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Matrix Algebra

What is Algebra?

» The branch of mathematics that helps represent problems or situations in the
form of mathematical expressions.

» Have symbols and the arithmetic operations across these symbols.

» These symbols do not have any fixed values and are called variables.
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ABSTRACT

Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

Recent advances in molecular genetic techniques will make dense marker maps available and genotyping

many individuals f ¢ Ferimate the effects of the haplotypes at the QTL

haplotypes simulta
simulated with a m
marker haplotypes.
rium with the QTI
estimated simultan
accuracy of predic
unbiased predictio
segment, which yie
that assumed a pri
this accuracy to 0.
values predicted fr

Csptcia.“)' ifC()mbiugu VEREE A LRSS LAAML-WATE- SLLIALEILIALD WA PEALZE LA-EE LAAL- ML-3E-5 GAASLFES ZESUA-S VERS.

positions simultaneously by the model

y=plL + L Xg + e

where summation Z; is over all QTL positions corre-
sponding to a likelihood peak and g was estimated
at the peak. All other haplotype effects are assumed
to be zero. The overall mean is also arbitrarily set to
zero, because its effect cannot be distinguished from
that of the fixed haplotype effects.
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BEST LINEAR UNBIASED ESTIMATION AND PREDICTION
UNDER A SELECTION MODEL

C. R. Henperson
Department of Animal Science, Cornell University, Ithaca, N. Y. 14850, U.S.A.

SUMMARY

Mixed linear models are assumed in most animal breeding applications. Convenient methods for com-
puting BLUE of the estimable linear functions of the fixed elements of the model and for computing best
linear unbiased predictions of the random elements of the model have been available. Most data available
to unimal breeders, however, do not meet the ususl requirements of random sampling, the problem being
that the data arise either from selection experiments or from breeders' herds which wre undergoing selection.
Consequently, the usual methods are likely to vield bissed estimates and predictions. Methods for dealing
with such data are presented in this paper.

Henderson, C. R. (1975). Biometrics, 423-447.
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Genomic prediction models

All the genomic prediction models used in this study can
be written as:

y=Xp+Zg+e

where y is the vector of LS-means which will be further
referred to as phenotypes, X is the incidence matrix for fixed
effects, B is the vector of fixed effects, Z is an incidence
matrix linking observations to breeding values, g is the vec-
tor of breeding values and e is the vector of errors. All mod-
els assume independence between g and e.

group-specific allele diversity at QTLs rather than group-specific allele effects.

Rio, Simon, et al. Theoretical and Applied Genetics 132 (2019): 81-96.
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see Schrmadt et al. (2019a). The following model was used for
the simulations:

y=Xp+Zg+Wite, (1

where y is the vector of phenotypic means per genotype and
trial; ff represents the vector of fixed effects (overall inter-
cept); g represents the vector of random effects of genotypes,
assumed g ~ N(l’}. Ka';-.;]; K 15 a kinship matrix built from
pedigree or genomic information; £ represents the vector of
random effects of trials, assumed ¢ ~ N(0, .i'crr:}; and X, Z
and W are known incidence matrices for f, g and f, respec-
tively. The residual vector £ was assumed as & ~ N(0, a7 ).
The relative genetic variance, herein termed trait heritability,
is given by b= = a:rij (a:r; +o; +o; ) where ﬁ;, a; and o, are
the variance components related to genotypes, trials and
residuals, respectively.

- Orzenil B. Silva-Junior®
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Matrix

Matrix is used to compactly represent linear models for large numbers of
observations.



Matrix

» A matrix is a rectangular or square array of numbers or variables
= For example:

0 15
20 10




Indices can be used to represent individual elements of the matrix:

(11 12 d13
A = (a;;) = :
(21 G2z d23

where subscript | represents the row and j the column



Matrix Algebra

Indices can be used to represent individual elements of the matrix:

A — {mj) _ [ﬂ‘ll (112 ”-l;i] T

(21 dz2 da3

where subscript /represents the row and jthe column.

= A matrix with n rows and p columnsisofsizenxp

* |n the example above, 4 is of size 2 x 3



Vectors

= A matrix with a single column is denoted a vector
* |n this case, we can use a single index to represent its elements:




Scalars

= A scalaris simply a real number;



Matrix Algebra

Scalars

= A scalaris simply a real number

Scalar matrix is a diagonal matrix
that has the elements equals

o b O
nh O O

= A 1x1 matrix may sometimes be considered a scalar.



Matrix Algebra

Equality of Matrices

= Matrices are considered to be equal if they have the same number of rows
and columns, as well as the same number of elements.
» For example:



Transpose

» Exchanging rows and columns of a matrix results in its transpose’
= The transpose of matrix X can be denoted as X' or X :



Matrix Algebra

Transpose of a Matrix

= The Transpose of a Matrix is obtained by changing its rows into columns (or
equivalently, its columns into rows)

» Can bedenotedas XT or X




Transpose of a Matrix




Transpose of a Matrix

If X = (xi]') then
X = (x;) = (xz)

fXisofsizenxp, thenX ispxn



Transpose of a Matrix

» The transpose of a (column) vector is a row vector

£r = iI!*F:[LI?] Iy I3 I4:|



Special Matrices: Symmetric Matrix

» IfA=A4,ie, (a;) = (a;), then A is symmetric



Special Matrices: Symmetric Matrix

» IfA=A4,ie, (a;) = (a;), then A is symmetric

EXAMPLE OF A SYMMETRIC MATRIX

*All symmetric matrices are square



Special Matrices: Symmetric Matrix




Special Matrices: Diagonal Matrix

= |f @ matrix contains zeros in all off-diagonal positions, it is said to be a
diagonal matrix
. For example:

DIAGONAL MATRIX
o A matrix with all off-diagonal elements equal to zero

12
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Special Matrices: Diagonal Matrix

» What is diagonal matrix?
= The diagonal of a p x p square matrix A = (a;;) consists of the elements

A11,A22,. . App




Special Matrices: Identity Matrix

» An identity matrix is a square matrix in which all the elements of principal
diagonals are one, and all other elements are zeros

1HE IDENTITY MATRIX




Special Matrices: Identity Matrix

= A matrix multiplied by its inverse equals the identity matrix

Ax A1 =]



Special Matrices: Upper Triangular Matrix

= A square matrix with zeros below the diagonal
= For example:

o e e R |



Special Matrices: Lower Triangular Matrix

= A square matrix with zeros above the diagonal
= For example:



Sum of Two Matrices

If Aisnxpand B is nxp, then:

C=A+Bisalsonxp

C = (Cij) = (ai]- + bl])



Sum of Two Matrices

If Aisnxpand B is nxp, then:

C=A+Bisalsonxp

C = (Cij) — (ai]- + bl])




Difference between Two Matrices

Similarly, for the two matrices 4 and B:
D=A—-Bisalsonxp

D = (d;;) = (a;; — b))



Difference between Two Matrices

Similarly, for the two matrices 4 and B:
D=A—-Bisalsonxp

D = (d;) = (a;; — by)




Properties

Sum or difference of two matrices is only possible for matrices of the same
size!

= A+B=B+A
= (A+B) = A+ B



Matrix Algebra
Product of Two Matrices

= We denote the product of two matrices A and B as:
C=AB

» This product only exists if the number of columns in A is equal to the
number of rows in B

» We need to look at the first row for matrix A and the first column for
matrix B



Product of Two Matrices

= Sum of products of the elements in the iy, row of A and elements in the j;,
column of B

» Multiplication of every row of A by every column of B

» fAisnxmand Bismxp, then Cisnxp.

MATRIX MULTIPLICATION




Product of Two Matrices

1 4
NG I
3 8

_(2-1+1-2+3-3 2-4+1-6+3-8)_(13 33)
- \4-146-2+5-3 4.-446-6+5-8) \31 92)°

18 25 23

BA=| 28 38 36 AB + BA
38 51 49



Product involving scalars

= |[f Ais annxp matrix and c is a scalar, then:

cayp  cdy2 ... Cdayy
Clg1 Cl22 ... Clyy

cA = (ca;;)=| . T T =
Clp1 Chp2 ... Clpp

= |tis true that cA = Ac



Product involving scalars

= |[f Ais annxp matrix and c is a scalar, then:

1

, [52]_[25 2
131|723 2



Matrix Algebra

The Kronecker Product

» The Kronecker product is an operation that transforms two matrices into a
larger matrix that contains all the possible products of the entries of the two
matrices



Matrix Algebra

The Kronecker Product

= Let A = (a;;) be annx p matrix and B = (b;;) an r x s matrix

» The Kronecker product of A and B, denoted by A @ B:

_{.1-11B Ce a‘lpB
A®B=| : .

a'-n..lB SR a"?l'pB



The Kronecker Product

)

10
0

/05 0 15 0
5 0 156 0

10

10
0

05 0 10 O
5 0 10 0

10
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Matrix inverse
» |f the A,,,,matrix is square, that is, the same number of rows and columns,
the inverse matrix for A is given by A51.., such that:

= The inverse matrix is denoted by 471, such that:

AA T =A1TA=T




Matrix Algebra

Matrix inverse

= How to know if a matrix is invertible?

= To know if a matrix is invertible we need to find its determinant.

= |f the determinant of a matrix is nonzero, then the matrix is invertible.
Otherwise it does not have an inverse matrix.



Systems of Equations

A system of equations can:

= No solution
= A single solution

= More than one solution



Systems of Equations: One solution

L]

A system of linear equations has one solution
when the graphs intersect at a point



Systems of Equations: No solution

Y

A system of linear equations has no solution
when the graphs are parallel



Systems of Equations: More than one solution

A system of linear equations has infinite solutions
when the graphs are the exact same line



Systems of Equations

= A system of equations is a set of one or more equations involving a number
of same variables

dajjxy +dpxa + -+ dipXp = €

ax1X) +daxy + -+ dpXp = C2

an1X1 +dAp2X2 + * -+ dppXp — Cp



Matrix Algebra

Representation of Systems of Equations
= Can be written in matrix form as

Ax =c
Wheredisnxp, xispxlandcisnx1
= [f A is square (n=p) and nonsingular, there exists a unique solution

vector x obtained as:

x=A1c



Representation of Systems of Equations

2x+3y+5z=10
sx—y+10z=20
—X+y—z=35
2 3 5 X 10
A= 1 -1 10| xy = B =120
-1 1 -1 - 5




Matrix Algebra

Determinant

= The determinant of a Matrix is defined as a special number that is defined

only for square matrices (matrices that have the same number of rows and
columns)

= |tis denoted by det(4) = |A]



Determinant of 2x2 Matrix




Determinant of 3x3 Matrix

= Rule of Sarrus




Lets Practice!
1)

10 =3 2

oIfA:[5 0 7

2 0
]andB: 0 2
1

o AB =
o BA =




OBTAIN

o Let X =

o O = =

—_ = O O




3)

o Let B =

o
-2 4—

o Can we find B~ 1?




o Ab
o bb
o bb

Let A =

—_—_= O O

and b =




5)

1 0 3 =2
oLetA—[Q _I]andB—[O 1]

o Calculate A @ B




6)

Find the determinant
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