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L01b – Matrix Algebra



Matrix Algebra

Wow! I just found my first 
application for linear 

algebra!



Matrix Algebra

 The branch of mathematics that helps represent problems or situations in the

form of mathematical expressions.

 Have symbols and the arithmetic operations across these symbols.

 These symbols do not have any fixed values and are called variables.

What is Algebra?
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Matrix Algebra
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Motivation

Matrix Algebra



Matrix

Matrix Algebra

Matrix is used to compactly represent linear models for large numbers of 

observations.



Matrix Algebra

 A matrix is a rectangular or square array of numbers or variables

 For example:

Matrix



Matrix Algebra

Indices can be used to represent individual elements of the matrix:

where subscript i represents the row and j the column



Matrix Algebra

Indices can be used to represent individual elements of the matrix:

where subscript i represents the row and j the column.

 A matrix with 𝒏 rows and 𝒑 columns is of size 𝒏 𝒙 𝒑

 In the example above, 𝑨 is of size 𝟐 𝒙 𝟑



Matrix Algebra

 A matrix with a single column is denoted a vector
 In this case, we can use a single index to represent its elements: 

Vectors



Matrix Algebra

 A scalar is simply a real number;

Scalars



Matrix Algebra

 A scalar is simply a real number

Scalars

 A 𝟏 𝒙 𝟏 matrix may sometimes be considered a scalar. 

Scalar matrix is a diagonal matrix 

that has the elements equals



Matrix Algebra

 Matrices are considered to be equal if they have the same number of rows

and columns, as well as the same number of elements.

 For example:

Equality of Matrices

but



Matrix Algebra

 Exchanging rows and columns of a matrix results in its transpose;

 The transpose of matrix 𝑿 can be denoted as 𝑿𝑻 or 𝑿´:

Transpose



Matrix Algebra

 The Transpose of a Matrix is obtained by changing its rows into columns (or

equivalently, its columns into rows)

 Can be denoted as 𝑿𝑻 or 𝑿´

Transpose of a Matrix



Matrix Algebra

Transpose of a Matrix



Matrix Algebra

Transpose of a Matrix

If 𝑿 = (𝒙𝒊𝒋) then

𝑿´ = (𝒙𝒊𝒋)´ = (𝒙𝒊𝒋)

If 𝑋 is of size 𝒏 𝒙 𝒑, then 𝑋´ is 𝒑 𝒙 𝒏



Matrix Algebra

Transpose of a Matrix

 The transpose of a (column) vector is a row vector



Matrix Algebra

Special Matrices: Symmetric Matrix 

 If 𝑨 = 𝑨´, i.e., (𝑎𝑖𝑗) = (𝑎𝑖𝑗), then 𝑨 is symmetric



Matrix Algebra

Special Matrices: Symmetric Matrix 

*All symmetric matrices are square

 If 𝑨 = 𝑨´, i.e., (𝑎𝑖𝑗) = (𝑎𝑖𝑗), then 𝑨 is symmetric



Matrix Algebra

Special Matrices: Symmetric Matrix 



Matrix Algebra

Special Matrices: Diagonal Matrix 

 If a matrix contains zeros in all off-diagonal positions, it is said to be a

diagonal matrix

 For example:



Matrix Algebra

Special Matrices: Diagonal Matrix 

 What is diagonal  matrix? 

 The diagonal of a 𝒑 𝒙 𝒑 square matrix 𝑨 = (𝒂𝒊𝒋) consists of the elements 

𝑎11, 𝑎22,…,𝑎𝑝𝑝



Matrix Algebra

Special Matrices: Identity Matrix 

 An identity matrix is a square matrix in which all the elements of principal 

diagonals are one, and all other elements are zeros



Matrix Algebra

Special Matrices: Identity Matrix 

 A matrix multiplied by its inverse equals the identity matrix

𝐴 𝑥 𝐴−1 = 𝐼



Matrix Algebra

Special Matrices: Upper Triangular Matrix 

 A square matrix with zeros below the diagonal

 For example:



Matrix Algebra

Special Matrices: Lower Triangular Matrix 

 A square matrix with zeros above the diagonal

 For example:



Matrix Algebra

Sum of Two Matrices 

If 𝑨 is 𝒏 𝒙 𝒑 and 𝑩 is 𝒏 𝒙 𝒑, then:

𝑪 = 𝑨 + 𝑩 is also 𝒏 𝒙 𝒑

𝑪 = (𝒄𝒊𝒋) = 𝒂𝒊𝒋 + 𝒃𝒊𝒋



Matrix Algebra

Sum of Two Matrices 

If 𝑨 is 𝒏 𝒙 𝒑 and 𝑩 is 𝒏 𝒙 𝒑, then:

𝑪 = 𝑨 + 𝑩 is also 𝒏 𝒙 𝒑

𝑪 = (𝒄𝒊𝒋) = 𝒂𝒊𝒋 + 𝒃𝒊𝒋



Matrix Algebra

Difference between Two Matrices 

Similarly, for the two matrices 𝑨 and 𝑩:

𝑫 = 𝑨 − 𝑩 is also 𝑛 𝑥 𝑝

𝑫 = 𝒅𝒊𝒋 = (𝒂𝒊𝒋 − 𝒃𝒊𝒋)



Matrix Algebra

Difference between Two Matrices 

Similarly, for the two matrices 𝑨 and 𝑩:

𝑫 = 𝑨 − 𝑩 is also 𝑛 𝑥 𝑝

𝑫 = 𝒅𝒊𝒋 = (𝒂𝒊𝒋 − 𝒃𝒊𝒋)



Matrix Algebra

Properties 

Sum or difference of two matrices is only possible for matrices of the same 

size!

 A + B = B + A
 (𝐴 + 𝐵)´ = 𝐴´ + 𝐵´



Matrix Algebra

Product of Two Matrices 

 We denote the product of two matrices 𝐴 and 𝐵 as:

𝑪 = 𝑨𝑩

 This product only exists if the number of columns in A is equal to the

number of rows in B

 We need to look at the first row for matrix A and the first column for

matrix B



Matrix Algebra

Product of Two Matrices 

 Sum of products of the elements in the 𝑖𝑡ℎ row of A and elements in the 𝑗𝑡ℎ
column of B

 Multiplication of every row of A by every column of B

 If 𝑨 is 𝑛 𝑥 𝑚 and 𝑩 is 𝑚 𝑥 𝑝, then 𝑪 is 𝑛 𝑥 𝑝.



Matrix Algebra

Product of Two Matrices 

𝐴𝐵 ≠ 𝐵𝐴



Matrix Algebra

Product involving scalars

 If 𝐀 is an 𝑛 𝑥 𝑝 matrix and 𝐜 is a scalar, then:

 It is true that 𝑐𝐴 = 𝐴𝑐



Matrix Algebra

Product involving scalars

 If 𝐀 is an 𝑛 𝑥 𝑝 matrix and 𝐜 is a scalar, then:



Matrix Algebra

The Kronecker Product 

 The Kronecker product is an operation that transforms two matrices into a 

larger matrix that contains all the possible products of the entries of the two 

matrices



Matrix Algebra

The Kronecker Product 

 Let 𝐀 = (𝑎𝑖𝑗) be an 𝑛 𝑥 𝑝 matrix and 𝐁 = (𝑏𝑖𝑗) an 𝑟 𝑥 𝑠 matrix 

 The Kronecker product of 𝐴 and 𝐵, denoted by 𝐴 ۪𝐵 :



Matrix Algebra

The Kronecker Product 



Matrix Algebra

Matrix inverse 

 If the 𝐴𝑛𝑥𝑚matrix is square, that is, the same number of rows and columns, 

the inverse matrix for A is given by 𝐴𝑛𝑥𝑚
−1 , such that:

 The inverse matrix is denoted by 𝐴−1, such that:



Matrix Algebra

Matrix inverse 

 How to know if a matrix is invertible?

 To know if a matrix is invertible we need to find its determinant. 

 If the determinant of a matrix is nonzero, then the matrix is invertible. 

Otherwise it does not have an inverse matrix.



Matrix Algebra

Systems of Equations

A system of equations can:

 No solution

 A single solution

 More than one solution



Matrix Algebra

Systems of Equations: One solution

A system of linear equations has one solution 

when the graphs intersect at a point



Matrix Algebra

Systems of Equations: No solution

A system of linear equations has no solution 

when the graphs are parallel



Matrix Algebra

Systems of Equations:  More than one solution

A system of linear equations has infinite solutions 

when the graphs are the exact same line



Matrix Algebra

Systems of Equations

 A system of equations is a set of one or more equations involving a number 

of same variables



Matrix Algebra

Representation of Systems of Equations

 If 𝑨 is square (𝑛 = 𝑝) and nonsingular, there exists a unique solution

vector 𝒙 obtained as:

𝒙 = 𝑨−𝟏𝒄

 Can be written in matrix form as

𝑨𝒙 = 𝒄

Where 𝑨 is 𝑛 𝑥 𝑝, 𝒙 is 𝑝 𝑥 1 and 𝒄 is 𝑛 𝑥 1



Matrix Algebra

𝐀𝐱 = 𝐁

Representation of Systems of Equations



Matrix Algebra

Determinant

 The determinant of a Matrix is defined as a special number that is defined

only for square matrices (matrices that have the same number of rows and

columns)

 It is denoted by det 𝐴 = 𝐴



Matrix Algebra

Determinant of 2x2 Matrix



Matrix Algebra

Determinant of 3x3 Matrix

 Rule of Sarrus



Matrix Algebra

Lets Practice!

1)



Matrix Algebra

2)



Matrix Algebra

3)



Matrix Algebra

4)



Matrix Algebra

5)



Matrix Algebra

6)

Find the determinant



Matrix Algebra
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