PRO 5961 Métodos de Otimização Não Linear

Celma de Oliveira Ribeiro
Aula 8 - Lagrangian and KKT- 2023

Departmento de Engenharia de Produção
Universidade de São Paulo

Constrained problems

The problem
Given
$x \in \mathbb{R}^{n}$ - variables
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ - objective function
g_{i} e h_{i} constraints
$P_{\text {constr }}$

$$
\begin{array}{cc}
& \text { minimize } f(x) \\
\text { s.t } & g_{i}(x) \leq 0 \\
& h_{i}(x)=0
\end{array} \quad \mathrm{i} \in\{1,2, \ldots m\}
$$

Constrained problems

Example 0 - Budgetary constraints

Suppose you are running a factory, producing some sort of widget that requires steel as a raw material. Your costs are predominantly human labor, which is $\$ 20$ per hour for your workers, and the steel itself, which runs for $\$ 170$ per ton. Suppose your revenue is loosely modeled by the following equation: $R(h, s)=200 h^{2 / 3} s^{1 / 3}$

- h represents hours of labor
- s represents tons of steel

If your budget is $\$ 20000$, what is the maximum possible revenue?

Lagrange multipliers

The model is
$\max 200 h^{2 / 3} s^{1 / 3}$
s.t. $20 h+170 s=20,000$

Lagrange multipliers

Consider the problem $P_{\text {constr }}$ and let $\lambda \in \mathbb{R}^{\prime}$ and $\mu \in \mathbb{R}^{m}$
The Lagrangian function is defined as

$$
\begin{gathered}
\mathcal{L}(x, \lambda, \mu)=f(x)+\lambda^{t} h(x)+\mu^{t} g(x) \\
\mathcal{L}(x, \lambda, \mu)=f(x)+\sum_{i=1}^{m} \mu_{i} g_{i}(x)+\sum_{i=1}^{l} \lambda_{i} h_{i}(x)
\end{gathered}
$$

Append each constraint function to the objective, multiplied by a scalar for that constraint called a Lagrange multiplier.

Lagrange multipliers

Example 0 : The Lagrangian is given as:

$$
\mathcal{L}(h, s, \lambda)=200 h^{2 / 3} s^{1 / 3}+\lambda(20 h+170 s-20,000)
$$

What happens with critical points of $\mathcal{L}(h, s, \lambda)$? That is, when $\nabla \mathcal{L}(h, s, \lambda)=0$?

Lagrange multipliers

Example 1:

Find the points on the circle $x^{2}+y^{2}=80$ which are closest to the point $(1,2)$.

Lagrange multipliers

Example 1 :

Find the points on the circle $x^{2}+y^{2}=80$ which are closest to the point $(1,2)$.

$$
\begin{gathered}
\min f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-2\right)^{2} \\
h\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}=80
\end{gathered}
$$

Lagrange multipliers

Example 1 :

Find the points on the circle $x^{2}+y^{2}=80$ which are closest to the point $(1,2)$.

$$
\begin{gathered}
\min f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-2\right)^{2} \\
h\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}=80
\end{gathered}
$$

Lagrangian:

$$
\begin{aligned}
& \qquad \mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-2\right)^{2}+\lambda\left(x_{1}^{2}+x_{2}^{2}-80\right) \\
& \mathrm{I}=1 \text { and } \mathrm{n}=2
\end{aligned}
$$

Lagrange multipliers

Example 2 :

$$
\begin{gathered}
\operatorname{minf}(x)=x_{1}^{2}-x_{2}^{2} \\
x_{1}+2 x_{2}+1=0 \\
x_{1}-x_{2} \leq 3
\end{gathered}
$$

Lagrange multipliers

Example 2:

$$
\begin{gathered}
\operatorname{minf}(x)=x_{1}^{2}-x_{2}^{2} \\
x_{1}+2 x_{2}+1=0 \\
x_{1}-x_{2} \leq 3
\end{gathered}
$$

Lagrangian:

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda, \mu\right)=x_{1}^{2}-x_{2}^{2}+\lambda\left(x_{1}+2 x_{2}+1\right)+\mu\left(x_{1}-x_{2}-3\right)
$$

$$
m=1, I=1 \text { and } n=2
$$

Lagrange multipliers

What happens if we consider the problem $\min _{x \lambda, \mu} \mathcal{L}(x \lambda, \mu)$?

Lagrange multipliers

What happens if we consider the problem $\min _{x \lambda, \mu} \mathcal{L}(x \lambda, \mu)$?

Example 3: Consider

$$
\begin{gathered}
\min f(x)=-4 x_{1}+0.1 x_{1}^{2}-5 x_{2}+0.2 x_{2}^{2} \\
x_{1}+2 x_{2}=40
\end{gathered}
$$

Build the Lagrangian and its gradient

Lagrange multipliers

What happens if we consider the problem $\min _{x \lambda, \mu} \mathcal{L}(x \lambda, \mu)$?

Example 3: Consider

$$
\begin{gathered}
\min f(x)=-4 x_{1}+0.1 x_{1}^{2}-5 x_{2}+0.2 x_{2}^{2} \\
x_{1}+2 x_{2}=40
\end{gathered}
$$

Build the Lagrangian and its gradient
Lagrangian $\mathcal{L}(x, \lambda)=-4 x_{1}+0.1 x_{1}^{2}-5 x_{2}+0.2 x_{2}^{2}+\lambda_{1}\left(x_{1}+2 x_{2}-40\right)$

Lagrange multipliers

What happens if we consider the problem $\min _{x \lambda, \mu} \mathcal{L}(x \lambda, \mu)$?
Example 3: Consider

$$
\begin{gathered}
\min f(x)=-4 x_{1}+0.1 x_{1}^{2}-5 x_{2}+0.2 x_{2}^{2} \\
x_{1}+2 x_{2}=40
\end{gathered}
$$

Build the Lagrangian and its gradient
Lagrangian $\mathcal{L}(x, \lambda)=-4 x_{1}+0.1 x_{1}^{2}-5 x_{2}+0.2 x_{2}^{2}+\lambda_{1}\left(x_{1}+2 x_{2}-40\right)$
Gradient

$$
\nabla \mathcal{L}(x, \lambda)=\left[\begin{array}{l}
-4+0.2 x_{1}+\lambda_{1} \\
-5+0.4 x_{2}+2 \lambda_{1} \\
x_{1}+2 x_{2}-40
\end{array}\right]
$$

Method of Lagrange multipliers

What happens when we analyze the gradient of the Lagrangian?

$$
\nabla \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0
$$

Method of Lagrange multipliers

What happens when we analyze the gradient of the Lagrangian?

$$
\begin{gathered}
\nabla \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0 \\
\nabla \mathcal{L}(x, \lambda)=\left[\begin{array}{l}
-4-+0.2 x_{1}+\lambda_{1} \\
-5+0.4 x_{2}+2 \lambda_{1} \\
x_{1}+2 x_{2}-40
\end{array}\right]=0
\end{gathered}
$$

Lagrange multipliers

Solving the system

$$
\nabla \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0
$$

we obtain
$x_{1}^{*} \approx 18.3, x_{2}^{*} \approx 10.8$ and $\lambda^{*}=0.33$
Which is the optimal solution of the original problem
Once we have found candidate solutions x^{*}, it is not always easy to figure out whether it corresponds to a minimum, a maximum or neither.

Lagrange multipliers

Interpretation of Lagrange multipliers
Consider in Example 0, λ^{*} such that

$$
\nabla L\left(h, s, \lambda^{*}\right)=0
$$

λ^{*} tells us how much more money we can make by changing our budget.

Lagrange multipliers

Observe that the partial derivatives of the Lagrangian

$$
\mathcal{L}(x, \lambda)=f(x)+\lambda^{t} h(x)+\mu^{t} g(x)
$$

are as follows:

$$
\begin{gathered}
\nabla_{x} \mathcal{L}(x, \lambda)=\nabla_{x} f(x)+\lambda^{t} \nabla_{x} h(x)+\mu^{t} \nabla_{x} g(x) \\
\nabla_{\lambda} \mathcal{L}(x, \lambda)=h(x) \\
\nabla_{\mu} \mathcal{L}(x, \lambda)=g(x)
\end{gathered}
$$

Exercice: analyze what happens in Example 1
Entrega aula For example 2, verify the conditions above

Lagrange multipliers

Specific situations shall be addressed. Equality constraints are different from inequalities...

Consider $P_{\text {equal }}$

$$
\begin{array}{lcl}
& \operatorname{minimize} f(x) \\
\text { s.t } & h_{i}(x)=0
\end{array} \quad \mathrm{i} \in\{1,2, \ldots /\}
$$

Let us look for the points ($\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}, \bar{\lambda}_{1}, \bar{\lambda}_{2}, \ldots . \bar{\lambda}_{l}$) for which

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial x_{1}}=\frac{\partial \mathcal{L}}{\partial x_{2}}=\ldots=\frac{\partial \mathcal{L}}{\partial x_{n}}=\frac{\partial \mathcal{L}}{\partial \lambda_{1}}=\frac{\partial \mathcal{L}}{\partial \lambda_{2}}=\ldots=\frac{\partial \mathcal{L}}{\partial \lambda_{1}}=0 \tag{1}
\end{equation*}
$$

In many situations $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}, \bar{\lambda}_{1}, \bar{\lambda}_{2}, \ldots . \bar{\lambda}_{l}\right)$ solves the original problem

Lagrange multipliers

Theorem - Important
If $f(x)$ is a convex function and $h_{i}(x)$ is linear for all i, then any point
$\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}, \bar{\lambda}_{1}, \bar{\lambda}_{2}, \ldots . \bar{\lambda}_{l}\right)$ satisfying (1) will yield an optimal solution ($\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}$) to $P_{\text {equal }}$

Analyze the previous examples

Lagrangian

$$
\begin{aligned}
& \text { Example } \\
& \min 6 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2} \\
& 24 x_{1}+24 x_{2}=360 \\
& x_{3}=1
\end{aligned}
$$

Lagrangian

$$
\begin{aligned}
& \text { Example } \\
& \min 6 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2} \\
& 24 x_{1}+24 x_{2}=360 \\
& x_{3}=1 \\
& \mathcal{L}(x, \lambda)=6 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2}+\lambda_{1}\left(360-24 x_{1}-24 x_{2}\right)+\lambda_{2}\left(1-x_{3}\right) \\
& \nabla f(x)^{t}=\left[\begin{array}{lll}
12 x_{1} & 8 x_{2} & 6 x_{3}
\end{array}\right] \\
& \nabla h_{1}(x)^{t}=\left[\begin{array}{lll}
-24 & -24 & 0
\end{array}\right] \\
& \nabla h_{2}(x)^{t}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Lagrangian

- $\nabla_{x} \mathcal{L}(x, \lambda)=\nabla f(x)+\lambda_{1} \nabla h_{1}(x)+\lambda_{2} \nabla h_{2}(x)=0$

Linear system

Lagrangian

- $\nabla_{x} \mathcal{L}(x, \lambda)=\nabla f(x)+\lambda_{1} \nabla h_{1}(x)+\lambda_{2} \nabla h_{2}(x)=0$

Linear system

$\nabla_{x} \mathcal{L}(x, \lambda)=0 \Rightarrow \begin{cases}12 x_{1} & =24 \lambda_{1} \\ 8 x_{2} & =24 \lambda_{1} \\ 6 x_{3} & =1 \lambda_{2}\end{cases}$

- $\nabla_{\lambda} \mathcal{L}(x, \lambda)=0 \Rightarrow h(x)=0 \Rightarrow \begin{cases}24 x_{1}+24 x_{2} & =360 \\ x_{3} & =1\end{cases}$

Solution of the system: $\left(x^{*}, \lambda^{*}\right)^{t}=(2,3,1,9,6)$
$f(x)$ is a convex function and $h_{i}(x)$ is linear for all $i, \Rightarrow x^{*}$ is a solution of the problem

Lagrangian

- $\nabla_{x} \mathcal{L}(x, \lambda)=\nabla f(x)+\lambda_{1} \nabla h_{1}(x)+\lambda_{2} \nabla h_{2}(x)=0$

Linear system

$\nabla_{\times} \mathcal{L}(x, \lambda)=0 \Rightarrow \begin{cases}12 x_{1} & =24 \lambda_{1} \\ 8 x_{2} & =24 \lambda_{1} \\ 6 x_{3} & =1 \lambda_{2}\end{cases}$

- $\nabla_{\lambda} \mathcal{L}(x, \lambda)=0 \Rightarrow h(x)=0 \Rightarrow \begin{cases}24 x_{1}+24 x_{2} & =360 \\ x_{3} & =1\end{cases}$

Solution of the system: $\left(x^{*}, \lambda^{*}\right)^{t}=(2,3,1,9,6)$
$f(x)$ is a convex function and $h_{i}(x)$ is linear for all $i, \Rightarrow x^{*}$ is a solution of the problem $\nabla_{x} \mathcal{L}(x, \lambda)=0 \Rightarrow-\nabla f(x)=\lambda_{1} \nabla h_{1}(x)+\lambda_{2} \nabla h_{2}(x)$

Lagrange multipliers

Entrega semanal

A company is planning to spend $\$ 10$ on advertising. It costs $\$ 3$ per minute to advertise on TV and $\$ 1$ per minute to advertise on radio. If the firm buys x minutes of TV advertising and y minutes of radio advertising, its revenue is given as

$$
f(x, y)=-2 x^{2}-y^{2}+x y+8 x+3 y
$$

How can the firm maximize its revenue?
Hint:

- Write the optimization problem (in the \min form) and the lagragian
- Find the partial derivatives and set them $=0$
- Solve the resulting system
- Analyse the Hessian

Lagrangian

Some important questions:

- Can the solution of ($P_{\text {equal }}$) be obtained through unconstrained optimization considering the Lagrangian as a penalty function?

Lagrangian

Some important questions:

- Can the solution of ($P_{\text {equal }}$) be obtained through unconstrained optimization considering the Lagrangian as a penalty function?
- When critical points (w^{*} is a critical point of $\psi(w)$ if $\left.\nabla \psi\left(w^{*}\right)=0\right)$ of the Lagrangian are optimal solutions of the original problem?

Lagrangian

Some important questions:

- Can the solution of ($P_{\text {equal }}$) be obtained through unconstrained optimization considering the Lagrangian as a penalty function?
- When critical points $\left(w^{*}\right.$ is a critical point of $\psi(w)$ if $\left.\nabla \psi\left(w^{*}\right)=0\right)$ of the Lagrangian are optimal solutions of the original problem?
- Does an optimal solution of the problem provide a critical point for the Lagrangian?

Constrained problems

Lagrangian

Does an optimal solution of the problem provide a critical point for the Lagrangian?
Consider

$$
\begin{array}{ll}
\min & x_{1}+x_{2}+x_{3}^{2} \\
& x_{1}=1 \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}=1
\end{array}
$$

- The minimum is achieved at $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{t}$
- The associated Lagrangian is:

Constrained problems

Lagrangian

Does an optimal solution of the problem provide a critical point for the Lagrangian?
Consider
$\min x_{1}+x_{2}+x_{3}^{2}$
s.t. $\quad x_{1}=1$
$x_{1}^{2}+x_{2}^{2}=1$

- The minimum is achieved at $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{t}$
- The associated Lagrangian is:

$$
\mathcal{L}(x, \lambda)=x_{1}+x_{2}+x_{3}^{2}+\lambda_{1}\left(1-x_{1}\right)+\lambda_{2}\left(1-x_{1}^{2}-x_{2}^{2}:\right)
$$

Constrained problems

Lagrangian

Does an optimal solution of the problem provide a critical point for the Lagrangian?
Consider

$$
\begin{array}{ll}
\min & x_{1}+x_{2}+x_{3}^{2} \\
\text { s.t. } & x_{1}=1 \\
& x_{1}^{2}+x_{2}^{2}=1
\end{array}
$$

- The minimum is achieved at $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{t}$
- The associated Lagrangian is:

$$
\mathcal{L}(x, \lambda)=x_{1}+x_{2}+x_{3}^{2}+\lambda_{1}\left(1-x_{1}\right)+\lambda_{2}\left(1-x_{1}^{2}-x_{2}^{2}:\right)
$$

- Write $\frac{\partial \mathcal{L}}{\partial x_{2}}$ and explain what happens at $\left[\begin{array}{ccccc}1 & 0 & 0 & \lambda_{1} & \lambda_{2}\end{array}\right]^{t}$

Constrained problems

Lagrangian

Does an optimal solution of the problem provide a critical point for the Lagrangian?
Consider

$$
\begin{array}{ll}
\min & x_{1}+x_{2}+x_{3}^{2} \\
\text { s.t. } & x_{1}=1 \\
& x_{1}^{2}+x_{2}^{2}=1
\end{array}
$$

- The minimum is achieved at $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{t}$
- The associated Lagrangian is:

$$
\mathcal{L}(x, \lambda)=x_{1}+x_{2}+x_{3}^{2}+\lambda_{1}\left(1-x_{1}\right)+\lambda_{2}\left(1-x_{1}^{2}-x_{2}^{2}:\right)
$$

- Write $\frac{\partial \mathcal{L}}{\partial x_{2}}$ and explain what happens at $\left[\begin{array}{ccccc}1 & 0 & 0 & \lambda_{1} & \lambda_{2}\end{array}\right]^{t}$
$\frac{\partial \mathcal{L}}{\partial x_{2}}\left(1,0,0, \lambda_{1}, \lambda_{2}\right)=1, \forall \lambda_{1}, \lambda_{2}$ and it does not vanish at the optimal solution It means that $\nabla \mathcal{L}\left(1,0,0, \lambda_{1}, \lambda_{2}\right) \neq 0$

Entrega semanal: Write $\nabla h_{1}(x)$ and $\nabla h_{2}(x)$. Verify that these vectors are linearly dependent for $\bar{x}^{t}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$

Example 4

Consider
$\min 2 x_{1}^{2}+x_{2}^{2}$
s.t. $x_{1}+x_{2}=1$

Define the Lagrangian

Example 4

Consider

$\min 2 x_{1}^{2}+x_{2}^{2}$
s.t. $x_{1}+x_{2}=1$

Define the Lagrangian $\mathcal{L}(x, \lambda)=2 x_{1}^{2}+x_{2}^{2}+\lambda_{1}\left(1-x_{1}-x_{2}\right)$

Example 4

Consider

$\min 2 x_{1}^{2}+x_{2}^{2}$
s.t. $x_{1}+x_{2}=1$

Define the Lagrangian $\mathcal{L}(x, \lambda)=2 x_{1}^{2}+x_{2}^{2}+\lambda_{1}\left(1-x_{1}-x_{2}\right)$
Build the gradient of the Lagrangian

Example 4

Consider

$\min 2 x_{1}^{2}+x_{2}^{2}$
s.t. $x_{1}+x_{2}=1$

Define the Lagrangian $\mathcal{L}(x, \lambda)=2 x_{1}^{2}+x_{2}^{2}+\lambda_{1}\left(1-x_{1}-x_{2}\right)$
Build the gradient of the Lagrangian

$$
\nabla \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\left[\begin{array}{l}
4 x_{1}^{*}-\lambda_{1}^{*} \\
2 x_{2}^{*}-\lambda_{1}^{*} \\
1-x_{1}^{*}-x_{2}^{*}
\end{array}\right]
$$

Example 4

Consider
$\min 2 x_{1}^{2}+x_{2}^{2}$
s.t. $\quad x_{1}+x_{2}=1$

Define the Lagrangian $\mathcal{L}(x, \lambda)=2 x_{1}^{2}+x_{2}^{2}+\lambda_{1}\left(1-x_{1}-x_{2}\right)$
Build the gradient of the Lagrangian

$$
\begin{gathered}
\nabla \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\left[\begin{array}{l}
4 x_{1}^{*}-\lambda_{1}^{*} \\
2 x_{2}^{*}-\lambda_{1}^{*} \\
1-x_{1}^{*}-x_{2}^{*}
\end{array}\right]=0 \Rightarrow \\
x_{1}^{*}=\frac{1}{3}, x_{2}^{*}=\frac{2}{3}, \lambda_{1}^{*}=\frac{4}{3}
\end{gathered}
$$

The above solution is optimal

Theorem

Consider
Assume x^{*} is an optimal solution of

$$
\min _{x \in \mathbb{R}^{n}}\{f(x) \mid h(x)=0\}
$$

Then either
i the vectors $\nabla h_{1}\left(x^{*}\right), \nabla h_{2}\left(x^{*}\right), \ldots \nabla h_{l}\left(x^{*}\right)$ are linearly dependent, or
ii there exists a vector λ^{*} such that $\nabla \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0$
Notation: $\nabla_{x} \mathcal{L}$ and $\nabla_{\lambda} \mathcal{L}$
Usually we cannot assure that optimal solutions are critical points of the Lagrangian!

These are necessary conditions for optimality

Optimality Conditions

Recapitulation

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}$ and consider the problem

$$
\min _{x \in \mathbb{R}^{n}}\{f(x) \mid g(x) \leq 0, h(x)=0\}
$$

Definition

Consider $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{I} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda, \mu)=f(x)+\mu^{t} g(x)+\lambda^{t} h(x) \forall x \in \mathbb{R}^{n}, \mu \in \mathbb{R}^{m}, \lambda \in \mathbb{R}^{\prime}
$$

The function \mathcal{L} is the Lagrangian and the variables λ and μ are the dual variables
Main ideia: Find (x, λ, μ) such that $\nabla \mathcal{L}(x, \lambda, \mu)=0$

Optimality conditions for constrained problems

Main idea

Algebraic characterizations of solutions allowing computations.
Sufficient conditions provide a way to guarantee that a candidate point is optimal
Necessary conditions indicate when a point is not optimal

Optimality conditions for constrained problems

Main idea

Algebraic characterizations of solutions allowing computations.
Sufficient conditions provide a way to guarantee that a candidate point is optimal Necessary conditions indicate when a point is not optimal

Unconstrained problems \Rightarrow Analyze x^{*}, a stationary point $\left(\nabla f\left(x^{*}\right)=0\right)$
Constrained problems \Rightarrow Analyze x^{*}, a Karush-Kuhn-Tucker (KKT) point

Optimality conditions for constrained problems

Example - equality

Consider

$$
\begin{gathered}
\min f(x)=x_{1}+x_{2} \\
h(x)=x_{1}^{2}+x_{2}^{2}-2=0
\end{gathered}
$$

The unique solution is given by $x^{*}=[-1-1]^{T}$
Computing the gradients of f and h in x^{*},

Optimality conditions for constrained problems

Example - equality

Consider

$$
\begin{gathered}
\min f(x)=x_{1}+x_{2} \\
h(x)=x_{1}^{2}+x_{2}^{2}-2=0
\end{gathered}
$$

The unique solution is given by $x^{*}=[-1-1]^{T}$
Computing the gradients of f and h in x^{*},

$$
\nabla f\left(x^{*}\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and } \nabla h\left(x^{*}\right)=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]
$$

Optimality conditions for constrained problems

Example - equality

Consider

$$
\begin{gathered}
\min f(x)=x_{1}+x_{2} \\
h(x)=x_{1}^{2}+x_{2}^{2}-2=0
\end{gathered}
$$

The unique solution is given by $x^{*}=[-1-1]^{T}$
Computing the gradients of f and h in x^{*},
$\nabla f\left(x^{*}\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\nabla h\left(x^{*}\right)=\left[\begin{array}{l}-2 \\ -2\end{array}\right]$
$\nabla f\left(x^{*}\right)$ and $\nabla h\left(x^{*}\right)$ are parallel, i.e., there exists a scalar $\lambda=\frac{1}{2}$ such that

$$
-\nabla f\left(x^{*}\right)=\lambda \nabla h\left(x^{*}\right)
$$

Optimality conditions for constrained problems

Example - equality
Consider

$$
\begin{gathered}
\min f(x)=x_{1}+x_{2} \\
h(x)=x_{1}^{2}+x_{2}^{2}-2=0
\end{gathered}
$$

The unique solution is given by $x^{*}=[-1-1]^{T}$
Computing the gradients of f and h in x^{*},
$\nabla f\left(x^{*}\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\nabla h\left(x^{*}\right)=\left[\begin{array}{l}-2 \\ -2\end{array}\right]$
$\nabla f\left(x^{*}\right)$ and $\nabla h\left(x^{*}\right)$ are parallel, i.e., there exists a scalar $\lambda=\frac{1}{2}$ such that

$$
-\nabla f\left(x^{*}\right)=\lambda \nabla h\left(x^{*}\right)
$$

This is a necessary condition for optimality in the general case

Equality Constrained Optimization

Consider the following example

$$
\begin{gathered}
\min f(x)=2 x_{1}^{2}+x_{2}^{2} \\
h(x)=x_{1}+x_{2}=1
\end{gathered}
$$

The Lagrangian is: $L\left(x_{1}, x_{2}, \lambda\right)=2 x_{1}^{2}+x_{2}^{2}+\lambda\left(1-x_{1}-x_{2}\right)$
Solve for the following:

$$
\left\{\begin{array}{l}
\nabla_{x} L=0 \\
\nabla_{\lambda} L=0
\end{array}\right.
$$

Equality Constrained Optimization

Consider the following example

$$
\begin{aligned}
& \min f(x)=2 x_{1}^{2}+x_{2}^{2} \\
& h(x)=x_{1}+x_{2}=1
\end{aligned}
$$

The Lagrangian is: $L\left(x_{1}, x_{2}, \lambda\right)=2 x_{1}^{2}+x_{2}^{2}+\lambda\left(1-x_{1}-x_{2}\right)$
Solve for the following:

$$
\left\{\begin{array}{l}
\nabla_{x} L=0 \\
\nabla_{\lambda} L=0
\end{array}\right.
$$

Solving this system of equations yields

$$
x_{1}^{*}=\frac{1}{3}, x_{2}^{*}=\frac{2}{3}, \lambda^{*}=\frac{4}{3}
$$

Is this a minimum or a maximum?

Optimality conditions

Graphically

- Consider the gradients of f and h at the optimal point
- They must point in the same direction, though they may have different lengths $\nabla f\left(x^{*}\right)=\lambda \nabla h\left(x^{*}\right)$

Optimality conditions - Karush-Kuhn-Tucker (KKT)

Consider problem

$$
\begin{array}{ccc}
& \operatorname{minimize} f(x) & \\
\text { s.t } & g_{i}(x) \leq 0 & \mathrm{i} \in \mathcal{I}=\{1,2, \ldots m\} \\
& h_{i}(x)=0 & \mathrm{i} \in \mathcal{E}=\{1,2, \ldots l\}
\end{array}
$$

First order necessary Conditions
x^{*} is KKT point if there are lagrange multipliers vectors λ^{*} and μ^{*}, such that $\left[\begin{array}{lll}x^{*} & \lambda^{*} & \mu^{*}\end{array}\right]^{t}$ satisfies:

$$
\begin{array}{lll}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*} \mu^{*}\right) & =0 \\
g\left(x^{*}\right) & \leq 0 \\
h\left(x^{*}\right) & =0 \\
\mu^{*} & \geq 0 \\
\mu_{i} g_{i}\left(x^{*}\right) & =0 \quad \forall i \in \mathcal{I}
\end{array}
$$

Karush-Kuhn-Tucker Conditions

Optimality conditions

$$
\begin{aligned}
& \text { Example } \\
& \min (x-2)^{2}+2(y-1)^{2} \\
& x+4 y \leq 3 \\
& y \leq x
\end{aligned}
$$

Optimality conditions

Example

$$
\min (x-2)^{2}+2(y-1)^{2}
$$

$x+4 y \leq 3$
$y \leq x$
Lagrangian
$\mathcal{L}\left(x, y, \mu_{1}, \mu_{2}\right)=(x-2)^{2}+2(y-1)^{2}+\mu_{1}(x+4 y-3)+\mu_{2}(-x+y)$
KKT conditions

Optimality conditions

Example

$$
\min (x-2)^{2}+2(y-1)^{2}
$$

$x+4 y \leq 3$
$y \leq x$
Lagrangian

$$
\mathcal{L}\left(x, y, \mu_{1}, \mu_{2}\right)=(x-2)^{2}+2(y-1)^{2}+\mu_{1}(x+4 y-3)+\mu_{2}(-x+y)
$$

KKT conditions

- $\nabla_{x} \mathcal{L}\left(x, y, \mu_{1}, \mu_{2}\right)==2(x-2)+\mu_{1}-\mu_{2}=0$
- $\nabla_{y} \mathcal{L}\left(x, y, \mu_{1}, \mu_{2}\right)=4(y-1)+4 \mu_{1}+\mu_{2}=0$
- $x+4 y-3 \leq 0$
- $y-x \leq 0$
- $\mu_{1}(x+4 y-3)=0$
- $\mu_{2}(y-x)=0$
- $\mu_{1}, \mu_{2} \geq 0$

Optimality conditions

Check 4 cases

1. $\mu_{1}=\mu_{2}=0 \Rightarrow x=2, y=1$
2. $\mu_{1}=0 y-x=0 \Rightarrow x=\frac{4}{3}, \mu_{2}=-\frac{4}{3}$
3. $\mu_{2}=0 x+4 y-3=0 \Rightarrow x=\frac{5}{3}, y=\frac{1}{3}, \mu_{1}=\frac{2}{3}$
4. $x+4 y-3=0 y-x=0 \Rightarrow x=\frac{3}{5}, y=\frac{3}{5}, \mu_{1}=\frac{22}{25}, \mu_{2}=-\frac{48}{25}$

Optimal solution: $x=\frac{4}{3}, y=\frac{4}{3}, f(x, y)=\frac{4}{9}$
Does it always happen?

