Cimentos Portland e Adições

PCC 3222 2023

Objetivo

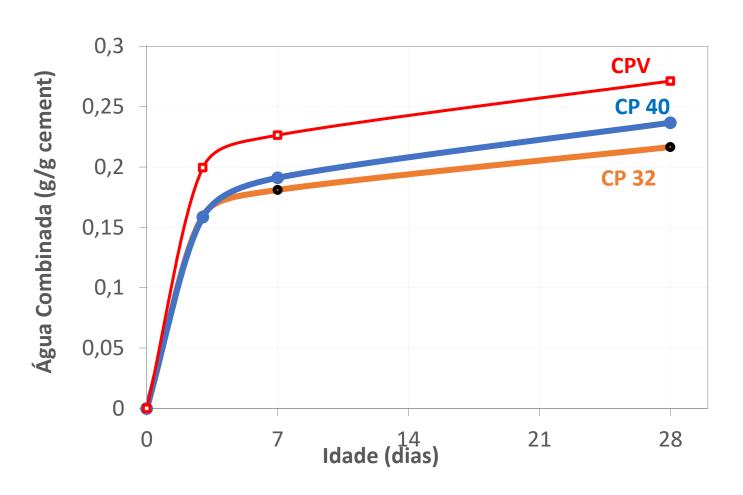
- Apresentar as adições e os tipos de cimento Portland resultantes
- Explicar as razões das diferenças de comportamento dos diferentes tipos de cimento

Revisão Aula 1

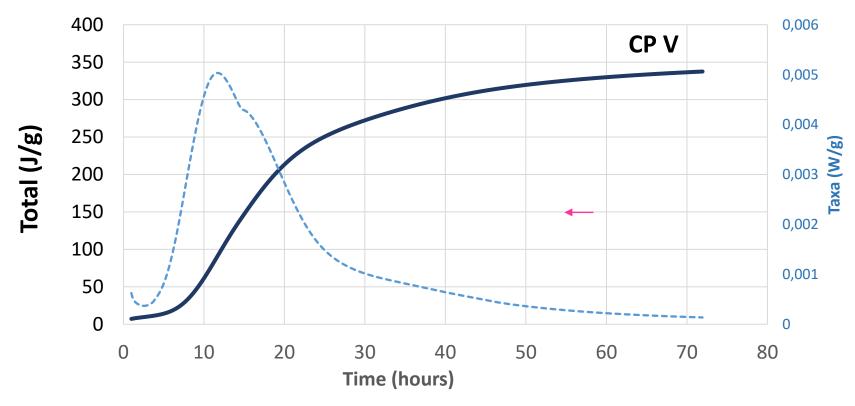
Ligantes inorgânicos: De micropartículas para macro sólido poroso

de novo sólido continuo com geometria da forma

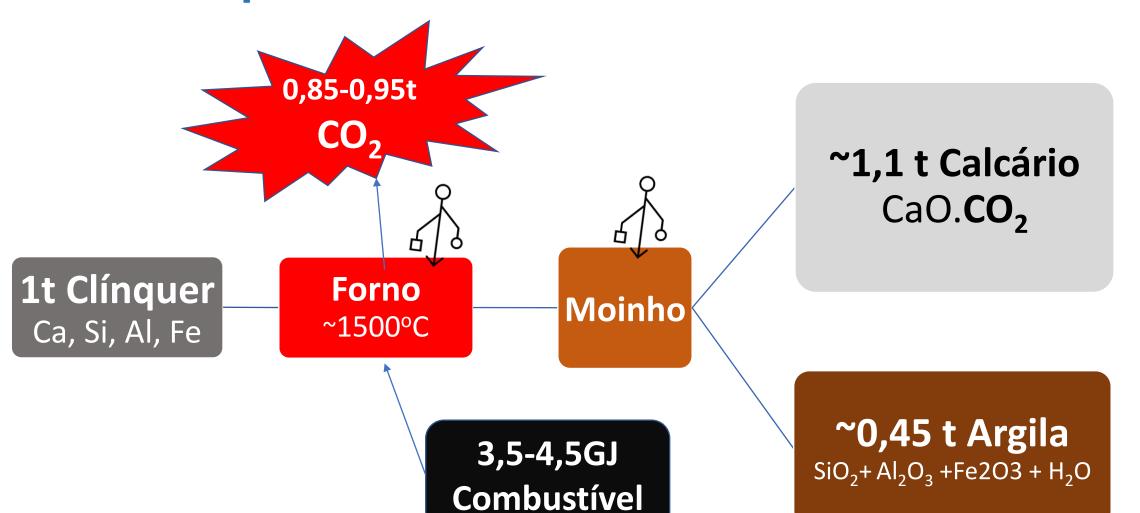
Endurecimento do Cimento


Hidratação: reação quimica com a água

aumento do volume de sólidos causa contato "molecular" entre cristiais


volume aparente (externo) ~constante.

Água combinada com diferentes reatividades (classes de resistência) de cimento


Calor de hidratação dos cimentos

Reações de hidratação são exotérmicas

+ 10% resíduos

Clínquer Portland: matéria prima fundamental do Cimento Portland

Composição química do clínquer

Origem	Óxido	Código	Massa (%)
Calcário	CaO	С	61–67%
	SiO ₂	S	19–23%
Argila	Al ₂ O ₃	А	2,5–6%
	Fe ₂ O ₃	F	0–6%
Combustível	SO ₃	Š	1,5-4,5%

Contaminantes, mineralizadores, etc...

Principais fases minerais do clínquer

• C₃S - 3CaO.SiO₂

• C₂S - 2CaO.SiO₂

• C₃A - 3CaO.Al2O₃

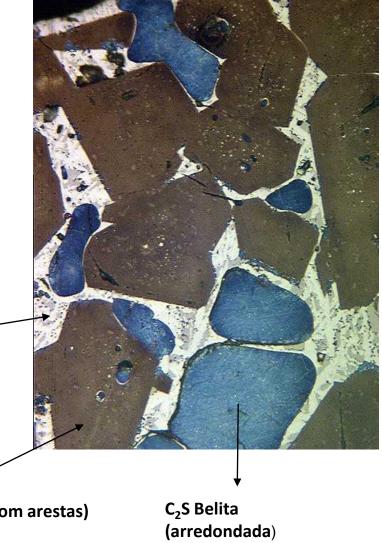
• C₄AF - 4CaO.Al₂O₃.Fe₂O₃

MgO

CaO

Silicato tricálcico (alita)

Silicato dicálcico (belita)


Aluminato tricálcico

Ferro aluminato tetracálcico

Periclásio

Cal

Fase intersticial C₃A aluminatos; C₄AF ferro-aluminatos

C₃S
Alita (cristais com arestas)

Composição do clínquer & propriedades

- 50-70% Alita C₃S
 - Rápida reação
 - Controla resistência inicial
- 8 25% **Belita C₂S**
 - Hidratação lenta
 - Resistências em idades avançadas
 - Baixo calor de hidratação

- 5-15% C₃A Aluminato de Calcio
 - Reação imediata
 - Interfere com aditivos
 - Vulnerável ao ataque por sulfatos
- 4-15% **C₄AF**
 - Baixa reatividade
 - Ausente em cimento branco

Composição do clínquer & propriedades

- CaO
 - Erro de dosagem do produto
 - Rápida reação
 - Expansibilidade

- MgO (contaminante do calcário)
 - Reação lenta
 - Hidrata expandindo quando cimento esta endurecido
 - Limite NBR ≤ 6,5%

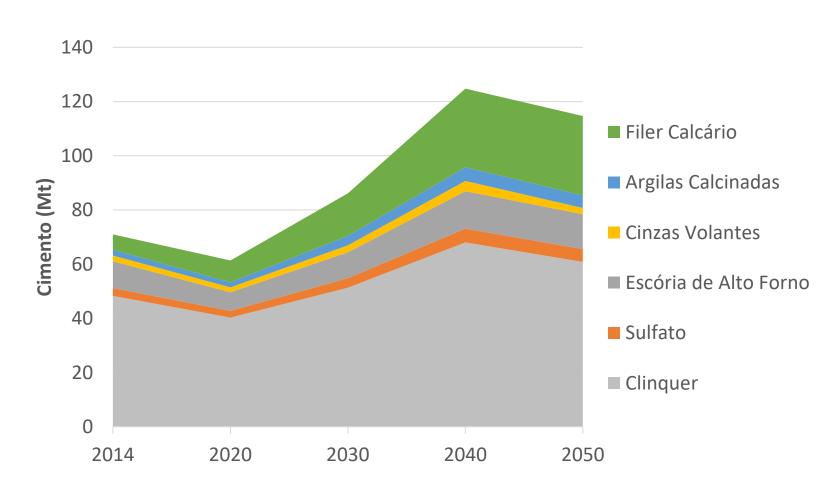
Cimento Portland: clínquer + sulfato + adições

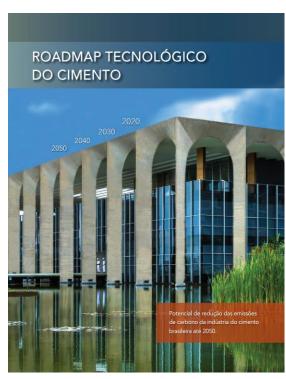
Filer calcário (CaCO₃₎ **Inertes** 0,05-0,75t Reativas Adições Cimento Ca, Si, Al moinho Escória granulada de alto forno **Pozolanas** 0,25-0,95t Clínquer 0,05t Sulfato de Cálcio

Razões para o uso das adições

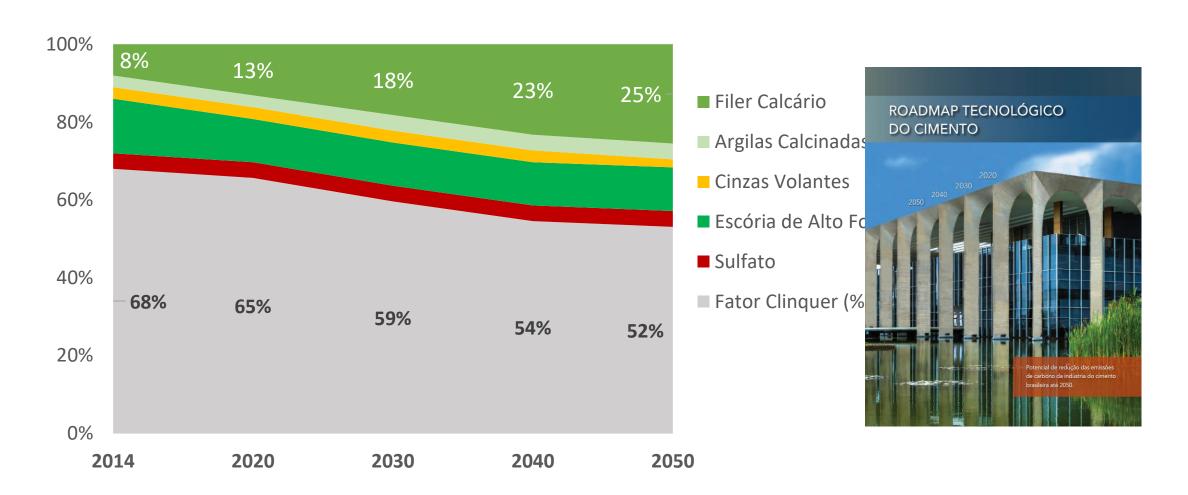
Econômicas

Reduz o teor do clínquer no cimento

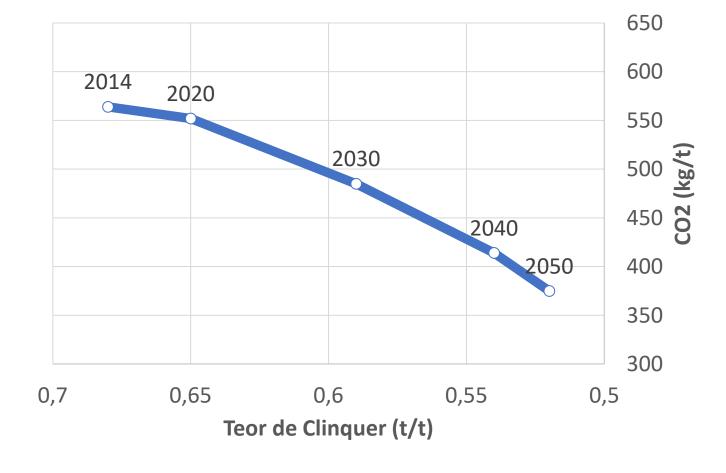

Ambiental

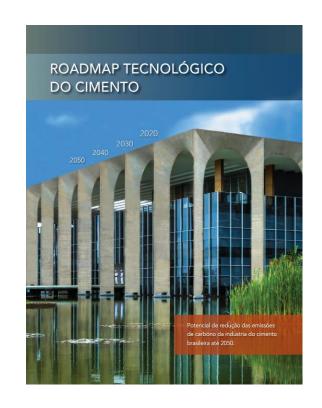

- Uso de resíduos (outras indústrias), redução de aterros
- Emissões de CO₂ de resíduos → zero.

$$E_{cimento}(CO_{2}) = \frac{E_{clinquer} \times clinquer(\%) + E_{adições} \times adições(\%)}{clinquer + adições(\%)}$$


Evolução da produção de cimento

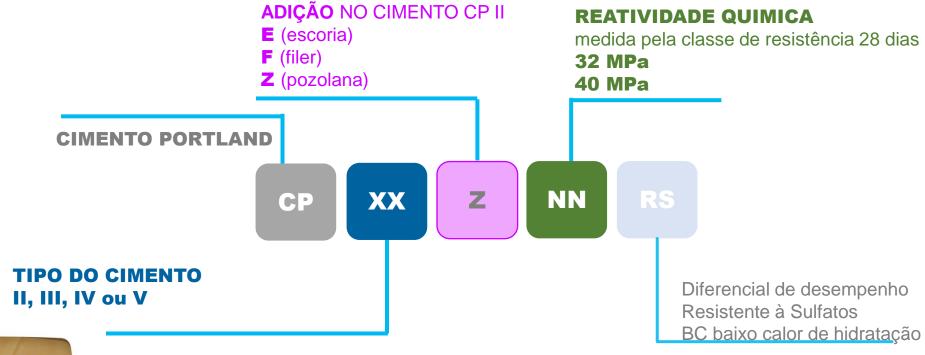
Roadmap Tecnológico do Cimento (ABCP)




Teor médio de adições no cimento Roadmap Tecnológico do Cimento (ABCP)

Evolução da pegada de CO₂

Roadmap Tecnológico do Cimento



Adições nos cimentos

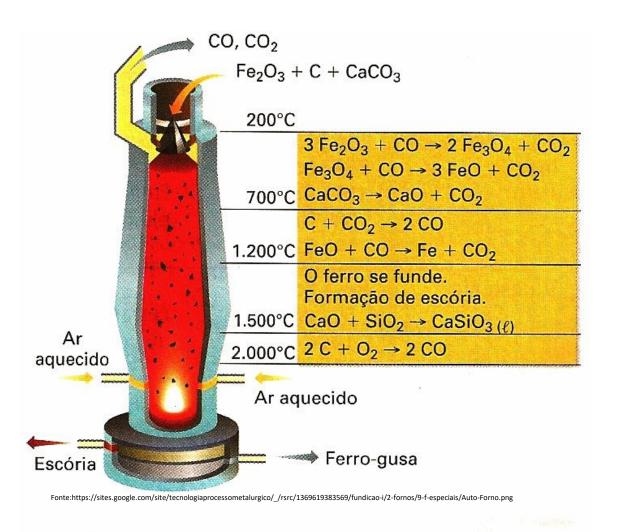
- Alteram composição, reações químicas e microestrutura do cimento
- Afetam
 - a cinética de hidratação
 - Afetam a velocidade de ganho de resistência
 - Durabilidade
- Reduzem o calor de hidratação do cimento
- Diferentes cimentos com adição são formulados para apresentar classes de resistência (reatividade) aos 28 dias
 - 32 MPa
 - 40 MPa

Nomenclatura dos Cimentos Brasileiros

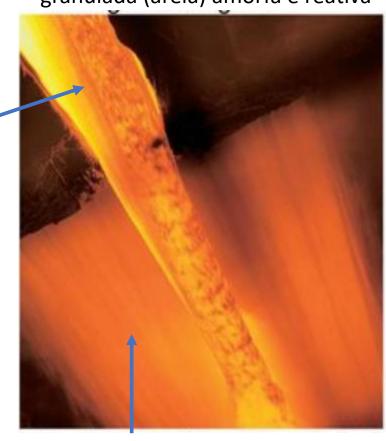
CP II-E – 32 CP III 40

Revisão rápida

- Como os cimentos endurecem?
- Porque utilizamos adições?
- Qual a diferença esperada ente um cimento CP II-E 32 de um CP II-E 40?


 https://forms.gle/3cJM75FjSSCSf Mge9

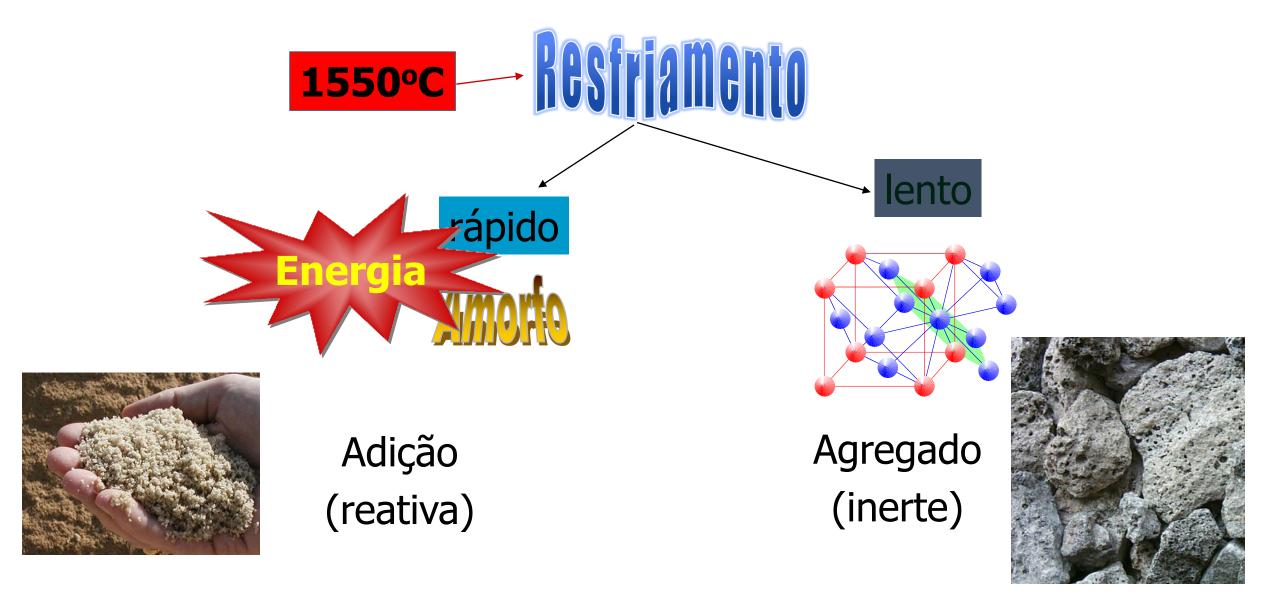
Escória granulada de alto forno


Adição reativa

Escórias de Alto Forno (EAF)

Esquema de alto-forno siderúrgico em funcionamento.

Resfriamento brusco produz escória granulada (areia) amorfa e reativa


Água a temperatura ambiente

escória

líquida

1500°C

Escória de alto-forno

Composição típica escórias de alto forno Brasileiras

	Escória Básica	Escória Ácida	Cimento Portland	
CaO	40 - 45	24 - 39	66	
SiO ₂	30 - 35	38 - 55	22	
Al_2O_3	11 - 18	8 - 19	5	
MgO	2,5 - 9	1,5 - 9	<5	
Fe ₂ O ₃	0 - 2	0,4 - 2,5	3	
FeO	0 - 2	0,2 - 1,5	_	
S	0,5 - 1,5	0,03 - 0,2	-	
CaO/SiO ₂	~1,31	~0,68	3	

Escória de alto forno: efeitos no cimento

Reatividade

- depende do teor de amorfo (não cristalina)
- Composição química da escória (CaO/SiO2)
- Presença de contaminantes
- Meio aquoso pH e íons dissolvidos (ativação)
- Finura

Reação mais lenta que a do clínquer

Menor calor de hidratação

Escória de alto forno: efeitos no cimento endurecido

- Resistência à compressão
 - Menor nas primeiras idades (<28 dias)</p>
 - Maior nas idades avançadas (> 28 dias)
- Durabilidade
 - Poros mais finos: menor transporte de massa
 - Mais resistente ao ataque de sulfatos
 - Menor teor de Portlandita
- Retração
 - Maior retração por secagem devido a poros menores

Cimentos com adição de escória granulada de alto forno

- CP II E: de 6 34%
- CP III: de 35 75%
- Disponibilidade de escória: ~12-15 Mt/ano
- Regiões: Sudeste e Nordeste (1 fábrica)

Pozolanas

Cinzas do Vesúvio Pozolanas do cimento Romano

Pozolanas

Materiais compostos de principalmente de SiO_2 e Al_2O_3 , amorfos que finamente moídos são solúveis em meio alcalino (pH>12) a temperatura ambiente.

Pozolanas são geradas a alta temperatura e resfriadas rapidamente

Ex: cinzas vulcânicas

Reação pozolânica

Dissolução da pozolana libera íons de **Si e Al** para reação com **hidróxido de cálcio** produzido pela dissolução do clínquer

2S + 3CH (meio aquoso) \rightarrow C₃S₂H₃ (pH>12 OH⁻ abundante)

Cimento romano: pozolana + cal hidratada (Ca(OH)₂)

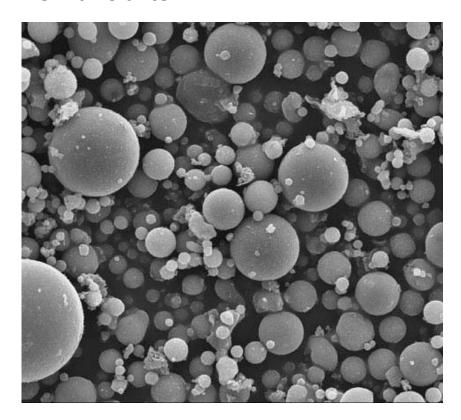
Principais Pozolanas no Brasil

Cinza volante das termoelétricas a carvão mineral

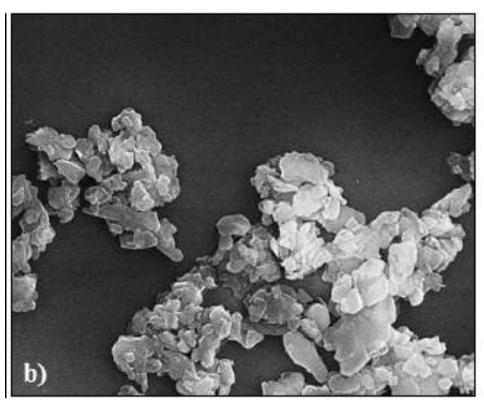
Cinza de casca de arroz (pouco usada)

Sílica ativa (NBR13956) no concreto ferro silício e silício metalico

Resíduos de processos industriais CO₂ ~0



Argilas Calcinadas incluindo Metacaulinita (NBR15894)


CO₂ do combustível de calcinação ~0,20-35 tCO₂/t

Pozolanas

Cinza volante

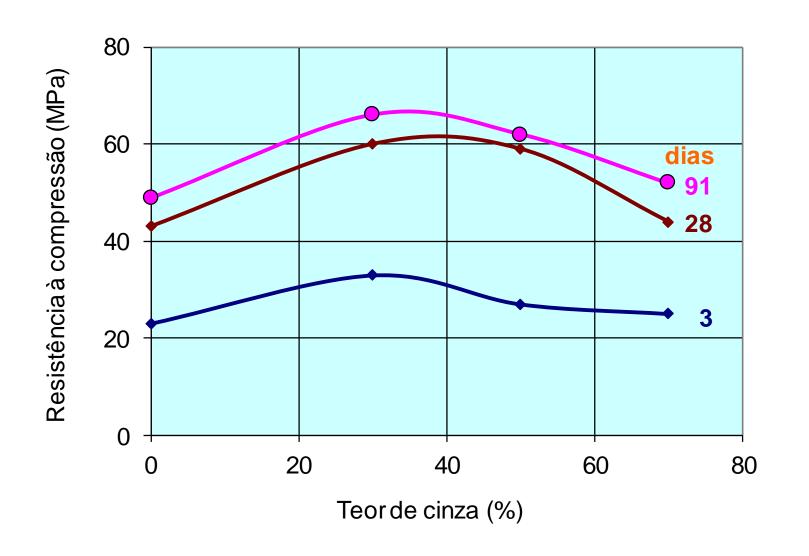
Metacaulinita

Materiais geralmente mais finos que o cimento Portland (aglomeram) Vítreos/amorfos (não cristalinos)

Análises químicas das pozolanas

Componente (wt.%)	Cinzas volar	ite (1)			
	Bituminoso	Sub-bituminoso	Lignita	Metacaulim (2)	Escória (3)
SiO2	20–60	40–60	15–45	49-52	31-38
Al2O3	5–35	20–30	10–25	40-43	9-13
Fe2O3	10–40	4–10	4–15	<5	0-14
CaO	1–12	5–30	15–40	<3	38-44
MgO	0–5	1–6	3–10	<0.5	7-12
SO3	0–4	0–2	0–10	<1	<3
Na2O	0–4	0–2	0–6	-	<3
K2O	0–3	0–4	0–4	<3	<5
LOI	0–15	0–3	0–5	<2	<5

⁽¹⁾ https://doi.org/10.1016/j.pecs.2009.11.003


⁽²⁾ https://doi.org/10.1016/j.jclepro.2021.125852 e https://doi.org/10.1016/j.cemconres.2010.03.020

⁽³⁾ https://doi.org/10.1016/j.apgeochem.2014.04.009

Pozolanas: características e efeitos no cimento

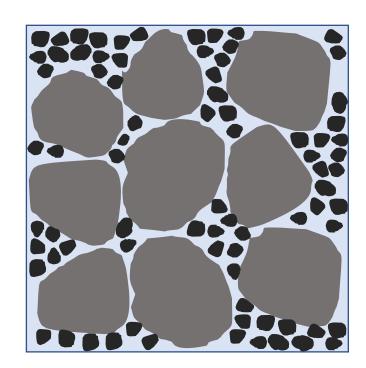
- Reatividade
 - a reação é geralmente lenta
 - Microsilica e metacaulim são mais rápidos
 - depende do tipo, da fração amorfa
 - pH e reagentes
- Redução do calor de hidratação do cimento
- Resistência à compressão (mat. cimentícios)
 - Menor nas primeiras idades (<28 dias)
 - Maior nas idades avançadas (> 28 dias)
- Durabilidade (mat. cimentícios)
 - Forma menos cal hidratada
 - Menos poroso (mais C-S-H)

Teor ótimo de adição de adição

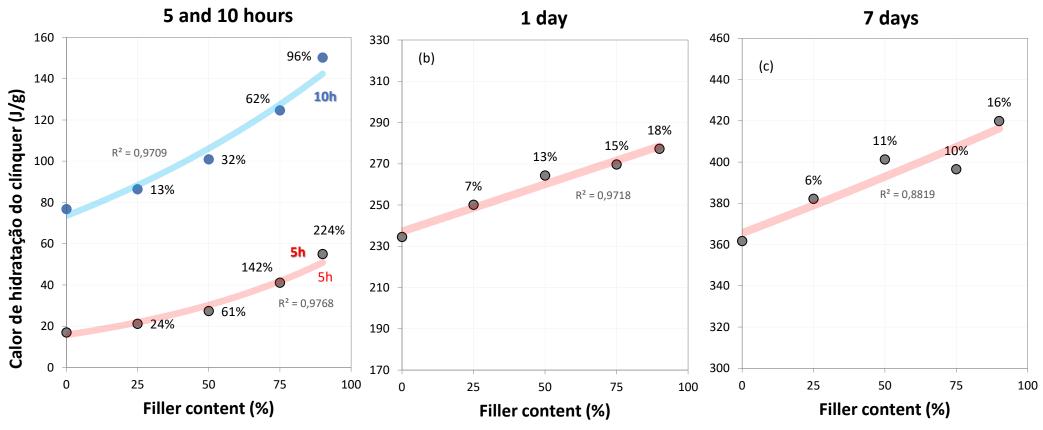
Cimentos com pozolanas

• CP II-Z: de 6 a 14%

• CP IV: de 15 a 50%


- Disponibilidade
 - Cinzas volantes: ~2 a 3 Mt /ano
 - Termoelétricas à carvão (SC, RS, CE, MA)
 - Argila calcinada: ilimitada
 - RO, MS, DF, PE, PA

Fíleres


A norma brasileira atual limita os fíleres ao calcário puro.

Sobre o fileres

- Fileres são predominantemente :
 - Pouco solúveis a temperatura ambiente
 - Química inertes ou quase inertes
 - Efeito é de diluição
- Fornecem sólidos para a pasta com baixo CO₂, baixo custo e abundante
- Diluição precisa ser compensada
 - Moagem mais fina do clínquer
 - Redução da demanda de água para trabalhabilidade

Filer calcário acelera a reação do clínquer até 7 dias

Na moagem conjunta o clínquer fica mais grosso e pode haver perda nas primeiras idades.

Efeitos dos fíleres

- Aceleram a hidratação do clínquer (nucleação)
- Reduzem calor de hidratação do cimento (tem menos clínquer para reagir)
- Reduzem a demanda de água para boa reologia
- Reduzem retração para mesmo teor de cimento e água
- Filer calcário: alguma reação química com os aluminatos

Cimentos com filer calcário

- Filer + clinquer
 - CP II- F 11 a 25%
 - CP V 0 a 10%
- Filer + clínquer + escória
 - CP II-E 0 a 15%
 - CP III 0 a 10%
- Filer + clínquer + pozolana
 - CP II-Z 0 a 15%
 - CP IV 0 a 10%
- Todo o cimento comercial brasileiro tem filer calcário na composição.
- Outros minerais também poderiam ser usados como filer caso a norma permitisse.

Fíler calcário e outros tecnicamente viáveis

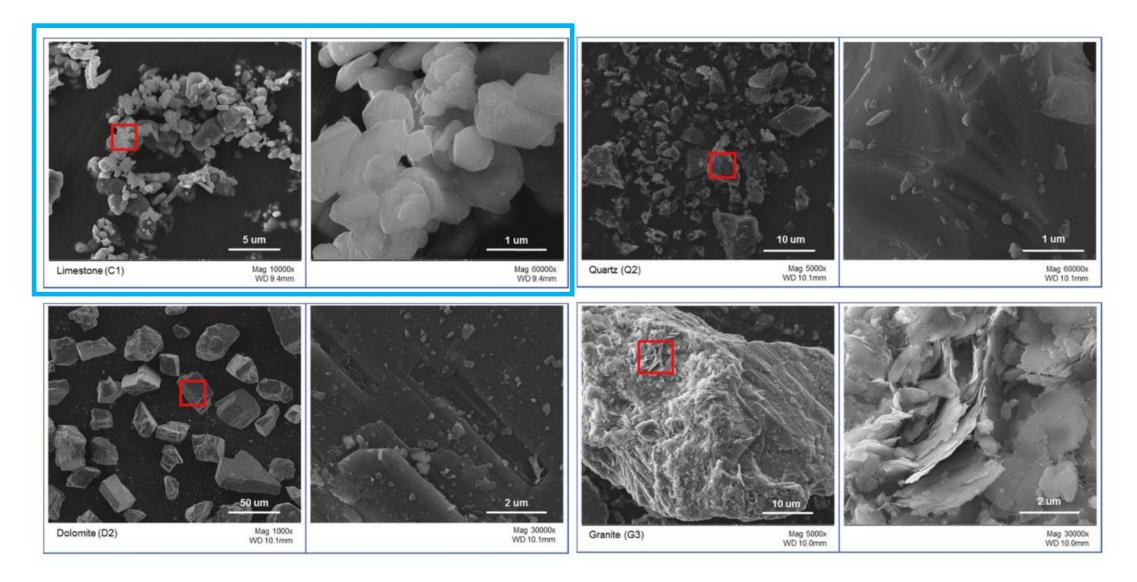


Tabela 2 – Limites de composição do cimento Portland (porcentagem de massa)

Designação normalizada	Sigla	Classe de resistência	Sufixo	Clínquer + sulfatos de cálcio	Escória granulada de alto-forno	Material pozolânico	Material carbonático
Cimento Porland comum	CPI			95 - 100	0 – 5		
	CP I-S			90 – 94	0	0	6 – 10
Cimento Portland composto com escória granulada de alto-forno	CP II-E			51 – 94	6 – 34	0	0 – 15
Cimento Porland composto com material pozolânico	CP II-Z	25, 32 ou 40	RS	71 – 94	0	6 – 14	0 – 15
Cimento Portland composto com material carbonático	CP II-F		ou BC	75 – 89	0	0	11 – 25
Cimento Portland de alto forno	CP III			25 – 65	35 – 75	0	0 – 10
Cimento Portland pozolânico	CP IV			45 – 85	0	15 – 50	0 – 10
Cimento Portland de alta resistência inicial	CP V a			90 – 100	0	0	0 – 10

Tabela 2 – Limites de composição do cimento Portland (porcentagem de massa)

Designaçã	io normalizada	Sigla	Classe de resistência	Sufixo	Clínquer + sulfatos de cálcio	Escória granulada de alto-forno	Material pozolânico	Material carbonático
Cimento Portland branco	Estrutural	СРВ	25, 32 ou 40	M	75 – 100	-	-	0 – 25
	Não estrutural		-	1-1	50 – 74	-	_	26 – 50

No caso de cimento Portland de alta resistência inicial resistente a sulfatos (CP V-ARI RS), podem ser adicionadas escórias granuladas de alto-forno ou materiais pozolânicos.

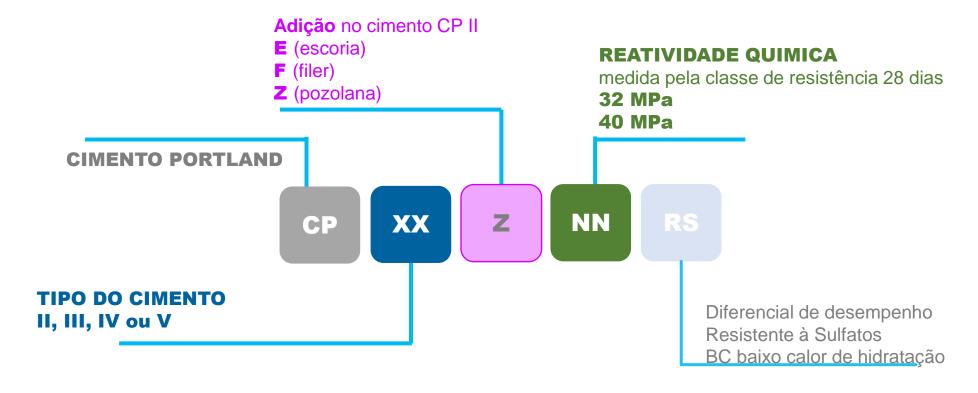
Revisão rápida

- Quais as principais adições que utilizamos no cimento?
- Como as adições influenciam o cimento?
- Qual a principal característica que diferencia um filer das demais adições?
- https://forms.gle/W6X4fTzZTeik NAzn9

Efeito das adições usuais no cimento

- Reduzem o calor de hidratação
- Alteram o ganho de resistência do cimento no tempo
 - Depende do tipo de adição, da área específica e da idade.
 - As resistências nas primeiras idades (< 28 dias) reduzem
 - As resistências continuam crescendo após 28 dias

Alteram a microestrutura e a durabilidade


- Menos permeável a agentes agressivos
- Ataque por sulfatos
- Reação álcali-agregado
- Menor reserva alcalina

Efeito das adições usuais no cimento

- Pegada de CO2 do cimento
 - Resíduos: escória de alto forno cinza volante
 - pegada de CO₂ da produção alocada ao produto
 - Argilas calcinadas Pozolana artificial:
 - CO2 limitado aos combustíveis fósseis

Reduzem a pegada de CO2 do cimento

Nomenclatura dos Cimentos Brasileiros

Bibliografia

DAL MOLIN, D.C.C. **Adições minerais**. In: Geraldo Cechella Isaia. (Org.). Concreto: Ciência e Tecnologia. 2ed.São Paulo: Instituto Brasileiro do Concreto (IBRACON), 2011, v. 1, p. 185-232.

AHMARUZZAMAN, M. A review on the utilization of fly ash, **Progress in Energy and Combustion Science**, Volume 36, Issue 3, 2010, 327-363, ISSN 0360-1285, https://doi.org/10.1016/j.pecs.2009.11.003.

PIATAK, N. M., PARSONS, M. B., SEAL, R. R. Characteristics and environmental aspects of slag: A review, **Applied Geochemistry**, Volume 57, 2015, 236-266, ISSN 0883-2927, https://doi.org/10.1016/j.apgeochem.2014.04.009.

Rashad, A. M. Metakaolin as cementitious material: History, scours, production and composition – A comprehensive overview, **Construction and Building Materials**, Volume 41, 2013, 303-318, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2012.12.001.

Li, C., Sun, H., Li, L. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements, **Cement and Concrete Research**, Volume 40, Issue 9, 2010, 1341-1349, ISSN 0008-8846, https://doi.org/10.1016/j.cemconres.2010.03.020.