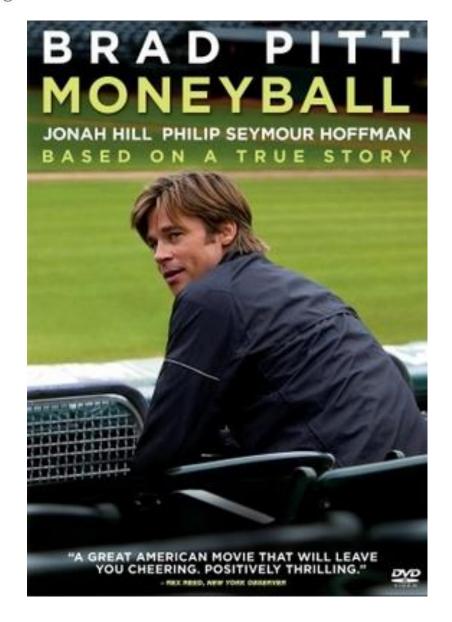


PRO2514 - Pesquisa Quantitativa em Gestão de Operações

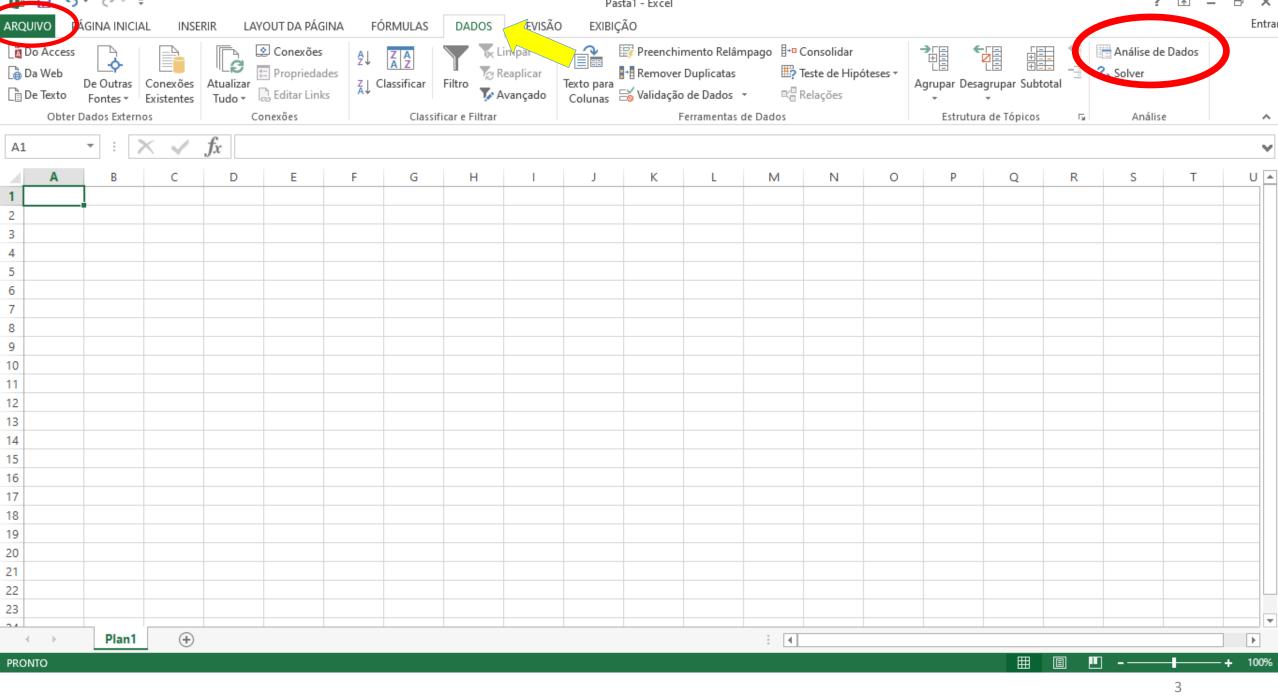
Revisão de Estatística Univariada e Bivariada

Prof. Dr. Renato de Oliveira Moraes



Em 2002, o pequenino Oakland Athletics surpreendeu o mundo do baseball ao conseguir destaque na Liga Americana mesmo contando com a menor folha salarial de todos os times profissionais. Auxiliado por Peter Brand (Jonah Hill), Billy Beane (Brad Pitt) resolveu pensar diferente e prestar mais atenção nas estatísticas do que na avaliação e expectativas de olheiros veteranos.

https://www.youtube.com/watch?v=0h19anH4MdEhttps://www.youtube.com/watch?v=3MjxoaynCmk



Informações

Novo

Abrir

Salvar

Salvar como

Imprimir

Compartilhar

Exportar

Fechar

Conta

Opções

Informações

Proteger Pasta de Trabalho

Controle que tipos de mudanças as pessoas podem fazer nesta pasta de trabalho.

Inspecionar Pasta de Trabalho

Antes de publicar este arquivo, saiba que ele contém:

- Propriedades do documento, caminho da impressora, nome do autor, datas relacionadas e caminho absoluto
- Conteúdo que pessoas com deficiência terão dificuldade para ler

Versões

Não há nenhuma versão anterior deste arquivo.

Opções de Exibição do Navegador

Controle o que os usuários podem ver quando esta pasta de trabalho é exibida na Web.

Propriedades *

Tamanho Ainda não salvo Título Adicionar um título Marcas Adicionar marca Categorias Adicionar categoria

Datas Relacionadas

Última Modificação Hoje, 16:51 Criada em Hoje, 16:46

Última Impressão

Pessoas Relacionadas

Autor

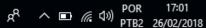
Usuário do Windows

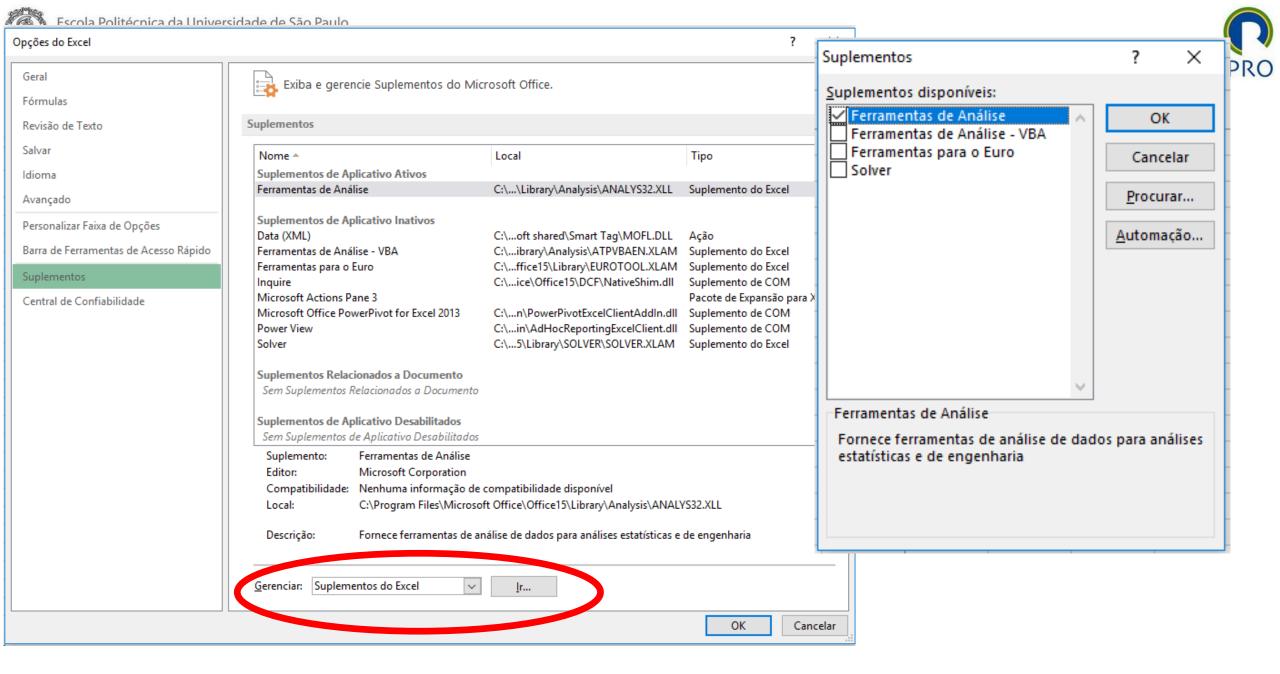
Adicionar um autor

Última Modificação por

Usuário do Windows

Mostrar Todas as Propriedades





- Os dados de uma amostra devem ser colocados todos em uma mesma coluna ou em uma mesma linha
- Isto permite trabalhar com dados de várias amostras
 - Cada amostra ocupa uma coluna, e a primeira célula (primeira linha) tem um cabeçalho/título com o nome da amostra ou da variável; ou
 - Cada amostra ocupa uma linha, e a primeira célula (primeira coluna) tem um cabeçalho/título com o nome da amostra ou da variável; ou

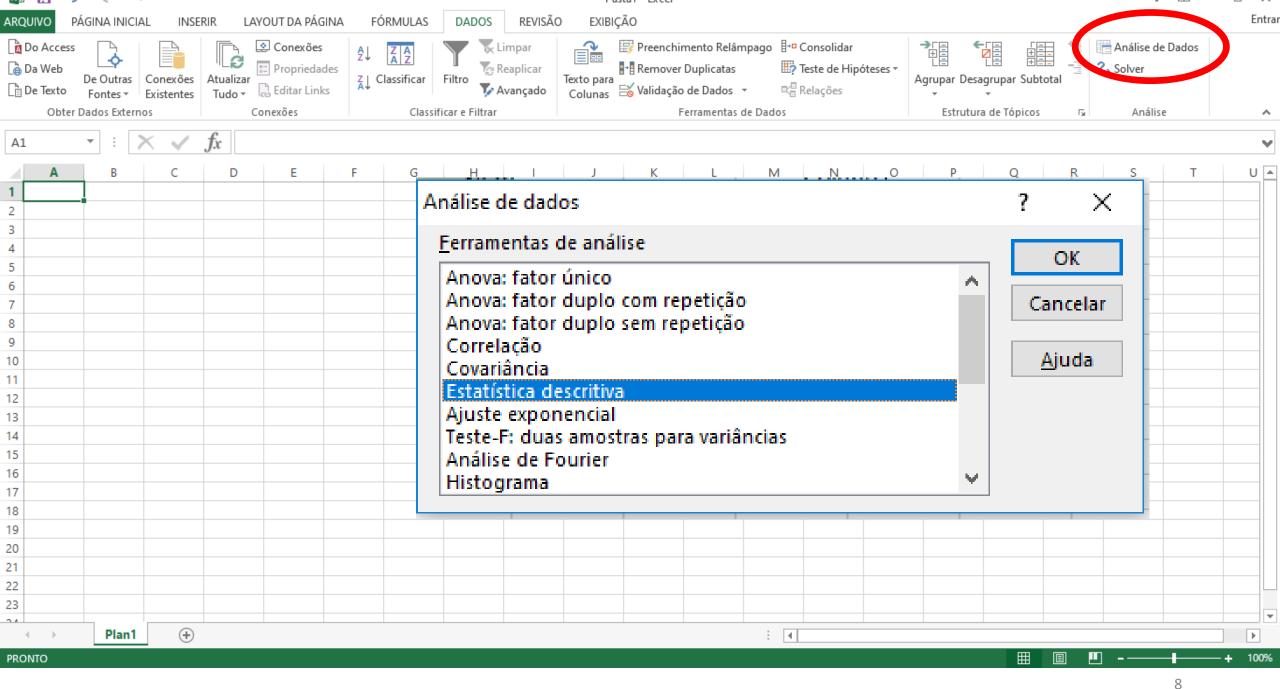
Amostra 1	Amostra 2
32,6	35,7
34,5	33,3
36,1	38,2
31,7	34,6
31,5	33,3
31,7	

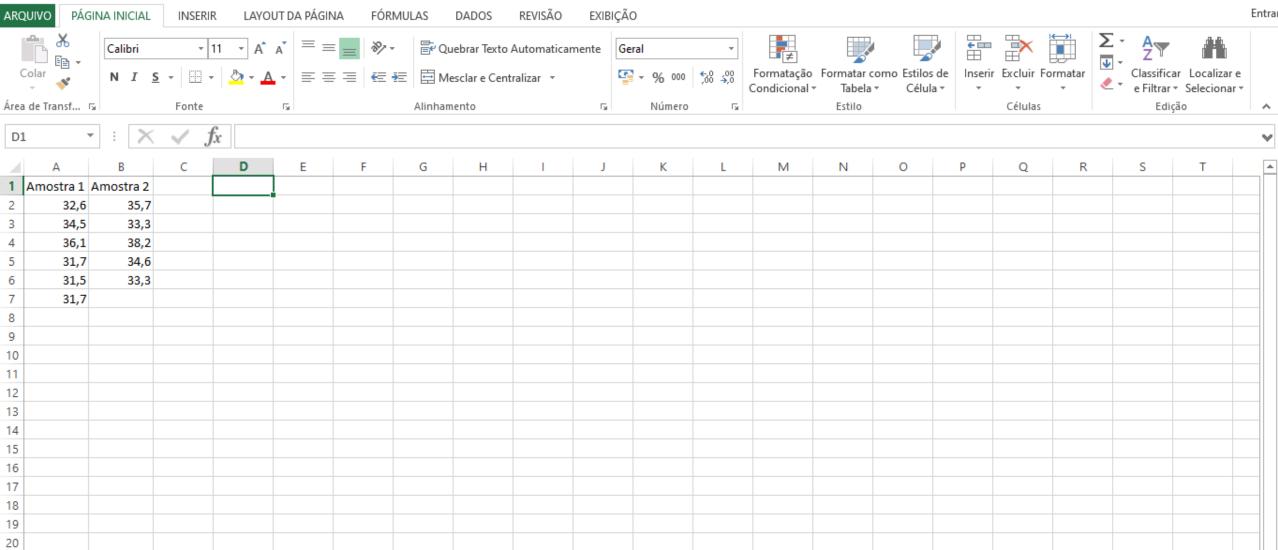
Amostra 1	32,6	34,5	36,1	31,7	31,5	31,7
Amostra 2	35,7	33,3	38,2	34,6	33,3	

Análise de Dados - Ferramentas de Análise

- Anova: fator único
- Anova: fator duplo com repetição
- Anova: fator duplo sem repetição
- Correlação
- Covariância
- Estatística descritiva
- Ajuste exponencial
- Teste-F: duas amostras para variâncias
- Análise de Fourier
- Histograma

- Média móvel
- Geração de número aleatório
- Ordem e percentil
- Regressão
- Amostragem
- Teste-T: duas amostras em par para médias
- Teste-T: duas amostras presumindo variâncias equivalentes
- Teste-T: duas amostras presumindo variâncias diferentes
- Teste-Z: duas amostras para médias





1

Plan1

Plan2 Plan3

21 22 23

PRONTO

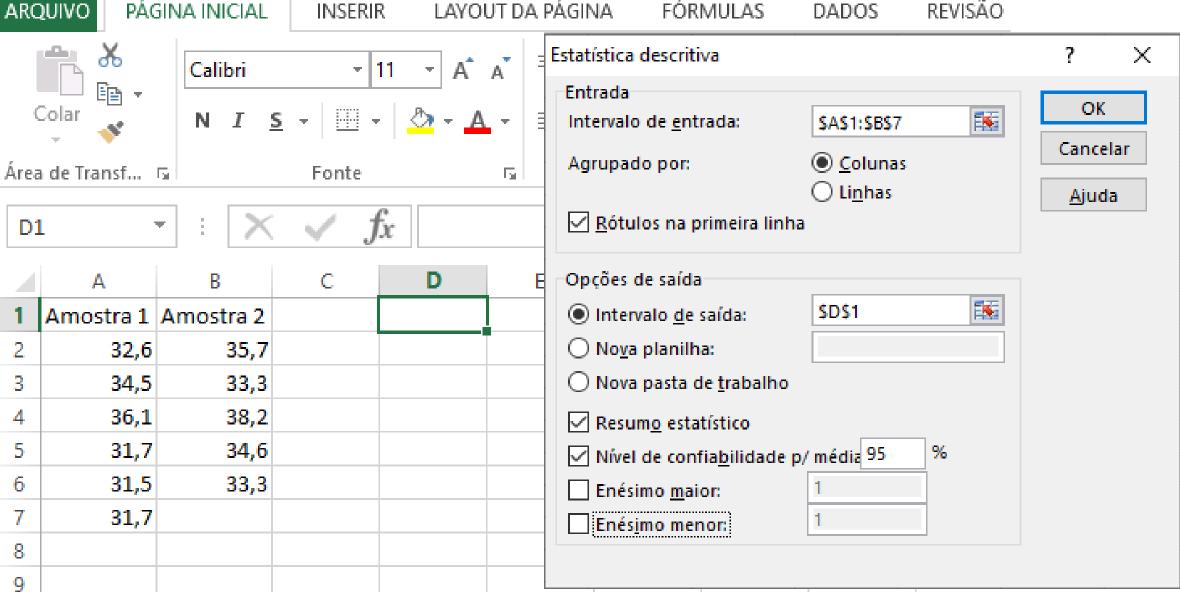
XI : 5 - 0 - =

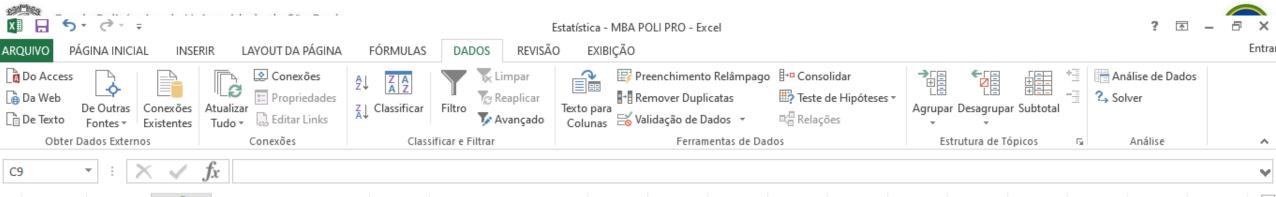
LAYOUT DA PÁGINA

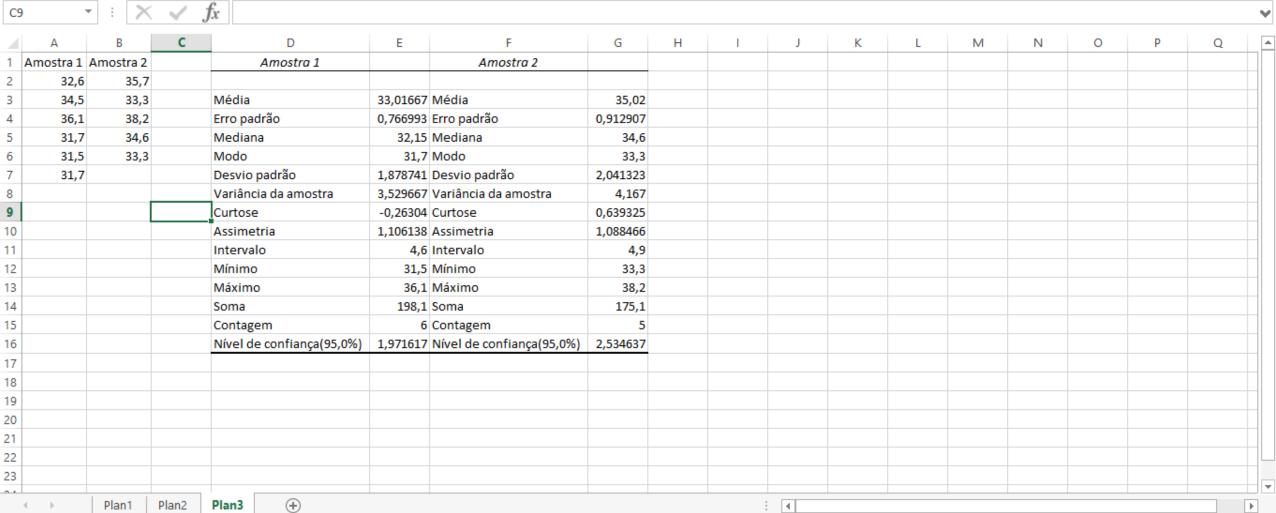
FÓRMULAS

DADOS

REVISÃO







PRONTO

Plan1

Plan2

Plan3

F

Saídas

Amostra 1	
Média	33,01667
Erro padrão	0,766993
Mediana	32,15
Modo	31,7
Desvio padrão	1,878741
Variância da amostra	3,529667
Curtose	-0,26304
Assimetria	1,106138
Intervalo	4,6
Mínimo	31,5
Máximo	36,1
Soma	198,1
Contagem	6
Nível de confiança(95,0%)	1,971617

Amostra 2	
Média	35,02
Erro padrão	0,912907
Mediana	34,6
Modo	33,3
Desvio padrão	2,041323
Variância da amostra	4,167
Curtose	0,639325
Assimetria	1,088466
Intervalo	4,9
Mínimo	33,3
Máximo	38,2
Soma	175,1
Contagem	5
Nível de confiança(95,0%)	2,534637

Saídas - Média

- Média. Medida de posição mais frequentemente usada
- A média da população é representada por μ , e a média da amostra por \bar{x}

$$\bar{x} = \frac{\sum x_i}{N} = \frac{32,6 + 34,5 + 36,1 + 31,7 + 31,5 + 31,7}{6} \cong 33,02$$

•	$\mu \bar{\chi} \sigma^2$	$^{2}\sigma s$	^{2}S

33,01667
0,766993
32,15
31,7
1,878741
3,529667
-0,26304
1,106138
4,6
31,5
36,1
198,1
6
1,971617

Saídas – Mediana

- Mediana. Medida de posição que divide a população ou a amostra em dois grupos de igual tamanho.
- Na amostra 1, ordenamos os valores e temos: 31,5 31,7 31,7 32,6 34,5 36,1 A mediana é ponto central entre o 3º e 4º elemento. Entre 31,7 e 32,6, que é 32,15
- Na amostra 2, cuja quantidade de elementos é impar (N = 5), a mediada é o 3º elemento →34,6 33,3 33,3 34,6 35,7 38,2

33,01667
0,766993
32,15
31,7
1,878741
3,529667
-0,26304
1,106138
4,6
31,5
36,1
198,1
6
1,971617

Saídas – <u>Moda</u>

- Moda. Medida de posição que indica o valor(es) mais frequente na pulação ou amostra
- O Excel se refere de Moda de forma incorreta como termo Modo
- Na amostra 1, o valor 31,7 ocorre duas vezes. Ele é o mais frequente, a moda. Os demais valores não se repetem

Amostra 1	
Média	33,01667
Erro padrão	0,766993
Mediana	32,15
Modo	31,7
Desvio padrão	1,878741
Variância da amostra	3,529667
Curtose	-0,26304
Assimetria	1,106138
Intervalo	4,6
Mínimo	31,5
Máximo	36,1
Soma	198,1
Contagem	6
Nível de confiança(95,0%)	1,971617

Saídas — Variância

- Variância. É uma medida de dispersão dos dados da população ou amostra em relação a média
- A variância populacional é representada por σ^2 , e variância amostral por s^2

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{N - 1}$$

Amostra 1	
Média	33,01667
Erro padrão	0,766993
Mediana	32,15
Modo	31,7
Desvio padrão	1,878741
Variância da amostra	3,529667
Curtose	-0,26304
Assimetria	1,106138
Intervalo	4,6
Mínimo	31,5
Máximo	36,1
Soma	198,1
Contagem	6
Nível de confiança(95,0%)	1,971617

Saídas – Desvio Padrão

- Desvio padrão. É uma medida de dispersão dos dados da população ou amostra em relação a média.
- É dado pela raiz quadrada da variância e tem mesma unidade de medida que os elementos da amostra e da média
- A variância populacional é representada por σ^2 , e variância amostral por s^2

$$\sigma = \sqrt[2]{\sigma^2} = \sqrt[2]{\frac{\sum (x_i - \mu)^2}{N}} \qquad s = \sqrt[2]{s^2} = \sqrt[2]{\frac{\sum (x_i - \bar{x})^2}{N - 1}}$$

33,01667
0,766993
32,15
31,7
1,878741
3,529667
-0,26304
1,106138
4,6
31,5
36,1
198,1
6
1,971617

Saídas – Curtose (Achatamento)

- Curtose. É uma medida achatamento dos dados. É útil vara verificar a Normalidade dos dados e sugerir transformações quando os dados se distanciam da distribuição Normal.
- Curtose: medida de achatamento da distribuição
 - <0: mais achatada que a Normal (platicúrtica)
 - =0: parecida com a Normal (mesocúrtica)
 - >0: mais pontuda que a Normal (leptocúrtica)

Amostra 1	
Média	33,01667
Erro padrão	0,766993
Mediana	32,15
Modo	31,7
Desvio padrão	1,878741
Variância da amostra	3,529667
Curtose	-0,26304
Assimetria	1,106138
Intervalo	4,6
Mínimo	31,5
Máximo	36,1
Soma	198,1
Contagem	6
Nível de confiança(95,0%)	1,971617

Achatamento

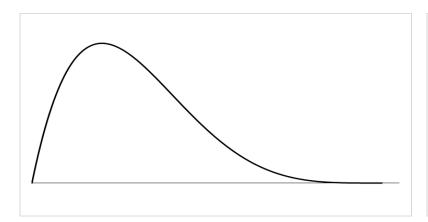
Curtose: medida de achatamento da distribuição <0: mais achatada que a Normal (platicúrtica) =0: parecida com a Normal (mesocúrtica) >0: mais pontuda que a Normal (leptocúrtica) 5 9 11 13 15 Platocúrtica Mesocúrtica Leptocúrtica

Saídas - Assimetria

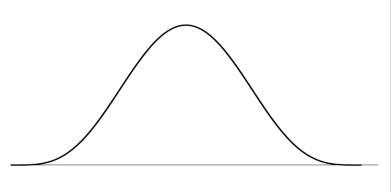
- Assimetria.
 - Distrib. Assimétrica Positiva: Moda ≤ Mediana ≤ Média
 - Distribuição Simétrica: Média = Mediana = Moda
 - Distrib. Assimétrica Negativa: Média ≤ Mediana ≤ Moda

Amostra 1	
Média	33,01667
Erro padrão	0,766993
Mediana	32,15
Modo	31,7
Desvio padrão	1,878741
Variância da amostra	3,529667
Curtose	-0,26304
Assimetria	1,106138
Intervalo	4,6
Mínimo	31,5
Máximo	36,1
Soma	198,1
Contagem	6
Nível de confiança(95,0%)	1,971617

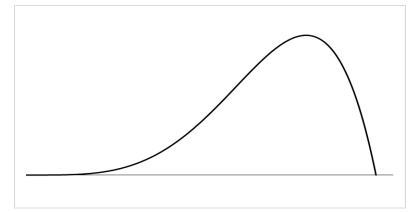
Assimetria



Distrib. Assimétrica Positiva Moda ≤ Mediana ≤ Média



Distribuição Simétrica Média = Mediana = Moda



Distrib. Assimétrica Negativa Média ≤ Mediana ≤ Moda

Saídas – Intervalo, Mínimo e Máximo

- Mínimo. Medida de posição que indica o menor valor observado na população ou amostra.
- Máximo. Medida de posição que indica o maior valor observado na população ou amostra.
- Intervalo. Refere-se a amplitude da população ou amostra. É diferença entre o maior e o menor valor observado

Intervalo = Máximo - Mínimo

33,01667
0,766993
32,15
31,7
1,878741
3,529667
-0,26304
1,106138
4,6
31,5
36,1
198,1
6
1,971617

Saídas – Soma e Contagem

• Soma. É a soma de todos os valores observado na população ou amostra

$$\sum x_i = 32.6 + 34.5 + 36.1 + 31.7 + 31.5 + 31.7 = 198.1$$

 Contagem. É quantidade de valores na amostra ou população

$$N=6$$

<u></u>	
Amostra 1	
Média	33,01667
Erro padrão	0,766993
Mediana	32,15
Modo	31,7
Desvio padrão	1,878741
Variância da amostra	3,529667
Curtose	-0,26304
Assimetria	1,106138
Intervalo	4,6
Mínimo	31,5
Máximo	36,1
Soma	198,1
Contagem	6
Nível de confiança(95,0%)	1,971617

Saídas – Nível de confiança (intervalo de confiança – IC)

• Nível de confiança. É a semi amplitude do intervalo de confiança para a média populacional μ , calculada com base nos dado de uma amostra de tamanho N, com média \bar{x} e desvio padrão s

$$\mu = \bar{x} \pm t_{N-1;\alpha/2} \frac{s}{\sqrt{N}}$$

$$e = t_{N-1;\alpha/2} \frac{s}{\sqrt{N}}$$

Amostra 1	
Média	33,01667
Erro padrão	0,766993
Mediana	32,15
Modo	31,7
Desvio padrão	1,878741
Variância da amostra	3,529667
Curtose	-0,26304
Assimetria	1,106138
Intervalo	4,6
Mínimo	31,5
Máximo	36,1
Soma	198,1
Contagem	6
Nível de confiança (95,0%)	1,971617

Saídas – Intervalo de Confiança (IC)

 Portanto, podemos concluir com os dados amostra que, ao nível de confiança de 95%, a média populacional está dentro do seguinte intervalo (de confiança):

$$\mu = \bar{x} \pm t_{N-1}; \alpha_{/2} \frac{s}{\sqrt{N}} \rightarrow \mu \cong 33,02 \pm 1,97$$

$$31,05 \le \mu \le 34,99$$

Amostra 1	
Média	33,01667
Erro padrão	0,766993
Mediana	32,15
Modo	31,7
Desvio padrão	1,878741
Variância da amostra	3,529667
Curtose	-0,26304
Assimetria	1,106138
Intervalo	4,6
Mínimo	31,5
Máximo	36,1
Soma	198,1
Contagem	6
Nível de confiança (95,0%)	1,971617

Saídas – Erro Padrão

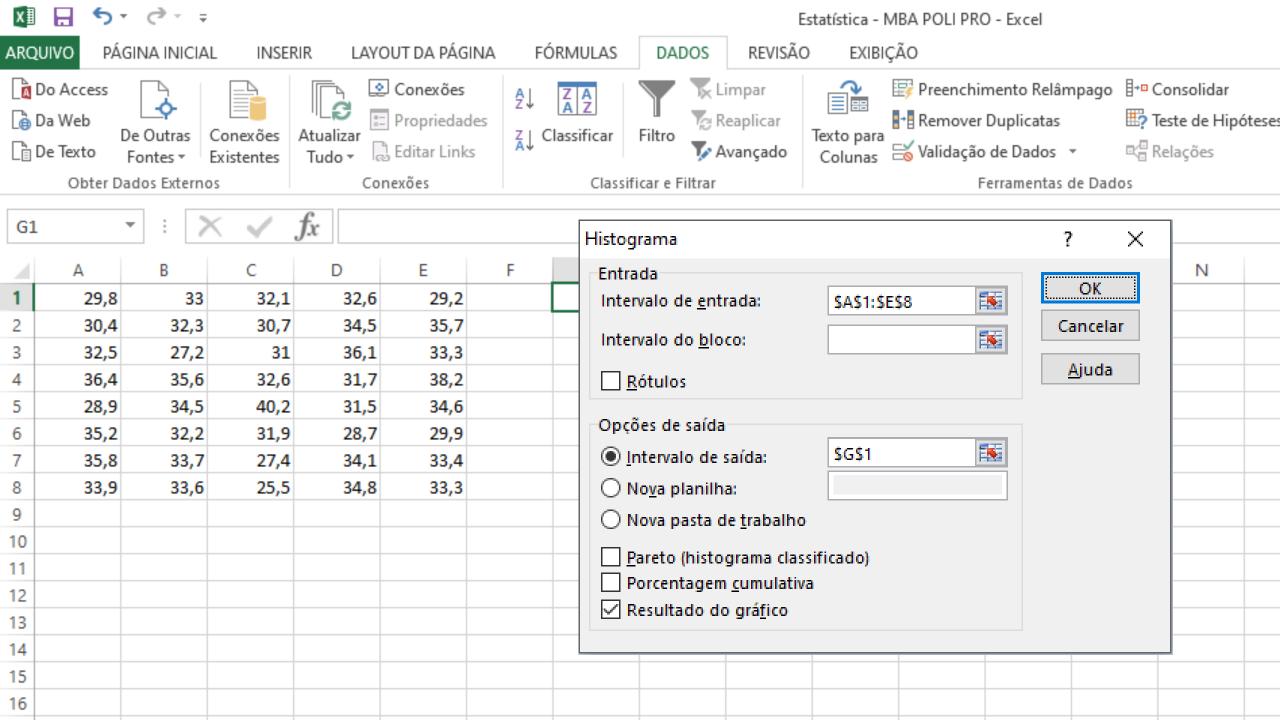
 Erro padrão. É raiz quadrada da relação entre a variância e o tamanho da amostra. É uma medida que relativiza a dispersão dos dados em função do tamanho da amostra

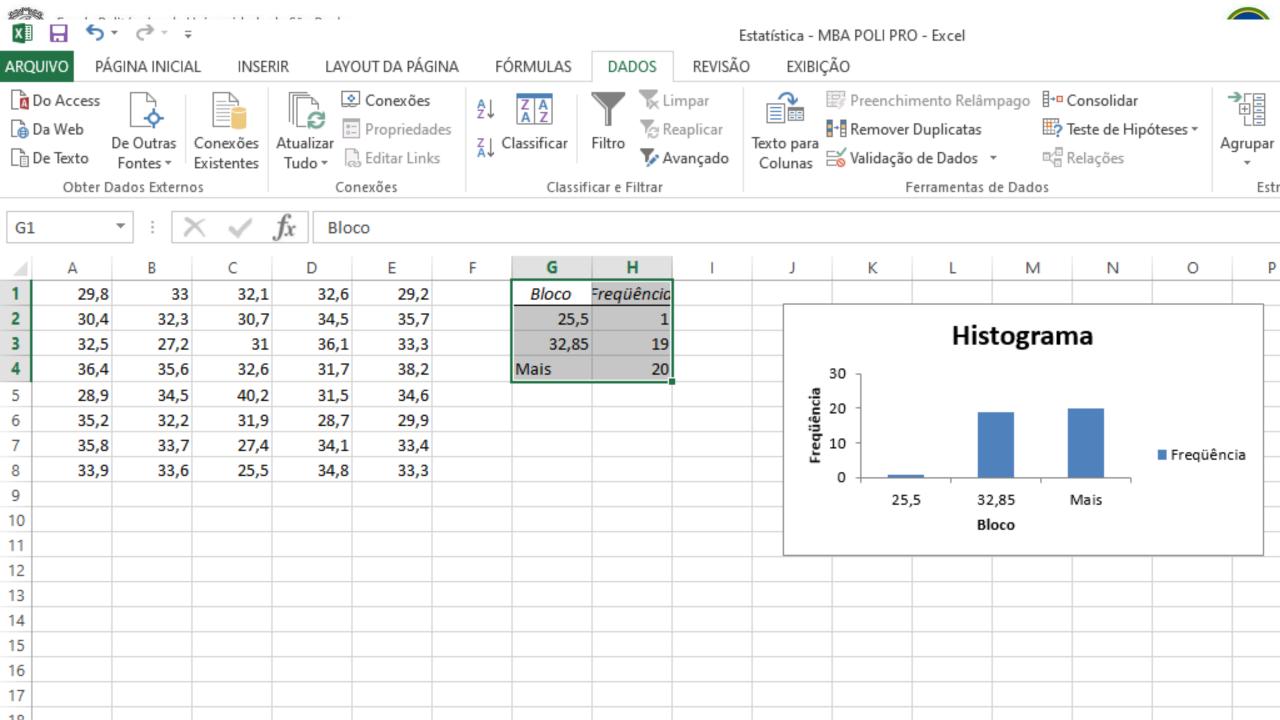
$$\sqrt{\frac{s^2}{N}} = \frac{s}{\sqrt{N}}$$

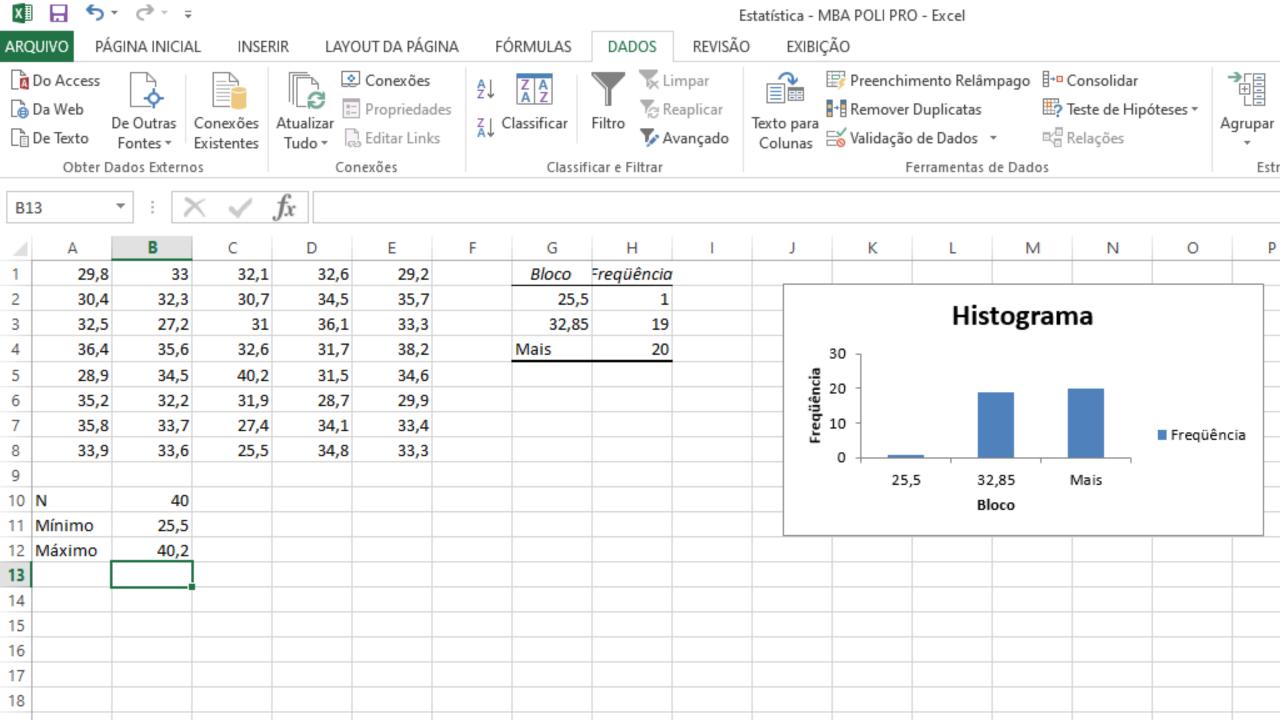
Amostra 1	
Média	33,01667
Erro padrão	0,766993
Mediana	32,15
Modo	31,7
Desvio padrão	1,878741
Variância da amostra	3,529667
Curtose	-0,26304
Assimetria	1,106138
Intervalo	4,6
Mínimo	31,5
Máximo	36,1
Soma	198,1
Contagem	6
Nível de confiança(95,0%)	1,971617

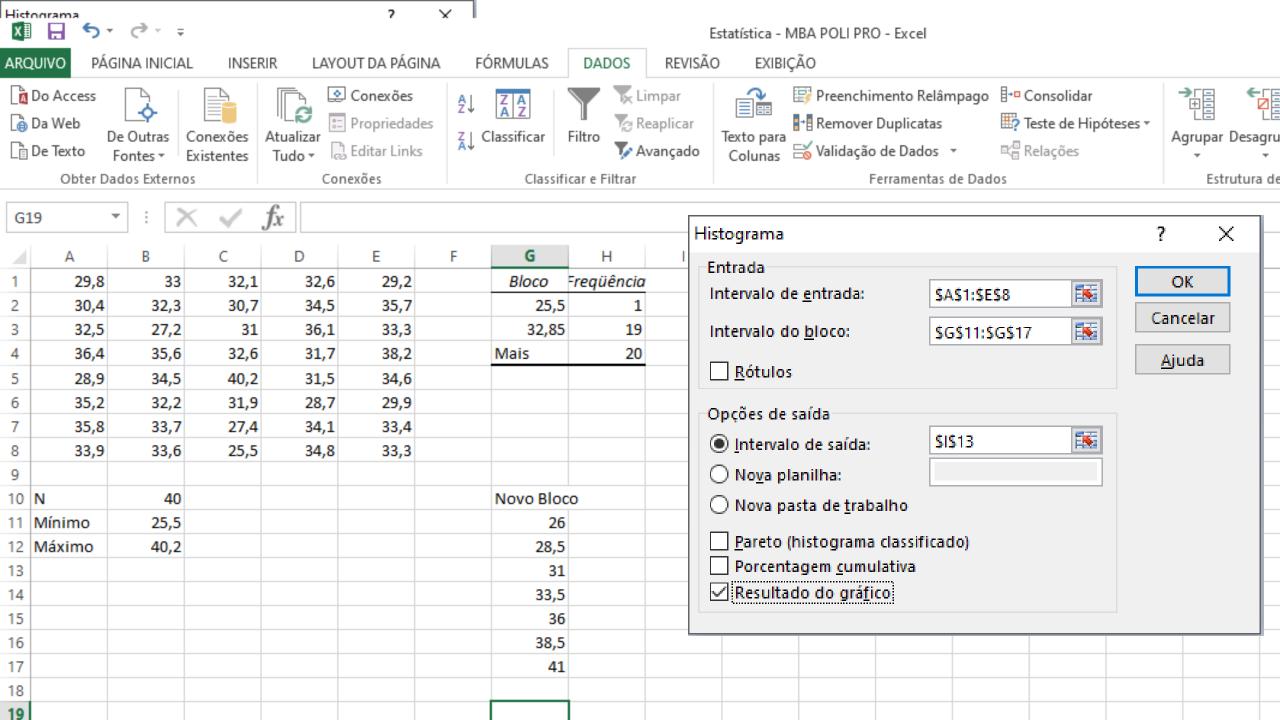
Gráficos Estatísticos com o Excel

- Histograma
- Gráfico de Pizza
- Gráfico de dispersão









1 4

MÉDIA: 18,3 CONTAGEM: 18 SOMA: 274,5

PRONTO

Plan1

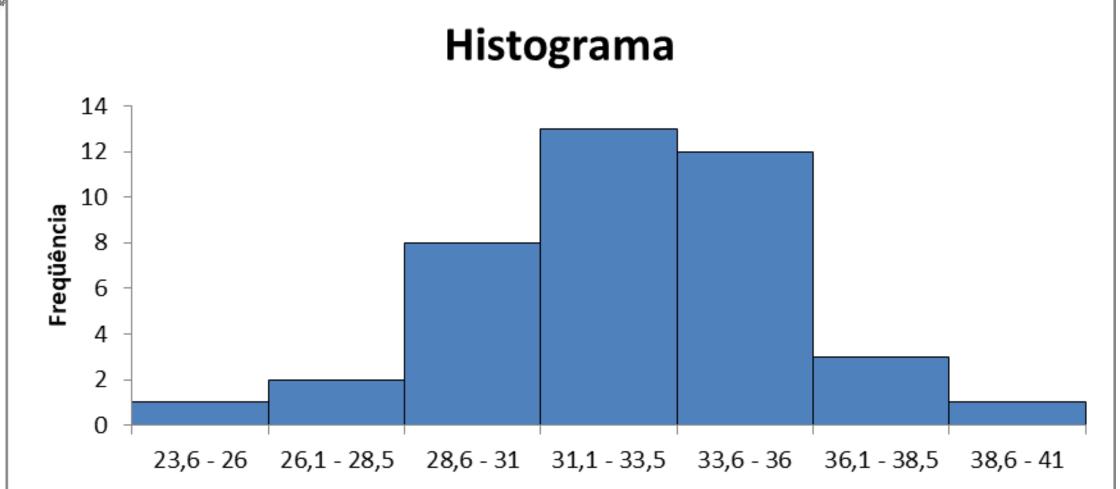
Plan2

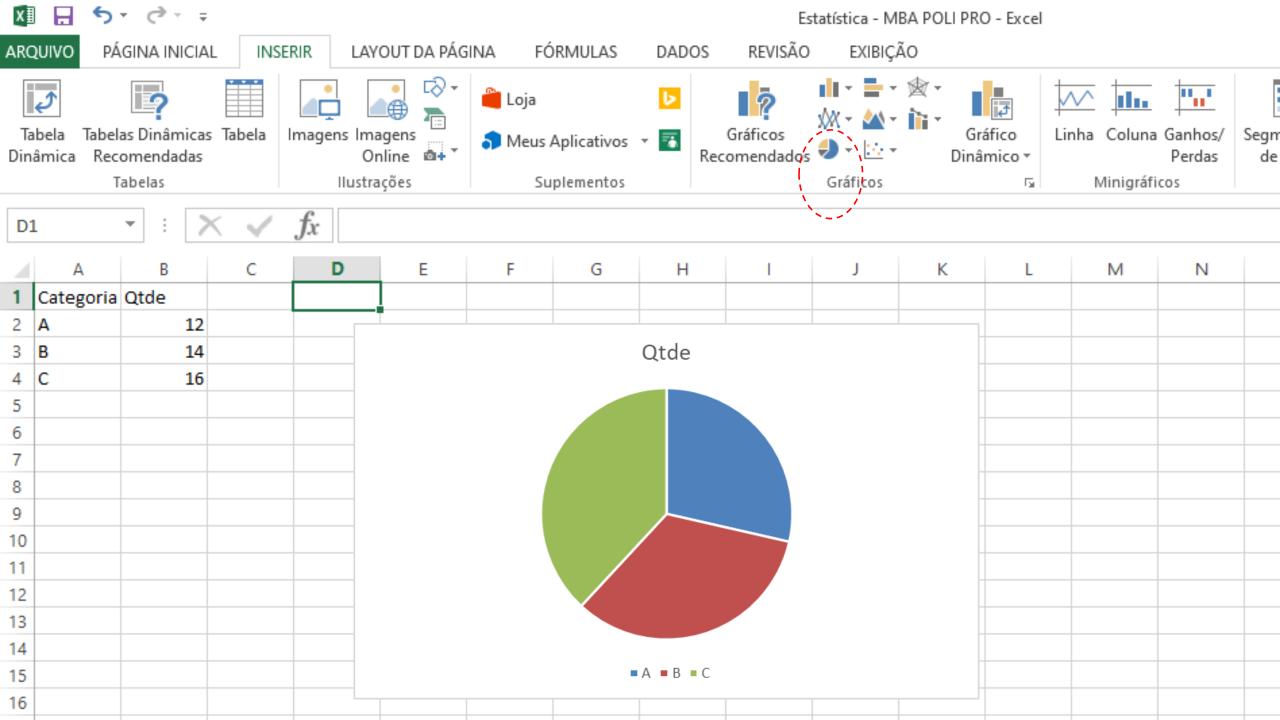
Plan3

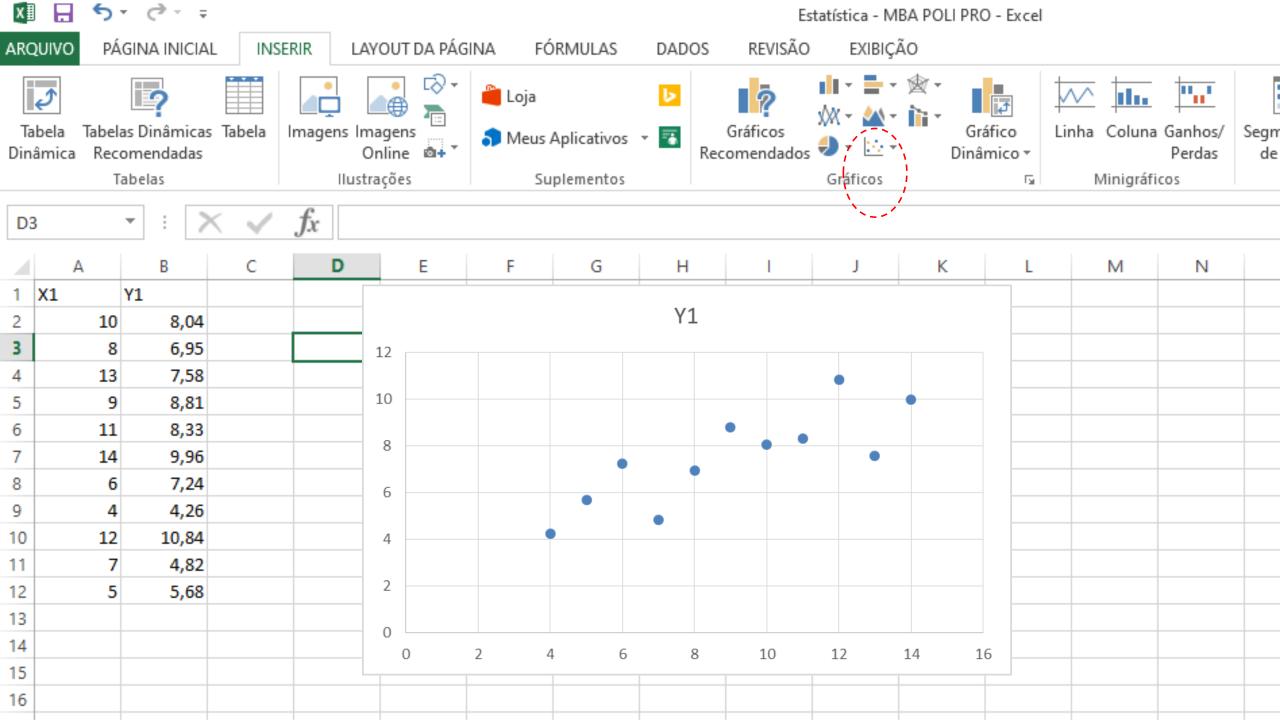
Plan4

(±)

F







Cuidado com as descritivas!

Quarteto de Ascombe

X1	Y1
10	8,04
8	6,95
13	7,58
9	8,81
11	8,33
14	9,96
6	7,24
4	4,26
12	10,84
7	4,82
5	5,68

X2	Y2
10	9,14
8	8,14
13	8,74
9	8,77
11	9,26
14	8,1
6	6,13
4	3,1
12	9,13
7	7,26
5	4,74

Х3	Y3
10	7,46
8	6,77
13	12,74
9	7,11
11	7,81
14	8,84
6	6,08
4	5,39
12	8,15
7	6,42
5	5,73

X4	Y4
8	6,58
8	5,76
8	7,71
8	8,84
8	8,47
8	7,04
8	5,25
19	12,5
8	5,56
8	7,91
8	6,89

Quarteto de Ascombe

X1	Y1	
10	8,04	
8	6,95	
13	7,58	
9	8,81	
11	8,33	
14	9,96	
6	7,24	
4	4,26	
12	10,84	
7	4,82	
5	5,68	
9	7,50	
11	4,13	
0,816		

X2	Y2
10	9,14
8	8,14
13	8,74
9	8,77
11	9,26
14	8,1
6	6,13
4	3,1
12	9,13
7	7,26
5	4,74
9	7,50
11	4,13
0,816	

X3	Y3
10	7,46
8	6,77
13	12,74
9	7,11
11	7,81
14	8,84
6	6,08
4	5,39
12	8,15
7	6,42
5	5,73
9	7,50

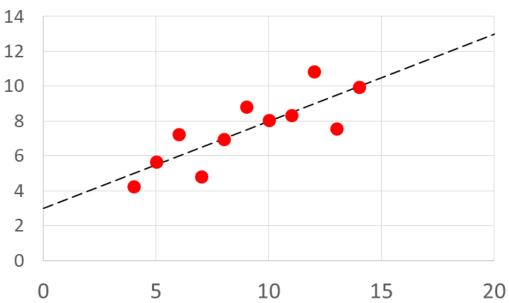
X4	Y4 \
8	6,58
8	5,76
8	7,71
8	8,84
8	8,47
8	7,04
8	5,25
19	12,5
8	5,56
8	7,91
8	6,89
9	7,50
11	4,12

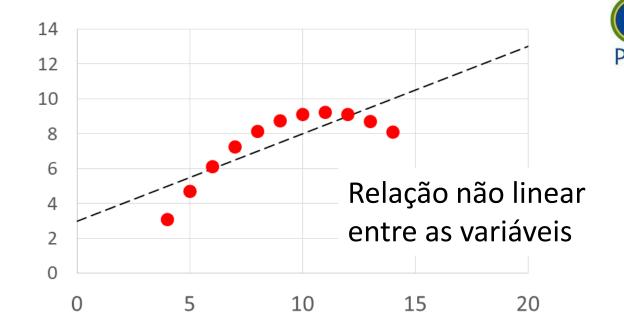
Média	9	7,50
Variância	11	4,13
Coef. de Corr. de Pearson		16
Reta de Regressão entre X e Y	f(x) = 3	3+0.5x

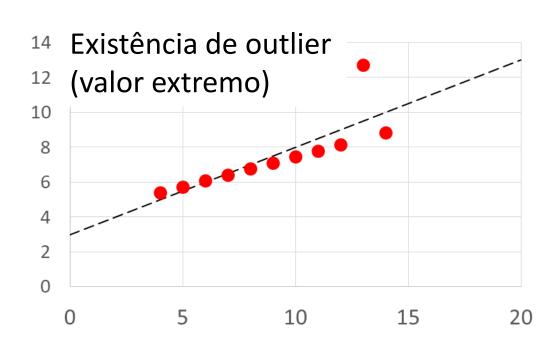
9	7,50	
11	4,13	
0,816		
f(x) = 1	3 + 0.5x	

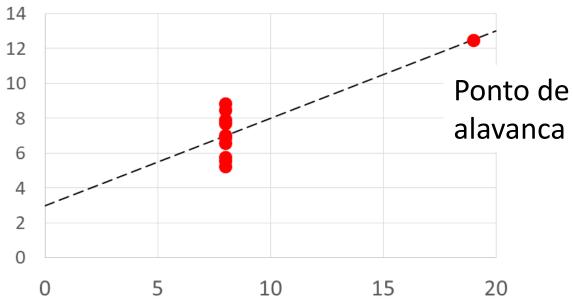
9	7,50	
11	4,12	
0,816		
f(x) = 3	3 + 0.5x	

9	7,50
11	4,12
0,817	
f(x) = 3 + 0.5x	









Exemplos de associações espúrias

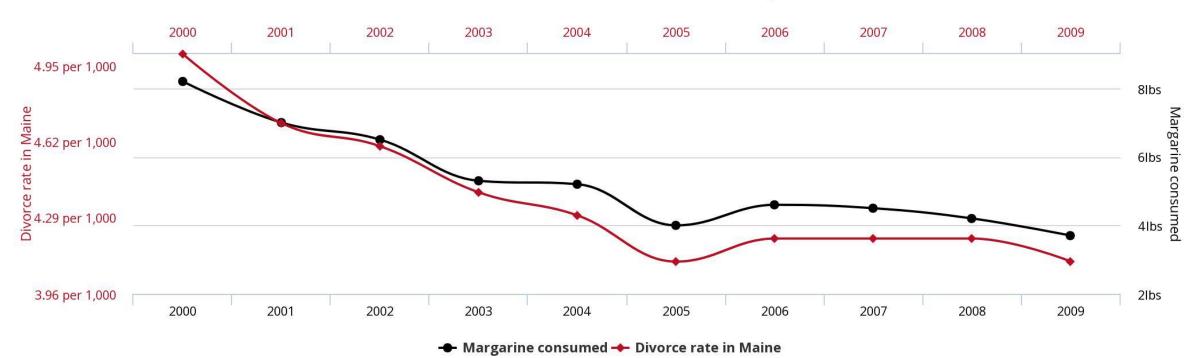
Fonte: http://www.tylervigen.com/spurious-correlations

Divorce rate in Maine

correlates with

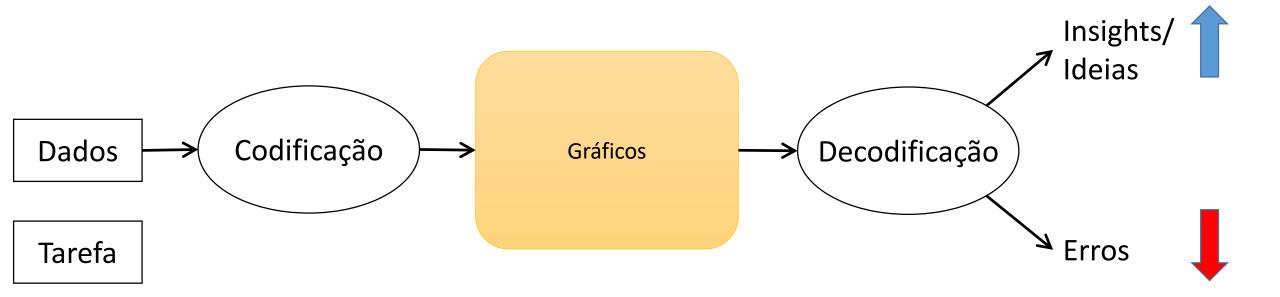
 $R^2 = 0.99256$

Per capita consumption of margarine



tylervigen.com

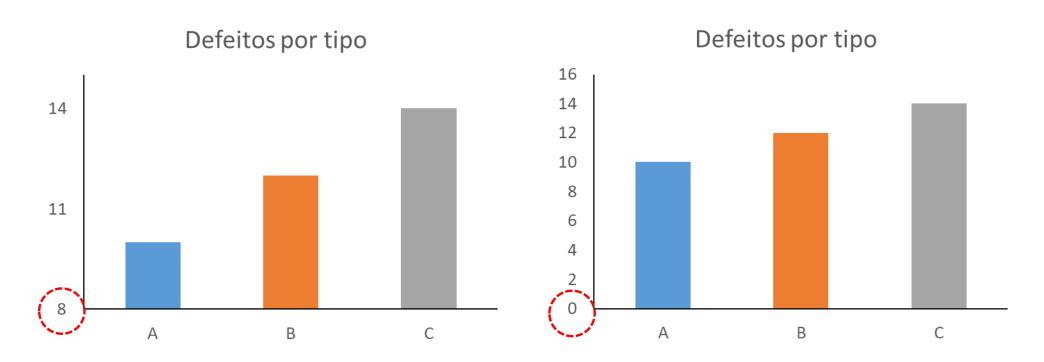
Gráficos como codificação visual



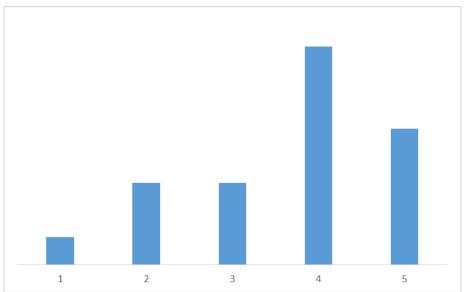
Em qual dos gráficos abaixo é mais evidente o tipo de defeito que está ocorrendo com mais frequência em uma seção produtiva da fábrica?

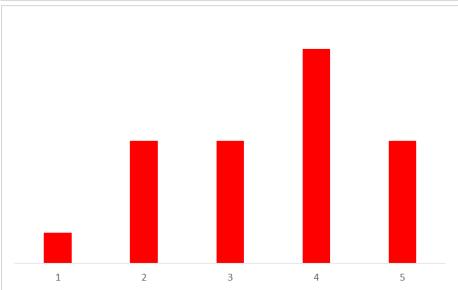
Atenção para o erro de decodificação do usuário (interpretação, comparação, etc.) na leitura dos gráficos

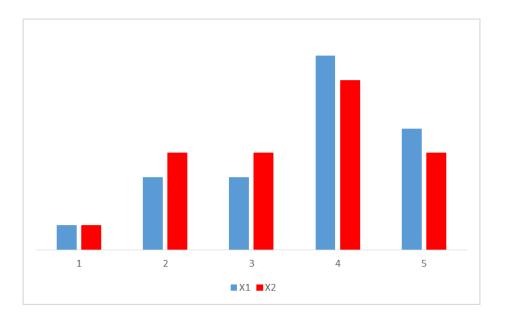
Em qual dos gráficos abaixo é mais evidente o tipo de defeito que está ocorrendo com mais frequência em uma seção produtiva da fábrica?



Atenção para o erro de decodificação do usuário (interpretação, comparação, etc.) na leitura dos gráficos

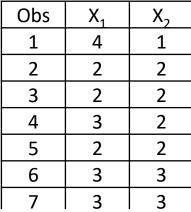


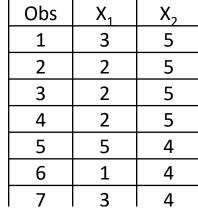




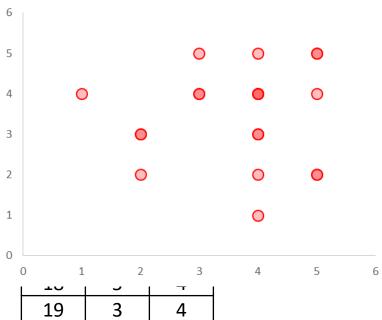
Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Produção

X ₁	X ₂
4	5
1	4
3	5
4	2
5	2
2	3
4	3
	4 1 3 4 5 2

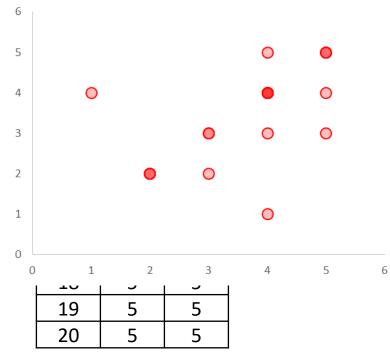


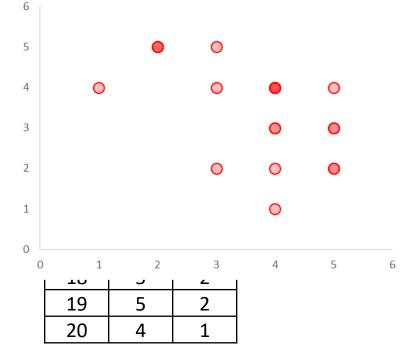


3	5	R = -0.555
2	5	Sig = 0,9%
2	5	



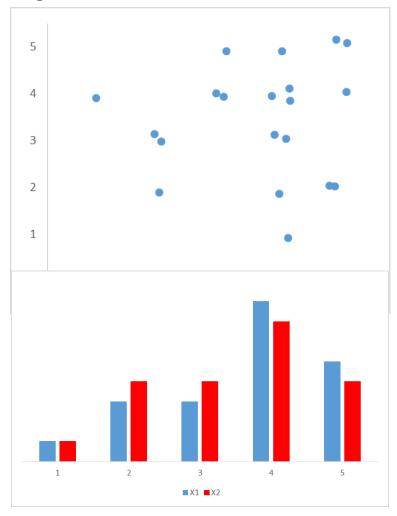
5



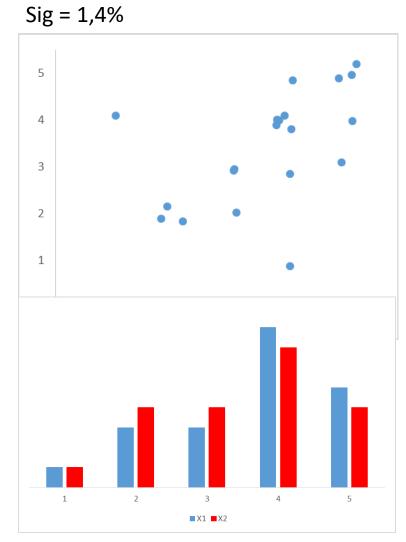


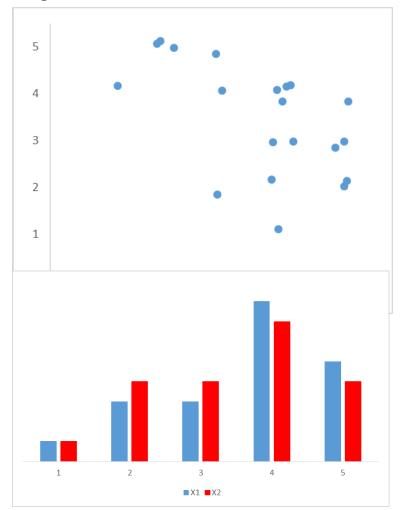
20

$$R = 0.043$$



$$R = 0,529$$



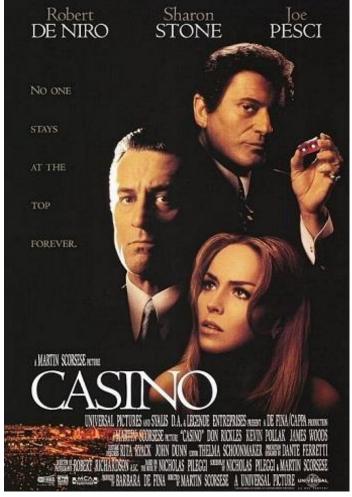


Aula 2 – Conceito de teste de hipótese

Cassino Conceito de teste de hipótese

Cassino (Martin Scorsese, 1995)

https://www.youtube.com/watch?v=v0fl HS79NA



Teste de hipótese

- H_0 : Hipótese nula H_1 : Hipótese alternativa
- H₀ e H₁ são mutuamente excludentes e complementares. Uma e apenas uma das hipóteses é verdadeira
- Normalmente, a hipótese que se deseja provar no estudo é posicionada como H₁ – hipótese alternativa, o que define a construção das hipóteses

$$\begin{cases}
H_0: \mu = 12 \\
H_1: \mu \neq 12
\end{cases}$$

Significância estatística

- H_0 : Hipótese nula H_1 : Hipótese alternativa
- Amostra é colhida e suas características são analisadas
- Significância estatística do teste de hipótese (sig, p-value, α). É a probabilidade de obter uma amostra aleatória exatamente igual a amostra colhida, supondo que a hipótese nula seja verdadeira:

Prob(Amostra $|H_0\rangle$:

• Se a significância for baixa (<5% ou <1%) \rightarrow rejeitar H_0 (H_1 é "verdadeira") Caso contrário, não rejeitar H_0 (H_0 é "verdadeira")

Tipos de erros em teste de hipótese

Realidade

Decisão realizada

	Hipótese nula é verdadeira	Hipótese nula é Falsa
Hipótese nula é rejeitada	Erro tipo I (rejeitar Hipótese nula verdadeira) α: Significância	Decisão correta
Hipótese nula não é rejeitada	Decisão correta	Erro tipo II (não rejeitar Hipótese nula falsa) 1 – β : Poder

Comparação de duas médias

Casos possíveis de comparação de duas médias populacionais

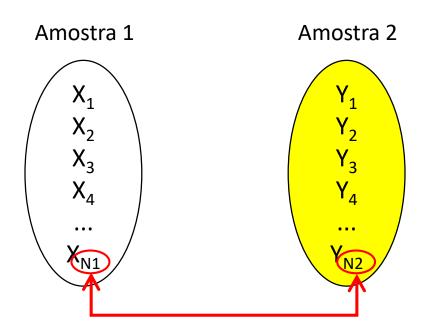
- Dados emparelhados
- Dados não emparelhados
 - Variâncias iguais entre os dois grupos
 - Variâncias desiguais entre os dois grupos

• Comparação de duas variâncias

Planos experimentais básicos

Dados emparelhados

Dados <u>NÃO</u> emparelhados



Exercício

Considere o teste de dois tipos de lâmpadas realizado numa mesma bancada. Foram testadas 10 lâmpadas de cada tipo até que todas elas atingissem sua vida útil. Pode-se afirmar, ao nível de significância de 5%, que as vidas médias das duas marcas de lâmpadas são diferentes?

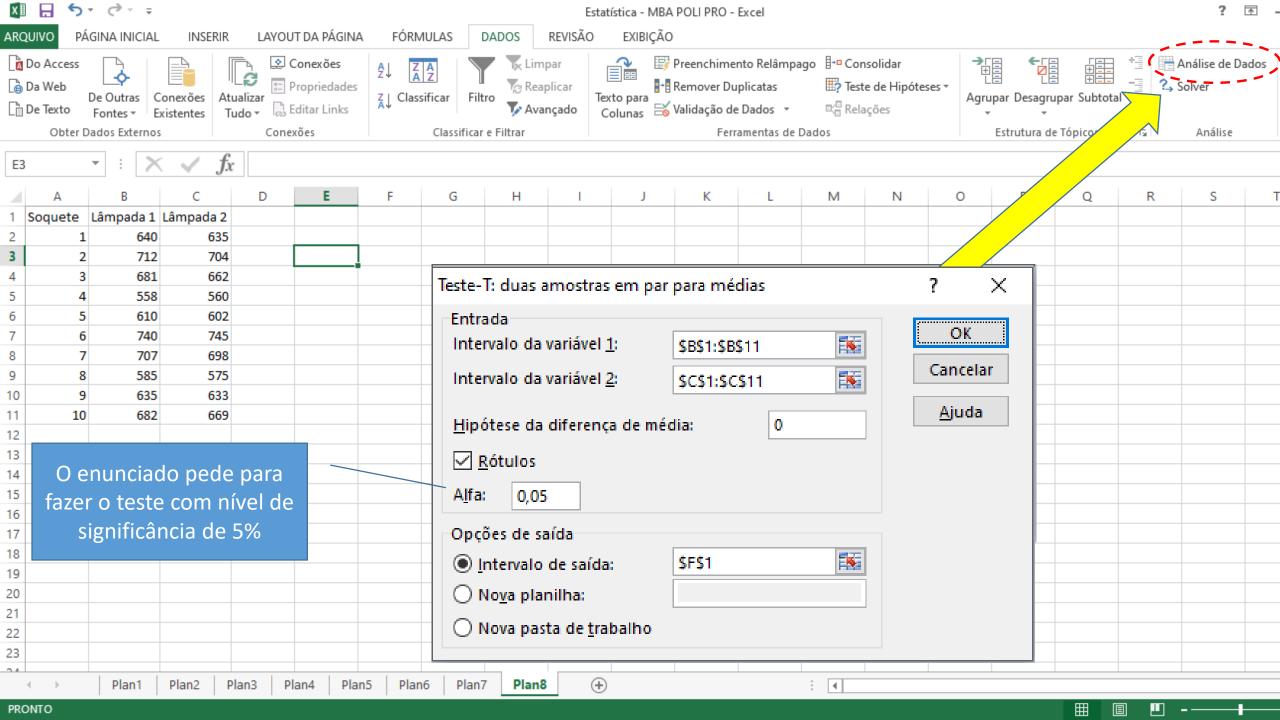
Soquete	Lâmpada 1	Lâmpada 2
1	640	635
2	712	704
3	681	662
4	558	560
5	610	602
6	740	745
7	707	698
8	585	575
9	635	633
10	682	669

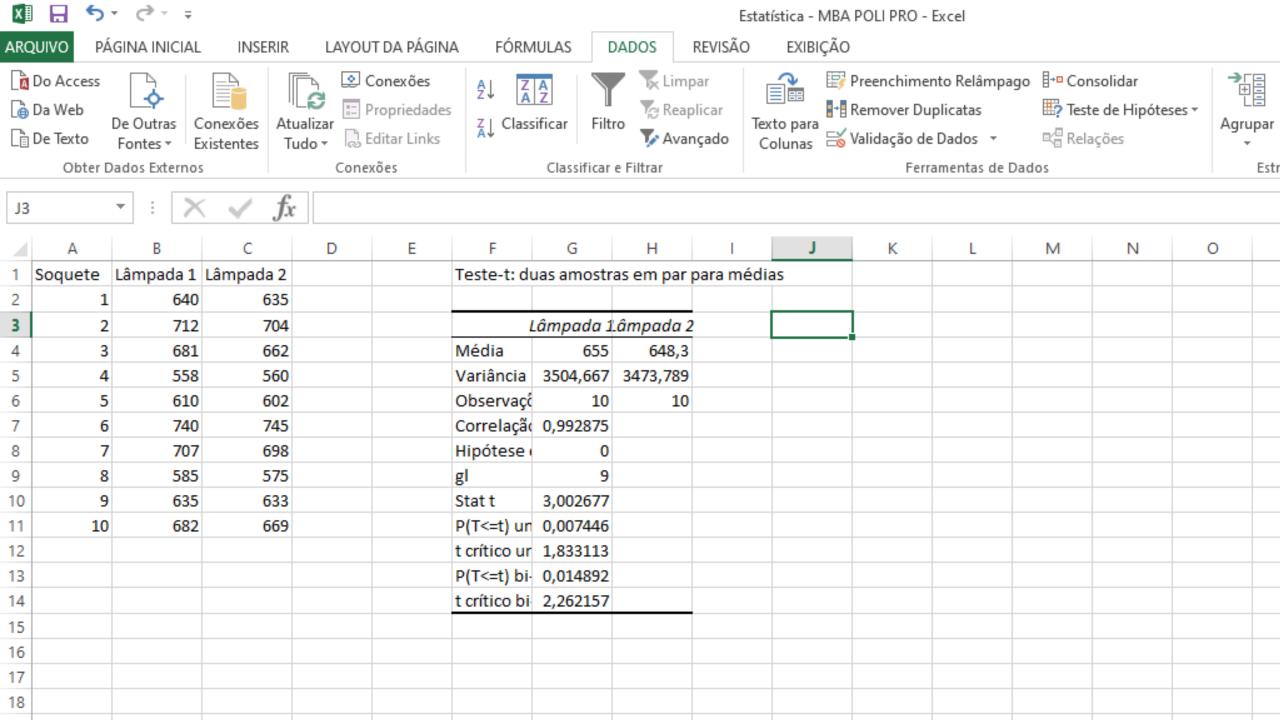
Função Teste.T()

- Pode-se afirmar, ao nível de significância de 5%, que as vidas médias das duas marcas de lâmpadas são diferentes?
- Colocamos em H₁ (hipótese alternativa) a hipótese que queremos testar, que desconfiamos que seja a verdadeira – médias populacionais são (ou seriam) diferentes

$$\begin{cases}
H_0: \mu_1 = \mu_2 \\
H_1: \mu_1 \neq \mu_2
\end{cases}$$

 Como os dados estão emparelhados através do soquete de teste, usamos o teste t com dados emparelhados





-	
Lâmpada 1	Lâmpada 2
655	648,3
3504,667	3473,789
10	10
0,992875	
0	
9	
3,002677	
0,007446	
1,833113	
0,014892	
2,262157	
	3504,667 10 0,992875 0 9 3,002677 0,007446 1,833113 0,014892

Valor da média amostral

Valor da variância amostral

Tamanho da amostra

PRO

Saídas

Valor do coeficiente de correlação linear de Pearson entre os dados das duas amostras

	Lâmpada 1	Lâmpada 2
Média	655	/ 648,3
Variância	3504,667	/3473,789
Observações	10	
Correlação de Pearson	0,992875	
Hipótese da diferença de média	0	
gl	9	
Stat t	3,002677	
P(T<=t) uni-caudal	0,007446	
t crítico uni-caudal	1,833113	
P(T<=t) bi-caudal	0,014892	
t crítico bi-caudal	2,262157	

Diferença suposta entre as médias populacionais $\Delta = \mu_1 - \mu_2$

Número de graus de liberdade do teste de hipótese

	
Lâmpada 1	Lâmpada 2⁄
655	64/8,3
3504,667	3473,789
10	/ 10
0,992875	
0	
9	
3,002677	
0,007446	
1,833113	
0,014892	
2,262157	
	3504,667 10 0,992875 0 9 3,002677 0,007446 1,833113 0,014892

Valor da estatística t de Student observada com os valores das amostras

Significância do teste unicaudal

$$\begin{cases} \mathbf{H}_0: \mu_1 \leq \mu_2 \\ \mathbf{H}_1: \mu_1 > \mu_2 \end{cases}$$

t_{Calculado}

Valor crítico da estatística t de Student para o teste unicaudal $t_{\text{gl};\alpha}$

	Lâmpada 1	Lâmpada 2/
Média	655	64,8,3
Variância	3504,667	3473/,789
Observações	10	/ 10
Correlação de Pearson	0,992875	
Hipótese da diferença de média	0	
gl	9	
Stat t	3,002677	
P(T<=t) uni-caudal	0,007446	
t crítico uni-caudal	1,833113	
P(T<=t) bi-caudal	0,014892	
t crítico bi-caudal	2,262157	

Valor da estatística t de Student observada com os valores das amostras t_{Calculado}

Significância do teste bicaudal

$$\begin{cases} \mathbf{H}_0 : \mu_1 \neq \mu_2 \\ \mathbf{H}_1 : \mu_1 = \mu_2 \end{cases}$$

Valor crítico da estatística t de Student para o teste bicaudal t_{gl:\alpha/2}

Ao rejeitar a hipótese nula (H₀), de igualdade entre as médias populacionais, a pro probabilidade de cometer um erro é de apenas 1,5%

	Lâmpada 1	Lâmpada 2
Média	655	648,3
Variância	3504,667	3473,789
Observações	10	10
Correlação de Pearson	0,992875	
Hipótese da diferença de média	0	
gl	9	
Stat t	3,002677	
P(T<=t) uni-caudal	0,007446	
t crítico uni-caudal	1,833113	
P(T<=t) bi-caudal	0,014892	
t crítico bi-caudal	2,262157	

Devemos rejeitar a hipótese nula (H₀) – igualdade das médias

Uma outra forma de chegar a essa conclusão é que o valor de t_{Calculado} (3,002677) é maior que o valor de tCrítico (2,262157). O valor de t_{Calculado} está dentro da região crítica.

Exercício

Foram testadas 10 lâmpadas de duas marcas distintas. A tabela ao lado mostra a vida observada de cada lâmpada testada.

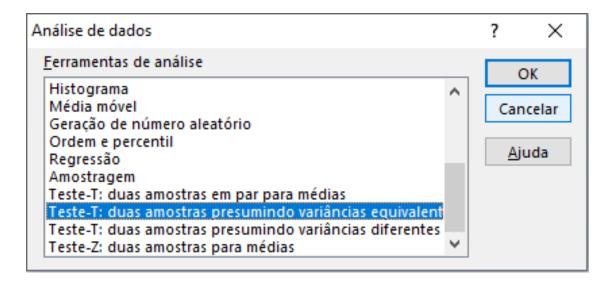
Observe que esse exercício é semelhante ao anterior, mas agora os dados não estão emparelhados.

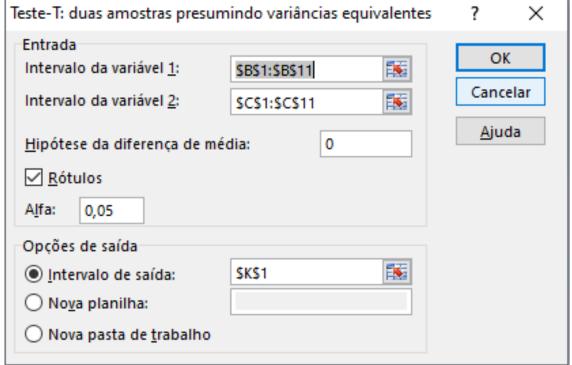
Pode-se afirmar, ao nível de significância de 5%, que as vidas médias das duas marcas de lâmpadas são diferentes?

Lâmpada 1	Lâmpada 🖳	
-	-	
640	635	
712	704	
681	662	
558	560	
610	602	
740	745	
707	698	
585	575	
635	633	
682	669	

Os dados não estão mais emparelhados.

Vamos fazer o teste de hipótese supondo, inicialmente, que a variância (σ^2) nas duas populações são iguais





	Lâmpada 1	Lâmpada⁄2
Média	655	648,3
Variância	3504,667	3,473,789
Observações	10	
Variância agrupada	3489,228	
Hipótese da diferença de média	0	
gl	18	
Stat t	0,253627	
P(T<=t) uni-caudal	0,401329	
t crítico uni-caudal	1,734064	-
P(T<=t) bi-caudal	0,802658	I
t crítico bi-caudal	2,100922	

Estimativa da variância das populações (que são supostas iguais) com base nas variâncias amostrais

Número de graus de liberdade do teste de hipótese

Valor da estatística t de Student observada com os valores das amostras

t_{Calculado}

Lâmpada 1	Lâmpada 💈
655	648,3
3504,667	347,3,789
10	/ 10
3489,228	
0	
18	
0,253627	
0,401329	
1,734064	
0,802658	
2,100922	
	655 3504,667 10 3489,228 0 18 0,253627 0,401329 1,734064 0,802658

Valor da estatística t de Student observada com os valores das amostras

t_{Calculado}

Significância do teste unicaudal

$$\begin{cases} \mathbf{H}_0: \mu_1 \leq \mu_2 \\ \mathbf{H}_1: \mu_1 > \mu_2 \end{cases}$$

Valor crítico da estatística t de Student para o teste unicaudal $t_{\text{gl};\alpha}$

	Lâmpada 1	Lâmpada 🙎
Média	655	6/48,3
Variância	3504,667	347⁄3,789
Observações	10	/ 10
Variância agrupada	3489,228	
Hipótese da diferença de média	0	
gl	18	
Stat t	0,253627	
P(T<=t) uni-caudal	0,401329	
t crítico uni-caudal	1,734064	
P(T<=t) bi-caudal	0,802658	
t crítico bi-caudal	2,100922	

Valor da estatística t de Student observada com os valores das amostras

t_{Calculado}

Significância do teste bicaudal

$$\begin{cases}
H_0: \mu_1 \neq \mu_2 \\
H_1: \mu_1 = \mu_2
\end{cases}$$

Valor crítico da estatística t de Student para o teste bicaudal

 $gl;\alpha/2$

Ao rejeitar a hipótese nula (H₀), de igualdade entre as médias populacionais, a pro probabilidade de cometer um erro é de 80,3% – extremamente alta!

	Lâmpada 1	Lâmpada 2
Média	655	648,3
Variância	3504,667	3473,789
Observações	10	10
Variância agrupada	3489,228	
Hipótese da diferença de média	0	
gl	18	
Stat t	0,253627	
P(T<=t) uni-caudal	0,401329	
t crítico uni-caudal	1,734064	
P(T<=t) bi-caudal	0,802658	
t crítico bi-caudal	2,100922	

Não é possível rejeitar a hipótese nula (H₀) – igualdade das médias

Uma outra forma de chegar a essa conclusão é que o valor de t_{Calculado} (0,253627) é menor que o valor de tCrítico (2,100922). O valor de t_{Calculado} está fora da região crítica.

Agora, vamos fazer o teste supondo que a variância (σ^2) nas duas populações são não iguais

Análise de dados		?		X	
<u>F</u> erramentas de análise			ОК		
Histograma Média móvel Geração de número aleatório Ordem e percentil Regressão Amostragem Teste-T: duas amostras em par para médias Teste-T: duas amostras presumindo variâncias equivalent Teste-T: duas amostras presumindo variâncias diferentes Teste-Z: duas amostras para médias	^		ancel		

Teste-T: duas amostras presu	mindo variâncias diferente	es ? X
Entrada Intervalo da variável <u>1</u> : Intervalo da variável <u>2</u> : <u>H</u> ipotése da diferença de m <u>R</u> ótulos Alfa: 0,05	\$B\$1:\$B\$11	Cancalar
Opções de saída Intervalo de saída: Nova planilha: Nova pasta de trabalho	\$P\$1	

PRO

Saídas

	Lâmpada 1	Lâmpada 2
Média	655	648,3
Variância	3504,667	3473,789
Observações	10	10
Hipótese da diferença de média	0	
gl	18	
Stat t	0,253627	
P(T<=t) uni-caudal	0,401329	
t crítico uni-caudal	1,734064	
P(T<=t) bi-caudal	0,802658	
t crítico bi-caudal	2,100922	

Não é possível rejeitar a hipótese nula (H₀) – igualdade das médias. A mesma conclusão do teste anterior

Ao rejeitar a hipótese nula (H₀), de igualdade entre as médias populacionais, a probabilidade de cometer um erro é de 80,3% – extremamente alta!

Escola Politécnica da Universidade de São Paulo

Resultado supondo variância populacionais desiguais

	Lâmpada 1	Lâmpada 2
Média	655	648,3
Variância	3504,667	3473,789
Observações	10	10
Hipótese da diferença de média	0	
gl	18	
Stat t	0,253627	
P(T<=t) uni-caudal	0,401329	
t crítico uni-caudal	1,734064	
P(T<=t) bi-caudal	0,802658	
t crítico bi-caudal	2,100922	

Mas qual dos dois teste utilizar?

Resultado supondo variância populacionais desiguais

0,253627
0,401329
1,734064
0,802658
2,100922

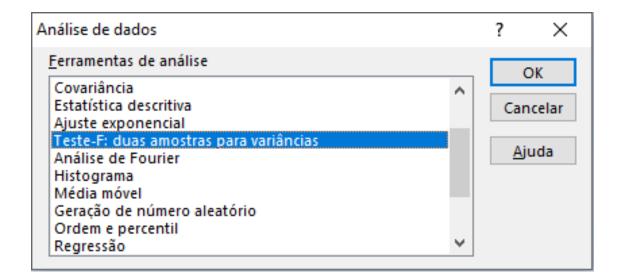
Comparação de duas médias populacionais com dados não emparelhados

 Antes de fazer a comparação das médias das duas populações (através dos dados das duas amostras), é preciso primeiro testar a igualdade das variâncias populacionais como seguinte teste de hipótese:

$$\begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 \neq \sigma_2^2 \end{cases}$$

- Se H₀ (igualdade de médias) não for rejeitada, a comparação das duas médias é feita supondo que variância populacionais são iguais
- Caso contrário, se H₀ (igualdade de médias) for rejeitada, a comparação das duas médias é feita supondo que variância populacionais são desiguais

Teste F de comparação de duas variâncias populacionais



Usar um nível de significância que seja a metade ao do teste de interesse final – comparação de duas médias. Isso por que o teste que será realizado é unicaudal, e não bicaudal

Teste-F: duas amostras para v	ariâncias	? ×
Entrada Intervalo da variável <u>1</u> : Intervalo da variável <u>2</u> : ✓ <u>R</u> ótulos A <u>l</u> fa: 0,025	\$B\$1:\$B\$11	OK Cancelar <u>A</u> juda
Opções de saída Intervalo de saída: Nova planilha: Nova pasta de trabalho	SUS1	

PRO

Saída

	Lâmpada 1	Lâmpada 2
Média	655	648,3
Variância	3504,667	3473,789
Observações	10	10
gl	9	9
F	1,008889	
P(F<=f) uni-caudal	0,494849	
F crítico uni-caudal	4,025994	
	•	

Foi realizado um teste unicaudal, e não bicaudal:

$$\begin{cases}
H_0: \sigma_1^2 \le \sigma_2^2 \\
H_1: \sigma_1^2 > \sigma_2^2
\end{cases}$$

Valor da estatística F de Snedecor observada com os valores das amostras $F_{\text{Calculado}}$

Significância do teste

Valor crítico da estatística F de Snedecor para o teste $t_{g|1;g|2;\alpha}$

	Lâmpada 1	Lâmpada 2
Média	655	648,3
Variância	3504,667	3473,789
Observações	10	10
gl	9	9
F	1,008889	
P(F<=f) uni-caudal	0,494849	
F crítico uni-caudal	4,025994	

$$\begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 \neq \sigma_2^2 \end{cases}$$

Ao rejeitar a hipótese nula (H_0) , de igualdade entre as variâncias populacionais, a probabilidade de cometer um erro é de 99,0%. A hipótese nula (H_0) não pode ser rejeitada!

Sabendo que as variâncias populacionais são iguais, também sabemos qual teste t devemos fazer para comparar as médias populacionais com as duas amostras que temos

Comparando duas médias com dados não emparelhados

- Verificar ser as variâncias populacionais são iguais ou não através do teste F
- 2. Se as variâncias forem iguais, comparar as duas médias com o teste t com variâncias iguais
- 3. Se as variâncias forem desiguais, comparar as duas médias com o teste t com variâncias desiguais.

Usando funções do Excel para resolver novamente esse problema

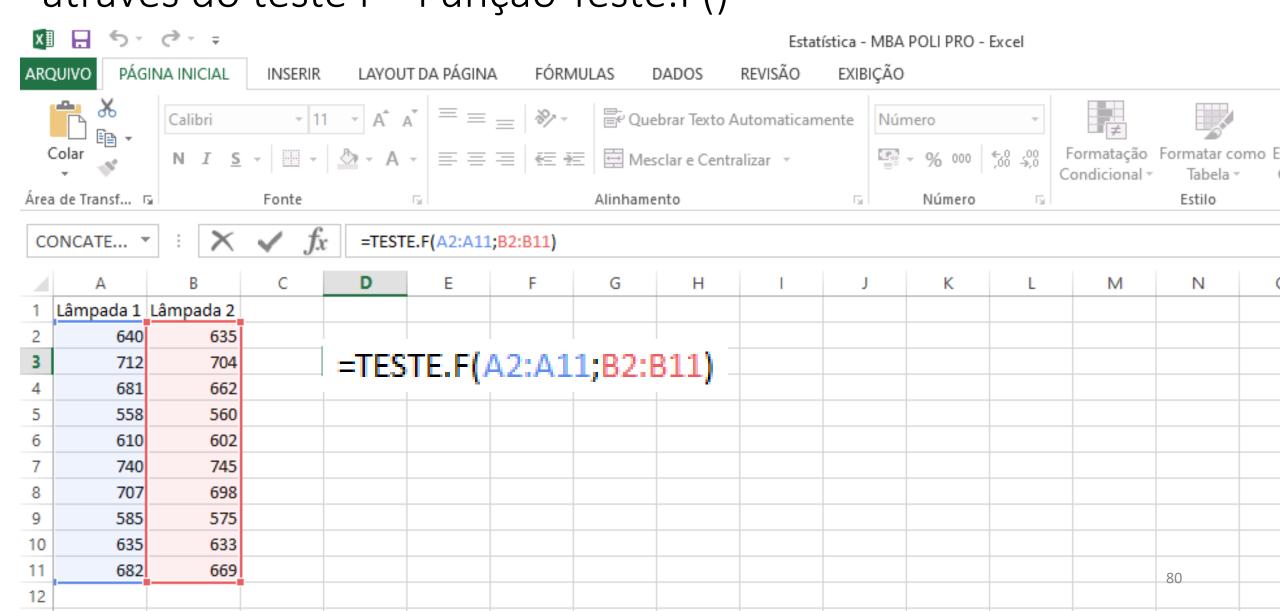
Relembrando: duas amostras com o mesmo tamanho, com dados não emparelhados, e queremos verificar se as médias são diferentes ao nível de 5% de significância.

$$\begin{cases} \mathbf{H_0} : \mu_1 = \mu_2 \\ \mathbf{H_1} : \mu_1 \neq \mu_2 \end{cases}$$

Lâmpada 1	Lâmpada 🔽
640	635
712	704
681	662
558	560
610	602
740	745
707	698
585	575
635	633
682	669

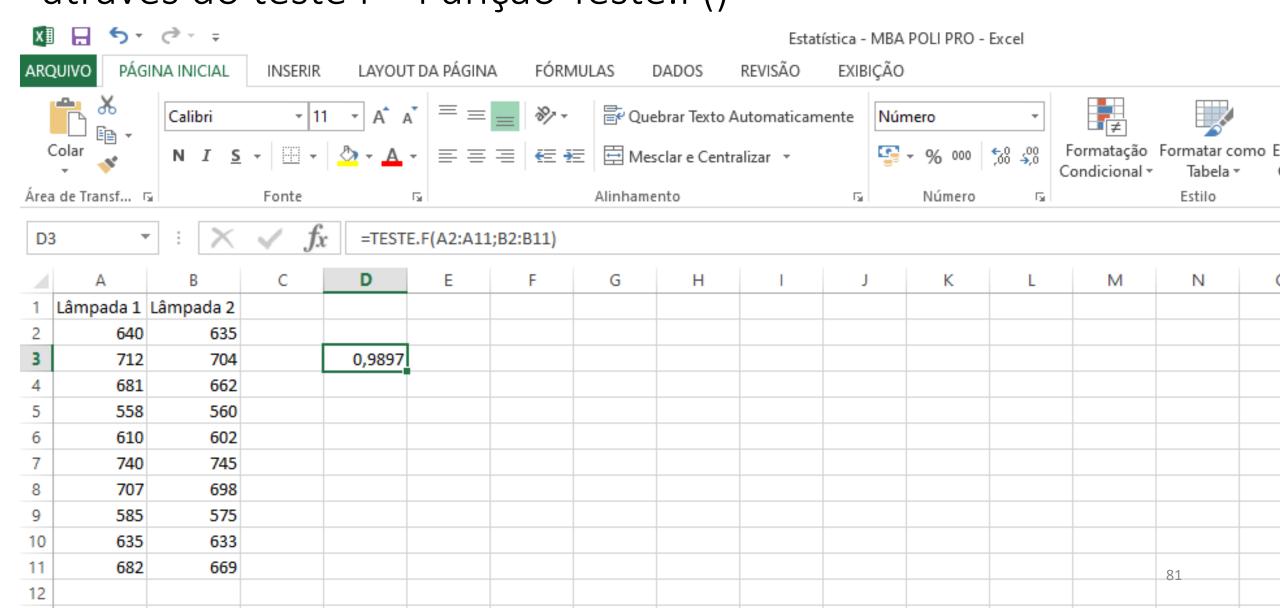
Escola Politécnica da Universidade de São Paulo

Verificar ser as variâncias populacionais são iguais ou não através do teste F - Função Teste.F()



Escola Politécnica da Universidade de São Paulo

Verificar ser as variâncias populacionais são iguais ou não através do teste F - Função Teste.F()



Verificar ser as variâncias populacionais são iguais ou não através do teste F - Função Teste.F()

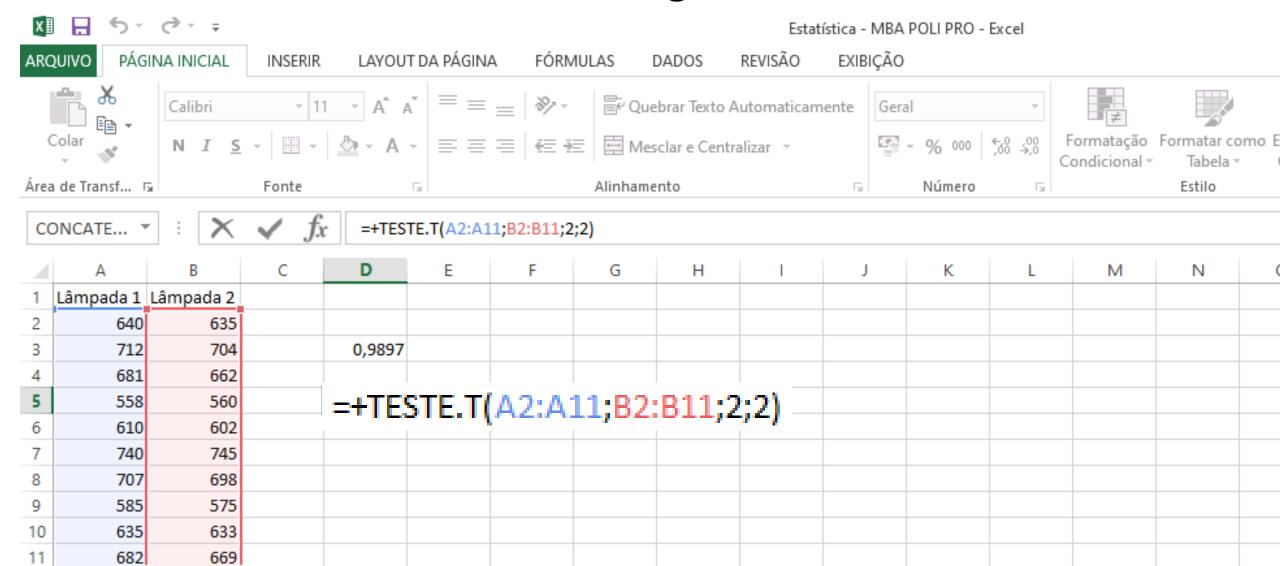
$$\begin{cases}
H_0: \sigma_1^2 = \sigma_2^2 \\
H_1: \sigma_1^2 \neq \sigma_2^2
\end{cases}$$

Significância do teste: 0,9897 ~ 99,0%

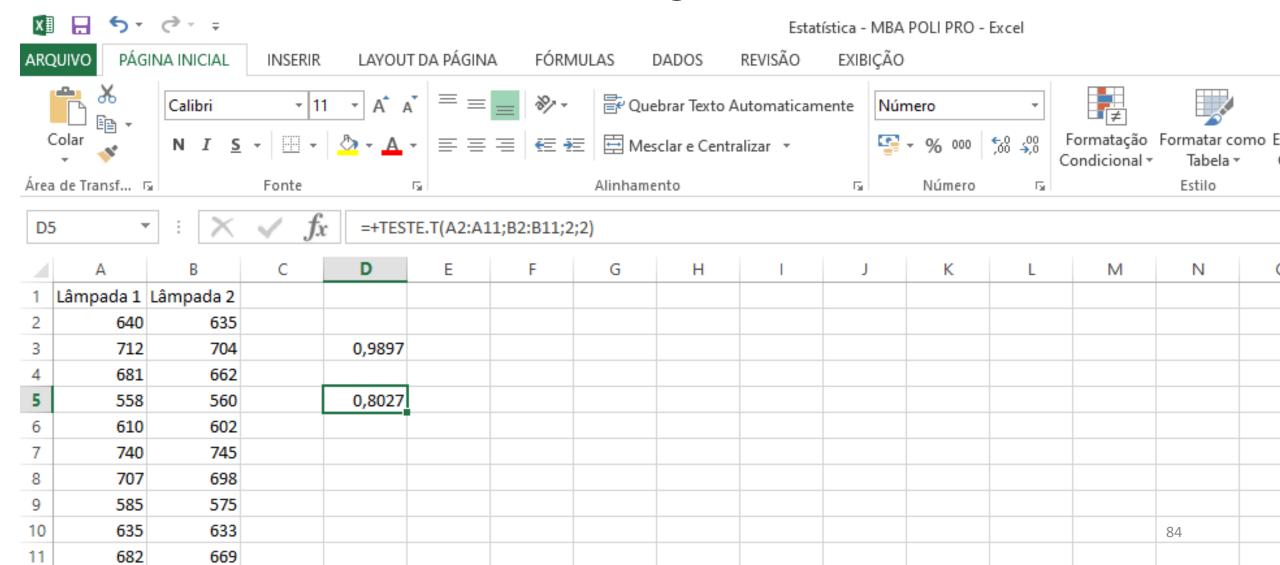
 Ao rejeitar H₀ a probabilidade de cometer um erro é de 99%. Alto demais. Erro (quase) certo Usar a função teste.t do Excel. Os parâmetros são:

- Matriz 1 dados da amostra 1
- Matriz 2 dados da amostra 2

Como as variâncias são iguais, comparar as duas médias com o teste t com variâncias iguais



Como as variâncias são iguais, comparar as duas médias com o teste t com variâncias iguais



Função Teste.T() com dados <u>não</u> emparelhados

$$\begin{cases}
H_0: \mu_1 = \mu_2 \\
H_1: \mu_1 \neq \mu_2
\end{cases}$$

- Dados não emparelhados e com variâncias iguais
- Significância do teste: 0,8027
 ~ 80,3%
- Ao rejeitar H₀, a probabilidade de cometer um erro é de 80,3% – muito alta!

Usar a função teste.t do Excel. Os parâmetros são:

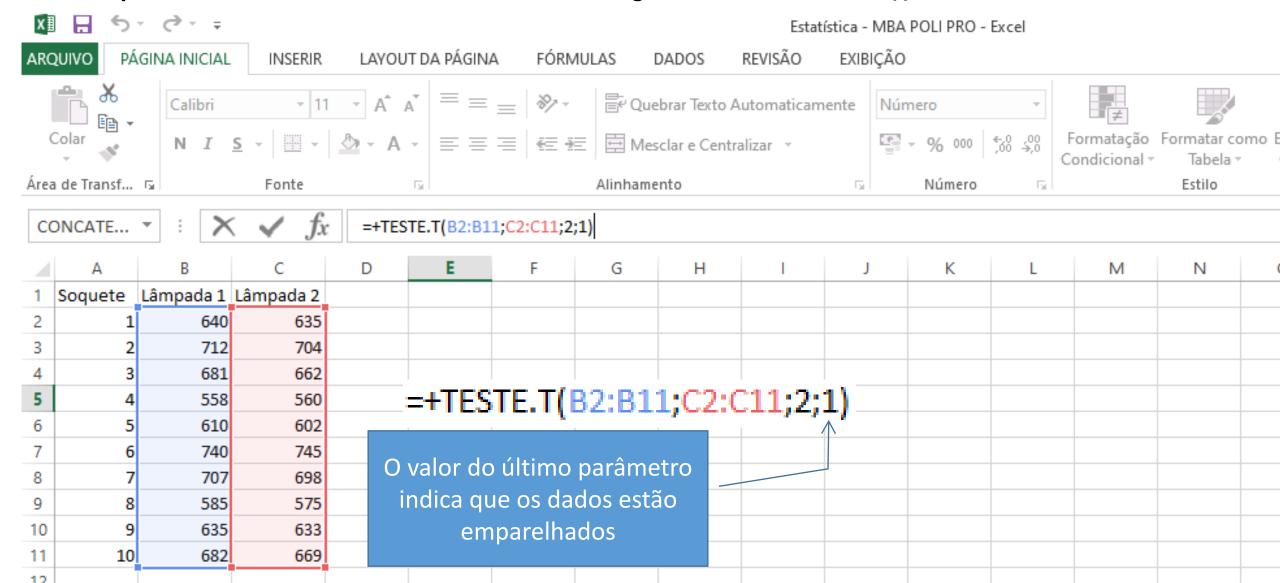
- Matriz 1 dados da amostra 1
- Matriz 2 dados da amostra 2
- Caudas tipo do teste:
 - Teste monocauda
 - Teste bicaudal
- Tipo
 - 1. Dados emparelhados
 - 2. <u>Dados não emparelhados com variância iguais</u>
 - 3. Dados não emparelhados com variância desiguais

Exercício original com dados emparelhados

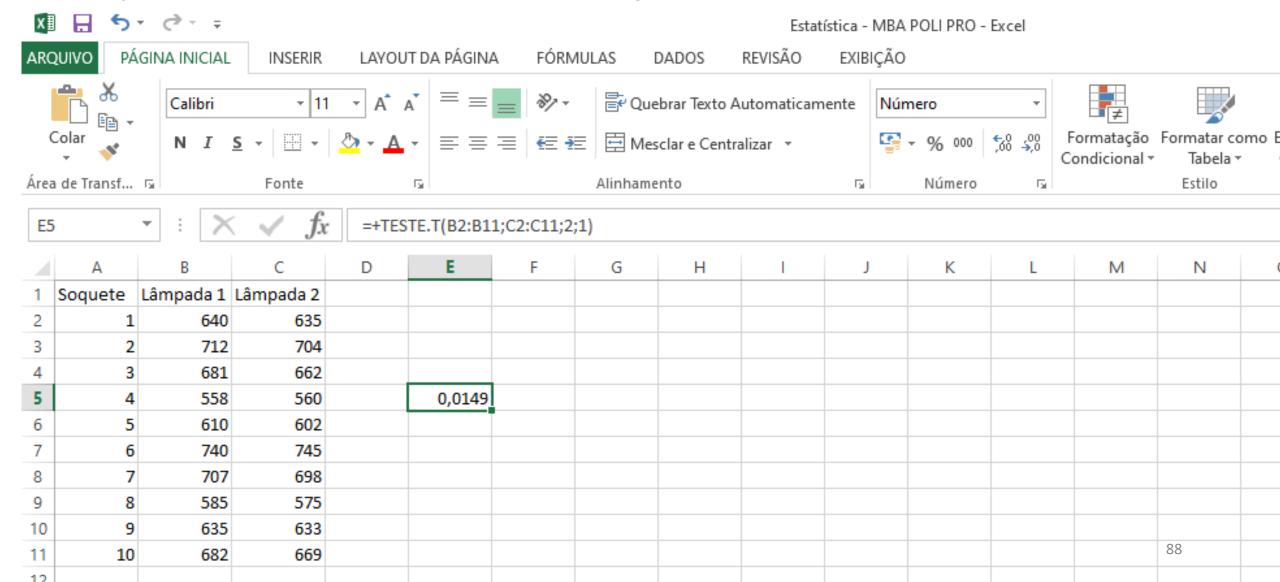
Como os dados estão emparelhados, não é preciso verificar se as variâncias são iguais, e vamos direto ao teste t para comparar as duas médias

Soquete	Lâmpada 1	Lâmpada 2
1	640	635
2	712	704
3	681	662
4	558	560
5	610	602
6	740	745
7	707	698
8	585	575
9	635	633
10	682	669

Comparação de duas médias com dados emparelhados com a função Teste.T() do Excel



Escola Politécnica da Universidade de São Paulo De Politécnica da Universidade de Politecnica da Universidade de Politecnica da Politecnica da Universidade de Politecnica da Universidade de Politecnica da Politecnica da Universidade de Politecnica da Politecnica da Universidade de Politecnica da Politecnica da Universidade da Universidade de Politecnica da Universidade da Univers emparelhados com a função Teste.T() do Excel



Função Teste.T() com dados emparelhados

$$\begin{cases}
H_0: \mu_1 = \mu_2 \\
H_1: \mu_1 \neq \mu_2
\end{cases}$$

 Significância do teste: 0,0149 ~ 1,5%

 Ao rejeitar H₀ a probabilidade de cometer um erro é de apenas 1,5% Usar a função teste.t do Excel. Os parâmetros são:

- Matriz 1 dados da amostra 1
- Matriz 2 dados da amostra 2
- Caudas tipo do teste:
 - Teste monocauda
 - Teste bicaudal
- Tipo
 - Dados emparelhados
 - 2. Dados não emparelhados com variância iguais
 - 3. Dados não emparelhados com variância desiguais

Resumo sobre a comparação de duas médias populacionais

- Dados NÃO emparelhados
 - 1. Verificar se as variâncias populacionais são iguais ou não com o teste F de Snedecor
 - 2. Fazer o teste t adequado
 - Se as variâncias forem iguais, comparar as duas médias populacionais como teste t com variâncias iguais
 - Caso contrário, se as variâncias forem <u>desiguais</u>, comparar as duas médias populacionais como teste t com variâncias <u>desiguais</u>

Obrigado!