			Diferença
	p	q	r	2s	t	d
6	0,46406	0,53594	0,21898	0,49798	0,28304	-0,003906
7	0,46797	0,53203	0,21717	0,49770	0,28514	0,001953
8	0,46602	0,53398	0,21808	0,49782	0,28410	-0,000977
9	0,46699	0,53301	0,21763	0,49776	0,28462	0,000488
10	0,46650	0,53350	0,21785	0,49779	0,28436	-0,000244
11	0,46675	0,53325	0,21774	0,49777	0,28449	0,000122
12	0,46663	0,53337	0,21780	0,49778	0,28442	-0,000061
n	0,47	0,53	0,22	0,50	0,28	0,000000

b) Frequências Genotípicas e Gênicas no Equilíbrio

b₁) Genotípicas:

Machos: 0,47(A) e 0,53(a)

Fêmeas: 0,22(AA); 0,50(Aa) e 0,28(aa)

b₂) Gênicas:

Machos: f(A) = 0.47 e f(a) = 0.53

Fêmeas: $f(A) = 0.22 + \frac{1}{2} \cdot 0.50 = 0.47$ e $f(a) = \frac{1}{2} \cdot 0.50 + 0.28 = 0.53$

13. Em gatos domésticos o pigmento negro, melanina, é depositado no pelo por ação de um gene ligado ao sexo. Seu alelo alternativo inibe a produção de melanina, resultando um pelo amarelo. A inativação casual de um dos cromossomos X ocorre em embriões de fêmeas, produzindo um mosaico genético. Consequentemente, fêmeas heterozigotas apresentam manchas de pelo amarelo e preto, chamada "chita" ou "malhada". Esta característica foi considerada erroneamente como resultado da ação de alelos codominantes ligados ao sexo $\mathbf{C}^{\mathbf{A}}$ e $\mathbf{C}^{\mathbf{a}}$, da forma abaixo descrita:

Carra	Fenótipos			
Sexo	Preto	Malhado	Amarelo	
Machos	C ^A Y	-	CaY	
Fêmeas	C ^A C ^A	C ^A C ^a	C ^a C ^a	

Certa população desses gatos em Londres, foi analisada e consistia dos seguintes fenótipos: Machos: 311 pretos e 42 amarelos; Fêmeas: 277 pretas, 7 amarelas e 54 malhadas. Considerando-se que a população está em equilíbrio, pede-se determinar as frequências dos alelos. Quais são as frequências gênicas para machos e para fêmeas separadamente?

Resolução

Frequências Genotípicas para Genes Ligados ao Sexo

Frequências Genotípicas nos Machos e nas Fêmeas

Sexo ·		Fenótipos		T-4-1
	Preto	Malhado	Amarelo	- Total
Markan	D_{M}	H_{M}	R_{M}	N_{M}
Machos	311	0	42	353
	D_{F}	H_{F}	R_{F}	N_{F}
Fêmeas	277	54	7	338

Cálculo das Frequências Gênicas

Frequência Gênica

Geral

$$f(C^A) = \frac{D_M + 2D_F + H_F}{N_M + 2N_F} = \frac{311 + 2 \times 277 + 54}{353 + 2 \times 338} = \frac{919}{1.029} = 0,893$$

$$f(C^{a}) = \frac{R_M + 2R_F + H_F}{N_M + 2N_F} = \frac{42 + 2 \times 7 + 54}{353 + 2 \times 338} = \frac{110}{1.029} = 0,107$$

Machos

$$f(C^A) = \frac{D_M}{N_M} = \frac{311}{353} = 0.881$$

$$f(C^a) = \frac{R_M}{N_M} = \frac{42}{353} = 0.119$$

Fêmeas

$$f(C^A) = \frac{2D_F + H_F}{2N_F} = \frac{2 \times 227 + 54}{2 \times 338} = \frac{608}{676} = 0,899$$

$$f(C^a) = \frac{2R_F + H_F}{2N_F} = \frac{2 \times 7 + 54}{2 \times 338} = \frac{68}{676} = 0,101$$

Exercícios Popostos

1. Considere a população diplóide abaixo, onde foi determinado o número de indivíduos para cada genótipo. A característica é condicionada por um gene autossômico com dois alelos:

Genótipo	Número de indivíduos	
A_1A_1	1620	
A_1A_2	360	
A_2A_2	20	

- a) calcular as frequências gênicas
- b) calcular as frequências genotípicas
- c) supondo que os acasalamentos ocorram ao acaso, calcular as frequências gênicas na 2ª geração.
- d) verificar, usando o teste de X^2 (Chi-Quadrado), se a população está em equilíbrio; caso não esteja, calcular as frequências gênicas na 5^a geração de acasalamentos ao acaso.
- 2. Considere as populações diplóides na Tabela abaixo nas quais foi determinado o número de indivíduos para cada genótipo. A característica é condicionada por um gene autossômico com dois alelos. Pedes-se:
 - a) calcular as frequências gênicas
 - b) calcular as frequências genotípicas
 - c) supondo que os acasalamentos ocorram ao acaso, calcular as frequências gênicas e genotípicas na 2ª geração.
 - d) verificar se as populações estão em equilíbrio, usando o teste de X² (Chi Quadrado).

	População		
Genótipo	1	2 Nº de Indivíduos	
	Nº de Indivíduos		
A_1A_1	880	100	
A_1A_2	608	800	
A_2A_2	112	100	

- 3. Em um levantamento efetuado na raça Guernsey com relação a um determinado antígeno Z, obteve-se o seguinte: ZZ = 224 indivíduos, Zz = 352 e zz = 153. Pede-se, sempre comentando os resultados:
 - a) calcular as frequências gênicas e genotípicas.
 - b) verificar se os números observados são consistentes com os esperados pelo equilíbrio de H W.
- 4. Na raça bovina Shorthorn, o genótipo C^VC^V determina um fenótipo vermelho; o C^VC^B é ruão (mistura de vermelho e branco) e o C^BC^B é branco. Pergunta-se:
- a) se na população, 108 bovinos são vermelhos, 144 são ruões e 48 são brancos, quais são as frequências estimadas dos alelos C^{V} e C^{B} ?
- b) Se a população é panmítica e suficientemente grande para evitar a deriva genética, quais serão as frequências gênotípicas na geração seguinte?
 - c) Como os dados da amostra se comparam com a expectativa. A população original está em equilíbrio?
- 5. No carneiro Rambouillet, a lã branca depende do alelo dominante, **B** e a lã preta do seu alelo recessivo, **b**. Supondo-se que uma amostra aleatória de 900 carneiros tenha fornecido 891 carneiros brancos e 9 pretos, pergunta-se qual é a estimativa das frequências alélicas?
- **6**. Considere uma população inicial com frequências genotípicas (0,00; 1,00) e (1,00; 0,00; 0,00). Sob a hipótese de acasalamentos ao acaso, calcular as frequências genotípicas para machos e para fêmeas nas 10 primeiras gerações, quais seriam essas frequências no equilíbrio?
- 7. Em uma população panmítica na qual existe 5% de fenótipos recessivos, qual será a porcentagem de indivíduos heterozigotos?
- 8. Um sistema de alelos múltiplos governa a cor dos pelos dos coelhos, da seguinte forma: C = colorido; $c^h = \text{himalaia e } c = \text{albino}$, sendo $C > c^h > c$, com as frequências gênicas \mathbf{p} , \mathbf{q} e \mathbf{r} respectivamente. Pede-se:
- a) se uma população de coelhos, contendo indivíduos coloridos, himalaia e albinos está se acasalando aleatóriamente, qual seria a razão genotípica prevista para a geração seginte, em termos de **p**, **q** e **r** ?
 - b) Demonstre a fórmula para calcular as frequências alélicas a partir das frequências fenotípicas previstas.
- c) Uma amostra aleatória de coelhos contém 168 indivíduos coloridos, 30 himalaia e 2 albinos. Calcular as frequências alélicas **p**, **q** e **r**.
 - d) Dadas as frequências alélicas p = 0.5, q = 0.1 e r = 0.4, calcular as frequências genotípicas.
- 9. O sistema de grupo sanguíneo ABO é governado por alelos múltiplos nos quais existe uma relação de dominância e codominância. Três alelos, I^A ; I^B e I^0 formam a sequência de dominância ($I^A = I^B > I^0$). Em um levantamento, na Inglaterra, foram encontrados os resultados da tabela abaixo, para duas populações:

	Populações		
Grupos Sanguíneos	1	2	
	Nº de Indivíduos	Nº de Indivíduos	
AB	6	304	
A	179	4172	
В	35	856	
O	202	4668	

Pede-se estimar, para cada uma das duas amostras, as frequências gênicas.

- 10. Os olhos brancos da drosophila são devidos a um gene recessivo ligado ao sexo e o tipo selvagem (olhos vermelhos) a seu alelo dominante. Em uma população de Drosophila foram obtidos os seguintes dados: 15 fêmeas de olhos brancos, 52 machos de olhos brancos, 253 fêmeas selvagem e 97 heterozigotas e 208 machos selvagem. Calcular as frequências gênicas na população. Calcular também as frequências para machos e para fêmeas separadamente.
- 11. Na Drosófila, dois genes recessivos de segregação independente (**h** e **b**) produzem os fenótipos cabeludo (hairy) e preto (black), respectivamente. Uma amostra de certa população panmítica forneceu os dados da tabela abaixo.

Fenótipo	Frequência (%)	Genótipo
Selvagem	969	H_B_
Cabeludo	931	hhB_
Preto	4131	H_bb
Cabeludo Preto	3969	hhbb

Pede-se determinar as frequências dos alelos h e b

Fatores que Alteram a Frquência Gênica

Introdução

Como foi visto nos capítulos anteriores, uma população grande que mantém um sistema de acasalamentos ao acaso permanece estável com relação às frequências gênicas e genotípicas na ausência de forças externas capazes de mudar as suas propriedades genéticas. Esse estado de equilíbrio pode então ser modificado pela atuação de forças externas.

Os processos de alteração da frequência gênica podem ocorrer de duas formas:

Sistemática → Tende a alterar a frequência gênica de uma forma previsível em quantidade e em direção. São três os processos sistemáticos: migração, mutação e seleção.

Dispersiva → Ocorre em pequenas populações, como resultado de efeitos amostrais. Esta forma é conhecida como Oscilação Genética. Pode-se prever a quantidade da mudança, mas não a sua direção.

Migração

Conceituação

É o movimento de indivíduos de uma população para outra, seguido de reprodução entre as subpopulações, resultando na "mistura" dos patrimônios genéticos dessas subpopulações.

No contexto da zootecnia, os exemplos mais pertinentes são a introdução do gado zebu no Brasil, com alteração da frequência de muitos genes, e a introdução das raças Simental, Charolesa e outras nos Estados Unidos, com absorção das raças locais, resultando em enormes alterações no tamanho, no ganho de peso, na produção de leite e em outras características de interesse econômico.

Variação na Frequência Gênica

Suponha-se que uma grande população consista da proporção "m" de imigrantes em cada geração, sendo o restante, "1- m", de nativos. Se a frequência de um gene for \mathbf{q}_m entre os imigrantes e \mathbf{q}_0 entre os nativos, a frequência do gene na população mista será \mathbf{q}_1 dado por:

Frequência Gênica Após a Introdução de Imigrantes

$$q_1 = mq_m + (1-m)q_0$$

E a variação na frequência gênica será dada por:

$$\Delta_{q} = q_{1} - q_{0} \rightarrow \Delta_{q} = mq_{m} + (1-m)q_{0} - q_{0} = mq_{m} + q_{0} - mq_{0} - q_{0} = mq_{m} - mq_{0} \rightarrow \Delta_{q} = m(q_{m} - q_{0})$$

Frequência Gênica na Nésima Geração

Na $N^{\acute{e}sima}$ geração de acasalamentos ao acaso, após a ocorrência da migração, a frequência do gene será: $q_n = [1 - (1 - m)^n]q_m + (1 - m)^nq_0$

Mutação

Conceituação

Mutação gênica é uma mudança na sequência de bases nitrogenadas do DNA de um cormossomo, com consequente mudança na síntese de RNA, que leva as informações para a síntese proteica que ocorre nos ribossomos. Desta forma, a nova proteína funcionais e, consequentemente, fenotípicas de grande importância.

As mutações podem ser de dois tipos:

Mutações recorrentes - mutações que ocorrem com determinada frequência.

Mutações não recorrentes → aquelas que ocorrem apenas uma vez e não mais se repetem.

As mutações podem ainda ocorrer nos cromossomos autossômicos ou nos sexuais, disto dependendo a sua transmissão ou não aos descendentes. Por exemplo, alguns bovinos na raça Hereford nascem com pintas pretas no corpo (animais vermelhos) que não são transmitidas. Provavelmente tais mutações ocorrem nas células embrionárias que deram origem às células somáticas, não atingindo as germinativas.

Na maioria dos casos, as mutações são indesejáveis, causando erros metabólicos que podem inviailizar a sobrevivência do seu portador.

A frequência das mutações naturais é extremamente baixa (da ordem de 10-5, ou seja, ocorre um mutante em 100.000 indivíduos normais), entretanto as mutações têm sido importante fonte de ocorrência igual a u (u é a proporção de genes A_1 que sofrem mutação para A_2 entre uma geração e a seguinte). Se a frequência de variabilidade genética ao longo das cadeias evolutivas das espécies.

Do ponto de vista zootécnico, o efeito das mutações é praticamente desprezível no sentido de causar alterações nas características produtivas dos animais. Para características qualitativas, entretanto, algumas mutações podem ser importantes, como no caso do gene que condiciona ausência de chifres, na raça nelore (surgindo o Nelore variedade mocha).

Finalmente, as mutações podem ser dominantes ou recessivas de acordo com a ação do gene mutado.

Fatores que alteram as Taxas Normais de Mutação

- a) Radiações ionizantes → muito bem conhecidas e estudadas nas quebras cromossômicas. Causam também grandes aumentos nas taxas de mutação (ex.: acidente nuclear de Chernobyl).
- **b)** Agentes qímicos → alguns como o gás mostarda ou o etilnitrosouréia são potentes agentes mutagênicos. Várias outras drogas têm sido estudadas, inclusive psicotrópicos.
 - c) Fatores ambientais nutrição, temperatura, radiações naturais, agentes biológicos etc.

Variação da Frequência Gênica com Mutação recorrente - Ponto de Equilíbrio

Suponha que o gene A_1 sofra mutação para A_2 com uma taxa de ocorrência igual a \mathbf{u} (\mathbf{u} é a proporção de genes A_1 que sofrem mutação para A_2 entre uma geração e a seguinte). Se a frequência de A_1 em uma dada geração é p_0 , a frequência de A_2 surgidos por mutação, na geração seguinte, será u p_0 . Assim, a frequência de A_1 na geração seguinte será p_0 - u p_0 e a mudança na frequência gênica será - u p_0 . Considere-se, entretanto, a mutação ocorrendo em ambas as direções, supondo os alelos A_1 e A_2 com frequências p_0 e q_0 . A_1 sofre mutação para A_2 a uma taxa " \mathbf{u} " por geração e A_2 sofre mutação reversa a uma taxa " \mathbf{v} ". Após uma geração haverá um ganho de A_2 igual a u p_0 , devido à mutação em uma direção e haverá umaperda igual a v q_0 , devido à mutação reversa, ou seja, A_1 — A_2 e A_2 — A_1 .

Ponto de Equilíbrio

Mudança na Frequência Gênica

A mudança na frequência gênica será dada por: $\Delta_q = up_0 - vq_0$. Após n gerações haverá um equilíbrio na frequência gênica, no qual, não ocorrerão mais mudanças. O ponto de equilíbrio será aquele em que $\Delta q = 0$.

$$\Delta_q = up_0 - vq_0 \quad \textit{Mas}, \ \Delta_q = 0 \quad \mapsto \quad q = \hat{q} \quad e \quad p = \hat{p}.$$

Então, $u\hat{p} - v\hat{q} = 0$, sendo \hat{p} e \hat{q} as frequências no equilíbrio.

Assim,

$$u\hat{p} = v\hat{q} \quad \mapsto \quad u(1-\hat{q}) = v\hat{q} \quad \mapsto \quad u - u\hat{q} = v\hat{q} \quad \mapsto \quad u\hat{q} + v\hat{q} = u \quad \mapsto \hat{q}(u+v) = u \quad \mapsto \quad u\hat{q} + v\hat{q} = u \quad \mapsto \quad u\hat{q} + u \quad \mapsto \quad u\hat{q}$$

$$\hat{q} = \frac{u}{u + v}$$

Frequência Gênica na Nésima Geração

Na nésima geração de mutação recorrente,

$$p_n = (1 - u)^n p_0$$

Número de Gerações Necessárias

a) Quando a Taxa de Mutação Reversa é Desprezível

$$n = \frac{\log(p_n) - \log(p_0)}{\log(1-u)}$$

b) Considerando-se a Taxa de Mutação Reversa

$$n = \frac{\ln \frac{(q_0 - \hat{q})}{(q_n - \hat{q})}}{(u + v)}$$

Seleção

Conceituação

A seleção pode ser definida como o processo no qual alguns indivíduos são escolhidos entre os membros de uma população para produzirem a geração seguinte (Lasley, 1978). Pode ser de dois tipos: natural e artifical.

Deve-se considerar o fato de que os indivíduos de uma geração deiferem em viabilidade e em fertilidade e que assim, contribuem com números desiguais de descendentes para a geração seguinte. O número de descendentes com que os indivíduos contribuem caracteriza o seu <u>valor adaptativo</u> ("Fitness"). Se as diferenças de "valor adaptativo" são, de alguma forma, associadas com a presença ou ausência de determinado gene, então a seleção opera naquele gene.

Quando o gene é sujeito à seleção, sua frequência nos descendentes é diferente da frequência nos pais, uma vez que pais de diferentes genótipos transmitem seus genes de forma diferenciada para a próxima geração. Dessa forma a seleção produz alteração na frequência gênica e, consequentemente, na frequência genotípica. decorrentes de seleção. Deve-se considerar o efeito da dominância com relação ao "valor adaptativo" (GRÁFICO D).

Torna-se mais conveniente pensar na seleção agindo contra determinado gene, na forma de eliminação seletiva de um ou de outro genótipo do qual faz parte o gene em questão. Isto pode ocorrer sob a forma de redução da viabilidade ou da fertilidade, incluindo aí, a capacidade de se acasalar. No ciclo vital, a seleção age inicialmente sobre a viabilidade e depois sobre a fertilidade. Nas deduções da mudança na frequência gênica, considera-se o estádio de zigoto de uma geração até o mesmo estádio na geração descendente.

A intensidade da seleção é expressa como "coeficiente de seleção"(s) o qual representa a redução proporcional na contribuição do genótipo selecionado contra (1-s). Isto expressa o "valor adaptativo" de um genótipo em relação ao outro. Por exemplo, supondo-se que o "coeficiente de seleção seja s=0,1, então o "valor adaptativo (1-s) é igual a 0,9, significando que para cada 100 zigotos produzidos, 90 são produzidos pelo genótipo selecionado contra. O "valor adaptativo" sendo definido, como contribuição proporcional de descendentes, deveria ser chamado de "valor adaptativo relativo", entretanto, é referido apenas como "valor adaptativo".

O "valor adaptativo de um genótipo em relação a um determinado locus, não é necessariamente o mesmo em todos os indivíduos. Depende de circunstâncias ambientais na qual os indivíduos vivem e também das interações gênicas (dominância e epistasia).

Quando se atribui um "valor adaptativo" a um genótipo, esse valor refere-se ao "valor adaptativo médio" na população como um todo.

As deduções que se seguem, limitam-se a considerar os efeitos da seleção em um locus, muito embora as diferenças de "valor adaptativo" entre os indivíduos resultem da seleção atuando em muitos (quem sabe todos) os loci simultaneamente. Supõe-se, entretanto, que o "valor adaptativo médio" dos diferentes genótipos permaneçam constantes.

Gráfico D - Efeito de Dominância e Valor Adaptativo

A ₂ A ₂ 1-s	A ₁ A ₂ 1- 1/2	A ₁ A ₁	Ação aditiva ou ausência de dominância
A ₂ A ₂ 1-s	A ₁ A ₂ 1-hs	A ₁ A ₁	Dominância parcial - (Seleção contra A ₂)
$\frac{A_2A_2}{1-s}$		$\begin{array}{c} A_1 A_2 \\ A_1 A_1 \\ 1 \end{array}$	Dominância completa - (Seleção contra A ₂)
$\begin{array}{c} A_1 A_2 \\ \underline{A_2 A_2} \\ 1 \end{array}$		A ₁ A ₁ 1-s	Dominância completa - (Seleção contra A ₁)
$\begin{array}{c} A_2 A_2 \\ 1 - s_2 \end{array}$	A_1A_1 $1-s_1$	A_1A_2	Sobredominância

Alterações da Frequência Gênica

Na dedução da equação de mudança da frequência gênica, as condições de dominância devem ser consideradas, mas o método é o mesmo em todas elas. Assim, pode-se deduzir uma fórmula básica para a variação da frequência gênica em uma geração de seleção.

Considere-se, como ilustração, o caso de dominância completa com a seleção agindo contra o homozigoto recessivo (Tabela abaixo):

Dominância completa com a seleção agindo contra o homozigoto recessivo

	Genótipos			
	A_1A_1	A_1A_2	A_2A_2	Total
Frequência inicial	p^2	2pq	q^2	1
Coeficiente de seleção	0	0	S	-
Valor adaptativo	1	1	1-s	-
Contribuição gamética	p^2	2pq	$q^2(1-s)$	$1-sq^2$

A primeira linha da tabela acima refere-se às frequências genotípicas antes da seleção, de acordo com o teorema de Hardy-Wenberg. Na segunda linha, \mathbf{s} é o coeficiente de seleção contra o homozigoto recessivo $(\mathbf{A_2A_2})$. Os valores adaptativos são: 1 $(\mathbf{A_1A_1})$, 1 $(\mathbf{A_1A_2})$ e 1- \mathbf{s} $(\mathbf{A_2A_2})$. Multiplicando-se a frequência inicial de cada genótipo pelo seu recessivo "valor adaptativo", obtém-se a frequência do genótipo após a seleção (contribuição gamética). Após a seleção, a soma das frequências não é mais igual a 1, por causa da perda igual a sq² devida à seleção contra o genótipo $\mathbf{A_2A_2}$.

Mudança na Frequência Gênica

Frequência Gênica Após a Seleção

A frequência gênica após a seleção é calculada pelo método já visto no capítulo de cálculo de frequências gênicas, ou seja,

$$q_1 = \frac{pq + q^2(1-s)}{1-sq^2}$$

Substituindo-se p por 1-q, tem-se:

$$q_1 = \frac{q - sq^2}{1 - sq^2}$$

Mudança na Frequência Gênica

A mudança na frequência gênica é dada por:

$$\Delta q = q_1 - q = \frac{q - sq^2}{1 - sq^2} - q \implies \Delta q = \frac{q - sq^2 - q(1 - sq^2)}{1 - sq^2} \implies \Delta q = \frac{q - sq^2 - q + sq^3}{1 - sq^2} \implies$$

$$\Delta q = -\frac{sq^2(1-q)}{1-sq^2}$$

O efeito da seleção na frequência gênica depende, portanto, da intensidade da seleção (s) e da frequência do gene na população. Para todas as condições de dominância, a dedução das equações segue o mesmo raciocínio. As equações são dadas a seguir:

Tipos de Acão Gênica e Equações de Mudança

1. Ausência de Dominância e Seleção Contra A,

$$\Delta q = -\frac{\frac{1}{2}sq(1-q)}{1-sq}$$

2. Dominância Parcial de A_1 e Seleção Contra A_2

$$\Delta q = -\frac{spq[q + h(p-q)]}{1-2hspq-sq^2}$$

3. Dominância Completa de A_1 e Seleção Contra A_2

$$\Delta q = -\frac{sq^2(1-q)}{1-sq^2}$$

4. Dominância Completa de A_1 e Seleção Contra A_1

$$\Delta q = \frac{sq^2(1-q)}{1-s(1-q^2)}$$

5. Sobredominância e Sele' ao Contra A_1A_1 e A_1A_2

(Aplicável para qualquer grau de dominância com valor adaptativo expresso em relação a A_1A_2

$$\Delta q = \frac{pq(s_1p - s_2q)}{1 - s_1p^2 - s_2q^2}$$

As conclusões acima aplicam-se tanto para a seleção natural quanto para a seleção artificial. A seleção artificial tem sido utilizada, de forma intuitiva, há milênios. Animais considerados superiores ou mais interessantes segundo algum critério, são intensamente utilizados na reprodução, alterando fortemente o equilíbrio das populações (equilíbrio de Hardy-Wenberg).

A seleção artificial será discutida mais detalhadamente no segundo volume (Métodos Seleção).

Oscilação Genética

Também conhecida como "deriva genética", é um processo dispersivo de alteração da frequência gênica. Ocorre em populações pequenas por "erro de amostragem". Maiores detalhes podem ser obtidos em Strickberger (1985), página 702-706.

Exercício com Resposta

Em um rebanho no qual a frequência de determinado gene é igual a 0,3, forma introduzidos animais machos e fêmeas provenientes de outro rebanho em que a frequência do mesmo gene é igual a 0,7. Sabendo-se que na população final 80% dos indivíduos são nativos e 20% imigrantes, qual é a frequência do gene nessa população?

Frequência Gênica

População Original

$$q_0 = 0.3;$$
 $q_m = 0.7$ $m = 0.2;$ $(1-m) = 0.8$

População Após a Imigração

$$q_1 = mq_m + (1 - m)q_0$$

$$q_1 = 0.20 \times 0.70 + 0.80 \times 0.30 = 0.14 + 0.24 = 0.38$$

Noções de Genética Quantitativa

Valores, Média e Variância

(Em função das frequências gênica e genotípica)

Conceito de Valores

Os princípios genéticos relacionados com a herança dos caracteres quantitativos são basicamente aqueles da genética de populações, mas como a segregação dos genes não pode ser seguida individualmente, novos métodos de estudo são necessários e novos conceitos precisam ser introduzidos. Surge, assim, o ramo da genética quantitativa ou biométrica. A maioria dos caracteres de valor econômico são quantitativos e é nesse ramo que a genética tem a mais importante aplicação prática.

As propriedades genéticas de uma população podem ser expressas em termos de frequências gênica e genotípica. De modo a demonstrar a conecção entre as frequências gênica e genotípica, de um lado, e as diferenças quantitativas apresentadas por uma característica, de outro, introduz-se o conceito de "valor", expresso na unidade métrica em que a característica é medida.

Valores Fenotípico, Genotípico e Ambiental

O valor observado quando a característica é medida em um indivíduo, é o "valor fenotípico"(P) desse indivíduo. Todos os parâmetros, como média, variância e covariância devem ser baseados nas medidas de valor fenotípico. Esse valor pode ser obtido para qualquer característica (peso ao nascer, peso à desmama, produção de leite/Lactação, espessura de toucinho etc).

Para a análise das propriedades genéticas da população, o valor fenotípico é dividido em partes componentes atribuíveis a diferentes causas. A primeira divisão é nos componentes atribuíveis ao genótipo e ao meio ambiente. Genótipo refere-se ao conjunto de genes que cada indivíduo em particular possui. Ambiente é toda circunstância não genética que influencie o valor fenotípico. Os dois componentes de valor associados com o genótipo e o meio ambiente são: "valor genotípico" (G) e "desvios ambientais" (E).

Modelo Genético

Assume-se o seguinte modelo matemático: $P = G + E + (G \times E)$

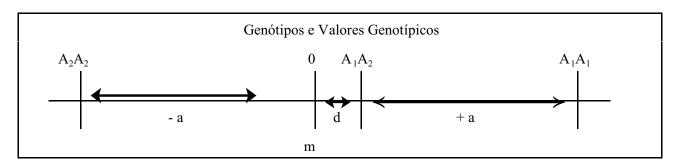
Sendo $P = p - \mu_p$, $G = g - \mu_g$ e $E = e - \mu_e$. Esse modelo é conveniente porque o valor esperado (média) de cada segregação em cada locus não pode ser observada e a contribuição de cada gene não pode ser identificada. No

entanto, os princípios da herança mendeliana se aplicam a cada locus, o mesmo ocorrendo com a ação gênica elemento **P**, **G** ou **E** é zero e assim, os valores estimados para cada animal são expressos como desvios abaixo ou acima da média da população. Embora os caracteres quantitativos sejam determinados por vários loci, a intra e interlocus. Assim, para introduzir o conceito de variação quantitativa, usa-se o modelo simples de herança, de um locus com dois alelos. O que importa é o desenvolvimento de modelos que descrevam os efeitos dos genes nas características de desempenho.

Valores Genotípicos Arbitrários (+a, d, -a)

Como visto no capítulo de ação gênica e modelo genético, são atribuídos valores arbitrários aos genótipos sob discussão. Considerando-se um locus com dois alelos, A_1 e A_2 , designa-se por "+a" o valor genotípico de um homozigoto, "-a" o valor genotípico do outro homozigoto e "d" o valor genotípico do heterozigoto, dados como desvio da média dos valores genotípicos dos dois homozigotos. São, portanto, valores acima ou abaixo da média dos dois homozigotos. O ponto médio (m) e os valores genotípicos arbitrários (+a, d, e -a) são expressos como:

Por convenção, A_1 é o alelo que exerce maior contribuição para o valor genotípico (aumenta mais) enqunto que A_2 é o alelo que exerce menor contribuição. Tem-se, assim, uma escala de valores genotípicos (gráfico abaixo) em que a origem, ou ponto 0 (zero) é a média dos dois homozigotos (designada por m).



O valor **d**, do heterozigoto, depende do grau de dominância. Se não há dominância, **d** = 0; se A_1 é dominante sobre A_2 , **d** > 0; se A_2 é dominante sobre A_1 , **d** < 0. Se a dominância é completa, **d** = +**a** ou **d** = -**a**. Se ocorre sobredominância, **d** > +**a** ou **d** < -**a**. O grau de dominância pode ser expresso como **d**/**a**.

Exemplo

Em camundongos, Falconer (1981) descreveu um gene recessivo, denominado "pigmeu" (pg), que reduz o tamanho corporal. Os pesos às seis semanas de idade (média dos dois sexos) de uma linhagem desses camundongos foram os seguintes:

Pesos às seis semanas em camundongos "pigmeus"			
		Genótipos	
Pesos	++(A ₁ A ₁)	$+pg(A_1A_2)$	pgpg(A ₂ A ₂)
	14	12	6

Na prática, o valor genotípico não pode ser medido, exceto quando se trata de um único locus em que os genótipos são distinguíveis. No entanto, a média dos desvios ambientais de uma população é 0 (zero) e assim, o valor genotípico médio é igual ao valor fenotípico médio. O valor genotípico expresso acima foi, portanto, baseado no falor fenotípico médio.

Valores Genotípicos Arbitrários

Para a população do exemplo acima, o ponto médio é dado por:

$$m = \frac{P_{11} + P_{22}}{2} = \frac{14 + 6}{2} = 10g$$

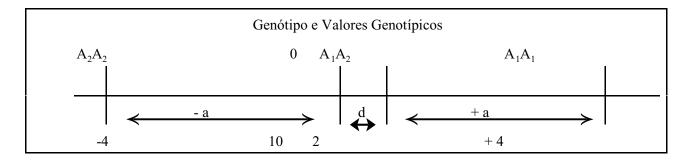
E os valores genotípicos arbitrários são:

$$+a = P_{11} - m = 14 - 10 = 4g$$

$$-a = P_{22} - m = 6 - 10 = -4g$$

$$d = P_{12} - m = 12 - 10 = 2g$$

Ou seja,



Média da População

Suponha-se que as frequências genotípicas sejam:

 $f(A_1A_1) = 0.81;$

 $f(A_1A_2) = 0.18$

 $f(A_2A_2) = 0.01$

Genótipo	\mathbf{f}_{i}	$x_i(g)$	x_i vezes f_i
A_1A_1	0,81	14	11,34
A_1A_2	0,18	12	2,16
A_2A_2	0,01	6	0,06
Total (Σ)	1	-	13,56

Portanto, $\mu = 13,56g$

Suponha-se agora, que as frequências genotípicas sejam:

 $f(A_1A_1) = 0.01$

 $f(A_1A_2) = 0.18$

 $f(A_2A_2) = 0.81$

$$\mu = \sum x_i f_i / \sum fi$$

Genótipo	Frequência	Valor(g)	Frequência x Valor
A_1A_1	0,01	14	0,14
A_1A_2	0,18	12	2,16
$\mathbf{A_2}\mathbf{A_2}$	0,81	6	4,86
Total (Σ)	1	-	7,16

Portanto, $\mu = 7,16g$

Considerando uma população em equilíbrio, com frequências gênicas \mathbf{p} e \mathbf{q} , tem-se:

Genótipo	Frequência	Valor	Frequência x Valor
A_1A_1	p^2	m + a	$p^2m + p^2a$
A_1A_2	2pq	m + d	2pqm + 2pqd
A_2A_2	q^2	m - a	$q^2m - q^2a$
Total (Σ)	1	-	m + a (p - q) + 2pqd

Exemplo:

Supondo-se
$$p = 0.9 e q = 0.1 tem-se$$
:

$$\mu = m + a(p-q) + 2pqd = 10.0 + 4(0.9-0.1) + 2 \times 0.9 \times 0.1 \times 2 = 13.56g$$

Observe-se que a média é muito próxima do valor genotípico do homozigoto A_1A_1 (14,0). Isto se deve à frequência do gene A_1 que é 0,9.

Valor Genotípico Como Desvio da Média da População

Trata-se do valor genotípico em função das frequências gênicas, dado como desvio da média da população. Considere-se o quadro abaixo:

Genótipo	Valor Genotípico	Média da População
A_1A_1	+ a	a (p - q) + 2pqd
A_1A_2	d	a (p - q) + 2pqd
A_2A_2	- a	a(p-q) + 2pqd

Valores Genotípicos

$$G_{A_{1}A_{1}} = +a - [a(p-q) + 2pqd] = a - ap + aq - 2pqd = a(1-p+q) - 2pq \rightarrow$$

$$G_{A_{1}A_{1}} = a(q+q) - 2pqd = 2aq - 2pqd \rightarrow$$

$$G_{A_{1}A_{1}} = 2q(a-pd)$$

$$G_{A_{1}A_{2}} = d - [a(p-q) + 2pqd] = d - ap + aq - 2pqd = d - ap + aq - 2pqd = aq - ap + d - 2pqd \rightarrow$$

$$G_{A_{1}A_{2}} = a(q-p) + d(1-2pq)$$

$$G_{A_{2}A_{2}} = -a - [a(p-q) + 2pqd] = -a - ap + aq - 2pqd = b2 = -a(1-q+p) - 2pqd \rightarrow$$

$$G_{A_{2}A_{2}} = -a(p+p) - 2pqd = -2pa - 2pqd \rightarrow$$

$$G_{A_{2}A_{2}} = -2p(a+qd)$$

Cálculo dos valores Genotípicos - Gene Pigmeu [com $f(A_2) = 0,1$]

$$G_{A_1A_1} = 2q(a - pd) = 2 \times 0.1 (4 - 0.9 \times 2) = 0.2 \times 2.2 = 0.44g$$

 $G_{A_1A_2} = a(q - p) + d(1 - 2pq) = 4(0.1 - 0.9) + 2(1 - 2 \times 0.9 \times 0.1) = -3.2 + 2(0.82) = -1.56g$
 $G_{A_1A_2} = -2p(a + qd) = -2 \times 0.9(4 + 0.1 \times 2) = -1.8 \times 4.2 = -7.56g$

- O genótipo A_1A_1 é 0,44g superior à média da população
- O genótipo A_1A_2 é 1,56g superior à média da população
- O genótipo A_2A_2 é 7,52g inferior à média da população

Efeito Médio de um Gene (a,)

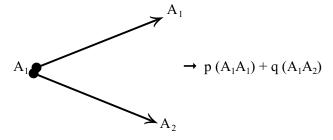
Conceito

De modo a demonstrar as propriedades de uma população em conecção com sua estrutura de família, deve-se pensar na transmissão do "valor", de pai para descendente, o que não pode ser feito com base no "valor genotípico", uma vez que um pai passa ao descendente seus genes e não seu genótipo. Em cada geração, novos genótipos são criados. Torna-se, asim, necessário uma nova medida que se refira aos genes e não aos genótipos. Isto possibilita a atribuição de um "valor genético" aos indivíduos, valor este, associado aos genes "transportados" pelo indivíduo e transmitido aos descendentes.

Definição

O efeito médio de um gene é o desvio médio, em relação à média da população, de indivíduos que receberam o gene de um pai, sendo que o outro alelo (gene recebido do outro pai) veio ao acaso da população.

Considere-se, inicialmente, o efeito médio de A_1 (α_1). Suponha-se que determinado número de gametas "transportando" o gene A_1 se una, ao acaso, a gametas da população. Na população, as frequências gênicas de A_1 e de A_2 , são respectivamente, p e q. A frequência genotípica dos descendentes será, então, igual a p(A_1A_1) + q (A_1A_2), como mostrado na figura abaixo.



Equação do efeito Médio de um Gene (α_i)

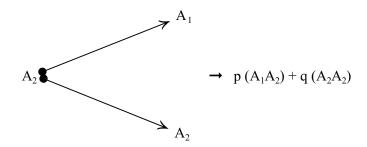
Efeito Médio do Gene A₁

O valor genotípico de A_1A_1 é igual a m+a e o de A_1A_2 é igual a m+d. O desvio médio dos genótipos produzidos, em relação à média da população, é igual ao efeito médio de A_1 , representado por α_1 .

Assim,

$$\alpha_1 = p(m + a) + q(m + d) - \mu = m(p + q) + pa + qd - [m + a(p - q) + 2pqd] \rightarrow \alpha_1 = pa + qd - pa + qa - 2pqd = q[(a + d - 2pd)] = q[a + d(1 - 2p)] = q[a + d(1 - p - p)] \rightarrow \alpha_1 = q[a + d(q - p)]$$

Considere-se, agora, o efeito médio do gene A₂



Efeito Médio do Gene A2

O valor genotípico de A_1A_2 é igual a m+d e o de A_2A_2 é igual a m-a. O desvio médio dos genótipos produzidos, em relação à média da população, é igual ao efeito médio de A_2 , representado por α_2 .

Assim,

$$\alpha_{2} = p(m + d) + q(m - a) - \mu = m(p + q) + pd - qa - [m + a(p - q) + 2pqd] \rightarrow \alpha_{2} = pd + qa - pa + qa - 2pqd = -p[(a - d + 2pd)] = -p[a + d(2q - 1)] \rightarrow \alpha_{2} = -p[a + d(q - 1 + q)] = -p[a + d(q - 1 + 1 - p)] \rightarrow \alpha_{3} = -p[a + d(q - p)]$$

Efeito Médio de Subsituição de um Gene (α)

É a mudança média que ocorre na média da população, quando se substitui um dos alelos pelo outro. Considere-se α como sendo o efeito da substituição de A_2 por A_1 . Dos genes A_2 tomados ao acaso da população, uma proporção \mathbf{p} será encontrada nos genótipos $\mathbf{A_1A_2}$ e uma proporção \mathbf{q} , nos genótipos $\mathbf{A_2A_2}$. Tem-se assim,

Genótipo	Frequência	Valor	Novo Genót	Novo valor	Mudança
A_1A_2	p	d	A_1A_1	+ a	a - d
A_2A_2	q	-a	A_1A_2	d	d + a

Efeito Médio da Substituição de A_2 Por A_1 (a)

$$\alpha = p(a - d) + q(d + a) = pa - pd + qd + qa = a(p + q) + d(q - p) = a + d(q - p)$$

$$\alpha_1 = q[a + d(q - p)] \rightarrow \alpha_1 = q\alpha$$

$$\alpha_2 = -p[a + d(q - p)] \rightarrow \alpha_2 = -p\alpha$$

$$\alpha_1 - \alpha_2 = q\alpha - (-p\alpha) = \alpha(p + q) = \alpha$$

Ou seja,

$$\alpha = \alpha_1 - \alpha_2$$

Exemplo

(Gene Pigmeu, Asumindo q = 0,1)

$$a = 4$$
; $d = 2$; $p = 0.9$; $e = 0.1$

Cálculo de a, e de a,

$$\alpha_1 = q[a + d(q - p)] = 0.1 [4 + 2(0.1 - 0.9)] = 0.24g$$

$$\alpha_2 = -p[a + d(q - p)] = -0.9[4 + 2(0.1 - 0.9)] = -2.16g$$

Cálculo de a

$$\alpha = a + d(q - p) = 4 + 2(0.1 - 0.9) = 2.40g$$

Ou,

$$\alpha = \alpha_1 - \alpha_2 = 0.24 - (-2.16) = 2.40g$$

Valor Genotípico (G), em Finção de a

Este valor genotípico é também dado como desvio da média da população, ou seja, o valor indica quanto o indivíduo com o referido genótipo é superior ou inferior à média da população. Os valores dos genótipos são, no entanto, calculados em função do efeito médio de substituição (α).

Valores Genotípicos de A₁A₁, A₁A₂ e de A₂A₂

Expressão dos Valores Genotípicos

$$A_1A_1$$

$$G_{AA} = 2q(a - pd)$$
 (Equação 1)

Entretanto,
$$\alpha = a + d(q - p) \rightarrow$$

$$a = \alpha - d(q - p)$$

Substituindo-se, na Equação 1, a pelo seu valor, tem-e:

$$G_{A,A_1} = 2q[\alpha - d(q - p) - pd = 2q(\alpha - qd + pd - pd) \rightarrow$$

$$G_{A_1A_1} = 2q(\alpha - qd)$$

$$A_1A_2$$

$$G_{A_1A_2} = a(q-p) + d(1-2pq) \implies [\alpha - d(q-p)](q-p) + d(1-2pq)$$

$$G_{A_1A_2} = (\alpha - qd + pd)(q - p) + d(1 - 2pq) = q\alpha - p\alpha - q^2d + pqd + pqd - p^2d + d(1 - 2pq) \Rightarrow$$

$$G_{A_1A_2} = (q - p)\alpha - d(p^2 + q^2) + 2pqd + d(1 - 2pq)$$

Mas.

$$p^2 + 2pq + q^2 = 1 \mapsto 1 - 2pq = p^2 + q^2 \mapsto G_{A_1A_2} = (q - p)\alpha - d(p^2 + q^2) + 2pqd + d(p^2 + q^2) \mapsto d(p^2 + q^2) + d(p^$$

$$G_{A_1A_2} = (q - p)\alpha + 2pqd$$

$$A_2A_2$$

$$G_{A_2A_2} = -2p(a + qd) \mapsto -2p[\alpha - d(q - p) + qd] = -2p(\alpha - qd + qd + pd) \mapsto$$

$$G_{A_2A_2} = -2p(\alpha + pd)$$

Exemplo

(Gene Pigmeu com
$$q = 0,1$$
)

$$G_{A.A.} = 2q(\alpha - qd) = 2 \times 0.1(2.4 - 0.1x2) = 0.2 \times 2.2 = 0.44g$$

$$G_{A,A_2} = (q - p)\alpha + 2pqd = (0,1 - 0,9) \times 2,4 + 2 \times 0,9 \times 0,1 \times 2 = -1,56g$$

$$G_{AAA} = -2p(\alpha + pd) = -2 \times 0.9(2.4 + 0.9 \times 2) = -7.56g$$

Valor Genético Aditivo (A)

Conceito

O efeito médio dos genes dos pais determina o valor genotípico médio de sua progênie, portanto, o valor genotípico médio de um determinado número de progênies, sob determinadas condições, determina o valor genético de um pai. Para isso, o reprodutor a ser avaliado deve ser acasalado com determinado número de fêmeas, tomadas ao acaso. O valor genético é próprio da população na qual os acasalamentos são realizados e, assim, não se pode falar em valor genético de um indivíduo sem especificar a população na qual ele foi avaliado

Definição Teórica

O valor genético de um animal é igual à soma dos efeitos médios dos genes que ele possui, sendo a soma feita para todos os alelos de um locus e para todos os loci. É o mesmo que a soma dos efeitos independentes (efeitos aditivos) dos seus genes.

Para um locus com dois alelos, o valor genético seria:

Genótipo	Valor Genético (A)
A_1A_1	$2\alpha_1 = 2q\alpha$
A_1A_2	$\alpha_{1+}\alpha_{2} = (q-p)\alpha$
A_2A_2	$2\alpha_2 = -2p\alpha$

Valor Genético Aditivo

Exemplo

(Gene Pigmeu, Assumindo q = 1)

$$A_{A_1A_1} = 2\alpha_1 = 2q\alpha = 2 \times 0.24 = 2 \times 0.1 \times 2.4 = 0.48g$$

$$A_{A_1A_2} = \alpha_1 + \alpha_2 = (q - p)\alpha = 0.24 + (-2.26) = (0.1 - 0.9) \times 2.4 = -1.92g$$

$$A_{A_2A_2} = 2\alpha_2 = -2p\alpha = 2 \times (-2.16) = -2 \times 0.9 \times 2.4 = -4.32g$$

Definição Prática

O valor genético aditivo de um animal é igual a duas vezes o desvio médio do valor da progênie em relação à média da população, quando o referido animal é acasalado com um determinado número de indivíduos tomados ao acaso.

Combinações genéticas não aditivas fazem com que as definições teórica e prática não sejam equivalentes.

Desvios de Dominância (D)

Considerando-se um locus com dois alelos, a diferença entre o valor genotípico (G) e o valor genético (A) para determinado genótipo, fornece o valor do desvio de dominância (D), ou seja, D = G - A.

Genótipo	Frequência	Valor Genot. (G)	Valor Genético (A)	Dominância (D)
A_1A_1	p^2	2q (α - qd)	2qa	- 2 q ² d
A_1A_2	2pq	$(q - p) \alpha + 2pqd$	$(q-p)\alpha$	2pqd
A_2A_2	q^2	$-2p(\alpha + pd)$	- 2pα	$-2p^2d$

Desvios de Dominância

Exemplo Gene Pigmeu, Assumindo q = 0,1

$$D_{A_1A_1} = -2q^2d = -2 \ x \ (0,1)^2 \ x \ 2 = 0,04g$$

$$D_{A_1A_2} = 2pqd = 2 \times 0.9 \times 0.1 \times 2 = 0.36g$$

$$D_{A_{3}A_{2}} = -pp^{2}d = -2 \times (0.9)^{2} \times 2 = -3.24g$$

Desvios Epistáticos (I)

Quando mais de um locus estão envolvidos, o valor genotípico pode conter um desvio adicional devido a combinações não aditivas entre os loci, combinações estas que constituem a epistasia.

A natureza complexa das interações não deve, todavia, ser motivo de preocupações porque no "valor genotípico agregado", todas as interações são tratadas em conjunto, como um único desvio de interação (I). G = A + D + I (lembrar que A = VG e D + I = VCG)

Variância

A genética dos caracteres quantitativos tem seu estudo centrado na variação. A idéia básica do estudo da variação é a sua partição em componentes atribuíveis a diferentes causas. A magnitude relativa desses componentes determina as propriedades genéticas da população, em particular, o grau de semelhança entre parentes. Será considerado aqui, a natureza desses componentes e como eles dependem das frequências gênicas.

Componentes de Variância

A quantidade de variação é medida e expressa como variância. Os componentes nos quais a variância é parcionada são os mesmos descritos anteriormente, quer dizer, P = G + E, sendo G = A + D + I. Portanto, P = A + D + I + E.

Os componentes de variância são, aqui, deduzidos em termos de frequência gênica e de valores genotípicos arbitrários (+a, de-a). Considerando-se os valores expressos como desvio da média da população e que a interação genótipo x ambiente não está incluída no modelo, tem-se: $V_P = V_A + V_D + V_I + V_E$

V_P = Variância fenotípica

V_A = Variância genética aditiva

V_D = Variância devida aos desvios de dominância

 V_I = Variância devida às interações epistáticas.

V_E= Variância devida aos desvios de ambiente

Variância Genética Aditiva

É a variância dos valores genéticos aditivos da população. Considerando-se um locus com dois alelos, esses valores são:

Genótipo	Frequência	Valor Genético Aditivo (A)
A_1A_1	p^2	2qα
A_1A_2	2pq	$(q - p)\alpha$
A_2A_2	q^2	- 2pα

Desenvolvimento da Equação da Vaiância Genética Aditiva

Dada uma variável X_i , qualquer, distribuída em classe de frequência, a sua variância é dada por:

$$V(X_i) = \frac{\sum (X_i - \bar{X})^2 f_i}{\sum f_i}.$$

Os valores genéticos aditivos são dados como desvio da média, ou seja,

$$(A_i = X_i - \overline{X})$$
 $e \sum f_i = p^2 + 2pq + q^2 = 1$

$$V(A_i) = \frac{\sum (A_i)^2 f_i}{\sum f_i} = \frac{\sum (A_i)^2 f_i}{1} = \sum (A_i)^2 f_i \rightarrow$$

$$V_A = (2q\alpha)^2 \ x \ p^2 + [(q \ -p)\alpha]^2 \ x \ 2pq \ + \ (-2p\alpha)^2 \ x \ q^2 = \ 4p^2q^2\alpha^2 + 2pq(q-p)^2\alpha^2 \ + \ 4p^2q^2\alpha^2 \ \mapsto \ (-2p\alpha)^2 \ x \ q^2 = \ 4p^2q^2\alpha^2 + 2pq(q-p)^2\alpha^2 \ + \ 4p^2q^2\alpha^2 \ \mapsto \ (-2p\alpha)^2 \ x \ q^2 = \ 4p^2q^2\alpha^2 + 2pq(q-p)^2\alpha^2 \ + \ 4p^2q^2\alpha^2 \ \mapsto \ (-2p\alpha)^2 \ x \ q^2 = \ 4p^2q^2\alpha^2 + 2pq(q-p)^2\alpha^2 \ + \ 4p^2q^2\alpha^2 \ \mapsto \ (-2p\alpha)^2 \ x \ q^2 = \ 4p^2q^2\alpha^2 + 2pq(q-p)^2\alpha^2 \ + \ 4p^2q^2\alpha^2 \ \mapsto \ (-2p\alpha)^2 \ x \ q^2 = \ 4p^2q^2\alpha^2 + 2pq(q-p)^2\alpha^2 \ + \ 4p^2q^2\alpha^2 \ \mapsto \ (-2p\alpha)^2 \ x \ q^2 = \ (-2p\alpha)^2$$

$$V_A = 2pq\alpha^2[2pq + (q-p)^2 + 2pq] = 2pq\alpha^2(2pq + q^2 - 2pq + p^2 + 2pq) = 2pq\alpha^2[p^2 + 2pq + q^2] \mapsto$$

$$V_A = 2pq\alpha^2 = V_A = 2pq[a + d(q-p)]^2$$

Variância Genética Aditiva

Variância Genética Aditiva (V_A) - Exemplo (Gene Pigmeu com q = 0,1)

$$V_A = 2pq\alpha^2$$

$$V_A = 2 \times 0.9 \times 0.1 \times (2.4)^2 = 1.04g^2$$

Variância dos Desvios de Dominância (V_D)

Para um locus com dois alelos tem-se:

Genótipo	Frequência	Dominância (D)
A_1A_1	p^2	$-2q^2d$
A_1A_2	2pq	2pqd
A_2A_2	q^2	-2p ² d

Variância dos Desvios de Dominância(VD)

$$V_D = (-2q^2d)^2 \ x \ p^2 + (2pqd)^2 \ x \ 2pq + (-2p^2d)^2 \ x \ q^2 = 4p^2q^4d^2 + 8p^3q^3d^2 + 4p^4q^2d^2 \ \mapsto \ x \ q^2 + 4p^2q^2d^2 + 4p^2q^2$$

$$V_D = 4p^2q^2d^2(p^2 + 2pq + q^2) = (2pqd)^2$$

Exemplo

$$V_D = (2pqd)^2 = 2 \times 0.9 \times 0.1 \times 2)^2 = 0.13g^2$$

Variância Genética Total (VG)

$$G = A + D$$
.

Desconsiderando-se a epistasia, a variância genética total é dada pela soma de V_A + V_D + $2Cov_{AD}$,

Ou seja,
$$V_G = V_A + V_D + 2Cov_{AD}$$
. Mas $Cov_{AD} = 0 \Rightarrow$

$$V_G = 2pq\alpha^2 + (2pqd)^2 = 2pq[a + d(q-p)]^2 + (2pqd)^2$$

Portanto, no exemplo,

$$V_G = V_A + V_D = 1,04 + 0,13 = 1,17g^2$$

Demonstração de que $Cov_{AD} = 0$

Genótipo	Frequência	A	D
A_1A_1	p^2	2qα	- 2q ² d
A_1A_2	2pq	$(q - p)\alpha$	2pqd
A_2A_2	q^2	- 2pα	$-2p^2d$

$$Cov_{AD}$$

$$Cov_{AD} = 2q\alpha(-2q^{2}d) \times p^{2} + (q-p)\alpha \times 2pqd \times 2pq + (-2p\alpha)(-2pd) \times q^{2} \implies$$

$$Cov_{AD} = -4p^{2}q^{3}d\alpha + 4p^{2}q^{2}(q-p)d\alpha + 4p^{3}q^{2}d\alpha \implies$$

$$Cov_{AD} = -4p^{2}q^{3}d\alpha + 4p^{2}q^{3}d\alpha - 4p^{3}q^{2}d\alpha + 4p^{3}q^{2}d\alpha = 0$$

Variância Fenotípica

$Variância\ fenotípica\ (VP)$ $\dot{E}\ a\ variância\ dos\ valores\ fenotípicos\ observados\ (medidos)\ nos\ indivíduos$ $V_P=\frac{\sum{(X_i-\bar{X})^2}}{N-1}$

$Variancia Ambiental (V_E)$

A variância ambiental, que, na verdade, engloba toda toda a variação não genética, pode ter muitas causas. Sua natureza depende da característica e do organismo em questão. De uma maneira geral, é uma fonte de erro que reduz a precisão das análises genéticas e, portanto, deve ser reduzida tanto quanto possível, por meio de um delineamento experimental apropriado ou de um manejo cuidadoso. Fatores climáticos e nutricionais são as causas mais comuns e são pelo menos parcialmente suceptíveis ao controle experimental. O efeito materno também constitui uma fonte de variação ambiental importante, principalmente nos mamíferos. Outras fontes desconhecidas podem causar o que se denomina de variação intangível. Assim, a variância ambiental é melhor definida como variância resdual.

Variância Residual

A variância ambiental, melhor definida como variância residual (engloba toda a variação não genética), pode ser obtida por:

$$V_E = V_P - V_G$$

Em que:

 V_E = Variância ambiental ou residual

 $V_P = Variância fenotípica$

 V_G = variância genética

Exercício com Resposta

Sabe-se que a atividade de certa enzima é determinada por um loco com dois alelos, em que os genótipos têm as seguintes produções: $A_1A_1 = 110$, $A_1A_2 = 100$ e $A_2A_2 = 90$. Assumindo-se que a frequência do alelo A_2 seja igual a 0,3, e que a população se encontra em equilíbrio de Hardy-Wenberg, calcular:

- a) a média (µ) da população
- b) os efeitos médios dos genes $A_1(\alpha_1)$ e $A_2(\alpha_2)$
- c) o efeito médio de substituição de A_2 por A_1 (α)
- d) o valor genético adititivo (A) para cada genótipo
- e) o valor dos desvios de dominância (D) para cada genótipo
- f) a variância genética aditiva (V_A)
- g) a variância devida aos desvios de dominância (V_D)
- h) a variância genética total (V_G)
- i) a variância fenotípica V_P
- j) a variância ambiental (V_E), com base na variância fenotípica esperada.

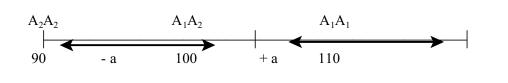
Resposta

$$p = f(A_1) = 1 - q = 1 - 0.3 = 0.7$$

 $f(A_1A_1) = p^2 = 0.49; \quad f(A_1A_2) = 2pq = 0.42; \quad f(A_2A_2) = q^2 = 0.09$

Atividade Enzimática na População

Genótipo	Frequência	Atividade Enzimática
A_1A_1	49	110
A_1A_2	42	100
A_2A_2	9	90



Frequência Gênica

$$f(A_1) = 0.7 \ e \ f(A_2) = 0.3$$

Ponto Médio

$$m = \frac{110 + 90}{2} = 100$$

Valores Genotípicos

$$+a = P_{11} - m = 110 - 100 = 10$$

$$-a = P_{22} - m = 90 - 100 = -10$$

$$d = P_{12} - m = 100 - 100 = 0$$

a) Média da População

$$M = a(p-q) + 2pqd = 10(0,7-0,3) + 2 \times 0,7 \times 0,3 \times 0 = 4$$

 $\mu = m + M = 100 + 4 = 104$

b) Efeito Médio de A_1 e de A_2

$$\alpha_1 = q[a + d(q-p)] = 0.3[10 + 0(0.3-0.7) = 3$$

$$\alpha_2 = -p[a + d(q-p)] = -0.7[10 + 0(0.3-0.7) = -7]$$

Resposta

c) Efeito Médio de Substituição de A_2 POR A_1

$$\alpha = \alpha_1 - \alpha_2 = 3 - (-7) = 10$$

d) Valor Genético Aditivo

$$A_{A,A_1} = 2q\alpha = 2 \times 0.3 \times 10 = 6$$

$$A_{A_2A_2} = -2p\alpha = -2 \times 0.7 \times 10 = -14$$

$$A_{A,A_0} = (q-p)\alpha = (0,3-0,7) \times 10 = -4$$

e) Desvios de Dominância

$$D_{A_1A_1} = -2q^2d = -2(0,3)^2 \times 0 = 0$$

$$D_{A_2A_2} = -2p^2d = -2(0,7)^2 \times 0 = 0$$

$$D_{A,A_2} = 2pqd = -2 \times 0.7 \times 0.3 \times 0 = 0$$

f) Variância Genética Aditiva

f)
$$V_A = 2pq[a + d(q-p)]^2 = 2pq\alpha^2 = 2 \times 0.7 \times 0.3 \times 10^2 = 42$$

g) Variância dos Desvios de Dominância

g)
$$V_D = (2pqd)^2 = (2 \times 07 \times 0 \times 0)^2 = 0$$

h) Variância Genética Total

$$V_G = V_A + V_D = 42 = 0 42$$

i) Variância Fenotípica

$$V_{p} = \frac{\sum (X_{i} - \overline{X})^{2} f_{i}}{\sum f_{i}} e \sum f_{i} = p^{2} + 2pq + q^{2} = 0.49 + 0.42 + 0.09 = 1.00 \rightarrow$$

$$V_P = (110-100)^2 \times 0.49 + (100-100)^2 \times 0.42 + 90-100)^2 \times 0.09 = 58$$

j) Variância dos Desvios Ambientais

Modelo Genético: P = G + E

$$V_P = V_G + V_E \rightarrow V_E = V_P - V_G = 58 - 42 = 16$$

Exercícios Propostos

- 1. O que você entende por "valor fenotípico" de um animal?
- 2. Qual é o modelo matemático que relaciona o "valor fenotípico" aos seus componentes causais?
- 3. Verifique, no texto, a equação para o cálculo da média (μ) de uma população. Considere-a como equação básica. Dependendo do modo de ação gênica poderia haver algumas modificações na equação básica. Como ficaria essa equação nos seguintes casos:
 - a) ação aditiva (ausência de dominância)?
 - b) dominância completa?
 - c) p = q = 0.5 e ação aditiva?
 - d) p = q = 0.5 e dominância completa?
 - e) equação básica com vários (n) pares de genes determinando a característica?
 - 4. defina efeito médio de um gene e efeito médio de substituição
- 5. O que é "valor genético"? Atribua "valores genéticos" para dois animais (qulquer valor, qualquer característica) e explique esses valores representam.
- **6**. Em termos teóricos, o "valor genético" de um indivíduo é igual à soma dos efeitos médios dos seus genes, sendo a soma feita para todos os pares de alelos em cada loco e para todos os locos. Todavia, na prática, o valor genético tem uma outra definição, ou seja, na prática o "valor genético" é calculado com base em uma estratégia de acasalamento dos animais. Explique isto com base no texto.
- 7. Com base nas expressões utilizadas para o cálculo da variância genética aditiva (VA) e variância devida aos desvios de dominância (VD), pergunta-se:
- a) como ficariam essas expressões nos casos de ausência de dominância e de dominância completa?
- b) como ficariam as expressões finais do item anterior (a) se p = q = 0.5?
- 8. Mostra-se, na tabela abaixo, o peso ajustado para 550 dias (média dos indivíduos com o mesmo genótipo, em kg) em uma população bovina . Fazendo-se uma suposição de que o desempenho dos animais (peso) seja determinado por um loco com dois alelos $(A_1 \ e \ A_2)$ e assumindo-se que a frequência de A_1 seja igual a 0,5, pede-se calcular:
 - a) a média (µ) da população
 - b) os efeitos médios dos genes A_1 (α_1) e A_2 (α_2)
 - c) o efeito médio de substituição de A_2 por A_1 (α)

- d) o valor genético adititivo (A) para cada genótipo
- e) o valor dos desvios de dominância (D) para cada genótipo
- f) a variância genética aditiva (V_A)
- g) a variância devida aos desvios de dominância (V_D)
- h) a variância genética total (V_G)
- i) a variância fenotípica V_P
- j) a variância ambiental (V_E)

Valores Genotípicos, Supondo-se Que o Peso Seja Determado Por Apenas um Loco Com Dois Alelos	
Genótipo	Peso aos 550 Dias
A_1A_1	350
A_1A_2	200
$\mathrm{A}_2\mathrm{A}_2$	150

- **9**. Repetir o exercício anterior, assumindo que $f(A_1) = 0.8$
- 10. Repetir o exerc; icio 9 $[f(A_1) = 0.8]$ para a situação abaixo. Pergunta-se ainda, qual é o modo de ação gênica caracterizado por esses resultados?

Produção de Leite (kg/vaca/Dia) - Valores Genotípicos , Supondo-se que a Produção de Leite Seja Determinada por apenas um Loco Com Dois Alelos

Genótipo	Peso aos 550 Dias
A_1A_1	11
$\mathrm{A}_{1}\mathrm{A}_{2}$	15
$\mathrm{A}_2\mathrm{A}_2$	9

Endogamia e Parentesco

Endogamia

Conceituação

Endogamia é um sistema de acasalamentos no qual os animais envolvidos são mais aparentados entre si do que a média de parentesco da população como um todo. Entende-se por <u>parentesco</u> a relação existente entre indivíduos que tenham pelo menos um ancestral comum.

Entre os acasalamentos endogâmicos, também chamados de consanguíneos, podem-se citar os seguintes: a) progênie/ pai; b) progênie/ mãe; c) meio-irmãos; d) irmãos completos; e) primos f) tio/sobrinho.

Quando indivíduos aparentados se acasalam, a progênie tende a se tornar mais homozigota. Esse aumento de homozigose e consequente diminuição de heterozigose é a razão fundamental para as mudanças genotípicas associadas com a endogamia.

Coeficiente de Endogamia

Existem dois conceitos diferentes para este coeficiente:

- a) Conceito de Malecot (1948) --> conceito probabilístico
- b) Conceito de Wright (1952) --> conceito estatístico

Coeficiente de Endogamia Segundo Malécot

Malecot (1948) definiu coeficiente de endogamia (F) como a probabilidade de que dois alelos em um locus sejam idênticos por descendência, ou seja, venham de um mesmo ancestral comum.

O valor do coeficiente de endogamia (F) representa o provável aumento de homozigose resultante do acasalamento de indivíduos mais aparentados do que a média da população. F varia de 0 a 1, ou seja, de 0% a 100%. O grau de endogamia medido pelo F é relativo a uma dada população em um dado momento.

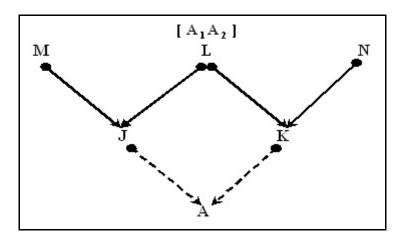
O aumento da homozigose expresso pelo F é o resultado mais provável, o que se espera em média. Muitos loci podem estar envolvidos e, ao acaso, maior ou menor proporção de loci podem se tornar homozigotos do que o valor F realmente indica. Mesmo que dois indivíduos em uma linha tenham o mesmo valor de F, eles podem não terem se tornado homozigotos para os mesmos loci. O que se espera é que a mesma proporção de loci tenha se tornado homozigota. Devem ser distinguidos os dois tipos de homozigose:

Autozigose → Os indivíduos são homozigotos por descendência (os dois alelos provém de um mesmo ancestral).

Alozigose → Os indivíduos são homozigotos "em estado" (os dois alelos não provém de ancestral comum).

Cálculo do Coeficiente de Endogamia

Considere a seguinte relação de parentesco (pedigree 1):



Definição do Coeficiente de Endogamia (F_A)

 F_A é a probabilidade de que os dois alelos <u>transportados</u> pelos gametas de J e de K, que produziram o indivíduo A, sejam idênticos por descendência.

Probabilidades

A probabilidade de que:

J transporte um gene A_1 vindo do indivíduo $L = \frac{1}{2}$

K transporte um gene A_1 vindo do indivíduo $L = \frac{1}{2}$

J transporte um gene A_2 vindo do indivíduo $L = \frac{1}{2}$

K transporte um gene A_2 vindo do indivíduo $L = \frac{1}{2}$

A probabilidade de que:

A receba um gene A_1 vindo de $J = \frac{1}{2}$

A receba um gene A_1 vindo de $K = \frac{1}{2}$

A receba um gene A_2 vindo de $J = \frac{1}{2}$

A receba um gene A_2 vindo de $K = \frac{1}{2}$

Desenvolvimento da Equação do Coeficiente de Endogamia

A probabilidade de que:

A receba um gene A_1 de L, transportado por $J=\frac{1}{2}x$ $\frac{1}{2}=\frac{1}{4}$

A receba um gene A_1 de L, transportado por $K = \frac{1}{2}x + \frac{1}{2}x = \frac{1}{4}$ A receba um gene A_2 de L, transportado por $J = \frac{1}{2}x + \frac{1}{2}x = \frac{1}{4}$

A receba um gene A_2 de L, transportado por $K = \frac{1}{2}x + \frac{1}{2} = \frac{1}{4}$

A probabilidade de que:

$$A \text{ seja } A_1 A_1 = \frac{1}{4} x \frac{1}{4} = \frac{1}{16} e A \text{ seja } A_2 A_2 = \frac{1}{4} x \frac{1}{4} = \frac{1}{16}$$

A probabilidade de que:

$$A \text{ seja } A_1 A_1 \text{ ou } A_2 A_2 = \frac{1}{16} + \frac{1}{16} = \frac{1}{8}$$

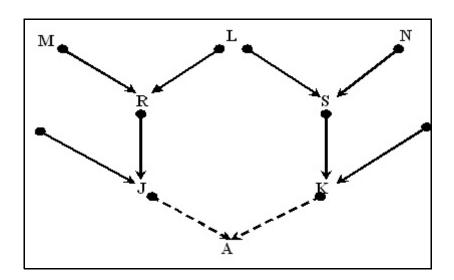
Se os dois alelos transportados pelos gametas J e K, que produziram o indivíduo A, são A_1A_1 ou A_2A_2 , eles são idênticos por decendência.

A probabilidade de que dois alelos sejam idênticos por descendência = F_A

Isto implica em:

$$F_A = \frac{1}{8} = (\frac{1}{2})^3 = (\frac{1}{2})^{(1+1+1)}$$

Considere, agora, o pedigree abaixo (pedigree 2):



Coeficiente de Endogamia Segundo Malécot

Probabilidades - Estabelecimento da Equação

A probabilidade de que:

A "receba" um gene
$$A_1$$
 de L, passando por R e por $J = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$

A "receba" um gene
$$A_1$$
 de L, passando por S e por $K = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$

A "receba" um gene
$$A_2$$
 de L, passando por R e por $J = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$

A "receba" um gene
$$A_2$$
 de L, passando por S e por $K = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$

A probabilidade de que:

$$A \ sejaA_1A_1 = \frac{1}{8} \times \frac{1}{8} = \frac{1}{64}$$

$$A \ sejaA_2A_2 = \frac{1}{8} \times \frac{1}{8} = \frac{1}{64}$$

A probabilidade de que:

$$A \text{ seja } A_1 A_1 \text{ ou } A_2 A_2 = \frac{1}{64} + \frac{1}{64} = \frac{1}{32}$$

Se os dois alelos transportados pelos gametas J e K, que produziram o indivíduo A, são A_1A_1 ou A_2A_2 , eles são idênticos por decendência.

A probabilidade de que dois alelos sejam idênticos por descendência = F_A

Isto implica em:

$$F_A = \frac{1}{32} = (\frac{1}{2})^5 = (\frac{1}{2})^{(2+2+1)}$$

Pode-se, então, concluir, de forma intuitiva, que, para um pedigree qualquer:

$$F_A = \left(\frac{1}{2}\right)^{(n_1 + n_2 + 1)}$$

Em que:

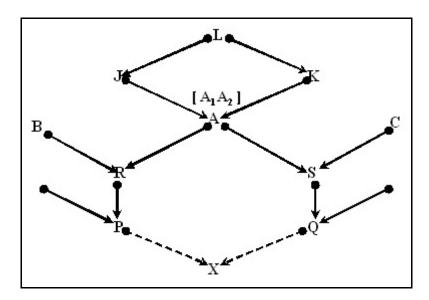
 F_A = Coeficiente de endogamia do indivíduo A

 n_1 = número de gerações que decorrem do pai até oancestral comum (de J até L)

 n_2 = número de gerações que decorrem da mãe ao ancestral comum (de K até L)

Coeficiente de Endogamia Segundo Malécot - Ancestral Endogâmico

Deve-se, no entanto, considerar uma outra probabilidade: o ancestral A pode ser homozigoto por descendência, devido à endogamia prévia. Neste caso (pedigree abaixo), X seria homozigoto mesmo se seu genótipo fosse A_1A_2 ou A_2A_1 (os dois genótipos sendo distinguidos conforme A_1 venha por P ou por Q).



Probabilidade de $A_1 = A_2$ no Ancestral Comum

Probabilidades

A probabilidade de que:

$$X \text{ seja } A_1 A_1 = \frac{1}{8} \times \frac{1}{8} = \frac{1}{64}$$

$$X \text{ seja } A_2 A_2 = \frac{1}{8} x \frac{1}{8} = \frac{1}{64}$$

A probabi ade de que:

$$X \text{ seja } A_1 A_1 \text{ ou } A_2 A_2 = \frac{1}{64} + \frac{1}{64} = \frac{1}{32}$$

A probabilidade de que:

$$X \text{ seja } A_1 A_2 = \frac{1}{8} x \frac{1}{8} = \frac{1}{64}$$

$$X \text{ seja } A_2 A_1 = \frac{1}{8} x \frac{1}{8} = \frac{1}{64}$$

A probabilidade de que:

$$X \text{ seja } A_1 A_2 \text{ ou } A_2 A_1 = \frac{1}{64} + \frac{1}{64} = \frac{1}{32}$$

Probabilidades

A probabilidade de que, no animal A:

$$A_1 = A_2 = F_A = \frac{1}{8}$$
 (Calculado no pedigree 1)

A probabilidade de que:

X seja endogâmico mesmo sendo A_1A_2 ou $A_2A_1 = \frac{1}{32}(\frac{1}{8})$ \Rightarrow

$$F_X = \frac{1}{32} + \frac{1}{32}(\frac{1}{8}) = \frac{1}{32}(1 + \frac{1}{8}) = \frac{1}{32}(\frac{9}{8}) = \frac{9}{256} \implies$$

$$F_X = \frac{1}{32}(1 + \frac{1}{8})$$

$$Mas \quad \frac{1}{8} = F_A \implies$$

$$F_X = \frac{1}{32}(1 + F_A) = (\frac{1}{2})^5(1 + F_A) = (\frac{1}{2})^{[2+2+1]} \cdot (1 + F_A)$$

Intuitivamente, para um pedigree qualquer,

$$F_X = \left[\frac{1}{2}\right]^{(n_1 + n_2 + 1)} \bullet (1 + F_A)$$

Em que:

 F_X = Coeficiente de endogamia do indivíduo X

 n_1 = número de gerações que decorrem do pai até ao ancestral comum (de P até A)

 n_2 = número de gerações que decorrem da mãe ao ancestral comum (de Q até A)

 F_A = Coeficiente de endogamia do ancestral comum (A)

Coeficiente de Endogamia Segundo Malécot (1948)

Mais de Um Ancestral Comum - Estabelecimento da Equação Final

Em pedigrees maiores, no entanto, os pais podem estar relacionados por vários ancestrais comuns.

Nesse caso, calcula-se a probabilidade de os dois alelos serem idênticos por decendência para cada ancestral comum e somam se todos os resultados.

A equação é dada, então, por:

$$F_X = \sum \left[\frac{1}{2}\right]^{(n_1 + n_2 + 1)} \bullet (1 + F_A)$$

Em que:

 F_X = Coeficiente de endogamia do indivíduo X

 n_1 = número de gerações que decorrem do pai até o ancestral comum (de P até A)

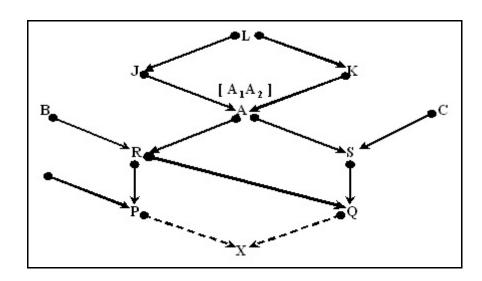
 n_2 = número de gerações que decorrem da mãe até o ancestral comum (de Q até A)

 F_A = Coeficiente de endogamia do ancestral comum (A)

\sum_ = somatório para todos os ancestrais comuns

Apresenta-se, a seguir, um exemplo da estimação desse coeficiente de endogamia (quando o pedigree apresenta mais de um ancestral comum).

Considere o pedigree abaixo,



Coeficiente de Endogamia Segundo Malécot - Mais de Um Ancestral Comum

Ancestrais Comuns

Observa-se, no pedigree acima, que são dois ancestrais comuns: ancestral A e ancestral R.

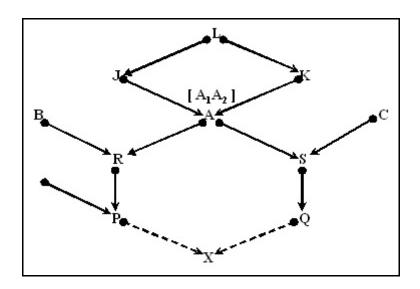
A equação para o cálculo do coeficiente de endogamia é dada por :

$$F_X = \sum \left[\frac{1}{2}\right]^{(n_1 + n_2 + 1)} \bullet (1 + F_A)$$

Neste caso, aplica-se a equação para cada um dos ancestrais comuns e somam-se os resultados obtidos para as duas partes.

Primeira Parte da Probabilidade - Ancestral Comum A

Probabilidade de $A_1 \equiv A_2$ Para o Ancestral \underline{A}



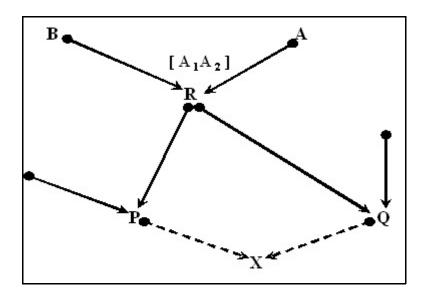
Primeiro Ancestral Comum

$$F_X [1^a \ Parte] = (\frac{1}{2})^{[n_1 + n_2 + 1]} \cdot (1 + F_A)$$

$$F_A = \frac{1}{8}$$
 [Calculado no pedigree 1 - páginas 117 e 118)

$$F_X[1^a \ Parte] = (\frac{1}{2})^{[2+2+1]} \cdot (1+\frac{1}{8}) = (\frac{1}{2})^5 \cdot \frac{9}{8} = \frac{1}{32}(\frac{9}{8}) = \frac{9}{256}$$

Coeficiente de Endogamia Segundo Malécot - Mais de Um Ancestral Comum Segunda Parte da Probabilidade - Ancestral R



Segundo Ancestral Comum - R

$$F_X [2^a \ Paerte] = (\frac{1}{2})^{[n_1 + n_2 + 1]} \cdot (1 + F_R)$$

 F_{R} = 0 (R não apresenta ancestral comum, portanto, não é endogâmico)

$$F_X [2^a Parte] = (\frac{1}{2})^{[1+1+1]} \cdot (1+0) = (\frac{1}{2})^3 = \frac{1}{8}$$

Coeficiente de Endogamia de X (Total)

$$F_X = \sum \left[\left(\frac{1}{2} \right)^{[n_1 + n_2 + 1]} \cdot (1 + F_A) \right]$$

$$F_X [1^a Parte] = \frac{9}{256}$$

$$F_X [2^a Parte] = \frac{1}{8}$$

$$F_X = \frac{9}{256} + \frac{1}{8} = \frac{41}{256} = 0.16$$

Parentesco

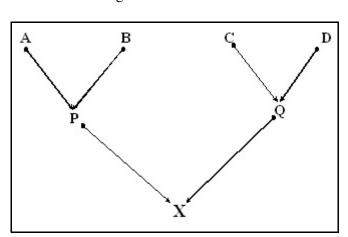
É a relação existente entre dois indivíduos que tenham pelo menos um ancestral comum. O parentesco é uma medida da proporção provável de genes que são idênticos, em dois indivíduos, devido ao ancestral comum (genes idênticos a mais que a população base). É baseado na probabilidade de que dois indivíduos sejam semelhantes em mais genes do que o seriam dois indivíduos retirados aleatoriamente da população.

A relação de parentesco mais simples é aquela entre progênie e um dos pais. Este grau de parentesco é fundamental para a determinação de outros graus. Considerando-se que a metade dos genes de um animal vem do pai e metade vem da mãe, um filho tem 50% de parentesco com o pai e 50% com a mãe. Um neto tem 25% de parentesco com cada um dos 4 avós e assim por diante.

Tendo em vista que um maior grau de parentesco deve refletir maior probabilidade de que dois indivíduos tenham os mesmos genes, o conhecimento desse grau de parentesco é útil na ponderação das informações dos parentes, quando se avalia o mérito genético de um indivíduo. Assim como para o coeficiente de endogamia, existem duas conceituações de coeficiente de parentesco: segundo Malecot (1948) e segundo Wright (1952).

Coeficiente de Parentesco Segundo Malécot

Malécot (1948) define o coeficiente de parentesco entre dois indivíduos, \mathbf{P} e \mathbf{Q} (f_{PQ}) como sendo a probabilidade de que um gene tomado ao acaso no indivíduo \mathbf{P} seja idêntico por descendência a um gene tomado ao acaso no indivíduo \mathbf{Q} .



Pedigree Conceitual

Tome um gameta ao acaso do animal $\bf P$; repita isso várias vezes. Em 50% dos casos os gametas de $\bf P$ vão "transportar" genes de $\bf A$ e em 50% genes de $\bf B$. Da mesma forma para os gametas do animal $\bf Q$, metade terão genes de $\bf C$ e metade, genes de $\bf D$. Assim, os dois gametas, um de $\bf P$ e outro de $\bf Q$ vão "transportar" genes de $\bf A$ e de $\bf C$ em 1/4, de $\bf B$ e de $\bf C$ em 1/4, de $\bf B$ e de $\bf D$ em 1/4. Mas, a probabilidade de que dois genes tomados ao acaso, um de $\bf A$ e outro de $\bf C$, sejam idênticos por descendência é igual ao coeficiente de parentesco de $\bf A$ com $\bf C$ ($\bf f_{AC}$). Da mesma forma, para $\bf A$ e $\bf D$ ($\bf f_{AD}$), $\bf B$ e $\bf C$ ($\bf f_{BC}$) e $\bf B$ e $\bf D$ ($\bf f_{BD}$),

Explicando de outra forma,

A probabilidade de um gameta tomado ao acaso do indivíduo **P** "transportar" genes de **A** é igual a $\frac{1}{2}$ e de "transportar" genes de **B** é igual a $\frac{1}{2}$

A probabilidade de um gameta tomado ao acaso do indivíduo \mathbf{Q} "transportar" genes de \mathbf{C} é igual a $\frac{1}{2}$ e "transportar" genes de \mathbf{D} é igual a $\frac{1}{2}$

Tomando dois gametas ao acaso, um de P e outro de Q: a probabilidade de "transportarem" genes de A e de $C = \frac{1}{4}$, de A e de $D = \frac{1}{4}$, de B e de $C = \frac{1}{4}$, de B e de $D = \frac{1}{4}$.

A Probabilidade de que dois genes tomados ao acaso sejam idênticos por descendência é igual ao coeficiente de parentesco entre eles (f). Assim, a probabilidade de que dois genes tomados ao acaso, um de $\bf A$ e outro de $\bf C$, sejam idênticos por descendência é igual a $\bf f_{AC}$. Da mesma forma, um de $\bf A$ e outro $\bf D = \bf f_{AD}$, um de $\bf B$ e outro $\bf C = \bf f_{BC}$ e um de $\bf B$ e outro $\bf D = \bf f_{BD}$.

Coeficiente de Parentesco Entre Dois Indivíduos (P e Q)

Considerando-se as probabilidades acima, o coeficiente de parentesco entre dois indivíduos, P e Q, segundo o conceito de Malécot é dado por :

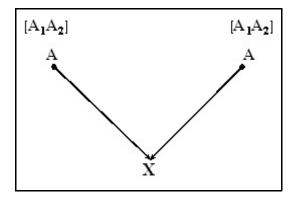
$$f_{PQ} = \frac{1}{4} f_{AC} + \frac{1}{4} f_{AD} + \frac{1}{4} f_{BC} + \frac{1}{4} f_{BD} = \frac{1}{4} (f_{AC} + f_{AD} + f_{BC} + f_{BD})$$
 (Equação 2.1)
Solução Recorrente

Calcula-se o parentesco entre os indivíduos mais velhos e depois substitui-se, na equação, para os indivíduos mais novos e, assim sucessivamente.

Alguns Parentescos Fundamentais

Para o cálculo do coeficiente de parentesco pela equação 2.1, acima, há necessidade de se conhecerem alguns parentescos básicos. São eles:

Parentesco do Indivíduo Consigo Mesmo



A probabilidade de que sejam ambos A_1 é igual a 1/4. A probabilidade de que sejam ambos A_1 é igual a 1/4. A probabilidade de que sejam ambos A_2 é igual a 1/2. A probabilidade de que sejam A_1 e A_2 ou A_2 e A_1 é 1/2. A probabilidade de que A_1 e A_2 sejam idênticos por descendência é igual a F_A .

Parentesco do Indivíduo Consigo Mesmo

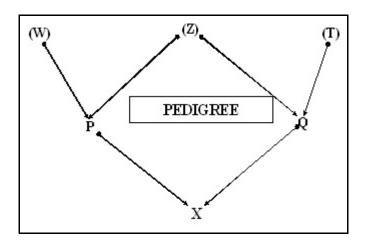
Assim, a probabilidade de que dois genes tomados ao acaso em A sejam idênticos por descendência, sendo o genótipo de A igual a A_1A_2 ou A_2A_1 é igual a $\frac{1}{2}F_A$.

Ou seja,

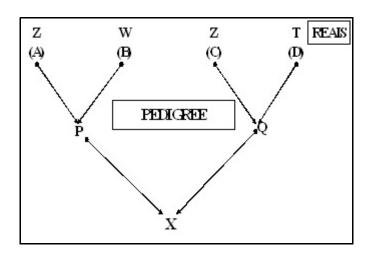
$$f_{AA} = \frac{1}{2} + \frac{1}{2}F_A = \frac{1}{2}(1 + F_A)$$
 (Equação 2.2)

Se A não é endogâmico, então $f_{AA} = \frac{1}{2}$

Coeficiente de Parentesco Entre Meio-Irmãos (f_{HS}), Segundo Malécot



Pedigree com Animais Reais (Z, W e T) e Conceituais (A, B, C e D)



Coeficiente de Parentesco Entre Meio-Irmãos (f_{HS}), Segundo Malécot

Equação Geral

Pela equação 2.1 (página 126), considerando-se A, B, C e D como animais conceituais, tem-se:

$$f_{PQ} = \frac{1}{4}(f_{AC} + f_{AD} + f_{BC} + f_{BD})$$

Considerando-se, no entanto, os pais "reais", a equação se transforma em,

$$f_{PQ} = \frac{1}{4} (f_{ZZ} + f_{ZT} + f_{WZ} + f_{WT})$$

E assim, se Z e T, W e Z e W e T não são aparentados e se Z não é endogâmico,

$$f_{ZZ} = \frac{1}{2}, f_{ZT} = 0, f_{WZ} = 0, f_{WT} = 0 \rightarrow f_{PQ} = \frac{1}{4}(\frac{1}{2} + 0 + 0 + 0) = \frac{1}{8}$$

Mas (P e Q são meio-irmãos)

Coeficiente de Endogamia do Indivíduo = Coeficiente de Parentesco entre os Pais

$$f_{PQ} = \frac{1}{8}$$
 (indivíduos **P** e **Q** são meio-irmãos)

Observar que para um pedigree semelhante (página 118),

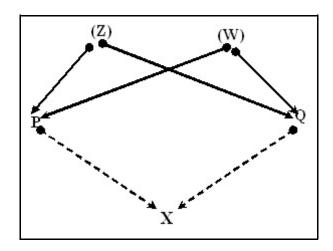
$$F_A = \frac{1}{8}$$
 (no pedigree, os pais são meio-irmãos) $\Rightarrow F_A = f_{PQ} = \frac{1}{8}$

Ou seja, para um animal X, qualquer, de pais $P \in Q$, $F_X = f_{PO}$

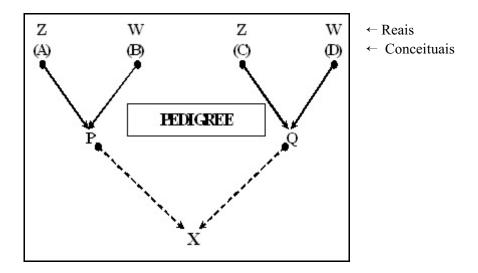
Conclusão

O coeficiente de endogamia de um animal é igual ao coeficiente de parentesco entre seus pais (segundo o conceito de Malécot)

Coeficiente de Parentesco Entre Irmãos Completos (f_{FS}), Segundo Malécot



Irmãos Completos - Animais Reais e Animais Conceituais



Os animais A, B, C e D são conceituais (da equação) e os animais Z e W são reais (do pedigree)

Coeficiente de Parentesco Entre Irmãos Completos (f_{FS})

Para o pedigree acima, aplicando-se a equação 2.1 (página 126), tem-se :

$$f_{PQ} = \frac{1}{4} (f_{AC} + f_{AD} + f_{BC} + f_{BD})$$

Considerando-se, no entanto, os pais "reais",

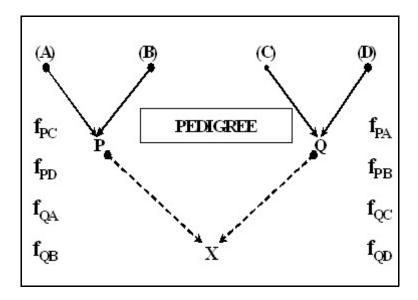
$$f_{PQ} = \frac{1}{4} (f_{ZZ} + f_{ZW} + f_{WZ} + f_{WW})$$

Se Z e W não são aparentados e se tanto Z como W não são endogâmicos,

$$f_{ZZ} = \frac{1}{2}$$
, $f_{WW} = \frac{1}{2}$, $f_{ZW} = 0$, $f_{WZ} = 0 \rightarrow f_{PQ} = f_{FS} = \frac{1}{4}(\frac{1}{2} + \frac{1}{2}) = \frac{1}{4}$

Parentesco Entre Indivíduos de Gerações Diferentes

Se há sobreposição de gerações, pode-se ter a necessidade de calcular o parentesco entre indivíduos pertencentes a gerações diferentes, como no pedigree abaixo.



Considerando-se o pedigree acima, as expressões para o cálculo do parentesco entre P e C ou entre P e D ou Q e A ou Q e B podem ser deduzidas pelo seguinte raciocínio: Tome um gameta ao acaso de P; repita isso várias vezes. Em 50% dos casos os gametas de P vão "transportar" genes de A e em 50% genes de B. Agora, Tome um gameta ao acaso de C; repita isso várias vezes. Em 100% dos casos os gametas de C vão "transportar" genes de C. Assim, os dois gametas, um de C0 e outro de C1 vão "transportar" genes de C2 em 1/2 dos casos, de C3 e de C4 e de C5 em 1/2. Mas, a probabilidade de que dois genes tomados ao acaso, um de C6 e outro de C6, sejam idênticos por descendência é igual ao coeficiente de parentesco de C5 com C6 (C6). Da mesma forma, C8 e C9 e C9, ou seja,

Parentesco Entre Indivíduos de Gerações Diferentes

$$f_{PC} = \frac{1}{2}(f_{AC} + f_{BC})$$
 Equação 2.1a

[A e B são os pais de P]

$$f_{PD} = \frac{1}{2}(f_{AD} + f_{BD})$$
 Equação 2.1b

Pelo mesmo raciocínio, considerado nos parentescos anteriores tem-se:

$$f_{QA} = \frac{1}{2}(f_{AC} + f_{AD})$$
 Equação 2.1c

 $[C \ e \ D \ s\~ao \ os \ pais \ de \ Q]$

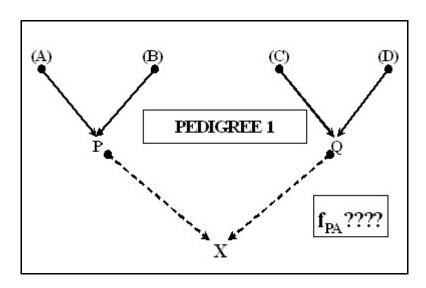
$$f_{QB} = \frac{1}{2}(f_{BC} + f_{BD})$$
 Equação 2.1d

Conclusão

As expressões acima mostram que o parentesco entre dois indivíduos pertencentes a gerações diferentes é equivalente ao parentesco médio entre o indivíduo mais velho e os pais do mais novo.

Coeficiente de Parentesco Entre Animais Pertencentes a Gerações Diferentes - Exemplos

1 - Parentesco Entre Progênie e Pai (f_{PA})



Cálculo do Coeficiente de Parentesco Entre Progênie e Pai Solução

O parentesco entre dois indivíduos pertencentes a gerações diferentes é equivalente ao parentesco médio entre o indivíduo mais velho e os pais do mais novo.

Com base no pedigree acima, tem-se:

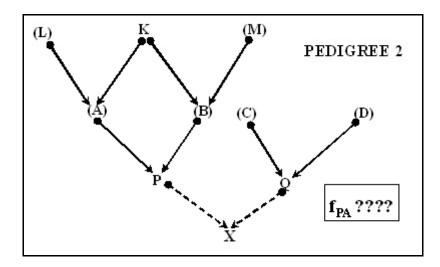
$$f_{PA} = \frac{1}{2}(f_{AA} + f_{AB})$$

A não é endogâmico,
$$F_A = 0 \implies f_{AA} = \frac{1}{2}(1 + F_A) = \frac{1}{2}(1 + 0) = \frac{1}{2}$$

$$A \in B$$
 não são aparentados $(f_{AB} = 0) \rightarrow f_{PA} = \frac{1}{2}(\frac{1}{2} + 0) = \rightarrow$

$$f_{PA} = \frac{1}{4} = 0.25$$

2 - Parentesco Entre Progênie e Pais (f_{PA}) - Pedigree 2



Cálculo do Coeficiente de Parentesco Entre Progênie e Pai Solução

O parentesco entre dois indivíduos pertencentes a gerações diferentes é equivalente ao parentesco médio entre o indivíduo mais velho e os pais do mais novo.

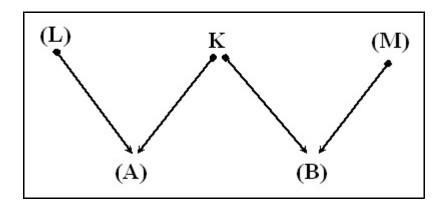
Com base no pedigree acima, tem-se:

$$f_{PA}=\frac{1}{2}(f_{AA}+f_{AB})$$

A não é endogâmico \Rightarrow $F_A = 0 \Rightarrow f_{AA} = \frac{1}{2}$

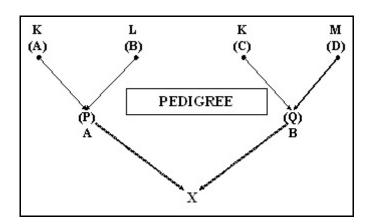
Falta, então, calcular f_{AB}

Pedigree dos Animais A e B



Coeficiente de Parentesco Entre Progênie e Pai

Outra Forma de Representar o Pedigree Anterior (Animais Dentro dos Parêntesis São Conceituais e Animais Fora dos Parêntesis são Reais)



Coeficiente de Parentesco Entre os Animais A e B

$$f_{PQ} = \frac{1}{4}(f_{AC} + f_{AD} + f_{BC} + f_{BD})$$
 [Euação 2.1 - Animais Conceituais]

Considerando-se, no entanto, os pais "reais" (ver pedigree acima),

$$f_{AB} = \frac{1}{4}(f_{KK} + f_{KM} + f_{LK} + f_{LM})$$
 [Euação 2.1 - Animais Reais]

$$\textbf{\textit{K}} \ e \ \textbf{\textit{M}} \ ; \ \textbf{\textit{L}} \ e \ \textbf{\textit{K}} \ i \ \textbf{\textit{M}} \ n \tilde{a} o \ s \tilde{a} o \ aparenta dos \mapsto f_{\text{KM}} = 0 \ , \ f_{\text{LK}} = 0 \ e \ f_{\text{LM}} = 0$$

K não é endogâmico $\Rightarrow f_{KK} = \frac{1}{2}$

Assim,

$$f_{AB} = f_{HS} = \frac{1}{4}(\frac{1}{2} + 0 + 0 + 0) = \frac{1}{8}$$

Coeficiente de Parentesco Entre Progênie e Pai - Final

$$f_{PA} = \frac{1}{2}(f_{AA} + f_{AB})$$

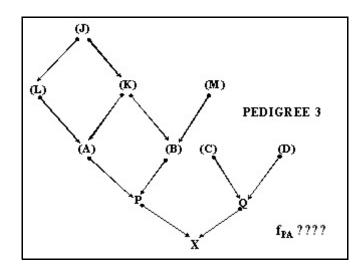
Animal \underline{A} não é endogâmico, $F_A = 0 \Rightarrow f_{AA} = \frac{1}{2}$

Animais \underline{A} e \underline{B} são meio-irmãos $\Rightarrow f_{AB} = \frac{1}{8}$

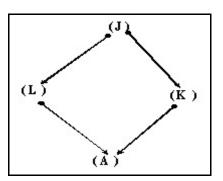
$$f_{PA} = \frac{1}{2}(f_{AA} + f_{AB}) = \frac{1}{2}(\frac{1}{2} + \frac{1}{8}) = \frac{1}{2}(\frac{5}{8}) = \frac{5}{16} = 0,3125$$

Coeficiente de Parentesco Entre Progênie e Pai

Pedigree 3 - Ancestral Comum Endogâmico



A única diferença do pedigree abaixo em relação ao pedigree anterior (Pedigree 2) é que o ancestral comum (A) é endogâmico.



Ancestral Comum Endogâmico - Coeficiente de Parentesco Entre os Animais P e A

Neste caso, o animal \underline{A} sendo endogâmico \Rightarrow $F_A = (\frac{1}{2})^{[1+1+1]} = \frac{1}{8} \Rightarrow$ (Calculado, página 118)

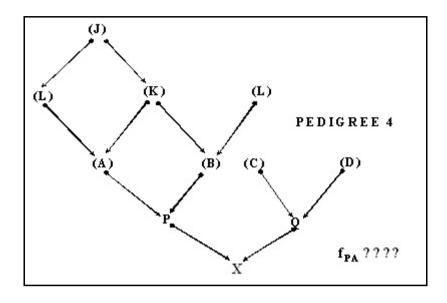
$$f_{AA} = \frac{1}{2}(1 + \frac{1}{8}) = \frac{1}{2}(\frac{9}{8}) = \frac{9}{16}$$

 $A \ e \ B \ s\~ao \ meio-irm\~aos \rightarrow f_{AB} = \frac{1}{8} \quad [\ Veja \ p\'agina \ 128 \] \rightarrow$

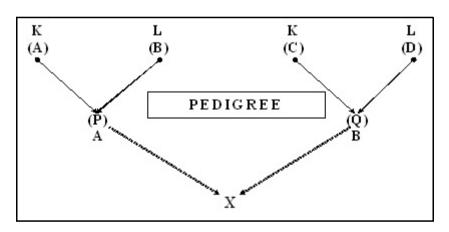
$$f_{PA} = \frac{1}{2}(f_{AA} + f_{AB}) = \frac{1}{2}(\frac{9}{16} + \frac{1}{8}) = \frac{1}{2}(\frac{11}{16}) = \frac{11}{32} = 0,34375$$

Coeficiente de Parentesco Entre Progênie e Pai

Pedigree 3 - Ancestral Comum Endogâmico - A e B são Irmãos Completos



Pedigree dos Animais A e B



Coeficiente de Parentesco Entre A e B

$$f_{PQ} = \frac{1}{4}(f_{AC} + f_{AD} + f_{BC} + f_{BD})$$
 [Equação 2.1 - Animais Conceituais]

Considerando-se, no entanto, os pais "reais" (pedigree acima),

$$f_{AB} = \frac{1}{4}(f_{KK} + f_{KL} + f_{LK} + f_{LL})$$
 [Equação 2.1 - Animais Reais]

K e L não são aparentados e tanto K como L não são endogâmicos

$$f_{KK} = \frac{1}{2}$$
 , $f_{LL} = \frac{1}{2}$, $f_{KL} = 0$, $f_{LK} = 0$ \mapsto

$$f_{AB} = f_{FS} = \frac{1}{4}(\frac{1}{2} + \frac{1}{2}) = \frac{1}{4}$$
 [Veja página 129]

$$f_{PA} = \frac{1}{2}(f_{AA} + f_{AB})$$

$$f_{AA} = \frac{1}{2}(1 + F_A) = \frac{1}{2}(1 + \frac{1}{8}) = \frac{1}{2}(\frac{9}{8}) = \frac{9}{16}$$
 [página 127]

$$f_{AB} = f_{FS} = \frac{1}{4}(\frac{1}{2} + \frac{1}{2}) = \frac{1}{4}$$
 [página 129]

$$f_{PA} = \frac{1}{2}(f_{AA} + f_{AB}) = \frac{1}{2}(\frac{9}{16} + \frac{1}{4}) = \frac{1}{2}(\frac{13}{16}) = \frac{13}{32} = 0,40625$$

Atenção!

Notar que, do pedigree 1 ao pedigree 4, foram sendo agregadas probabilidades de $\mathbf{A}_1 \equiv \mathbf{A}_2$, por meio de endogamia do ancestral comum ou por meio de parentesco entre os ancestrais de \mathbf{P} e de \mathbf{Q} . Assim, o coeficiente de parentesco entre \mathbf{P} e \mathbf{A} (f_{PA}) passou de 0,2500 no pedigree 1 para 0,3125 no pedigree 2, em seguida para 0,3475 no pedigree 3 até 0,40625 no pedigree 4.

Outra Expressão Para o Parentesco Entre Dois Indivíduos

$$f_{PQ} = \frac{1}{4}(f_{AC} + f_{AD} + f_{BC} + f_{BD})$$
 pode ser reescrita como

$$f_{PQ} = \frac{1}{2} \left[\frac{1}{2} (f_{AC} + f_{BC}) + \frac{1}{2} (f_{AD} + f_{BD}) \right] \quad ou \quad f_{PQ} = \frac{1}{2} \left[\frac{1}{2} (f_{AC} + f_{AD}) + \frac{1}{2} (f_{BC} + f_{BD}) \right]$$

Substituindo-se essas expressões pelas expressões de parentesco entre indivíduos de gerações diferentes (desenvolvidas na página 130):

$$\frac{1}{2}(f_{AC}+f_{BC})=f_{PC} \quad [equação \ 2.1a] \quad e \quad \frac{1}{2}(f_{AD}+f_{BD})=f_{PD} \quad [equação \ 2.1b]$$

$$\frac{1}{2}(f_{AC} + f_{AD}) = f_{QA} \quad [equação \ 2.1c] \quad e \quad \frac{1}{2}(f_{BC} + f_{BD}) = f_{QB} \quad [equação \ 2.1d]$$

Tem-se:

$$f_{PQ} = \frac{1}{2}(f_{PC} + f_{PD}) = \frac{1}{2}(f_{QA} + f_{QB})$$

Conclusão

O parentesco entre dois indivíduos quaisquer é equivalente ao parentesco médio entre um deles e os pais do outro. Se, no entanto, for entre animais de gerações diferentes, será o parentesco médio entre <u>o mais velho</u> e os pais do mais novo.

Coeficiente de Parentesco Segundo Wright

Segundo S. Wright (1952), o coeficiente de parentesco entre dois indivíduos \underline{P} e \underline{Q} (expresso como R_{PQ})

é o coeficiente de correlação entre os genótipos desses indivíduos, e pode ser calculado por:

$$R_{PQ} = \frac{Cov_{PQ}}{\sqrt{Var_P \times Var_Q}}$$

Em que:

 R_{PO} = Coeficiente de correlação entre os valores genotípicos de P e Q

Cov_{PO} = Covariância entre os valores genotípicos de P e Q

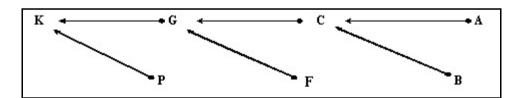
Var_p = Variância dos valores genotípicos do animal P

Var₀ = Variância dos valores genotípicos do animal Q

Parentesco de Wright ou Covariância Genética

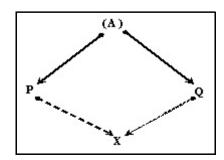
Na expressão do coeficiente de parentesco mostrada acima, \mathbf{R}_{PQ} é a correlação entre os genótipos e, portanto, o seu numerador é a covariância entre esses mesmos genótipos. O componente causal da covariância é a ação aditiva dos genes e, assim, Cov_{PQ} pode ser assumida como sendo a covariância genética aditiva entre os indivíduos P e Q. Nesta publicação, esta covariância será sempre representada como \mathbf{a}_{PO} .

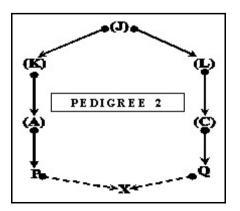
A expressão para o cálculo de \mathbf{a}_{PQ} pode ser deduzida usando-se diagramas de passagem, da seguinte forma:



O indivíduo $\underline{\mathbf{A}}$ transmite a metade de seus genes ao indivíduo $\underline{\mathbf{C}}$, então $\mathbf{a}_{\mathbf{AC}} = 1/2 = (1/2)^1$, ou seja, a probabilidade de que um determinado gene do animal $\underline{\mathbf{A}}$ seja transmitido ao animal $\underline{\mathbf{C}}$ é 1/2. O animal $\underline{\mathbf{C}}$ transmite a metade dos genes para $\underline{\mathbf{G}}$ e $\mathbf{a}_{\mathbf{AG}} = 1/4 = (1/2)^2 = (1/2)^2$. Quer dizer, a probabilidade de que um determinado gene do animal $\underline{\mathbf{A}}$ seja transmitido ao animal $\underline{\mathbf{G}}$ é $1/4 = (1/2)^{[1+1]}$. Este conceito pode ser estabelecido para um pedigree qualquer.

Considere-se os pedigrees abaixo





Expressão da Covariância Genética (a_{PO}) - Pedigree Qualquer - Ancestral Comum não Endogâmico

$$a_{PQ} = \left[\frac{1}{2}\right]^{(n_1 + n_2)}$$

Sendo:

 a_{PQ} = parentesco de Wright = Medida da fração dos genes idênticos, portanto medida relativa da covariância entre os valores genéticos aditivos dos pais \Rightarrow

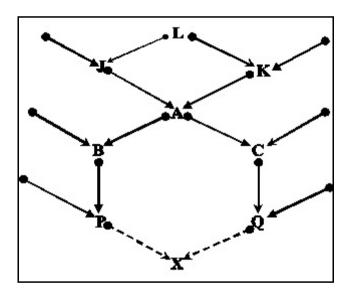
 a_{PO} = covariância genética entre P e Q (Cov_{PO})

 n_1 = número de gerações decorrentes do indivíduo P ao ancestral comum

 n_2 = número de gerações decorrentes do indivíduo Q ao ancestral comum

Expressão da Covariância Genética Com Ancestral Comum Endogâmico

Considere-se, agora, o pedigree abaixo em que o ancestral comum (A) é endogâmico.



Expressão da Covariância Genética (a_{PQ}) - Pedigree Qualquer - Ancestral Comum Endogâmico

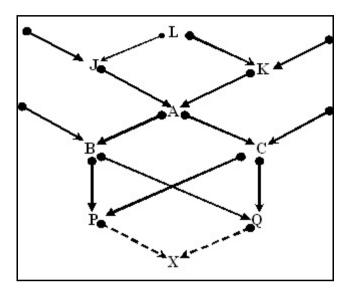
Se o ancestral comum (A) for endogâmico, demonstra-se, usando o mesmo raciocínio aplicado para o coeficiente de endogamia, F_X (páginas 121 e 122), que:

$$a_{PQ} = \left[\frac{1}{2}\right]^{(n_1 + n_2)} \cdot (1 + F_A)$$

Em que F_A = Coeficiente de endogamia do ancestral comum A

Expressão da Covariância Genética Com Mais de Um Ancestral Comum

O Pedigree abaixo apresenta mais de um ancestral comum. Todos os ancestrais comuns devem ser considerados no cálculo da covariância genética. As probabilidades referentes a cada ancestral são, então, somadas.



Expressão da Covariância Genética (a_{PQ}) – Pedigree Qualquer – Mais de Um Ancestral Comum Expressão Final

A equação

$$a_{PQ} = \sum \left[\left(\frac{1}{2} \right)^{(n_1 + n_2)} \cdot (1 + F_A) \right]$$

pode, então, ser aplicada para qualquer pedigree, inclusive para os que envolvem mais de um ancestral comum.

Em que:

 \sum = Somatório dos resultados obtidos pela equação $a_{PQ} = (\frac{1}{2})^{(n_1 + n_2)}$. $(1+F_A)$ - para cada ancestral comum (soma para todos os ancestrais comuns)

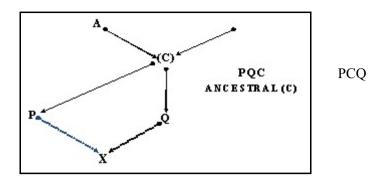
Demais termos, como definidos anteriormente.

Exemplo

Cálculo da Covariância Genética Quando o Pedigree Apresenta Mais de Um Ancestral Comum

Considerando-se o pedigree acima, tem-se três ancestrais comuns. Neste caso, aplica-se a equação para cada um dos ancestrais comuns e somam-se os valores obtidos para as partes.

Primeira Parte do Pedigree (Ancestral Comum C)



Cálculo da Covariância Genética - 1ª Parte

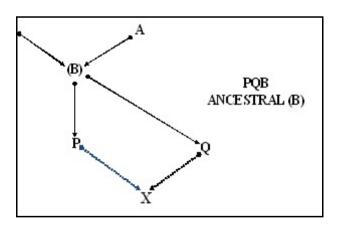
$$a_{PQ} = \left[\frac{1}{2}\right]^{(n_1 + n_2)} \cdot (1 + F_A)$$

$$F_{A} = 0$$

$$F_A = 0$$

$$a_{PQ} = \left[\frac{1}{2}\right]^{(1+1)} \cdot (1+0) = \left[\frac{1}{2}\right]^{(2)} = \frac{1}{4}$$

Segunda Parte do Pedigree (Ancestral Comum B)



PBQ

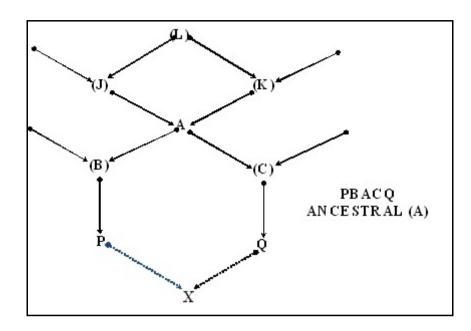
Cálculo da Covariância Genética - 2ª Parte

$$a_{PQ} = \left[\frac{1}{2}\right]^{(n_1 + n_2)}$$
. $(1 + F_A)$

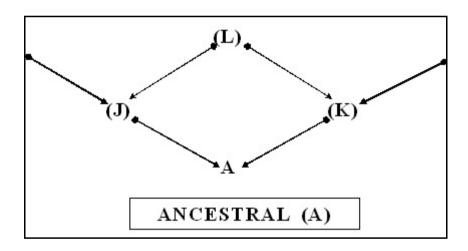
$$F_{\star} = 0$$

$$a_{PQ} = \left[\frac{1}{2}\right]^{(1+1)}$$
. $(1+0) = \left[\frac{1}{2}\right]^{(2)} = \frac{1}{4}$

Terceira Parte do Pedigree (Ancestral Comum A)



Ancestral Comum A Endogâmico



Cálculo do Coeficiente de Endogamia do Ancestral A

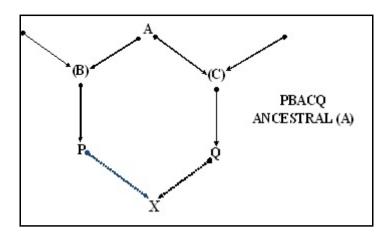
$$F_A = \left[\frac{1}{2}\right]^{(n_1 + n_2 + 1)} \cdot (1 + F_L)$$

$$F_{-} = 0$$

$$F_L = 0$$

$$F_A = \left[\frac{1}{2}\right]^{(1+1)} \cdot (1+0) = \left[\frac{1}{2}\right]^{(3)} = \frac{1}{8}$$

Terceira Parte do Pedigree



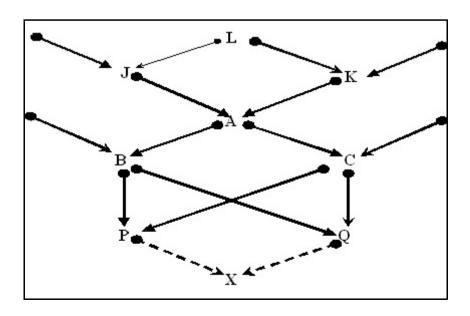
Cálculo do Covariância Genética - 3ºParte

$$a_{PQ} = \left[\frac{1}{2}\right]^{(n_1 + n_2)}$$
. $(1 + F_A)$

$$F_A = \frac{1}{8}$$

$$a_{PQ} = \left[\frac{1}{2}\right]^{(2+2)}$$
. $(1+\frac{1}{8}) = \left[\frac{1}{2}\right]^{(4)}$. $\frac{9}{8} = \frac{1}{16}$. $\frac{9}{8} = \frac{9}{128}$

Cálculo da Covariância~Genética - Pedigree Com Três Ancestrais Comuns Resultado Final



Cálculo do Covariância Genética

Final

Para o pedigree acima, a covariância genética entre os animais P e Q é dada por:

$$a_{PQ} = \sum \left[\left(\frac{1}{2} \right)^{(n_1 + n_2)} \cdot (1 + F_A) \right]$$

$$a_{PQ} [1^a PARTE] = \frac{1}{4} ; \quad a_{PQ} [2^a PARTE] = \frac{1}{4} ; \quad a_{PQ} [3^a PARTE] = \frac{9}{128}$$

$$a_{PQ} = \frac{1}{4} + \frac{1}{4} + \frac{9}{128} = \frac{73}{128} = 0,57$$

A covariância genética (\mathbf{a}_{PQ}), também chamada de parentesco (ou, em inglês, numerator relationship), é a medida apropriada da fração de efeitos dos genes idênticos por descendência e é uma medida relativa da covariância entre os valores genéticos aditivos dos parentes. Assim, essa covariância (\mathbf{a}_{PQ}) é usada na ponderação dos registros de produção (registros de desempenho) dos parentes nos métodos de avaliação genética.

Coeficiente de Parentesco de Wright - Estabelecimento da Equação

Coeficiente de Parentesco (R_{PO})

Segundo a definição de Wright (1952),
$$R_{PQ} = \frac{Cov_{PQ}}{\sqrt{Var_P \times Var_Q}}$$

Se a Cov_{PQ} é representada por a_{PQ} (ver páginas 137 a 139), então,

$$Var_P = Cov_{PP} = a_{PP} e Var_Q = Cov_{QQ} = a_{QQ}$$

E, assim,
$$R_{PQ} = \frac{a_{PQ}}{\sqrt{a_{PP} x a_{OO}}}$$

Pela observação das expressões da covariância genética (a_{PQ}) e do coeficiente de endogamia segundo Malécot (F_v) , reescritos abaixo,

$$a_{PQ} = \sum \left[\left(\frac{1}{2} \right)^{n_1 + n_2} x \left(1 + F_A \right) \right] \quad e \quad F_X = \sum \left[\left(\frac{1}{2} \right)^{n_1 + n_2 + 1} x \left(1 + F_A \right) \right] \rightarrow$$

$$F_X = \frac{1}{2} \sum \left[(1/2)^{(n_1 + n_2)} \cdot (1 + F_A) \right] = \frac{1}{2} a_{PQ} \rightarrow a_{PQ} = 2F_X$$

Coeficiente de Parentesco (R_{PO})

$$a_{PQ} = 2F_X$$

Mas, considerando-se que F_X = f_{PO} (página 128), então, a_{PO} = $2f_{PO}$ e, consequentemente,

$$a_{PP} = 2f_{PP} e a_{QQ} = 2f_{QQ}$$

Sabe-se, no entanto, que o parentesco de um indivíduo consigo mesmo, segundo o conceito de Malécot é dado por:

$$f_{PP} = \frac{1}{2}(1 + F_P)$$
 [Veja página 113, em que $f_{AA} = \frac{1}{2}(1 + F_A)$]

Portanto,

$$a_{PP} = 2f_{PP} = 2(\frac{1}{2})(1 + F_P) = 1 + F_P$$

$$a_{QQ} = 2f_{QQ} = 2(\frac{1}{2})(1 + F_Q) = 1 + F_Q$$

Mas, como definido por Wright,
$$R_{PQ} = \frac{a_{PQ}}{\sqrt{a_{PP} \cdot a_{QQ}}} \rightarrow R_{PQ} = \frac{a_{PQ}}{\sqrt{(1 + F_P) \times (1 + F_Q)}} \rightarrow$$

$$R_{PQ} = \frac{\sum [(1/2)^{(n_1 + n_2)} \cdot (1 + F_A)]}{\sqrt{(1 + F_P) \cdot (1 + F_Q)}}$$

Sendo:

 a_{PO} = covariância genética entre os indivíduos P e Q

 n_1 = número de gerações decorrentes do indivíduo P ao ancestral comum

 n_2 = número de gerações decorrentes do indivíduo Q ao ancestral comum

 F_A = coeficiente de endogamia do ancestral comum (A)

 F_P = coeficiente de endogamia do indivíduo P

 F_O = coeficiente de endogamia do indivíduo Q

O coeficiente de parentesco (R_{PQ}) é, na verdade, a covariância genética (a_{PQ}) ajustada para o coeficiente de endogamia dos dois animais envolvidos no parentesco.

A Lógica da Expressão do Coeficiente de Parentesco (R_{PO})

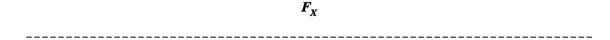
Considerando-se que a endogamia aumenta a homozigose, um animal endogâmico irá transmitir genes idênticos a cada um de seus descendentes de forma muito mais frequente do que um animal tomado ao acaso da população.

Se o ancestral comum a dois indivíduos é endogâmico, estes têm mais genes em comum e portanto são mais aparentados do que se o ancestral comum não fosse endogâmico. Para esta correção, a contribuição do ancestral comum é multiplicada por $(1+F_A)$.

A endogamia torna também a população mais variável pela produção de linhas endogâmicas separadas. Descendentes endogâmicos de qualquer animal terão maior porcentagem de homozigose do que os de um animal não endogâmico, mas podem ser homozigotos para diferentes alelos do mesmo par e assim menos aparentados do que se não fossem endogâmicos. O denominador da expressão de \mathbf{R}_{PO} corrige para esta situação.

Coeficiente de Endogamia Segundo Wright (1952)

Wright (1952) conceitua o coeficiente de endogamia de um indivíduo \mathbf{X} (F_X) como a correlação entre os dois gametas em união.



Considerando-se ${\it P}$ o gameta masculino e ${\it Q}$ o gameta feminino, o coeficiente de endogamia de Wright

$$\acute{e} \ dado \ por: \ F_{\chi} = \frac{COV(P, \ Q)}{\sqrt{\sigma_P^2 \ x \ \sigma_Q^2}}$$

Em que

COV(P, Q) = Covariância Genética ou Parentesco, segundo Wright, entre os indivíduo P e Q Observação :

Apesar de as duas conceituações serem diferentes, os dois coeficientes são iguais, ou seja,

F_{Malécot} = F_{Wright}

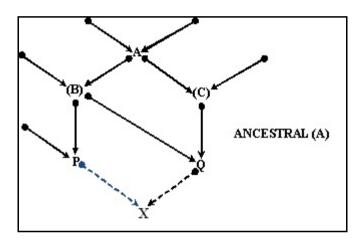
Cálculo da Covariância Genética e do Coeficiente de Endogamia Pelo Método Tabular

O método dos diagramas de passagem é prático para pequenos pedigrees, mas torna-se complicado se o número de animais aumentar muito.

O método tabular baseia-se no princípio de que se dois animais são parentes, um ou ambos os pais de um deles é também parente do outro do mesmo par. A grande vantagem deste método é que, uma vez terminada a tabela, têm-se todas as covariâcias ou parentescos possíveis entre os animais e também o coeficiente de endogamia de cada um deles. Esta tabela, conhecida como "matriz de parentesco" é usada pelos programas computacionais de avaliação genética.

Foi demonstrado na página 136 (Outra expressão do parentesco segundo Malécot) que o parentesco entre dois indivíduos é equivalente ao parentesco médio de um deles com os pais do outro. O mesmo princípio é aplicado aqui.

Considerando-se o "pedigree" abaixo,



Pode-se, por meio de regras simples, determinar o parentesco pela construção de uma tabela que inclui todos os indivíduos.

Regras Para Computar as Covariâncias Genéticas e os Coeficientes de Endogamia

- 1. Determinar quais os animais que serão incluídos na tabela. Ordená-los segundo a idade, primeiro os mais velhos.
- 2. Montar uma tabela com nomes ou números dos animais

	A	В	С	P	Q	X
A						
В						
C						
P						
Q						
X						

3. Escrever acima dos nomes (ou números) dos animais os nomes (ou números) dos seus pais. Se não forem conhecidos, colocar barras.

		A-	A-	B-	ВС	PQ
	A	В	C	P	Q	X
A						
В						
C						
P						
Q						
X						

Diagonal da Tabela

4. Preencher cada célula da diagonal com o valor 1. O parentesco do animal consigo mesmo é igual a 1(na ausência de endogamia). Para os animais base, assumir que o parentesco é zero.

		A-	A-	В-	ВС	PQ
	A	В	С	P	Q	X
A	1					
В		1				
C			1			
P				1		
Q					1	
X						1

Off Diagonal

5. Computar cada célula fora da diagonal como a média dos valores nesta linha, correspondentes às colunas do pai e da mãe.

$$a_{PQ} = \frac{1}{2}(a_{ij_S} + a_{ij_D})$$

 a_{PO} = parentesco (covariância genética) entre os indivíduos i e j

 a_{PO_n} = parentesco entre o animal i e o pai do animal j

 a_{PO} = parentesco entre o animal P e a mãe do animal Q

[Lembrar que o parentesco entre dois indivíduos é igual à média de parentesco de um deles com os pais outro (página 136). Se P e Q pertencerem a gerações diferentes, o parentesco entre eles será igual à média de parentesco entre o mais velho e os pais do mais novo (páginas 130/131)].

Após terminar cada linha, preencher a coluna correspondente com os valores dessa linha.

Método Tabular

Exemplo

$$a_{AB} = \frac{1}{2}(a_{AA} + a_{A-}) = \frac{1}{2}(1 + 0) = \frac{1}{2}$$

E, assim, para todos os parentescos nesta linha

		A-	A-	B-	BC	PQ
	A	В	C	P	Q	X
A	1	1/2	1/2	1/4	1/2	3/8
В	1/2	1				
C	1/2		1			
P	1/4			1		
Q	1/2				1	
X	3/8					1

Diagonal

6. Adicionar, nas células da diagonal, a metade do parentesco entre os pais. O parentesco entre os pais pode ser obtido na tabela, na intersecção entre linha e coluna dos pais. A metade do parentesco entre os pais corresponde à endogamia do indivíduo da célula (veja página 143).

Diagonal

$$a_{PP} = 1 + F_P$$

Sendo
$$F_P = \frac{1}{2} a_{P_S P_D}$$

 a_{pp} = parentesco(covariância genética) do animal ${\bf P}$ consigo mesmo

 F_P = endogamia do animal P e $a_{P_RP_D}$ = parentesco entre os pais de P

$$a_{PP} = 1 + \frac{1}{2} a_{P_S P_D}$$

Exemplo

$$F_A = \frac{1}{2}a_{--} = \frac{1}{2}(0) = 0 \rightarrow a_{AA} = 1 + \frac{1}{2}a_{--} = 1 + F_A = 1 + 0$$
 (Os pais de A são desconhecidos)

Mais à frente será visto que:

$$F_Q = \frac{1}{2}a_{BC} = \frac{1}{2}(\frac{1}{4}) = \frac{1}{8}$$

$$a_{QQ} = 1 + \frac{1}{2}a_{BC} = 1 + F_Q = 1 + \frac{1}{8}$$

Método Tabular

3/8

9/16

3/8

7. Repetir as regras 5 e 6 até completar a tabela, fazendo sempre uma linha por vez. Lembrar que:

			Off Diagona	<i>l</i>		
a _{PQ} =	$\frac{1}{2}(a_{PQ_S} + a_{PQ_D})$	=- 				==
a _{PP} =	$\frac{1}{2}(a_{PQ_S} + a_{PQ_D})$ $1 + \frac{1}{2}a_{P_SP_D}$					
		A-	A-	B-	ВС	PQ
	A	В	С	P	Q	X
A	1+0	1/2	1/2	1/4	1/2	3/8
В	1/2	1				
C	1/2		1			
P	1/4			1		
Q	1/2				1	
X	3/8	-			-	1
		A-	A-	B-	ВС	PQ
	A	В	С	P	Q	X
A	1+0	1/2	1/2	1/4	1/2	3/8
В	1/2	1+0	1/4	1/2	5/8	9/16
C	1/4	1/4	1			
P	1/4	1/2		1		
Q	1/2	5/8			1	
X	3/8	9/16				1
		A-	A-	B-	BC	PQ
	A	В	C	P	Q	X
A	1+0	1/2	1/2	1/4	1/2	3/8
В	1/2	1+0	1/4	1/2	5/8	9/16
C	1/2	1/4	1+0	1/8	5/8	3/8
	1/4	1/2	1/8	1		
P	1/4	1/2	1/0	1		

Método Tabular

		A-	A-	B-	BC	PQ
	A	В	C	P	Q	X
A	1+0	1/2	1/2 1/2 1/4		1/2	3/8
В	1/2	1+0	1/4	1/2	5/8	9/16
C	1/2	1/4	1+0	1/8	5/8	3/8
P	1/4	1/2	1/8	1+0	5/16	21/32
Q	1/2	5/8	5/8	5/16	1	
X	3/8	9/16	3/8	21/32		1

Cálculo de a_{QQ}

$$a_{PQ} = \frac{1}{2}(a_{PQ_S} + a_{PQ_D})$$
 e $a_{QQ} = 1 + \frac{1}{2}a_{Q_SQ_D} = 1 + F_Q$

$$a_{PQ} = \frac{1}{2}(a_{PQ_S} + a_{PQ_D})$$
 e $a_{QQ} = 1 + \frac{1}{2}a_{Q_SQ_D} = 1 + F_Q$
 $Com\ Base\ nos\ Valores\ da\ Tabela\ Anterior$
 $F_Q = \frac{1}{2}a_{BC} = \frac{1}{2}(\frac{1}{4}) = \frac{1}{8}$ e $a_{QQ} = 1 + \frac{1}{2}a_{BC} = 1 + F_Q = 1 + \frac{1}{8}$

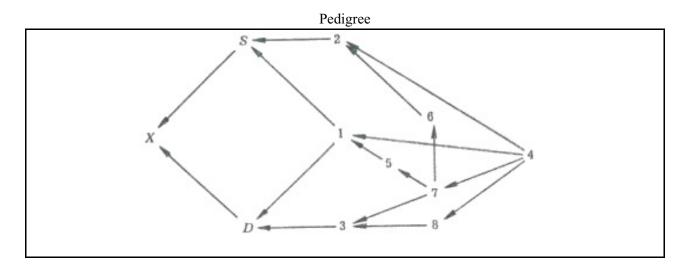
		A-	A-	B-	BC	PQ
	A	В	C	P	Q	X
A	1+0	1/2 1/2		1/4 1/2		3/8
В	1/2 1+0	1+0	1/4	1/2 5/8 1/8 5/8 1+0 5/16		9/16
C	1/2	1/4 1+0	1+0			3/8
P	1/4	1/2	1/8		5/16	21/32
Q	1/2	5/8	5/8	5/16	1+1/8	23/32
X	3/8	9/16	3/8	21/32	23/32	1

Tabela Final

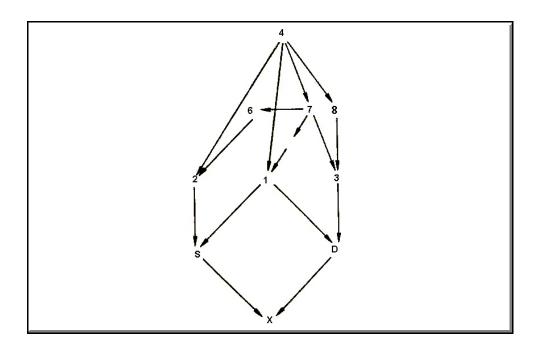
		A-	A-	В-	BC	PQ
	A	В	C	P	Q	X
A	1+0	1/2	1/2	1/4	1/2	3/8
В	1/2	1+0	1/4	1/2	5/8	9/16
C	1/2	1/4	1+0	1/8	5/8	3/8
P	1/4	1/2	1/8	1+0	5/16	21/32
Q	1/2	5/8	5/8	5/16	1 + 1/8	23/32
X	3/8	9/16	3/8	21/32	23/32	1 + 5/32

Exercícios Resolvidos

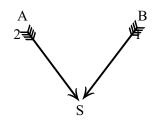
- 1. Dado o pedigree abaixo, pede-se:
 - a) Calcular o coeficiente de parentesco segundo Malécot, entre os animais S e D (f_{SD}).
 - b) Montar a tabela de covariâncias genéticas (parentescode Wright)
 - c) Com base na tabela, responda:
 - i) Qual é o coeficiente de endogamia do animal X?
 - ii) Qual é o coeficiente de endogamia do animal I?
 - iii) Qual é a covariância genética entre os animais 1 e D (a_{1D})?
 - iv) Qual é a covariância genética entre os animais S e D (a_{1D})?
 - v) Qual é o coeficiente de parentesco (Wright) entre os animais S e 1 (R_{SI})?

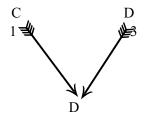


Resolução



a) Cálculo do Parentesco Segundo Malécot Entre S e D (f_{SD})

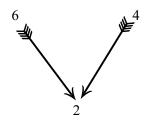


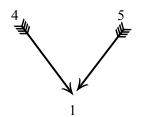


Cálculo de f_{SD}

$$f_{SD} = \frac{1}{4} [f_{AC} + f_{AD} + f_{BC} + f_{BD}] \quad \mapsto \quad f_{SD} = \frac{1}{4} [f_{21} + f_{23} + f_{11} + f_{13}]$$

Cálculo de \underline{f}_{21}





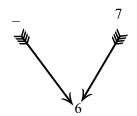
Cálculo de f_{21}

$$f_{SD} = \frac{1}{4} [f_{21} + f_{23} + f_{11} + f_{13}]$$

$$f_{21} = \frac{1}{4} [f_{64} + f_{65} + f_{44} + f_{45}]$$

$$f_{21} = \frac{1}{4} [f_{64} + f_{65} + f_{44} + f_{45}]$$

Cálculo de f₆₄



Cálculo de f₆₄

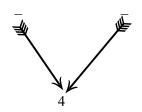
$$f_{21} = \frac{1}{4}[f_{64} + f_{65} + f_{44} + f_{45}]$$

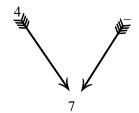
Lembrar que o parentesco entre dois indivíduos é igual à média de parentesco de um deles com os pais do outro (página 136). Se os indivíduos pertencem a gerações diferentes, o parentesco entre eles é igual à média de parentesco entre o mais velho e os pais do mais novo (ver páginas 130/131). O animal 4 é avô do animal 6. Portanto,

$$f_{64} = \frac{1}{2} [f_{47} + f_{4-}]$$

$$f_{4-} = 0 \mapsto f_{64} = \frac{1}{2} [f_{47}]$$

Cálculo de f₄₇





Cálculo de f₄₇

O parentesco entre dois indivíduos de gerações diferentes é igual ao parentesco médio do mais velho com os pais do mais novo, ou seja:

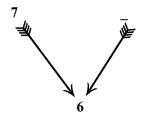
$$f_{47} = \frac{1}{2} [f_{44} + f_{4-}] = \frac{1}{2} [f_{44}]$$

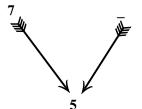
Mas, $f_{44} = \frac{1}{2}$ (parentesco do indivíduo consigo mesmo = $\frac{1}{2}$) $\mapsto f_{47} = \frac{1}{2} [\frac{1}{2}] = \frac{1}{4}$

Cálculo Final de f₆₄

$$f_{64} = \frac{1}{2} [f_{47}] = \frac{1}{2} [\frac{1}{4}] = \frac{1}{8}$$

Cálculo de f₆₅





Cálculo de f_{65}

$$f_{21} = \frac{1}{4} [f_{64} + f_{65} + f_{44} + f_{45}]$$

$$f_{64}=\frac{1}{8}$$

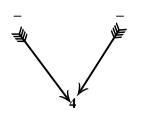
$$f_{65} = \frac{1}{4}[f_{77} + f_{7-} + f_{7-} + f_{--}] = \frac{1}{4}[f_{77}]$$
 Mas, $f_{77} = \frac{1}{2} \mapsto f_{65} = \frac{1}{4}[\frac{1}{2}] = \frac{1}{8}$

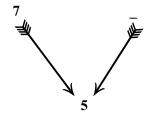
Notar que os animais 6 e 5 são meio irmãos (veja o pedigree) e, portanto, o parentesco entre eles (parentesco de Malécot) é $\frac{1}{8}$

$$f_{44}=\frac{1}{2}$$

Falta calcular o f_{45}

Cálculo de f_{45}





Cálculo de f₄₅

$$f_{45} = \frac{1}{2} [f_{47} + f_{4-}] = \frac{1}{2} [f_{47}]$$

$$f_{47} = \frac{1}{4}$$
 (calculado na página 153) $\mapsto f_{45} = \frac{1}{2} [\frac{1}{4}] = \frac{1}{8}$

 $f_{21} \\$

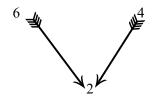
Cálculo Final de f_{21}

$$f_{21} = \frac{1}{4} [f_{64} + f_{65} + f_{44} + f_{45}]$$

$$f_{21} = \frac{1}{4} [f_{64} + f_{65} + f_{44} + f_{45}]$$

$$f_{21} = \frac{1}{4} [\frac{1}{8} + \frac{1}{8} + \frac{1}{2} + \frac{1}{8}] = \frac{7}{32}$$

Cálculo de f₂₃



Cálculo de f_{23}

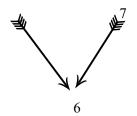
$$f_{SD} = \frac{1}{4}[f_{21} + f_{23} + f_{11} + f_{13}]$$

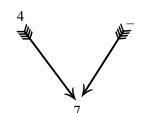
$$f_{21} = \frac{7}{32}$$

$$f_{21} = \frac{7}{32}$$

$$f_{23} = \frac{1}{4} [f_{67} + f_{68} + f_{47} + f_{48}]$$

Cálculo de f₆₇



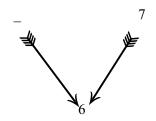


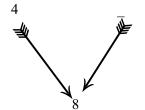
Cálculo de f₆₇

$$f_{23} = \frac{1}{4} [f_{67} + f_{68} + f_{47} + f_{48}]$$

$$f_{67} = \frac{1}{2}[f_{77} + f_{7-}] = \frac{1}{2}[f_{77}] = \frac{1}{2}[\frac{1}{2}] = \frac{1}{4}$$
 [Gerações diferentes]

Cálculo de f₆₈





Cálculo de f_{68}

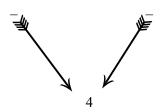
$$f_{23} = \frac{1}{4} [f_{67} + f_{68} + f_{47} + f_{48}]$$

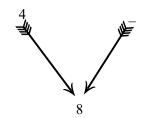
$$f_{67}=\frac{1}{4}$$

$$f_{68} = \frac{1}{4} [f_{-4} + f_{--} + f_{74} + f_{7-}] = \frac{1}{4} [f_{74}]$$
. Mas, $f_{74} = f_{47} = \frac{1}{4}$ (calculado na página 153) \rightarrow

$$f_{68} = \frac{1}{4} \left[\frac{1}{4} \right] = \frac{1}{16}$$

Cálculo de f₄₈





Cálculo de f₄₈

 $f_{23} = \frac{1}{4} [f_{67} + f_{68} + f_{47} + f_{48}]$

$$f_{67} = \frac{1}{4}$$

$$f_{68} = \frac{1}{16}$$

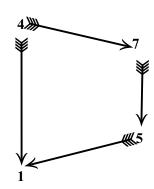
$$f_{47}=\frac{1}{4}$$

$$f_{48} = \frac{1}{2}[f_{44} + f_{4-}] = \frac{1}{2}[f_{44}] = \frac{1}{2}[\frac{1}{2}] = \frac{1}{4}$$

Cálculo Final de f₂₃

$$f_{23} = \frac{1}{4} \left[\frac{1}{4} + \frac{1}{16} + \frac{1}{4} + \frac{1}{4} \right] = \frac{13}{64}$$

Cálculo de f₁₁



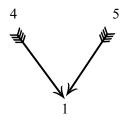
Cálculo de f₁₁

$$f_{11} = \frac{1}{2}[1 + F_1]$$
 (parentesco do indivíduo endogâmico consigo mesmo)

$$F_1 = \left[\begin{array}{cc} \frac{1}{2} \end{array}\right]^{0 + 2 + 1} = \left[\begin{array}{cc} \frac{1}{2} \end{array}\right]^3 = \frac{1}{8}$$
 (pedigree do animal 1 na página anterior)

$$f_{11} = \frac{1}{2}[1 + F_1] = \frac{1}{2}[1 = \frac{1}{8}] \rightarrow f_{11} = \frac{1}{2}[\frac{9}{8}] = \frac{9}{16}$$

Cálculo de f₁₃



Cálculo de f_{11}

$$f_{SD} = \frac{1}{4} [f_{21} + f_{23} + f_{11} + f_{13}]$$

$$f_{21} = \frac{7}{32}$$

$$f_{23} = \frac{13}{64}$$

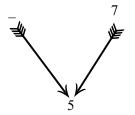
$$f_{11} = \frac{9}{16}$$

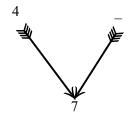
$$f_{13} = \frac{1}{4} [f_{47} + f_{48} + f_{57} + f_{58}]$$

 $f_{47} = \frac{1}{4}$ (já calculado anteriormente. Veja página 153)

 $f_{48} = \frac{1}{4}$ (já calculado anteriormente. Veja página 157)

Cálculo de f₅₇





Cálculo de f₅₇

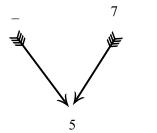
$$f_{13} = \frac{1}{4} [f_{47} + f_{48} + f_{57} + f_{58}]$$

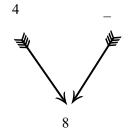
$$f_{47}=\frac{1}{4}$$

$$f_{48}=\frac{1}{4}$$

$$f_{57} = \frac{1}{2} [f_{-7} + f_{77}] = \frac{1}{2} [f_{77}] = \frac{1}{2} [\frac{1}{2}] = \frac{1}{4}$$

Cálculo de f₅₈





Cálculo de f_{58}

$$f_{13} = \frac{1}{4} [f_{47} + f_{48} + f_{57} + f_{58}]$$

$$f_{47} = \frac{1}{4}$$
 ; $f_{48} = \frac{1}{4}$; $f_{57} = \frac{1}{4}$

$$f_{58} = \frac{1}{4} [f_{-4} + f_{--} + f_{74} + f_{7-}] = \frac{1}{4} [f_{74}]$$

$$f_{74} = f_{47} = \frac{1}{4}$$
 (página 134) $\mapsto f_{58} = \frac{1}{4} \left[\frac{1}{4} \right] = \frac{1}{16}$

Cálculo Final de f_{13}

$$f_{13} = \frac{1}{4} \left[\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{16} \right] = \frac{13}{64}$$

Cálculo Final de
$$f_{SD}$$

$$f_{SD} = \frac{1}{4}[f_{21} + f_{23} + f_{11} + f_{13}]$$

$$f_{21} = \frac{7}{32}$$
 ; $f_{23} = \frac{13}{64}$; $f_{11} = \frac{9}{16}$; $f_{13} = \frac{13}{64}$

$$f_{21} = \frac{7}{32} \; ; \; f_{23} = \frac{13}{64} \; ; \; f_{11} = \frac{9}{16} \; ; \; f_{13} = \frac{13}{64}$$

$$f_{SD} = \frac{1}{4} \left[\frac{7}{32} + \frac{13}{64} + \frac{9}{16} + \frac{13}{64} \right] = \frac{1}{4} \left[\frac{76}{64} \right] = \frac{76}{256} \; \Rightarrow$$

$$f_{SD} = \frac{19}{64} = 0,297$$

$$f_{SD} = \frac{19}{64} = 0,297$$

b) Montagem da Tabela de Covariâncias Genéticas

A Tabela já montada é apresentada abaixo. Para sua construção foram utilizadas as regras e o exemplo apresentados no texto (ver páginas 128 a 132).

TABELA DE COVARIÂNCIAS GENÉTICAS (PARENTESCO DE WRIGHT)

		4 -	4 -	7 -	7 -	45	46	78	12	13	SD
	4	7	8	5	6	1	2	3	S	D	X
4	1+0	1/2	1/2	1/4	1/4	5/8	5/8	1/2	13/16	3/4	25/32
7	1/2	1+0	1/4	1/2	1/2	1/2	1/2	5/8	1/2	9/16	17/32
8	1/2	1/4	1+0	1/8	1/8	5/16	5/16	5/8	5/32	15/32	5/16
5	1/4	1/2	1/8	1+0	1/4	5/8	1/4	5/16	7/16	15/32	29/64
6	1/4	1/2	1/8	1/4	1+0	1/4	5/8	5/16	7/16	9/32	23/64
1	5/8	1/2	5/16	5/8	1/4	1+1/8	7/16	13/32	25/32	49/64	99/128
2	5/8	1/2	5/16	1/4	5/8	7/16	1+1/8	13/32	25/32	27/64	77/64
3	1/2	5/8	5/8	5/16	5/16	13/32	13/32	1+1/8	13/32	49/64	75/128
S	13/16	1/2	5/32	7/16	7/16	25/32	25/32	13/32	1+7/32	19/32	77/128
D	3/4	9/16	15/32	15/32	9/32	49/64	27/64	49/64	19/32	1+13/64	115/128
X	25/32	17/32	5/16	29/64	23/64	99/128	77/64	75/128	77/128	115/128	1+19/64

I - Os valores de cada célula fora da diagonal correspondem à covariância genética ou parentesco segundo Wright (a_{PO})

II - O segundo termo na célula da diagonal corresponde ao coeficiente de endogamia do indivíduo (II)

III- Nas células da diagonal, a covariância genética é dada pela soma dos dois termos (III)

Covariâncias Genéticas Nas Células da Diagonal $a_{44} = 1$ $a_{77} = 1$ $a_{88} = 1$ $a_{55} = 1$ $a_{66} = 1$ $a_{11} = \frac{9}{8}$ $a_{22} = \frac{9}{8}$ $a_{33} = \frac{9}{8}$ $a_{33} = \frac{39}{32}$ $a_{DD} = \frac{77}{64}$ $a_{XX} = \frac{83}{64}$

c) Endogamia, Parentesco e Coeficiente de Parentesco

Endogamia i) $F_X = \frac{19}{64} = 0,297 = 29,7\%$ *ii)* $F_1 = \frac{1}{8} = 0,125 = 12,5\%$

Parentesco e Coeficiente de Parentesco

Parentesco

iii)
$$a_{1D} = \frac{49}{64} = 0,766 = 76,6\%$$

iv)
$$a_{SD} = \frac{19}{32} = 0,594 = 59,4\%$$

Notar que $a_{SD} = \frac{19}{32}$ é o dobro de $f_{SD} = \frac{19}{64}$ (obtido no item a deste exercício - página 160), pois a covariância genética (parentesco de Wright) é o dobro do coeficiente parentesco de Malécot

CoeficientedeParentesco

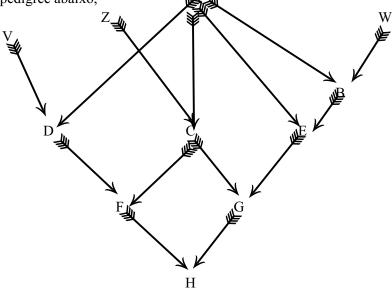
$$v) R_{SI} = \frac{a_{SI}}{\sqrt{(1+F_S)\cdot(1+F_1)}} = \frac{\frac{49}{64}}{\sqrt{(1+\frac{7}{32})\cdot(1+\frac{1}{8})}} \frac{\frac{49}{64}}{\sqrt{\frac{351}{256}}} = \frac{0,765625}{\sqrt{1,37109375}} = \frac{0,765625}{1,170937125} \Rightarrow \frac{1}{\sqrt{1,37109375}} = \frac$$

$$R_{SI} = 0,654 = 65,4\%$$

 R_{SI} = a_{SI} (covariância genética) ajustada para o coeficiente de endogamia dos animais envolvidos (S e I).

Exercícios Propostos

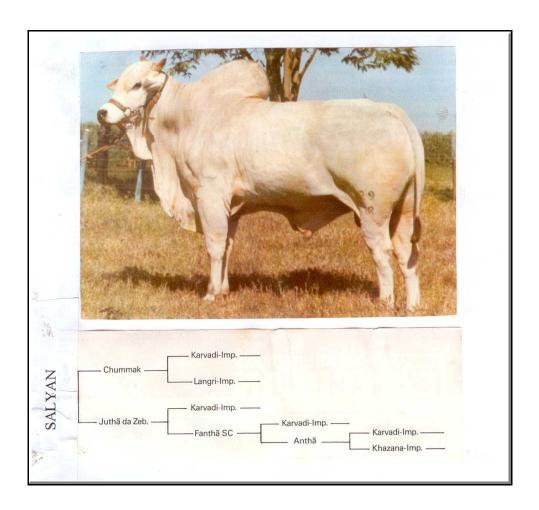
1. Considerando o pedigree abaixo,



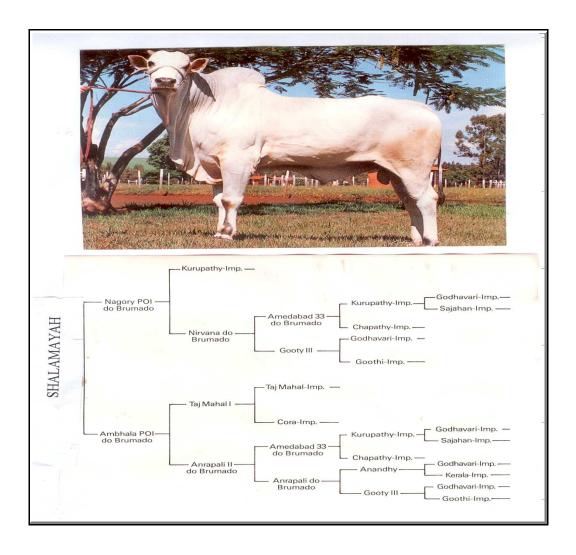
Pede-se:

- a) Calcular o parentesco segundo Malécot entre os animais D e C (f_{DC})
- b) Calcular o parentesco segundo Malécot entre os animais C e E (f_{CE})
- c) Calcular o parentesco segundo Malécot entre os animais F e G (f_{FG})
- d) Montar a tabela de covariâncias genéticas (parentesco de Wright)
- e) Considerando os resultados da tabela, calcular os coeficientes de parentesco (R_{II}) entre:
 - i) $F e G (R_{FG})$
 - ii) F e B (R_{FB})
 - iii) D e G (R_{DG})
 - iv) D e E (R_{DE})
- f) Qual é o coeficiente de endogamia do animal F?
- g) Qual é o coeficiente de endogamia do animal G?
- h) Qual é o coeficiente de endogamia do animal H?

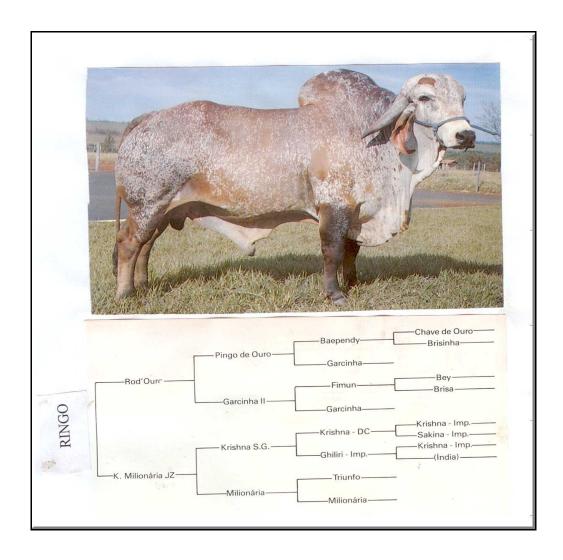
- 2. Considerando o pedigree abaixo, pede-se:
- a) Calcular o coeficiente de endogamia do touro Salyan
- b) Calcular o coeficiente de endogamia do vaca Juthã da Zeb.
- c) Calcular o parentesco (Malécot) entre Chumack e Juthã da Zeb. (f_{PQ})
- d) Montar a tabela de covariâncias genéticas para todos os animais do pedigree
- e) Qual é o coeficiente de parentesco (R_{PQ}) entre Chumack (P) e Juthã da Zeb. (Q)?



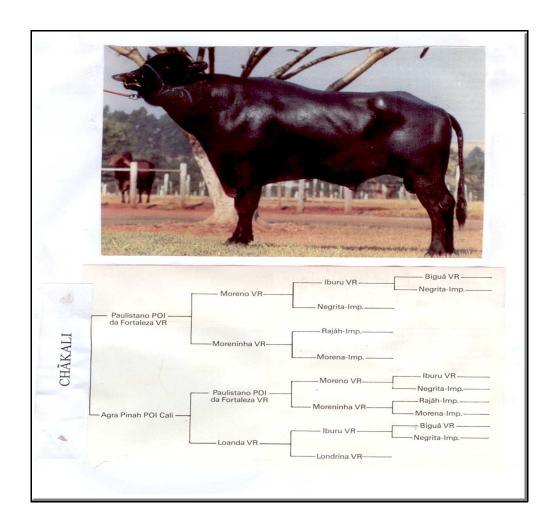
- 3. Considerando o pedigree abaixo, pede-se:
- a) Calcular o coeficiente de endogamia do touro Shalamayah
- b) Calcular o coeficiente de endogamia da vaca Anrapali II do Brumado
- c) Calcular o parentesco (Malécot) entre Nirvana do Brumado e Anrapali do Brumado.
- d) Montar a tabela de covariâncias genéticas para todos os animais do pedigree
- e) Qual é o coeficiente de parentesco (\mathbf{R}_{PO}) entre Negory POI do Brumado (\mathbf{P}) e Ambhala POI do Brumado (\mathbf{Q})?



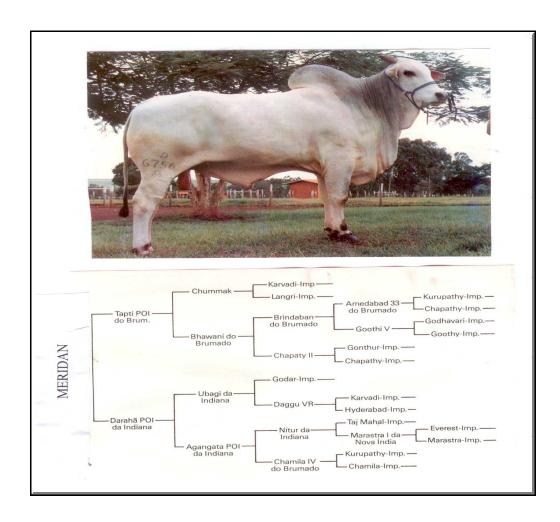
- 4. Considerando o pedigree abaixo, pede-se:
- a) Calcular o coeficiente de endogamia do touro Ringo
- b) Montar a tabela de covariâncias genéticas para todos os animais do pedigree
- c) qual é o parentesco (a_{PQ}) entre Rod'Ouro ((P) e K. milionária JZ (Q)?



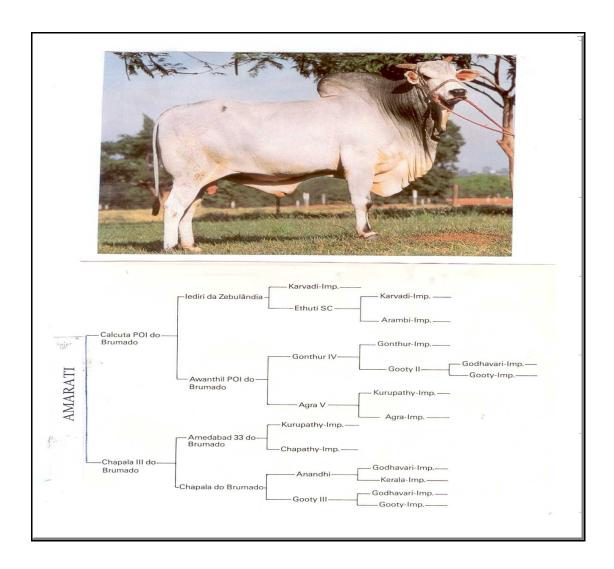
- 5. Considerando o pedigree abaixo, pede-se:
- a) Calcular o coeficiente de endogamia do touro Chãkali.
- b) Calcular o coeficiente de endogamia da vaca Agra Pinah POI Cali.
- c) Calcular o coeficiente de parentesco (Malécot) entre Paulistano POI da Fortaleza VR e Agra Pinah POI Cali.
- d) Montar a tabela de covariâncias genéticas para todos os animais do pedigree
- e) Qual é a covariância genética (a_{PO}) entre Paulistano POI da Fortaleza (P) VR e Agra Pinah POI Cali (Q)?



- 6. Considerando o pedigree abaixo, pede-se:
- a) Calcular o coeficiente de endogamia do touro Meridan
- b) Montar a tabela de covariâncias genéticas para todos os animais do pedigree
- c) Qual é a covariância genética (a_{PQ}) entre Tapti POI do Brum (P) e Darahã POI da Indiana (Q)?
- d) Qual é o coeficiente de parentesco (\mathbf{R}_{PO}) entre Tapti POI do Brum (\mathbf{P}) e Darahã POI da Indiana (\mathbf{Q})?



- 7. Considerando o pedigree abaixo, pede-se:
- a) Calcular o coeficiente de endogamia do touro Amarati
- b) Montar a tabela de covariâncias genéticas para todos os animais do pedigree
- c) Qual é a covariância genética (\mathbf{a}_{PQ}) entre Calcuta POI do Brumado (\mathbf{P}) e Chapala III do Brumado (\mathbf{Q})?
- d) Qual é o coeficiente de parentesco ($\mathbf{R}_{\mathbf{PQ}}$) entre Calcuta POI do Brumado (\mathbf{P}) e Chapala III do Brumado (\mathbf{Q})?



Estimação de Parâmetros Genéticos

Os parâmetros genéticos são fundamentais para a estruturação de programas de melhoramento genético dos rebanhos. Os parâmetros mais importantes são: herdabilidade, correlações e repetibilidade. As correlações podem ser: fenotípica, genética e ambiental ou residual. Neste capítulo, pretende-se conceituar cada um desses parâmetros, mostrar suas principais aplicações e exemplificar, com a utilização da metodologia mais simples, a sua estimação a partir de dados de campo.

Herdabilidade

A herdabilidade é o parâmetro que indica a consistência (confiabilidade) da utilização do fenótipo (desempenho produtivo do animal) na determinação do valor genético de uma característica na população.

A herdabilidade mede também o grau de semelhança entre os desempenhos fenotípicos dos filhos e dos pais. Se a herdabilidade é alta, os animais com desempenho elevado tendem a produzir filhos igualmente bons e os animais com baixo desempenho tendem a produzir filhos ruins. Se a herdabilidade é baixa, o desempenho dos pais revela muito pouco sobre o desempenho da progênie. A herdabilidade expressa, assim, quanto da variabilidade de uma característica é de origem genética.

Caraccterística Herdável e Característica Geneticamente Determinada

Para que uma característica seja herdável é necessário que as diferenças de desempenho entre os indivíduos sejam herdáveis. Portanto, características que não apresentam diferenças fenotípicas não são herdáveis, embora sejam geneticamente determinadas. Como exemplo de característica geneticamente determinada, mas não herdável, pode-se citar o número de pernas em bovinos. Até onde se sabe, dentro da normalidade, não há diferenças entre os indivíduos quanto ao número de pernas.

Independentemente da magnitude da herdabilidade, desde que maior que zero, haverá sempre valores genéticos altos, médios e baixos na população.

Herdabilidade e Componentes de Variância

O coeficiente de herdabilidade, simbolizado como h², expressa a fração herdável de uma característica, ou seja, o quanto do desempenho de um animal que é transmitido à sua progênie. Desta forma, ele é também definido como a fração da variância fenotípica que é devida às diferenças genéticas entre os indivíduos.

A variabilidade entre os indivíduos é medida pela variância de seus desempenhos, isto é, pela variância de seus valores fenotípicos. A variância fenotípica (V_P) , por sua vez, é composta da variância devida à ação aditiva dos genes (V_A) , da variância devida aos efeitos da dominância (V_D) e da epistasia (V_I) , além da variância devida aos efeitos do ambiente (V_E) . Portanto, pode-se escrever $V_P = V_A + V_D + V_I + V_E$.

Sabe-se em relação ao modelo genético (página 15), que apenas a ação aditiva dos genes é transmitida aos descendentes e que a herdabilidade de uma característica está relacionada com a proporção da influência da ação aditiva em relação à influência dos outros componentes (dominância, epistasia e meio ambiente) na determinação do desempenho dos indivíduos nessa característica.

O coeficiente de herdabilidade é, então, a fração da variância fenotípica que é devida à ação aditiva dos genes, ou seja, é a relação entre a variância genética aditiva e a variância fenotípica ($h^2 = V_A/V_P$). Portanto, a estimação de h^2 implica na estimação de V_A e V_P .

Herdabilidade e Modelo Genético

Considerando-se o modelo genético P = A + D + I + E, pode-se demonstrar que:

$$V_P = V_A + V_D + V_I + V_E$$

Herdabilidade é a fração da variância fenotípica (V_p) determinada pela ação aditiva dos genes.

Independentemente da magnitude da herdabilidade (desde que maior que zero), sempre haverá valores genéticos altos, médios e baixos na população.

Herdabilidade e Variância Genética Aditiva

O coeficiente de herdabilidade é a razão entre a variância aditiva (V_A) e a variância fenotípica (V_p) .

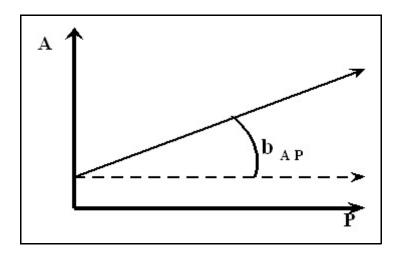
$$h^2 = \frac{V_A}{V_P}$$

Para a estimação do coeficiente de herdabilidade é necessária a estimação da variância aditiva (V_{A}) na população.

Herdabilidade e Coeficiente de Regressão

Por este conceito (regressão), o coeficiente de herdabilidade é igual ao coeficiente de regressão do valor genético aditivo (A) no valor fenotípico (P)

$$h^2 = b_{AP}$$



$$b_{AP} = h^2$$

Demonstração Simples

$$b_{AP} = \frac{cov_{AP}}{V_P}$$

$$cov_{AP} = cov [A, (A + D + I + E)] = cov(A,A) + cov(A,D) + cov(A,I) + cov(A,E)$$

Mas,
$$cov(A,D) = 0$$
, $cov(A,E) = 0$ \mapsto $cov_{AP} = cov(A,A) = V_A \mapsto$

$$b_{AP} = \frac{cov_{AP}}{V_P} = \frac{V_A}{V_P}.$$

Pela definição de herdabilidade, $\frac{V_A}{V_P} = h^2 \implies$

$$b_{AP} = \frac{cov_{AP}}{V_P} = \frac{V_A}{V_P} = h^2$$

Estimação da Variância Genética Aditiva Com Base na Selelhança Entre Parentes

Os procedimentos para estimação da variância genética aditiva (V_A) envolvem a medição da semelhança de desempenho entre parentes. A herdabilidade é a razão entre as variâncias aditiva e fenotípica. Com herdabilidade alta (maior proporção de V_A), os indivíduos aparentados apresentam desempenhos semelhantes, ou seja, apresentam-se semelhantes uns com os outros na característica em questão. Com herdabilidade baixa (menor proporção de V_A) , a similaridade entre os indivíduos aparentados é praticamente a mesma observada entre os indivíduos tomados ao acaso na população.

A estimação de V_A é feita com base no relacionamento entre dois tipos de componentes da variância fenotípica: componentes observacionais e componentes causais.

Componentes Observacionais da Variância Fenotípica (σ^2_{P})

Para a estimação da variância genética aditiva (VA), utiliza-se o seguinte procedimento: definem-se grupos de parentes (famílias) para os quais são estimados os componentes da variância fenotípica a partir dos dados de desempenho dos animais (pesos, perímetro escrotal, produção de leite, etc.). Esses componentes são chamados de componentes observacionais da variância fenotípica, pois foram estimados a partir de dados de desempenho observados. Resultam simplesmente de cálculos estatísticos.

Os componentes observacionais resultam da partição da variância fenotípica em componentes correspondentes ao agrupamento dos indivíduos em famílias, ou seja,

$$\sigma^2_{\text{(Fenotípica)}} = \sigma^2_{\text{(Entre Famílias)}} + \sigma^2_{\text{(Dentro de Famílias)}}$$

Ou ainda,

$$\sigma_P^2 = \sigma_B^2 + \sigma_W^2$$

Componentes Causais da Variância Fenotípica (V_P)

São componentes da variância fenotípica, relacionados com o modo de ação gênica, ou seja, são os componentes do modelo genético.

Assumindo-se $P = \mu + VG + VCG + E$ ou $P = \mu + A + D + I + E$, pode-se demonstrar que

$$\mathbf{V}_{\mathbf{P}} = \mathbf{V}_{\mathbf{A}} + \mathbf{V}_{\mathbf{D}} + \mathbf{V}_{\mathbf{I}} + \mathbf{V}_{\mathbf{E}}$$

Sendo,

V_A = variância genética aditiva

V_D = variância devida aos desvios de dominância

V_I = variância devida aos efeitos de epistasia

V_E = variância devida aos efeitos não genéticos (variância residual)

Variância Genética Aditiva (VA)

É a parte da variância fenotípica determinada pela ação independente dos genes (ação aditiva). É a variância dos valores genéticos da população. A variância genética aditiva é calculada com base na esperança dos componentes observacionais em termos de componentes causais da variância fenotípica.

Variância nos Grupos

Com base nos dados observados, calculam-se as variâncias entre grupos e dentro de grupos.

Variância Entre Grupos (σ²_B)

É a variância das médias dos grupos em relação à média da polpulação. Essa variância expressa a quantidade de variação que é comum aos membros de um mesmo grupo, o que corresponde à covariância dos grupos (variância comum = covariância).

Variância Dentro de Grupos (σ²_w)

É a variância dos valores dos indivíduos em relação à média do seu grupo.

Correlação Intraclasse

Quanto maior a similaridade (menor variação) dentro dos grupos, maior a variância entre os grupos.

O grau de similaridade entre os indivíduos é dado, então, por :

$$t = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2}$$

Em que,

t = coeficiente de correlação intraclasse

 σ_{B}^{2} = componente de variância entre grupos

 $\sigma_{\rm W}^2$ = componente de variância dentro de grupos

Assim, a covariância observada (covariância obtida dos dados de desempenho dos animais) é determinada por componentes que dependem do grau de parentesco. A covariância observada é calculada pelos métodos estatísticos normais (estatística básica).

Relacionando-se a covariância observada com sua esperança, em termos de componentes causais, estimase a contribuição da variância aditiva, assim como a de outros componentes causais da variância fenotípica (dominância e epistasia).

Covariância - Modelo Matemático

O modelo matemático da covariância é o mesmo da variância. Este conceito pode ser melhor entendido com um exemplo prático, como o da tabela abaixo, que contém dados de peso de ovelhas agrupadas em famílias de irmãos completos.

Para estimação da variância aditiva, relaciona-se o componente observacional da covariância (valor estimado dos dados) com sua esperança em termos de componentes causais.

$$Cov_P = Cov_A + Cov_D + Cov_I + Cov_E$$

Cálculo da Variância Genética Aditiva

Considerando-se que a tabela abaixo seja o conjunto de dados de uma população de ovelhas (rebanho ou conjunto de rebanhos), a primeira coisa a ser feita, para estimação da variância aditiva, é estimar os componentes de variância entre famílias (grupos), dentro de famílias e total. O componente total, soma dos componentes estimados, é a variância fenotípica. Da mesma forma, estima-se a covariância. Para isto, utiliza-se a metodologia de análise de variância (Anova).

Uma vez obtidos os componentes de variância, estes serão relacionados com os componentes causais correspondentes. Como mencionado anteriormente, os componentes causais se referem às variâncias causadas pelos modos de ação gênica (aditiva, dominância e epistasia).

Cálculo da Variância Genética Aditiva

Peso de 24 Ovelhas em Famílias de Irmãos Completos							
			T41				
	1	2	3	4	··· Ttoal		
	62	63	68	56			
	60	67	66	62			
Peso das Ovelhas	63	71	71	60			
	59	64	67	61			
(kg)	-	65	68	63			
	-	66	68	63			
	-	-	-	59			
	-	-	-	64			
n_i	4	6	6	8	24		
Soma	244	396	408	488	1536		
Média	61	66	68	61	64		

Covariâncias Básicas

Existem algumas covariâncias entre grupos de parentes que são fundamentais (ou básicas) para a estimação da variância aditiva na população. Essas covariâncias básicas e suas esperanças em termos dos componentes causais serão desenvolvidas a seguir.

Covariância Entre Progênie e Pai

$$Cov_{OP} = cov(P, \frac{1}{2}A) = cov[(A + D + I + E), (\frac{1}{2}A)] = cov(A, \frac{1}{2}A) + cov(D, \frac{1}{2}A) + cov(I, \frac{1}{2}A) + cov(E, \frac{1}{2}A)$$

Assumindo independência entre os efeitos:

$$cov(D, \frac{1}{2}A) = 0$$
, $cov(I, \frac{1}{2}A) = 0$, $cov(E, \frac{1}{2}A) = 0$ etc. \rightarrow

$$cov_{OP} = cov(A, \frac{1}{2}A) = \frac{1}{2} cov(A, A) = \frac{1}{2} Var(A) = \frac{1}{2} V_A \rightarrow$$

$$V_A = 2cov_{OP}$$

Covariância Entre Progênie e Pai - Com Base nos Valores Genotípicos

	Pais		Progênie
Genótipo	Frequência	Valor Genotípico	Valor Genético
A_1A_1	p^2	2q(a-pd)	qa
A_1A_2	2pq	(q-p)a+2pqd	½ (q-p)a
A_2A_2	q^2	-2p(a+qd)	-pa

Cálculo da Covariância

Tendo como base os valores genotípico do pai e genético da progênie, associado às frequências desses valores, pode-se calcular a covariância como:

$$Cov_{OP} = p^{2}[2q(\alpha - pd)q\alpha] + 2pq[(q - p)\alpha + 2pqd]\frac{1}{2}(q - p)\alpha + q^{2}[-2p(\alpha + qd)(-p\alpha] \rightarrow$$

$$Cov_{OP} = pq\alpha^2(p^2 + 2pq+q^2) + 2p^2q^2d\alpha(-q + q - p + p) = pq\alpha^2(1) + 2p^2q^2d\alpha(0) = pq\alpha^2$$

Mas,
$$V_A = 2pq\alpha^2$$
 (veja página 108) \rightarrow $Cov_{OP} = \frac{1}{2}V_A \rightarrow$

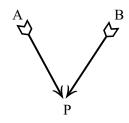
$$V_A = 2Cov_{OP}$$

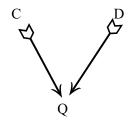
A covariância entre progênie e mãe deveria, pela lógica, também estimar ½ da variância aditiva. Isto não ocorre, entretanto, porque o componente observacional da covariância entre progênie e mãe envolve também a variância devida aos efeitos maternos (variância devida às diferenças de habilidade materna entre as fêmeas, que será tratada no próximo capítulo).

Covariância de Meio-Irmãos

$$Cov_{HS} = cov(\frac{1}{2}A, \frac{1}{2}A) = \frac{1}{4}COV(A, A) = \frac{1}{4}V_A \implies V_A = 4Cov_{HS}$$

Covariância de Família - Equação Geral





Covariância de Família

Segundo Falconer (1981), para uma família qualquer, a covariância é dada por :

$$Cov_{FAMILIA} = a_{PQ}V_A + u_{PQ}V_D$$

Em que,

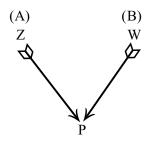
 a_{PQ} = covariância genética (parentesco segundo Wright) entre os idivíduos ${\it P}$ e ${\it Q}$

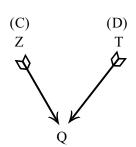
$$a_{PQ} = 2f_{PQ} = 2 \times \frac{1}{4} (f_{AC} + f_{AD} + f_{BC} + f_{BD})$$

 \mathbf{u}_{PQ} = probabilidade de que \mathbf{P} e \mathbf{Q} tenham genótipos idênticos por descendência

$$u_{PQ} = f_{AC} x f_{BD} + f_{AD} x f_{BC}$$

Covariância de Meio-Irmãos Paternos (PHS) - Usando a Equação Geral





$$COV_{FAMILIA} = a_{PQ}V_A + u_{PQ}V_D$$

$$COV_{PHS} = a_{PQ}V_A + u_{PQ}V_D$$

Cálculo de a_{PO}

$$a_{PQ} = 2f_{PQ}$$

$$f_{PQ} = \frac{1}{4} (f_{AC} + f_{AD} + f_{BC} + f_{BD})$$
 (Equação 2.1 página 128)

Covariância de Meio-Irmãos Paternos

Cálculo de a_{PO}

$$f_{PQ} = \frac{1}{4} (f_{AC} + f_{AD} + f_{BC} + f_{BD})$$

Como os pais são meio-irmãos, A e C são iguais (o mesmo pai, representado, na figura acima, por Z). As mães são diferentes, e são representadas por W e $T \mapsto$

$$f_{PQ} = \frac{1}{4} (f_{ZZ} + f_{ZT} + f_{WZ} + f_{WT})$$

Mas,
$$f_{ZZ} = \frac{1}{2}$$
; $f_{ZT} = 0$; $f_{WZ} = 0$; $f_{WT} = 0 \rightarrow$

$$f_{PQ} = \frac{1}{4} \left(\frac{1}{2} + 0 + 0 + 0 \right) = \frac{1}{8}$$
 (como calculado na página 128)

$$a_{PQ} = 2f_{PQ} = 2 \times \frac{1}{8} = \frac{1}{4}$$

$$a_{PQ} = 2f_{PQ} = 2 \ x \ \frac{1}{8} = \frac{1}{4}$$

$$C\'{alculo} \ de \ u_{PQ}$$

$$u_{PQ} = f_{AC} \ x \ f_{BD} + f_{AD} \ x \ f_{BC} \qquad \mapsto \ u_{PQ} = f_{ZZ} \ x \ f_{WT} + f_{ZT} \ x \ f_{WZ} = \frac{1}{2} \ x \ 0 + 0 \ x \ 0 = 0$$

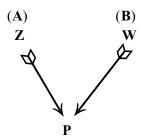
$$a_{PQ} = \frac{1}{4} ; u_{PQ} = 0 \quad \Rightarrow \quad COV_{PHS} = \frac{1}{4}V_A + 0V_D \quad \Rightarrow$$

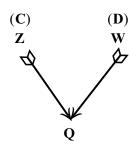
$$COV_{PHS} = \frac{1}{4}V_A$$

$$COV_{PHS} = \frac{1}{4}V_A$$

Covariância de Irmãos Completos - Usando a Equação Geral

Sendo irmãos completos, os dois têm o mesmo pai (Z) e a mesma mãe (W).





Covariância de Irmãos Completos (COV_{FS})

$$COV_{FS} = a_{PQ}V_A + u_{PQ}V_D$$

Cálculo de a_{PO}

$$\begin{aligned} a_{PQ} &= 2f_{PQ} \\ f_{PQ} &= \frac{1}{4}(f_{AC} + f_{AD} + f_{BC} + f_{BD}) &= \frac{1}{4}(f_{ZZ} + f_{ZW} + f_{WZ} + f_{WW}) \\ f_{ZZ} &= \frac{1}{2}; \quad f_{ZW} = 0; \quad f_{WZ} = 0; \quad f_{WW} = \frac{1}{2} \quad &\mapsto \end{aligned}$$

$$f_{PQ} = \frac{1}{4} \left(\frac{1}{2} + 0 + 0 + \frac{1}{2} \right) = \frac{1}{4}$$
 (como calculado na página 129)
 $a_{PQ} = 2f_{PQ} = 2 \times \frac{1}{4} \quad \mapsto \quad a_{PQ} = \frac{1}{2}$

Cálculo de u_{po}

$$u_{PQ} = f_{AC} x f_{BD} + f_{AD} x f_{BC} \qquad \mapsto \qquad u_{PQ} = f_{ZZ} x f_{WW} + f_{ZW} x f_{WZ} \qquad \vdash$$

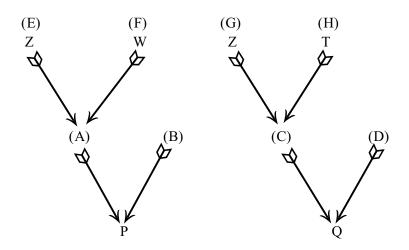
$$u_{PQ} = \frac{1}{2} x \frac{1}{2} + 0 x 0 \qquad \mapsto \qquad u_{PQ} = \frac{1}{4}$$

COVES

$$COV_{FS} = \frac{1}{2}V_A + \frac{1}{4}V_D$$

Portanto, não se pode calcular a variância genética aditiva (V_A) com base na covariância de irmãos completos. O valor de V_A seria superestimado, devido ao componente de dominância.

Covariância de Primos Paternos (PC) - Usando a Equação Geral



Covariância de Primos Paternos (PC)

Covariância de Primos Paternos (COV_{PC}) - Usando a Equação Geral

$$COV_{FAMILIA} = a_{PQ}V_A + u_{PQ}V_D$$

(Primos Paternos são animais em que os pais são Meio-Irmãos Paternos)

$$COV_{PC} = a_{PQ}V_A + u_{PQ}V_D$$

Cálculo de a_{PO}

$$a_{PQ} = 2f_{PQ}$$

$$f_{PQ} = \frac{1}{4} (f_{AC} + f_{AD} + f_{BC} + f_{BD})$$

$$f_{AC} = \frac{1}{4} (f_{ZZ} + f_{ZT} + f_{WZ} + f_{WT}) = \frac{1}{4} (\frac{1}{2}) = \frac{1}{8}$$

$$f_{AD} = 0;$$
 $f_{BC} = 0;$ $f_{BD} = 0$ \rightarrow

$$f_{PQ} = \frac{1}{4}(\frac{1}{8} + 0 + 0 + 0 + 0) = \frac{1}{32}$$

$$a_{PQ} = 2f_{PQ} = 2 \times \frac{1}{32} \quad \Rightarrow$$

$$a_{PQ} = \frac{1}{16}$$

Cálculo de u_{PO}

$$u_{PQ} = f_{AC} x f_{BD} + f_{AD} x f_{BC} \qquad \mapsto$$

$$u_{PQ} = \frac{1}{8} \times 0 + 0 \times 0 \qquad \Rightarrow$$

$$u_{PO} \equiv 0$$

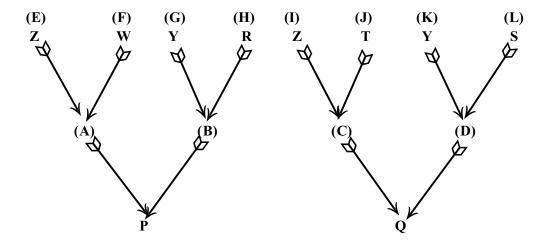
COVPC

$$COV_{PC} = a_{PQ}V_A + u_{PQ}V_D \longrightarrow$$

$$COV_{PC} = \frac{1}{16}V_A + 0V_D \Longrightarrow$$

$$COV_{PC} = \frac{1}{16}V_A$$

Covariância de Primos Completos (FC) - Usando a Equação Geral



$$Cov_{FC} = a_{PQ}V_A + u_{PQ}V_D$$

Cálculo de a_{PO}

$$a_{PQ} = 2f_{PQ}$$

$$f_{PQ} = \frac{1}{4}(f_{AC} + f_{AD} + f_{BC} + f_{BD})$$

$$f_{AC} = \frac{1}{4}(f_{ZZ} + f_{ZT} + f_{WZ} + f_{WT}) = \frac{1}{4}(\frac{1}{2}) = \frac{1}{8}$$

$$f_{AD} = \frac{1}{4}(f_{ZY} + f_{ZS} + f_{WY} + f_{WS}) = \frac{1}{4}(0) = 0$$

$$f_{BC} = \frac{1}{4}(f_{YZ} + f_{YT} + f_{RZ} + f_{RT}) = \frac{1}{4}(0) = 0$$

$$f_{BD} = \frac{1}{4}(f_{YY} + f_{YS} + f_{RY} + f_{RS}) = \frac{1}{4}(\frac{1}{2}) = \frac{1}{8}$$

$$f_{PQ} = \frac{1}{4}(\frac{1}{8} + 0 + 0 + \frac{1}{8}) = \frac{1}{16}$$

$$a_{PQ} = 2f_{PQ} = 2 \times \frac{1}{16} = \frac{1}{8}$$

Cálculo de u_{PO}

$$u_{PQ} = f_{AC} x f_{BD} + f_{AD} x f_{BC} \qquad \vdash$$

$$u_{PQ} = \frac{1}{8} x \frac{1}{8} + 0 x 0 = \frac{1}{64}$$

Covariância de Primos Completos (FC)

$$Cov_{FC} = a_{PQ}V_A + u_{PQ}V_D$$

$$a_{PQ} = \frac{1}{8}$$

$$u_{PQ} = \frac{1}{64}$$

Então.

$$Cov_{FC} = \frac{1}{8}V_A + \frac{1}{64}V_D$$

A Cov_{FC} não permite estimar adequadamente a variância genética aditiva devido ao componente de dominância (V_D) .

Efeitos Epistáticos

Inclusão dos Efeitos Epistáticos na Equação Geral

Considerando-se os efeitos enistáticos a equação da covariância de família (equação geral) nassa a

Considerando-se os efeitos epistáticos, a equação da covariância de família (equação geral) passa a ter a seguinte forma:

$$Cov_{Familia} = a_{PQ}V_A + u_{PQ}V_D + a_{PQ}^2V_{AA} + a_{PQ}u_{PQ}V_{AD} + u_{PQ}^2V_{DD} + ...$$

 V_{AA} = variância das interações entre os efeitos aditivos

 V_{AD} = variância das interações entre os efeitos aditivos e os de dominância

 V_{DD} = variância das interações entre os efeitos de dominância

Estimação da Herdabilidade - Usando a Covariância ou a Regressão Progênie x Pai

	Peso dos Animais aos 205 Dias de Idade (kg)							
Pares	Progênie (O)	Pai (P)	OP	P^2	O^2			
1	230	150	34500	22500	52900			
2	280	200	56000	40000	78400			
3	250	170	42500	28900	62500			
4	180	190	34200	36100	32400			
Soma	940	710	167200	127500	226200			
Média	235	177,5	-	-	-			

Cálculo da Covariância (Cov_{OP}) e da Regressão (b_{OP})

$$Cov_{OP} = \frac{\sum OP - \frac{\sum O\sum P}{N}}{N-1}$$

$$\sum OP = 167.200$$
, $\sum O = 940$, $\sum P = 710$, $\sum O^2 = 226.200$, $\frac{\sum O\sum P}{N} = 166.850$ $e N = 4$

$$Cov_{OP} = \frac{\sum OP - \frac{\sum O\sum P}{N}}{N-1} = \frac{167.200 - 166.850}{3} = \frac{350}{3} = 116,7$$

$$b_{OP} = \frac{Cov_{OP}}{V_P}$$
 e $V_P = \frac{\sum P^2 - \frac{(\sum P)^2}{N}}{N-1}$

$$\sum P^2 = 127.500 \ e \ \frac{(\sum P)^2}{N} = 126.026$$

$$V_P = var(P) = \frac{\sum P^2 - \frac{(\sum P)^2}{N}}{N-1} = \frac{127.500 - 126.025}{3} = \frac{1.475}{3} = 491,7$$

$$b_{OP} = \frac{Cov_{OP}}{V_P} = \frac{116,7}{491,7} = 0,24$$

Cálculo da Herdabilidade

$$h^2 = \frac{V_A}{V_P}$$

Usando a Covariância (cov_{op})

$$Cov_{OP} = \frac{1}{2}V_A \rightarrow V_A = 2Cov_{OP}$$

$$Cov_{OP} = 116,7 \mapsto V_A = 2 \times 116,7 = 233,4$$

$$V_P = 491,7$$

$$h^2 = \frac{V_A}{V_P} = \frac{233,4}{491,7} = 0,48$$

Usando a Regressão (b_{OP})

$$b_{OP} = \frac{Cov_{OP}}{V_P} = \frac{\frac{1}{2}V_A}{V_P} = \frac{1}{2}\frac{V_A}{V_P} = \frac{1}{2}h^2 \quad \Rightarrow \quad h^2 = 2b_{OP}$$

$$b_{OP} = \frac{Cov_{OP}}{V_P} = \frac{116,7}{491,7} = 0,24$$

$$h^2 = 2b_{OP} = 2 \times 0.24 = 0.48$$

Correlações

Correlação Genética (rg)

A correlação genética entre duas características é, segundo PIRCHNER (1983), a correlação entre efeitos dos genes que as influenciam. FALCONER (1981) a define como correlação entre os valores genéticos dos indivíduos para as duas características sob consideração.

A correlação genética pode ser causada por pleiotropia ou por ligação gênica. A primeira é própria do gene, em termos de sua capacidade de causar correlação transiente entre as características (FALCONER, 1981; PIRCHNER, 1983). A correlação transiente pode desaparecer se a ligação gênica atinge o ponto de equilíbrio.

A importância do estudo de correlações está no fato de que a seleção para uma determinada característica pode causar resposta em outra genéticamente relacionada.

Correlação Ambiental (r_e)

O coeficiente de correlação ambiental (r_e) não representa exatamente a correlação devida aos fatores ambientais, mas sim uma correlação residual incluindo, além dos fatores ambientais, aqueles devidos aos efeitos de dominância, da epistasia e da interação genótipo x ambiente.

Correlação Fenotípica (r_p)

O coeficiente de correlação fenotípica é o coeficiente de correlação entre os valores fenotípicos dos indivíduos, para as duas características.

Estimação dos Coeficientes de Correlação

Análise de Variância e de Covariância

O método mais comum para se estimarem as correlações é o da análise de meio-irmãos paternos. Pela análise de variância são estimados os componentes da variância fenotípica referentes às duas características (X e Y) cuja correlação se pretende estimar. A forma é a mesma utilizada na estimação do coeficiente de herdabilidade.

Tal como na estimação dos componentes de variância, são mostrados a seguir dois tipos de modelo básico concernentes à determinação dos componentes de covariância.

Modelos de Análise Utilizados Para Estimação da Herdabilidade e da Correlação

Modelo 1

Um grupo de reprodutores é acasalado, cada reprodutor com **d** fêmeas, tendo cada fêmea apenas um filho. A forma de análise da covariância é apresentada na Tabela 1A. Se, no entanto, os reprodutores forem acasalados com números diferentes de fêmeas, a forma de análise passa a ser a da Tabela 1B.

Modelo 2

Um grupo de reprodutores é acasalado, cada reprodutor com \mathbf{d} fêmeas, tendo cada fêmea \mathbf{r} filhos. A forma de análise é apresentada na Tabela 2A. Se o modelo for desbalanceado (diferente número de fêmeas e/ou diferente número de filhos por fêmea) a forma é a da Tabela 2B. Neste caso, os coeficientes das covariâncias na esperança dos produtos médios (\mathbf{k}_1 , \mathbf{k}_2 e \mathbf{k}_3) serão calculados da mesma forma que na análise de variância.

Componentes de variância e de Covariância

Por meio de análises de variância e de covariância, estimam-se os componentes de variância e de covariância fenotípicas, que são:

 σ_S^2 = componente de variância de reprodutor (entre reprodutores)

 $\sigma_{W}^{2}(X)$ = componente de variância residual

 $\sigma_p^2(X)$ = componente de variância fenotípica

 \hat{Cov}_S = componente de covariância de reprodutor (entre reprodutores)

 $\hat{Cov_W}$ = componente de covariância residual

 $\hat{Cov_P}$ = componente de covariância fenotípica $(\hat{Cov_P} = \hat{Cov_S} + \hat{Cov_W})$

TD 1 1 1 4	A /1' 1		. (3 / 1 1	1 D	1 1 \
Tabela 1A -	Analice de	Lowarian	cia (N/Lodel	∧ I_ Ra	lanceadol
Tabela IA -	Ananse de	COvarian	cia tivitaci	O 1- Da	ianceador

Fonte de Variação	GL	SP	PM	E(PM)
Reprodutor	S-1			$COV_W + dCOV_S$
Resíduo	N-S			COV_W
Total	N-1		-	-

Fonte de Variação	GL	SP	PM	E(PM)
Reprodutor	S-1			$COV_W + kCOV_S$
Resíduo	N-S			COV_W

Total N-1 - -

Valores de d e de k

d = número de observações por reprodutor (modelo balanceado)

k = número médio de filhos por reprodutor (modelo não balanceado) - não é média aritimética

Cálculo de k

$$k = \frac{1}{S-1}(N - \frac{\sum n_i^2}{N})$$

Em que

S = número de reprodutores

N = número total de observações (medidas)

 n_i = número de observações (filhos) do i ésimo reprodutor. No modelo balanceado, é igual a d

Tabela 2A - Análise de G	Tabela 2A - Análise de Covariância (Modelo 2 - Balanceado)						
Fonte de Variação	GL	SP	PM	E(PM)			
Reprodutor	S-1			$COV_W + rCOV_{D/S} + drCOV_S$			
Fêmea:Reprodutor	d-S			$COV_W + rCOV_{D/S}$			
Resíduo	N-d			COV_W			
Total	N-1		-	-			

Tabela 2B - Análise de Covariância (Modelo 2 - Não Balanceado)					
Fonte de Variação	GL	SP	PM	E(PM)	
Reprodutor	S-1			$COV_W + k_2 COV_{D/S} + k_3 COV_S$	
Fêmea:Reprodutor	d-S			$COV_W + k_l COV_{D/S}$	
Resíduo	N-d			COV_W	
Total	N-1		-	-	

Valores de d, r e k

d = número de observações (filhos) por reprodutor (modelo balanceado)

r = número de observações (filhos) por fêmea dentro de reprodutor (modelo balanceado)

 k_1 = número médio de filhos por fêmea dentro de reprodutor (modelo não balanceado)

 k_2 = número médio de filhos por fêmea dentro de reprodutor (modelo não balanceado)

Tem uma pequena diferença em relação a k_1

 k_3 = número médio de filhos por reprodutor (modelo não balanceado)

As expressões para o cálculo de k, no modelo 2, serão vistas mais à frente

Estimação da Correlação Genética

Por definição, a correlação genética (r_g) é dada por $r_g = \frac{\hat{Cov}_A}{\sqrt{\hat{\sigma}_{A(X)}^2 \times \hat{\sigma}_{A(Y)}^2}}$

Em que:

Côv_A = covariância entre os valores genéticos aditivos

 σ_A^2 = variância genética aditiva

Da mesma forma que o componente de variância de reprodutor mede $\frac{1}{4}$ da variância aditiva, o componente de covariância de reprodutor mede $\frac{1}{4}$ da covariância aditiva entre as características.

Assim,

$$r_g = \frac{4\hat{Cov_S}}{\sqrt{4\hat{\sigma}_{S(X)}^2 \times 4\hat{\sigma}_{S(Y)}^2}} = \frac{4\hat{Cov_S}}{4\sqrt{\hat{\sigma}_{S(X)}^2 \times \hat{\sigma}_{S(Y)}^2}} \rightarrow$$

$$r_g = \frac{\hat{Cov}_S}{\sqrt{\hat{\sigma}_{S(X)}^2 \times \hat{\sigma}_{S(Y)}^2}}$$

 \hat{Cov}_S = componente de covariância de touro (covariância entre as características X e Y nos touros)

 $\hat{\sigma}_{S(X)}^2$ = componente de variância de touro para a característica X

 $\hat{\sigma}_{S(Y)}^2$ = componente de variância de touro para a característica Y

Estimação da Correlação Ambiental

Correlação Residual

$$r_e = \frac{\hat{Cov}_{e(XY)}}{\sqrt{\left[\hat{\sigma}^2_{e(X)}\right] \cdot \left[\hat{\sigma}^2_{e(Y)}\right]}}$$

Trata-se, na verdade, de uma correlação residual. Tudo o que não é genético aditivo é considerado como ambiental. Conclui-se, assim, que,

$$\hat{Cov}_{e(XY)} = \hat{Cov}_{P(XY)} - \hat{Cov}_{A(XY)}$$

$$\hat{\sigma}_{e(X)}^2 = \hat{\sigma}_{P(X)}^2 - \hat{\sigma}_{A(X)}^2$$

$$\hat{\sigma}_{e(Y)}^2 = \hat{\sigma}_{P(Y)}^2 - \hat{\sigma}_{A(Y)}^2$$

E, assim,

$$r_{e} = \frac{\hat{Cov_{P}} - 4\hat{Cov_{S}}}{\sqrt{\left[\hat{\sigma}_{P(X)}^{2} - 4\hat{\sigma}_{S(X)}^{2}\right] \times \left[\hat{\sigma}_{P(Y)}^{2} - 4\hat{\sigma}_{S(Y)}^{2}\right]}}$$

Mas,

$$\hat{Cov_p} = \hat{Cov_S} + \hat{Cov_W}$$

$$\hat{\sigma}_P^2 = \hat{\sigma}_S^2 + \hat{\sigma}_W^2$$

Então:

$$r_{e} = \frac{\hat{Cov}_{S} + \hat{Cov}_{W} - 4\hat{Cov}_{S}}{\sqrt{\left[\hat{\sigma}_{\hat{\sigma}_{S(X)}^{2}} + \hat{\sigma}^{2}_{W(X)} - 4\hat{\sigma}_{S(X)}^{2}\right] x \left[\hat{\sigma}_{\hat{\sigma}_{S(Y)}^{2}} + \hat{\sigma}^{2}_{W(Y)} - 4\hat{\sigma}_{S(Y)}^{2}\right]}}$$

Logo:

$$\boldsymbol{r}_{e} = \frac{\hat{Cov}_{W} - 3\hat{Cov}_{S}}{\sqrt{\left[\hat{\boldsymbol{\sigma}}^{2}_{W(X)} - 3\hat{\boldsymbol{\sigma}}^{2}_{S(X)}\right]} x \left[\hat{\boldsymbol{\sigma}}^{2}_{W(Y)} - 3\hat{\boldsymbol{\sigma}}^{2}_{S(Y)}\right]}$$

Estimação da Correlação Fenotípica

$$r_{P} = \frac{\hat{Cov_{P}}}{\sqrt{\left[\hat{\sigma}^{2}_{P(X)}\right] \cdot \left[\hat{\sigma}^{2}_{P(Y)}\right]}}$$

Mas,

$$\hat{Cov}_{P}^{2} = \hat{Cov}_{S} + \hat{Cov}_{W}$$

$$\hat{\sigma}^2_P = \hat{\sigma}^2_S + \hat{\sigma}^2_W$$

$$r_{P} = \frac{\hat{Cov}_{S} + \hat{Cov}_{W}}{\sqrt{\left[\hat{\sigma}^{2}_{S(X)} + \hat{\sigma}^{2}_{W(X)}\right]\left[\hat{\sigma}^{2}_{S(Y)} + \hat{\sigma}^{2}_{W(Y)}\right]}}$$

Estimação dos Coeficientes de Herdabilidade e do Coeficiente de Correlação

Peso das Ovelhas (X) e Número de Serviço por Concepção (Y)

			Rrepro				
	1		2		3		Total
	X	Y	X	Y	X	Y	
O	35	2	40	1	37	1	
V E	47	1	51	5	37	1	
L	60	1	54	4	49	1	
H A	51	1	63	2	53	5	
S	65	2	70	6	-	-	
	77	3	-	-	-	-	
Y_{ij}	335	10	278	18	176	8	X/Y
n _i	ϵ)	5	5		1	$N = \Sigma n_i = 15$

Análise de Variância

Equações Para o Cálculo das Somas de Quadrados

$$SQTotal = \sum_{ij} X_{ij}^2 - \frac{X_{..}^2}{N} \mid SQReprodutor = \sum_{ij} \frac{X_{i.}^2}{n_i} - \frac{X_{..}^2}{N} \mid SQResiduo = \sum_{ij} X_{ij}^2 - \sum_{ij} \frac{X_{i.}^2}{n_i}$$

Somatórias

$$X.. = 35 + 47 + ... + 53 = 789$$
 | $Y... = 2 + 1 + ... + 5 = 36$ | $N = \sum_{i} n_{i} = 6 + 5 + 4 = 15$

$$\sum X_{ij}^2 = 35^2 + 47^2 + ... + 53^2 = 43.723,0 \quad | \quad \sum Y_{ij}^2 = 1^2 + 1^2 + ... + 5^2 = 130,0$$

$$\sum X_{ij}Y_{ij}$$
 = 35 x 2 + 47 x 1 +...+ 53 x 5 = 2.034,0

$$\frac{X..^2}{N} = \frac{789^2}{15} = 41.501,4$$
 | $\frac{Y..^2}{N} = \frac{36^2}{15} = 86,4$

$$\frac{X..Y..}{N} = \frac{789x36}{15} = 1.893,6$$

$$\sum_{i} \frac{X_{i.}^{2}}{n_{i}} = \frac{335^{2}}{6} + \frac{278^{2}}{5} + \frac{176^{2}}{4} = 18.704,2+15.456,8+7.744 = 41.905,0$$

$$\sum_{i} \frac{Y_{i.}^{2}}{n_{i}} = \frac{10^{2}}{6} + \frac{18^{2}}{5} + \frac{8^{2}}{4} = 16,7 + 64,8 + 16,0 = 97,5$$

$$\sum_{i} \frac{X_{i}Y_{i}}{n_{i}} = \frac{335 \times 10}{6} + \frac{278 \times 18}{5} + \frac{176 \times 8}{4} = 558,3 + 1.000,8 + 352,0 = 1.919,1$$

Cálculo das Somas de Quadrados

$$SQTotal = \sum_{ij} X_{ij}^2 - \frac{X_{..}^2}{N} = 43.723,0-41.501,4 = 2.221,6$$

SQReprodutor =
$$\sum_{ij} \frac{X_{i.}^2}{n_i} - \frac{X_{i.}^2}{N} = 41.905,0 - 41.501,4 = 403,6$$

$$SQResiduo = \sum_{ij} X_{ij}^2 - \sum_{ij} \frac{X_{i.}^2}{n_i} = 43.723,0 - 41.905,0 = 1.818,0$$

Análise de Variância - Cálculo de k e Quadro de Anova

Característica X - Peso da Ovelha na Entrada da Estação Reprodutiva

Cálculo de k

$$k = \frac{1}{S-1}(N - \frac{\sum_{i} n_{i}^{2}}{N})$$

$$\frac{\sum_{i} n_{i}^{2}}{N} = \frac{6^{2} + 5^{2} + 4^{2}}{15} = 5{,}133 \quad \mapsto$$

$$k = \frac{1}{S-1}(N - \frac{\sum_{i} n_{i}^{2}}{N}) = \frac{1}{2}(15 - 5{,}133) = 4{,}935$$

Relação Entre Componente de Variância de Reprodutor, Variância Aditiva e Herdabilidade

$$\sigma_S^2 = Cov_{HS} = \frac{1}{4}V_A \mapsto V_A = 4\sigma_S^2$$

$$h^2 = \frac{V_A}{V_P} \mapsto h^2 = \frac{4\sigma_S^2}{\sigma_P^2}$$

Estimação do Coeficiente de Herdabilidade Pelo Método de Correlação Entre Meio-Irmãos Paternos

Quadro de Anova							
FV	GL	SQ	QM	E(QM)			
Reprodutor	2	403,6	201,8	$\sigma^2_W + 4,935\sigma^2_S$			
Resíduo	12	1.818,0	151,5	$\sigma^2_{ m W}$			
Total	14	2.221,6	-	(k = 4,935)			

Cálculo dos Componentes de Variância

$$\sigma_w^2 = 151,5$$

$$\sigma_s^2 = \frac{201.8 - 151.5}{4,935} = 10,1925$$

$$\sigma_P^2 = \sigma_s^2 + \sigma_w^2 = 10,1925 + 151,5 = 161,6925$$

Herdabilidade - Peso da Ovelha (Característica X)

Cálculo do Coeficiente de Herdabilidade

$$h_{(X)}^2 = \frac{4\sigma_S^2}{\sigma_P^2}$$

$$h_{(X)}^2 = \frac{4 \times 10,1925}{161,6925} = 0,25$$

Estimação do Coeficiente de Herdabilidade Pelo Método de Correlação Entre Meio-Irmãos Paternos Número de Serviços Por Concepção (Característica Y)

Análise de Variância - Cálculo das Somas de Quadrados

$$SQ_{Total} = \sum_{ij} Y_{ij}^2 - \frac{Y..^2}{N} = 130,0 - 86,4 = 43,6$$

$$SQ_{Reprodutor} = \sum_{ij} \frac{Y_{i.}^{2}}{n_{i}} - \frac{Y..^{2}}{N} = 97.5 - 86.4 = 11.1$$

$$SQ_{Residuo} = \sum_{ij} Y_{ij}^2 - \sum_{ij} \frac{Y_{i.}^2}{n_i} = 130.0 - 97.5 = 32.5$$

Quadro de Anova							
FV	GL	SQ	QM	E(QM)			
Reprodutor	2	11,10	5,55	$\sigma_{W}^{2} + 4,935\sigma_{S}^{2}$			
Resíduo	12	32,50	2,71	${f \sigma}^2_{ m W}$			
Total	14	43,60	-	(k = 4,935)			

Herdabilidade - Número de Serviços por Concepção (Característica Y)

Cálculo dos Componentes de Variância

$$\sigma_w^2 = 2.71$$

$$\sigma_s^2 = \frac{5.55 - 2.71}{4.935} = 0.58$$

$$\sigma_P^2 = \sigma_s^2 + \sigma_w^2 = 0.58 + 2.71 = 3.29$$

Cálculo do Coeficiente de Herdabilidade

$$h_{(Y)}^2 = \frac{4\sigma_S^2}{\sigma_P^2} = \frac{4 \times 0.58}{3.29} = 0.25$$

Estimação dos Coeficientes de Correlação

Análise de Variância - Cálculo das Somas de Produtos

$$SP_{Total} = \sum_{ij} X_{ij}Y_{ij} - \frac{X..Y..}{N} = 2.034,0 - 1.893,6 = 140,4$$

$$SP_{Reprodutor} = \sum_{ij} \frac{X_{i.}Y_{i.}}{n_i} - \frac{X..Y..}{N} = 1.919,1 - 1.893,6 = 25,5$$

$$SP_{Residuo} = \sum_{ij} X_{ij} Y_{ij} - \sum_{ij} \frac{X_{i.} Y_{i.}}{n_{i}} = 2.034,0 - 1.919,1 = 114,9$$

Quadro de Anacov							
FV	GL	SP	PM	E(PM)			
Reprodutor	2	25,50	12,75	$COV_W + 4,935COV_S$			
Rresíduo	12	114,90	9,58	COV_W			
Total	14	140,40	-	(k = 4,935)			

Coorelação - Peso da Ovelha (X) x Número de Serviços por Concepção (Y)

Cálculo dos Componentes de Covariância

$$c\hat{o}v_w = 9,58$$

$$c\hat{o}v_S = \frac{12,75 - 9,58}{4,935} = 0,64$$

$$c\hat{o}v_P = cov_S + cov_w = 0.64 + 9.58 = 10.22$$

Coeficientes de Correlação Fenotípica e Genética

Cálculo do Coeficiente de Correlação Fenotípica

$$\mathbf{r}_{XY} = \frac{c\hat{\mathbf{o}}v_{XY}}{\sqrt{\hat{\mathbf{o}}_X^2 \hat{\mathbf{o}}_Y^2}}$$

$$r_{P(XY)} = \frac{c\hat{o}v_{P(XY)}}{\sqrt{\hat{\sigma}_{P(X)}^2 \hat{\sigma}_{P(Y)}^2}}$$

$$r_P = \frac{10,22}{\sqrt{161,6925 \ x \ 3,29}} = \frac{10,22}{\sqrt{531,97}} = 0,44$$

Cálculo do Coeficiente de Correlação Genética

$$r_g = \frac{c \hat{o} v_{A(XY)}}{\sqrt{\hat{\sigma}_{A(X)}^2 x \hat{\sigma}_{A(Y)}^2}}$$

$$c\hat{o}v_{A(XY)} \; = \; 4c\hat{o}v_{S(XY)} \quad , \quad \hat{\sigma}_{A(X)}^2 \; = \; 4\hat{\sigma}_{S(X)}^2 \quad e \quad \hat{\sigma}_{A(Y)}^2 \; = \; 4\hat{\sigma}_{S(Y)}^2$$

$$r_{g} = \frac{4c\hat{o}v_{S(XY)}}{\sqrt{4\hat{\sigma}_{S(X)}^{2} \times 4\hat{\sigma}_{S(Y)}^{2}}} \mapsto r_{g} = \frac{c\hat{o}v_{S(XY)}}{\sqrt{\hat{\sigma}_{S(X)}^{2} \times \hat{\sigma}_{S(Y)}^{2}}} = \frac{0,64}{\sqrt{10,1925 \times 0,58}} = \frac{0,64}{\sqrt{5,91}} \mapsto$$

$$r_g = 0.26$$

Interpretação da Correlação Genética

Ovelhas mais pesadas apresentaram maior número de serviços por concepção. A correlação foi, no entanto, baixa, indicando que em muitos casos esta correspondência não existe. Em muitos casos serão encontradas ovelhas pesadas com baixo número de serviços por concepção.

Ressalta-se também que os valores utilizados neste exemplo não são reais, ou seja, a interpretação acima é apenas com relação ao exemplo e não em relação à população de ovelhas em geral. Com dados reais, o resultado poderia ter sido diferente.

Coeficiente de Correlação Residual

Correlação Residual

$$r_e = \frac{\hat{Cov}_{e(XY)}}{\sqrt{\left[\hat{\sigma}^2_{e(X)}\right] x \left[\hat{\sigma}^2_{e(Y)}\right]}}$$

Na verdade, trata-se de uma correlação residual. Tudo o que não é genético aditivo é considerado como ambiental. Conclui-se, assim, que,

$$\hat{Cov}_{e(XY)} = \hat{Cov}_{P(XY)} - \hat{Cov}_{A(XY)} - \hat{cov}_{A(XY)} - \hat{cov}_{e(X)} - \hat{cov}_{e(X)} - \hat{cov}_{e(X)} - \hat{cov}_{A(X)} - \hat{cov}_{e(X)} - \hat{cov}_{$$

E, assim,

$$r_e = \frac{\hat{Cov_P} - 4\hat{Cov_S}}{\sqrt{\left[\hat{\sigma}_{P(X)}^2 - 4\hat{\sigma}_{S(X)}^2\right] x \left[\hat{\sigma}_{P(Y)}^2 - 4\hat{\sigma}_{S(Y)}^2\right]}}$$

Mas.

$$\hat{Cov}_P = \hat{Cov}_S + \hat{Cov}_W$$

$$\hat{\mathbf{\sigma}}^{2}_{P} = \hat{\mathbf{\sigma}}^{2}_{S} + \hat{\mathbf{\sigma}}^{2}_{W}$$

Então:

$$r_{e} = \frac{\hat{Cov}_{S} + \hat{Cov}_{W} - 4\hat{Cov}_{S}}{\sqrt{\left[\hat{\sigma}_{\hat{\sigma}_{S(X)}^{2}} + \hat{\sigma}^{2}_{W(X)} - 4\hat{\sigma}_{S(X)}^{2}\right]}} = \frac{\hat{Cov}_{W} - 3\hat{Cov}_{S}}{\sqrt{\left[\hat{\sigma}_{\hat{\sigma}_{S(X)}^{2}} + \hat{\sigma}^{2}_{W(X)} - 4\hat{\sigma}_{S(X)}^{2}\right]}} \Rightarrow \frac{\hat{\sigma}_{S(X)}^{2} + \hat{\sigma}_{W(X)}^{2} - 3\hat{\sigma}_{S(X)}^{2}}{\sqrt{\left[\hat{\sigma}_{S(X)}^{2} + \hat{\sigma}_{S(X)}^{2}\right]}} \Rightarrow \frac{\hat{\sigma}_{S(X)}^{2} + \hat{\sigma}_{S(X)}^{2}}{\sqrt{\left[\hat{\sigma}_{S(X)}^{2} + \hat{\sigma}_{S(X)}^{2}\right]}} \Rightarrow \frac{\hat{\sigma}_{S(X)}^{2} + \hat{\sigma}_{$$

$$r_e = \frac{9,58 - 3 \times 0,64}{\sqrt{[151,50 - 3 \times 10,19] \times [2,71 - 3 \times 0,58]}} = \frac{7,66}{\sqrt{120,93 \times 0,97}} = \frac{7,66}{\sqrt{117,30}} = 0,71$$

Estimação do Coeficiente de Herdabilidade Usando Dados Aninhados (Modelo Hierárquico)

Característica:	Númoro	40	Corrigood	Dor	Conconcão	
Caracieristica.	Numero	uc	2C1 A1CO2	roi	Concepçac	,

			_	odutores			
·		1		2	3	3	_
Vacas	1	2	3	4	5	6	T otal
				iços por Conc			 _
E.11	2	2	1	5	2	1	_
Filhas	1	2	4	2	5	1	
	1	4	6	-	-	-	
Y_{ij}	4	8	11	7	7	2	39
nij	3	3	3	2	2	2	15
Yi.	1	2		18	Ģ	9	39
ni	1	6		5	4	4	15

Somatórias

$$Y^2$$
 30² 1521

$$Y... = 2 + 1 + ... + 1 = 39$$
 | $N = \sum_{i} n_{i} = 6 + 5 + 4 = 15$ | $\frac{Y_{...}^{2}}{N} = \frac{39^{2}}{15} = \frac{1.521}{15} = 101,4$

$$\sum_{i} Y_{ijk}^{2} = 1^{2} + 1^{2} + ... + 1^{2} = 143,0 \qquad | \qquad \sum_{i} \frac{Y_{i.}^{2}}{n_{i}} = \frac{12^{2}}{6} + \frac{18^{2}}{6} + \frac{9^{2}}{4} = 109,0$$

$$\sum_{ij} \frac{Y_{ij.}^2}{n_{ii}} = \frac{4^2}{3} + \frac{8^2}{3} + \frac{11^2}{3} + \frac{7^2}{2} + \frac{7^2}{2} + \frac{2^2}{2} = 117,9$$

Somas de Quadrados

$$SQ_{Total} = \sum_{ijk} Y_{ijk}^2 - \frac{Y...^2}{N} = 143,0-101,4 = 41,6$$

$$SQ_{Touro} = \sum_{i} \frac{Y_{i..}^{2}}{n_{i}} - \frac{Y_{...}^{2}}{N} = 109,0-101,4 = 7,6$$

$$SQ_{Vaca/Touro} = \sum_{ij} \frac{Y_{ij.}^2}{n_{ij}} - \sum_{i} \frac{Y_{i.}^2}{n_{i.}} = 117.9 - 109.0 = 8.9$$

$$SQ_{Residuo} = \sum_{ijk} Y_{ijk}^2 - \sum_{ij} \frac{Y_{ij.}^2}{n_{ii}} = 143,0 -117,9 = 25,1$$

Estimação do Coeficiente de Herdabilidade

Quadro de Anova						
FV	GL	SQ	QM	E(QM)		
Reprodutor (S)	2	7,6	3,80	$\sigma_{W}^{2} + k_{2}\sigma_{D/S}^{2} + k_{3}\sigma_{S}^{2}$		
Vaca/Reprodutor (D/S)	3	8,9	2,97	$\sigma^2_W + k_1 \sigma^2_{D/S}$		
Resíduo (W)	9	25,1	2,79	$\sigma_{ m W}^2$		
Total	14	41,6	-	-		

Equações Para o Cálculo de k

$$k_{1} = \frac{1}{D-S} \left[N - \sum_{i} \frac{\sum_{j} n_{ij}^{2}}{n_{i.}} \right] \qquad k_{2} = \frac{1}{S-1} \left[\sum_{i} \frac{\sum_{j} n_{ij}^{2}}{n_{i.}} - \frac{\sum_{ij} n_{ij}^{2}}{N} \right] \qquad k_{3} = \frac{1}{S-1} \left[N - \frac{\sum_{i} n_{i.}^{2}}{N} \right]$$

$$Somat \'orias \ parao \ C\'alculo \ de \ k$$

$$\sum_{i} \frac{\sum_{j} n_{ij}^{2}}{n_{i.}} = \frac{3^{2} + 3^{3}}{6} + \frac{3^{2} + 2^{2}}{5} + \frac{2^{2} + 2^{2}}{4} = 7,6 \qquad | \qquad \frac{\sum_{ij} n_{ij}^{2}}{N} = \frac{3^{2} + 3^{2} + 3^{2} + 2^{2} + 2^{2} + 2^{2}}{15} = \frac{39}{15} = 2,6$$

$$\sum_{i} \frac{\sum_{j} n_{ij}^{2}}{n_{i}} = \frac{3^{2} + 3^{3}}{6} + \frac{3^{2} + 2^{2}}{5} + \frac{2^{2} + 2^{2}}{4} = 7,6 \qquad | \qquad \frac{\sum_{ij} n_{ij}^{2}}{N} = \frac{3^{2} + 3^{2} + 3^{2} + 2^{2} + 2^{2} + 2^{2}}{15} = \frac{39}{15} = 2,6$$

$$\frac{\sum_{i} n_{i.}^{2}}{N} = \frac{6^{2} + 5^{2} + 4^{2}}{15} = \frac{77}{15} = 5,1$$

Cálculo de k
$$k_{1} = \frac{1}{D-S} \left[N - \sum_{i} \frac{\sum_{j} n_{ij}^{2}}{n_{i}} \right] = \frac{1}{3} [15-7,6] = 2,47 \quad | \quad k_{2} = \frac{1}{S-1} \left[\sum_{i} \frac{\sum_{j} n_{ij}^{2}}{n_{i}} - \frac{\sum_{j} n_{ij}^{2}}{N} \right] = \frac{1}{2} [7,6-2,6] = 2,50$$

$$k_3 = \frac{1}{S-1} \left[N - \frac{\sum_i n_i^2}{N} \right] = \frac{1}{2} [15,0-5,1] = 4,95$$

Quadro de Anova							
FV	GL	SQ	QM	E(QM)			
Rreprodutores (S)	2	7,6	3,80	$\sigma^2_W + 2,50\sigma^2_{D/S} + 4,95\sigma^2_{S}$			
Vaca/Rreprodutor (D/S)	3	8,9	2,97	$\sigma^{2}_{W} + 2,47\sigma^{2}_{D/S}$			
Rresíduo (W)	9	25,1	2,79	$\sigma_{ m W}^2$			
Total	14	41,6	-	-			

Cálculo dos Componentes de Variância

$$\sigma_W^2 = 2,79$$

$$\sigma_W^2 + 2,47\sigma_{D/S}^2 = 2,97 \quad \Rightarrow \quad \sigma_{D/S}^2 = \frac{2,97 - 2,79}{2,47} = 0,07$$

$$\sigma_W^2 + 2,5\sigma_{D/S}^2 + 4,95\sigma_S^2 = 3,80 \quad \Rightarrow \quad \sigma_S^2 = \frac{3,80 - (2,79 + 2,50 \times 0,07)}{4,95} = \frac{3,80 - 2,97}{4,95} = \frac{0,83}{4,95} = 0,17$$

$$\sigma_T^2 = \sigma_P^2 = \sigma_S^2 + \sigma_{D/S}^2 + \sigma_W^2 = 0,17 + 0,07 + 2,79 = 3,03$$

Cálculo do Coeficiente de Herdabilidade

Como já demonstrado, o coeficiente de herdabilidade é obtido pela seguinte expressão:

$$h^2 = \frac{4\sigma_S^2}{\sigma_T^2} = \frac{4 \times 0.17}{3.03} = \frac{0.68}{3.03} = 0.22$$

Repetibilidade

É um parâmetro genético aplicado a uma característica repetível, entendendo-se como característica repetível, uma característica que se expressa em diferentes períodos da vida produtiva de um animal. Como exemplo deste tipo de característica, podem ser citados a produção de leite e de seus componentes, o tamanho da ninhada em espécies multíparas como camundongos, coelhos e suínos e a produção de lã em diferentes tosquias de uma ovelha. Características de desempenho ponderal como peso ao nascer e peso à desmama, por exemplo, embora sejam medidas apenas uma vez na vida do animal, podem ser consideradas repetíveis quando se referirem á mãe do animal. Uma vaca pode ter quatro partos e os pesos dos seus bezerros poderão ser considerados como característica repetível em relação à ela. Os pesos tem tendência a se repetir ao longo da vida do animal.

Definição de Repetibilidade

Como os desempenhos produtivos tendem a se repetir em diferentes períodos da vida do animal, a repetibilidade é uma medida da correlação média entre duas produções do mesmo indivíduo e é expressa como coeficiente de repetibilidade.

Caracterização da Repetibilidade

No capítulo de modos de ação gênica e modelo genético (na página 13) foi mostrado que o desempenho

produtivo de um animal para uma característica repetível qualquer, é dado por: $P = VG + VCG + E_P + E_T$, em que,

P = desempenho produtivo (valor fenotípico dado como desvio da média do grupo contemporâneo) do animal.

VG = valor genético do animal (A).

VCG = valor da combinação gênica (efeitos de dominância + efeitos de epistasia) no desempenho produtivo do animal (D + I).

 $\mathbf{E}_{\mathbf{P}}$ = Efeito permanente de ambiente (efeito das diferenças ambientais afetando todas as produções do animal).

 $\mathbf{E_T}$ = Efeito temporário de ambiente (efeito das diferenças ambientais afetando cada produção especificamente ao longo da vida do animal).

Assim, o único componente do valor fenotípico que se altera de um desempenho para o outro é o efeito de ambiente temporário. O genótipo do animal é o mesmo em todas as produções e o ambiente permanente afeta igualmente todas as produções, ou seja, as diferenças entre as produções de um mesmo animal são devidas aos efeitos temporários de ambiente, enquanto que as diferenças de produção entre os animais são devidas aos efeitos do genótipo (VG + VCG) e das diferenças dos efeitos ambientais permanentes $E_{\rm p}$.

Coeficiente de Repetibilidade

O coeficiente de repetibilidade é o parâmetro que expressa o grau de similaridade entre os desempenhos produtivos da mesma característica em períodos diferentes. Por exemplo, o grau de similaridade entre a primeira lactação e a segunda em determinada população,

Caracterização do Cieficiente de Repetibilidade

O coeficiente de repetibilidade (r) é sempre igual ou maior do que o de herdabilidade (h^2) pois,

$$h^2 = \frac{V_A}{V_A + V_D + V_I + V_{E_P} + V_{E_T}} = \frac{V_A}{V_P}$$

Enquanto o coeficiente de repetibibilidade (r) é caracterizado por:

$$r = \frac{V_A + V_D + V_I + V_{E_P}}{V_P} = \frac{V_A}{V_P} + \frac{V_D + V_I + V_{E_P}}{V_P} \rightarrow r = h^2 + \frac{V_D + V_I + V_{E_P}}{V_P}$$

 V_A = variância genética aditiva

 V_D = variância devida aos desvios de dominância

 V_{τ} = variâcia devida aosdesvios espistáticos

 $V_{E_{-}}$ = Variância de ambiente permanente

V_{E.,} Variância de ambiente temporário

 $V_P = Variância fenotípica$

Componentes da Variância Fenotípica (σ^2_p)

A variância fenotípica de uma característica repetível pode se parcionada em dois componentes: variância entre os indivíduos e variância dentro dos indivíduos.

Variância Entre Indivíduos (σ^2_B)

É a variância entre as médias de produção dos indivíduos e que é devida às diferenças entre os genótipos dos indivíduos associadas às diferenças entre os efeitos permanentes de ambiente desses indivíduos, ou seja, $\sigma^2_B = V_A + V_D + V_I + V_{EP}.$

Variância Dentro dos Indivíduos (σ²w)

É a variância entre as produções do mesmo indivíduo em diferentes períodos. Esta variância é devida as diferenças entre os efeitos temporários de ambiente, ou seja, dos efeitos do ambiente atuando especificaente em cada produção do mesmo indivíduo, ou sja, $\sigma^2_W = E_{T^*}$

Estimação do Coeficiente de Repetibilidade

De acordo com o modelo genético e considerando-se a partição da variancia fenotípica, tem-se:

$$r = \frac{(V_A + V_D + V_I + V_{E_P})}{(V_A + V_D + V_I + V_{E_P}) + V_{E_T}}$$

Mas,

 $V_A + V_D + V_I + V_{E_p} = \sigma_B^2$ (variância entre indivíduos)

 $V_{E_T} = \sigma_W^2$ (variância dentro de indivíduo - resíduo)

E, assim, o coeficiente de repetibilidade é dado por: $r = \frac{\sigma_B^2}{\sigma_R^2 + \sigma_W^2}$

Em que,

r = coeficiente de repetibilidade

 σ_B^2 = variância entre indivíduos

 σ_W^2 = variância dentro dos indivíduos

Exemplo de Estimação do Coeficiente de Repetibilidade

	Peso das Filhas de Quatro Ovelhas na Entrada da Reprodução						
			Total				
	1	2	3	4	·· Total		
	62	63	68	56			
	60	67	66	62			
	63	71	71	60			
Peso das Filhas	59	64	67	61			
(kg)	-	65	68	63			
	-	66	68	63			
	-	-	-	59			
	-	-	-	64			
$n_{\rm i}$	4	6	6	8	24		
Soma	244	396	408	488	1536		
Média	61	66	68	61	64		

Modelo Matemático e Somatórias

Modelo:
$$Y_{ij} = \mu + \alpha_i + e_{ij}$$

$$Y... = 62 + 60 + ... + 64 = 1.536$$
 | $N = \sum_{ni} = 4 + 6 + 6 + 8 = 24$

$$\sum Y_{ij}^2 = 62^2 + 60^2 + ... + 64^2 = 98.644 \quad | \quad \frac{Y..^2}{N} = \frac{1.536^2}{24} = 98.304$$

$$\sum \frac{Y_i^2}{ni} = \frac{244^2}{4} + \frac{396^2}{6} + \frac{408^2}{6} + \frac{488^2}{8} = 98.532$$

Somas de Quadrados

$$SQ_{Total} = \sum_{ij} Y_{ij}^2 - \frac{Y..^2}{N} = 98.644 - 98.304 = 340$$

$$SQ_{ENTRE\ OVELHAS} = \sum_{i} \frac{Y_{i.}^{2}}{n_{i}} - \frac{Y_{..}^{2}}{N} = 98.532 - 98.304 = 228$$

$$SQ_{DENTRO(Residuo)} = \sum_{ij} Y_{ij}^2 - \sum_{i} \frac{Y_{i.}^2}{n_i} = 98.644 - 98.532 = 112$$

Repetibilidade - Análise de Variância

Quadro de Anova						
FV	GL	SQ	QM	E(QM)		
Entre Ovelhas	3	228	76,0	$\sigma^2_W + k\sigma^2_B$		
Dentro (Resíduo)	20	112	5,6	$\sigma^2_{ m W}$		
Total	23	340	-	-		

Cálculo de k

$$k = \frac{1}{D-1} \left[N - \frac{\sum n_i^2}{N} \right]$$

$$\sum n_i^2 = 4^2 + 6^2 + 6^2 + 8^2 = 152$$

$$D = 4$$
, $N = 24 \Rightarrow \sum n_i^2 = \frac{152}{24} = 6,3334$

$$k = \frac{1}{3} [24 - 6,3334] = 5,889$$

O valor k é igual ao número médio de progênie de cada uma das ovelhas

Quadro de Anova Com o Valor de k							
FV	GL	SQ	QM	E(QM)			
Entre Ovelhas	3	228	76,0	$\sigma_{W}^{2} + 5,889 \sigma_{B}^{2}$			
Dentro (Resíduo)	20	112	5,6	$\sigma^2_{ m W}$			
Total	23	340	-	-			

Cálculo dos Componentes de Variância

$$\sigma_W^2 = 5.6$$
 $\sigma_W^2 + 5.889 \sigma_B^2 = 76 \implies$
 $\sigma_B^2 = \frac{76.0 - 5.6}{5.889} = 11.95$

$$\sigma_T^2 = \sigma_P^2 = \sigma_B^2 + \sigma_W^2 = 11,95 + 5,6 = 17,55$$

Repetibilidade

Cálculo do Coeficiente de Repetibilidade

$$r = \frac{\sigma_B^2}{\sigma_R^2 + \sigma_W^2} = \frac{\sigma_B^2}{\sigma_T^2} = \frac{11,95}{17,55} = 0,68$$

Exercícios Propostos

- 1. Conceitue herdabilidade
- 2. Por quê é tão importante estimar o coeficiente de herdabilidade?
- 3. O coeficiente de herdabilidade pode ser estimado pela correlação entre meio-irmãos paternos. Por este método o coeficiente de herdabilidade é calculado por: $h^2 = \frac{4\sigma_S^2}{\sigma_T^2}$, em que $\sigma_T^2 = \sigma_S^2 + \sigma_W^2$. Defina cada um dos termos envolvidos.
- 4. A correlação genética entre duas características é dada por: $r_g = \frac{C\hat{O}V_S}{\sqrt{\sigma_{S(X)}^2 \cdot \sigma_{S(Y)}^2}}$ Defina os termos da equação.
- 5. O coeficiente de repetibilidade é dado por: $r = \frac{\sigma_B^2}{\sigma_T^2}$, em que $\sigma_T^2 = \sigma_B^2 + \sigma_W^2$.

 Defina os termos envolvidos nessa equação.
- 6. Os dados da Tabela abaixo são valores de peso à desmama ajustados para 205 dias de idade (pes205, kg), peso aos 18 meses de idade, ajustado para 550 dias (Pes550,kg) e perímetro escrotal ajustado para 550 dias (PE, cm). São dados da raça Nelore de uma única fazenda, nascidos em 1992.

Pede-se:

- a) calcular o coeficiente de herdabilidade do peso aos 205 dias
- b) calcular o coeficiente de herdabilidade do peso aos 550 dias
- c) calcular o coeficiente de herdabilidade do perímetro escrotal
- d) calcular a correlação genética entre peso aos 205 dias e peso aos 550 dias
- e) calcular a correlação genética entre peso aos 205 dias e perímetro escrotal
- f) calcular a correlação genética entre peso aos 550 dias e perímetro escrotal

Pesos Ajustados de Animais da Raça Nelore

Animal	Pai	Mãe	Pes205	Pes550	PE
EL502992	PC076783	EL527989	166	323	29
EL501192	PC076783	EL553589	157	290	27
EL500492	PC076783	EL566789	166	302	33
EL502592	PC076783	EL570889	130	274	26
EL501792	PC076783	EL605389	160	311	28
EL400992	PC076783	RG001678	188	313	28
EL401492	PC076783	SF034880	197	368	29
EL400192	PO002376	AR300086	189	259	0
EL400292	PO002376	JC014376	206	272	0
EL401592	PO002376	JZ110086	205	298	29
EL401192	PO002376	JZ345784	227	372	34
EL401292	PO002376	SF302284	176	258	0
EL401892	PO002376	SJ138584	188	260	0
EL400792	PO157482	AR301486	207	379	26
EL501292	PO157482	EL508689	153	238	0
EL501592	PO157482	EL510589	157	286	29
EL500892	PO157482	EL520789	159	236	0
EL502092	PO157482	EL536689	143	223	0
EL503392	PO157482	EL547589	155	291	26
EL501892	PO157482	EL567589	141	230	23

^{7.} Considere a seguinte frase: "o coeficiente de correlação genética entre perímetro escrotal e taxa de prenhez de novilha jovem a 0,30 (30%)". O que significa este resultado? Qual é a sua importância no melhoramento genético?

^{8.} Considere a seguinte frase: "o coeficiente de correlação genética entre perímetro escrotal e idade ao primeiro parto é igual a - 0,45 (45% negativo)". O que significa este resultado? Qual é a sua importância no melhoramento genético?

Efeito Genético Materno

Conceituação dos Efeitos Maternais

Nos mamíferos, certas características, principalmente as de crescimento, são influenciadas por dois genótipos, cada um funcionando em um indivíduo diferente e em gerações diferentes.

Ocorrem assim, duas formas de expressão gênica: uma, direta, efeito dos genes do próprio indivíduo no qual a característica é medida (efeito genético direto) e outra, indireta, efeito dos genes da mãe do indivíduo, condicionando o ambiente que esta provê a seu produto durante a gestação e na fase de aleitamento (efeito materno).

O valor fenotípico de um indivíduo é então condicionado pela expressão dos genes para crescimento herdados do pai, dos genes para crescimento herdados da mãe e dos genes para habilidade materna.

Em relação à mãe, o efeito materno resulta de seu genótipo associado a fatores ambientais, mas em relação à progênie, a influência materna pode ser considerada de natureza estritamente ambiental.

Importância

Estimação de Coeficientes de Herdabilidade e Seleção para Habilidade Materna

Métodos que não consideram o efeito materno podem levar a estimativas tendenciosas de coeficientes de herdabilidade, principalmente superestimação. É importante também a seleção de reprodutores e matrizes para habilidade materna, principalmente a produção de leite que atenda a demanda do bezerro. Fêmeas com habilidade materna reduzida, produziriam progênies mais leves. Ë importante identificar reprodutores que produzam filhas com boa habilidade materna.

Correlação Entre Efeitos Genéticos Direto e Materno

Vários trabalhos indicam a existência de correlação negativa entre efeitos genéticos direto e materno, o que poderia comprometer a resposta à seleção. Uma resposta positiva para potencial de crescimento poderia estar associada a uma redução na habilidade materna das fêmas.

Evidenciação

Existem pelo menos duas formas de evidenciação dos efeitos maternais: Cruzamentos Recíprocos e Comparação de Coeficientes de Herdabilidade.

Cruzamentos Recíprocos

As mais simples evidências do efeito materno são obtidas a partir de experimentos de cruzamentos recíprocos, os quais produzem indivíduos geneticamente similares porém fenotipicamente diferentes, por serem gerados e criados por mães que diferem na habilidade materna. Exemplo: F_1 de touros Nelore x vacas Angus comparados com F_1 de touros Angus x vacas Nelore.

Comparação de Coeficientes de Herdabilidade

Os efeitos maternos podem ser detectados quando se comparam coeficientes de herdabilidade obtidos pelos métodos de correlação entre meio-irmão paternos e correlação entre meio-irmãos maternos. Também quando se comparam os coeficientes de herdabilidade obtidos pelas covariâncias entre progênie e pai e covariância entre progênie e mãe. Por exemplo, o efeito materno contribui para a correlação entre meio-irmãos maternos mas não o faz para a correlação entre meio-irmãos paternos. A diferença entre as duas correlações seria teóricamente, imputada ao efeito materno e à covariância entre potencial de crescimento (efeito genético direto) e efeito materno.

Aspectos Biométricos do Efeito Materno

Modelo de Dickerson

Dickerson (1947) mostrou com diagramas de passagem a influência dos efeitos genéticos direto e materno sobre o valor fenotípico e determinou a correlação genética entre os dois efeitos.

Modelo de Wilham

Wilham (1963) desenvolveu um modelo baseado na composição teórica esperada para a covariância entre indivíduos com diferentes graus de parentesco. Este modelo, para uma característica sujeita à influência materna, considera o valor fenotípico de um indivíduo X qualquer, de mãe W, como sendo resultante da ação do fenótipo de X (P^{O}_{X}) e da ação do fenótipo materno (P^{m}_{W}), definindo "o" como componente do próprio indivíduo cuja característica é medida (efeito direto) e "m" como componente da mãe desse indivíduo (efeito materno).

Desenvolvimento do Modelo de Wilham

Valor Fenotípico Incluindo o Efeito Materno

Wilham(1963) define o valor fenotípico de um indivíduo X, de mãe W, como:

$$P_X = P_X^0 + P_W^m$$

Sendo,

 P_{x} = Valor fenotípico do indivíduo X

 P_X^0 = Valor resultante da ação do fenótipo de X (efeito direto)

 P_{W}^{m} = Valor resultante da ação do fenótipo materno (mãe W) (efeito materno)

Decomposição do valor Fenotípico Com Efeito Materno

Os valores fenotípicos, direto (P_X^0) e materno (P_W^m) , do animal X, supondo aditividade entre os efeitos genéticos (G) e de ambiente (E), foram decompostos por Wilham (1963) como sendo:

$$P_X^0 = G_X^0 + E_X^0 - e - P_W^m = G_W^m + E_W^m$$

E assim.

$$P_X = G_X^{0} + E_X^{0} + G_W^{m} + E_W^{m}$$

Em que,

 P_X = Valor fenotípico (desempenho) do animal X (peso à desmama, por exemplo)

 G_X^0 = Efeito dos genes do indivíduo X afetando o seu próprio desempenho (Genes do próprio animal X para crescimento ou ganho de peso, por exemplo)

 E_X^0 = Efeito do ambiente ao qual o indivíduo X está submetido (efeito do lote, por exemplo)

 G_W^m = Efeito dos genes da mãe W afetando o desempenho do filho X (Genes da mãe W para produção de leite ou habilidade materna)

 E_W^m = Efeito do ambiente ao qual a mãe W está submetida, afetando o seu desempenho materno e, consequentemente, afetando o desempenho do filho X

Valor Fenotípico de um Indvíduo Y de Mãe Z

Da mesma forma, o valor fenotípico de um indivíduo Y de mãe Z, considerando o efeito materno, seria então,

$$P_{y} = G_{y}^{O} + E_{y}^{O} + G_{z}^{m} + E_{z}^{m}$$

Partição da Covariância Fenotípica

$$Cov(P_X, P_Y) = Cov[(G_X^o + E_X^o + G_W^m + E_W^m), (G_Y^o + E_Y^o + G_Z^m + E_Z^m)]$$

Sob a hipótese de independência entre efeitos genéticos e de ambiente, tem-se:

$$Cov(P_X, P_Y) = Cov[(G_X^o + G_W^m), (G_V^o + G_Z^m)] + Cov[(E_X^o + E_W^m), (E_Y^o + E_Z^m)]$$

Covariância Genética

$$Cov[(G_x^o + G_W^m), (G_Y^o + G_Z^m)] = Cov(G_X^o, G_Y^o) + Cov(G_X^o, G_Z^m) + Cov(G_W^m, G_Y^o) + Cov(G_W^m, G_Z^m)$$

Equação da Covariância Genética

Falconer (1981), desenvolvendo a covariância de família, mostrou que:

$$Cov(G_X, G_Y) = a_{XY}V_A + u_{XY}V_D + a_{XY}^2V_{AA} + r_{XY}u_{XY}V_{AD} + u_{XY}^2V_{DD} + \dots$$

Em que,

 a_{XY} = Covariância genética (parentesco como definido por Wright, 1952) entre os animais X eY. (Já foi, também, demonstrado no capítulo de Endogamia e Parentesco, que a_{XY} = $2f_{XY}$)

 f_{XY} = coeficiente de parentesco definido por Malecot (1948) como a probabilidade de um gene em um locus no indivíduo X ser idêntico por descendência a um gene no mesmo locus, no indivíduo Y.

 $\mathbf{u}_{\mathbf{XY}}$ = probabilidade de os dois alelos em um locus no indivíduo \mathbf{X} serem idênticos por descendência aos dois alelos no mesmo locus, no indivíduo \mathbf{Y} .

O termo \mathbf{u}_{XY} será igual a 0 (zero) se os indivíduos X e Y não forem relacionados por duas linhas de descendência, como por exemplo, irmãos completos, 3/4 irmãos ou primos de primeiro grau.

 V_{\perp} = variância genética aditiva

 V_D = variância devida aos desvios de dominância

 V_{AA} = variância devida aos efeitos epistáticos aditivo x aditivo

 V_{AD} = variância devida aos efeitos epistáticos aditivo x dominância

 $V_{\rm DD}$ = variância devida aos efeitos epistáticos dominância x dominância

Expressões da Covariância Genética Direta e Materna

Considerando-se a equação de Falconer, acima, e desprezando-se os efeitos epistáticos, tem-se:

$$Cov(G_X^o, G_Y^o) = a_{YY}V_A^o + u_{YY}V_D^o$$

$$Cov(G_X^o, G_Z^m) = a_{XZ}Cov_{A^oA^m} + u_{XZ}Cov_{D^oD^m}$$

$$Cov(G_Y^o, G_W^m) = a_{YW}Cov_{A^oA^m} + u_{YW}Cov_{D^oD^m}$$

$$Cov(G_W^m, G_Z^m) = a_{WZ}V_A^m + u_{WZ}V_D^m$$

Componentes Observacionais

Expressões da Covariância Genética Direta e Materna

Considerando-se as equações da página anterior, em termos de componentes observacionais, tem-se:

$$Cov(G_X^o, G_Y^o) = a_{XY}\sigma_{A^o}^2 + u_{XY}\sigma_{D^o}^2$$

$$Cov(G_X^o, G_Z^m) = a_{XZ}\sigma_{A^oA^m} + u_{XZ}\sigma_{D^oD^m}$$

$$Cov(G_Y^o, G_W^m) = a_{YW}\sigma_{A^oA^m} + u_{YW}\sigma_{D^oD^m}$$

$$Cov(G_W^m, G_Z^m) = a_{WZ}\sigma_{A^m}^2 + u_{WZ}\sigma_{D^m}^2$$

Somando-se os quatro termos acima, vem:

$$Cov[(G_x^o + G_y^m), (G_y^o + G_z^m)] = a_{xy}\sigma_{A^o}^2 + u_{xy}\sigma_{D^o}^2 + (a_{xz} + a_{yy})\sigma_{A^oA^m} + (u_{xz} + u_{yz})\sigma_{D^oD^m} + a_{yz}\sigma_{A^m}^2 + u_{yz}\sigma_{D^m}^2$$

Covariância Ambiental

A covariância ambiental pode ser desenvolvida de forma semellhante à que foi utilizada para o desenvolvimento da covariância genética. Tem-se, então:

$$Cov[(E_X^o + E_W^m), (E_Y^o + E_Z^m)] = Cov(E_X^o, E_Y^o) + Cov(E_X^o, E_Z^m) + Cov(E_Y^o, E_W^m) + Cov(E_W^m, E_Z^m)$$

Adotando-se os indicadores α , β e γ (FOULLEY e LEFORT, 1978), tem-se:

$$Cov(E_X^o, E_Y^o) = \alpha \sigma_{E^o}^2$$

$$Cov(E_X^o, E_Z^m) = \beta_1 \sigma_{E^o E^m}$$

$$Cov(E_Y^o, E_W^m) = \beta_2 \sigma_{E_{o_E}^m} (\beta_1 + \beta_2 = \beta)$$

$$Cov(E_W^m, E_Z^m) = \gamma \sigma_{E_M}^2$$

Somando os termos acima, tem-se,

$$Cov[(E_X^o + E_W^m), (E_Y^o + E_Z^m)] = \alpha \sigma_{E^o}^2 + \beta \sigma_{E^oE^m} + \gamma \sigma_{E^m}^2$$

Equação Geral

$$Cov(P_X, P_Y) = a_{XY}\sigma_{A^o}^2 + u_{XY}\sigma_{D^o}^2 + (a_{XZ} + a_{YW})\sigma_{A^oA^m} + (u_{XZ} + u_{YW})\sigma_{D^oD^m} + a_{WZ}\sigma_{A^m}^2 + u_{WZ}\sigma_{D^m}^2 + \alpha\sigma_{P^o}^2 + \beta\sigma_{P^oP^m} + \gamma\sigma_{P^m}^2$$

Covariância Ambiental

Casos Em Que O Mesmo Indivíduo É Submetido Aos Dois Efeitos

A covariância ambiental só existirá quando o mesmo indivíduo for submetido aos dois efeitos, ou seja,

$$X = Y \mapsto \alpha = 1; \quad X \neq Y \mapsto \alpha = 0$$

$$X = Z \mapsto \beta_1 = 1;$$
 $X \neq Z \mapsto \beta_1 = 0$

$$Y = W \mapsto \beta_2 = 1; \quad Y \neq W \mapsto \beta_2 = 0$$

$$W = Z \Rightarrow \gamma = 1; \quad W \neq Z \Rightarrow \gamma = 0$$

Exemplos

Covariância Progênie-Mãe

$$Cov(P_{X}, P_{Y}) = a_{XY}\sigma_{A^{o}}^{2} + u_{XY}\sigma_{D^{o}}^{2} + (a_{XZ} + a_{YW})\sigma_{A^{o}A^{m}} + (u_{XZ} + u_{YW})\sigma_{D^{o}D^{m}} + a_{WZ}\sigma_{A^{m}}^{2} + u_{WZ}\sigma_{D^{m}}^{2} + \alpha\sigma_{E^{o}}^{2} + \beta\sigma_{E^{o}E^{m}} + \gamma\sigma_{E^{m}}^{2}$$

$$Cov(E_X^o, E_Y^o) = 0 \quad (porque X \neq Y \mapsto \alpha = 0)$$

$$Cov(E_X^o, E_Z^m) = Cov(E_X^o, E_X^m) = \sigma_{E^oE^m}$$
 (porque $X \notin m\tilde{a}e \ de \ Y \mapsto X = Z \mapsto \beta_1 = 1$)

$$Cov(E_Y^o, E_W^m) = 0$$
 (porque $Y \neq W \mapsto \beta_2 = 0$)

$$Cov(E_W^m, E_Z^m) = 0 \quad (porque W \neq Z \mapsto \gamma = 0)$$

E assim,

$$Cov(P_X, P_V) = ... + \sigma_{E^{o_E m}}$$

Covariância Entre Meio-Irmãos Maternos ou Entre Irmãos Completos

Neste caso, $X \in Y$ têm a mesma mãe $\mapsto W = Z \mapsto \gamma = 1$

$$Cov(E_W^m, E_Z^m) = Cov(E_W^m, E_W^m) = \sigma_{E_M^m}^2$$

$$Cov(P_X, P_Y) = ... + \sigma_{E^m}^2$$

Variância Fenotípica

Cálculo da Variância Fenotípica

$$Var(P_X) = Cov(P_X, P_X)$$

Portanto.

Y = X (Os animais são os mesmos)

Z = W (Os animais sendo os mesmos, as mães são as mesmas)

$$Var(P_X) = Cov(P_X, P_X) = Cov[(G_X^o + G_W^m), (G_X^o + G_W^m)] + Cov[(E_X^o + E_W^m), (E_X^o + E_W^m)]$$

Desenvolvimento da Covariância Genética

$$Cov[(G_X^o + G_W^m), (G_X^o + G_W^m)] = a_{XX}\sigma_{A^o}^2 + u_{XX}\sigma_{D^o}^2 + (a_{XX} + a_{XW})\sigma_{A^oA^m} + (u_{XW} + u_{XW})\sigma_{D^oD^m} + a_{WW}\sigma_{A^m}^2 + u_{WW}\sigma_{D^m}^2 \rightarrow$$

$$Cov[(G_X^o + G_W^m), (G_X^o + G_W^m)] = 1\sigma_{A^o}^2 + 1\sigma_{D^o}^2 + (1 + \frac{1}{2})\sigma_{A^oA^m} + (0 + 0)\sigma_{D^oD^m} + 1\sigma_{A^m}^2 + 1\sigma_{D^m}^2 \rightarrow 0$$

$$Cov[(G_X^o + G_W^m), (G_X^o + G_W^m)] = \sigma_{A^o}^2 + \sigma_{D^o}^2 + \frac{3}{2}\sigma_{A^oA^m} + \sigma_{A^m}^2 + \sigma_{D^m}^2$$

Desenvolvimento da Covariância Ambiental

$$Cov[(E_X^o + E_W^m), (E_X^o + E_W^m)] = Cov(E_X^o, E_X^o) + Cov(E_X^o, E_W^m) + Cov(E_X^o, E_W^m) + Cov(E_W^m, E_W^m)$$

$$Cov[(E_X^o + E_W^m), (E_X^o + E_W^m)] = \alpha \sigma_{E^o}^2 + \beta \sigma_{E^oE^m} + \gamma \sigma_{E^m}^2$$

$$Y = X \rightarrow \alpha = 1$$

$$Z = W \rightarrow \gamma = 1$$

$$X \neq W \mapsto \beta_1 = 0 \ (W \notin m \tilde{a} e \ de \ X)$$

$$Y = X \mapsto X \neq W \mapsto \beta_2 = 0 \ (Z = W \mapsto W \text{ sendo mãe de } X)$$

$$\beta = \beta_1 + \beta_2 = 0 + 0 = 0$$

$$Cov[(E_X^o + E_W^m), (E_X^o + E_W^m)] = \alpha\sigma_{E^o}^2 + \beta\sigma_{E^oE^m} + \gamma\sigma_{E^m}^2 = 1 \sigma_{E^o}^2 + 0 \sigma_{E^oE^m} + 1 \sigma_{E^m}^2 \rightarrow 0$$

$$Cov[(E_X^o + E_W^m), (E_X^o + E_W^m)] = \sigma_{E^o}^2 + \sigma_{E^m}^2$$

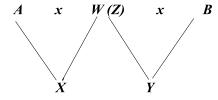
Variância Fenotípica - Equação Final

Somando-se os termos da covariância genética e da covariância ambiental, tem-se:

$$Var(P_X) = Cov(P_X, P_X) = \sigma_{A^o}^2 + \sigma_{D^o}^2 + \frac{3}{2}\sigma_{A^oA^m} + \sigma_{A^m}^2 + \sigma_{D^m}^2 + \sigma_{E^o}^2 + \sigma_{E^m}^2$$

Exemplo - Composição da Covariância Entre Meio-irmãos Maternos

Cálculo dos Componentes Causais



Covariância Entre Meio-Irmãos Maternos

$$a_{XY} = \sum \left(\frac{1}{2}\right)^{(n_1 + n_2)} = \sum \left(\frac{1}{2}\right)^{(1 + 1)} = \frac{1}{4}$$

$$a_{XZ} = \sum \left(\frac{1}{2}\right)^{(n_1 + n_2)} = \sum \left(\frac{1}{2}\right)^{(1 + 0)} = \frac{1}{2}$$

$$a_{XZ} = \sum \left(\frac{1}{2}\right)^{(n_1 + n_2)} = \sum \left(\frac{1}{2}\right)^{(1 + 0)} = \frac{1}{2}$$

$$a_{YW} = \sum \left(\frac{1}{2}\right)^{(n_1 + n_2)} = \sum \left(\frac{1}{2}\right)^{(1 + 0)} = \frac{1}{2}$$

 $a_{WZ} = a_{WW} = 1$ (parentesco de W consigo mesmo)

$$u_{XY} = 0$$
, $u_{XZ} = u_{XW} = 0$, $u_{YW} = 0$, $u_{WZ} = u_{WW} = 1$

$$\alpha = 0$$
, $\beta = 0$, $\gamma = 1$

$$Cov(P_X, P_Y) = \frac{1}{4}\sigma_{A^o}^2 + \sigma_{A^oA^m} + \sigma_{A^m}^2 + \sigma_{D^m}^2 + \sigma_{E^m}^2$$

Tabela de Covariâncias

(Adaptada de Dickerson, 1947)

Relações de Parentesco	σ^{2A0}	$\sigma^2 D^0$	$\sigma A^0 A^m$	$\sigma D^0 D^m$	$\sigma^2 A^m$	$\sigma^2 D^m$	$\sigma^2 E^0$	$\sigma E^0 E^m$	$\sigma^2 E^m$
Var(P _x)	1	1	1	0	1	1	1	0	1
$COV[(A^{0X}+A_{X}^{m}),(P_{X})]$	1	0	3/2	0	1/2	0	0	0	0
Pai-Descendente	1/2	0	1/4	0	0	0	0	0	0
Mãe-Descendente	1/2	0	5/4	1	1/2	0	0	1	0
Irmãos Completos	1/2	1/4	1	0	1	1	0	0	1
Meio-Irmãos Paternos	1/4	0	0	0	0	0	0	0	0
Meio-Irmãos Maternos	1/4	0	1	0	1	1	0	0	1
Primos Simples ^a	1/8	0	0	0	0	0	0	0	0
Primos Simples ^b	1/8	0	1/2	0	1/2	1/4	0	0	0
Primos Simples ^c	1/8	0	1/4	0	0	0	0	0	0
Primos Simples ^d	1/16	0	0	0	0	0	0	0	0
Primos Simples ^e	1/16	0	1/4	0	1/4	0	0	0	0
Primos Simples ^f	1/16	0	1/8	0	0	0	0	0	0
Primos Germanos*	1/4	1/16	1/2	0	1/2	1/4	0	0	0
Primos Germanos Cruzados**	1/4	1/16	1/2	0	0	0	0	0	0
3/4 Irmãos***	5/16	1/16	1/4	0	1/4	0	0	0	0

a Pais são irmãos completos, b Mães são irmãos completas, c Mãe de um e pai de outro são irmãos completos, d Pais são meio-irmãos paternos, e Mães são meio-irmãos paternos, e Mães são irmãos completos e mães são irmãos completas, ** Pai de um e mãe do outro são irmãos completos, *** Meio-irmãos paternos cujas mães são meio-irmãos paternas

Estimação dos Componentes Causais Usando Dados de Campo

Com este modelo (WILHAM, 1963) a estimação dos componentes causais da variância fenotípica segue os segintes passos:

- 1. Estimar, dos dados, os componentes de variância e de covariância para todas as relações de parentesco (famílias) disponíveis (meio-irmãos paternos, meio-irmãos maternos, primos, covariância entre progênie e mãe etc. Usar GLM dos SAS, por exemplo).
- 2. Igualar cada componente à sua composição teórica (vide Tabela de Covariâncias). Formar um sistema de **n** equações e **p** incógnitas, em que **n** é o número de relações de parentesco disponíveis e **p** é igual ao número de componentes causais de variância e de covariância.
- 3. Resolver o sistema de equações formado. Se **n** for ≠de **p** pode-se aplicar o método dos quadrados mínimos (como proposto por EISEN, 1967).
- 4. O componente de variância fenotípica (σ_p^2) será igual à soma das estimativas dos componentes causais.
- 5. Calcular herdabilidade direta e herdabilidade materna

Herdabilidade Direta e Materna

A relação entre o componente genético aditivo direto e a variância fenotípica fornecerá uma estimativa da herdabilidade para o efeito direto.

$$h_o^2 = \frac{\sigma_{A^o}^2}{\sigma_{P}^2}$$

Para se estimar a herdabilidade do efeito materno, a relação será entre o componente genético aditivo materno e a variância fenotípica.

$$h_m^2 = \frac{\sigma_{A^m}^2}{\sigma_{P}^2}$$

Herdabilidade Total

Dickerson (1947) define herdabilidade total (h_T^2) como a fração do diferencial de seleção que seria realizada se a seleção fosse baseada no valor fenotípico do indivíduo (P_v)

$$h_T^2 = b_{A_X P_X}$$

$$Mas, \quad b_{A_X P_X} = \frac{Cov(A_X, P_X)}{Var(P_X)} \quad e \quad A_X = (A_X^o + A_X^m) \quad \Rightarrow$$

$$h_T^2 = \frac{Cov[(A_X^o + A_X^m), P_X]}{Var(P_X)}$$

$$Cov[(A_X^o + A_X^m), P_X] = Cov[(A_X^o + A_X^m), (A_X^o + A_W^m) + R]$$

R é a soma dos componentes de dominância, epistáticos e ambientais.

Estimação dos Componentes Causais Usando Dados de Campo

Herdabilidade Total

Assumindo-se $Cov[(A_X^o + A_X^m), R] = 0$ e desprezando-se os efeitos de dominância, tem-se:

$$Cov[(A_X^o + A_X^m), P_X] = Cov(A_X^o + A_X^o) + Cov(A_X^o + A_W^m) + Cov(A_X^o + A_X^m) + Cov(A_X^m + A_W^m) \rightarrow$$

$$Cov[(A_X^o + A_X^m), P_X] = a_{XX}\sigma_{A^o}^2 + (a_{XX} + a_{XW})\sigma_{A^oA^m} + a_{XW}\sigma_{A^m}^2$$

 $a_{XX} = 1$ (parentesco de X consigo mesmo) e $a_{XW} = \frac{1}{2}$ (parentesco de X com a sua mãe, W)

E, assim,
$$Cov[(A_X^o + A_X^m), P_X] = \sigma_{A^o}^2 + \frac{3}{2} \sigma_{A^o A^m} + \frac{1}{2} \sigma_{A^m}^2 \rightarrow$$

$$h_T^2 = \frac{\sigma_{A^o}^2 + \frac{3}{2} \sigma_{A^o A^m} + \frac{1}{2} \sigma_{A^m}^2}{\sigma_P^2}$$

Coeficiente de Regressão do Valor Genético Aditivo Materno no Valor Genético Aditivo Direto

Da mesma forma, a regressão do valor genético aditivo materno no valor genético aditivo direto é dada por:

$$b_{A^{o_A m}} = \frac{\sigma_{A^{o_A m}}}{\sigma_{A^m}^2}$$

O termo $b_{A^0A^m}$ indica a magnitude e a direção da dependência linear do valor genético aditivo materno no valor genético aditivo direto

Correlação Entre os Efeitos Direto e Materno

A correlação entre os dois efeitos é dada por :

$$r_{A \circ_A m} = \frac{\sigma_{A \circ_A m}}{\sqrt{\sigma_{A \circ}^2 \cdot \sigma_{A m}^2}}$$

Este termo $(r_{A^0\!A^m})$ indica a força da dependência do efeito materno no efeito direto.

Exemplo Com Dados de Campo

Um exemplo completo de estimação do efeito materno, utilizando a metodologia descrita acima, pode ser obtido em Eler 1987²

²Eler, J.P. Avaliação dos Efeitos Genéticos Direto e Materno em Características Ponderais de Bovinos da Raça Nelore Criados no Estado de São Paulo. Ribeirão Preto. Faculdade de Medicina de Ribeirão Preto (Tese de Doutorado), 1987.

Probabilidade de Detecção de Portadores de Genes Recessivos

É importante saber se um reprodutor (ou uma matriz) com fenótipo dominante é homozigoto para o gene dominante ou se é heterozigoto. É importante sobretudo saber se o homozigoto recessivo apresenta uma característica indesejável.

Não se pode estabelecer com certeza se um animal é portador de genes recessivos; há todavia métodos que permitem assegurar com certa probabilidade. Entre os métodos de detecção de alelos recessivos podem ser citados:

Informações do "Pedigree"

- a) O animal é conhecidamente portador se um dos pais tem genótipo homozigoto recessivo.
- b) Progênie de portadores são provavelmente portadores.

No que concerne aos filhos de machos que são sabidamente heterozigotos para genes recessivos indejáveis, duas alternativas podem ser utilizadas:

- i) Retirá-los sistematicamente da reprodução
- ii) Testá-los para identificar os heterozigotos

Teste de Progênie para Idetificação dos heterozigotos

Há várias alternativas para o teste de progênie do macho, dependendo do tipo de fêmea disponível para acasalamento. Todas as alternativas seguem o seguinte procedimento:

- 1 Assumir que o animal suspeito seja de fato heterozigoto
- 2 Calcular a probabilidade (p) de se observar o fenótipo dominante em uma única progênie.
- 3 Calcular a probabilidade de **n** progênies observadas mostrarem o fenótipo dominante (pⁿ)
- 4 Calcular a probabilidade de que pelo menos 1 fenótipo recessivo possa ser observado. Esta probabilidade é dada por (1- pⁿ).

A fração (1- pⁿ) é, portanto, a probabilidade de detecção do gene recessivo.

a) Uso de fêmeas homozigotas recessivas

A probabilidade de uma progênie mostrar o fenótipo dominante, do acasalamento de Aa com aa é 1/2, p = 1/2.

A probabilidade de **n** dominantes é $p^n = (1/2)^n$. A probabilidade de pelo menos um apresentar o fenótipo recessivo é $1 - (1/2)^n$.

Desta forma, tem-se:

Nº de Progênies	Probabilidade de detecção de recessivos (p)*
1	1 - (1/2) = 0.50
2	$1 - (1/2)^2 = 0.75$
3	$1 - (1/2)^3 = 0.875$
4	$1 - (1/2)^4 = 0.938$
5	$1 - (1/2)^5 = 0,969$
6	$1 - (1/2)^6 = 0.984$
7	$1 - (1/2)^7 = 0,992$

Número de Progênies Necessárias Para Detecção de Portadores de Genes Recessivos

A probabilidade de pelo menos uma progênie apresentar o fenótipo recessivo é $p = 1 - (\frac{1}{2})^n$

Para 95% de probabilidade de detecção (p = 0,95), tem-se:

$$p = 1 - (\frac{1}{2})^n \mapsto 0.95 = 1 - (\frac{1}{2})^n \mapsto (\frac{1}{2})^n = 0.05$$

Aplicando logarítimos:

$$n \log(\frac{1}{2}) = \log(0.05) \rightarrow n = \frac{\log(0.05)}{\log(0.5)} = \frac{-1.3}{-0.3} = 4.33$$

Ou seja, necessitam-se 5 progênies para se obter 95% de confiança.

Para 99% de probabilidade de detecção (p = 0,99), tem-se:

$$p = 1 - (\frac{1}{2})^n \mapsto 0.99 = 1 - (\frac{1}{2})^n \mapsto (\frac{1}{2})^n = 0.01 \mapsto$$

$$n \log(\frac{1}{2}) = \log(0.01) \rightarrow n = \frac{\log(0.01)}{\log(0.5)} = \frac{-2}{-0.3} = 6.67$$

Ou seja, são necessárias 7 progênies para se obter 99% de confiança.

b) Uso de fêmeas portadoras

Aa x Aa = AA + 2Aa + aa \Rightarrow p = 3/4 \Rightarrow prob (n homozigotos) = (3/4)ⁿ \Rightarrow p de detecção = 1 - (3/4)ⁿ

Nº de Progênies	Probabilidade de detecção de recessivos (p)*
1	1 - (3/4) = 0.25
2	$1 - (3/4)^2 = 0,44$
5	$1 - (3/4)^5 = 0.76$
10	$1 - (3/4)^{10} = 0.94$
20	$1 - (3/4)^{20} = 0.997$

Número de Progênies Necessárias Para Detecção de Portadores de Genes Recessivos

A probabilidade de pelo menos uma progênie apresentar o fenótipo recessivo é $p = 1 - (\frac{3}{4})^n$

Para 95% de probabilidade de detecção (p = 0,95), tem-se:

$$p = 1 - \left(\frac{3}{4}\right)^n \mapsto 0.95 = 1 - \left(\frac{3}{4}\right)^n \mapsto \left(\frac{3}{4}\right)^n = 0.05$$

Aplicando-se logarítimos:

$$n \log(\frac{3}{4}) = \log(0.05) \rightarrow n = \frac{\log(0.05)}{\log(0.75)} = \frac{-1.3}{-0.125} = 10.4$$

Ou seja, são necessárias 11 progênies para se obter 95% de confiança

Para 99% de probabilidade de detecção (p = 0,99), tem-se:

$$p = 1 - \left(\frac{3}{4}\right)^n \mapsto 0.99 = 1 - \left(\frac{3}{4}\right)^n \mapsto \left(\frac{3}{4}\right)^n = 0.01 \mapsto$$

$$n \log(\frac{3}{4}) = \log(0.01) \rightarrow n = \frac{\log(0.01)}{\log(0.75)} = \frac{-2}{-0.125} = 16.0$$

Ou seja, são ecessárias 16 progênies para se obter 99% de confiança.

c) Uso de fêmeas filhas de um Touro Portador - $[f(A) = 3/4 \ e \ f(a) = 1/4]$

Machos	Fêmeas					
	A (3/4)	a (1/4)				
A(1/2)	AA(3/8)	Aa(1/8)				
a(1/2)	Aa(3/8)	aa(1/8)				

$$f(AA) = 3/8$$
, $f(Aa) = 4/8 = 1/2$ e $f(aa) = 1/8$

Número de Progênies Necessárias Para Detecção de Portadores de Genes Recessivos

A probabilidade de pelo menos uma progênie apresentar o fenótipo recessivo é $p = 1 - \left(\frac{7}{8}\right)^n$

Para 95% de probabilidade de detecção (p = 0,95), tem-se:

$$p = 1 - (\frac{7}{8})^n \mapsto 0.95 = 1 - (\frac{7}{8})^n \mapsto (\frac{7}{8})^n = 0.05$$

Aplicando-se logarítimos:

$$n \log(7/8) = \log(0.05) \rightarrow n = \frac{\log(0.05)}{\log(0.875)} = \frac{-1.3}{-0.058} = 22.4$$

Ou seja, são necessárias 23 progênies para se obter 95% de confiança

Para 99% de probabilidade de detecção (p = 0,99), tem-se:

$$p = 1 - (\frac{7}{8})^n \mapsto 0.99 = 1 - (\frac{7}{8})^n \mapsto (\frac{7}{8})^n = 0.01 \mapsto$$

$$n \log(\frac{7}{8}) = \log(0.01) \rightarrow n = \frac{\log(0.01)}{\log(0.875)} = \frac{-2}{-0.0058} = 34.5$$

Ou seja, são necessárias 35 progênies para se obter 99% de confiança.

d) Uso de fêmeas filhas de um Touro Suspeito - $[f(AA) = 1/2 \ e \ f(Aa) = 1/2]$

Machos	Fêmeas					
	A (3/4)	a (1/4)				
A(1/2)	AA(3/8)	Aa(1/8)				
a(1/2)	Aa(3/8)	aa(1/8)				

É idêntico ao anterior, portanto a probabilidade de detecção é igual a 1 - (7/8)ⁿ e o número de progênies necessário para 95 % de cofiança é 23 e para 99% é 35.

Número de Progênies Necessárias Para Detecção de Portadores de Genes Recessivos

A probabilidade de pelo menos uma progênie apresentar o fenótipo recessivo é $p = 1 - (\frac{7}{9})^n$

Para 95% de probabilidade de detecção (p = 0,95), tem-se:

$$p = 1 - \left(\frac{7}{8}\right)^n \mapsto 0.95 = 1 - \left(\frac{7}{8}\right)^n \mapsto \left(\frac{7}{8}\right)^n = 0.05$$

Aplicando-se logarítimos:

$$n \log(7/8) = \log(0.05) \rightarrow n = \frac{\log(0.05)}{\log(0.875)} = \frac{-1.3}{-0.058} = 22.4$$

Ou seja, São necessárias 23 progênies para se obter 95% de confiança

Para 99% de probabilidade de detecção (p = 0,99), tem-se:

$$p = 1 - (\frac{7}{8})^n \mapsto 0.99 = 1 - (\frac{7}{8})^n \mapsto (\frac{7}{8})^n = 0.01 \mapsto$$

$$n \log(\frac{7}{8}) = \log(0.01) \rightarrow n = \frac{\log(0.01)}{\log(0.875)} = \frac{-2}{-0.0058} = 34.5$$

Ou seja, necessitam-se 35 progênies para se obter 99% de confiança.

e) Acasalamentos Aleatórios $[f(A) \text{ nas } f\hat{e}meas = p \text{ } e \text{ } f(a) \text{ nas } f\hat{e}meas = q]$

Machos	A (p)	a(q)
A(1/2)	AA(1/2 p)	Aa(1/2 q)
a(1/2)	Aa(1/2 p)	aa(1/2 q)

Número de Progênies Necessárias Para Detecção de Portadores de Genes Recessivos

A probabilidade de todos A heterozigoto é igual a:

$$\frac{1}{2}p + \frac{1}{2}p + \frac{1}{2}q = p + \frac{1}{2}q = 1 - q + \frac{1}{2}q = 1 - \frac{1}{2}q \Rightarrow$$

A probabilidade de n homozigotos = $(1-\frac{1}{2}q)^n$

Assim,

A probabilidade de pelo menos uma progênie apresentar o fenótipo recessivo é prob = $1-(1-\frac{1}{2}q)^n$

Para 95% de probabilidade de detecção (prob = 0,95) e q = 0,8, tem-se:

$$prob = 1 - (1 - \frac{1}{2}q)^n \rightarrow 0.95 = 1 - (1 - \frac{1}{2}q)^n \rightarrow (1 - \frac{1}{2}q)^n = 0.05$$

Aplicando-se logarítimos:

$$n \log(1 - \frac{1}{2}q) = \log(0,05) \rightarrow n = \frac{\log(0,05)}{\log(1 - \frac{1}{2}q)} = \frac{\log(0,05)}{\log(1 - \frac{1}{2} \times 0.8)} = \frac{\log(0,05)}{\log(0,6)} = \frac{-1,3}{-0,2218} = 5,9$$

Ou seja, são necessárias 6 progênies para se obter 95% de confiança

Para 99% de probabilidade de detecção (prob = 0.99) e q = 0.8, tem-se:

$$prob = n \log(1 - \frac{1}{2}q) \rightarrow 0.99 = 1 - (1 - \frac{1}{2}q)^n \rightarrow (1 - \frac{1}{2}q)^n = 0.01 \rightarrow$$

$$n = \frac{\log(0,01)}{\log(1 - \frac{1}{2}q)} = \frac{\log(0,01)}{\log(0,6)} = \frac{-2}{-0,2218} = 89,8$$

Ou seja, são necessárias 90 progênies para se obter 99% de confiança

f) Acasalamentos Aleatórios [f (A) nas fêmeas = 0.9 e f (a) nas fêmeas = 0.1]

Número de Progênies Necessárias Para Detecção de Portadores de Genes Recessivos

A probabilidade de pelo menos uma progênie apresentar o fenótipo recessivo é prob = $1-(1-\frac{1}{2}q)^n$

Para 95% de probabilidade de detecção (prob = 0,95) e q = 0,1, tem-se:

$$prob = 1 - (1 - \frac{1}{2}q)^n \rightarrow 0.95 = 1 - (1 - \frac{1}{2}q)^n \rightarrow (1 - \frac{1}{2}q)^n = 0.05$$

Aplicando-se logarítimos:

$$n \log(1 - \frac{1}{2}q) = \log(0.05) \rightarrow n = \frac{\log(0.05)}{\log(1 - \frac{1}{2}q)} = \frac{\log(0.05)}{\log(1 - \frac{1}{2} \times 0.1)} = \frac{\log(0.05)}{\log(0.95)} = \frac{-1.3}{-0.02227} = 58.3$$

Ou seja, são necessárias 59 progênies para se obter 95% de confiança

Para 99% de probabilidade de detecção (prob = 0,99) e q = 0,1, tem-se:

$$prob = n \log(1 - \frac{1}{2}q) \rightarrow 0.99 = 1 - (1 - \frac{1}{2}q)^n \rightarrow (1 - \frac{1}{2}q)^n = 0.01 \rightarrow$$

$$n = \frac{\log(0,01)}{\log(1 - \frac{1}{2}q)} = \frac{\log(0,01)}{\log(0,95)} = \frac{-2}{-0,02227} = 89,8$$

Ou seja, são necessárias 90 progênies para se obter 99% de confiança

f) Acasalamentos Aleatórios [f (A) nas fêmeas = 0.9 e f (a) nas fêmeas = 0.1]

Número de Progênies Necessárias Para Detecção de Portadores de Genes Recessivos

A probabilidade de pelo menos uma progênie apresentar o fenótipo recessivo é prob = $1-(1-\frac{1}{2}q)^n$

Para 95% de probabilidade de detecção (prob = 0.95) e q = 0.1, tem-se:

$$prob = 1 - (1 - \frac{1}{2}q)^n \rightarrow 0.95 = 1 - (1 - \frac{1}{2}q)^n \rightarrow (1 - \frac{1}{2}q)^n = 0.05$$

Aplicando-se logarítimos:

$$n \log(1 - \frac{1}{2}q) = \log(0.05) \rightarrow n = \frac{\log(0.05)}{\log(1 - \frac{1}{2}q)} = \frac{\log(0.05)}{\log(1 - \frac{1}{2} \times 0.1)} = \frac{\log(0.05)}{\log(0.95)} = \frac{-1.3}{-0.02227} = 58.3$$

Ou seja, são necessárias 59 progênies para se obter 95% de confiança

Para 99% de probabilidade de detecção (prob = 0.99) e q = 0.1, tem-se:

$$prob = n \log(1 - \frac{1}{2}q) \rightarrow 0.99 = 1 - (1 - \frac{1}{2}q)^n \rightarrow (1 - \frac{1}{2}q)^n = 0.01 \rightarrow$$

$$n = \frac{\log(0,01)}{\log(1 - \frac{1}{2}q)} = \frac{\log(0,01)}{\log(0,95)} = \frac{-2}{-0,02227} = 89,8$$

Ou seja, são necessárias 90 progênies para se obter 99% de confiança

Conclusão Sobre o Uso dos Avasalamentos Aleatórios no Teste

Para frequências muito baixas do alelo recessivo, a utilização de acasalamentos aleatórios não permite, na prática, níveis elevados de confiabilidade para o reprodutor. A obtenção de 598 progênies do reprodutor, por exemplo, seria muito difícil e os custos poderiam ser muito elevados.

Literatura Citada e Leitura Adicional

- Bertazzo, R.P.; Freitas, R.T.F.; Gonçalves, T.M. et ali. Parâmetros Genéticos de Longevidade e Produtividade de Fêmeas da Raça Nelore. **Brazilian Journal of Animal Science**. v.33, p.1118 1127, 2004.
- Bonin, M.N.; Ferraz, J.B.S.; Eler, J.P. et ali. Sire effects on carcass and meat quality traits of young Nellore bulls. **Genetics and Molecular Research**, v.13, p.3250 3264, 2014.
- Bourdon, R.M. Understanding Animal Breeding. Prentice Hall. Upper Saddle River, NJ 07458, 1997, 523p.
- Bueno, R.S.; Torres, R.A.; Ferraz, J.B.S. et ali. Métodos de estimação de efeitos genéticos não-aditivos para características de peso e perímetro escrotal em bovinos de corte mestiços. **Brazilian Journal of Animal Science**, v.41, p.1140 1145, 2012.
- Bueno, R.S.; Torres, R.A.; Ferraz, J.B.S. et ali. Inclusão da epistasia em modelo de avaliação genética de bovinos de corte compostos. **Arquivo Brasileiro de Medicina Veterinária e Zootecnia**, v.63, p.948 953, 2011.
- Chapman, A.B. General and Quantitative Genetics. New York, Elsevier, 1985. 408p.
- Costa Neto, P.L. Estatística. Editora Edgard Blucher Ltda, 1977, 265p.
- Crow, J.F. & Kimura, M. An Introduction to Population Genetics Theory. New York, Harper & Row, 1979, 591p. Cuco, D.; Ferraz, J.B.S.; Eler, J.P. et ali. Genetic parameters for post-weaning traits in Braunvieh cattle. **Genetics and**
- Molecular Research, v.9, p.545-553, 2010.
- Dickerson, G.E. Composition of hog carcass as influenced by heritable differences in rate and economy of gain. **Iowa Agr. Exp. Sta. Bul.** 354, 1947.
- Elandt_Johnson, R.C. Probability Models and statistical Methods in Genetics. New York, Wiley, 1971.
- Eler, J.P.; Bignardi, A.B.; Ferraz, J.B.S.; Santana, M.L. Genetic relationship among traits related to reproduction and growth of Nellore females. **Theriogenology**, v.82, 708-714, 2014.
- Eler, J.P.; Ferraz, J.B.S.; Balieiro, J.C.C. et ali. Genetic correlation between heifer pregnancy and scrotal circumference measured at 15 and 18 month of age in Nellore cattle. **Genetics and Molecular Research.**, v.5, p.569 580, 2006.
- Eler, J.P.; Silva, J.A.V.; Evans, J. L. et ali. Additive genetic relationship between heifer pregnancy and scrotal circumference in Nellore catle. **Journal of Animal Science**, v.82, p.2519 2527, 2004.
- Eler, J.P.; Silva, J.A.V.; Ferraz, J.B.S. et ali. Genetic Evaluation of the Probability of Pregnancy at 14 Month for Nellore Heifers. **Journal of Animal Science**, v.80, 951 954, 2002.
- Eler, J.P.; Van Vleck, L.D.; Ferraz, J.B.S. et ali. Estimation of Variances Due to Direct and Maternal Effects for Growth Traits of Nellore Cattle. **Journal of Animal Science**, v.73, p.3253 3258, 1995.
- Falconer, D.S. Introduction to Quantitative Genetics. London, Longman Group Corp., 1981, 340p.
- Felício, A.M.; Gaya, L.G.; Ferraz, J.B.S. et ali. Heritability and genetic correlation estimates for performance, meat quality and quantitative skeletal muscle fiber traits in broiler. **Livestock Science** (Print), v.157, p.81 87, 2013.
- Ferraz, J.B.S.; Eler, J.P.: Rezende, F.M. Impact of using artificial insemination on the multiplication of high genetic merit beef cattle in Brazil. **Animal Reproduction**, v.9, p.133 138, 2012.
- Fouley, J.P. & Lefort, G. Méthodes déstimation des effects directs et maternels em selection animale. **Ann. Génet. Sél. Anim.**, 10(3): 475-496, 1978.
- Futuyama, D.J. Biologia Evolutiva. Funpec-Editora, 3ª edição, 2009, 830 p.
- Gaya, L.G.; Ferraz, J.B.S.; Costa, A.M.M.A. et ali. Estimates of heritability and genetic correlation for meat quality traits in broilers. **Scientia Agrícola** (USP. Impresso), v.68, p.620 625, 2011.
- Gaya, L.G.; Ferraz, J.B.S.; Rezende, F.M. et ali. Heritability and Genetic Correlation Estimates for Performance and Carcass and Body Composition Traits in a male Broiler Line. **Poultry Science**. v.85, p.837 843, 2006.
- Gianoni, M.A. & Gianoni, M.L. **Genética e Melhoramento dos Rebanhos nos Trópicos**. São Paulo, Nobel, 1983, 460p.
- HARTL, D.L. & Clark, A.G. Princípios de Genética de populações. 4ª Edição. Artmed, 2010, 660p.
- Johanson, I & Rendel, J. Genetica y Mejora Animal. Zaragoza, Acribia, 1972.
- Kempthorn, O. Introduction to Genetic Statistics. New York, Wiley, 1957.
- Lasley, J.F. Genetics of Livestock Improvement. Prentice Hall, NJ, 1978, 492p.

- Li, CC. First Course in Populatin Genetics. Pacif Grove (California). The Boxwood Press, 1976, 631p.
- Lush, J.L. Melhoramento Genético dos Animais Domésticos. Rio de Janeiro, USAID, 1945.
- Marcondes, C.R.; Eler, J.P.; Ferraz, J.B.S. et ali. Fatores de ajuste do peso à desmama segundo a idade da vaca ao parto, em bovinos da raça Nelore. **Arquivo Brasileiro de Medicina Veterinária e Zootecnia.**, v.50, p.625 631, 1998.
- Mrode, R.A. Linear Models for the prediction of Animal Breeding Values. CAB International, 1996.
- Nicholas, F.W. Introdução à Genética Veterinária. ART MED Editora, Porto Alegre, RS, 2011, 347p.
- Oliveira Júnior, G.A. Eler, J.P. Ramírez-Díaz et ali. Inclusion of weaning management group as a random effect in the genetic evaluation of post weaning traits in Nellore cattle. **Tropical Animal Health and Production**, v.82, 1031-1036, 2014.
- Oliveira Júnior, G.A.; Eler, J.P.; Ferraz, J.B.S. et ali. Definição de grupos genéticos aditivos visando melhor predição de valores genéticos em bovinos de corte. **Revista Brasileira de Saúde e Produção Animal**, v.14, p.277 286, 2013.
- Paula, G.G.; Ferraz, J.B.S.; Eler, J.P. Parâmetros Genéticos para coelhos da raça Califórnia criados no Brasil. **Arquivo Brasileiro de Medicina Veterinária e Zootecnia**. v.52, p.544 548, 2000.
- Pedrosa, V.B.; Groenveld, E. Eler, J.P. et ali. Comparison of bivariate and multivariate joint analyses on the selection loss of beef cattle. **Genetics and Molecular Research**, v.13, p.4036 4045, 2014.
- Pedrosa, V.B.; Eler, J.P.; Ferraz, J.B.S. et ali. Parâmetros genéticos do peso adulto e características de desenvolvimento ponderal na raça Nelore. **Revista Brasileira de Saúde e Produção Animal** (UFBA), v.11, p.104-113, 2010.
- Pereira, E.; Oliveira, H.N.; Eler, J.P. et ali. Comparison among three methods for evaluation of sexual precocity in Nellore cattle. **Animal Science. British Society of Animal Science**, v.1, p.411 418, 2007.
- Pereira, E.; Oliveira, H.N.; Eler, J.P. et ali. Use of survival analysis as a tool for the genetic improvement of age at first conception in Nellore cattle. **Journal of Animal Breeding and Genetics**. v.123, p.64 71, 2006.
- Pereira, E.; Eler, J.P.; Ferraz, J.B.S. et ali. Análise genética de características reprodutivas na raça Nelore. **Pesquisa Agropecuária Brasileira**, v.80, 951-954, 2002.
- Pereira, E.; Eler, J.P.; Ferraz, J.B.S. Análise genética de algumas características reprodutivas e de suas relações com desempenho ponderal na raça Nelore. **Arquivo Brasileiro de Medicina Veterinária e Zootecnia**. v.53, p.720 727, 2001.
- Pereira, E.; Eler, J.P.; Ferraz, J.B.S. Correlação Genética entre perímetro escrotal e algumas características reprodutivas na raça Nelore. **Brazilian Journal of Animal Science**. v.29, p.1660 1667, 2000.
- Pereira, J.C. Melhoramento Genético Aplicado à produção Animal. FEP-MVZ Editora, Belo Horizonte, 2012, 758p.. Pirchner, F. Population Genetics in Aimal Breeding. London, Plenum Press, 1983.
- Pires, A.V. (Editor). Bovinocultura de Corte. Volume I . FEALQ, 2010, 760p.
- Pires, A.V. (Editor). **Bovinocultura de Corte**. Volume II . FEALQ, 2010, 750p.
- Rosa, A.N.; Martins, E.N.; Menezes, G.R.O. et ali. Melhoramento Genético Aplicado em Gado de Corte: Programa Geneplus-Embrapa, 2013, 241p.
- Santana, M.L.: Eler, J.P.; Cardoso, F.F. et ali. Genotype by environment interaction for post-weaning weight gain, scrotal circumference, and muscling score of composite beef cattle in different regions of Brazil. **Genetics and Molecular Research**, v.13, p.3048 3059, 2014.
- Santana, M.L.: Eler, J.P.; Bignardi, A.B. et ali. Genotype by production environment interaction for birth and weaning weights in a population of composite beef cattle. **Animal** (Cambridge. Print), v.8, p.379 387, 2014.
- Santana, M.L.: Eler, J.P. Ferraz, J.B.S. et ali. Alternative contemporary group structure to maximize the use of field records: Application to growth traits of composite beef cattle. **Livestock Science** (Print), v.157, p.20 27, 2013.
- Santana, M.L.: Eler, J.P.; Bignardi, A.B. et ali. Genetic associations among average annual productivity, growth traits, and stayability: A parallel between Nelore and composite beef cattle. **Journal of Animal Science**, v.91, p.2566 2574, 2013.
- Santana, M.L.: Eler, J.P.; Cucco, D.C et ali. Genetic associations between hip height, body conformation scores, and pregnancy probability at 14 months in Nelore cattle. **Livestock Science** (Print), v.154, p.13 18, 2013.
- Santana, M.L.: Bignardi, A.B.; Eler, J.P. et ali. Genotype by environment interaction and model comparison for growth traits of Santa Ines sheep. **Journal of Animal Breeding and Genetics** (1986), v.30, p.394 403, 2013.
- Santana, M.L.: Eler, J.P. Ferraz, J.B.S. et ali. Genetic relationship between growth and reproductive traits in Nellore cattle. **Animal** (Cambridge. Print), v.6, p.565 570, 2012.
- Searle, S.R. Matrix Algebra. John Willey & Sons, 1966, 296p.
- Searle, S.R. Linear Models. John Willey & Sons, 1971, 532p.
- Searale, S.R.; Casela, G.; McCulloch, E. Variance Components. John Willey & Sons.
- Silva, M.R.; Pedrosa, V.B. Borges-Silva, J. et ali. Genetic parameters for scrotal circumference, breeding soundness

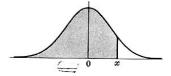
- examination and sperm defects in young Nellore bulls. Journal of Animal Science, v.91, p.4611 4616, 2013.
- Silva, M.R.; Pedrosa, V.B.; Borges-Silva, J. et ali. Parámetros genéticos de las características andrológicas en la especie bovina. **Archivos de Medicina Veterinaria** (Impresa). v.44, p.1 11, 2012.
- Silva, M.R.; Pedrosa, V.B.; Borges-Silva, J. et ali. Testicular traits as a selection criteria for young Nellore bulls. **Journal of Animal Science**, v.89, p.2061 2067, 2011.
- Silva, J.A.V.; Formigoni, I.B.; Eler, J.P. et ali. Genetic relationship among stayability, scrotal circunference and post-weaning weight in Nellore cattle. **Livestock Production Science**, v.99, p.51 59, 2006.
- Silva, J.A.V.; Eler, J.P.; Ferraz, J.B.S. et ali. Heritability Estimate for Stayability in Nelore Cows. **Livestock Production Science.**, 79: 97 101, 2003.
- Silva, R.G. **Métodos de Genética Quantitativa Aplicados ao Melhoramento Genético Animal**. Ribeirão Preto, Sociedade Brasileira de Genética, 1982, 162p.
- Siqueira, J.B.; Oba, R.O.; Pinho, H.P. et ali. Heritability Estimate and Genetic Correlations of Reproductive Features in Nellore Bulls, Offspring of Super Precocious, Precocious and Normal Cows Under Extensive Farming Conditions. **Reproduction in Domestic Animals** (1990), v.47, p.313 318, 2012.
- Spiegel, M.R. Manual de Fórmulas e Tabelas Matemáticas. Coleção Schaaum. McGrow-Hill, 1973.
- Strickberger, M.W. Genetics. New York, MacMilian Publishing Company, 1985, 842 p.
- Van Melis, M.H.; Figueiredo, L.G.G; OLIVEIRA, H.N. et ali. Quantitative genetic study of age at subsequent rebreeding in Nellore cattle by using survival analysis. **Genetics and Molecular Research**, v.13 (2): p.4071 4082, 2014.
- Van Melis, M.H.; OLIVEIRA, H.N.; ELER, J. P. et ali. Additive genetic relationship of longevity with fertility and production traits in Nellore cattle based on bivariate models. **Genetics and Molecular Research**., v.9, p.176-187, 2010.
- Van Melis, M.H.; ELER, J. P.; Rosa, G.J.M. et ali. Additive Genetic Relationships between Scrotal Circumference, Heifer Pregnancy, and Stayability in Nellore cattle. **Journal of Animal Science**, v.88, p.3809-3813, 2010.
- Van Melis, M.H.; Eler, J.P.; Oliveira, H.N. et ali. Study of stayability in Nellore cows using a threshold model. **Journal of Animal Science**, v.85, p.1780 1786, 2007.
- Van Vleck, L. D.; Pollack, E.J.; Oltenacu, E.A.B. **Gnetics for the animal Sciences**. New York, W.H. Freeman and Company, 1987, 391p.
- WELLER, J.I. Economic Aspects of Animal Breeding. Padstow, TJ Press, 1994, 244p.
- WarWick, E.J. Legates, J.E. Breeding and Improvement of Farm Animals. New York, McGrow Hill, 1979, 624p.
- WillHam, R.L. The covariance between relatives for characters composed of components contributed by related individuals. **Biometrics**, 19: 18-26, 1963.

Tabelas Estatísticas

TABELA 1: Áreas Delimitadas Pela Curva Normal Standard

$$de - \infty \text{ até } x$$

$$\operatorname{erf}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt$$



x	0	1	2	3	4	5	6	7	8	9
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5754
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0.5987	0,6026	0,6064	0,6103	0,6141
0,3	0.6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,651
0.4	0.6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808		
•,.	3,555	0,0071	0,0020	0,000	0,0700	0,0750	0,0772	0,0000	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7258	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7518	0,7549
0,7	0,7580	0.7612	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0.7967	0,7996	0,8023	0,8051	0.8078	0,8106	0,8133
0,9	0.8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
- 70	3,000	0,0200	0,0212		0,0204	0,0209	0,0313	0,0340	0,0303	0,0309
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0.8962	0,8980	0,8997	0.9015
1,3	0,9032	0,9049	0,9066	0,9082	0.9099	0,9115	0,9131	0,9147	0.9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
	0,9332	0.0045	0.0044			1000	a sufacile			
1,5		0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0.9778	0.9783	0.9788	0.0700	0.0700	0.0000			
2,1	0,9821	0,9826			0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821		0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
		0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.00.10		
2,6	0,9953	0,9955	0,9956	0,9943				0,9949	0,9951	0,9952
2,7	0,9965				0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
		0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0.9987	0.9987	0.9988	0,9988	0,9989	0.9989	0.9989	0.9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9989	0,9990	
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9992	0,9993	0,9993
3,3	0,9995	0,9995	0,9995	0,9994	0,9994					0,9995
3,4	0,9997	0,9997	0,9993	0,9996		0,9996	0,9996	0,9996	0,9996	0,9997
٠,٠	0,7771	0,7771	0,277	0,5797	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0.9998	0.9998	0.9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0.9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0.9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1.0000	1,0000	1,0000
		-,000	2,000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

TABELA 2: Valores da Densidade Distribuição Normal Reduzida

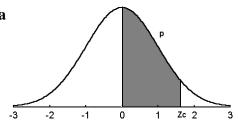
Valor de
$$\alpha = \int_{T_{\alpha}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} \ell^{2}}$$

$$d_{\chi} = P(T_{\alpha}) \xrightarrow{T_{\alpha}} T_{\alpha}$$

$$\text{area} = 0$$

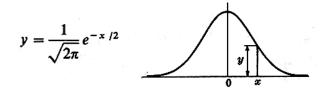
Z	0	1	2	3	4	5	6	7	8	9
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010
3,1	0,0010	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007
3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005
3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003
3,4	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0002
3,5	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002
3,6	0,0002	0,0002	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001
3,7	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001
3,8	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001
3,9	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

TABELA 3: Valores Críticos da Distribuição Normal Reduzida $Probabilidades\ p\ tais\ que\ p = P(0 < Z < Zc)$



				SEG	SUNDA DE	CIMAL D	E Zc				
Zc	0	1	2	3	4	5	6	7	8	9	Zc
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359	0,0
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753	0,1
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141	0,2
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517	0,3
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879	0,4
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224	0,5
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549	0,6
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852	0,7
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3079	0,3106	0,3133	0,8
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389	0,9
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621	1,0
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830	1,1
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015	1,2
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177	1,3
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319	1,4
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441	1,5
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545	1,6
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633	1,7
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706	1,8
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767	1,9
2,0	0,4773	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817	2,0
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857	2,1
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890	2,2
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916	2,3
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936	2,4
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952	2,5
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964	2,6
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974	2,7
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981	2,8
2,9	0,4981	0,4982	0,4983	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986	2,9
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990	3,0
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993	3,1
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995	3,2
3,3	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997	3,3
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998	3,4
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	3,5
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	3,6
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	3,7
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,5000	3,8
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	3,9
4,0	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	4,0

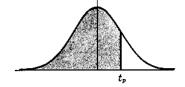
TABELA 4: Ordenadas da Curva Normal Standard



×	0	1 ,	2, 1	3	4	5	6	7	8	9
0,0	0,3989	0,3989	0,3989	0,3988	0,3986	0,3984	0,3982	0,3980	0,3977	0,3973
0,1	0,3970	0,3965	0,3961	0,3956	0,3951	0,3945	0,3939	0,3932	0,3925	0,3918
0,2	0,3910	0,3902	0,3894	0,3885	0,3876	0,3867	0,3857	0,3847	0,3836	0,3825
0,3	0,3814	0,3802	0,3790	0,3778	0,3765	0,3752	0,3739	0,3725	0,3712	0,3697
0,4	0,3683	0,3668	0,3653	0,3637	0,3621	0,3605	0,3589	0,3572	0,3555	0,3538
0,5	0,3521	0,3503	0,3485	0,3467	0,3448	0,3429	0,3410	0,3391	0,3372	0,3352
0,6	0,3332	0,3312	0,3292	0,3271	0,3251	0,3230	0,3209	0,3187	0,3166	0,3144
0,7	0,3123	0,3101	0,3079	0,3056	0,3034	0,3011	0,2989	0,2966	0,2943	C 2920
0,8	0,2897	0,2874	0,2850	0,2827	0,2803	0,2780	0,2756	0,2732	0,2709	0, 1685
0,9	0,2661	0,2637	0,2613	0,2589	0,2565	0,2541	0,2516	0,2492	0,2468	0,2 144
1,0	0,2420	0,2396	0,2371	0,2347	0,2323	0,2299	0,2275	0,2251	0,2227	0,2203
1,1	0,2179	0,2155	0,2131	0,2107	0,2083	0,2059	0,2036	0,2012	0,1989	0,1965
1,2	0,1942	0,1919	0,1895	0,1872	0,1849	0,1826	0,1804	0,1781	0,1758	0,1736
1,3	0,1714	0,1691	0,1669	0,1647	0,1626	0,1604	0,1582	0,1561	0,1539	0,1518
1,4	0,1497	0,1476	0,1456	0,1435	0,1415	0,1394	0,1374	0,1354	0,1334	0,1315
1,5	0,1295	0,1276	0,1257	0,1238	0,1219	0,1200	0,1182	0,1163	0,1145	0,1127
1,6	0,1109	0,1092	0,1074	0,1057	0,1040	0,1023	0,1006	0,0989	0,0973	0,0957
1,7	0,0940	0,0925	0,0909	0,0893	0,0878	0,0863	0,0848	0,0833	0,0818	0,0804
1,8	0,0790	0,0775	0,0761	0,0748	0,0734	0,0721	0,0707	0,0694	0,0681	0,0669
1,9	0,0656	0,0644	0,0632	0,0620	0,0608	0,0596	0,0584	0,0573	0,0562	0,0551
2,0	0,0540	0,0529	0,0519	0,0508	0,0498	0,0488	0,0478	0,0468	0,0459	0,0449
2,1	0,0340	0,0431	0,0422	0,0308	0,0404	0,0396	0,0387	0,0379	0,0371	0,0363
2,2	0,0355	0,0347	0,0339	0,0332	0,0325	0,0390	0,0310	0,0379	0,0371	0,0290
2,3	0,0333	0,0347	0,0339	0,0332	0,0323	0,0317	0,0310	0,0303	0,0237	0,0230
2,4	0,0224	0,0217	0,0270	0,0208	0,0203	0,0198	0,0194	0,0189	0,0184	0,0229
2.5	0.0175	0.0171	0.0167	0.0162	0.0150	0.0154	0.0151	0.0147	0.01.42	0.0120
2,5	0,0175	0,0171	0,0167	0,0163	0,0158	0,0154	0,0151	0,0147	0,0143	0,0139
2,6	0,0136	0,0132	0,0129	0,0126	0,0122	0,0119	0,0116	0,0113	0,0110	0,0107
2,7	0,0104	0,0101	0,0099	0,0096	0,0093	0,0091	0,0088	0,0086	0,0084	0,0081
2,8 2,9	0,0079 0,0060	0,0077	0,0075 0,0056	0,0073 0,0055	0,0071 0,0053	0,0069 0,0051	0,0067 0,0050	0,0065 0,0048	0,0063 0,0047	0,0061 0,0046
3,0	0,0044	0,0043	0,0042	0,0040	0,0039	0,0038	0,0037	0,0036	0.0036	0,0034
3,0	0,0033	0,0043	0,0042	0,0040	0,0039	0,0038	0,0037	0,0036	0,0035	0,0034
3,2	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026	0,0023	0,0023
3,2	0,0024	0,0023	0,0022	0,0022	0,0021	0,0020	0,0020	0,0019	0,0018	0,0018
		5.11.11		*						
3,4	0,0012	0,0012	0,0012	0,0011	0,0011	0,0010	0,0010	0,0010	0,0009	0,0009
3,5	0,0009	0.0008	0,0008	0,0008	0,0008	0,0007	0,0007	0,0007	0,0007	0,0006
3,6	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	0,0004
3,7	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003	0,0003	0,0003	0,0003
3,8	0,0003	0,0003	0,0003	0,0003	0,0003	0,0002	0,0002	0,0002	0,0002	0,0002
3,9	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0001	0,0001

TABELA 5: Valores Percentis (tp) para Distribuição de Student t

com n graus de liberdade (área sombreada = p)

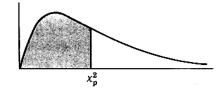


n	<i>t</i> _{0,995}	<i>t</i> _{0,99}	<i>t</i> _{0,975}	<i>t</i> _{0,95}	t _{0,90}	<i>t</i> _{0,80}	t _{0,75}	<i>t</i> _{0,70}	t _{0,60}	t _{0,55}
1	63,66	31,82	12,71	6,31	3.08	1.376	1.000	0.727	0.325	0.158
2	9,92	6,96	4,30	2,92	1.89	1.061	0.816	0.617	0.289	0.142
3	5,84	4,54	3,18	2,35	1.64	0.978	0.765	0.584	0.277	0.137
4	4,60	3,75	2,78	2,13	1.53	0.941	0.741	0.569	0.271	0.134
5	4,03	3,36	2,57	2,02	1.48	0.920	0.727	0.559	0.267	0.132
6	3,71	3,14	2,45	1,94	1.44	0.906	0.718	0.553	0.265	0.131
7	3,50	3,00	2,36	1,90	1.42	0.896	0.711	0.549	0.263	0.130
8	3,36	2,90	2,31	1,86	1.40	0.889	0.706	0.546	0.262	0.130
9	3,25	2,82	2,26	1,83	1.38	0.883	0.703	0.543	0.261	0.129
10	3,17	2,76	2,23	1,81	1.37	0.879	0.700	0.542	0.260	0.129
11	3,11	2,72	2,20	1,80	1.36	0.876	0.697	0.540	0.260	0.129
12	3,06	2,68	2,18	1,78	1.36	0.873	0.695	0.539	0.259	0.128
13	3,01	2,65	2,16	1,77	1.35	0.870	0.694	0.538	0.259	0.128
14	2,98	2,62	2,14	1,76	1.34	0.868	0.692	0.537	0.258	0.128
15	2,95	2,60	2,13	1,75	1.34	0.866	0.691	0.536	0.258	0.128
16	2,92	2,58	2,12	1,75	1.34	0.865	0.690	0.535	0.258	0.128
17	2,90	2,57	2,11	1,74	1.33	0.863	0.689	0.534	0.257	0.128
18	2,88	2,55	2,10	1,73	1.33	0.862	0.688	0.534	0.257	0.127
19	2,86	2,54	2,09	1,73	1.33	0.861	0.688	0.533	0.257	0.127
20	2,84	2,53	2,09	1,72	1.32	0.860	0.687	0.533	0.257	0.127
21	2,83	2,52	2,08	1,72	1.32	0.859	0.686	0.532	0.257	0.127
22	2,82	2,51	2,07	1,72	1.32	0.858	0.686	0.532	0.256	0.127
23	2,81	2,50	2,07	1,71	1.32	0.858	0.685	0.532	0.256	0.127
24	2,80	2,49	2,06	1,71	1.32	0.857	0.685	0.531	0.256	0.127
25	2,79	2,48	2,06	1,71	1.32	0.856	0.684	0.531	0.256	0.127
26	2,78	2,48	2,06	1,71	1.32	0.856	0.684	0.531	0.256	0.127
27	2,77	2,47	2,05	1,70	1.31	0.855	0.684	0.531	0.256	0.127
28	2,76	2,47	2,05	1,70	1.31	0.855	0.683	0.530	0.256	0.127
29	2,76	2,46	2,04	1,70	1.31	0.854	0.683	0.530	0.256	0.127
30	2,75	2,46	2,04	1,70	1.31	0.854	0.683	0.530	0.256	0.127
40	2,70	2.42	2.02	1.68	1.30	0.851	0.681	0.529	0.255	0.126
60	2,66	2.39	2.00	1.67	1.30	0.848	0.679	0.527	0.254	0.126
120	2.62	2.36	1.98	1.66	1.29	0.845	0.677	0.526	0.254	0.126
∞	2.58	2.33	1.96	1.645	1.28	0.842	0.674	0.524	0.253	0.126

liberdade de liberdade Tabela 06 DISTRIBUIÇÃO DE STUDENT: St (n) p/2 p/2 VALORES CRITICOS DE t TAIS QUE P(-t_C < t < t_C) = 1 - p 용 Graus T Graus 0,2% 0.1% 4% 2% 1% p = 90% 80% 70% 60% 50% 40% 30% 20% 10% 15,894 31,821 318,309 636,619 0,727 1,000 1,376 1,963 3,078 6,314 12,706 63,657 1 0.158 0,325 0,510 1 4,849 6,965 9,925 22,327 31,598 2 0.816 1.061 1,386 1,886 2,920 4,303 0.142 0.289 0.445 0.617 2 10,214 12,924 3 1,638 2,353 3,182 3,482 4,541 5,841 0.424 0.584 0,765 0.978 1,250 3 0,137 0,277 1,533 4. 2,776 3,747 4,604 7,173 8,610 2.132 2.998 0,134 0,271 0,414 0,569 0,741 0,941 1,190 5 5 0,132 0,267 0,408 0,559 0,727 0,920 1,156 1,476 2,015 2,571 2,756 3,365 4.032 5.893 6.869 6 1,134 1,943 2,447 2,612 3,143 3,707 5,208 5,959 6 0.131 0.265 0.404 0.553 0,718 0,906 1,440 2,998 3,499 4,785 5,408 7: 0,402 0,549 0,711 0.896 1,119 1,415 1,895 2,365 2,517 0,130 0,263 7 2,306 5,041 8. 1,860-2,449 2,896 3,355 4,501 0,399 0,546 0.889 1,108 1,397 8 0,130 0,262 0,706 4,297 4,781 3,250 9 0,129 0,261 0,398 0,543 0,703 0,883 1,100 1,383 1,833 2,262 2,398 2,821 10 2,764 3.169 4,144 4,587 0,542 0,700 0,879 1,093 1,372 1,812 2,228 2,359 10 0,129 0,260 0,397 STRIBUIÇÃO 11 4,437 2,201 2,328 2,718 3,106 3,025 11 0,129 0,260 0,396 0,540 0,697 0,876 1,088 1,363 1,796 0,539 0,695 0,873 1,083 1,356 1,782 2,179 2,303 2,681 3,055 3,930 4,318 12 0,259 0,395 0.128 12 3,852 4,221 13 1,771 2,282 2,650 3,012 2.160 13 0,128 0,259 0,394 0,538 0,694 0.870 1.079 1,350 3,787 4,140 14 1,345 2,145 2,264 2,977 1.761 2.624 14 0,128 0,258 0.393 0,537 0,692 0.868 1,076 15 2,947 3,733 4,073 2.248 15 0,128 0,258, 0,393 0.536 0,691 0,866 1,074 1,341 1.753 2.131 2.602 16 3,686 4.015 2,921 16 0,128 0,258 0,392 0,535 0,690 0,865 1,071 1,337 1,746 2,120 2,235 2,583 DE 17 3,646 3.965 0,534 1,069 1,333 1,740 2,110 2,224 2,567 2,898 0,128 0,257 0,392 0,689 0,863 17 18 STUDENT 0,534 1,330 1,734 2,101 2,214 2,552 2,878 3,610 3,922 0.127 0,257 0,392 0,688 0,862 1,067 18 19 2,205 2,861 3,579 3,883 0.391 0.533 0.688 0.861 1.066 1,328 1,729 2,093 2,539 0,127 0.257 19 1,325 2,086 2,197 2,528 2,845 3,552 3,850 20 0,687 1,064 1.725 0.533 0.860 20 0,127 0,257 0.391 21 2,831 3,527 3,819 2.080 2.189 2.518 0,127 0,391 0,532 0,686 0.859 1,063 1,323 1.721 21 0,257 22 2,183 2.508 2,819 3,505 3,792 2,074 22 0,127 0,256 0,390 0,532 0,686 0,858 1,061 1,321 1,717 3,485 3,768 23 2,807 2,177 2.500 23 0,256 0,390 0,532 0,685 0,858 1,060 1,319 1,714 2,069 0,127 3,745 24 3,467 2,4 0,127 0,256 0,390 0,531 0,685 0,857 1,059 1,318 1,711 2.064 2,172 2,492 2,797 25 3,725 2,485 2,787 3.450 0,127 0.256 0,390 0,531 0,684 0,856 1,058 1,316 1,708 2,060 2,168 25 26 2,479 2,779 3,435 3,707 0,256 0,531 0,684 0.856 1,058 1,315 1,706 2.056 2.162 26 0,127 0.390 2,052 2,158 2,473 2,771 3,421 3,690 27 1,057 1,314 0,531 0,684 0,855 1,703 27 0,127 0,256 0,389 28 2,467 2,763 3,408 3,674 2,048 2,154 28 0,127 0,256 0,389 0,530 0,684 0,855 1,056 1,313 1,701 29 3,396 2,756 3.659 0,127 0,256 0,389 0,530 0,683 0,854 1,055 1,311 1,699 2,045 2,150 2,462 29 30 0,530 0,854 1,055 1,697 2,042 2,147 2,457 2,750 3.385 3.646 30 0,127 0,256 0,389 0,683 1,310 35 0.682 1,052 2,030 2,133 2,438 2,724 3,340 3,591 0.852 1,306 1.690 35 0,255 0.388 0.529 0,126 2,423 2,704 3,307 3,551 40 2,123 1,303 40 0,126 0,255 0,388 0,529 0,681 0,851 1,050 1,684 2,021 50 2,678 3,261 3,496 2,403 50 0,126 0,254 0,387 0,528 0,679 0,849 1,047 1,299 1,676 2,009 2,109 3.460 60 3,232 0,848 1,045 1,296 1,671 2,000 2,099 2,390 2,660 60 0,126 0,254 0,387 0,527 0,679 120 3,373 2,076 2,358 2,617 3.160 0,254 0,526 0,677 0,845 1,041 1,289 1,658 1,980 0.126 0.386 120 2,576 3,090 3,291 8 1,960 2,054 2,326 0,674 0,842 1,036 1,282 1,645 œ 0,253 0,385 0,524 0,126 2% 1% 0,1% p = 90% 80% 70% 60% 50% 40% 30% 20% 10% 5% 4% 0,2%

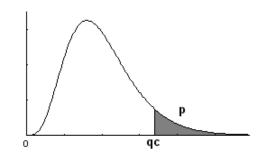
TABELA 7: Valores Percentis para a Distribuição Chi Quadrada

com n graus de liberdade (área sombreada = p)



n	χ ² _{0,995}	χ ² _{0,99}	χ ² _{0,975}	χ <mark>2</mark> ,95	χ ² _{0,90}	χ ² _{0,75}	χ ² _{0.50}	χ2,25	χ ² _{0,10}	χ <mark>2</mark> ,05	χ ² _{0,025}	χ2,01	χ2,005
1	7,88	6,63	5,02	3,84	2,71	1,32	0,455	0,102	0,0158	0,0039	0,0010	0,0002	0,0000
2	10,6	9,21	7,38	5,99	4,61	2,77	1,39	0,575	0,211	0,103	0,0506	0,0201	0,0100
3	12,8	11,3	9,35	7,81	6,25	4,11	2,37	1,21	0,584	0,352	0,216	0,115	0,072
4	14,9	13,3	11,1	9,49	7,78	5,39	3,36	1,92	1,06	0,711	0,484	0,297	0,207
5	16,7	15,1	12,8	11,1	9,24	6,63	4,35	2,67	1,61	1,15	0,831	0,554	0,412
6	18,5	16,8	14,4	12,6	10,6	7,84	5,35	3,45	2,20	1,64	1,24	0,872	0,676
7	20,3	18,5	16,0	14,1	12,0	9,04	6,35	4,25	2,83	2,17	1,69	1,24	0,989
8	22,0	20,1	17,5	15,5	13,4	10,2	7,34	5,07	3,49	2,73	2,18	1,65	1,34
9	23,6	21,7	19,0	16,9	14,7	11,4	8,34	5,90	4,17	3,33	2,70	2,09	1,73
10	25,2	23,2	20,5	18,3	16,0	12,5	9,34	6,74	4,87	3,94	3,25	2,56	2,16
11	26,8	24,7	21,9	19,7	17,3	13,7	10,3						
12	28,3	26,2	23,3	21,0	18,5	14,8	11,3	7,58 8,44	5,58 6,30	4,57 5,23	3,82 4,40	3,05 3,57	2,60 3,07
13	29,8	20,2	23,3 24,7	22,4	19,8	16,0	12,3	9,30	7,04	5,23 5,89		3,3 / 4,11	3,57
14	31,3	29,1		23,7					7,0 4 7,79		5,01		
14	31,3	29,1	26,1	23,1	21,1,	17,1	13,3	10,2	1,19	6,57	5,63	4,66	4,07
15	32,8	30,6	27,5	25,0	22,3	18,2	14,3	11,0	8,55	7,26	6,26	5,23	4,60
16	34,3	32,0	28,8	26,3	23,5	19,4	15,3	11,9	9,31	7,96	6,91	5,81	5,14
17	35,7	33,4	30,2	27,6	24,8	20,5	16,3	12,8	10,1	8,67	7,56	6,41	5,70
18	37,2	34,8	31,5	28,9	26,0	21,6	17,3	13,7	10,9	9,39	8,23	7,01	6,26
19	38,6	36,2	32,9	30,1	27,2	22,7	18,3	14,6	11,7	10,1	8,91	7,63	6,84
20	40,0	.37,6	34,2	31,4	28,4	23,8	19,3	15,5	12,4	10,9	9,59	8,26	7,43
21	41,4	38,9	35,5	32,7	29,6	24,9	20,3	16,3	13,2	11,6	10,3	8,90	8,03
22	42,8	40,3	36,8	33,9	30,9	26,0	21,3	17,2	14,0	12,3	11,0	9,54	8,64
23	44,2	41,6	38,1	35,2	32,0	27,1	22,3	18,1	14,8	13,1	11,7	10,2	9,26
24	45,6	43,0	39,4	36,4	33,2	28,2	23,3	19,0	15,7	13,8	12,4	10,9	9,89
25	46,9	44,3	40,6	37,7	34,4	29,3	24,3	19,9	16,5	14,6	13,1	11,5	10,5
26	48,3	45,6	41,9	38,9	35,6	30,4	25,3	20,8	17,3	15,4	13,8	12,2	11,2
27	49,6	47,0	43,2	40,1	36,7	31,5	26,3	21,7	18,1	16,2	14,6	12,9	11,8
28	51,0	48,3	44,5	41,3	37,9	32,6	27,3	22,7	18,9	16,9	15,3	13,6	12,5
29	52,3	49,6	45,7	42,6	39,1	33,7	28,3	23,6	19,8	17,7	16,0	14,3	13,1
30	53,7	50,9	47,0	43,8	40,3	34,8	29,3	24,5	20,6	18,5	16.9	150	120
											16,8	15,0	13,8
40	66,8	63,7	59,3	55,8	51,8	45,6	39,3	33,7	29,1	26,5	24,4	22,2	20,7
50	79,5	76,2	71,4	67,5	63,2	56,3	49,3	42,9	37,7	34,8	32,4	29,7	28,0
60	92,0	88,4	83,3	79,1	74,4	67,0	59,3	52,3	46,5	43,2	40,5	37,5	35,5
70	104,2	100,4	95,0	90,5	85,5	77,6	69,3	61,7	55,3	51,7	48,8	45,4	43,3
80	116,3	112,3	106,6	101,9	96,6	88,1	79,3	71,1	64,3	60,4	57,2	53,5	51,2
90	128,3	124,1	118,1	113,1	107,6	98,6	89,3	80,6	73,3	69,1	65,6	61,8	59,2
100	140,2	135,8	129,6	124,3	118,5	109,1	99,3	90,1	82,4	77,9	74,2	70,1	67,3

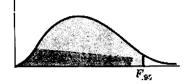
TABELA 8: Valores críticos (q_c) da distribuição Chi-Quadrado com v graus de liberdade Valores q_c tais que $p=P(Q>q_c)$



									PROB	ABILIDA	DES p								
ν	0,990	0,980	0,975	0,950	0,900	0,800	0,700	0,500	0,300	0,200	0,100	0,050	0,040	0,030	0,025	0,020	0,010	0,005	0,001
1	0,000	0,001	0,001	0,004	0,016	0,064	0,148	0,455	1,074	1,642	2,706	3,841	4,218	4,709	5,024	5,412	6,635	7,879	10,828
2	0,020	0,040	0,051	0,103	0,211	0,446	0,713	1,386	2,408	3,219	4,605	5,991	6,438	7,013	7,378	7,824	9,210	10,597	13,816
3	0,115	0,185	0,216	0,352	0,584	1,005	1,424	2,366	3,665	4,642	6,251	7,815	8,311	8,947	9,348	9,837	11,345	12,838	16,266
4	0,297	0,429	0,484	0,711	1,064	1,649	2,195	3,357	4,878	5,989	7,779	9,488	10,026	10,712	11,143	11,668	13,277	14,860	18,467
5	0,554	0,752	0,831	1,145	1,610	2,343	3,000	4,351	6,064	7,289	9,236	11,070	11,644	12,375	12,833	13,388	15,086	16,750	20,515
6	0,872	1,134	1,237	1,635	2,204	3,070	3,828	5,348	7,231	8,558	10,645	12,592	13,198	13,968	14,449	15,033	16,812	18,548	22,458
7	1,239	1,564	1,690	2,167	2,833	3,822	4,671	6,346	8,383	9,803	12,017	14,067	14,703	15,509	16,013	16,622	18,475	20,278	24,322
8	1,646	2,032	2,180	2,733	3,490	4,594	5,527	7,344	9,524	11,030	13,362	15,507	16,171	17,010	17,535	18,168	20,090	21,955	26,125
9	2,088	2,532	2,700	3,325	4,168	5,380	6,393	8,343	10,656	12,242	14,684	16,919	17,608	18,480	19,023	19,679	21,666	23,589	27,877
10	2,558	3,059	3,247	3,940	4,865	6,179	7,267	9,342	11,781	13,442	15,987	18,307	19,021	19,922	20,483	21,161	23,209	25,188	29,588
11	3,053	3,609	3,816	4,575	5,578	6,989	8,148	10,341	12,899	14,631	17,275	19,675	20,412	21,342	21,920	22,618	24,725	26,757	31,264
12	3,571	4,178	4,404	5,226	6,304	7,807	9,034	11,340	14,011	15,812	18,549	21,026	21,785	22,742	23,337	24,054	26,217	28,300	32,910
13	4,107	4,765	5,009	5,892	7,042	8,634	9,926	12,340	15,119	16,985	19,812	22,362	23,142	24,125	24,736	25,471	27,688	29,819	34,528
14	4,660	5,368	5,629	6,571	7,790	9,467	10,821	13,339	16,222	18,151	21,064	23,685	24,485	25,493	26,119	26,873	29,141	31,319	36,124
15	5,229	5,985	6,262	7,261	8,547	10,307	11,721	14,339	17,322	19,311	22,307	24,996	25,816	26,848	27,488	28,259	30,578	32,801	37,697
16	5,812	6,614	6,908	7,962	9,312	11,152	12,624	15,339	18,418	20,465	23,542	26,296	27,136	28,191	28,845	29,633	32,000	34,267	39,254
17	6,408	7,255	7,564	8,672	10,085	12,002	13,531	16,338	19,511	21,615	24,769	27,587	28,445	29,523	30,191	30,995	33,409	35,718	40,789
18	7,015	7,906	8,231	9,390	10,865	12,857	14,440	17,338	20,601	22,760	25,989	28,869	29,745	30,845	31,526	32,346	34,805	37,156	42,312
19	7,633	8,567	8,907	10,117	11,651	13,716	15,352	18,338	21,689	23,900	27,204	30,143	31,037	32,158	32,852	33,687	36,191	38,582	43,819
20	8,260	9,237	9,591	10,851	12,443	14,578	16,266	19,337	22,775	25,038	28,412	31,410	32,321	33,462	34,170	35,020	37,566	39,997	45,315
21	8,897	9,915	10,283	11,591	13,240	15,445	17,182	20,337	23,858	26,171	29,615	32,671	33,597	34,759	35,479	36,343	38,932	41,401	46,797
22	9,542	10,600	10,982	12,338	14,041	16,314	18,101	21,337	24,939	27,301	30,813	33,924	34,867	36,049	36,781	37,660	40,290	42,796	48,270
23	10,196	11,293	11,689	13,091	14,848	17,187	19,021	22,337	26,018	28,429	32,007	35,172	36,131	37,332	38,076	38,968	41,638	44,181	49,726
24	10,856	11,992	12,401	13,848	15,659	18,062	19,943	23,337	27,096	29,553	33,196	36,415	37,389	38,609	39,364	40,270	42,980	45,559	51,179
25	11,524	12,697	13,120	14,611	16,473	18,940	20,867	24,337	28,172	30,675	34,382	37,653	38,642	39,881	40,647	41,566	44,314	46,928	52,622
26	12,198	13,409	13,844	15,379	17,292	19,820	21,792	25,336	29,246	31,795	35,563	38,885	39,889	41,146	41,923	42,856	45,642	48,290	54,054
27	12,879	14,125	14,573	16,151	18,114	20,703	22,719	26,336	30,319	32,912	36,741	40,113	41,132	42,407	43,195	44,140	46,963	49,645	55,477
28	13,565	14,847	15,308	16,928	18,939	21,588	23,647	27,336	31,391	34,027	37,916	41,337	42,370	43,662	44,461	45,419	48,278	50,994	56,893
29	14,256	15,574	16,047	17,708	19,768	22,475	24,577	28,336	32,461	35,139	39,087	42,557	43,604	44,913	45,722	46,693	49,588	52,336	58,303
30	14,953	16,306	16,791	18,493	20,599	23,364	25,508	29,336	33,530	36,250	40,256	43,773	44,834	46,160	46,979	47,962	50,892	53,672	59,703

TABELA 9: 95 % Valores Percentis para a Distribuição F

 n_1 = graus de liberdade para o numerador n_2 = graus de liberdade para o denominador (área sombreada = 0,95)

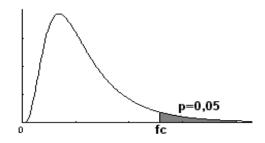


n_1	١.	•				,		12	16	20	20	40	50	100	
n_2	1	2	3	4	5	6	8	12	16	20	30	40	50	100	œ
1	161,4	199,5	215,7	224,6	230,2	234,0	238,9	243,9	246,3	248,0	250,1	251,1	252,2	253,0	254,3
2	18,51	19,00	19,16	19,25	19,30	19,33	19,37	19,41	19,43	19,45	19,46	19,46	19,47	19,49	19,50
3	10,13	9,55	9,28	9,12	9,01	8,94	8,85	8,74	8,69	8,66	8,62	8,60	8,58	8,56	8,53
4	7,71	6,94	6,59	6,39	6,26	6,16	6,04	5,91	5,84	5,80	5,75	5,71	5,70	5,66	5,63
5	6,61	5,79	5,41	5,19	5,05	4,95	4,82	4,68	4,60	4,56	4,50	4,46	4,44	4,40	4,36
6	5,99	5,14	4,76	4,53	4,39	4,28	4,15	4,00	3,92	3,87	3,81	3,77	3,75	3,71	3,67
7	5,59	4,74	4,35	4,12	3,97	3,87	3,73	3,57	3,49	3,44	3,38	3,34	3,32	3,28	3,23
8	5,32	4,46	4,07	3,84	3,69	3,58	3,44	3,28	3,20	3,15	3,08	3,05	3,03	2,98	2,93
9	5,12	4,26	3,86	3,63	3,48	3,37	3,23	3,07	2,98	2,93	2,86	2,82	2,80	2,76	2,71
10	4,96	4,10	3,71	3,48	3,33	3,22	3,07	2,91	2,82	2,77	2,70	2,67	2,64	2,59	2,54
11	4,84	3,98	3,59	3,36	3,20	3,09	2,95	2,79	2,70	2,65	2,57	2,53	2,50	2,45	2,40
12	4,75	3,89	3,49	3,26	3,11	3,00	2,85	2,69	2,60	2,54	2,46	2,42	2,40	2,35	2,30
13	4,67	3,81	3,41	3,18	3,03	2,92	2,77	2,60	2,51	2,46	2,38	2,34	2,32	2,26	2,21
14	4,60	3,74	3,34	3,11	2,96	2,85	2,70	2,53	2,44	2,39	2,31	2,27	2,24	2,19	2,13
15	4,54	3,68	3,29	3,06	2,90	2,79	2,64	2,48	2,39	2,33	2,25	2,21	2,18	2,12	2,07
16	4,49	3,63	3,24	3,01	2,85	2,74	2,59	2,42	2,33	2,28	2,20	2,16	2,13	2,07	2,01
17	4,45	3,59	3,20	2,96	_ 2,81	2,70	2,55	2,38	2,29	2,23	2,15	2,11	2,08	2,02	1,96
18	4,41	3,55	3,16	2,93	2,77	2,66	2,51	2,34	2,25	2,19	2,11	2,07	2,04	1,98	1,92
19	4,38	3,52	3,13	2,90	2,74	2,63	2,48	2,31	2,21	2,15	2,07	2,02	2,00	1,94	1,88
20	4,35	3,49	3,10	2,87	2,71	2,60	2,45	2,28	2,18	2,12	2,04	1,99	1,96	1,90	1,84
22	4,30	3,44	3,05	2,82	2,66	2,55	2,40	2,23	2,13	2,07	1,98	1,93	1,91	1,84	1,78
24	4,26	3,40	3,01	2,78	2,62	2,51	2,36	2,18	2,09	2,03	1,94	1,89	1,86	1,80	1,73
26	4,23	3,37	2,98	2,74	2,59	2,47	2,32	2,15	2,05	1,99	1,90	1,85	1,82	1,76	1,69
28	4,20	3,34	2,95	2,71	2,56	2,45	2,29	2,12	2,02	1,96	1,87	1,81	1,78	1,72	1,65
30	4,17	3,32	2,92	2,69	2,53	2,42	2,27	2,09	1,99	1,93	1,84	1,79	1,76	1,69	1,62
40	4,08	3,23	2,84	2,61	2,45	2,34	2,18	2,00	1,90	1,84	1,74	1,69	1,66	1,59	1,51
50	4,03	3,18	2,79	2,56	2,40	2,29	2,13	1,95	1,85	1,78	1,69	1,63	1,60	1,52	1,44
60	4,00	3,15	2,76	2,53	2,37	2,25	2,10	1,92	1,81	1,75	1,65	1,59	1,56	1,48	1,39
70	3,98	3,13	2,74	2,50	2,35	2,23	2,07	1,89	1,79	1,72	1,62	1,56	1,53	1,45	1,35
80	3,96	3,11	2,72	2,48	2,33	2,21	2,05	1,88	1,77	1,70	1,60	1,54	1,51	1,42	1,32
100	3,94	3,09	2,70	2,46	2,30	2,19	2,03	1,85	1,75	1,68	1,57	1,51	1,48	1,39	1,28
150	3,91	3,06	2,67	2,43	2,27	2,16	2,00	1,82	1,71	1,64	1,54	1,47	1,44	1,34	1,22
200	3,89	3,04	2,65	2,41	2,26	2,14	1,98	1,80	1,69	1,62	1,52	1,45	1,42	1,32	1,19
400	3,86	3,02	2,62	2,39	2,23	2,12	1,96	1,78	1,67	1,60	1,49	1,42	1,38	1,28	1,13
∞	3,84	2,99	2,60	2,37	2,21	2,09	1,94	1,75	1,64	1,57	1,46	1,40	1,32	1,24	1,00

TABELA 10: Valores crítios (f_c) da distribuição F-Snedecor com (v_1 ; v_2) graus de liberdade

 v_1 = número de graus de liberdade do numerador v_2 = número de graus de liberdade do denominador

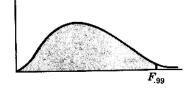
Valores f_c tais que $P(F > f_c) = 0.05$



								ν1 (graus de li	berdade d	lo numera	dor)							
ν2	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20	30	50	70	100
1	161,45	199,50	215,71	224,58	230,16	233,99	236,77	238,88	240,54	241,88	243,90	245,36	246,46	247,32	248,01	250,09	251,77	252,49	253,04
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,41	19,42	19,43	19,44	19,45	19,46	19,48	19,48	19,49
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,74	8,71	8,69	8,67	8,66	8,62	8,58	8,57	8,55
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,91	5,87	5,84	5,82	5,80	5,75	5,70	5,68	5,66
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,68	4,64	4,60	4,58	4,56	4,50	4,44	4,42	4,41
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00	3,96	3,92	3,90	3,87	3,81	3,75	3,73	3,71
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,57	3,53	3,49	3,47	3,44	3,38	3,32	3,29	3,27
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,28	3,24	3,20	3,17	3,15	3,08	3,02	2,99	2,97
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,07	3,03	2,99	2,96	2,94	2,86	2,80	2,78	2,76
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,91	2,86	2,83	2,80	2,77	2,70	2,64	2,61	2,59
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,79	2,74	2,70	2,67	2,65	2,57	2,51	2,48	2,46
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,64	2,60	2,57	2,54	2,47	2,40	2,37	2,35
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,60	2,55	2,51	2,48	2,46	2,38	2,31	2,28	2,26
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53	2,48	2,44	2,41	2,39	2,31	2,24	2,21	2,19
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,48	2,42	2,38	2,35	2,33	2,25	2,18	2,15	2,12
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,42	2,37	2,33	2,30	2,28	2,19	2,12	2,09	2,07
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,38	2,33	2,29	2,26	2,23	2,15	2,08	2,05	2,02
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,34	2,29	2,25	2,22	2,19	2,11	2,04	2,00	1,98
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,31	2,26	2,21	2,18	2,16	2,07	2,00	1,97	1,94
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,28	2,22	2,18	2,15	2,12	2,04	1,97	1,93	1,91
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,25	2,20	2,16	2,12	2,10	2,01	1,94	1,90	1,88
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,23	2,17	2,13	2,10	2,07	1,98	1,91	1,88	1,85
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27	2,20	2,15	2,11	2,08	2,05	1,96	1,88	1,85	1,82
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25	2,18	2,13	2,09	2,05	2,03	1,94	1,86	1,83	1,80
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24	2,16	2,11	2,07	2,04	2,01	1,92	1,84	1,81	1,78
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27	2,22	2,15	2,09	2,05	2,02	1,99	1,90	1,82	1,79	1,76
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25	2,20	2,13	2,08	2,04	2,00	1,97	1,88	1,81	1,77	1,74
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19	2,12	2,06	2,02	1,99	1,96	1,87	1,79	1,75	1,73
29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22	2,18	2,10	2,05	2,01	1,97	1,94	1,85	1,77	1,74	1,71
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16	2,09	2,04	1,99	1,96	1,93	1,84	1,76	1,72	1,70
35	4,12	3,27	2,87	2,64	2,49	2,37	2,29	2,22	2,16	2,11	2,04	1,99	1,94	1,91	1,88	1,79	1,70	1,66	1,63
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08	2,00	1,95	1,90	1,87	1,84	1,74	1,66	1,62	1,59
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04	1,99	1,92	1,86	1,82	1,78	1,75	1,65	1,56	1,52	1,48
80	3,96	3,11	2,72	2,49	2,33	2,21	2,13	2,06	2,00	1,95	1,88	1,82	1,77	1,73	1,70	1,60	1,51	1,46	1,43
100	3,94	3,09	2,70	2,46	2,31	2,19	2,10	2,03	1,97	1,93	1,85	1,79	1,75	1,71	1,68	1,57	1,48	1,43	1,39

TABELA 11: 99 % Valores Percentis para a Distribuição ${\cal F}$

 n_1 = graus de liberdade para o numerador n_2 = graus de liberdade para o denominador (área sombreada = 0,99)



n ₁	1	2	3	4	5	6	8	12	16	20	30	40	50	100	œ
1	4052	4999	5403	5625	5764	5859	5981	6106	6169	6208	6258	6286	6302	6334	6366
2	98,49	99,01	99,17	99,25	99,30	99,33	99,36	99,42	99,44	99,45	99,47	99,48	99,48	99,49	99,50
3	34,12	30,81	29,46	28,71	28,24	27,41	27,49	27,05	28,63	26,69	26,50	26,41	26,35	26,23	26,12
4	21,20	18,00	16,69	15,98	15,52	15,21	14,80	14,37	14,15	14,02	13,83	13,74	13,69	13,57	13,46
5	16,26	13,27	12,06	11,39	10,97	10,67	10,27	9,89	9,68	9,55	9,38	9,29	9,24	9,13	9,02
6	13,74	10,92	9,78	9,15	8,75	8,47	8,10	7,72	7,52	7,39	7,23	7,14	7,09	6,99	6,88
7	12,25	9,55	8,45	7,85	7,46	7,19	6,84	6,47	6,27	6,15	5,98	5,90	5,85	5,75	5,65
8	11,26	8,65	7,59	7,01	6,63	6,37	6,03	5,67	5,48	5,36	5,20	5,11	5,06	4,96	4,86
9	10,56	8,02	6,99	6,42	6,06	5,80	5,47	5,11	4,92	4,80	4,64	4,56	4,51	4,41	4,31
10	10,04	7,56	6,55	5,99	5,64	5,39	5,06	4,71	4,52	4,41	4,25	4,17	4,12	4,01	3,91
11	9,05	7,20	6,22	5,67	5,32	5,07	4,74	4,40	4,21	4,10	3,94	3,86	3,80	3,70	3,60
12	9,33	6,93	5,95	5,41	5,06	4,82	-4,50	4,16	3,98	3,86	3,70	3,61	3,56	3,46	3,36
13	9,07	6,70	5,74	5,20	4,86	4,62	4,30	3,96	3,78	3,67	3,51	3,42	3,37	3,27	3,16
14	8,86	6,51	5,56	5,03	4,69	4,46	4,14	3,80	3,62	3,51	3,34	3,26	3,21	3,11	3,00
15	8,68	6,36	5,42	4,89	4,56	4,32	4,00	3,67	3,48	3,36	3,20	3,12	3,07	2,97	2,87
16	8,53	6,23	5,29	4,7.7	4,44	4,20	3,89	3,55	3,37	3,25	3,10	3,01	2,96	2,86	2,75
17	8,40	6,11	5,18	4,67	4,34	4,10	3,79	3,45	3,27	3,16	3,00	2,92	2,86	2,76	2,65
18	8,28	6,01	5,09	4,58	4,25	4,01	3,71	3,37	3,19	3,07	2,91	2,83	2,78	2,68	2,57
19	8,18	5,93	5,01	4,50	4,17	3,94	3,63	3,30	3,12	3,00	2,84	2,76	2,70	2,60	2,49
20	8,10	5,85	4,94	4,43	4,10	3,87	3,56	3,23	3,05	2,94	2,77	2,69	2,63	2,53	2,42
22	7,94	5,72	4,82	4,31	3,99	3,76	3,45	3,12	2,94	2,83	2,67	2,58	2,53	2,42	2,31
24	7,82	5,61	4,72	4,22	3,90	3,67	3,36	3,03	2,85	2,74	2,58	2,49	2,44	2,33	2,21
26	7,72	5,53	4,64	4,14	3,82	3,59	3,29	2,96	2,77	2,66	2,50	2,41	2,36	2,25	2,13
28	7,64	5,45	4,57	4,07	3,76	3,53	3,23	2,90	2,71	2,60	2,44	2,35	2,30	2,18	2,06
30	7,56	5,39	4,51	4,02	3,70	3,47	3,17	2,84	2,66	2,55	2,38	2,29	2,24	2,13	2,01
40	7,31	5,18	4,31	3,83	3,51	3,29	2,99	2,66	2,49	2,37	2,20	2,11	2,05	2,05	1,94
50	7,17	5,06	4,20	3,72	3,41	3,18	2,88	2,56	2,39	2,26	2,10	2,00	1,94	1,82	1,68
60	7,08	4,98	4,13	3,65	3,34	3,12	2,82	2,50	2,32	2,20	2,03	1,93	1,87	1,74	1,60
70	7,01	4,92	4,08	3,60	3,29	3,07	2,77	2,45	2,28	2,15	1,98	1,88	1,82	1,69	1,53
80	6,96	4,88	4,04	3,56	3,25	3,04	2,74	2,41	2,24	2,11	1,94	1,84	1,78	1,65	1,49
100	6,90	4,82	3,98	3,51	3,20	2,99	2,69	2,36	2,19	2,06	1,89	1,79	1,73	1,59	1,43
150	6,81	4,75	3,91	3,44	3,14	2,92	2,62	2,30	2,12	2,00	1,83	1,72	1,66	1,51	1,33
200	6,76	4,71	3,88	3,41	3,11	2,90	2,60	2,28	2,09	1,97	1,79	1,69	1,62	1,48	1,28
400	6,70	4,66	3,83	3,36	3,06	2,85	2,55	2,23	2,04	1,92	1,74	1,64	1,57	1,42	1,19
σ	6,64	4,60	3,78	3,32	3,02	2,80	2,51	2,18	1,99	1,87	1,69	1,59	1,52	1,36	1,00

TABELA 12: Números Aleatórios

51772	74640	42331	29044	46621	62898	93582	04186	19640	87056
24033	23491	83587	06568	21960	21387	76105	10863	97453	90581
45939	60173	52078	25424	11645	55870	56974	37428	93507	94271
30586	02133	75797	45406	31041	86707	12973	17169	88116	42187
03585	79353	81938	82322	96799	85659	36081	50884	14070	74950
64937	03355	95863	20790	65304	55189	00745	65253	11822	15804
15630	64759	51135	98527	62586	41889	25439	88036	24034	67283
09448	56301	57683	30277	94623	85418	68829	06652	41982	49159
21631	91157	77331	60710	52290	16835	48653	71590	16159	14676
91097	17480	29414	06829	87843	28195	27279	47152	35683	47280
50532	25496	95652	42457	73547	76552	50020	24819	52984	76168
07136	40876	79971	54195	25708	51817	36732	72484	94923	75936
27989	64728	10744	08396	56242	90985	28868	99431	50995	20507
85184	73949	36601	46253	00477	25234	09908	36574	72139	70185
54398	21154	97810	36764	32869	11785	55261	59009	38714	38723
65544	34371	09591	07839	58892	92843	72828	91341	84821	63886
08263	65952	85762	64236	39238	18776	84303	99247	46149	03229
39817	67906	48236	16057	81812	15815	63700	85915	19219	45943
62257	04077	79443	95203	02479	30763	92486	54083	23631	05825
53298	90276	62545	21944	16530	03878	07516	95715	02526	33537