

Controle da Resposta ao Choque Térmico em Bactérias: Fatores sigma alternativos

Suely Lopes Gomes

QBQ-2503 IQUSP 2023

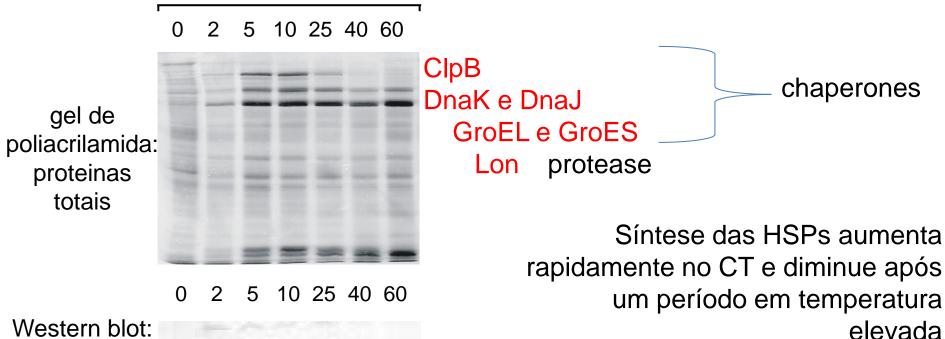
Choque térmico (Heat Shock)

- Aumento brusco de temperatura
 - desnaturação de proteínas
 - mudanças na fluidez de membrana
 - alteração na estrutura secundária de ácidos nucleicos
- Resposta universal ao choque térmico:
 - Aumento transitório da expressão de proteínas de choque térmico (HSPs)
 - Controle geralmente no nível de transcrição
 - Permite que a célula lide com o estresse

Proteínas de Choque Térmico (HSPs)

Chaperones moleculares

- Renaturam proteínas desnaturadas ou as protegem da desnaturação
- GroEL (Hsp60), DnaK (Hsp70), ClpB


Proteases

- Degradam proteínas irremediavelmente desnaturadas
- Lon, HtrA,FtsH

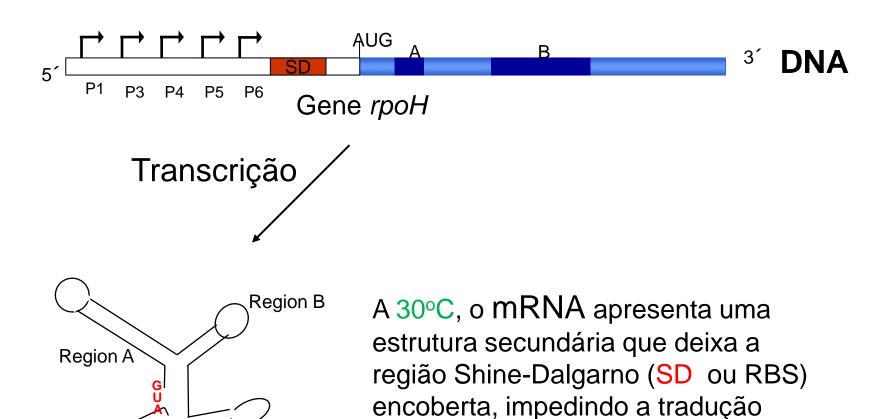
 Existem em níveis baixos nas células em condições normais de temperatura

A resposta ao choque térmico é transitória

Western blot:

Níveis do sigma 32

 σ^{32} é o principal regulador em *E*. coli e outras bactérias Gram-

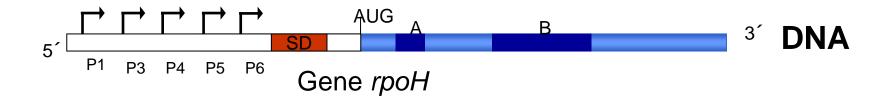

negativas

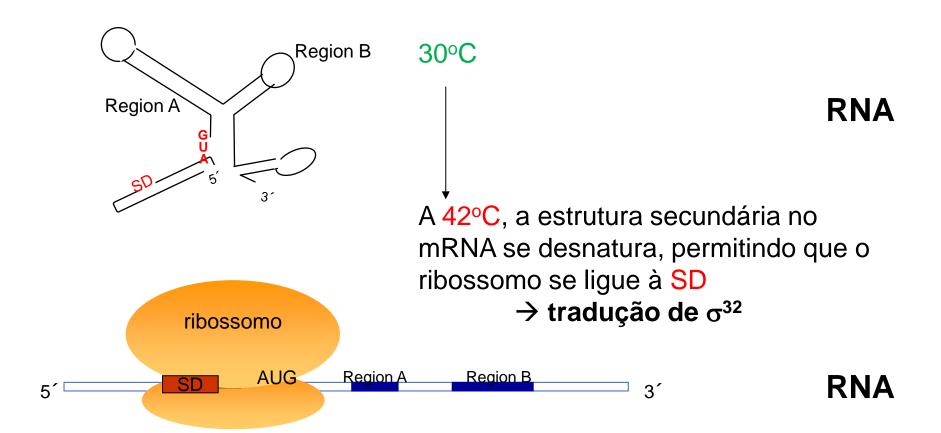
Fator sigma 32 (σ^{32} ou RpoH) de *E. coli*

Exemplo de como uma mudança nos níveis de um fator sigma leva a uma mudança na expressão gênica

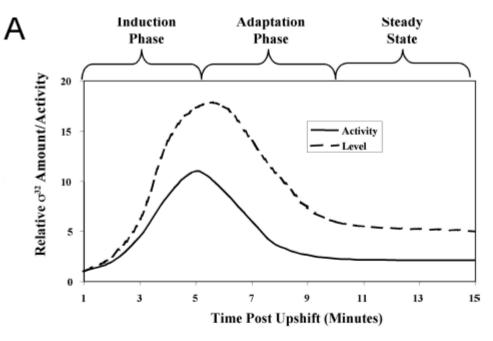
- Níveis de σ^{32} aumentam cerca de 20x no HS (choque térmico)
- Regulação é pós-transcricional:
 - Aumento da tradução do mRNA de rpoH
 - Diminuição da degradação da proteína σ^{32}
 - Transcrição do gene rpoH praticamente não varia

Regulação da síntese de σ^{32}




RNA

31


Shine-Dalgarno ou RBS: região do mRNA onde a subunidade menor do ribossomo se liga para iniciar a tradução

Regulação da síntese de σ^{32}

Níveis do σ³² aumentam de forma rápida e transitória durante o HS

Após, o choque térmico, a protease FtsH degrada σ³² na presença dos chaperones DnaK/ DnaJ desligando a resposta de HS

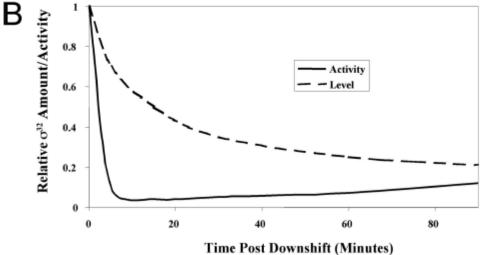
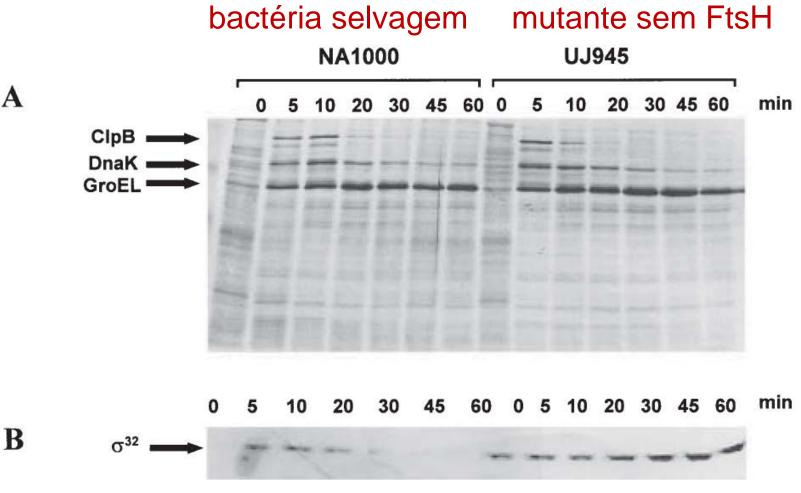
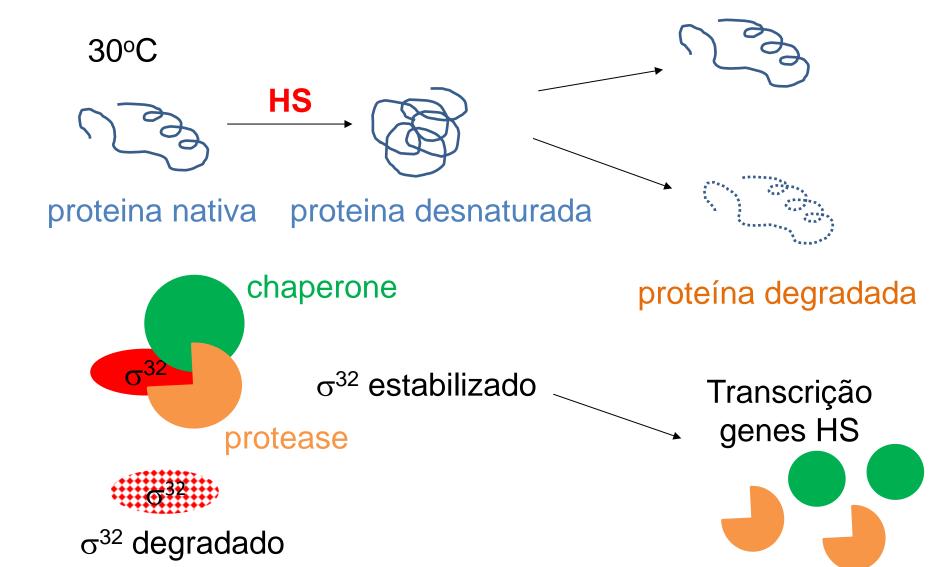
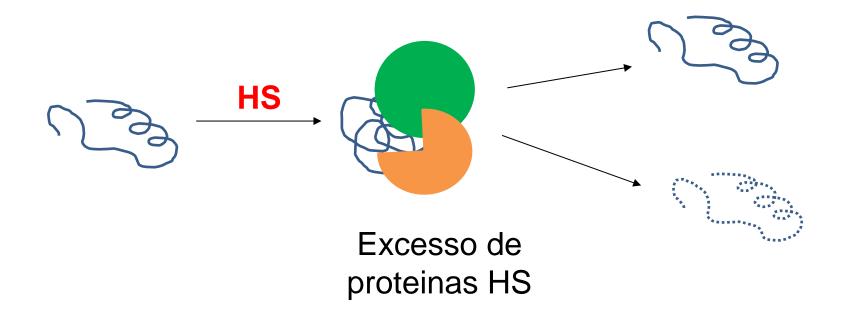
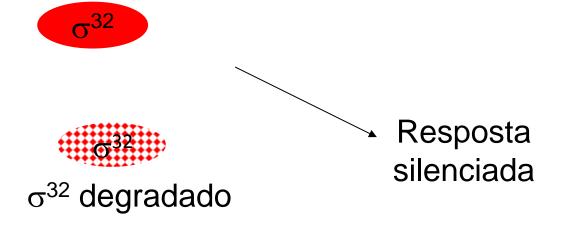



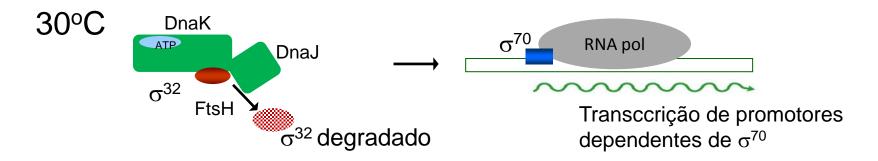
FIG. 1. Activation and repression of the HSR during temperature upshift and downshift. (A) Activation of the HSR during a temperature shift from 30 to 42°C reveals three distinct phases: induction, adaptation, and steady state. (B) Repression of the HSR during a temperature shift from 42° to 30°C. The relative σ^{32} activities measured by HSP synthesis are shown by the solid lines; relative σ^{32} levels measured by Western blotting analysis are shown by the dotted lines.

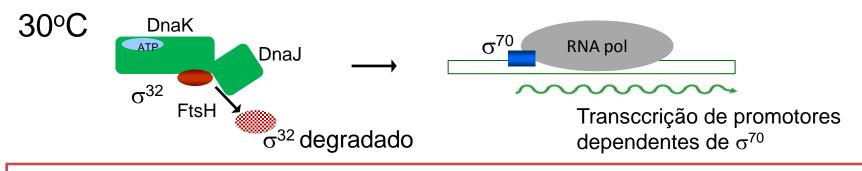

A protease FtsH degrada σ^{32}

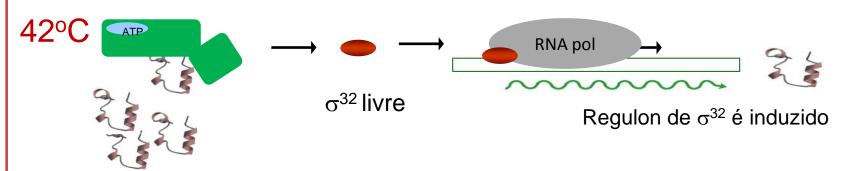

Níveis do sigma 32 após choque térmico


Transitoriedade da resposta protei

osta proteina renaturada


Transitoriedade da resposta


Transitoriedade da resposta

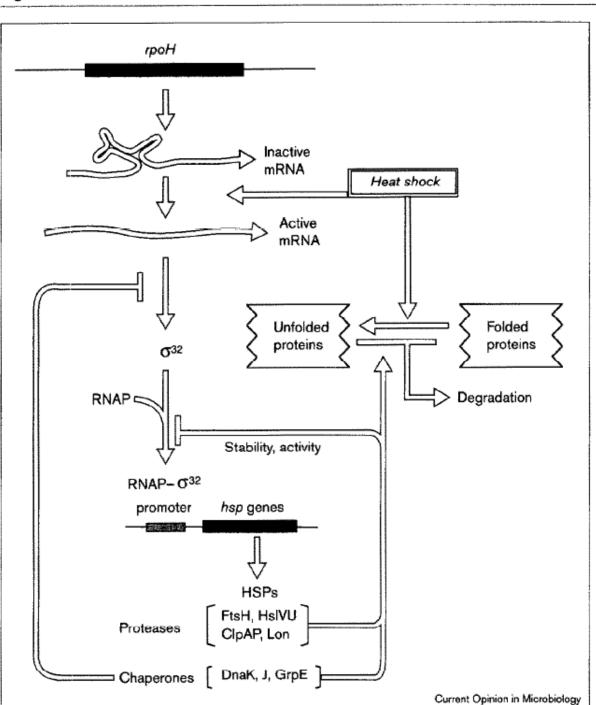


• As chaperones DnaK/DnaJ recrutam σ^{32} para ser degradado pela protease FtsH

• Transcrição de genes com promotores reconhecidos por σ^{70} (housekeeping)

Transitoriedade da resposta

- DnaK/DnaJ se ligam a proteinas desnaturadas pelo calor
- σ³² fica livre para se ligar ao cerne da RNA polimerase e ativar a transcrição de genes HS


Papel das chaperones DnaK e DnaJ na regulação da resposta ao choque térmico

- São moduladores negativos da atividade do σ³²
 - possuem atividade de anti-sigma
 - sequestram σ^{32} em temperaturas fisiológicas (normais)

- São moduladores positivos da degradação do σ³² pela protease FtsH
 - apresentam σ³² para degradação por FtsH em temperaturas fisiológicas

DnaK e DnaJ são assim denominadas porque foram descobertas como necessárias para a replicação do DNA

Figure 1

Regulatory circuits of the σ^{32} regulon in *E. coli*. Heat shock enhances the level of σ^{32} both by activating translation of *rpoH* mRNA and by stabilizing normally unstable σ^{32} . The latter is thought to occur by sequestering DnaKJ chaperones (and perhaps the proteases) away from σ^{32} by unfolded proteins produced upon heat shock, and thereby permitting σ^{32} to bind to RNAP and concomitantly activating heat-shock gene transcription. Subsequent build-up of HSPs (DnaKJ chaperones, ATP-dependent proteases) brings about negative feedback control by inhibiting translation, stabilization, and activity of σ^{32} .

Circuito regulatório do Choque Térmico regulado por σ³² em *E. coli*

Regulação da resposta de Choque Térmico

- Excesso das chaperones DnaK/DnaJ livres ligam e inativam o σ^{32} na temperatura fisiológica.
- Protease FtsH degrada o σ^{32} , chaperones DnaK e DnaJ participam deste processo.
- A temperatura controla diretamente a velocidade de síntese do σ^{32} devido à estrutura secundária no 5' do mRNA que esconde a SD (RBS) e se desfaz no CT.
- Proteínas desenoveladas no CT deslocam DnaK e DnaJ de suas funções regulatórias, liberando o σ^{32} ativo para transcrever os genes de CT.
- Assim, a síntese das chaperones e proteases aumenta, para proteção das células na alta temperatura.

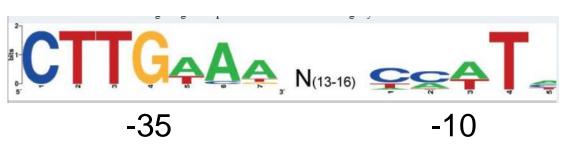
Promotores reconhecidos por σ^{32}

Heat-induced genes with a potential σ^{NP} binding sequence in the promotor region

Distance*	Lengtht	Blinding site sequence	Locus	Gene product‡
34	27	CTTGAAAAACAGCAAAGTATCCTTAAG	FTL_0094	Cloff protein * *
-81	30	CTTGAAAAACTAACTTCCACTCTCATATA	FTL_0267	Heat-shock protein 90, HtpG *
84	27	CTIGIATTIATATAAAAAGACCTTATA	FTL_0281	Heat-shock protein, Hsp40 *
7	26	CTTGAAAATGATTAGAAAAAGYATTITA	FTL_0003	Hypothetical protein
101	29	CTTGTCATATATTTAATAATAAACATATA	FTL_0891	Trigger factor
162	29	CTTGAAGTGATGTTTCATATACCTTCAT	FTL_0804	DNA-binding, ATP-dependent protease La
48	29	CTTGTAAAATTTAATATCAATTCCATTTA	FTL_0965	ATP-dependent protease, peptidase subunit, HsfV *
82	29	CTTGAAAATACAGAATTAATCACTATCTA	FTL_1190	Chaperone protein GrpE (heat-shock protein family 70 cofactor) ★
90	29	CTTGAAAAGATTATAAATATGCCCATCTA	FTL_1191	Chaperone protein DnaK (heat-shock protein family 70 protein) *
68	30	CTTGAAAATTAAAAAAAAGCCCCCAATTTC	FTL_1265	2 Amino 4 hydroxy 6-hydroxymethyldihydropteridine pyrophosphokinase/dihydropteroete synthese
98	29	CTTGAAAATTTTTTTTTTGACTCAATATC	FTL_1715	Chaperonin protein, GroES *
40	29	CTIGIATITAGCATGATCGTATCATTCTT	FTL_1805	ATPase
75	27	CTTGAAATTTTAAAAACCGATCATATA	FTL_1957	Heat-shock protein

Tellaror from ATS start bides

\$Length (hughestales) of the publics of "Sending site.


2Gene product according to NGA

Microbiology: 2009 August: 155/Pt 8) 2560-2572

8s: 10 1099/ww. 3 629008-3

* chaperones

* proteases

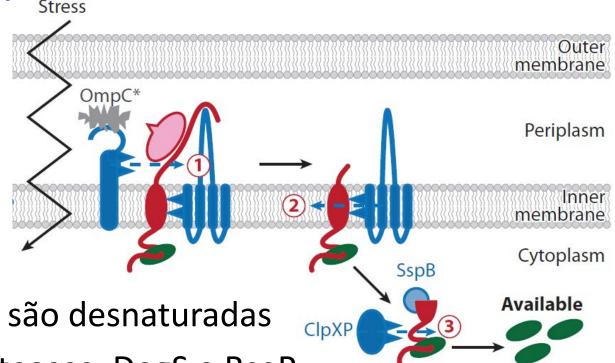
consenso

Parte 2: outros modelos de regulação do choque térmico

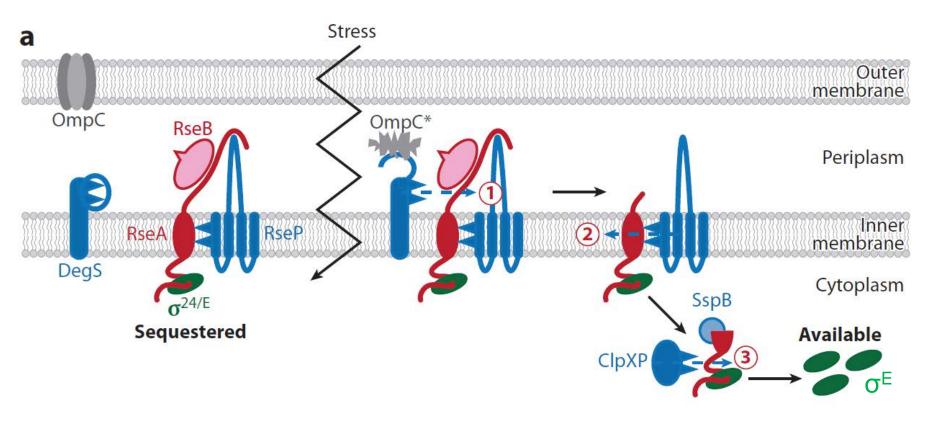
Choque térmico extremo (E. coli)

Temperaturas acima de 45°C

- Outro fator sigma alternativo entra em ação:
 - $-\sigma^{E}$ (ou **RpoE** ou σ^{24})
 - Parte da subfamília dos fatores sigma ECF
- Resposta a proteínas desnaturadas no periplasma (espaço entre as membranas de bactérias Gram-negativas)


Regulação do fator σ^{E}/σ^{24} : condições normais

- Em condições normais, σ^E é sequestrado pela proteína de membrana RseA, que é um anti-sigma
 - σ^E inativo, pois não pode interagir com o cerne da RNA polimerase
 - Genes com promotores reconhecidos por σ^E não são transcritos


OM: membrana externa; IM, membrana interna

Regulação do fator σ^E/σ^{24} : choque térmico extremo

- Porinas (OmpC) são desnaturadas
- Ativação de proteases: DegS e RseP
- Degradação do anti-sigma RseA
- o^E livre para interagir com o cerne da RNA polimerase
- Transcrição dos promotores dependentes de σ^E

Regulação do fator σ^{E}/σ^{24}

- O fator σ^E não é degradado (como no exemplo de σ^{32}), apenas inativado, a temperaturas normais.
- A proteólise do fator anti-sigma RseA no CT, libera σ^E

A regulação por fatores sigma é uma regulação positiva

Os fatores sigma aumentam a transcrição dos genes de proteínas que irão proteger contra o estresse térmico.

Há exemplos de regulação por repressão da transcrição em outras bactérias:

CIRCE e HrcA

O sistema CIRCE/HrcA

- HrcA é uma proteína repressora em condições normais de temperatura
 - Liga-se ao DNA e impede a transcrição de genes de CT
 - HrcA é um fator de regulação in trans
- CIRCE é uma sequência repetida invertida no DNA
 - Sítio de ligação de HrcA
 - CIRCE é um fator de regulação in cis
- Durante o choque térmico, HrcA é inativada e a transcrição dos genes de choque térmico é induzida

Controle negativo do choque térmico por HrcA/CIRCE (*Bacillus subtilis*)

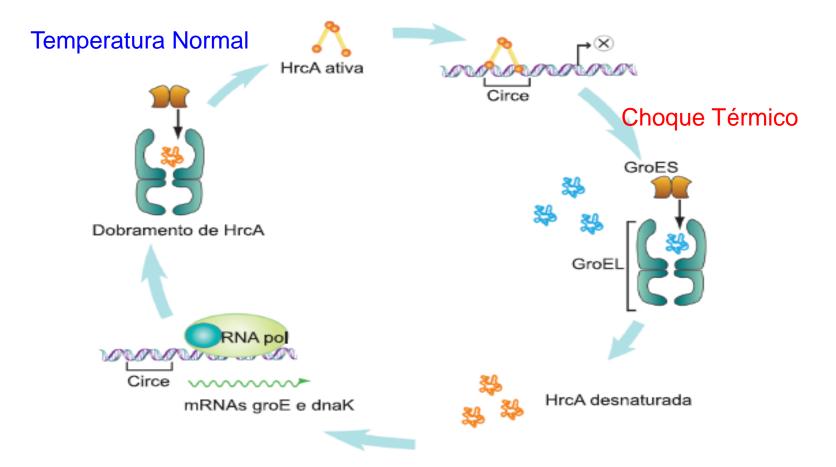
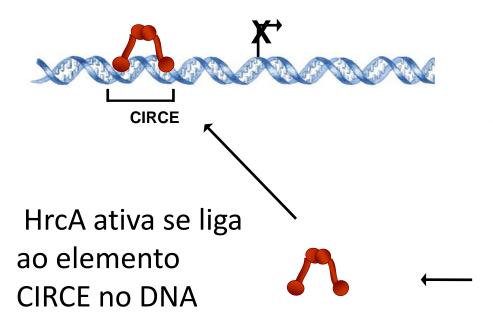
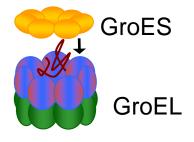
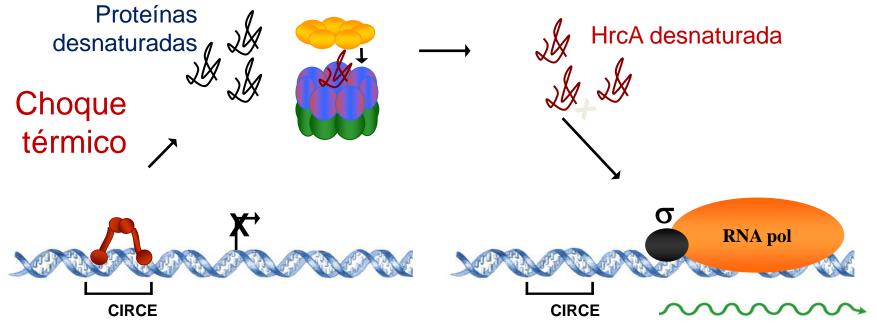



Figura 17.3. A atividade do repressor HrcA depende das chaperones GroES/GroEL. Na ausência de estresse térmico, o sistema GroES/EL converte a proteína HrcA para sua forma ativa. HrcA liga-se à repetição invertida CIRCE que está presente nos genes de choque térmico. A ligação impede o acesso da holoenzima da RNA polimerase, reprimindo assim a transcrição. Durante o aumento de temperatura, proteínas desenoveladas ligam GroES/EL, provocando a inativação de HrcA, que se desliga de CIRCE. A transcrição dos genes de choque térmico é então induzida, levando a um acúmulo de GroES/EL que ativa HrcA; esta se liga a CIRCE, desligando a transcrição dos operons de choque térmico dependentes do sistema CIRCE/HrcA.


O repressor HrcA é inativado no choque térmico

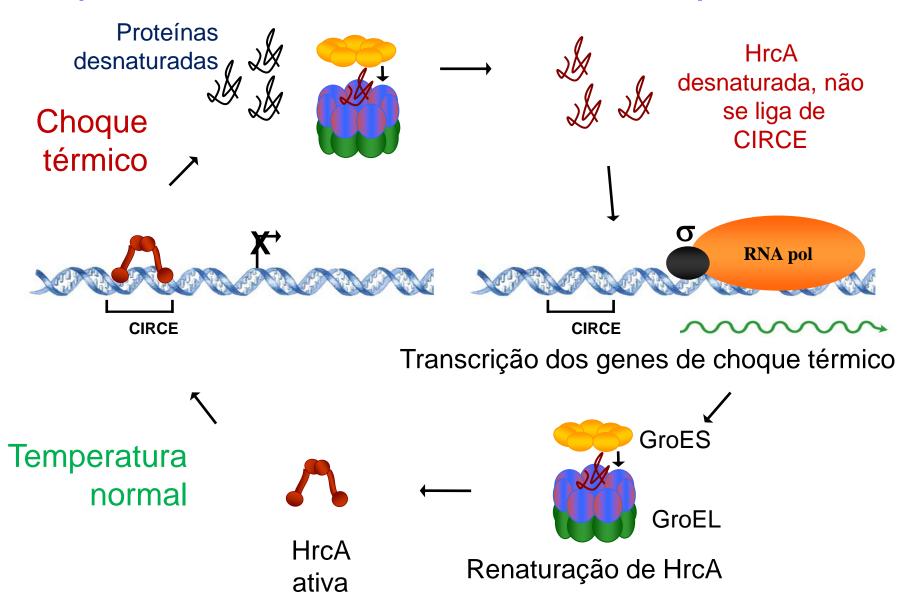
Temperatura normal

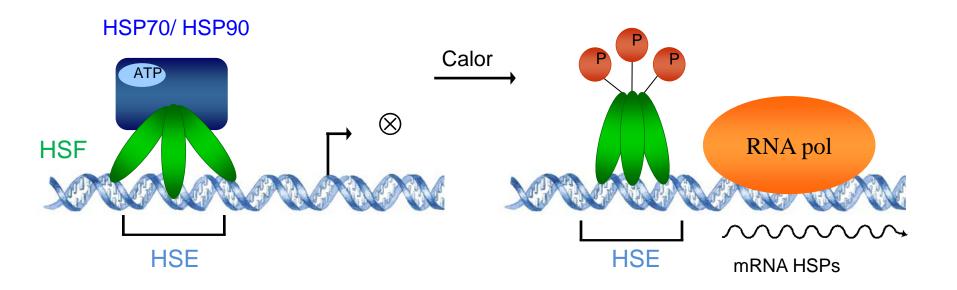
Não há transcrição dos promotores com elemento CIRCE



As chaperones GroEL/GroES mantém HrcA na sua conformação nativa

Renaturação de HrcA


O repressor HrcA é inativado no choque térmico


Transcrição dos genes de choque térmico (groEL e groES)

- As proteínas desnaturadas pelo calor ocupam GroEL/GroES
- HrcA fica desnaturada e não se liga ao DNA
- Ocorre a transcrição dos genes de choque térmico pela RNA polimerase ligada ao fator sigma A (principal)

O repressor HrcA é inativado no choque térmico

Regulação do choque térmico em eucariotos

HSF = fator de transcrição de choque térmico, inibido em temperaturas normais por HSP70/HSP90

HSE= elemento de choque térmico no DNA, sítio de ligação do HSF (repetição GGATTC)

HSF é ativado por fosforilação durante o choque térmico

Choque Térmico:TRANSITORIEDADE Eletroforese 2D

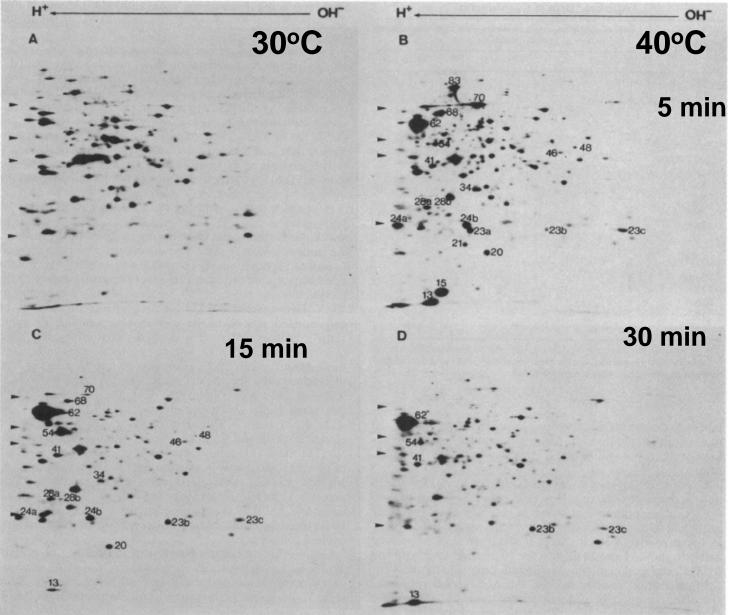


FIG. 3. Two-dimensional gel electrophoresis of heat shock proteins. Cells of CB15F were labeled for 10 min with [35S]methionine at 30°C (A) or 5 (B), 15 (C), and 30 (D) min after temperature shift to 40°C. Cell extracts were subjected to isoelectric focusing (first dimension) with a pH range of 5 to 8 and then SDS-PAGE (second dimension). Arrowheads indicate molecular size markers in descending order (65, 55, 45, and 25 kDa).