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Constrained problems

The problem
Given

x € R" - variables
f : R" — R - objective function

gi e h; constraints
Pconstr

minimize f(x)
s.t gi(x)<0 ic{1,2,...m}
hi(x) =0 ie{1,2,...1}
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Constrained problems

Example 0 - Budgetary constraints

Suppose you are running a factory, producing some sort of widget that requires steel as a raw
material. Your costs are predominantly human labor, which is $20 per hour for your workers, and
the steel itself, which runs for $170 per ton. Suppose your revenue is loosely modeled by the
following equation: R(h, s) = 200h%/3s'/3

e h represents hours of labor

e s represents tons of steel

If your budget is $20000, what is the maximum possible revenue?
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Lagrange multipliers

The model is
max 200h%/3s1/3
s.t. 20h + 170s = 20, 000

$20,000 $60,000

R =200n%3s"%

20k +170s = 20,000

h
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Lagrange multipliers

Consider the problem Pcopstr and let A € R’ and uwERM

The Lagrangian function is defined as

L0, 1) = £() + A'h(x) + g (x)

m !
L(x, A\, p) = f(x) + ngi(x) + Z Aihi(x)
i=1

i=1

Append each constraint function to the objective, multiplied by a scalar for that
constraint called a Lagrange multiplier.
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Lagrange multipliers

Example 0 : The Lagrangian is given as:

L(h,s,\) = 200n*/3s1/3 4 \(20h + 170s — 20, 000)

What happens with critical points of £(h,s,\) ? That is, when VL(h,s,\) = 0?
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Lagrange multipliers

Example 1 :

Find the points on the circle x? 4+ y? = 80 which are closest to the point (1,2) .
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Lagrange multipliers

Example 1 :

Find the points on the circle x? 4+ y? = 80 which are closest to the point (1,2) .

min f(xi1,x2) = (x1 — 1)® + (xo — 2)?

h(xi,x0) = X2 + x2 = 80
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Lagrange multipliers

Example 1 :

Find the points on the circle x? 4+ y? = 80 which are closest to the point (1,2) .
min f(xi1,x2) = (x1 — 1)® + (xo — 2)?

h(xi,x0) = X2 + x2 = 80

Lagrangian:

L(x1,x2,A) = (x1 — 1)2 + (x2 — 2)% + A\(x? + x2 — 80)

Il=1andn=2
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Lagrange multipliers

Example 2 :

minf(x) = x? — X3

x1+2x+1=0
x1—xp <3
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Lagrange multipliers

Example 2 :
minf(x) = x? — X3
x1+2x+1=0
x1—xp <3
Lagrangian:

L(x1, %2, A, 1) =xF —x3 + A(a + 2 + 1)+ p(xa — x2 — 3)

m=1Il=1land n=2
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Lagrange multipliers

What happens if we consider the problem minyy , L(xX, p)?
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Lagrange multipliers

What happens if we consider the problem minyy , L(xX, p)?

Example 3 : Consider

min f(x) = —4x; + 0.1x% — 5x, + 0.2x3
x1 + 2xp = 40

Build the Lagrangian and its gradient
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Lagrange multipliers

What happens if we consider the problem minyy , L(xX, p)?
Example 3 : Consider
min f(x) = —4x; + 0.1x% — 5x, + 0.2x3
x1 + 2xp = 40

Build the Lagrangian and its gradient
Lagrangian £ (x,\) = —4x; + 0.1xf —5xp + 0.2x22 + A1(x1 + 2x2 — 40)
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Lagrange multipliers

What happens if we consider the problem minyy , L(xX, p)?

Example 3 : Consider

min f(x) = —4x; + 0.1x% — 5x, + 0.2x3
x1 + 2xp = 40
Build the Lagrangian and its gradient
Lagrangian £ (x,\) = —4x; + 0.1xf —5xp + 0.2x22 + A1(x1 + 2x2 — 40)
Gradient
—4+0.2x1 + \1

VL(X, )\) = =54 0.4x> + 21
x1 + 2xp — 40
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Method of Lagrange multipliers

What happens when we analyze the gradient of the Lagrangian?

VL(x*,\*) =0
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Method of Lagrange multipliers

What happens when we analyze the gradient of the Lagrangian?

VL(x*,\*) =0

—4 — +0.2x1 + \1
\s (X, )\) = —5 4 0.4x2 4+ 21 =0
x1 + 2xo — 40
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Lagrange multipliers

Solving the system
VL(x*,A*)=0

we obtain
x{ =~ 18.3, x; ~ 10.8 and A* = 0.33

Which is the optimal solution of the original problem

Once we have found candidate solutions x*, it is not always easy to figure out
whether it corresponds to a minimum, a maximum or neither.
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Lagrange multipliers

Interpretation of Lagrange multipliers

Consider in Example 0, \* such that

VL(h,s,A*) =0

A* tells us how much more money we can make by changing our budget.
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Lagrange multipliers

Observe that the partial derivatives of the Lagrangian

£0x,X) = F(x) + X'h(x) + u'g(x)

are as follows:

VxL(x,A) = Vif(x) + AN Vih(x) + p' Vg (x)

VaL(x,A) = h(x)

VuL(x,A) = g(x)

Exercice: analyze what happens in Example 1

Entrega aula For example 2, verify the conditions above
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Lagrange multipliers

Specific situations shall be addressed. Equality constraints are different from
inequalities...

Consider Pegyal

minimize f(x)
s.t hi(x)=0 ie{1,2,...1}

Let us look for the points (%1, X2, ..., %n, A1, A2, ....\;) for which

oc ot _oc_oc _oc o "
Ox1 _8xz_"'_8x,,_8/\1 _3)\2_.“_3)\/_

In many situations ()?1,)_(2, ey Xny AL, A2, 5\/) solves the original problem
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Lagrange multipliers

Theorem - Important

If £(x) is a convex function and h;(x) is linear for all i, then any point
()_<1,>_(2, s Xny AL, A2, 5\/) satisfying (1) will yield an optimal solution (X1, X2, ..., Xn)
to Pequal

Analyze the previous examples
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Lagrangian

Example
min 6x12 + 4X22 + 3)<32
24x1 + 24x, = 360

x3=1
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Lagrangian

Example
min 6x12 + 4X22 + 3)<32

24x7 + 24x> = 360
x3=1

L(x,X) = 6x2 + 4x2 + 3x2 4+ A1 (360 — 24x1 — 24x2) + A2 (1 — x3)
VF(x)t = [ 12x; 8x» 6x3 ]
Vhi(x)t = [ 24 —24 0 ]

th(x)fz[o 0 1]
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Lagrangian

o VL (X, )\) = Vf(X) -+ )\1Vh1(X) + Athz(X) =0
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Lagrangian

o VL (X, )\) = Vf(X) -+ )\1Vh1(X) + Athz(X) =0

12xy =24\
VL (X7 )\) =0= 8xo =24\
6x3 =1\

24x1 + 24x, = 360

° VA,C(X,)\)—Oéh(x)_Oi{
X3 =1

Solution of the system: (x*, \*)! =(2,3,1,9,6)

f(x) is a convex function and hj(x) is linear for all i, = x* is a solution of the problem

Celma de Oliveira Ribeiro



Lagrangian

o VL (X, )\) = Vf(X) -+ )\1Vh1(X) + Athz(X) =0

12xy =24\
VL (X7 )\) =0= 8xo =24\
6x3 =1\

24x1 + 24x, = 360

° VA,C(X,)\)—O:>h(x)_O:>{
X3 =1

Solution of the system: (x*, \*)! =(2,3,1,9,6)
f(x) is a convex function and hj(x) is linear for all i, = x* is a solution of the problem

VL (X7 /\) =0= 7Vf(X) = )\1Vh1(x) -+ )\QV/’IQ(X)
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Lagrange multipliers

Entrega semanal

A company is planning to spend $10 on advertising. It costs $3 per minute to
advertise on TV and $1 per minute to advertise on radio.If the firm buys x minutes of
TV advertising and y minutes of radio advertising, its revenue is given as

f(x,y) = —2x%> — y? + xy + 8x + 3y
. How can the firm maximize its revenue?
Hint:

e Write the optimization problem (in the min form) and the lagragian
e Find the partial derivatives and set them = 0
e Solve the resulting system

e Analyse the Hessian
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Lagrangian

Some important questions:

o Can the solution of ( Pequa ) be obtained through unconstrained optimization
considering the Lagrangian as a penalty function?
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Lagrangian

Some important questions:
o Can the solution of ( Pequa ) be obtained through unconstrained optimization
considering the Lagrangian as a penalty function?
e When critical points( w* is a critical point of ¥ (w) if Vi (w*)=0) of the
Lagrangian are optimal solutions of the original problem?
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Lagrangian

Some important questions:

o Can the solution of ( Pequa ) be obtained through unconstrained optimization

considering the Lagrangian as a penalty function?
e When critical points( w* is a critical point of ¥ (w) if Vi (w*)=0) of the
Lagrangian are optimal solutions of the original problem?

e Does an optimal solution of the problem provide a critical point for the
Lagrangian?
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Constrained problems

Lagrangian

Does an optimal solution of the problem provide a critical point for the Lagrangian?
Consider

min x1 + x> + x32

X1:1

s.t.
x12 + X22 =1

t
e The minimum is achieved at [ 100 ]

e The associated Lagrangian is:
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Constrained problems

Lagrangian
Does an optimal solution of the problem provide a critical point for the Lagrangian?

Consider
min x1 + x> + x32

X1:1

s.t.
x12 + X22 =1

t
e The minimum is achieved at [ 100 ]

e The associated Lagrangian is:
L(x,A) =x1+x 452 +A(1—x1)+ Xl —x2 -2 )
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Constrained problems

Lagrangian
Does an optimal solution of the problem provide a critical point for the Lagrangian?

Consider
min x1 + x> + x32

X1:1

s.t.
x12 + X22 =1

t
e The minimum is achieved at [ 100 ]

e The associated Lagrangian is:
L(x,A) =x1+x 452 +A(1—x1)+ Xl —x2 -2 )

. 0L . t
e Write — and explain what happens at [ 1 0 0 X X ]
Oxp
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Constrained problems

Lagrangian
Does an optimal solution of the problem provide a critical point for the Lagrangian?

Consider
min x1 + x> + x32

X1:1

s.t.
x12 + X22 =1

t
* The minimum is achieved at [ 1 0 0 |
e The associated Lagrangian is:

L(x,A) =x1+x 452 +A(1—x1)+ Xl —x2 -2 )

. 0L . t
e Write — and explain what happens at [ 1 0 0 X X ]
Oxp

oL
8—(1,0,0,)\1, A2) =1, VA1, A2 and it does not vanish at the optimal solution
X2

It means that V.£(1,0,0, A\1, \2) # 0

Entrega semanal: Write Vhi(x) and Vhy(x). Verify that these vectors are linearly
dependent for xt = [ 1 0 0 ]
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Example 4
Consider

min 2x12 +X22
st. x1+x=1

Define the Lagrangian
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Example 4
Consider

min 2x12 +X22
st. x1+x=1

Define the Lagrangian £ (x,A) = 2x? + x2 + A1(1 — x1 — x2)
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Example 4
Consider

min 2x12 + x22

st. x1+x=1

Define the Lagrangian £ (x,A) = 2x? + x2 + A1(1 — x1 — x2)
Build the gradient of the Lagrangian
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Example 4
Consider

min 2x12 + x22

st. x1+x=1

Define the Lagrangian £ (x,A) = 2x? + x2 + A1(1 — x1 — x2)
Build the gradient of the Lagrangian

A — A]

VL(X*,A") = | 2x} — X}

* *
1—x{ —x3
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Example 4
Consider

min 2x12 + x22

st. x1+x=1

Define the Lagrangian £ (x,A) = 2x? + x2 + A1(1 — x1 — x2)
Build the gradient of the Lagrangian

4xF — N}
1 1
VL(X*,A") = | 2x} — X} =0=
1—xf —x3

The above solution is optimal
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Theorem
Consider

Assume x* is an optimal solution of
min {f(x)|h(x) =0
xe]llgn{ ()1h(x) }

Then either

i the vectors Vhi(x*),Vho(x*), ... Vh(x*) are linearly dependent, or
ii there exists a vector \* such that VL (x*,A\*) =0

Notation: VxL and VL ‘

Usually we cannot assure that optimal solutions are critical points of the La-
grangian!

These are necessary conditions for optimality
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Optimality Conditions

Recapitulation
Let f : R" - R, g : R” — R™ and h: R" — R/ and consider the problem

min {(x)]g(x) < 0, h(x) = 0}

Definition
Consider £ : R" x R™ x R — R defined by

L(x,\ ) = F(x) + plg(x) + XA(x)Vx € R", p e R™ X € R/
The function L is the Lagrangian and the variables X and p are the dual variables

Main ideia: Find (x, A, 1) such that VL (x, A\, ) =0

Celma de Oliveira Ribeiro



Optimality conditions for constrained problems

Main idea

Algebraic characterizations of solutions allowing computations.

Sufficient conditions provide a way to guarantee that a candidate point is optimal

Necessary conditions indicate when a point is not optimal
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Optimality conditions for constrained problems

Main idea

Algebraic characterizations of solutions allowing computations.

Sufficient conditions provide a way to guarantee that a candidate point is optimal

Necessary conditions indicate when a point is not optimal

Unconstrained problems = Analyze x*, a stationary point (Vf(x*) = 0)

Constrained problems = Analyze x*,a Karush-Kuhn-Tucker (KKT) point
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Optimality conditions for constrained problems

Example - equality

Consider

min f(x) = x1 + x2

h(x)=x2+x2—-2=0

The unique solution is given by x* = [-1 — 1]

Computing the gradients of f and h in x*,
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Optimality conditions for constrained problems

Example - equality

Consider

min f(x) = x1 + x2

h(x)=x2+x2—-2=0

The unique solution is given by x* = [-1 — 1]

Computing the gradients of f and h in x*,

V(x*) = [ 1 } and Vh(x*) = [ :; ]
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Optimality conditions for constrained problems

Example - equality

Consider
min f(x) = x1 + x2
h(x)=x?+x3-2=0

The unique solution is given by x* = [-1 — 1]

Computing the gradients of f and h in x*,
1 -2
Vi(x*) = |: 1 :| and Vh(x*) = |: 5 ]

V£(x*) and Vh(x*) are parallel, i.e., there exists a scalar A = % such that

—Vf(x*) = AVh(x*)
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Optimality conditions for constrained problems

Example - equality

Consider

min f(x) = x1 + x2
h(x):x12+x2272:0
The unique solution is given by x* = [-1 — 1]
Computing the gradients of f and h in x*,
V(x*) = [ 1 } and Vh(x*) = [ :; ]

V£(x*) and Vh(x*) are parallel, i.e., there exists a scalar A = % such that

—Vf(x*) = AVh(x*)

’ This is a necessary condition for optimality in the general case
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Equality Constrained Optimization

Consider the following example
min f(x) = 2x% + x3
h(x)=x1+x =1

The Lagrangian is: L(x1,x2,A) = 2x2 + x2 + A(1 — x1 — x2)

VxL=0
VaL=0

Solve for the following:
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Equality Constrained Optimization

Consider the following example
min f(x) = 2x% + x3
h(x)=x1+x =1

The Lagrangian is: L(x1,x2,A) = 2x2 + x2 + A(1 — x1 — x2)

VxL=0
VaL=0

Solving this system of equations yields

Solve for the following:

1 2 4
Xl*zgvxgzgv)‘*:7

Is this a minimum or a maximum?
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Optimality conditions

Graphically

X2

I\ VF(x*) = A*Vh(x')

X
I
o

X1
=1 1

xt+x=1

e Consider the gradients of f and h at the optimal point

e They must point in the same direction, though they may have different lengths
VF(x*) = AVh(x*)
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Optimality conditions - Karush-Kuhn-Tucker (KKT)

Consider problem

minimize f(x)
st gi(x) <0 i€eZ=1{1,2,...m}
hi(x) =0 ie&={1,2,...1}

First order necessary Conditions

x* is KKT point if there are lagrange multipliers vectors \* and p*, such that

t
[x* A* p*] satisfies:

ViL(x*, \*p*) = 0

g (x*) <0

h(x*) =0

w* >0
1igi(x*) =0 Viel

Karush-Kuhn—Tucker Conditions
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Optimality conditions

Example
min(x —2)% +2(y — 1)?
x+4y <3

y<x
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Optimality conditions

Example

min(x —2)% +2(y — 1)?

x+4y <3

y<x

Lagrangian

L(x,y,p1,p2) = (x = 2)% +2(y — 1)? + pa(x + 4y — 3) + pa(—x +y)
KKT conditions
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Optimality conditions

Example

min(x —2)% +2(y — 1)?

x+4y <3

y<x

Lagrangian

L(x,y,p1,p2) = (x = 2)% +2(y — 1)? + pa(x + 4y — 3) + pa(—x +y)
KKT conditions

o ViL(x,y,p1,p2) ==2(x —2) +p1 —p2 =0
VyL(x,y, p1, p2) = 4(y — 1) +4ps + p2 = 0
Xx+4y—3<0

y—x<0

pa(x+4y —3)=0

p2(y —x) =0

Hi,p2 >0
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Optimality conditions

Check 4 cases
L uyp=pwp=0=>x=2y=1
2. m=0y-—x=0=>x=%m=—}%

3. up=0x+4y-3=0=>x=3,y=13,=3

4. x+4y—-3=0y—-x=0=>x=3,y=3, u=2

Optimal solution: x = ‘3—‘, y= g, flx,y) =

‘ Does it always happen?
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