LGN 5822 - Biometrical Genetics

L01b - Matrix Algebra

Michele Jorge Silva Siqueira

蹅

Matrix Algebra

What is Algebra?

- The branch of mathematics that helps represent problems or situations in the form of mathematical expressions.
- Have symbols and the arithmetic operations across these symbols.
- These symbols do not have any fixed values and are called variables.

Matrix Algebra

Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,* B. J. Hayes ${ }^{\dagger}$ and M. E. Goddard ${ }^{\dagger t+}$

*Research Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands, ${ }^{\dagger}$ Victorian Institute of Animal Science, Attwood 3049, Victoria, Australia and \ddagger Institute of Land and Food Resources, University of Melbourne, Parkville 3052, Victoria, Australia

Manuscript received August 17, 2000
Accepted for publication January 17, 2001

ABSTRACT
Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals $f^{\prime} c$ haplotypes simulta simulated with a m marker haplotypes. rium with the QTI estimated simultan accuracy of predic unbiased predictio segment, which yie that assumed a pri this accuracy to 0 . values predicted fn

Estimate the effects of the haplotypes at the QTL positions simultaneously by the model

$$
y=\mu \mathbf{1}_{n}+\Sigma_{i} X_{i g_{i}}+e,
$$

where summation Σ_{i} is over all QTL positions corresponding to a likelihood peak and g_{i} was estimated at the peak. All other haplotype effects are assumed to be zero. The overall mean is also arbitrarily set to zero, because its effect cannot be distinguished from that of the fixed haplotype effects.

50,000 marker F 1000 cM was combined into kage disequiliba could not be mated and the 32. Best linear chromosomal esian methods nent increased ion on genetic als and plants,

Matrix Algebra

Motivation

BEST LINEAR UNBIASED ESTIMATION AND PREDICTION UNDER A SELECTION MODEL

C. R. Menderson
Department of Animal Science, Cornell University, Ithaca, N. Y. 14850, U.S.A.

SUMMARY

Mixed linear models are assumed in most animal breeding applications. Convenient methods for computing BLUE of the estimable linear functions of the fixed elements of the model and for computing best linear unbiased predictions of the random elements of the model have been available. Most data available to animal breeders, however, do not meet the usual requirements of random sampling, the problem being that the data arise either from selection experiments or from breeders' herds which are undergoing selection. Consequently, the usual methods are likely to yield biased estimates and predictions. Methods for dealing with such data are presented in this paper.

Matrix Algebra

Genomic selection efficiency and a priori estimation of accuracy in a structured dent maize panel

Simon Rio ${ }^{1} \cdot$ Tristan Mary-Huard 1,2. Laurence Moreau ${ }^{1}$ • Alain Charcosset ${ }^{1}$

Received: 25 April 2018 / Accepted: 22 September 2018 / Published online: 4 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Key message Popula

 standard GBLUP.Abstract Genomic pre as those to be predict derived from those sa selection efficiency an maize panel ("Amaizi set size, the best accur Nevertheless, a divers and adding extra-grou dent maize genomic s did not improve the p precision to forecast a differentiate scenarios indicator proved to be

Genomic prediction models

All the genomic prediction models used in this study can be written as:
$y=X \beta+Z g+e$
where y is the vector of LS-means which will be further referred to as phenotypes, \boldsymbol{X} is the incidence matrix for fixed effects, $\boldsymbol{\beta}$ is the vector of fixed effects, \boldsymbol{Z} is an incidence matrix linking observations to breeding values, g is the vector of breeding values and \boldsymbol{e} is the vector of errors. All models assume independence between \boldsymbol{g} and \boldsymbol{e}.
ast accuracy using
he same population ination (CD), were ay impact genomic structure in a dent For a given training ame genetic group. the validation sets, heric training set for licitly into account, erent indicators of trend of the CD to he efficiency of this ic structure through group-specific allele diversity at QTLs rather than group-specific allele effects.

Matrix Algebra

Enviromics in breeding: applications and perspectives on envirotypic-assisted selection

 Fabyano F. e Silva ${ }^{5}$ - Marcos Deon V. de Resende ${ }^{6,7}$ (1) \cdot Dario Grattapaglia ${ }^{4,8}$ (ㄷ)

Received: 25 June 2019 / Accepted: 10 September 2020 / Published online: 22 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Key message We prop assessed on an "omics" Abstract Genotype by el parameters over a limiter have opened new frontie: racy across all sites of int term enviromics, within : particular site is charact variables that may interai sions over different envir which, due to its higher appropriate genotypes; (across environments; an ronmental scenarios can the current outlook of dy fairly inexpensive, increa of enviromics approache statistical modeling of gs
see Schmidt et al. (2019a). The following model was used for the simulations:

$$
\begin{equation*}
y=X \beta+Z g+W t+\varepsilon \tag{1}
\end{equation*}
$$

where \boldsymbol{y} is the vector of phenotypic means per genotype and trial; $\boldsymbol{\beta}$ represents the vector of fixed effects (overall intercept); \boldsymbol{g} represents the vector of random effects of genotypes assumed $\boldsymbol{g} \sim \mathrm{N}\left(0, \boldsymbol{K} \sigma_{g}^{2}\right) ; \boldsymbol{K}$ is a kinship matrix built from pedigree or genomic information; \boldsymbol{t} represents the vector of random effects of trials, assumed $\boldsymbol{t} \sim \mathrm{N}\left(0, \boldsymbol{I} \sigma_{t}^{2}\right)$; and $\boldsymbol{X}, \boldsymbol{Z}$ and \boldsymbol{W} are known incidence matrices for $\boldsymbol{\beta}, \boldsymbol{g}$ and \boldsymbol{t}, respectively. The residual vector ε was assumed as $\varepsilon \sim \mathrm{N}\left(0, \boldsymbol{I} \sigma_{\varepsilon}^{2}\right)$. The relative genetic variance, herein termed trait heritability is given by $h^{2}=\sigma_{g}^{2} /\left(\sigma_{g}^{2}+\sigma_{t}^{2}+\sigma_{e}^{2}\right)$, where $\sigma_{g}^{2}, \sigma_{t}^{2}$ and σ_{e}^{2} are the variance components related to genotypes, trials and residuals, respectively.
milarity among sites lotype performances. on estimating genetic item (GIS) techniques easing selection accuHere, we introduce the at DNA markers, any ling to environmental gs for optimized decithod (the "GIS-GEI") y of sites to their most ensure selection gains urther analyses. Enviigement, especially in etic studies, which are ure for the integration otyping and powerful

Matrix Algebra

Matrix is used to compactly represent linear models for large numbers of
observations．
Matrix is used to compactly represent linear models for large numbers of
observations．

埗

號

[^0]－．

\qquad
\qquad
\qquad
\qquad

Matrix
 Matrix

\qquad \square
20
．
\qquad

Matrix Algebra

Matrix

$$
\begin{align*}
& \text { A matrix is a rectangular or square array of } \mathrm{n} \\
& \text { - For example: } \\
& \qquad \begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{ccc}
1 & 4 & 12 \\
1 & 8 & 20
\end{array}\right] \\
\boldsymbol{B} & =\left[\begin{array}{cc}
5 & 9 \\
-4 & 1 \\
8 & 0
\end{array}\right] \\
\boldsymbol{C} & =\left[\begin{array}{cc}
0 & 15 \\
20 & 10
\end{array}\right]
\end{aligned}
\end{align*}
$$

－A matrix is a rectangular or square array of numbers or variables
－For example：

\square

號 \square \square \square

保
.
促
.
r
.

Matrix Algebra

位

$$
\begin{align*}
& \text { Indices can be used to represent individual elements of the matrix: } \\
& \qquad \boldsymbol{A}=\left(a_{i j}\right)=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \\
& \text { where subscript i represents the row and j the column }
\end{align*}
$$

\qquad
 $($
\qquad

\square
matrix

\qquad

.

保
where subscript i represents the row and j the column
路
\qquad
\qquad
f
\qquad

$$
5
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad ．

 0

.
I
路 \square
 －

Matrix Algebra

Indices can be used to represent individual elements of the matrix:

$$
\boldsymbol{A}=\left(a_{i j}\right)=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

where subscript i represents the row and j the column.

- A matrix with \boldsymbol{n} rows and \boldsymbol{p} columns is of size $\boldsymbol{n} \boldsymbol{x} \boldsymbol{p}$
- In the example above, \boldsymbol{A} is of size $\mathbf{2 x} \mathbf{3}$

Matrix Algebra

Vectors

- A matrix with a single column is denoted a vector
- In this case, we can use a single index to represent its elements:

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

 Scalars
－A scalar is simply a real number；
Matrix Algebra Scalars
－A scalar is simply a real number；
\qquad
 Scalars


```
*
``` Scalars Scalars
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) Scalars
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
 \(\qquad\) Scalars
\[
1
\]
\[
\mathrm{P}
\]
.

 Scalars Scalars Scalars Scalars Scalars Scalars Scalars

 Scalars Scalars Scalars
\(\qquad\) Scalars
\(\qquad\)
\(\qquad\) － \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

－A scalar is simply a real number；

\section*{}
 Scalars
－A scalar is simply a real \(n\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
 \(\qquad\)
（
\(\qquad\)
\(\qquad\)

\begin{abstract}

\end{abstract}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) －
\(\square\)

\section*{Matrix Algebra}

\section*{Scalars}
- A scalar is simply a real number
\[
A=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]
\]

Scalar matrix is a diagonal matrix
that has the elements equals
- A \(1 \boldsymbol{x} 1\) matrix may sometimes be considered a scalar.

\section*{Matrix Algebra}

\section*{Equality of Matrices}
- Matrices are considered to be equal if they have the same number of rows and columns, as well as the same number of elements.
- For example:
\[
\begin{gathered}
\left(\begin{array}{rrr}
3 & -2 & 4 \\
1 & 3 & 7
\end{array}\right)=\left(\begin{array}{rrr}
3 & -2 & 4 \\
1 & 3 & 7
\end{array}\right), \\
\text { but } \\
\left(\begin{array}{rrr}
5 & 2 & -9 \\
8 & -4 & 6
\end{array}\right) \neq\left(\begin{array}{rrr}
5 & 3 & -9 \\
8 & -4 & 6
\end{array}\right) .
\end{gathered}
\]

\section*{Matrix Algebra}
- Exchanging rows and columns of a matrix results in its transpose;
- The transpose of matrix \(\boldsymbol{X}\) can be denoted as \(\boldsymbol{X}^{\boldsymbol{T}}\) or \(\boldsymbol{X}^{\prime}\) :
-

\author{
,
}
,
-

 T

\section*{_}
and columns of a matrix results in its transpose;
matrix \(\boldsymbol{X}\) can be denoted as \(\boldsymbol{X}^{\boldsymbol{T}}\) or \(\boldsymbol{X}^{\prime}\) : \(\square\) -

```

        *
    ```
\[
1
\]

F

位

\(\qquad\)
\(\qquad\)

:
\(\square\)

\author{
\section*{Transpose} \(\square\) \\ . \\ \\ Transpose \\
}

(
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Matrix Algebra \\ }

\section*{Transpose of a Matrix \\ }
- The Transpose of a Matrix is obtained by changing its rows into columns (or
equivalently, its columns into rows)
- The Transpose of a Matrix is obtained by changing its rows into columns (or
equivalently, its columns into rows)
- Can be denoted as \(\boldsymbol{X}^{\boldsymbol{T}}\) or \(\boldsymbol{X}^{\boldsymbol{\prime}}\)

-

路
,

 \((\)

别

Can
-

Transpose of a Matrix
Matrix Algebra
－

\[
\boldsymbol{B}=\left[\begin{array}{cc}
5 & 9 \\
-4 & 1 \\
8 & 0
\end{array}\right], \quad \boldsymbol{B}^{\prime}=\left[\begin{array}{ccc}
5 & -4 & 8 \\
9 & 1 & 0
\end{array}\right]
\]
\[
]
\]
.
]
F （
■ （ \(\square\)都

\(\qquad\)
\(\qquad\)

\(\qquad\)

\[
\bullet
\]
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Matrix
\(\left[\begin{array}{cc}5 & 9 \\ -4 & 1 \\ 8 & 0\end{array}\right], B^{\prime}=\left[\begin{array}{lll}5 & -4 & 8 \\ 9 & 1 & 0\end{array}\right]\)
\[
5
\]
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\square\)
\(\checkmark\)
\(\square\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
.
[
.
\(\qquad\)
.

\section*{Transpose of a Matrix}

If \(\boldsymbol{X}=\left(\boldsymbol{x}_{i j}\right)\) then

If \(X\) is of size \(\boldsymbol{n} \boldsymbol{x} \boldsymbol{p}\) ，then \(X^{\prime}\) is \(\boldsymbol{p} \boldsymbol{x} \boldsymbol{n}\)

\section*{}

\section*{ \\ }
\[
X^{\prime}=\left(x_{i j}\right)^{\prime}=\left(x_{i j}\right)
\]

\author{

}
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\qquad\)

\section*{Matrix Algebra \\ \\ \(\qquad\)}
\(\qquad\)
\[
8
\]
.
.
 ，
而

 \(\qquad\)

 （

\(\square\)
.
\(\square\)
.
.

```

    *
    ```
\(\qquad\)
\(\qquad\)
\(\qquad\) \(\square\) \(\square\) \(\square\) \(\square\)
\(\qquad\)

Matrix Algebra Transpose of a Matrix
－The transpose of a（column
\[
\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right],
\]
－The transpose of a（column）vector is a row vector
\[
\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \quad \boldsymbol{x}^{\prime}=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]
\]
\[
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \quad \boldsymbol{x}^{\prime}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]
\]
－The transpose of a（column）vector is a row vector
\[
\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \quad \boldsymbol{x}^{\prime}=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]
\]
Matrix Algebra
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\[
\mathcal{L}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array} \left\lvert\,, \quad \boldsymbol{x}^{\prime}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]\right.\right.
\] Transpose of a Matrix
－The transpose of a（coli mr
\[
\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]
\]
 Transpose of a Matrix
－The transpose of a（column
\[
\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right],
\]
.
\(\qquad\) O \(\square\)

 \(\square\)
\(\qquad\)

\(\qquad\)
 （ O \(\square\)
 (a) \(\square\)
\[
\square
\]

 都

The transpose of a column vector is a row vector
\(x=\left[\begin{array}{ccc}x_{1} \\ x_{2} \\ x_{3}\end{array}\right],\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{4}\end{array}\right]\)

The transpose of a column vector is a row vector
\(x=\left[\begin{array}{ccc}x_{1} \\ x_{2} \\ x_{3}\end{array}\right],\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{4}\end{array}\right]\)
 \(\qquad\)

\begin{abstract}
\begin{abstract}
\begin{abstract}
\begin{abstract}

\end{abstract}
\end{abstract}
\end{abstract}
\end{abstract}

F都

Matrix Algebra

\section*{Special Matrices：Symmetric Matrix}
－If \(\boldsymbol{A}=\boldsymbol{A}\) ，i．e．，\(\left(a_{i j}\right)=\left(a_{i j}\right)\) ，then \(\boldsymbol{A}\) is symmetric

\(\square\)

路
\(\left(a_{i j}\right)\) ，\(A\) is sym

 \(\square\) \(\square\)
 \(\square\)
\(\square\)
\(\square\)
\(\square\)

Symmetric Matrix

\begin{abstract}
坟
\end{abstract}
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)

（
都

（
，
 \(\qquad\)
震
\(\qquad\)
\(\qquad\)
\(\qquad\)

\author{
，i．e．，
}

\(\square\)
（

\(\square\)

\author{

}

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)
\(\qquad\)

0 \(\square\)
is \(s\)
＜
\(\square\)
\(\square-\)
．
\(\square\)

都
（

\(\qquad\)

，
都
都 \(\square\)

O

 0
\(\qquad\)

\(\qquad\)

D \(\qquad\)
\(\qquad\)
\(\qquad\)

\author{
\(-4\) \\ \(\qquad\) \\ \(\qquad\) \\ \(\qquad\)
}
（ \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\author{
\(\qquad\) \\
}
\(\qquad\)
\(\square\)
都 \(\qquad\)
（
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{}

Matrix Algebra

\section*{Special Matrices: Symmetric Matrix}
- If \(\boldsymbol{A}=\boldsymbol{A}^{\prime}\), ie., \(\left(a_{i j}\right)=\left(a_{i j}\right)\), then \(\boldsymbol{A}\) is symmetric

\section*{Example of a Symmetric Matrix}
\[
\boldsymbol{A}=\left[\begin{array}{ccc}
12 & -3 & 7 \\
-3 & 1 & 0 \\
7 & 0 & 8
\end{array}\right]
\]
*All symmetric matrices are square All symmetric matrices are square

 ------,

\(\qquad\) \(\boldsymbol{A}=\left[\begin{array}{ccc}12 & -3 & 7 \\ -3 & 1 & 0 \\ 7 & 0 & 8\end{array}\right]\)

\(\square\)

.
- \(A=A_{i}\), \(\left(a_{i j}\right)=\left(a_{i j}\right)\) then \(A\) is symmetric \(\square\)
\(\square\)
\(\square\) -
\[
-\quad 0
\]
\(\square\)
\(\square\)

matrices ar

 \(\square\)

\[
0
\]
[
[
\(\square\)

\(\square\)
 Special Matrices: Symmetric Matrix
- If \(\boldsymbol{A}=\boldsymbol{A}^{\prime}\), ie., \(\left(a_{i j}\right)=\left(a_{i j}\right)\), then \(\boldsymbol{A}\) is symmetric
\(\square\)
uar e
.
.
■
I

Matrix Algebra
Special Matrices：Symmetric Matrix
Matrix Algebra \(\qquad\) \(\square\)

\author{
（
}
L
（
（
－

－
號

\section*{}
.

\section*{ \\)}元

1
1
\(\qquad\)
\(\qquad\)

\begin{abstract}

\end{abstract} \(\square\) \(\square\)
路 \(\square\)
 \(\square\)

> -
\(\qquad\)
\[
0
\]

.
\(\qquad\)
\(\qquad\) \(X\) \(\qquad\)
\(\qquad\)

\section*{Matrix Algebra}

\section*{Special Matrices: Diagonal Matrix}
- If a matrix contains zeros in all off-diagonal positions, it is said to be a diagonal matrix
- For example:

\section*{Diagonal Matrix}
- A matrix with all off-diagonal elements equal to zero
\[
\boldsymbol{A}=\left[\begin{array}{cccc}
12 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & -2
\end{array}\right]
\]

\section*{Matrix Algebra}

\section*{Special Matrices: Diagonal Matrix}
- What is diagonal matrix?
- The diagonal of a \(\boldsymbol{p} \boldsymbol{x} \boldsymbol{p}\) square matrix \(\boldsymbol{A}=\left(\boldsymbol{a}_{\boldsymbol{i} \boldsymbol{j}}\right)\) consists of the elements \(a_{11}, a_{22, \ldots,}, a_{p p}\)
\[
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 p} \\
a_{21} & a_{22} & \cdots & a_{2 p} \\
\vdots & \vdots & & \vdots \\
a_{p 1} & a_{22} & \cdots & a_{p p}
\end{array}\right)
\]

\section*{Matrix Algebra}

\section*{Special Matrices: Identity Matrix}
- An identity matrix is a square matrix in which all the elements of principal diagonals are one, and all other elements are zeros

The Identity Matrix
\[
\boldsymbol{I}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\]

Matrix Algebra

\section*{Special Matrices: Identity Matrix}
- A matrix multiplied by its inverse equals the identity matrix
\[
A \times A^{-1}=I
\] \\ \section*{\section*{Matrix Algebra \\ \section*{\section*{Matrix Algebra \\ \\ Matrix Algebra} \\ \\ Matrix Algebra} \\ \\ Matrix Algebra}

\section*{Special Matrices: Upper Triangular Matrix}
- A square matrix with zeros below the diagonal
- For example:
- A square matrix with zeros below the diagonal
- For example:

\section*{(}

\(\qquad\)
s: Upper Triangular Matrix
with zeros below the diagonal
\[
\left(\begin{array}{llll}7 & 2 & 3 & -5\end{array}\right)
\]
s: Upper Triangular Matrix
with zeros below the diagonal
\(\left.\begin{array}{llll}7 & 2 & 3 & -5\end{array}\right)\)
s: Upper Triangular Matrix
with zeros below the diagonal
\[
\left(\begin{array}{llll}7 & 2 & 3 & -5 \\ 0 & 0 & 6\end{array}\right)
\]
s: Upper Triangular Matrix
with zeros below the diagonal
\[
\left(\begin{array}{llll}7 & 2 & 3 & -5 \\ 0 & 0 & 6\end{array}\right)
\]
s: Upper Triangular Matrix
with zeros below the diagonal
\[
\left(\begin{array}{llll}7 & 2 & 3 & -5 \\ 0 & 0 & 6\end{array}\right)
\]
s: Upper Triangular Matrix
with zeros below the diagonal
\(\mathbf{T}=\left(\begin{array}{rrrr}7 & 2 & 3 & -5 \\ 0 & 0 & -2 & 6 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 8\end{array}\right)\)
s: Upper Triangular Matrix
with zeros below the diagonal
\[
\left(\begin{array}{llll}7 & 2 & 3 & -5\end{array}\right)
\]

\section*{} \(\square\) \(-\) \(\square\) -
 -

\[
\begin{aligned}
& \text { Special Matrices } \\
& \text { - A square matrix } \\
& \text { - For example: }
\end{aligned}
\]

 - A square matrix with zeros be
- For example:
\[
\mathbf{T}=
\]
.
\[
\mathbf{T}=\left(\begin{array}{rrrr}
7 & 2 & 3 & -5 \\
0 & 0 & -2 & 6 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 8
\end{array}\right)
\]
\(\qquad\)
\[
\square
\]

[
[
\(\qquad\)

\author{
\(\qquad\) \\ \(\qquad\)
}

 \(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

 s: Upper Triangular Matrix
\(\mathbf{T}=\left(\begin{array}{rrrr}7 & 2 & 3 & -5 \\ 0 & 0 & -2 & 6 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 8\end{array}\right)\)
 Matrix Algebra
Special Matrices：Lower Triangular Matrix
－A square matrix with zeros above the diagonal
－For example：
\[
\left(\begin{array}{ccc}4 & 0 & 0 \\ -1 & 2 & 0\end{array}\right)
\] Matrix Algebra
Special Matrices：Lower Triangular Matrix
－A square matrix with zeros above the diagonal
－For example：
\[
\left(\begin{array}{ccc}4 & 0 & 0 \\ -1 & 2 & 0\end{array}\right)
\] Matrix Algebra
Special Matrices：Lower Triangular Matrix
－A square matrix with zeros above the diagonal
－For example：
\[
\left(\begin{array}{ccc}4 & 0 & 0 \\ -1 & 2 & 0 \\ 5 & -8 & 6\end{array}\right)
\]
 －A square matrix with zeros above the diagonal
For example：
0
with zeros above the diagonal
with zeros above the diagonal
 Matrix Algebra
Special Matrices：Lower Triangular Matrix
－A square matrix with zeros above the diagonal
－For example：
\[
\left(\begin{array}{ccc}4 & 0 & 0 \\ -1 & 9 & n\end{array}\right)
\]

with zeros above the diagonal

\section*{}

with zeros above the diagonal
with zeros above the diagonal

with zeros above the diagonal
with zeros above the diagonal \(\left(\begin{array}{ccc}4 & 0 & 0 \\ -1 & 2 & 0 \\ 5 & -8 & 6\end{array}\right)\)都都

with zeros above the diagonal
with zeros above the diagonal

with zeros above the diagonal
\[
\left(\begin{array}{ccc}
4 & 0 & 0 \\
-1 & 2 & 0 \\
5 & -8 & 6
\end{array}\right)
\]

\(\qquad\)
\(\qquad\)
\(\qquad\)

\begin{abstract}
\begin{abstract}
\begin{abstract}
\(\qquad\)
\(\qquad\) \(+2+2+2+2+2\) \(+\)

 \(\square\) \(\sum_{0}\)

 －
-
\(\qquad\)

\end{abstract}
\end{abstract}
\end{abstract} \(+\)

\(\qquad\)

\[
\pi
\]

\(\qquad\) \(\longrightarrow\) \(\qquad\)

\begin{abstract}
\(\qquad\)
\end{abstract}
F
\[
\begin{equation*}
5 \tag{5}
\end{equation*}
\]
\[
\begin{equation*}
8 \tag{8}
\end{equation*}
\] －A square matrix with zeros above the
\(\square\) For example：
\[
\text { ？}
\]
• A square matrix with zeros above the diagonal
\(\square\) For example：
•

\author{

} \(+\) \(\square\) \(\square\) T （ \(\square\)

\[
\square
\]

Matrix Algebra

\section*{Sum of Two Matrices \\ Sum of Two Matrices}

If \(\boldsymbol{A}\) is \(\boldsymbol{n} \boldsymbol{x} \boldsymbol{p}\) and \(\boldsymbol{B}\) is \(\boldsymbol{n} \boldsymbol{x} \boldsymbol{p}\) ，then：
\[
\begin{aligned}
& C=\boldsymbol{A}+\boldsymbol{B} \text { is also } \boldsymbol{n} x \boldsymbol{p} \\
& \boldsymbol{C}=\left(\boldsymbol{c}_{i j}\right)=\left(\boldsymbol{a}_{i j}+b_{i j}\right)
\end{aligned}
\]

\begin{abstract}
元
\end{abstract}

路
\(\square\) then：電
都
If \(\boldsymbol{A}\) is \(\boldsymbol{n} \boldsymbol{x} \boldsymbol{p}\) and \(\boldsymbol{B}\) is \(\boldsymbol{n} \boldsymbol{p}\)
\(\square\) D
\(\square\)
\(\square\)

正
\[
8
\]
\(\square\)

\begin{abstract}
\[
0
\]
\end{abstract}
\(\square\)

\[
8
\]
\[
8
\]

Matrix Algebra

\section*{Sum of Two Matrices}

If \(\boldsymbol{A}\) is \(\boldsymbol{n} \boldsymbol{x} \boldsymbol{p}\) and \(\boldsymbol{B}\) is \(\boldsymbol{n} \boldsymbol{x} \boldsymbol{p}\), then:
\(\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}\) is also \(\boldsymbol{n} \boldsymbol{x} \boldsymbol{p}\)
\(C=\left(c_{i j}\right)=\left(a_{i j}+b_{i j}\right)\)
Example
\[
\left[\begin{array}{cc}
0 & 7 \\
2 & -4 \\
5 & 9
\end{array}\right]+\left[\begin{array}{cc}
-7 & 3 \\
0 & 2 \\
-3 & 11
\end{array}\right]=\left[\begin{array}{cc}
-7 & 10 \\
2 & -2 \\
2 & 20
\end{array}\right]
\]

号

\section*{} en

\section*{Matrix Algebra \\ Matrix Algebra}
 \(-1\)

\begin{abstract}

\end{abstract}

\[
\begin{aligned}
& \boldsymbol{D}=\boldsymbol{A}-\boldsymbol{B} \text { is also } n x p \\
& \boldsymbol{D}=\left(\boldsymbol{d}_{\boldsymbol{i} j}\right)=\left(\boldsymbol{a}_{\boldsymbol{i j}}-\boldsymbol{b}_{\boldsymbol{i} \boldsymbol{j}}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \text { een IWO } \\
& \text { o matrices } \\
& \left.\boldsymbol{b}_{\boldsymbol{i j}}\right)
\end{aligned}
\]

\(\square\)
\(\square\)
\(\square\)
\(\square\)（
(\\ \section*{Difference between Two Matrices \\ \section*{Difference between Two Matrices \\ Similarly，for the two matrices \(\boldsymbol{A}\) and \(\boldsymbol{B}\) ： \\ \\ Deference between wo Matrices \\ \\ Deference between wo Matrices \\ \\ Difference betw} \\ \\ Difference betw}

f
-
F

\(\square\)
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\square\)

 （d
－
\(\square\)

\author{
 \\ － \\ ，
}
－
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)

\author{
\(\qquad\) \\
}
\(\square\)
\[
-
\]
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Matrix Algebra}

\section*{Difference between Two Matrices}

Similarly, for the two matrices \(\boldsymbol{A}\) and \(\boldsymbol{B}\) :
\[
\boldsymbol{D}=\boldsymbol{A}-\boldsymbol{B} \text { is also } n \times p
\]

Example
\[
\left[\begin{array}{cc}
0 & 7 \\
2 & -4 \\
5 & 9
\end{array}\right]-\left[\begin{array}{cc}
-7 & 3 \\
0 & 2 \\
-3 & 11
\end{array}\right]=\left[\begin{array}{cc}
7 & 4 \\
2 & -6 \\
8 & -2
\end{array}\right]
\]
\[
D=\left(d_{i j}\right)=\left(a_{i j}-b_{i j}\right)
\]
\(\square\)

\section*{}
相
[
\[
\begin{equation*}
\square \tag{ए}
\end{equation*}
\]

\section*{Matrix Algebra}

Properties
Sum or difference of two matrices is only possible for matrices of the same size！
\[
\begin{array}{l}\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}^{\prime} \\ (A+B)^{\prime}=A^{\prime}+B^{\prime}\end{array}
\]
Properties
Sum or difference of two matrices is only possible for matrices of the same
：A \(\begin{aligned} & \text { size！} \\ & \cdot(A+B)^{\prime}=A^{\prime}+B^{\prime}\end{aligned}\)
Properties
Sum or difference of two matrices is only possible for matrices of th
size！
• \(\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}\)
\(\quad(A+B)^{\prime}=A^{\prime}+B^{\prime}\)
Properties
Sum or difference of two matrices is only possible for matrices of th
size！
• \(\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}\)
• \((A+B)^{\prime}=A^{\prime}+B^{\prime}\)
Properties
Sum or difference of two matrices is only possible for matrices of th size！
\(\quad \begin{aligned} & \text { • }+B+B=B+A^{\prime} \\ & \quad(A+B)^{\prime}=A^{\prime}+B^{\prime}\end{aligned}\)
Properties
Sum or difference of two matrices is only possible for matrices of tr
\(\quad \begin{aligned} & \text { • } A+B=B+A^{\prime} \\ & \bullet(A+B)^{\prime}=A^{\prime}+B^{\prime}\end{aligned}\)
\[
0
\]
\(\qquad\)
（AlB）\(=A+B\)
號

\author{
 \\
}

Properties
Sum or difference of two matrices is only possible for matrices of th size！
\(\quad \begin{aligned} & \text { • }+B+B=B+A^{\prime} \\ & \quad(A+B)^{\prime}=A^{\prime}+B^{\prime}\end{aligned}\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\) －
\(\square\)
\(\square\)
.

Properties
\(\quad\) Sum or difference of two matrices is only possible for matrices of the same
\(\quad \begin{aligned} & \text { a }+B=B=B+A^{\prime} \\ & \\ & (A+B)^{\prime}=A^{\prime}+\end{aligned}\)
Properties
\(\quad\) Sum or difference of two matrices is only possible for matrices of the same
\(\quad \begin{aligned} & \text { a }+B=B=B+A^{\prime} \\ & \\ & (A+B)^{\prime}=A^{\prime}+\end{aligned}\)

\author{
\author{
\[
\begin{aligned}
& \text { ifferen } \\
& B+A^{\prime} \\
& =A
\end{aligned}
\] \\ \\ B＋A
\(=A^{\prime}+\) \\ \\ n or difference of t
\(+B=B+A\)
\(A+B)^{\prime}=A^{\prime}+B^{\prime}\)
}
}

I

\(\square\)
\(\square\)
\(\square\)
■ －另 \(\square\) T

 T \(+\)

\author{
－
}

Properties
\[
\begin{array}{l}\text { Sum or difference of two matrices is only possible for matrices of the same } \\ \square \\ \square \\ (A+B)^{\prime}=A^{\prime}+B^{\prime}\end{array}
\]
\(\square\)
\(\square\)

 ，
\(\qquad\)
\(\qquad\)
\(\qquad\)

\[
\square
\] Properties
Sum or difference of two matrices is only possible for matrices of the same
size！

\(\qquad\)
\(\longrightarrow-1+\)

```正
```


Properties
Sum or difference of two matrices
\qquad
\qquad

\qquad

Properties
Sum or difference of two matrices is only possible for matrices of th
$\quad \begin{aligned} & \text { ■ } \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}^{\prime} \\ & \square(A+B)^{\prime}=A^{\prime}+B^{\prime}\end{aligned}$
\qquad
\qquad
Properties
Sum or difference of two matrices is only possible for matrices of th
size！
• $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
$\quad(A+B)^{\prime}=A^{\prime}+B^{\prime}$

－

．

．

Properties
Sum or difference of two matrices is only possible for matrices of th
size！
• $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
• $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
\square T \qquad
\square
\square
\qquad
\qquad

$$
>
$$

\qquad
\qquad
\qquad
\square
\square
\square
\square
\square
Properties

$$
\begin{array}{l}\text { Sum or difference of two matrices is only possible for matrices of th } \\ ■ \\ \square \\ (A+B=B)^{\prime}=A^{\prime}+B^{\prime}\end{array}
$$

Matrix Algebra

Product of Two Matrices

- We denote the product of two matrices A and B as:

$$
C=A B
$$

- This product only exists if the number of columns in A is equal to the number of rows in B
- We need to look at the first row for matrix A and the first column for matrix B

Matrix Algebra

Product of Two Matrices
 Product of Two Matrices

－Sum of products of the elements in the $i_{\text {th }}$ row of A and elements in the $j_{t h}$
column of B
－Multiplication of every row of A by every column of B
－If \boldsymbol{A} is $n x m$ and \boldsymbol{B} is $m x p$ ，then \boldsymbol{C} is $n x p$ ．

Matrix Multiplication

－A is $n x m$ and B is $m p$ then C is $n x p$ ．

$$
\begin{aligned}
& \circ \boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}=\left(c_{i j}\right) \\
& \text { - } c_{i j}=\sum_{k} a_{i k} b_{k j}
\end{aligned}
$$

ra
of every row of A by every column of B
(200
\square

```
*
```

\square

Abstract

都
\square
\square

-
\square
\square

Matrix Algebra

Matrix Algebra
Product of Two Matrices

$$
\begin{aligned}
& \text { Product of } \\
& \qquad A B=
\end{aligned}
$$

$=\left(\begin{array}{lll}2 \cdot 1+6 \cdot 2+5 \cdot 3 & 4 \cdot 4 \\ 4 \cdot 1 & \\ \mathbf{A} & 25 & 23 \\ 28 & 38 & 36 \\ 38 & 51 & 49\end{array}\right) \quad A B \neq B A$

\square

$$
-
$$

.

Matrix Algebra

I

Product involving scalars

- If \mathbf{A} is an $n x p$ matrix and \mathbf{c} is a scalar, then:

$$
c \boldsymbol{A}=\left(c a_{i j}\right)=\left[\begin{array}{cccc}
c a_{11} & c a_{12} & \ldots & c a_{1 p} \\
c a_{21} & c a_{22} & \ldots & c a_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
c a_{n 1} & c a_{n 2} & \ldots & c a_{n p}
\end{array}\right]=
$$

E

- It is true that $c A=A c$

.

It is true that $c A=A c$ $-x_{2}$

Abstract

\qquad

\square

保
.
.
.

.
 ,
.

- If \mathbf{A} is an $n x p$ matrix and \mathbf{c} is a scalar, then:

$$
2 \cdot\left[\begin{array}{ll}
5 & 2 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 \cdot 5 & 2 \cdot 2 \\
2 \cdot 3 & 2 \cdot 1
\end{array}\right]
$$

- Ais an $n x p$ matrix and is a scalar,
c is a scalar, then:
\qquad O

 T

.

$$
\operatorname{lic}_{2}
$$

$$
1
$$

\square

$(-$
\rightarrow
\qquad
\qquad

$$
\square
$$

\qquad
路

\qquad
 \section*{\section*{Matrix Algebra
 \section*{\section*{Matrix Algebra

 The Kronecker Product}

 The Kronecker Product}

- The Kronecker product is an operation that transforms two matrices into a
larger matrix that contains all the possible products of the entries of the two
- The Kronecker product is an operation that transforms two matrices into a
larger matrix that contains all the possible products of the entries of the two matrices matrices

Matrix Algebra

The Kronecker Product

- Let $\mathbf{A}=\left(a_{i j}\right)$ be an $n x p$ matrix and $\mathbf{B}=\left(b_{i j}\right)$ an $r x s$ matrix
- The Kronecker product of A and B, denoted by $A \otimes B$:

$$
\boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{ccc}
a_{11} \boldsymbol{B} & \ldots & a_{1 p} \boldsymbol{B} \\
\vdots & \ddots & \vdots \\
a_{n 1} \boldsymbol{B} & \ldots & a_{n p} \boldsymbol{B}
\end{array}\right]
$$

Matrix Algebra

The Kronecker Product

Matrix Algebra

Matrix inverse

- If the $A_{n x m}$ matrix is square, that is, the same number of rows and columns, the inverse matrix for A is given by $A_{n x m}^{-1}$, such that:
- The inverse matrix is denoted by A^{-1}, such that:

$$
\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}
$$

Matrix Algebra

Matrix inverse

- How to know if a matrix is invertible?
- To know if a matrix is invertible we need to find its determinant.
- If the determinant of a matrix is nonzero, then the matrix is invertible. Otherwise it does not have an inverse matrix.
 Systems of Equations
 \section*{\section*{Matrix Algebra
 \section*{\section*{Matrix Algebra

 \square

 Matrix Algebra

 Matrix Algebra
 教}

A system of equations can：
－No solution
－A single solution
－More than one solution

\qquad

\qquad
\qquad
\square
I

$$
9
$$

```
*
```


\qquad
To
－More than one solution
 $+1$ $+$ －
都 （ C都 （ C都 （ （ －

\qquad
\qquad
五

C
\qquad

$$
\square
$$

(
正

Matrix Algebra
Systems of Equations：One solution

\section*{\section*{\section*{Systems of Equations：One solution

\section*{\section*{\section*{Systems of Equations：One solution

\section*{\section*{\section*{Systems of Equations：One solution Systems of Equations：One solution

 enos of EQuations.

 Equations. One solution

 保

 en

 Equations: One solut

 Equations. One solution

 Systems of Equations：One solution

 Systems of Equations：One solution

y

 Systems of Equations：One solution
y

 Systems of Equations：One solution
y
 f Equation Systems of Equat Systems of Equat Systems of Equat Matrix Algebra Systems of Equations：One solution Systems of Equations：One solution Systems of Equations：One solution

\square

\section*{| 0 |
| :--- |
| 0 |
| 0 |
 }

Matrix Algebra
Systems of Equations：One solution

（ Systems of Equations：One solution
都 －
\qquad ， Systems of Equations：One solution Systems of Equations：One solution Systems of Equations：One solution
\qquad
\qquad Systems of Equations：One solution

\qquad

\qquad

路 A system of linear equations has one sol $\begin{aligned} & \text { when the graphs intersect at a poon }\end{aligned}$

 L

 － － \qquad號 －

 y

 y}

 $+$

 $+$

 $+$

 $+$都}都}都}都}
Systems of Equations：No solution

A system of linear equations has no solution
when the graphs are parallel
A system of linear equations has no solution
when the graphs are parallel
\qquad － ， －

ns：No solution

\square T

尉
\qquad

\longrightarrow

sol

Matrix Algebra
 \section*{\footnotetext{

}
 a} Systems of Equations: More than one solution

A system of linear equations has infinite solutions when the graphs are the exact same line

grow

Abstract

\qquad

w he
-
(

ions: More than one solution

Abstract

\qquad

 . (1) , --

$$
\square
$$

 \square

linear equations has infinite solutions
oo

Matrix Algebra

Systems of Equations

- A system of equations is a set of one or more equations involving a number of same variables

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 p} x_{p} & =c_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 p} x_{p}= & c_{2} \\
& \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n p} x_{p}= & c_{n}
\end{aligned}
$$

Matrix Algebra

Representation of Systems of Equations

- Can be written in matrix form as

$$
A x=c
$$

Where \boldsymbol{A} is $n \times p, \boldsymbol{x}$ is $p \times 1$ and \boldsymbol{c} is $n \times 1$

- If \boldsymbol{A} is square $(n=p)$ and nonsingular, there exists a unique solution vector \boldsymbol{x} obtained as:

$$
x=A^{-1} c
$$

Matrix Algebra
-

Representation of Systems of Equations

$$
\begin{gathered}
\left\{\begin{array}{l}
2 x+3 y+5 z=10 \\
x-y+10 z=20 \\
-x+y-z=5
\end{array}\right. \\
A=\left[\begin{array}{rrr}
2 & 3 & 5 \\
1 & -1 & 10 \\
-1 & 1 & -1
\end{array}\right] \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad B=\left[\begin{array}{r}
10 \\
20 \\
5
\end{array}\right] \\
\mathbf{A x}=\mathbf{B}
\end{gathered}
$$

$$
\square
$$

of Systems of Equations

$$
\left\{\begin{array}{c}2 x+3 y+5 z=10\end{array}\right.
$$

IfSystenns . .
I

Matrix Algebra

Determinant

- The determinant of a Matrix is defined as a special number that is defined only for square matrices (matrices that have the same number of rows and columns)
- It is denoted by $\operatorname{det}(A)=|A|$

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
|A|=a d-b c
\end{gathered}
$$

Matrix Algebra

Determinant of 2×2 Matrix

元 2
位 ,
\qquad
\qquad

$$
a b
$$

Matrix Algebra
Matrix Algebra
\square

E
\qquad

$$
\square
$$

? \square

 \square \square

 \square

$$
\pi
$$

路
\qquad
\qquad

F
.
$\begin{array}{lllll}a & b & a & b \\ d & e & f & d & e \\ g & h & i & g & h\end{array}$
a
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\square
$$

\square

,
\square
(
\square

$$
\begin{aligned}
& \square \\
& \square
\end{aligned}
$$

Lets Practice！
1）
Lets Practice！
Matrix Algebra
Lets Practice！

$$
\begin{aligned}
& \text { If } \boldsymbol{A}=\left[\begin{array}{ccc}
10 & -3 & 2 \\
5 & 0 & 7
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{cc}
2 & 0 \\
0 & 2 \\
-1 & 1
\end{array}\right] \\
& \text { - } \boldsymbol{A} \boldsymbol{B}= \\
& \text { - } \boldsymbol{B} \boldsymbol{A}=
\end{aligned}
$$

\square
$x_{2}+2$
Lets Practice
\qquad
\square
相都
 2
\square

r en \square － － － －
\square －
.
\square
\square

$$
0
$$

$$
0
$$

$$
\square
$$

－

都
.
.

 $\left[\begin{array}{lll}10 & -3 & 2 \\ 5 & 0 & 7\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 2 \\ -1 & 1\end{array}\right]$
E

$$
\begin{align*}
& \text { (} \\
& \text { 2 }
\end{align*}
$$

$2(1)$
$2(1)$
$2(1)$
$2)$
Matrix Algebra
$2(1)$
$2(1)$
$2(1)$

\square

$2(1)$

\[
$$
\begin{aligned}
& \text { Matrix Algebra } \\
& \text { 3) } \\
& \text { o Let } \boldsymbol{B}=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \\
& \text { o Can we find } \boldsymbol{B}-1 ?
\end{aligned}
$$

\] | －Let $\boldsymbol{B}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ |
| :--- |
| －Can we find \boldsymbol{B}^{-1} ？ | | －Let $\boldsymbol{B}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ |
| :--- |
| －Can we find \boldsymbol{B}^{-1} ？ |

－Let $\boldsymbol{B}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
－Can we find \boldsymbol{B}^{-1} ？
Let $B=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ Can we find $B-1 ?$
\square

2
Let $B=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ Can we find $B-1 ?$
$3)$
Let $B=\left[\begin{array}{cc}1 & 2 \\ 2 & 4\end{array}\right]$
Can we find $\boldsymbol{B}-1$ ？

Abstract

\qquad

\square
\square
\square
\square
\square
\square

3 （3）
Let $B=\left[\begin{array}{cc}1 & 2 \\ 2 & 4\end{array}\right]$
Can we find $B-1 ?$
$=\left[\begin{array}{cc}1 & 2 \\ 2 & 4\end{array}\right]$
find $\boldsymbol{B}^{-1} ?$
－

5） －Let $\boldsymbol{A}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{cc}3 & -2 \\ 0 & 1\end{array}\right]$
－Calculate $\boldsymbol{A} \otimes \boldsymbol{B}$ －Let $\boldsymbol{A}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\boldsymbol{B}=[$
－Calculate $\boldsymbol{A} \otimes \boldsymbol{B}$

Matrix Algebra

$$
\begin{aligned}
& \text { - Let } \boldsymbol{A}=\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{cc}
3 & -2 \\
0 & 1
\end{array}\right] \\
& \text { - Calculate } \boldsymbol{A} \otimes \boldsymbol{B}
\end{aligned}
$$ $\left.\begin{array}{l}\text { Calculate } \boldsymbol{A} \otimes \boldsymbol{B} \\ 2 \\ -1\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{cc}1 & 0 \\ \vdots\end{array}\right.$

$$
x_{0}
$$

$+$
\rightarrow
\square
\square
\square
）

[^1]
\square

 $\left.\begin{array}{l}\text { Calculate } \boldsymbol{A} \otimes \boldsymbol{B} \\ 2 \\ -1\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{cc}1 & 0 \\ \vdots\end{array}\right.$ $\left.\begin{array}{l}\text { Calculate } \boldsymbol{A} \otimes \boldsymbol{B} \\ 2 \\ -1\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{cc}1 & 0 \\ \vdots\end{array}\right.$ \square

\square ． ？
\square ． ？

$$
3
$$

都
\square
） $-$ $\left.\begin{array}{c}\text { Calculate } \boldsymbol{A} \otimes \boldsymbol{B} \\ 2 \\ 2\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{ll}1 & 0 \\ \vdots\end{array}\right.$ \square $\left.\begin{array}{l}\text { Calculate } \boldsymbol{A} \otimes \boldsymbol{B} \\ 2\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \vdots\end{array}\right]$ and $\boldsymbol{B}=[$
 \square

\qquad （ C，
（ C，
-
\qquad

I-

都
-
\qquad
F
\square
\qquad Let $\boldsymbol{A}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\boldsymbol{B}=[$ o Let $\boldsymbol{A}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\boldsymbol{B}=[$
० Calculate $\boldsymbol{A} \otimes \boldsymbol{B}$ －Let $\boldsymbol{A}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\boldsymbol{B}=[$
－Calculate $\boldsymbol{A} \otimes \boldsymbol{B}$
\qquad －

\qquad
ت ๑， （
ت ๑，

\qquad
\square
\square
\square
\qquad

\qquad
 ν

C
 $\begin{aligned} & \text {－Let } \boldsymbol{A}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{l}\text { C Calculate } \boldsymbol{A} \otimes \boldsymbol{B}\end{array}\right. \\ & \text {－}\end{aligned}$.

\qquad | －Let $\boldsymbol{A}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\boldsymbol{B}=[$ |
| :--- |
| ० Calculate $\boldsymbol{A} \otimes \boldsymbol{B}$ | | －Let $\boldsymbol{A}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\boldsymbol{B}=[$ |
| :--- |
| ० Calculate $\boldsymbol{A} \otimes \boldsymbol{B}$ | C Calculate $A=\left[\begin{array}{ll}1 & 0 \\ 2 & -1\end{array}\right]$ and $B=$ O Let $\boldsymbol{A}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{l}6 \\ \hline\end{array}\right.$ 3 \qquad

\square －

-

6）
Find the determinant

$$
\begin{aligned}
& \text { • } \boldsymbol{A}=\left[\begin{array}{cc}
1 & 1 \\
2 & 4
\end{array}\right] \\
& \boldsymbol{B}=\left[\begin{array}{ccc}
-1 & 0 & 3 \\
4 & 2 & 1 \\
-2 & 0 & 1
\end{array}\right]
\end{aligned}
$$ －

（
\square

 \square
6）
 ${ }^{\text {Fing }}$

Matrix Algebra

$$
0
$$

.
\square
\square
\square
\square
\square
\square
\square
\square
\square
五
五

Matrix Algebra 1．Rencher，A．Linear Models in Statistics．5－61（1999）．Chapter 2 －Matrix
Algebra． 1．Rencher，A．Linear Models in Statistics．5－61（1999）．Chapter 2 －Matrix
Algebra． 1．Rencher，A．Linear Models in Statistics．5－61（1999）．Chapter 2 －Matrix
Algebra．電

[^2]

\qquad震
$$
8
$$ ，

\qquad
正

都 － 20 I ？

 ？

 ？ \qquad
\qquad

[^3] －

$$
\geqslant
$$
\qquad
\qquad
\qquad
\qquad
\qquad －

[^0]: （

[^1]:

[^2]:

[^3]: （

