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Abstract. A long-standing question in the organizations literature is whether firms are
better off by using simple or complex representations of their task environment. We
address this question by developing a formal model of how firm performance depends on
the process by which firms learn and use representations. Building on ideas from cognitive
science, our model conceptualizes this process in terms of how firms construct a repre-
sentation of the environment and then use that representation when making decisions. Our
model identifies the optimal level of representational complexity as a function of (a) the
environment’s complexity and uncertainty and (b) the firm’s experience and knowledge
about the environment’s deep structure. We use this model to delineate the conditions
under which firms should use simple versus complex representations; in doing so, we
provide a coherent framework that integrates previous conflicting results on which type of
representation leaves firms better off. Among other results, we show that the optimal
representational complexity generally depends more on the firm’s knowledge about the
environment than it does on the environment’s actual complexity. We also show that the
relative advantage of heuristics vis-a-vis more complex representations critically depends
on an unstated assumption of “informedness”: that managers can know what are the most
relevant variables to pay attention to. We show that when this assumption does not hold,
complex representations are usually better than simpler ones.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/orsc.2019.1346.

Keywords: cognitive representations * complexity ¢ heuristics

1. Introduction
1.1. The Simple-vs.-Complex Debate in the
Organizations Literature
A foundational idea in the behavioral view of firms is
that firms make decisions based on a representation of
the problems they face (see Csaszar 2018). A key
characteristic of such representations is how complex
they are—what we denote representational complexity.
Firms have much latitude in determining how com-
plex the representations that they use are: firms can
choose to make decisions on the basis of representations
ranging from the very simple (e.g., by employing a
manager who relies on a rule of thumb) to the overly
complex (e.g., by hiring technical experts and using
sophisticated decision-making models). Interestingly,
there are conflicting views on what is the optimal rep-
resentational complexity, that is, whether firms are better
off by using simple or more complex representations.
On the one hand, the literature on fast-and-frugal
heuristics (Gigerenzer and Goldstein 1996) has ar-
gued that simple representations have several ad-
vantages over more complex representations, such as
requiring less effort to learn and use, and being robust

under a broad range of environments. In the context
of organizations, the call for simple representations
has found empirical support in research that shows
that firms using simple decision processes (Fredrickson
and Mitchell 1984) and simple rules (Bingham and
Eisenhardt2011) outperform similar firms using more
complex decision processes and rules.

On the other hand, a different literature has argued
that firms can improve their performance by using
more complex representations, as these are better able
to deal with the nuances of the business environment.
Weick (1979, p. 261) typifies this literature in exhorting
managers to “complicate yourself!” This line of ar-
gumentation has also found empirical support in the
context of organizations (see, for example, the literature
supporting the hypotheses in McNamara et al. 2002)

The logic underlying the call for complex repre-
sentations is that business environments are complex
and, as argued by Ashby’s (1956, chapter 11) law of
requisite variety, responding successfully to a com-
plex environment requires an equally complex system.
Thus, Ashby proposes an in-between, contextual rec-
ommendation: firms should use representations whose
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complexity matches the complexity of the environment.
Yet Ashby’s recommendation has not found much
empirical support in the organizations literature, which
explains why the debate over simple versus complex
representations has persisted.

The fact that the research on both simple repre-
sentations and complex representations has empirical
support suggests that both views are correct under
certain situations. Hence, the optimal complexity of
representations may depend on particular contin-
gencies, which means that simple representations,
complex representations, and perhaps even repre-
sentations of medium complexity may be preferable
under the right circumstances. However, the orga-
nizations literature does not currently offer a theory
capable of describing what these contingencies might
be and how they codetermine the optimal complexity
of representations. Our aim in this paper is to develop
such a contingency theory.

1.2. Our Approach

To develop such a theory, we present a parsimonious
mathematical model of how firm performance is af-
fected by the complexity of the representations it uses.
Our model combines three ideas rooted in cognitive
science: (i) understanding organizations in terms of
the representations they use, (ii) modeling repre-
sentations and their environment using Brunswik’s
(1952) lens model, and (iii) analyzing such a model
using ideas from statistical learning theory (the bias/
variance trade-off and related ideas; Geman et al. 1992).
The combination of these ideas allows us to examine,
in a unified manner, theories that currently are dis-
connected. Under this unified view, theories advo-
cating for different levels of complexity correspond to
particular cases of a more general theory of repre-
sentational complexity in organizations.

An advantage of our approach is that it forces us to
make explicit the implicit assumptions made by pre-
vious work. This increase in theoretical precision al-
lows us to show that the different predictions of prior
work stem from having conceptualized two key
constructs—uncertainty and knowledge—differently.
Previous research has interpreted the term “un-
certainty” either as intrinsic unpredictability of the
environment or as lack of knowledge about the
environment (a.k.a. aleatory and epistemic uncer-
tainty, respectively; Fox and Ulkiimen 2011). Simi-
larly, “knowledge” has been interpreted either as
experience (i.e., having seen many observations)
and as informedness (i.e., knowing what aspects matter
the most). Our formal modeling approach shows
that distinguishing between these different mean-
ings is paramount, as they call for markedly differ-
ent organizational responses. For instance, while lack of

experience typically calls for simpler representations,
lack of informedness calls for more complex representations.

The model we develop shows how a firm’s per-
formance is affected by the complexity of the repre-
sentations it uses. Our model takes into account
contingencies that are particularly relevant in orga-
nizational settings. These contingencies correspond
to two key characteristics of the environment—its
complexity and (aleatory) uncertainty—and to two
key characteristics of the decision makers: their ex-
perience and informedness. In doing so, our model
captures Simon’s (1990, p. 7) idea that organizational
behavior is jointly shaped by “scissors,” whose two
blades are the environment’s structure and the de-
cision maker’s cognitive capabilities.

We analyze the model by building on research on
the bias/variance trade-off (Geman et al. 1992) and
related explanations on why heuristics work (Giger-
enzer and Gaissmaier 2011). Our work differs from this
previous line of research by (i) exploring the effect
of contingencies that matter in the context of orga-
nizations (i.e., the research building on bias/variance
has focused on the effect of uncertainty and experi-
ence, to which we add the effect of complexity and
informedness), (ii) exploring the full range of repre-
sentational complexity (i.e., research on heuristics
typically focuses on simple representations), and
(iii) illuminating questions in the organizations litera-
ture (e.g., the simple-versus-complex debate and the
emerging research on how representations affect per-
formance). Our approach is consistent with Vuori and
Vuori’s (2014) call to contextualize organizational
decision-making models, in particular, to acknowl-
edge that organizations face environments and em-
ploy decision makers that are different than what is
typically assumed by the heuristics literature.

1.3. Our Contribution

Our study contributes to the organizations literature
along several fronts. First, we show that three theories
in the organizations literature that speak to the issue
of representational complexity—namely, calling for
simple representations (i.e., Gigerenzer and Goldstein
1996, Bingham and Eisenhardt 2011), complex repre-
sentations (i.e., Weick 1979), and complexity-matching
representations (i.e., representations that match the
complexity of the environment; Ashby 1956)—can
be integrated into a coherent framework.

Second, in terms of specific results, we show that
complex and complexity-matching representations
lead to superior performance in one case each: complex
representations are most valuable when managers
are uninformed (i.e., when they do not have a priori
knowledge about what matters most), irrespective of
how experienced they are; and complexity-matching
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representations are most valuable when managers are
both informed and experienced. In contrast, simple
representations lead to superior performance under
any of three circumstances: high uncertainty, informed
but inexperienced managers, or high costs of learning
and using complex representations. These results bear
anumber of managerial implications. We elaborate on
these by discussing the types of managers, frame-
works, and organizational structures that are likely to
display the most adequate representational complex-
ity in different environments.

Third, our work qualifies popular maxims about
how complex the representations should be. We show
that, for managers tasked with making predictions,
both Occam’s razor and Ashby’s law of requisite
variety are not absolute truths but only useful under
specific conditions. Paradoxically, managers who know
little (i.e., have little experience and informedness) can
be better off by using quite complex representations—
being “anti-Occam” managers. The mechanism un-
derlying our results is a relevance—accuracy trade-off:
more complex representations are more likely to in-
clude all relevant aspects, yet they are also less able to
accurately reflect the import of any given aspect.
Which of these two elements matters the most de-
pends on the situation; that is, the optimal repre-
sentational complexity depends on the rate at which
accuracy and relevance trade off one another, which
in turn depends in nuanced ways on the character-
istics of the environment and the decision maker we
study. This trade-off is an unavoidable consequence
of learning a representation from limited and noisy
observations.

Fourth, our work also contributes to the organi-
zation design literature by showing that cognitive
contingencies (experience and informedness) can have
a greater impact than the classic environmental con-
tingencies (uncertainty and complexity) studied by
this literature. For instance, uncertainty is the main
contingency in the literature on simple rules (e.g.,
Davisetal. 2009) and environmental complexity is the
main contingency in the literature on organizational
adaptation (e.g., Levinthal 1997); our work suggests
that both lines of research could significantly increase
their explanatory power by incorporating cognitive
contingencies.

Finally, our work contributes to a better under-
standing of how representations affect performance.
The research on managerial cognition has developed a
rich understanding of representational heterogeneity
while remaining mostly silent on how representations
affect performance (Gary and Wood 2011, p. 570). By
studying how representational complexity—a key
characteristic of all representations—affects the quality
of decisions made by organizations, this paper fur-
thers the emerging research on the representation-

performancelink (Csaszar and Levinthal 2016, Csaszar
and Laureiro-Martinez 2018).

The paper is structured as follows. The next section
lays out a theoretical foundation for studying for-
mally the complexity of representations in organi-
zations. The subsequent section describes our model.
We then present the results that emerge from this
model and, building on those results, discuss the
broader theoretical and managerial implications of
our research.

2. Theoretical Background

The concept of representation underlies our theo-
retical approach. To develop that theoretical foun-
dation, this section proceeds in four steps: (i) it points
out how three types of representations—internal,
external, and distributed—affect decision making in
organizations; (ii) it explains the Brunswikian ap-
proach to modeling representations; (iii) it explains
how ideas from statistical learning theory can be used
to analyze the performance of representations; and
(iv) it shows how such ideas have been used by the
heuristics literature and how the current work differs.

2.1. The Role of Representations in
Organization Theory

A representation is a model that can be used to gen-
erate predictions (Craik 1943, p. 61; Holland et al.
1986, p. 12). The concept of representation plays a
central role in cognitive science, whose central prem-
ise is that thinking can be best understood in terms
of representations and the computational procedures
operating on those representations (Thagard 2005,
pp. 10-12)."

The concept of representation is also central to the
organizations literature.” This centrality stems from
the fundamental observation that managers must
deal with problems whose complexity and multidi-
mensional nature exceed managers’ cognitive capa-
bilities, from which it follows that dealing with such
problems requires managers to use smaller-scale re-
presentations (Simon 1957, pp. 198-199). The key role
of representations in both cognitive science and or-
ganization theory can be traced back to the seminal
work of Simon in both fields (see Spender 2013 for an
account of Simon’s dual influence).

Given that the problems faced by organizations are
typically much larger than their managers’ ability to
represent them, most problems can be represented in
multiple ways. In fact, research on managerial cognition
has documented a vast heterogeneity among managers’
representations. Managers can differ in how they rep-
resent almost any aspect of business, including market
uncertainty (Milliken 1990), competitors (Poracetal. 1989),
product features (Benner and Tripsas 2012), tech-
nological opportunities (Eggers and Kaplan 2009),
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employees (DeNisi et al. 1984), and power relation-
ships (Krackhardt 1990). To appreciate the perva-
siveness of representations in organizations, it is
useful to distinguish between three types of repre-
sentations: internal, external, and distributed. Dis-
tinguishing among these is also useful, as illuminates
the levers that managers can use to change an organi-
zation’s representations.

2.1.1. Internal Representations. Internal representa-
tions are those in the mind of an individual (and so are
sometimes called mental representations). Most re-
search in cognitive science and organization theory
studies this type of representation. For instance, a
look at the tables of contents of cognitive science
textbooks (e.g., Lindsay and Norman 1977, Thagard
2005) reveals that most are organized around the
internal representations that humans are postulated
to use for accomplishing different tasks (e.g., repre-
sentations used for vision, speech, reasoning). The
organizations literature has similarly focused on in-
ternal representations. Examples include Porac et al.
(1989), which studies the internal representations
used by managers in the Scottish knitwear industry;
the chapters in Huff (1990) that describe various
methods to map managers’ internal representations;
and all papers cited in the previous paragraph, which
examine managers’ internal representations. How-
ever, internal representations are not the only type of
representation used by individuals. The last 20 years
have seen growing interest in the study of repre-
sentations that do not reside in an individual’s mind.
These other types of representations—called external
and distributed representations—are commonly used
by individuals and organizations.

2.1.2. External Representations. External representa-
tions are those that are embedded in a given physical
artifact (Norman 1991). External representations play
a partin many cognitive tasks—as when one performs
long division using paper and pencil, keeps a written
“to do” list, uses a map to find a route, or analyzes
data by graphing them (Zhang 1997). In cognitive
science, research on external representations is rela-
tively recent (see Kirsh 2010 for an overview) and
much less developed than is the research on internal
representations.

Althoughnot usually acknowledged in this way, exter-
nal representations are widely used in organizations—
especially in the context of strategic decision making,
where common artifacts include such frameworks as
the BCG matrix, Porter’s “five forces,” and myriad
2 X 2 decision matrices. External representations are
not only used in the context of strategic decisions
but also in operational and tactical decisions, such
as when doctors and pilots use checklists, a clerk

follows a written operating procedure, or a hiring
officer sorts through candidates by comparing fields
in a spreadsheet. Although the use of external repre-
sentations is common in organizations, little research
has explored how organizations are affected by this
type of representation (for a notable exception, see
Kaplan’s (2011) analysis of how PowerPoint affects
strategic decision making).

2.1.3. Distributed Representations. Distributed rep-
resentations are those that are spread over multiple
individuals and possibly artifacts. For instance, the
information required for an airliner’s safe landing is
distributed over the pilot’s mind, the copilot’s mind,
and the dashboard instruments. No single one of the
three parts in this system has all the information
necessary for landing (Hutchins 1995b). Instead, it is
the cockpit as a whole—the system—whose repre-
sentation incorporates the necessary information. As
with external representations, distributed represen-
tations are pervasive in organizations. For instance,
they occur when the information needed to design a
new product is spread over managers from different
departments or when the information required to
predict the next quarter’s earnings is distributed over
multiple employees and accounting systems.3

Research on distributed representation is an emerg-
ing area in cognitive science (for an overview, see
Robbins and Aydede 2009). Because organizations
are the quintessential holders of distributed repre-
sentations, much of the organizations literature can
be understood as implicitly examining issues of dis-
tributed representation. For instance, research on
transactive memory (Wegner 1986), interpretive bar-
riers (Dougherty 1992), organization design (Siggel-
kow and Rivkin 2005), and information aggregation
(Csaszar and Eggers 2013) all explore core distrib-
uted representation issues (e.g., “who knows what”
and “how is knowledge communicated”).

In sum, representations are deemed internal, ex-
ternal, or distributed depending on the system that
holds them. For internal representations, this system
is the manager’s mind; for external representations,
the system is the manager plus the set of physical
artifacts being manipulated. For distributed repre-
sentations, the system is the set of managers (and
possibly artifacts) that are part of the decision-making
process.

2.2. A Brunswikian Understanding

of Representations
So far, we have shown how representations are at the
core of how individuals and organizations make
decisions. We now move on to explain Brunswik’s
(1952, pp. 16-21) lens model—a framework that for-
malizes the concept of representation, which allows
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us to build our model. Much research on decision
making is based on Brunswik’s lens model (see, e.g.,
Karelaia and Hogarth’s (2008) survey of 249 lens-
model studies). The task captured by Brunswik’s
model is predicting a value when presented with cues
or characteristics of the environment.

Brunswik’s model conceptualizes the environment
and its representation in a symmetric fashion: the
environment is a function that connects cues to a real
value; and the representation is a function that con-
nects those cues to a predicted value. These relation-
ships are usually depicted as shown in Figure 1 and
can be illustrated by the following toy example.
The profits of a software company evaluating which
smartphone “app” to develop may depend on the
app’s market size (x1), the number of competing apps
(x2), and the difficulty of development (x3) according
to the expression y = 0.8x; — 0.4x, — 0.2x3. However,
the firm’s CEO may believe that profits vary according
to some other relationship. Perhaps she underesti-
mates the effect of competing apps and does not
consider the difficulty of development, believing that
profits are instead given by 7 = 0.8x; — 0.3x;. The first
equation (describing y) corresponds to the environ-
ment, and the second equation (describing #) corre-
sponds to the CEO’s representation of it.*

The lens model can be used to describe internal,
external, or distributed representations. For instance,
7 = x1 + x2 could correspond to a manager who pays
equal heed to two cues (i.e., an internal representation),
a framework that weighs two aspects equally (an exter-
nal representation), or an organization that gives equal
say to two managers (a distributed representation).

Under Brunswik’s framework, the performance of
a given representation in a given environment de-
pends on a function that relates y to f. Suppose, for
instance, that the CEO in our previous example was
evaluated according to her ability to predict what will
happen; in that case, her performance would be a
function of the (absolute) difference between her
prediction and what actually occurred (i.e., [ —yl).
A more realistic measure of performance would reflect
her contribution to profits. So, if the CEO decided
that the firm should enter a market only when
positive profits are expected (i.e., when j > 0), then

Figure 1. Brunswik’s Lens Model

Environment Cues Representation

Predicted value

performance would be equal to 0 under no entry
or equal to y (the actual profit or loss) under entry
(such contribution to performance can be written as
yA[y > 0)).

The literatures on adaptive decision making (Payne
etal. 1993) and “fastand frugal” heuristics (Gigerenzer
and Gaissmaier 2011) relies heavily on the Brunswik
lens model, by using it as a framework within which
to study the effectiveness of various heuristics (in this
context, a heuristic is just a simple representation, one
that depends on few x’s). For instance, the “single
variable” heuristic (Hogarth and Karelaia 2007) cor-
responds to a representation in which the coefficient
of the most relevant cue is set to 1 and all the other
coefficients are set to 0.

2.3. Using Statistical Learning Theory to
Study Representations

Apart from providing a formal understanding of
representations and of their interplay with the envi-
ronment (i.e., Simon’s scissors), a critical benefit of
using Brunswik’s framework to study representa-
tions is that it allows for the borrowing of ideas from
statistical learning theory to understand what drives
the effectiveness of different representations. In a
nutshell, because the quality of a representation de-
pends on how well it approximates the environment
(i.e., how closely i/ matches y), one can study repre-
sentations with the same tools used to understand the
problem of learning a function from data.

The canonical problem of learning a function from
data is this: Given some noisy observations, what is
the best estimate of the data-generating process that
produced such observations? For instance, if one has
seen the black dots in Figure 2(a), is it better to infer
that the data were produced by a polynomial of de-
gree 1,2, or 20 (shown as colored curves in panels (a),
(b), and (c) of Figure 2, respectively). As the degree of
the polynomial increases, the curves fit the data
better. But that does not mean that the best estimate
of the data-generating process is the polynomial with
the highest degree. Although such a polynomial would
fit past observations very well, it would probably not
fit additional observations appropriately. In this ex-
ample, the actual data-generating process is a second-
degree polynomial plus noise (y = —x?+x+¢). So,
using a polynomial of a higher degree overfits the
data—that is, it is good at fitting the noise but not
the underlying data-generating process.

Statistical learning theory has analyzed the prob-
lem of overfitting in terms of two sources of error:
variance and bias (Geman et al. 1992). In a dartboard
analogy, two ways in which a dart thrower could
miss the bulls-eye are: (a) by consistently hitting one
wrong spot (low variance, high bias) and (b) by hit-
ting random points centered around the bull’s-eye
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Figure 2. (Color online) Approximating a Data-Generating Process with Successively More Complex Polynomials
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(high variance, low bias). Both bias and variance
contribute to the total error.

In the context of learning a model from data, there is
a trade-off between these two sources of error. If one
repeatedly estimates a model using different samples
and looks at the prediction error for a given new point,
then the following happens. Very complex models
will typically have low bias (as they will not exhibit
any consistent error when estimating the new point)
but will have high variance (as sometimes they will
learn random things, such as the big zigzags in
Figure 2(c)). In contrast, very simple models will have
high bias (as they will consistently learn the wrong
pattern; for example, linear models facing data like
the one in Figure 2(a) will consistently underestimate
the topmost point) but will have low variance (be-
cause they will not be as dependent on the exact
sample used to estimate the model and, hence, the
error when estimating a given point will be rela-
tively stable). The bias/variance trade-off applies to
any problem of learning a function from data—not
just polynomials but any learning system that has a
tunable degree of model complexity.” In sum, the
bias/variance trade-off establishes that increasing
model complexity decreases bias but increases vari-
ance (see Figure 3).

The machine-learning literature has extensively
used the bias/variance trade-off as a means to un-
derstand the effect of increasing model complexity
(e.g., Hastie et al. 2009, Alpaydin 2014). But note that
the bias/variance trade-off just establishes what its
name says—that there is a trade-off between these
two sources of error; however, it says nothing about
what is the optimal model complexity under specific
conditions. In terms of Figure 3, the optimal model
complexity (marked by a black dot) could fall any-
where depending on the specific shape of the bias and
variance curves. For example, if the variance curve
grew ataslower rate, then the optimal would move to
theright; and if the bias curve was almost flat, then the
optimal would move to the left. In general, the op-
timal model complexity depends on specifics of the

problem: the sample size, the data-generating pro-
cess, and the family of functions used to approxi-
mate it.

The bias/variance trade-off is a qualitative re-
lationship that applies to any learning system. In
some situations, it is possible to quantify the trade-off
using whatis called a bias/variance decomposition. Such
decomposition is a mathematical formula that splits
the total error into bias, variance, and irreducible
error components. This decomposition, however, is
only well-established for prediction problems that
use a square loss (i.e., that minimize (y — )?). There
are no well-established decompositions for other types
of problems (e.g., classification) and loss functions
(e.g., absolute error, 0/1 error, asymmetric errors). For
attempts at developing bias/variance decompositions
for other cases—and the problems of doing so—see
Domingos (2000), James (2003), and the references
therein. Using a bias/variance decomposition is fur-
ther complicated because such decompositions keep
the data-generating process and the point being esti-
mated fixed (in this paper we vary both elements,
which correspond to varying environments and in-
coming projects). For these reasons, many works (in-
cluding this paper) look at measures that are closely
related to bias and variance but that are not a bias/
variance decomposition.6

Figure 3. (Color online) Illustration of the Bias/Variance
Trade-Off

N .- Total

Error
/
/
)

Variance

Model Complexity
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2.4. The Heuristics Literature

The heuristics literature has used the bias/variance
trade-off to explain when heuristics work well. For
example, in a survey of the heuristics literature,
Gigerenzer and Gaissmaier (2011, p. 459) explain that
“both too few and too many parameters can hurt
performance” (because, as shown in Figure 3, the total
error follows a U-shape). The heuristics literature has
also invoked the bias/variance trade-off to argue that
more experience (i.e., more observations) calls for
more complex models and that higher uncertainty
(i.e., more noise in the environment) calls for sim-
pler models. Or, as summarized by Artinger et al.
(2015, p. 37), “the larger the sample size and the
smaller the noise, the better the complex decision
strategies perform.” From this logic, it follows that
heuristics are most useful in novel and uncertain situations.

Most research on heuristics has focused on de-
scribing different heuristics and determining their
relative performance in various environments. This
literature has its roots in work showing that the
predictive accuracy of “improper” linear models
(i.e., models that do not use optimally derived co-
efficients but instead use coefficients that are noisy or
severely constrained) is surprisingly similar to the
performance of optimally derived models (Dawes
and Corrigan 1974, Einhorn and Hogarth 1975, Dawes
1979). The ensuing literature on heuristics studied
simpler (i.e., even more “improper”) decision rules,
including the tallying of pros and cons, decisions
based on a single variable, familiarity-based rules
(e.g., recognition, fluency, and similarity heuristics),
as well as lexicographic rules (such as take-the-best,
which sequentially adds cues in order of their validity
until no ties are found).

This research has established conditions under
which some heuristics are preferable over others
by benchmarking different heuristics in real-world envi-
ronments (e.g., Hogarth and Karelaia 2007, Martignon
and Hoffrage 2002) and by developing analytical
results (e.g., Katsikopoulos and Martignon 2006). For
example, research on take-the-best has shown that it
outperforms other lexicographic models in 20 real-
world datasets (Martignon and Hoffrage 2002, p. 46),
thatitis more robust to changes in cue correlation and
validity than the equal weights and single-variable
rules (Hogarth and Karelaia 2007, p. 49), and that
it outperforms tallying if cues are conditionally inde-
pendent (Katsikopoulos and Martignon 2006, p. 491).
In their survey of the heuristics literature, Gigerenzer
and Gaissmaier (2011, p. 474-475) note that the re-
search that has studied the applicability of different
heuristics to different environments is fragmented
and incomplete, as currently there is no systematic
theory to describe heuristics and the environmental
structures that they exploit.

Although we draw inspiration from the heuristics
literature, the current paper differs from other works
in three main ways. First, we add two contingencies
that are relevant to the organizations literature: en-
vironmental complexity and informedness. Includ-
ing environmental complexity is important, as this
a key characteristic of environments as studied by
the organizations literature (e.g., Dess and Beard 1984,
Burton and Obel 2004, Levinthal 1997). Similarly,
including informedness (in addition to experience), ac-
knowledges the two main modes of learning—vicarious
and experiential—studied by the organizational learn-
ing literature (e.g., Denrell 2003, Posen and Chen 2013,
Argote 2013). Second, while the heuristics literature
typically compares the performance of simple de-
cision rules, we explore the whole range of represen-
tational complexity (i.e., from minimal to maximal
representational complexity rather than focusing on
heuristics, which are clustered at the low end of the
spectrum of representational complexity). Third, as
mentioned in the introduction, we use our model to
illuminate questions that are relevant to the organi-
zations literature and that have not been studied by
the heuristics literature (i.e., the simple-versus-complex
debate, the representation—performance link, the con-
flicting interpretations and effects of uncertainty, and
the relative importance of cognitive vis-a-vis envi-
ronmental characteristics).

In sum, this section has shown how representa-
tions underlie decision making in organizations, that
Brunswik’s lens model can be used to conceptualize
representations and their relationship with the en-
vironment, and that ideas from statistical learning
theory and the heuristics literature can be used to
understand the effectiveness of representations. Build-
ing on these concepts, the next section develops a formal
model that sheds light on the optimal complexity of
representations as a function of characteristics of the
environment and the firm that are relevant in organi-
zational settings.

3. Model

Our model describes a firm” that has to screen projects,
that is, approve good projects and reject the rest. The
firm infers a representation of the environment by
observing past projects; it then uses that represen-
tation to predict the profits of new projects, approving
those with positive predicted profits. Finally, firm
performance depends on how profitable the approved
projects actually are.”

The model is used to study how firm performance
depends on the complexity of the representation
used, contingent on characteristics of the environ-
ment and the firm. The contingencies that charac-
terize the environment are its complexity K (i.e., the
extent to which multiple, interacting cues matter)
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and its uncertainty U (the extent to which the envi-
ronment exhibits unpredictable variation). The con-
tingencies describing the firm are experience E (mea-
sured as the number of past projects observed) and
informedness [ (i.e., whether the decision maker al-
ready knows which aspects of the environment mat-
ter the most or, instead, must discover those aspects
“from scratch”). The model’s main independent var-
iable is the representation’s complexity, denoted K'.
Thus, our model investigates the function Performance
(K’;K, U, E, I).

The rest of this section describes more formally the
elements just outlined. Toward that end, the pre-
sentation is divided into three parts: (i) the environ-
ment, (ii) the representation, and (iii) how perfor-
mance emerges from the interplay between environment
and representation.

3.1. The Environment

The environment determines the types of projects that
the firm ends up screening. We follow Brunswik in
supposing that each project is described by a set of
cues (denoted x3, . .., xp1) and an outcome (denoted ).
Take, for instance, the context of a software company
evaluating which smartphone apps to develop; in this
case, the cues are the apps’ attributes (e.g., market
size, target platform, development costs, number of
competing apps) and the project outcomes are the
profits or losses accruing to the firm if it developed
those apps.

Following Brunswik, we conceptualize different
environments as different functions that produce the
outcome y. Rather than studying some arbitrary en-
vironment (described by, say, y = 2x1 + x2), we study
environments that vary in their complexity and
uncertainty—which are the main environmental con-
tingencies highlighted in the organizations literature
(e.g., Dess and Beard 1984, as well as Burton and
Obel 2004, chapter 6).

Both complexity and uncertainty can be expressed
in mathematical terms that conform with Brunswik’s
framework. The complexity of a system, as defined by
Simon (1962, p. 468), increases with the number of
parts and interactions in the system. Hence, for ex-
ample, one can say that environment y = 6x; is less
complex than environment y = 6x; + 4x;, + 2x1x; be-
cause the former has fewer parts (i.e., cues) and in-
teractions than does the latter.

In turn, uncertainty corresponds to the extent to
which an environment exhibits unpredictable varia-
tion (see Priem et al. 2002, pp. 725-727 and the ref-
erences therein). Translated into Brunswikian terms,
this characteristic is the extent to which random noise
affects the environment function—for example, en-
vironmenty = x1 + ¢, where ¢ ~ Normal(0, o) becomes
more uncertain as o increases.

Our model creates environments with given levels
of complexity (K) and uncertainty (U) via the fol-
lowing procedure. Starting from a multilinear poly-
nomial on M variables (this includes one intercept + M
main effectsand xy, ..., xp + all two-way interactions,
totaling 1 + M + w terms), we eliminate all except
K randomly chosen terms. We then set all the poly-
nomial’s coefficients (i.e., its f values) to random
values drawn from a Normal(0,1) distribution (to
make results independent of any specific random
draw, the reported results are averaged over many
simulations). Finally, we multiply the resulting poly-
nomial by 1+ ¢, where ¢ ~ Normal(0, U).” Note that
the f’s remain constant within a given environment,
whereas ¢ is a random variable drawn for each new
project in that environment.

In sum, the described procedure (i) creates more
complex environments as K increases, since this pro-
duces environment polynomials with more main ef-
fects and interactions; and (ii) creates more uncertain
environments as U increases, since then the rela-
tionship between cues and outcome becomes in-
creasingly aleatory.

3.2. The Representation

Following Brunswik, we conceptualize the firm’s
representation as the function that produces the pre-
dicted outcome j. Continuing with our example,
the software company’s representation of the apps’
profits might be given by 7 = 0.8x1; — 0.7x2 + 0.6x1x3.

Analogously to how we defined environmental
complexity K, we define representational complexity
K" as the number of terms in the representation’s
polynomial. For instance, the representation in the
previous paragraph has K’ = 3 and we have K’ = 2 for
the representation f = x1 + x,.

The extent to which a given representation is good
at predicting outcomes depends on the degree to which
the representation (a) captures relevant aspects of the
environment (i.e., does not miss relevant cues or in-
teractions and does not include irrelevant ones) and (b)
weighs these aspects sensibly (i.e., uses  values that
resemble the true p values). Firms would ideally
prefer a representation that deviates minimally from
the actual environment, since that state of affairs
would endow firms with almost perfect foresight: j
would be identical to y, except for the unpredict-
able variation . However, the real world seldom
permits one to acquire such a perfect representation.
So, to develop a realistic model of the role played by
representations, we must account for how they are
acquired. Our model focuses on representations ac-
quired by learning from observations of the envi-
ronment (we elaborate on other ways of acquiring
representations, such as by hiring, in Section 5).
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The Brunswikian framework, which views the
decision maker as a “natural statistician,” suggests
a clear way of modeling how representations are
learned. Learning a representation is akin to running
a regression—namely, estimating coefficients (the ’s)
of the representation based on previously observed
projects. We therefore model the process of learning a
representation as running an ordinary least-squares
(OLS) regression.10

We make this learning process a function of two
contingencies: experience E and informedness I. We
define experience as the number of previously ob-
served projects (i.e., the number of “rows” of data
available to run the regression). This contingency
captures the idea that some managers (e.g., veteran
managers) are more experienced than others (e.g.,
management trainees). Using experience as a con-
tingency is consistent with previous research on learn-
ing, which uses experience as its main independent
variable.'!

The next contingency, informedness (I), captures
our idea that learning a representation depends not
only on experience butalso on whether the manageris
informed about the structure of the task environment.
In terms of running a regression, this knowledge
affects which regressors are included in the regression
formula (i.e., the “columns” of data that are fed into
the regression). We model two informedness condi-
tions: uninformed (I = 0) and informed (I =1). The
gist of this contingency is that informed managers
have knowledge that leads their representation to
incorporate what is most relevant. Both informed
and uninformed managers must estimate their rep-
resentation using their experience, but the informed
manager estimates the effect of the K’ most relevant
coefficients, whereas the uninformed manager esti-
mates the effect of K’ randomly chosen coefficients.

The informed condition is representative of situa-
tions in which managers know what matters the most.
Management education, such as an MBA program,
arguably provides students with this type of knowl-
edge for well-known industries. For instance, an MBA-
trained investment banker analyzing the possible
acquisition of a supermarket will know that some cues
(such as the supermarket’s location) are more relevant
than other cues (such as the supermarket’s décor). We
model the informed condition by forcing the repre-
sentation to pick the K’ regressors that have the largest
absolute magnitudes in the environment’s polyno-
mial. For example, a K’ = 2 representation of the en-
vironment y =2 + 3x1 + 4x, — 5x1x3 could only take
the form # = ﬁzxz + ﬁl 3X1X3, as xp and x1x3 are ac-
companied by the two f’s with the largest absolute
magnitudes.

The uninformed condition is representative of situ-
ations in which there is no well-established knowledge

about what determines performance. For example, in the
1990s it was not clear how firms could profit from the
Internet and so managers held radically different rep-
resentations of how best to evaluate Internet businesses
(e.g., there was even debate on whether cash flows
mattered; Desmet et al. 2000). Another example is
that, because the process of manufacturing high-end
computer chips is not well understood, Intel expands
its production by “copying exactly” its successful
facilities (i.e., replicating every characteristic of its
successful plants, even their wall colors; Winter and
Szulanski 2001). These two examples are similar in
that uninformed managers have no reliable way to
identify what are the relevant terms to include in their
representations. We model the uninformed condition
by picking the K’ regressors in the representation
randomly from all the (1+M +M(M ) possible re-
gressors. For instance, a K’ =1 representatlon of an
M = 3 environment is equally likely to take any of the

followmg forms: § = /30, 7= ,31961, 7= ﬁzxz, 7= ﬁ3x3,
i = Proxixa, § = Prax1xs, or § = Pasxaxs.

3.3. Performance

Firm performance is a measure of the firm’s ability to
screen projects. We assume that the firm only ap-
proves projects that are predicted to be profitable
(i.e., approve only if f(xi,...,xm) > 0). Hence, the
expected performance of the firm is defined as

Performance = E[y1[y > 0]], (1)

which is a function of the representation’s complexity
K’, the environment’s complexity K and uncertainty
U, and the decision maker’s experience E and inform-
edness I. To facilitate interpreting our results, the
performance reported in the analyses is scaled to fall
in the 0-1 range. Here, 1 represents the best possible
performance (i.e., approving all projects with y >0
and rejecting the rest), and 0 represents the natural
low-performance benchmark of simply approving
all projects (i.e., a “lazy” screener who approves ev-
erything and thus performs no screening at all).
Performance is computed via simulation. Each
screening decision is simulated as follows: (i) a random
environment of complexity K and uncertainty U is
generated; (ii) E random projects are drawn from
that environment (for each project, the x’s are in-
dependently drawn from a Normal(0, 1) distribution);
(iii) a representation (of a given complexity K’ and
informedness [) is estimated by running an OLS re-
gression on the E projects observed; (iv) a new ran-
dom project is drawn from the same environment; (v)
the estimated representation is used to predict the
new project’s value (); and (vi) if the predicted value
is positive (i > 0), then the project’s true value y is
recorded (otherwise, 0 is recorded). The average of
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the recorded numbers (for each combination of pa-
rameter values) converges to the definition of per-
formance (Equation (1)) as the number of screening
decisions simulated increases. To ensure that our re-
sults are reliable and not a function of any particular
random draw, we run 10 million simulations for each
combination of parameter values. The simulation code
is available in the online appendix.

4. Results

Here we use the model developed in the previous
section to study how the effect of representational
complexity (K’) on performance is contingent on the
environment’s complexity (K) and uncertainty (U), as
well as on the decision maker’s experience (E) and
informedness (I).

To convey the results in an intuitive yet precise
manner, our presentation is organized around a series
of plots that are representative of the model’s be-
havior (see Figure 4). The parameter values used to
generate these plots were chosen according to the
following logic. The number of main effects in the
environment is set constant to M = 3."* Given this
value of M, the environmental complexity K can vary
fromlto7(=1+3+ @). To understand the impact
of K, it is enough to look at its effect at low, medium,
and high values; therefore, the figure plots perfor-
mance at K=1,4, and 7.

Representational complexity K’ is the main in-
dependent variable in our analysis and is the pa-
rameter producing the most elaborate effects on per-
formance. For that reason, all plots vary this parameter
along its entire range (i.e., K’ varies from 1 to 7 along the
x-axes in Figure 4). To understand the effect of ex-
perience E and informedness I, it is enough to look at
the effect of low and high values on each of these
parameters. In Figure 4, these values appear as the
“inexperienced” and “experienced” conditions (E = 7
and E = 25, as columns) and as the “uninformed” and
“informed” conditions (I =0 and [ =1, as rows).13
Because varying uncertainty U affects performance in
a straightforward way (increasing U dampens all
performance curves similarly), most analyses in this
section keep the value of U fixed at 0.5.

4.1. Results Overview

An overall observation from Figure 4 is that the op-
timal representational complexity (marked with a o at
the top of each curve) depends nontrivially on the
model’s contingencies—there is no ideal, one-size-
fits-all representational complexity. The optimal level
of representational complexity is a function of the cir-
cumstances: (i) in panels (a) and (b) it is best to use
complex representations (i.e., curves peak around
K" =6-7); (ii) in panel (c) it is best to use simple
representations (curves peak around K’ = 1+4); and

(iii) in panel (d) it is best to use representations that are
as complex as the environment (i.e., each curve peaks
exactly when K’ = K). We remark that each of these
three cases lends support to each of the three different
theories of representational complexity discussed in
the introduction; namely, case (i) supports using
complexrepresentations (Weick 1979, p. 261), case (ii)
supports using simple representations (Gigerenzer
and Goldstein 1996), and case (iii) supports using
representations that match the environment’s com-
plexity (Ashby 1956).

Another observation from Figure 4 is that the op-
timal representational complexity depends more on
characteristics of the firm (experience and inform-
edness) than of the environment (complexity). In
other words, the optimal representational complexity
depends more on the panel than on the curve one s in.
As a matter of fact, in panels (a) and (b) the optimal
representational complexity is unaffected by envi-
ronmental complexity; and in panels (c) and (d), al-
though environmental complexity is consequential,
choosing a medium representational complexity yields
performance that is close to optimal. From a theoretical
standpoint, this observation is relevant because the lit-
erature on “fit” (Donaldson 2001, Burton and Obel
2004) has emphasized how critical the fit between
environment and firm is; in contrast, the critical fit
relationship in our model hinges not on the envi-
ronment but instead solely on characteristics of the
firm (i.e., K’ must primarily fit with I and E, not with
K). This observation is also relevant because the lit-
erature on simple rules posits environmental un-
predictability as their primary contingency (see, e.g.,
Davis et al. 2009); our research suggests that cogni-
tive contingencies (i.e., experience and informedness)
could have an even more important role in determining
the appropriateness of simple rules.

To understand the mechanisms behind these and
other results, we now examine in more detail each of
the situations depicted in Figure 4.

4.2. Uninformed and Inexperienced Managers
Panel (a) in Figure 4 describes managers who are
inexperienced (E = 7) and uninformed (I = 0). In com-
parison with the other panels in Figure 4, the managers
in panel (a) know the least about the environment:
they have neither experience nor any information
about what characteristics of the environment might
matter most. This panel is representative of radically
novel situations, with regard to which no manager
could have significant experience or knowledge (e.g.,
in 1998 neither Google nor its competitors had much
experience with or knowledge about how to develop
and commercialize an Internet search engine).

A first observation from panel (a) is that perfor-
mance follows an inverted-U shape with respect to
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Figure 4. (Color online) Performance as a Function of Representational Complexity (K’, on the x-axes), Environmental
Complexity (K, as curves), Experience (E, as columns), and Informedness (I, as rows)
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representational complexity K’. This panel is con-
sistent with the general intuition of the bias/variance
trade-off mentioned previously: neither too simple
nor too complex representations are optimal. But, as
mentioned earlier, the trade-off does not explain
much. For instance, it does not explain why the op-
timal is so high in this panel—a surprising observa-
tion given that, from the literature on heuristics and
simple rules, one would expect that managers who
know little (i.e., have low experience and low inform-
edness) would be better off by using simple represen-
tations. It also does not explain why in the other panels
there is so much variation regarding the optimal rep-
resentational complexity (in panel (b) the best is to set
K’ = K; and in the other panels there are cases where

the best is to set K’ = 1). Moreover, it does not explain
why, to a large extent, the inverted-U shape only
occurs in panel (a). To understand what drives the
results in this and the other panels, it is useful to
define the concepts of representational relevance and
representational accuracy.

We define representational accuracy as the proximity
of the representation’s coefficients to the environ-
ment’s corresponding coefficients. Representational
accuracy can be expressed formally as _%Zie{i\[ﬁi#o}
I: — Bil.** In turn, we define representational relevance
as the extent to which a representation includes rel-
evant terms (i.e., main effects or interactions that affect
the outcome). We measure relevance by counting how
many of the K coefficients that are relevant in the
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environment are part of the representation (i.e.,
the cases in which both ; and [:31- differ from 0). The
mathematical formulation of representational rele-
vance is  ie(ig, 20y [Bi # 0]-

Representational accuracy and relevance are closely
related to the concepts of bias and variance. Increas-
ing relevance decreases bias (as the representation
captures more dimensions of the environment and,
hence, will exhibit fewer consistent estimation errors).
In turn, increasing accuracy decreases variance (as the
representation will produce estimates that are closer to
reality). But discussing the results in terms of accuracy /
relevance rather than bias/variance greatly simplifies
the presentation of the results. This is so for three rea-
sons. First, bias/variance decompositions add up to a
total error; but in the organizations literature—and in
the simple-versus-complex debate here studied—the
dependent variable is typically performance, not er-
rors. Second, even if there was a way to restate per-
formance in terms of total error (e.g., by measuring a
distance to optimal performance), there is no pre-
established bias/variance decomposition for the type
of problem studied here (as Equation (1) combines
elements of both classification and prediction); hence,
even if the bias/variance language was used, any
numbers reported would not effectively “decompose”
performance into two components. Finally, the ac-
curacy and relevance measures here proposed allow
for a more direct discussion of the mechanisms driving
the results (as the effect of varying model parameters,
such as K’ or I, is easier to understand on accuracy/
relevance than on bias/variance).

Figure 5 plots relevance against accuracy for the
same conditions used in Figure 4(a). The downward

slopes in Figure 5 demonstrate that, regardless of the
environment’s complexity, there is a trade-off be-
tween relevance and accuracy: by changing repre-
sentational complexity K’ (i.e., moving along each
curve), it is impossible to increase one of these measures
without decreasing the other.

The relevance-accuracy trade-off faced by man-
agers who are both uninformed and inexperienced is
explained by the following logic. On the one hand,
relevance increases with K’ because a larger K’ in-
creases the likelihood of the uninformed manager
including relevant terms in his representation.'> On
the other hand, accuracy decreases with K’, because as
K’ increases, the managers’ limited experience be-
comes increasingly insufficient to estimate the greater
number of coefficients. For instance, a K’ =1 repre-
sentation can be estimated with relative accuracy by
an inexperienced manager (since his E = 7 experience
could be brought to bear on estimating a single p); yet
if asked to estimate a K’ = 7 representation, then the
same manager would perform poorly (because his
E =7 experience would be spread too thin when es-
timating seven different f3’s).

In sum, Figure 4(a) exhibits an inverted-U shape
because, when managers are uninformed and in-
experienced, both simple and complex representa-
tions are problematic: simple representations are likely
to be irrelevant, and complex representations are likely
to be inaccurate. Hence, the optimal representational
complexity is somewhere between the simple and the
complex. This explains why, although managers in
this panel know little about the environment (i.e., they
are uninformed and inexperienced), they are better
off by using more complex representations than the

Figure 5. (Color online) Median Relevance and Accuracy as a Function of Representational Complexity (K’) Under
Uninformed and Inexperienced Managers
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more “modest” representations that their relative lack
of knowledge might suggest.

A striking implication of panel (a) is that it con-
tradicts two commonly espoused principles: Occam’s
razor and Ashby’s law of requisite variety. Figure 4(a)
runs counter to Occam’s razor because the optimal
representation is not parsimonious: whereas a sci-
entist would not consider proposing a theory based
onsix covariates while using only seven data points as
supporting evidence, panel (a) indicates that the
manager should do exactly that in such a case. It runs
counter to Ashby’s law because the optimal K" does
not increase with K (all curves peak at K’ = 6). We
discuss the rationale for the Occam’s razor result here
and delay discussing Ashby’s requisite variety until a
few more results have been developed.

The key to understanding why the optimal repre-
sentational complexity is lower for scientists and
managers is to acknowledge that these professions
pursue different goals; in particular, scientists seek to
prove causal relationships, whereas managers seek to
make good predictions (Shmueli 2010). Hence, the
goal of scientists is not to minimize the total pre-
diction error (see Figure 3) but to demonstrate how a
given factor affects the outcome. And when data are
limited, as in Figure 4(a), demonstrating causal re-
lationships calls for estimating few parameters, as this
will narrow the confidence intervals and allow for
more precise tests of hypotheses. In this panel, hence,
Occam’s razor is good advice for scientists but not for
managers.

The previous analyses have maintained a fixed
uncertainty of U =0.5. We now study the effect of
varying uncertainty. Figure 6 illustrates what hap-
pens to the K = 4 curve in Figure 4(a) as uncertainty
varies from an extremely low value (U = 0.125) to an
extremely high one (U = 2).

A first observation from Figure 6 is that increasing
uncertainty dampens performance. This observation
(expected from our review of the heuristics litera-
ture) follows because increasing uncertainty decreases
representational accuracy and therefore reduces the ac-
curacy of predictions made using that representation.

Another observation from Figure 6 is that increas-
ing uncertainty lowers the optimal representational
complexity (as U increases, each o in Figure 6 moves
leftward). This occurs because increasing uncertainty
decreases representational accuracy but without
affecting representational relevance. So, as U in-
creases, accuracy costs more in terms of relevance
(i.e., the downward slopes in Figure 5 become steeper
with increasing U) and hence it becomes optimal to
reduce K’. It is thus reasonable to expect that firms in
uncertain environments will use simpler represen-
tations than firms in more certain environments.

Figure 6. (Color online) Effect of Uncertainty (U) Under
Uninformed and Inexperienced Managers
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This result corroborates the view that simple rules
are particularly useful in uncertain environments
(Eisenhardt and Sull 2001, Artinger et al. 2015, p. 37).
In turn, this result seems to run against Galbraith’s
(1973, p. 4) well-known proposition that “the greater
the uncertainty of the task, the greater the amount of
information that has to be processed between de-
cision makers.” Yet, a closer inspection of the context
in which Galbraith states his proposition shows that
he interprets uncertainty as “[not] understanding the
task prior to performing it” (p. 4). This interpretation
corresponds not to our measure of uncertainty but to
either uninformedness or inexperience. And, indeed,
Galbraith’s proposition interpreted in this way is
consistent with our model’s predictions: in Figure 6,
the optimal representational complexity increases as
one moves from the bottom to the upper row of panels
(i.e., as uninformedness increases) and as one moves
from the right to the left column of panels (i.e., as
inexperience increases). These observations point to a
benefit of the modeling approach that we use: it forces
one to define all constructs used and, hence, increases
theoretical precision. In particular, we show that
below the commonly used term “uncertainty” lie at
least three possible meanings: unpredictability of the
environment (high U), not knowing what matters
(low 1), and having little experience (low E). We
suggest that future research on uncertainty specifies
which definition is followed.

A final observation from Figure 6 is that, when
uncertainty takes extremely low or high values, the
inverted-U shape described so far degenerates into
different shapes (seethe U = 0.125and U = 2 curvesin
Figure 6). If uncertainty is extremely low (e.g., U = 0.125),
then estimation is so effective that increasing K’ boosts
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relevance without reducing accuracy; therefore, perfor-
mance increases monotonically with K’ (in the extreme,
if U =0, then one can perfectly estimate all coeffi-
cients provided E > K’).

In contrast, if uncertainty is extremely high (see the
U =2 curve in Figure 6), then—although maximal
performance is nominally achieved at some inter-
mediate value of K’—choosing any K’ produces al-
most equally low performance. This irrelevance of K’
under high U, when combined with the greater cost
of complex-versus-simpler representations (e.g., the
former may take more resources to learn and use),
suggests that firms in extremely uncertain environ-
ments are more likely to use simple rather than complex
representations.

4.3. Uninformed and Experienced Managers

Panel (b) in Figure 4 differs from panel (a) in that,
despite remaining uninformed (I = 0), managers are
now experienced (E = 25). Panel (b) is representative
of long-standing industries (and thus ones rife with
experienced managers) in which there is no well-
established knowledge about what drives perfor-
mance (and so managers do not know a priori what
the environment’s most relevant terms are). For in-
stance, the semiconductor industry has experience
going back to the 1970s, but firms in this industry are
still not certain about what characteristics make for
high-quality manufacturing facilities (which is why,
as mentioned previously, Intel replicates all the char-
acteristics of its successful plants; Winter and Szulanski
2001). This panel is also representative of managers
who, not knowing the rules driving a situation, feed
copious amount of data (“big data”) to a machine-
learning algorithm in the hopes of finding useful
relationships. In short, the uninformed and experi-
enced condition is representative of situations in
which managers know many cases but not principles.

The main observation from Figure 4(b) is that per-
formance now increases with representational com-
plexity. In Figure 4(a), performance follows an inverted-
U shape because of the relevance-accuracy trade-off:
past a given level of representational complexity, the
representation’s increased relevance carries too high
of a price in terms of accuracy. This trade-off ceases to
be critical in Figure 4(b) because, even if the represen-
tation includes the same number of coefficients as the
environment, experience is vast enough to enable the
accurate estimation of all coefficients accurately. In
contrast, setting K’ below its maximal value impairs
performance because it then becomes more likely that
the representation will omit relevant terms.

The fact that in Figure 4(b) performance increases
with representational complexity makes this panel
consistent with Weick’s (1979) advice to “complicate
yourself!” and also with Intel’s decision to behave

as if any factor could affect the performance of its
manufacturing facilities.

4.4. Informed and Experienced Managers

We now turn our attention to panel (d) of Figure 4;
thus, we study managers who are not only experi-
enced but also informed—they can identify the envi-
ronment’s most relevant aspects. These managers are
representative of situations in which there are well-
known principles regarding what drives performance
(e.g., graduates of an MBA real estate course know the
main determinants of property values). Recall that
informedness is modeled as estimating the K’ co-
efficients that are most relevant in the environment.

An overall regularity that stems from comparing
the informed and uninformed panels of Figure 4 is
that the optimal K’ is lower for informed managers
(i.e., each curve in the bottom row of panels peaks
before the corresponding curve in the top row).
The reason is that the marginal benefit of increasing
K’ is high for uninformed managers (since the ex-
pected relevance of their representations increases
with K’), whereas such marginal benefit is lower for
informed managers (since each additional term they
add is less relevant than the previous terms). So,
according to our model, a manager who transitioned
from being uninformed to being informed would
likely benefit from reducing her K’. This outcome is
consistent with—and offers a complementary ex-
planation of—the “simplification cycling” phenom-
enon described by Bingham and Eisenhardt (2011,
p- 1454), who note that managers simplify their decision-
making processes as they become more aware of the
deeper structure of their respective environments.

Panel (d) in Figure 4, which applies only to man-
agers who are both informed and experienced, is
representative of situations in which managers have
vast experience as well as extensive training on what
are the most relevant aspects of the environment.
Such could be the case of managers in industries that
are old and stable. For instance, the fields of retail
banking and real estate are replete with managers
who are both experienced (e.g., have worked for
decades in the industry) and informed (e.g., have
undergone extensive training).

The main observation from Figure 4(d) is that per-
formance is maximized when representational com-
plexity exactly matches the environment’s complex-
ity. That s, for each curve in Figure 4(d), the maximum
occurs when K’ = K. Hence, this panel is consistent
with Ashby’s (1956) law of requisite variety, because
the representation is just as complex as the environ-
ment it represents.

To understand why managers who are informed
and experienced are better off choosing a represen-
tation with the same complexity as the environment,
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it is useful to consider the alternative cases, that is,
having such managers choose a representation that,
in comparison with the environment, is either simpler
(K" < K) or more complex (K’ > K). Choosing K’ < K
decreases representational relevance (i.e., omits rel-
evant terms from the representation) without in-
creasing representational accuracy by much (since
managers are experienced). Choosing K’ > K is also
damaging because it complicates the representation
with spurious terms that will not increase relevance
but will reduce accuracy (even if experience is vast,
the coefficients estimated for the spurious terms will
differ from their true value of 0). Because managers in
Figure 4(d) are experienced (E > K’), they pay only a
small penalty for increasing representational com-
plexity beyond environmental complexity; that is
why the curves in Figure 4(d) all have only a slightly
downward slope after reaching the point where K’ = K.

4.5. Informed and Inexperienced Managers

We now analyze panel (c) of Figure 4, where man-
agers are informed but inexperienced. This panel is
representative of situations in which there are well-
understood principles but no experienced managers.
This could be the case for a new industry that is
structurally similar to an old one but in which no
experienced managers are employed (perhaps be-
cause experienced managers prefer to work for estab-
lished firms). For example, managers in the smartphone
apps industry and the personal computer (PC) software
industry use similar principles for developing soft-
ware (these principles are well established and broadly
available from handbooks such as McConnell 2004);
therefore, managers in these industries are similarly
informed. However, early app development compa-
nies typically had less experienced managers than did
PC software companies.

Another way of understanding the case described
in Figure 4(c) is by contrasting it to panel (a). In both
panels, managers are inexperienced; yet panel (a)
describes a radically novel situation (such as Google
pioneering the search business), whereas panel (c)
describes a less innovative situation.

The main observation from Figure 4(c) is that, under
these circumstances, firms are best served by using
relatively simple representations. In fact, it is only in
this panel that the performance of each curve is
maximized under the least representational com-
plexity. Thus, for example, the K =7 curve in this
panel achieves its maximum at K’ = 4—in contrast to
the other panels, where the maximum of the K=7
curve occurs at K’ =6 or 7.

To understand why it is best to use simple repre-
sentations in Figure 4(c), it is useful to compare it with
panel (d). The curves in both panels have similar
shapes, but in panel (c) they exhibit a steeper decline

after achieving their peaks. This is so because, in that
panel, the penalty for using overly complex repre-
sentations is more pronounced: experience is so lim-
ited in panel (c) that using it to estimate irrelevant co-
efficients is highly detrimental to accuracy.

In sum, our model shows that, under the conditions
of Figure 4(c) (i.e., informed but inexperienced man-
agers), it is better to use simple representations.
Hence, this panel is consistent with the research ad-
vocating for simple representations (e.g., Gigerenzer
and Goldstein 1996). One can argue that the situations
studied by the heuristics literature match this panel.
Indeed, the heuristics literature assumes little expe-
rience (Gigerenzer and Goldstein 1996, p. 652) and,
although it has not been shown generally, inform-
edness appears to be a critical assumption. For ex-
ample, for take-the-best (perhaps the most studied
heuristic) to work well, it is crucial that high-validity
cues are taken into account first (Katsikopoulos et al.
2010). In other words, take-the-best requires high
informedness.

4.6. Robustness Checks

We performed a number of additional analyses to
check the robustness of our results. Overall, these
analyses confirmed the qualitative robustness of the
results described so far.

A first robustness check was to increase the number
of main effects M. Increasing M changes the scale of
some of the parameters (as the upper limit of Kand K’
depends on the value of M) without changing the
results in relative terms. For example, in situations
corresponding to Figure 4(a), the optimal K’ is roughly
85% of the maximal K’ regardless of M’s value.

A second robustness check was to change the
family of functions producing the environment. Here
we tried a model with main effects only and no two-
way interactions (i.e., iy = x1 + - - - + xp; insuch amodel,
Kand K’ can vary only from 1 to M). The results here
were qualitatively similar to those of the main model,
since adding a main effect or a two-way interaction
increases the environment’s difficulty similarly.'®

Finally, we tried a model under which K affects only
the interactions in the environment (which is akin to
how complexity is defined in NK models; Levinthal
1997). In this robustness check, all environments
had M main effects, yet K affected only the number
of two-way interactions. Because the environment’s
difficulty is equally affected by adding main effects
or interactions, this robustness check is effectively
equivalent to restricting the analysis of the main
model to values of K that are greater than M.

5. Discussion
This study introduces a model of how representa-
tional complexity affects firm performance in a way
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that is contingent not only on the environment’s
uncertainty and complexity but also on the decision
maker’s experience and informedness. The model
provides a behaviorally plausible and organization-
ally relevant depiction of this phenomenon by com-
bining ideas from the cognitive science literature and
extending them to take into account contingencies
and problematics that are germane to the organiza-
tions literature. The analysis of the model leads to
several predictions regarding the optimal represen-
tational complexity for different situations.

Armed with insights derived from the model, in
what follows we propose how previous conflicting
empirical findings can fit together, present broader
implications of our research for organization design
and managerial cognition, and propose avenues for
further research.

5.1. Resolving the Simple-vs.-Complex Debate

We started this paper by pointing out the conflicting
recommendations regarding the optimal complex-
ity of representations. Our research shows that the
three organizational theories addressing this issue—
calling for simple, complex, and complexity-matching
representations—can be integrated within a single
coherent framework.

Table 1 summarizes the results derived from our
model in terms of the situations that call for different
degrees of representational complexity. This table
shows the situations that call for simple representa-
tions (left column), complex representations (right col-
umn), and representations whose complexity matches
that of the environment (middle column). The three col-
umns can be interpreted as situations under which the
respective theories of Gigerenzer and Goldstein (1996),
Weick (1979), and Ashby (1956) are most applicable.

From Table 1 we can see that, first, the calls for
simple representations are most applicable when
uncertainty is high (cf. Figure 6) or when managers are
informed but inexperienced (cf. Figure 4(c)). Second,
Weick’s call for complex representations is most ap-
plicable when managers are uninformed (cf. panels (a)

Table 1. Summary of the Results Derived from the Model

and (b) of Figure 4). Third, Ashby’s call for repre-
sentations whose complexity matches that of the
environment is most applicable if managers are ex-
perienced and informed (cf. Figure 4(d)).

Although not explicitly studied by our model, it is
worthwhile mentioning another condition that calls
for simple representations: the cost of representa-
tions. For example, learning a complex representation
may require hiring technical experts, and using such a
representation may require that many personnel be
trained and monitored; in contrast, learning and
using a simple representation consumes far fewer
resources. In practice, this means that simple repre-
sentations may be convenient not only in the situa-
tions outlined in Table 1’s left column but also when
the marginal cost of increasing representational com-
plexity exceeds its marginal benefit. Such cost consid-
erations may be especially relevant for start-ups, which
are typically resource-constrained and for which in-
creasing representational complexity comes at a high
opportunity cost. That dynamic may explain the pop-
ularity among entrepreneurs of books advocating for
simple rules (Sull and Eisenhardt 2015) and for closely
related ideas such as running a “lean start-up” and
launching “minimum viable products” (Ries 2011,
Blank and Dorf 2012). Understanding the costs of
different representations is an empirical matter that
could be studied by further work.

The conditions that we have identified concerning
the applicability of each theory fit well with the em-
pirical settings that each theory has used for support.
Fredrickson and Mitchell (1984) found support for
simple representations in high uncertainty envi-
ronments, which is consistent with results derived
in the context of Figure 6. Similarly, Bingham and
Eisenhardt (2011) found support for simple repre-
sentations among start-ups executing their interna-
tionalization strategy. Arguably, the start-ups’” man-
agers are informed about internationalization (since
this topic is taught in marketing and strategy courses)
and the internationalization task they face is not ex-
tremely complex (e.g., it is less complex than replicating

Simple representations
(Low K’)

Complexity-matching representations

Complex representations

(K =K) (High K')

Main proponents ¢ Gigerenzer and Goldstein (1996)

¢ Ashby (1956)

e Weick (1979)

Situation when most
applicable an unpredictable market, such as in
the midst of political turmoil)

e Informed but inexperienced
managers (e.g., “low-tech” start-up

managed by newly minted MBAs)

e Uncertainty is high (e.g., firm facing ¢ Informed and experienced
managers (e.g., firm in a long-
standing industry, such as banking
or real estate, where well-
established principles exist and
where managers have observed

* Uninformed managers (e.g., firm in
a radically new industry, such as
Google in 1998)

many past projects)

Note. The table shows the situations under which representations of different complexity are most applicable.
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Intel’s fabrication process). Hence this task falls within
the low or medium K curves in Figure 6(c) or (d), whose
performance is maximized by setting a low-to-medium
K’—that is, by using simple representations.

In turn, McNamara et al. (2002) found support for
complex representations in the banking industry. One
could certainly argue that the banking industry has
many experienced managers (since this is an estab-
lished industry) and that its business is not overly
simple (as evidenced by the vast operations of many
banks). The banking industry should therefore fall
within the medium or high K curves in Figure 6(b)
or (d), whose performance is maximized by setting a
high K’—that is, by using complex representations.

Finally, Ashby (1956) found support for complexity-
matching representations in the context of developing
an early robotic mechanism (the “homeostat,” de-
scribed in Ashby 1952) that could access a detailed
record of the environment and receive only infor-
mative inputs. Thus Ashby’s mechanism is consis-
tent with the experienced and informed curves of
Figure 6(d), whose performance is maximized by
setting K" = K—thatis, by using complexity-matching
representations.

We conjecture that the recommendation to use
simple rules is useful for many firms, as simple
representations apply to more situations than do
complex or complexity-matching representations.
Whereas complex and complexity-matching represen-
tations each apply to only one specific situation (see the
right and middle columns of Table 1), simple repre-
sentations are advisable in three different cases: high
uncertainty, informed and inexperienced managers,
or high costs of learning and using complex repre-
sentations. Indeed, our model suggests that simple
representations are suitable for a broad spectrum of
firms. These firms range from start-ups, since they
usually face high uncertainty as well as high costs of
learning and using complex representations (because
of resource constraints), to established firms, since
they often employ managers who are informed (due
to operating in industries with well-established princi-
ples) but inexperienced (owing to, e.g., employee turn-
over or changing markets).

5.2. Implications for Organization Design

The ideas here developed have theoretical and practical
implications for organization design. From a theoretical
standpoint, our work helps develop the roles that un-
certainty and cognition play in organization design.
With respect to uncertainty, we show that the literature
has interpreted this concept in different ways. Recall
(from our discussion of Figure 6) that the heuristics
literature has interpreted uncertainty in terms of
unpredictability of outcomes (U in our model), whereas
the classic organization design literature (Galbraith

1973) has interpreted it as lack of experience or lack of
informedness (E and I in our model). For the former
literature, uncertainty is a property of the environ-
ment (the environment is unpredictable); for the
latter, it is a property of the organization (the orga-
nization does not have enough information to pre-
dict the environment). Our work highlights that it
is important to distinguish between these different
meanings of the word “uncertainty,” as they carry
different implications (e.g., increasing U calls for
simpler representations, whereas increasing E or [
calls for more complex representations).

With respect to cognition, our work suggests that
cognitive contingencies should play a key role in the
contingency theory of organizations. Recall (from our
initial discussion of Figure 4) that the optimal rep-
resentational complexity depends more on the firm’s
experience and informedness than on the environ-
ment’s complexity. This suggests that the contin-
gency theory of organizations (wWhose main contin-
gencies are structural, strategic, and environmental;
Burton and Obel 2004, p. 16) could also incorporate
cognitive contingencies such as managers’ experience
and informedness. Doing so seems like a natural
extension of the information processing logic that
underlies contingency theory and organization de-
sign (Burton and Obel 2018).

From a practical standpoint, our work proposes
organization design rules that complement prior work
on such rules (Burton and Obel 2013). In particular,
Table 1 can be read as four rules (one for each of the
bullet points in the “situations” row):

¢ Ifuncertainty is high, then use simple representations.

e If managers are informed but inexperienced,
then use simple representations.

e If managers are uninformed, then use complex
representations.

¢ If managers are informed and experienced, then
use complexity-matching representations.

A final implication for organization design is that
incorporating the idea of “representations” can ex-
tend the scope of organization design. Organization
design is usually understood in terms of choosing the
macro structure of the firm. For example, choosing
whether the firm should use a functional, divisional,
or matrix form or whether it should use a flat or a tall
hierarchy (e.g., Burton and Obel 2004, chapter 2). This
paper shows that a number of other structures—not
only macro structures—depend on the same logics.
That is, because the underlying logic is the same, it
should be within the scope of organization design to
design structures like rules and frameworks.

5.3. Implications for Managerial Cognition
Similar to how thinking in terms of representations
extends the purview of organization design, it also
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extends managerial cognition. Managerial cognition
has studied managers’ internal representations. But
other types of representations can be studied with
some of the same tools as internal representations
(such as Brunswik’s lens model and the bias/variance
trade-off that drives our results). For instance, this
paper suggests that the complexity of external rep-
resentations will have similar effects on performance
as the complexity of internal representations. Study-
ing managerial cognition by looking at external rep-
resentations may be a fruitful research path, because,
vis-a-vis internal representations, external represen-
tations are easier to observe and manipulate.

Another way in which our work contributes to the
managerial cognition literature is by deepening the
understanding of cognitive complexity. Previous re-
search in this literature has shown that managers dif-
fer in their cognitive complexity (e.g., Tetlock 1983,
Kiss and Barr 2015). In fact, measuring cognitive
complexity is among the main uses of the causal
map methodology (e.g., Huff 1990, Clarkson and
Hodgkinson 2005). The managerial cognition litera-
ture has taken a procomplexity stance by arguing that
complex mental representations allow managers to un-
derstand issues from multiple perspectives and pick
appropriate responses (Bartunek et al. 1983) and that
simple representations are associated with a failure
to recognize opportunities accurately (Kiesler and
Sproull 1982). As summarized in the context of
Table 1, we propose that the effect of complexity is
more nuanced. In particular, there are many situations
(perhaps a majority of situations) in which relatively
simple representations are preferable.

An intriguing implication of our model in the
context of the managerial cognition literature is
that, under the right circumstances, some cognitive
flaws can be beneficial. For instance, an “ignoramus”
manager—one who focuses on a highly restricted set
of cues—may be the right type of manager for situ-
ations that call for simple representations. Similarly,
a “paranoid” manager—one who believes that ev-
ery possible cue and interaction could matter—may
be the right fit for situations that call for complex
representations.

5.4. Managerial Implications

Three important managerial implications emerge from
our study. First, because representational complexity is
contingent on the situation, managers must learn how
to determine what situation they are in. Otherwise, they
risk setting an inappropriate level of representational
complexity (e.g., a manager who wrongly believes he is
informed would, in effect, use the optimal K’ from the
lower panels in Figure 4 to set the K’ of the upper
panels, thereby achieving less-than-optimal results).
Hence it is paramount that managers can accurately

assess the extent to which they are informed and
experienced as well as the degree to which the en-
vironment is complex and uncertain.

Second, because performance depends on setting a
representational complexity that matches the situa-
tion, the firm must be able to influence its represen-
tational complexity. Doing so requires the firm to be
aware of, and have command over, the managerial
levers controlling representational complexity. That
is, firms must be able to shape the internal, external,
and distributed representations they use. This goal
can be achieved in multiple ways. For instance, a firm
can change its internal representations by hiring
managers who have simpler or more complex rep-
resentations or by using management education pro-
grams to instill representations of the right complexity.
Firms can change their external representations by en-
couraging managers to use frameworks of the appro-
priate representational complexity (e.g., to choose—as
needed—between a simple pros-and-cons analysis
and a complex financial model incorporating hun-
dreds of parameters). Finally, firms can change their
distributed representations by designing organiza-
tional structures that are more or less hierarchical
(e.g., relying on a single decision maker or instead on
a committee to make decisions).

A final managerial implication concerns the value
of pursuing experience and informedness. According
to our results, moving from uninformed to informed
or from inexperienced to experienced increases per-
formance (in Figure 4, performance increases as one
moves from the left to the right column and from the
top to the bottom row). So, if possible, firms should
seek managers who are informed and/or experi-
enced. Note that, in situations that are radically new,
such managers may not exist or may be so scarce that
it is uneconomical to hire them.

These three managerial implications are illustrated
by a historical example. A tenet of many early Internet
entrepreneurs was that the Internet had created a
“new economy” that called for “new rules” (Kelly
1998). That tenet viewed managers as being un-
informed (since they did not know the rules of the
new economy) and inexperienced (because they had
not managed an Internet business before). In terms of
our model, this situation is described by Figure 4(a)
and therefore calls for using complex representations.
It is crucial to assess the veracity of this tenet because
if it was false—and so the Internet did not render
previous knowledge obsolete—then it would, in fact,
have been useful to hire informed and experienced
managers. Note also that hiring such managers would
improve performance (since the performance curves
are higher in Figure 4(d) than in panel (a)) and would
also call for setting representational complexity dif-
ferently. In this example, then, firm performance
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depended critically on (i) being able to determine
what situation the firm was in, (ii) setting the right
representational complexity, and (iii) pursuing, if
applicable, managers who were both informed and
experienced.

5.5. Conclusions

This study set out to develop a contingency theory of
representational complexity. To build such a theory,
we imported and augmented ideas from cognitive
science and used them to build a parsimonious yet
realistic model of the contingent effect of represen-
tational complexity on firm performance.

Our study contributes to the organizations literature
in three ways. First, making minimal assumptions—
essentially, that representations are learned and
then used to make predictions—we argue that the
optimal representational complexity is contingent on
characteristics of the environment and the firm. Sec-
ond, this research sharpens our understanding of
the circumstances under which different theories of
representational complexity apply. In particular, we
demonstrate that the three organizational theories
addressing this issue—which call for simple, com-
plex, and complexity-matching representations—can
be integrated within a single coherent framework.
Third, our study enriches the organizations literature
by underscoring that representational complexity is
both pervasive and consequential: pervasive because
all decisions are made on the basis of a representation,
and consequential because our model shows that firm
performance is strongly (yet nontrivially) dependent
on representational complexity.

Futureresearch could further study the antecedents
and consequences of representational complexity.
With regard to antecedents, we have assumed that K’
can be set but do not delve into how this is accom-
plished by organizations. Future research could study
how different internal, external, and distributed rep-
resentations affect representational complexity. For
example, such research could compare the complexity
of representations typically developed by different
types of individuals (e.g., MBAs versus non-MBAs),
by different frameworks (e.g., checklist-type versus
more open-ended frameworks), and by different types
of decision-making structures (e.g., fluid vs. struc-
tured; for a notable first step in this direction, see Davis
et al. 2009). Experimental settings such as the ones
used by Gary and Wood (2011) and Csaszar and
Laureiro-Martinez (2018)—in which the complexity
of the environment can be set and the complexity
of the representations can be observed—could be
used to test some of these questions. Regarding the
consequences of representational complexity, in this
paper we have focused on firms” expected perfor-
mance at screening good from bad projects. Future

research could study how representational complex-
ity affects other performance outcomes, such as risk
(i.e., variation in performance), as well as learning and
exploration. This could be accomplished by studying
how representations interact with well-studied search
processes (e.g., Levinthal 1997, Posen and Levinthal
2012). For initial work along these lines, see Csaszar
and Levinthal (2016) and Martignoni et al. (2016),
which model how varying the accuracy of the rep-
resentation of a landscape affects the outcomes of
search on that landscape.

Viewing a firm’s performance in terms of its rep-
resentations amounts to a new way of conceptual-
izing the firm. Our paper has explored some of the
theoretical and practical insights that flow from this
viewpoint. Given that representations—internal, ex-
ternal, and distributed—underlie myriad organiza-
tional phenomena, we believe that more insights will
emerge from furthering this perspective. The repre-
sentational view of organizations explored here suggests
that designing an organization is, above all, a matter
of designing its representations. It follows that one of
the central tasks of organizational researchers is to
study the trade-offs among different types of repre-
sentations. Our work on how to determine the optimal
representational complexity is one step in that direction.
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Endnotes

"The central premise of cognitive science is summarized by the
maxim “thinking = representations + computation” (Thagard 2005,
p- 11), which mirrors the computer science maxim “programs = data
structures + algorithms” (Wirth 1976).

2This literature has referred to representations under different labels,
such as schema, knowledge structure, mental model, cognitive map,
dominant logic, interpretive scheme, thought world, and managerial
lens. For an exhaustive list, see table 1 in Walsh (1995).

¥ Some authors group external and distributed representations together—
as, for example, in the research on situated cognition (Robbins and
Aydede 2009) and socially distributed cognition (Hutchins 1995a). It
is also worth mentioning that our use of the term “distributed rep-
resentation” should not be confused with its use in the neural net-
works literature, where it denotes the type of sparse memory system
implemented by those networks (Hinton et al. 1986).

*1t is customary to draw all the arrows in the lens model’s graphical
depiction, but this does not imply that every cue affecting the en-
vironment also affects the individual. Cues that affect one side but not
the other have their corresponding f or 3 set to 0. It is also customary
to illustrate the environment and representation functions with linear
functions, but these functions could have any functional form (in fact,
Brunswik 1952 does not assume a functional form; empirical work
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following Hursch et al. 1964 has typically used linear forms, but for an
exception see Hamm and Yang 2017).

®1It is out of the scope of this paper to provide a detailed exposition of
the bias/variance trade-off. The seminal description of this trade-off is
Geman et al. (1992). Clear expositions of it (listed in increasing level of
detail) appear in Domingos (2012), Alpaydin (2014), and Hastie et al.
(2009).

®In fact, even though Hastie et al. (2009) spend many pages de-
veloping the mathematics of the standard bias/variance decompo-
sition, they arguably only use this concept in a qualitative manner, as
in the context of their figures 2.4, 2.11, 7.1, and 7.2.

" This model views the firm as a unitary decision maker; hence we use
the terms “firm,” “manager,” and “decision maker” interchangeably
depending on explanatory convenience.

8Screening projects is a common task in many settings, such as
deciding whether to hire an employee, acquire a firm, or launch a new
product. The firm in our model is assumed to screen a stream of
exogenously given projects, so this is not a model of search (a la
Levinthal 1997) but rather a model of screening (along the lines of
those developed in Sah and Stiglitz 1986 and Csaszar 2013).

*We use multiplicative (rather than additive) noise so that the effect
of uncertainty will scale with the number of terms in the environment
polynomial. This is a simple way of making the effect of uncertainty
comparable across environments that do not have the same number of
terms (otherwise, increasing K would decrease the effect of uncertainty).
An alternative specification that achieves the same is to use additive
noise, whose standard deviation grows with the number of terms
in the environment polynomial (e.g., ¢ ~ Normal(0, V #terms xU)).
All results are robust to using this alternative definition of uncertainty.

"0 The effect of using an estimation method less efficient than OLS is
akin to decreasing the number of observations available for estima-
tion (parameter E, described next in this section).

" The customary definition of organizational learning is “change in
the organization’s knowledge that occurs as a function of experience”
(Argote 2013, p. 31; emphasis added).

2We tried other values of M and obtained results that were quali-
tatively equivalent to those presented here. For more details, see
Section 4.6.

3 Experienced managers are represented by E = 25 because, in 99% of
the simulations, performance has plateaued at this level and no
further improvements are achieved by increasing experience. In-
experienced managers are represented by E =7—the minimum
number of observations needed to estimate a representation (i.e.,
solving for K’ =7 unknowns requires E = 7 equations). Values of
experience in-between these two extremes affect performance in a
gradual and predictable way, so it is enough for Figure 4 to plot just
these two levels.

"In this expression, the set {i | p; # 0} designates all the coefficients
that are part of the representation; the initial negative sign makes the
measure increase in the right direction.

5 Suppose that an environment is described by K = 7 terms. Then a
K’ =1 representation would include 1/7 of the relevant terms. The
same representation in a K = 1 environment would have a 1/7 chance
of including the relevant term. In both examples, an increase in K’
would generate a proportional increase in the expected representa-
tional relevance.

'8 This is because the two-way interactions are uncorrelated with the
main effects (i.e., corr(x;, x;x;) = 0 if x;, x; ~ Normal(0, 0)) and, hence,
estimating a main effect or an interaction is equally costly in terms
of accuracy and relevance. The no-correlation assumption can be
understood as the x’s having been “orthogonalized” first (e.g., being
the outcome of a principal component analysis). One could also
explicitly model correlation, but doing so makes the model analysis

unwieldy without providing much new insight, as its effect is not
hard to predict: as correlation increases, the interactions have a larger
effect on the outcome, and hence correctly estimating the f’s of the
interactions becomes more important. Therefore, the effect of in-
creasing correlation is equivalent to the effect of decreasing K (as
fewer terms will be effectively driving y). This effect resembles the
one described by Clemen and Winkler (1985, p. 430) in the context of
combining predictions from correlated experts.
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