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Constrained problems

The problem
Given

x ∈ Rn - variables

f : Rn → R - objective function

gi e hi constraints

Pconstr

minimize f (x)

s.t gi (x) ≤ 0 i ∈ {1, 2, . . .m}
hi (x) = 0 i ∈ {1, 2, . . . l}
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Constrained problems

Example 0 - Budgetary constraints

Suppose you are running a factory, producing some sort of widget that requires steel as a raw

material. Your costs are predominantly human labor, which is $20 per hour for your workers, and

the steel itself, which runs for $170 per ton. Suppose your revenue is loosely modeled by the

following equation: R(h, s) = 200h2/3s1/3

• h represents hours of labor

• s represents tons of steel

If your budget is $20000, what is the maximum possible revenue?
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Lagrange multipliers

The model is

max 200h2/3s1/3

s.t. 20h + 170s = 20, 000

Celma de Oliveira Ribeiro



Lagrange multipliers

Consider the problem Pconstr and let λ ∈ Rl and µ ∈ Rm

The Lagrangian function is defined as

L(x , λ, µ) = f (x) + λth(x) + µtg(x)

L(x , λ, µ) = f (x) +
m∑
i=1

µigi (x) +
l∑

i=1

λihi (x)

Append each constraint function to the objective, multiplied by a scalar for that

constraint called a Lagrange multiplier.
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Lagrange multipliers

Example 0 : The Lagrangian is given as:

L(h, s, λ) = 200h2/3s1/3 + λ(20h + 170s − 20, 000)

What happens with critical points of L(h, s, λ) ? That is, when ∇L(h, s, λ) = 0?
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Lagrange multipliers

Example 1 :

Find the points on the circle x2 + y2 = 80 which are closest to the point (1, 2) .

min f (x1, x2) = (x1 − 1)2 + (x2 − 2)2

h(x1, x2) = x21 + x22 = 80

Lagrangian:

L(x1, x2, λ) = (x1 − 1)2 + (x2 − 2)2 + λ(x21 + x22 − 80)

l = 1 and n = 2
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Lagrange multipliers

Example 2 :

minf (x) = x21 − x22

x1 + 2x2 + 1 = 0

x1 − x2 ≤ 3

Lagrangian:

L(x1, x2, λ, µ) = x21 − x22 + λ(x1 + 2x2 + 1) + µ (x1 − x2 − 3)

m = 1, l = 1 and n = 2
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Lagrange multipliers

What happens if we consider the problem minxλ,µ L(xλ, µ)?

Example 3 : Consider

min f (x) = −4x1 + 0.1x21 − 5x2 + 0.2x22

x1 + 2x2 = 40

Build the Lagrangian and its gradient

Lagrangian L (x , λ) = −4x1 + 0.1x21 − 5x2 + 0.2x22 + λ1(x1 + 2x2 − 40)

Gradient

∇L (x , λ) =

 −4 + 0.2x1 + λ1

−5 + 0.4x2 + 2λ1

x1 + 2x2 − 40


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Method of Lagrange multipliers

What happens when we analyze the gradient of the Lagrangian?

∇L (x∗, λ∗) = 0

∇L (x , λ) =

 −4−+0.2x1 + λ1

−5 + 0.4x2 + 2λ1

x1 + 2x2 − 40

 = 0
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Lagrange multipliers

Solving the system

∇L (x∗, λ∗) = 0

we obtain

x∗1 ≈ 18.3 , x∗2 ≈ 10.8 and λ∗ = 0.33

Which is the optimal solution of the original problem

Once we have found candidate solutions x∗, it is not always easy to figure out

whether it corresponds to a minimum, a maximum or neither.
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Lagrange multipliers

Interpretation of Lagrange multipliers

Consider in Example 0, λ∗ such that

∇L(h, s, λ∗) = 0

λ∗ tells us how much more money we can make by changing our budget.
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Lagrange multipliers

Observe that the partial derivatives of the Lagrangian

L(x , λ) = f (x) + λth(x) + µtg(x)

are as follows:

∇xL(x , λ) = ∇x f (x) + λt∇xh(x) + µt∇xg(x)

∇λL(x , λ) = h(x)

∇µL(x , λ) = g(x)

Exercice: analyze what happens in Example 1

Entrega aula For example 2, verify the conditions above
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Lagrange multipliers

Specific situations shall be addressed. Equality constraints are different from

inequalities...

Consider Pequal

minimize f (x)

s.t hi (x) = 0 i ∈ {1, 2, . . . l}

Let us look for the points
(
x̄1, x̄2, ..., x̄n, λ̄1, λ̄2, ....λ̄l

)
for which

∂L
∂x1

=
∂L
∂x2

= ... =
∂L
∂xn

=
∂L
∂λ1

=
∂L
∂λ2

= ... =
∂L
∂λl

= 0 (1)

In many situations
(
x̄1, x̄2, ..., x̄n, λ̄1, λ̄2, ....λ̄l

)
solves the original problem

Celma de Oliveira Ribeiro



Lagrange multipliers

Theorem - Important

If f (x) is a convex function and hi (x) is linear for all i , then any point(
x̄1, x̄2, ..., x̄n, λ̄1, λ̄2, ....λ̄l

)
satisfying (1) will yield an optimal solution (x̄1, x̄2, ..., x̄n)

to Pequal

Analyze the previous examples
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Lagrangian

Example

min 6x21 + 4x22 + 3x23

24x1 + 24x2 = 360

x3 = 1

L (x , λ) = 6x21 + 4x22 + 3x23 + λ1 (360− 24x1 − 24x2) + λ2 (1− x3)

∇f (x)t =
[

12x1 8x2 6x3

]
∇h1(x)t =

[
−24 −24 0

]
∇h2(x)t =

[
0 0 1

]
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Lagrangian

• ∇xL (x , λ) = ∇f (x) + λ1∇h1(x) + λ2∇h2(x) = 0

Linear system

∇xL (x , λ) = 0 ⇒


12x1 = 24λ1

8x2 = 24λ1

6x3 = 1λ2

• ∇λL (x , λ) = 0 ⇒ h(x) = 0 ⇒
{

24x1 + 24x2 = 360

x3 = 1

Solution of the system: (x∗, λ∗)t = (2, 3, 1, 9, 6)

f (x) is a convex function and hi (x) is linear for all i , ⇒ x∗ is a solution of the problem

∇xL (x , λ) = 0 ⇒ −∇f (x) = λ1∇h1(x) + λ2∇h2(x)
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Lagrangian
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Lagrange multipliers

Entrega semanal

A company is planning to spend $10 on advertising. It costs $3 per minute to

advertise on TV and $1 per minute to advertise on radio.If the firm buys x minutes of

TV advertising and y minutes of radio advertising, its revenue is given as

f (x , y) = −2x2 − y2 + xy + 8x + 3y

. How can the firm maximize its revenue?

Hint:

• Write the optimization problem (in the min form) and the lagragian

• Find the partial derivatives and set them = 0

• Solve the resulting system

• Analyse the Hessian
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Lagrangian

Some important questions:

• Can the solution of ( Pequal ) be obtained through unconstrained optimization

considering the Lagrangian as a penalty function?

• When critical points( w∗ is a critical point of ψ(w) if ∇ψ(w∗) = 0 ) of the

Lagrangian are optimal solutions of the original problem?

• Does an optimal solution of the problem provide a critical point for the

Lagrangian?
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Constrained problems

Lagrangian
Does an optimal solution of the problem provide a critical point for the Lagrangian?

Consider

min x1 + x2 + x23

s.t.
x1 = 1

x21 + x22 = 1

• The minimum is achieved at
[

1 0 0
]t

• The associated Lagrangian is:

L (x , λ) = x1 + x2 + x23 + λ1(1− x1) + λ2(1− x21 − x22 :)

• Write
∂L
∂x2

and explain what happens at
[

1 0 0 λ1 λ2

]t
∂L
∂x2

(1, 0, 0, λ1, λ2) = 1, ∀λ1, λ2 and it does not vanish at the optimal solution

It means that ∇L(1, 0, 0, λ1, λ2) ̸= 0

Entrega semanal: Write ∇h1(x) and ∇h2(x). Verify that these vectors are linearly

dependent for x̄ t =
[

1 0 0
]
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Example 4
Consider

min 2x21 + x22

s.t. x1 + x2 = 1

Define the Lagrangian

L (x , λ) = 2x21 + x22 + λ1(1− x1 − x2)

Build the gradient of the Lagrangian

∇L (x∗, λ∗) =

 4x∗1 − λ∗
1

2x∗2 − λ∗
1

1− x∗1 − x∗2

 = 0 ⇒

x∗1 =
1

3
, x∗2 =

2

3
, λ∗

1 =
4

3

The above solution is optimal
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Theorem
Consider

Assume x∗ is an optimal solution of

min
x∈Rn

{f (x)|h(x) = 0}

Then either

i the vectors ∇h1(x∗),∇h2(x∗), . . .∇hl (x
∗) are linearly dependent, or

ii there exists a vector λ∗ such that ∇L (x∗, λ∗) = 0

Notation: ∇xL and ∇λL

Usually we cannot assure that optimal solutions are critical points of the La-

grangian!

These are necessary conditions for optimality
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Optimality Conditions

Recapitulation

Let f : Rn → R, g : Rn → Rm and h : Rn → Rl and consider the problem

min
x∈Rn

{f (x)|g(x) ≤ 0, h(x) = 0}

Definition

Consider L : Rn × Rm × Rl → R defined by

L (x , λ, µ) = f (x) + µtg(x) + λth(x)∀x ∈ Rn, µ ∈ Rm, λ ∈ Rl

The function L is the Lagrangian and the variables λ and µ are the dual variables

Main ideia: Find (x , λ, µ) such that ∇L (x , λ, µ) = 0
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Optimality conditions for constrained problems

Main idea

Algebraic characterizations of solutions allowing computations.

Sufficient conditions provide a way to guarantee that a candidate point is optimal

Necessary conditions indicate when a point is not optimal

Unconstrained problems ⇒ Analyze x∗, a stationary point (∇f (x∗) = 0)

Constrained problems ⇒ Analyze x∗,a Karush-Kuhn-Tucker (KKT) point
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Optimality conditions for constrained problems

Example - equality

Consider

min f (x) = x1 + x2

h(x) = x21 + x22 − 2 = 0

The unique solution is given by x∗ = [−1− 1]T

Computing the gradients of f and h in x∗,

∇f (x∗) =

[
1

1

]
and ∇h(x∗) =

[
−2

−2

]
∇f (x∗) and ∇h(x∗) are parallel, i.e., there exists a scalar λ = 1

2
such that

−∇f (x∗) = λ∇h(x∗)

This is a necessary condition for optimality in the general case
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The unique solution is given by x∗ = [−1− 1]T

Computing the gradients of f and h in x∗,

∇f (x∗) =

[
1

1

]
and ∇h(x∗) =

[
−2

−2

]
∇f (x∗) and ∇h(x∗) are parallel, i.e., there exists a scalar λ = 1

2
such that

−∇f (x∗) = λ∇h(x∗)

This is a necessary condition for optimality in the general case
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Equality Constrained Optimization

Consider the following example

min f (x) = 2x21 + x22

h(x) = x1 + x2 = 1

The Lagrangian is: L(x1, x2, λ) = 2x21 + x22 + λ(1− x1 − x2)

Solve for the following: {
∇xL = 0

∇λL = 0

Solving this system of equations yields

x∗1 =
1

3
, x∗2 =

2

3
, λ∗ =

4

3

Is this a minimum or a maximum?
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Optimality conditions

Graphically

• Consider the gradients of f and h at the optimal point

• They must point in the same direction, though they may have different lengths

∇f (x∗) = λ∇h(x∗)
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Optimality conditions - Karush-Kuhn-Tucker (KKT)

Consider problem

minimize f (x)

s.t gi (x) ≤ 0 i ∈ I = {1, 2, . . .m}
hi (x) = 0 i ∈ E = {1, 2, . . . l}

First order necessary Conditions

x∗ is KKT point if there are lagrange multipliers vectors λ∗ and µ∗, such that[
x∗ λ∗ µ∗

]t
satisfies:

∇xL (x∗, λ∗µ∗) = 0

g (x∗) ≤ 0

h (x∗) = 0

µ∗ ≥ 0

µigi (x
∗) = 0 ∀i ∈ I

Karush-Kuhn–Tucker Conditions
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Optimality conditions

Example

min(x − 2)2 + 2(y − 1)2

x + 4y ≤ 3

y ≤ x

Lagrangian

L(x , y , µ1, µ2) = (x − 2)2 + 2(y − 1)2 + µ1(x + 4y − 3) + µ2(−x + y)

KKT conditions

• ∇xL(x , y , µ1, µ2) == 2(x − 2) + µ1 − µ2 = 0

• ∇yL(x , y , µ1, µ2) = 4(y − 1) + 4µ1 + µ2 = 0

• x + 4y − 3 ≤ 0

• y − x ≤ 0

• µ1(x + 4y − 3) = 0

• µ2(y − x) = 0

• µ1, µ2 ≥ 0
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Optimality conditions

Check 4 cases

1. µ1 = µ2 = 0 ⇒ x = 2, y = 1

2. µ1 = 0 y − x = 0 ⇒ x = 4
3
, µ2 = − 4

3

3. µ2 = 0 x + 4y − 3 = 0 ⇒ x = 5
3
, y = 1

3
, µ1 = 2

3

4. x + 4y − 3 = 0 y − x = 0 ⇒ x = 3
5
, y = 3

5
, µ1 = 22

25
, µ2 = − 48

25

Optimal solution: x = 4
3
, y = 4

3
, f (x , y) = 4

9

Does it always happen?
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