CHAPTER

6

COMPARATIVE
STATICS:

THE TRADITIONAL
METHODOLOGY

6.1 INTRODUCTION; PROFIT MAXIMIZATION ONCE MORE

In this chapter we shall begin the general comparative statics analysis of economic
models that contain an explicit maximization hypothesis. The focus, as always, will
be on discovering the structure that must be imposed on the models so that useful, i.e.,
refutable, hypotheses are implied. A very powerful methodology, duality theory, has
been developed for some important models such as profit maximization, constrained
cost minimization, and utility maximization subject to a budget constraint. These new
methods provide a vast simplification and clarification of the traditional methodology
for those models; we shall explore them in the next chapter. In order to analyze
models other than the three just mentioned, however, and to better appreciate the
newer methods, it is still necessary to understand the traditional methodology. It is
to that task that we now turn.

Comparative statics of economic models mvolvmg more than one variable re-
quires the solution to simultaneous linear equations in the partial derivatives of the
choice variables with respect to the parameters. We shall employ elementary matrix
manipulations and Cramer’s rule in order to systematically write down the solutions
to the first-order equations. In that way, the structure of these models can be most
efficiently explored.
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118 THE STRUCTURE OF ECONOMICS

Consider again the profit-maximizing firm analyzed in Chap. 4, and recall
Eqgs. (4-19):

oxy 0x;
P + pfi =1
8W| 8W1
(4-19)
axy ax;
pfas—+pfa—=0
aW[ aW]
In matrix form these equations appear as
dxy
(pfn Pfu) dwy | _ <1> 6-1)
pfa pfa/) | 3% ] \O
8w1
Using Cramer’s rule,
‘1 pho
ax; 0 pfa Pl 'Pfl] pfi2
= = here Il = 6-2
ow, H v pfa P2 o)

This is Eq. (4-20a), which was derived by algebraic manipulations. Notice that the
term 1 on the right-hand side of (6-1) will always appear in column i, in the solution
for dx/aw ;. If the numerator is expanded by that column, it is immediately apparent
that Egs. (4-20a—d) can be written as

W M g g (6-3)
aWj H

where Hj; is the cofactor (signed, of course) of the element in the jth row and ith
column. In this model, H\; = pf»n, H»n = pfu, H, = Hy = —pfi,. Notice,
too, that H = p*(fi1 fo2 — f5), and that H > 0, from the second-order conditions
(4-15). This is in fact indicative of a trend; determinants will play a crucial role in
the theory of maxima and minima.

In like fashion, Egs. (4-21), dealing with changes in the factor utilizations due
to output price changes, can be written

dxy
ap L=

wh) | ape | =(Z0) (64
ap

where the expression (pf;;) stands for the 2 x 2 matrix in the left-hand side of (6-1). It
is obvious from Cramer’s rule that the solutions for dx{ /dp and dx3 /dp will involve
the “off-diagonal” terms of pfj, and pf,,. Since the sign of these (equal) terms is
not implied by maximization, we immediately suspect that no sign will emerge for
dx{/ap, etc., and hence no refutable hypotheses concerning the responses of inputs
to output price changes will emerge.
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The two-factor, profit-maximizing firm is an example of a maximization model
with two choice variables. The most general form of such models is’

maximize
fxy, X2, ) (6-5)
where the choice variables are x; and x; and « is a parameter, or perhaps a vector
of parameters, o = («a;, ..., ;). The first-order necessary conditions implied by
(6-5), usually called the equilibrium conditions, are
fi(xy, x,) =0
(6-6)
f2(x17 X2, (X) — O
The sufficient second-order conditions are
fii<0 fu<0 fufn—fo>0 (6-7)

Equations (6-6) are two equations in three variables, x;, x;, and «. The sufficient
second-order conditions imply, by the implicit function theorem, that these equations
can be solved for the explicit choice functions

xp = xj(c)

(6-8)
X2 = xﬁ* (@)

It should always be remembered that Eqs. (6-8) are the simultaneous solutions of
(6-6). As the parameter « changes, both x| and x, will in general change. Substituting
(6-8) back into (6-6), the identities from which the comparative statics are derivable
are obtained:

filxf (@), x3 (@), ) =0
HGf (@), x5 (@), a) =0

Differentiating this system with respect to «, the following system is obtained.

(6-9)

*

oxr ox
f”8—1+f12 2+ fia =0
o Jo )
e (6-10)
Xx; x3
f215_1+f22 2+ fou =0
o do
In matrix form, this system is
dx;
<f11 f]2> aoi _ <_fla) 6-11)
fa fn ax; ~ fo
Jdo

'The function f here refers to the whole maximand, not just the production function part of the previous
objective function.
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Solving by Cramer’s rule,

' "‘f]a fl2
aXT —f2 f72 —flozf22 f2(x fl’_)
= — = : 6-12
da H H | H (6-12a)
and
fll —fla
0x; for = fo — fau J11 fia f2i
= — = 6-12b
oo H H T H ( )
where H is the determinant
H=|T" Tl o250 (6-13)
a2

Equations (6-12) represent the most general comparative statics relations for
unconstrained maximization models with two choice variables. Not surprisingly at
this level of generality, no refutable hypotheses are implied. Certain information
is available, though. The denominators H in Egs. (6-12) are positive. In addition,
fi1, f2 are negative. This information is provided by the sufficient conditions for a
maximum.

The other information that is available is provided by the actual structure of
the model. Specifically, to be useful, a model must be constructed so that the effects
of the parameters on the objective function, and hence the first-order equations, will
in general be known. That is, fi, and fa, will have an assumed sign, or else the
model is simply not specified well enough to yield any results. In the preceding
profit maximization model, for the factor prices (recall, f in that model designates
only the production function, not the whole objective function),

fio =Tiw, =—1 i=1,2 (6-14)
and
Tiwy = T2y, =0

The parameter w, for example, appears only in the first first-order equation,
;= 0. That is, f,, = 0, in Egs. (6-10). For that reason, the term involving the
cross-partial fi, in Eq. (6-12a) is 0. Since 7y, = —1, the result dxy/dw; < O is
obtained for the profit maximization model.

Similarly, for w,, foe = —1, fio = 0. Hence, in Eq. (6-12b), the only remain-
ing term on the right-hand side is — fa, f1:/H. From the second-order conditions,
0x5 /0w, < 0 is implied.

The situation is different for the parameter p, output price. Output price enters
both first-order equations (6-10). Therefore, the indeterminate cross-term f), appears
in the expressions for dxj/dp and dx;/dp. As a result, no refutable hypotheses
emerge for this parameter with regard to each input.

The preceding analysis suggests that refutable comparative statics theorems
will be forthcoming in a maximization model only if a given parameter enters one
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and only one first-order equation. This result, known as the conjugate pairs theorem,
will be shown in greater generality in the succeeding sections. From Eqgs. (6-12),
if some parameter «; enters only the ith first-order equation, then dx/dc; and fi,
must have the same sign. This can be expressed as
_ox!
fiat >0 (6-15)
801,-
Virtually all of the comparative statics results in economics are specific instances of
Eq. (6-15), where some parameter ¢; enters only the ith first-order equation.

6.2 GENERALIZATION TO n VARIABLES

Let us now investigate how the two-factor, profit maximization model is general-
ized to n factors. We must first derive the first- and second-order conditions for an
unconstrained maximum (and minimum). We will then use the profit maximization
model to motivate and illustrate the general methodology of comparative statics.

First-Order Necessary Conditions

As we noted in Chap. 4, the necessary first-order coanditions for y = f(x;, ..., x,)
to have a stationary value are that all the first partials of fequal zero; that is, f, =l
i = 1,...,n. This is a straightforward and intuitive generalization of the two-

variable case. The second-order conditions, however, are a bit more complex.

Second-Order Sufficient Conditions

Using a Taylor series approach, as was done in the Appendix to Chap. 4, it can be

shown that a sufficient condition for y = f(xy, ..., x,) to have a maximum at some
stationary value is that for all curves, y(t) = f(x(2), ..., x,()), y"(t) < 0. Using
the chain rule, this sufficient condition is
L e dx; dx;
i 6-16
at2 Z%JfJalt dt< (6-16)

for all dx;/dt, dx;/dt not all equal to 0.
A square matrix (a;;) which has the property that

n

Zia,jhihj <0 (6-17)

i=l j=I

for all nontrivial (not all 0) A;, h; is said to be negative definite. (If the strict in-
equality is replaced by “< 0,” the matrix is called negative semidefinite.) Similarly,
(a;;) positive definite (semidefinite) means that the sum in (6-17) is strictly positive
(nonnegative) for all nontrivial h;, h;. Thus, if at a point where f; = 0,i =1,...,n,
the matrix of second partials of f (called the Hessian matrix) is negative definite,
then f(xy, ..., x,) has a maximum there. If the Hessian matrix is positive definite
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there, a minimum exists. If the Hessian is negative semidefinite, then f definitely
does not have a minimum, but it is not possible to say whether f has a maximum or
some sort of saddle point at the stationary value. An expression of the form (6-17),
in matrix form h’Abh, is called a quadratic form.

Geometrically, negative definiteness of the Hessian matrix

Su - fin
H=| :
fnl fnn

ensures that the function f will be strictly concave (downward). If H is positive
definite, fis strictly convex.

Example. Consider the function y = (x; — x,z)(xz — 2x}) depicted in Fig. 4-1 of
Chap. 4. This is a function that has a minimum at the origin when evaluated along all
straight lines through the origin, yet the function itself does nof have a minimum there.
The Hessian matrix of second partials is

e 24x? —6x, — 6x,
o\ - 6X1 9

He 0 0
=0 2
This matrix is clearly positive semidefinite:

2 2
Q=" fihihj=2h}>0

j=1 i=l

When k- = anything, 7, = 0, this quadratic form Q = 0; when /#, #£0, O > 0.

At the origin, this matrix is

In the two-variable case, y = f (x, x;), the sufficient second-order conditions
for a maximum, (6-16), iniply that f;; < O, ,f22 < 0,and fi, foo — flz2 > (), as was
shown in Chap. 4. Note that this last expression can be stated as the determinant of
the cross-partials of the objective function,

Ju o
fa f»

Note also that the conditions f);, f2» < O relate to the diagonal elements of that
determinant. The theory of determinants allows a very simple statement of the suf-
ficient second-order conditions for y = f(xi, ..., X,) to have a maximum. First,
consider the following construction: :

Definition. Let A, be some nth-order determinant. By a “principal minor of order £”
of A, we mean that determinant which remains of A, when any n — k rows and the
same numbered columns are eliminated from A,,.

For example, if some row, row i, is eliminated, then to form a principal minor of order
n — 1, column i must be eliminated. Since there are n choices of rows (and their
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corresponding columns) to eliminate, there are clearly » principal minors of order
n—1of A,.If, say, rows 1 and 3 and columns | and 3 are eliminated, then a principal

minor of order n — 2 remains. There are (g) = n(n — 1)/2! of these, and in general
(Z) = n!/k!l(n — k)! principal minors of order k [or order (n — k}]. Note that the

first-order principal minors of A, are simply the diagonal elements of A,, and the
second-order principal minors are the set of 2 x 2 determinants that look like

Qi dij

aji djj

The resemblance of this determinant to the 2 x 2 determinant of cross-partials of a
function f(x;, x3) provides the motivation for the following theorem.

Theorem. Considerafunctiony = f(x,, ..., x,) that has a stationary value at x = x°.
Consider the Hessian matrix of cross-partials of £, (f;;). Then if all of the principal
minors of |(f;;)| of order k have sign (=¥ forallk = 1,...,n (k = n yields the
whole determinant, |(f;;)|) at x = x°, then f(x,, ..., x,) has a maximum at x = x°.
If all the principal minors of |(f;;)| are positive, for all k = 1,..., n, at x = x°, then
f(x),...,x,) has a minimum value at x = x° If any of the principal minors has a
sign strictly opposite to that stated above, the function has a saddle point at x = x°. If
some or all of the principal niinors are 0 and the rest have the appropriate sign given
in the preceding conditions, then it is not possible to indicate the shape of the function
at x = x°. (This corresponds to the 0 second-derivative situation in the calculus of
functions of one variable.)

The theorem as stated is the form in which we shall actually use the result.
However, it is somewhat overstated. Consider the *“naturally ordered” principal mi-
nors of an n x n Hessian,

S fiz fis
| f11l ?1 ?2 fa fn f2s
RN R o fa

Recall that in the two-variable case, fi; < 0 and fi; fon — f5 > 0 implies fo < 0.
In fact, if all of these naturally ordered principal minors have the appropriate sign
for a maximum or minimum of f (xy, ..., x,), then all of the other principal minors
have the appropriate sign. Thus, the theorem as stated is in some sense “too strong”;
i.e., more is assumed than is necessary, but we shall need the sufficient condition
that all principal minors of order & have sign (—1)* for a maximum, or that they are
all positive for a minimurm.

There are several inelegant proofs of this theorem, one by completing a rather
gigantic square a la the proof used in Chap. 4, and an elegant proof based on matrix
theory, a proof that is beyond the level of this book.! Hence, no proof will be offered.

{See George Hadley, Linear Algebra, Addison-Wesley Publishing Co., Inc., Reading, MA, 1961.
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It is hoped that the discussion of the two-variable case will have at least made the
theorem not implausible.

Profit Maximization: n Factors

Consider the profit-maximizing firm with n factors of production. The objective
function, again, is

maximize

= pf(xlv "'axn) _Zwixi
The first-order conditions, again, are
w=pfi—w;=0 f= L ..l (6-18)

The firm equates the value of marginal product to the wage at every margin, i.e.,
for every factor input. This is a straightforward generalization of the two-variable

case. These equations represent n equations in the » decision variables xi, ..., x,
and n + 1 parameters wy, ..., w,, p. If the Jacobian determinant is nonzero, i.e.,
87'[[
J = +0 (6-19)
an

then at this stationary value, these equations can be solved for the explicit choice
functions, i.e., the factor demand curves,

Xxi=x;(wi,...,wy,p) i=1,...,n (6-20)

The sufficient conditions for a maximum are that the principal minors of (7;;) =
(pfi;) alternate in sign, i.e., have sign (=1D* k =1,...,n. Since p > 0, this is
equivalent to saying that the principal minors of the matrix of second partials of the
production function,

fu fiz - fi

Ja  fz Jan

fnl fn2 fnn
alternate in sign. Specifically, this means that, among other things, the diagonal
terms are all negative, thatis, f;; < 0,7 = 1, ..., n. This says that there is dimin-

ishing marginal productivity in each factor. In addition, all n(n — 1) /2 second-order
determinants

Julu| g j=1,...,n i#j

Sii fii
The “own-effects” dominate cross-effects in the sense that f;; f;; — 5 >0,i,j =
1,...,n,i+ j. Then there are all the remaining principal minors to consider; these

are not easily given intuitive explanations.
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The sufficient second-order conditions say that in a neighborhood of a maxi-
mum point, the objective function (in this example, this is equivalent to the produc-
tion function) must be strictly concave (downward). The conditions f;; <0 ensure
that the function is concave in all the two-dimensional planes whose axes are y and
some x;. The second-order principal minors relate to concavity in all possible three-
dimensional subspaces y, x;, x;. But concavity in all of these lower-order dimensions
is not sufficient to guarantee concavity in higher dimensions; hence, all the orders of
principal minors, including the whole Hessian determinant itself, must be checked
for the appropriate sign.

In terms of solving for the factor demand curves, the sufficient second-order
conditions guarantee that this is possible. The nth-order principal minor, i.e., the
determinant of the entire (i;;) matrix, has sign (—1)" # 0 by these sufficient con-
ditions. But this determinant is precisely the Jacobian of the system (6-18); hence,
applying the implicit function theorem, the choice functions (6-20) are derivable
from (6-18).

Substituting the choice functions (6-20) back into (6-18) yields the identities

pfiGx},....x3)—w; =0 i=1,...,n (6-21)

To find the responses of the syctem to a change in some factor price w ;, differentiate
(6-21) with respect to w ;. This yields the system of equations

ox¥ Ox*
pfit — 4+ + pfiu—2=0
ow ; ow
o i
PIn W p’"awj N
ox? ox*
pfnla 1+"'+pfnn ~=0
: W ow

In matrix notation, this system is written

pfu o pfw | (2 0
ow :
: = |1 (6-22)
0xy-

Pfm Phw |\ Gw, 0

where the 1 on the right-hand side appears inrow j. Solving for 0.x; /0w ; by Cramer’s
rule involves putting the right-hand column in column i of the |(pf;;)| determinant,
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in the numerator, i.e.,

pf“ 0 pfll?
1
ax;k _ pf"l 0 pfmz. (6—23)
8Wj H

where H = |pf;;|, the Jacobian determinant of second partials of 7. Expanding the
numerator by the cofactors of column i,
Ox _ Hi (6-24)
ow j - H
where H;; is the cofactor of the element in row j and column i of H.
In general, H has sign (—1)" by the sufficient second-order conditions for
a maximum. For i # j, however, the sign of H;; is not implied by the maximum
conditions. Thus, in general, no refutable implications emerge for the response of
any factor to a change in the price of some other factor. However, when i = j,
Bx;" _ H,”
Bw,- B H
The cofactor Hj; is a principal minor; by the maximum conditions it has sign (—1)" "1,
i.e., opposite to the sign of H. Thus,
I B (6-26)
= — < i=1,..., -
8W,’ H "
As in the two-factor case, the model does yield a refutable hypothesis concerning
the slepe of each factor demand curve. The response of any factor to a change in its
own price is in the opposite direction to the change in its price.
Finally, from the symmetry of H, using Eq. (6-24),
axf Hﬁ H,j ax;
LI L i RS nGar A 6-27
The reciprocity conditions thus generalize in a straightforward fashion to the n-factor
case. Since the parameter p enters each first-order equation (6-18), no refutable
hypotheses emerge for the responses of factor inputs to output price changes. The
matrix system of comparative statics relations obtained from differentiating (6-18)
with respect to p are [compare Egs. (4-21), Chap. 4]:

(6-25)

ow

oxi

pfll pfln ’"f]

=] : (6-28)

pfnl pfnn _fn
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Solving by Cramer’s rule for dx*/dp,

ox’ = fj Hj, S
L= — E 0 6-29
op = H {2

It can be shown that if p increases, then at least one factor must increase, but this is
precious little information.
Finally, the supply function of this competitive firm is defined as

y=f&xiw,p),....x; (W, p)) =y Wy,...,w,, p)
where w is the vector of factor prices (wy, ..., w,). It can be shown that
a *
Y S0 (6-30)
ap
and
ay* oxrF
AN T D (6-31)
8w,~ 8p

We shall leave these results to a later chapter, as they are difficult to obtain by the
present methods and outrageously simple by methods involving what is known as
the envelope theorem, which wili be discussed later.

We now state an interesting theorem without proof and apply it to the profit
maximization mode].

Theorem. Let H be an n X n negative definite matrix (whose diagonal elements are
all necessarily negative) and whose off-diagonal elements are all positive. Then the
inverse matrix H~' consists entirely of negative entries.

This theorem is evident upon inspection for the 2 x 2 and 3 x 3 cases; however, we
have found no simple proof for the general case. The proof is an application of what
are known as the Perron-Frobenius theorems. We refer the reader to A. Takayama’s
text! for discussion and proof of these propositions.

Consider the application of this theorem io the profit maximization model. For
changes in some wage w;, we get the matrix equation (6-22) above. Let b be the
column vector on the right-hand side of this equation; it consists of zeros in every
row except row j, in which the element +1 appears. The solution to this equation, in
matrix form, is dx;/0w; = H~'b. Since every element of H~' is negative and b is
either 1 or 0, 0x; /0w; < 0,1, j = 1, ..., n. In the two-variable model, we showed
~ that the sign of dx;/dw, is the same as the sign of — f},. With only two factors,
technical complementarity (fj, > 0) is the same as complementarity defined in
terms of the change in the use of one factor as the price of the other factor changes.

tMathematical Economics, 2d ed., Cambridge Press, Cambridge, England, 1985, pp. 392ff.
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However, if more than two factors are present, one cannot infer that if, say, fi3 > 0,
then dx,/dws < 0; the signs of the other cross-partials of the production function
matter. The above theorem shows, however, that if all the factors are complements
in the sense of f;; > 0, then dx;/dw; < O for all the factors.

Likewise, consider Eq. (6-28) for the responses to a change in output price.
Assuming the marginal products of each factor are positive, the solution of this
equation is the matrix product of H~!, which has only negative elements, and the
column vector of the negatives of the marginal products of each factor. It therefore
follows that dx;/dp > O for all factors; i.e., there are no inferior factors with these
assumptions.

6.3 THE THEORY OF CONSTRAINED MAXIMA AND MINIMA:
FIRST-ORDER NECESSARY CONDITIONS

In most of the maximization problems encountered in economics, a separate, addi-
tional equation appears that constrains the values of the decision variables to some
subspace of all real values, i.e., some subspace of what is referred to as Euclidean
n-space. For example, in the theory of the consumer, individuals are posited to
maximize a utility function, U (x,, x;), subject to a constraint that dictates that the
consumer not exceed a certain total budgetary expenditure. This problem can be
stated more formally as

maximize
U(x),x)=U (6-32)

subject to
P1X|+ paxo = M (6-33)

where x; and x; are the amounts of two goods consumed, p; and p, are their
respective prices, and M is total money income. This problem can be solved simply
by solving for one of the decision variables, say x;, from the constraint and inserting
that solution into the objective function. In that case, an unconstrained problem of
one less dimension results: From (6-33),

0 = Pl + = (6-34)
D2 P2

Since once x; is known, x, is known also from the preceding, the problem reduces
to maximizing U (x|, x,(x;)) over the one decision variable x;. This yields -

dU dU U dx
dx, 9x; 9x,dx

— I + O =

P2
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FIGURE 6-1
Utility Maximization. In this diagram, three
indifference levels are drawn, with U? >
U' > UY. The line MM represents a con-
sumer’s budget constraint. The constrained
A utility maximum occurs at point A, where the
indifference curve is tangent to (has the same
U? slope as) the budget constraint. The second-
order conditions for a maximum say that the
u' level curves of the utility function, i.e., the in-
U0 difference curves, must be convex to the ori-
gin; i.e., the utility function must be “quasi-
0 M X;  concave” (in addition to strictly increasing).

or
L/
U, P2
Thisis the familiar tangency condition that the marginal rate of substitution (—=U, / U5,
the rate at which a consumer is willing to trade off x, for x,) is equal to the oppor-
tunity to do so in the market (—p;/ 2, the slope of the budget line). The condition
is illustrated in Fig. 6-1. Under the right curvature conditions on the utility function
(to be guaranteed by the appropriate second-order conditions), point A clearly rep-
resents the maximum achievable utility if the consumer is constrained to consume
some consumption bundle along the budget line MM.
The more general constrained maximum problem,

(6-35)

maximize
s as e Xp) ==y

subject to
g(‘xlv"')xn) :O

can be solved in the same way, i.e., by direct substitution, reducing the problem
to an unconstrained one in » — 1 dimensions. However, a highly elegant solution
that preserves the symmetry of the problem, known as the method of Lagrange
multipliers (after the French mathematician Lagrange), will be given instead. The
proof proceeds along the lines developed earlier for unconstrained maxima.

Consider the behavior of the function f(xi, ..., x,) along some differentiable
curve x(t) = (x,(2),...,x,(t)); that is, consider y(¢) = f(x;(¢),...,x,(2)). If
y'(t) = 0 and y"(t) < O for every feasible curve x(¢), then f(x,,..., x,) has a

maximum at that point. However, in this case, X(#) cannot represent all curves in
n-space. Only those curves that lie in the constraint are admissible. This smaller
family of curves comprises those curves for which g(x,(¢), ..., x,(¢)) = 0. Notice
the identity sign—we mean to ensure that g(x,, ..., x,) is 0 for every point along a
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given curve X(t), not just for some points. The problem can be stated as follows:

maximize
Fa(@), ..., x,(2)) = y(2) (6-36)
subject to
glxi(t), ..., x, (1)) =0 (6-37)
Setting y’(¢) = 0 yields
e O (6-38)
dt dt
for all values of the dx;/dt that satisfy the constraint. What restriction does
g(x(t),...,x,(t)) = 0 place on these values? Differentiating g with respect to
t yields
dx; dx,
g‘d_zJ’"'J’g"ZEO (6-39)
In the unconstrained case. the expression (6-38) was zero for all dx; /dt; thus, in that
case f; =0,i =1, ..., n, was necessary for amaximum. Here, however, (6-38) and

(6-39) must hold simultaneously. Hence, the values of dx;/dt are not completely
unrestricted. However, assuming f; # 0, we can write, from (6-38),

d d n d n
du _ fdx o Jadx (6-40)
dt f1 dt f1 dt
Similarly, from (6-39), if g; # 0, ,
d d i X .
do _ _gdx g dx (6413
dt g dt g1 dt
Subtracting (6-40) from (6-41) yields, after factoring,
f2 82) de (fn gn) dxn
s i— | —— e | e — = {) 6-42)
(fl g/ dt H &/ dt (

and, what is more, this expression must be O for all dx,/dt, ..., dx,/dt. By elimi-
nating one of the dx;/dt’s, the remaining dx; /dt’s can have unrestricted values. If
f1#0, g1 #£0, then for any values whatsoever of dx,/dt, ..., dx,/dt, a judicious
choice of dx;/dt will allow (6-38) and (6-39) to hold. But since (6-42) holds for any
values at all of dx, /dt, ..., dx,/dt, it must be true that the coefficients in parenthe-
sesare all O0;i.e., f;/fi = &i/&1,1 =2, ...,n.Inthe case where all of the f;, g; are
not 0, these conditions can be expressed simply as

h_&
fi &
These n — 1 conditions say that the level curves of the objective function have to be

parallel to the level curves of the constraint. This is the familiar tangency condition,
illustrated by the preceding utility maximization problem. The n— 1 conditions (6-43)

Lj=1,....n (6-43)
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and the constraint (6-37) itself constitute the complete set of first-order conditions
for a constrained maximum problem with one constraint. Of course, these first-order
conditions are necessary for any stationary value—maximum, minimum, or saddle
shape.

The above conditions can be given an elegant and useful formulation by con-
structing a new function & called a Lagrangian, where

§£:f(Xl,...,xn)_*‘A—g(xly---7x’1)

The variable X is simply a new, independent variable and is called a Lagrange
multiplier.T Note that &£ always equals f for values of xi, ..., x, that satisfy the
constraint. Thus, & can be expected to have a stationary value when f does. Indeed,
taking the partials of &£ with respect to xy, ..., x, and A and setting them equal to O
yields

§£1=f1+kg1=0

B = £ +Ag, =0 (6-44)

s = By o nnrdy) =0

Eliminating A from the first n equations of (6-44) (by bringing Lg; over to the right-
hand side and dividing one equation by another) yields

5_&

fi &
precisely the first-order conditions for a constrained maximum. Hence, the La-
grangian function provides an easy mnemonic for writing the first-order conditions
for constrained maximum problems. However, we shall see that this is a most useful

construction for the second-order conditions also, and, in the thecry of comparative
statics, the Lagrange multiplier A often has an interesting economic interpretation.

Example. Consider again the utility maximization problem analyzed at the beginning
of this section. The Lagrangian for this problem is

L= U(xy, x2) + A(M — pix; — paxa)
Differentiating & with respect to x;, x5, and A yields

581 = U] — )\.Pl =0 (6'45[1)
£y =U,—Ap, =0 (6-45b)
Er=M—px;—px, =0 (6-45¢)

The partial £, is simply the budget constraint again since &£ is linear in A. The vari-
able A can be eliminated from (6-45a) and (6-45b) by bringing Ap,, Ap, over to the

Mt is of no consequence whether one writes £ = f + kg or £ = f — Ag; this merely changes the sign
of the Lagrange muitiplier.
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right-hand side and then dividing one equation by the other. This yields U,/U, =
p1/ P2, the tangency conditions (6-35) arrived at by direct substitution.

There are many problems in economics in which more than one constraint
appears. For example, a famous general equilibrium model is that of the “small
country” which maximizes the value of its output with fixed world prices, subject to
constraints which say that the amount of each of several factors of production used
cannot exceed a given amount. The general mathematical structure of maximization
problems with r constraints is

maximize
Xy, s Xp) =%y (6-46)
subject to

gllx, ... x,) =0

(6-47)
g (xy,...,x,)=0

These are r equations where, of necessity, r < n. (Why?)

The first-order conditions for this problem can be found by generalizing the
Lagrange multiplier method previously derived. Multiplying each constraint by its
own Lagrange multiplier A/, form the Lagrangian

L=Fflx,.... %) +Ag oo x) o A, LX) (6-48)

Then the first partials of &£ with respect to the n + r variables x;, A/ give the correct
first-order conditions:

Li=fi+rg +---+Xgl=0 i=1,...,n (6-49)
Limpl =0 j=1,. .7 (6-50)

where g,-j means dg’ /dx;. The proof of this can be obtained only by more advanced
methods; it is given in the next section.

6.4 CONSTRAINED MAXIMIZATION WITH MORE THAN ONE
CONSTRAINT: A DIGRESSION'

Consider the maximization problem

maximize
f(-xh--'vxn) =)’

tIn order to understand this section, the student must be familiar with some concepts of linear algebra,
such as rank of a matrix, etc., developed in the Appendix to Chap. 5. We are indebted to Ron Heiner for
demonstrating this approach to the problem to us.
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subject to
g (xt, ..., x) =0
8 X1y 5509 %) =10
Letting x; = x;(¢),i = 1, ..., n, as before, the first-order conditions for a maximum
(or any stationary value) are
dy dx, dx,
e+ =0 6-51
dt U dt et dt ( )
for any dx;/dt, ..., dx,/dt satisfying
I dxl LY 1 dx,, 0
Ldt &nar =
(6-52)
r 1 + rdxn O
b dt 8"
where g/ = g/ /0x;.
For any function y = f(xy, ..., X,), the gradient of f, written V{, is a vector
composed of the first partials of f:
VE=(Fi, .5 Ja)
The differential of f can be written
dy = Vidx
where dx = (dx;, ..., dx,). Along a level surface, dy = 0, and hence Vf is orthog-
onal to the direction of the tangent hyperplane. The gradient of f, V{, thus represents
the direction of maximum increase of f(xi, ..., X,).

Note that Eq. (6-51) is the scalar product of the gradient of f, V{, and the
vector h = (hy,..., h,) = (dx,/dt,. .oy dx,/dt). Likewise, Egs. (6-52) are the
scalar products of the gradients of the g/ functions, Vg’/, and h. Let Vg denote the
r x n matrix whose rows are, respectively, Vg', ..., Vg'. Then Egs. (6-51) and
(6-52) can be written, respectively,

- Vf-h=0 (6-53)
for all h # 0 satisfying
(Vgh=0 (6-54)

Assume now that the matrix Vg has rank r, equal to the number of constraints. This
says that the constraints are independent, i.e., there are no redundant constraints.
If the rank of Vg was less than 7, say r — 1, then one constraint could be dropped
and the subspace in which the dx;/dt could range would not be affected. It is as
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if a ration-point constraint were imposed with the ration prices proportional to the
original money prices. In that case, the additional rationing constraint would either
be redundant to or inconsistent with the original budget constraint.

~ Assuming rank Vg = r, the rows of Vg, that is, the gradient vectors Vg/ =
(gi,...,8&)), j=1,...,r, form a basis for an r-dimensional subspace E, of E,,
Euclidean n-space. From (6-54), the admissible vectors h are all orthogonal to E, ;
hence, they must all lie in the remaining n — r dimensional space, E/. However,
from (6-53), Vfis orthogonal to all those h’s and hence to E. Hence, Vf must li¢ in
E,. Since the vectors Vg’ form a basis for E,, Vf can be written as a unique linear
combination of those vectors, or

VE=A'vg' + ...+ A"Vg (6-55)

However, this is equivalent to setting the partial derivatives of the Lagrangian ex-
pression & = f — 5 A/ g’ with respect to xy, .. ., x, equal to 0.

6.5 SECOND-ORDER CONDITIONS

In the past two sections, the first-order necessary conditions for a function to achieve
a stationary value subject to constraints were derived. Those conditions are implied
whenever the function has a maximum, a minimum, or a saddle shape (a minimnm in
some directions and a maximum in others). We now seek to state sufficient conditions
under which the type of stationary position can be specified. The discussion will be
largely limited to the two-variable case, with the general theorems stated at the end
of this section.
Consider the two-variable problem

maximize
f(xla x2) — y

subject to
glx;, %) =0

The Lagrangian function is £(x;, x5, A) = f(x1, x2) + Ag(x1, x2). The first-order
conditions are, again,

dy d d)C2

— = —— = 6-56
dt f TS dt =20
for all dx, /dt, dx,/dt satisfying
dX] dX2
— — =0 6-57
81— + &2 e (6-57)

These conditions imply that £, = fi +ig; = 0, &£, = f, +Ag, = 0. Sufficient
conditions for these equations to represent a relative maximum are that d*y /dt* <
0, for all dx,/dt, dx,/dt satisfying (6-57). Similarly, d*y/dt* > 0 under those
conditions implies a minimum. How can these conditions be put into a more useful
form? Differentiating (6-56) again with respect to z, the sufficient second-order .
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condition is

a'zy d2X| d2X2 d)C] 2 dxl de dx2 2

= — - 2 frp—— % i
dt* y dt? + 1 dt? +fu <d1> +2hn dt dt +f22<dt) <0
(6-58)
subject to
dx dxy
gt e =0 (6-57)

Since (6-57) is an identity, differentiate it again with respect to 7, remembering that
g1 and g, are functions of x;(t), x,(¢). This yields

d2x1+ d2x2+ (dx1)2+2 dxldx2+ (dxz)z
81 g T 82 g T8 | 812"y ar T2\ 4

Now multiply (6-59) through by A, the Lagrange multiplier, and add to Eq. (6-58).
Since this amounts to adding 0,

d2y dle d2X2 dxl 2
i (i +2g1) T (f2 +/\82)F + (fu +Agn) <I>

0 (6-59)

dx, dx; dx,\?
W fio+ hop) ot 222 @ 1
+2(fi2 + Ag12) T + (far + 2g22) ( dt> < 0 (6-60)

subject to (6-57). However, from the first-order conditions, &£, = f; + Ag; = O,
£y = fr+xrg = 0. Also, fi1; + Agy; is simply &£y, and likewise £ = fi, + Agio,
etc. If we simplify the notation a bit and write h, = dx,/dt, h, = dx,/dt, then the
sufficient second-order conditions for a maximum are that

ggllh% + 2§£12h1h2 + §£22h% <0 (6‘61)
for all k,, h, not both equal to 0, such that
g1h1 + g2hy =0 (6-62)

For the case of n variables and one constraint, the derivations proceed along similar
lines, producing

iigljhgh}' <0 (6-63)

i=1 j=1

for all h;, h; such that

> &hi=0 (6-64)
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In this case the matrix of terms (£;;) is said to be negative definite subject to con-
straint.
Equations (6-61) and (6-62) can be combined into one useful expression: From
(6-62),
hy = —h, 5
&2

Substituting this into (6-61) yields

2
.58”}1% +2$]2h] (—l’l|&> +§£22 (—hl&> <0
82 82

Or, by multiplying by g2,
(D(g“g;' — 2;'012g1g2 + gzgg%)/’l? < 0 (6-65)

for any value of i, # 0. This implies that the expression in the parentheses must
itself be < 0. How can that expression be conveniently remembered? It turns out,
fortuitously, that the expression in parentheses in (6-65) is precisely the negative of
the determinant

AT ATINN
H= % %» & (6-66)
&g & 0

as can be immediately verified by expansion of H. Hence, a sufficient condition for
f (x1, x2) to have a maximum subject to g(x,, x,) = 01is, together with the first-order
relations, that H > 0. Likewise, for a minimum subject to constraint, the sufficient
second-order condition is that H < 0. Also, H = 0 corresponds to the case where
the second derivatives d?y/dt* = 0; hence no statement can be made regarding the
type of stationary value in question. Note that 32%£/9x,0% = £, = g; = £, and
Eon =Ly = g, and £y, = 0, since A enters the Lagrangian £ = f + Ag linearly.
Hence, H is simply the determinant of the matrix of cross-partials of &£ with respect
to X1, X,, and A, that is,

$]1 -E£l2 §£le
H=|%&1 £n £y
Dy L Lu
For the n-variable case, the situation is more complicated, but the rules are
analogous to the unconstrained case. The Lagrangian is £ = f(xy,...,x,) +
rg(x1, ..., x,). Consider the matrix of cross-partials of &£ with respectto xj, ..., xx
and X, noting, as before, that &;; = g;, £y, = 0:
Ly - L &
H = .
ggnl ﬂznn 8n

81 &n 0
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This matrix 1s commonly referred to as a bordered Hessian matrix, noting how the
first partials of the constraint function g border the cross-partials of &£ with respect
1O Xy :iwm iy Xp:

Consider the following construction: By a “border-preserving principal minor
of order k” of the preceding matrix, we mean that determinant which remains when
any n — k rows and the same numbered columns are deleted, with the special added
proviso that the border itself not be deleted. Hence, the deletions that can occur
must only come from rows 1 through n, not row or column n + 1. [Note that a
border-preserving principal minor of order kis a (k + 1) x (k + 1) determinant.]

The second-order sufficient conditions are then:

Theorem. Together with the first-order conditions £; = 0,i = 1,...,nand &, =
g = 0, if all the border-preserving principal minors of H of order k have sign (—1)%, k =
2, ..., n, then a maximum position is obtained. If all the border-preserving principal
minors are negative, kK = 2, ..., n, then a minimum is obtained.!

Suppose, even more generally, that there are r constraints involved. The La-
grangian function is & = f(x,...,x,) + Z;:, %;g’(x1,...,x,). The bordered
Hessian matrix of this Langrangian is

if]l $ln 811 g)l
Q}Il °(£nn 8,11 g,',
H = 1 1
8 g, O 0
\ ¢ g 0 0/

The sufficient conditions here state that for a minimum, the border-preserving prin-
cipal minors of order k& > r (which again must involve deletions only from rows
1 through n) have sign (—1)", where r is the number of (independent) constraints.
For a maximum, the border-preserving principal minors of order £ > r alternate
in sign, beginning with (—1)"*!, the second of opposite sign, etc. These princi-
pal minors must be of order greater than r, because, as inspection of H reveals
(note the r x r matrix of Os in the lower right), a determinant involving fewer
than » rows and columns from rows and columns 1 through » must equal 0. Note
again that with r bordering rows, a border-preserving principal minor of order k
has k + r rows and columns. An alternative presentation of the second-order con-
ditions is given in Table 6-1. In this table, m > 2r + 1 is the size of the whole
determinant.

fIn fact, if only the “naturally ordered” principal minors have this property, then all of the border-
preserving principal minors have that property.
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TABLE 6-1
Second-order conditions: Sign of all size m x m (border-preserving)
principal minors

Constraints

Condition 0 1 r
Maximum (=" (_1)’"—‘ (=1ym—r

m=1,...,n m=3,...,n+1 m=1+2r,...,n+r
Minimum (—1° = +1 (=D =—1 (—1)"

The Geemetry of Constrained Maximization

We visualize an unconstrained maximization in three dimensions as the top of a hill;
the surface must be concave there. Constrained maxima (or minima) are somewhat
more subtle. Consider the problem in two variables:

maximize

fOnLx)=y
subject to

g(xlsXZ) =k

The constraint g(x;, x,) = k represents a curve in the x;x, plane; we typically
think of it as a “frontier,” i.e., some sort of boundary that constrains consumption or
production. Assume that the first partials g; and g, are positive so that the frontier
has a negative slope (—g,/&2), and increases in k move the frontier “northeast” in the
x1x, plane. Three such frontiers are represented in Fig. 6-2: in panel (a), the frontier
is concave, in panel (b) it is linear, and in panel (c) it is convex.

Assume that the first partials of f(x;, x;) are also positive so that the level
curves of fare likewise negatively sloping (— f1/f2), and increasing values of f are
associated with level curves that are increasingly distant from the origin. It is visu-
ally obvious that if the constrained maximum occurs at some interior point along the
frontier (i.e., not at a corner, where the constraint intersects an axis), the maximum
occurs where a level curve of f(x;, x,) is tangent to the frontier. This is the algebraic
condition — fi/f, = —gi1/&a, derived earlier. However, this tangency condition is
implied by both a maximum and a minimum. If this condition is to represent a max-
imum, the level curves of the objective function must be either less concave than the
constraint frontier, as shown in panel (a), or more convex than the frontier, as shown
in panels (b) and (c).

If the constraint is linear, the level curves must appear “convex to the origin,”
the classic shape attributed to consumer’s indifference curves and production iso-
quants. However, this characterization is in fact imprecise. The essential property
required of the objective function to guarantee a constrained maximum subject to
a linear constraint is that f(x;, x,) be strictly increasing and guasi-concave. This
latter characteristic is defined as follows.
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f(x1, x2)
g(x1, x2) =k

glxr, x2) =k

(a) (b)

f(x1,x2)

glx, x2)=k

(¢)

FIGURE 6-2

Constrained Maximization. Constrained maximization requires. for increasing functions, that the level
curves of the objective function be either less concave or more convex than the level curves of the
constraint. If the constraint is linear, as in panel (b), or convex, as in (c), the level curves of the objective
function must be “convex to the origin”; i.e., the objective function must be quasi-concave.

Consider a typical indifference curve U° as shown in Fig. 6-3. Consider the set,
callit S, of points that are at ieast as preferred as a point on U°, shown as the shaded
area. This set has the property that if any two points in S are connected by a straight
line, the entire line also lies in S. A set with this property is called a convex set (not to
be confused with a convex function). (As an example of a set that is not convex, con-
sider the set of consumption bundles that are less preferred than those on U°.) Alge-
braically, if x° = (x7, xJ) andx' = (x{, x}) are any two points in the x, x, plane, x' =
tx" 4+ (1 —t)x!,0 < t < 1represents all points on the straight line joining x° and x'.
A function is called quasi-concave if the set of points for which the function takes on
values greater than or equal to some arbitrary value comprises a convex set. That is,
U (x1, x) is quasi-concave if U (x') > U (x°) implies U (¢x° + (1 — £)x!) > U (x9),
0 <t < 1. (The definition is generalized in an obvious way for functions of » vari-
ables.) We note in passing that if the function decreases as the distance from the origin
increases, quasi-concavity produces level curves that are “concave to the origin.”
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X2

FIGURE 6-3

Quasi-Concavity. A function is said to be quasi-concave if
the set of points for which the function takes on values greater
than or equal to some arbitrary amount, say, U 0 is a convex
set. These points are represented by the shaded area. This
is the property generally assumed for utility and production
Xt functions.

Recall from Chap. 2 that a concave function is one for which f(zx% + (1 —
x> tf (x4 (1—1) f(x'),0 <t < 1. Concavity clearly implies quasi-concavity:
assuming f(x') > f(x°), FEx*+ (1 —)x") > 1f &+ (1 —0) f(x") > 1f(x%) +
(1= fx% = f(x%. The converse, however, is not true. Quasi-concavity is a
weaker restriction than concavity. Concavity is required for an unconstrained max-
imum; quasi-concavity is all that is required for maximization subject to a linear
constraint. In the preceding theorem, the second-order conditions dealing with the
signs of the border-preserving principal minors define algebraically the geometric
properties of the objective and constraint functions required for a constrained max-
imum (or minimum). If the constraint is linear, these second-order conditions for a
maximum can be used to define algebraically the property of quasi-concavity of the
objective function. (This requires the additional step of using the first-order condi-
tions to replace the first partials of g with those of fin the bordering row and column.)
If a linear objective function is minimized subject to constraint, these second-order
conditions likewise describe quasi-concavity of the constraint function. This sit-
uation is encountered in Chap. 8, dealing with the minimization of cost subject
to an output constraint. These concepts will be applied in the following chapters.
Lastly, it is true, but not easy to prove, that if a function f(x),x = (x1, ..., x,) is
quasi-concave and linear homogeneous, it is (weakly) concave. Also, if fis strictly
quasi-concave and homogeneous of degree r, 0 < r < 1, it is strictly concave. The
proofs are left as exercises.

Example. Consider again the basic consumer theory model, maximize U (x;, x,) sub-
jectto pix; + pax, = M. (See Fig. 6-1 again.) Assuming more is preferred to less, the
ordinal indifference levels must be indexed such that U? > U' > U°. The condition
that a point of tangency of an indifference curve and the budget constraint actually
represents a maximum rather than a minimum of utility subject to a linear budget
constraint is that the utility function be strictly increasing and quasi-concave. In this
two-variable model, these conditions imply the usual shape, “convex to the origin.”
These assumptions compose the law of diminishing marginal rate of substitution, i.e.,
in two dimensions, that the slope of the level (indifference) curve increases (becomes
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less negative) as x, increases. We showed in Chap. 3 that the algebraic expression of
this shape is [see Sec. 3.5, Eq. (3-24)]
1

d’x; 2 2

Fika [ —U;Uy +2UpU U,y — U Uy e 0 (6-67)
If this is to be positive, the square-bracketed term must be positive, assuming that
U, > 0, i.e., the consumer is not sated in good 2. But by inspection, the term in
brackets is equal to the following determinant, which must therefore itself be positive:

Ull Ul2 —UI
Ua U -U,
-U, -U, 0
However, from the first-order conditions for utility maximization (6-45), U, = Ap;,
U, = Ap,. Substituting this into H’ and then dividing the last row and column by A
(and, hence, H' by A%, which is positive), the condition H' > 0 is equivalent to

Un Uz —p
Uy Un -p
—P P2 0
But H is seen to be the determinant of the bordered Hessian matrix, the cross-partials

of & with respect to x, xp, and A. This is in accordance with the general theorem of
this section.

H = >0 (6-68)

o — >0 (6-69)

6.6 GENERAL METHODOLOGY

At the beginning of this chapter, we considered the general economic model that was
characterized by being an unconstrained maximization. Let us now explore models
that have a constraint as an added feature.

Consider some economic agent that behaves in accordance with the following
general model:

maximize

f(x, xp,0) =y (6-70)

subject to
g(x1, x2, ) =0 (6-71)

where x; and x, are the decision variables and « is some parameter (or vector
of parameters) over which the agent has no control. What will be the response to
autonomous changes in the environment, i.e., to changes in the parameter «?

The first-order conditions for a maximum are derived by setting the partials of
the Lagrangian function & = f(x;, x2, @) + Ag(xy, x2, @), with respect to xj, x»,
and A, equal to zero:

‘581 = fl(xl’-x2: a) +)"gl(xlax2aa) — O
£y = folxy, x2, &) + Aga(x), X2, ) =0 (6-72)
En =g, x,a) =0
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Equations (6-72) represent three equations in the four unknowns x;, x,, A, and «.
Assuming the implicit function theorem (as was discussed previously) is applicable,
these equations can be solved, in principle at least, for the choice functions

Xy = XT(Q)
Xy = x5 (o) (6-73)
A =A%)

Substituting these values back into Egs. (6-72) from which they were derived yields
the identities -

filx], x5, 0) + 28 (xf, x5, ) =0
falxl, x), ) + A g (x], x5, a) =0 (6-74)
glxf,x,a)=0

Since we are interested in changes in the x’s (i.e., marginal values) as « changes,
we differentiate (6-74) with respect to «, using the chain rule. The first equation then
yields

5 XL 0
f12 +f1a+)\ gn + A%g12 + A" g1 + &1 =0
do da do
Noting that 5811 — f 11 +A*gi1, ... ,this equation can be more conveniently written
a B A"
¢, "1 xz +o5— =L (6-75)
Similarly, differentiating the second and third equations of (6-74) yields
9x} ar*
582 + 825 = — (6-76)
ox* oxx
gl + g =g (6-77)
dor do
In matrix notation, this system of three linear equations can be written
/3311 AP gl\ /Bxl \ /—SEM
Jdo
dxy .
Lo L 82 = | —~&n (6-78)
Jdo
0 ar*
\ 81 &2 ) 9 / —8a

Notice that the coefficient matrix on the left of (6-78) is the matrix of second partials
of the Lagrangian function. In unconstrained maximization models, this coefficient
matrix was the matrix of second partials of the objective function. The manipulation
of the model is formally identical in the constrained and unconstrained cases; the
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only difference is the conditions imposed on the principal minors of the coefficient
matrix by the sufficient second-order conditions.

The reason why the coefficient matrix comes out to be the second partials of
< is that identities (6-74) are precisely the first partials of &£,

iy, x5, A ) =0
Lolxl, x5, A a)=0 (6-79)
ggl(xrax;’a) =0

[Notice that A* does not appear in &£, = g(x}, x5, ) = 0.] Differentiating the first
identity with respect to « yields
0x3 ar*

oxy

o + 21253 < oo

This is precisely Eq. (6-75), noting again that £, = g,. In like fashion, Egs. (6-76)
and (6-77) are derivable directly from ¥, =0, £, = 0.

Since the Jacobian determinant J needed to ensure solution of Egs. (6-72)
for the explicit choice functions (6-73) is formed from the matrix of first partials
of (6-72), J is in fact the determinant of second partials of the Lagrangian £ with
respect to x,, x,, and A, that is, the determinant of the coefficient matrix in (6-78).
This determinant is denoted by H below. The sufficient second-order conditions
imply, among other things, that this determinant is nonzero, and thus the explicit
relations (6-73) are valid. And this determinant forms the denominator in the solution
by Cramer’s rule for dx;/0a and 9A*/dc. Let us now proceed, in the same manner
as for the unconstrained models.

Solving for dx{/da by Cramer’s rule,

2L +£,=0

e AT A0S 81
—Ln L 82
Oxf -8 8 0l _—fuHn ZLulh  g.Hi

(6-80)

do H H H H

where H is the bordered Hessian determinant of the coefficient matrix. Solutions for
9x; /0« and OA* /0« are, likewise,

$11 —éela 81
$21 “$2a 82 '
8x§ g —8a 0 . —~ L1 Hiz _ LraHn . 8o H32 (6-81)
da H - i H "
a . 32] 5822 —$2a $ H ‘Eg H
A T g2 ~Ly _ T eblafll3 204123 gozH33
da H - H H H o

It is clear that at this level of generality, no prediction as to the sign of dx*/dc
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or dA*/da is forthcoming. There simply is not enough information in the system.
All we know is that the denominators in these expressions are positive, but we have
no information regarding the numerators. The signs of the off-diagonal cofactors are
not implied by the maximum conditions.

Suppose now that the parameter o did not appear in either the second or third
first-order relations (6-72). Then ¥, = 0 and g, = 0, and

< £n & )
oxp _ g, O] _ +&£;,85 (6-83)
o H H

The partial dx] /0« now has a predictable sign: Since H > 0 and H,; < 0, by the
second-order conditions (here, H;; = — g% < O always), dx}/da will have the same
sign as the direction of “disturbance” of the first equation. That is, if an increase in
a has the effect of shifting the marginal curve &, to the right (£,, > 0), then the
response will be to increase the utilization of x;. Hence, if it is possible to make
statements like, “an increase in income will shift a demand curve to the right,” or “a
change in technology will lower (shift down) such and such marginal cost curve,”
then if that income or technology parameter enters only one first-order relaticn, it will
in general be possible to predict the direction of change of the associated variable
(the one for which that first-order equation is the first partial of the Lagrangian).
More succinctly, if « enters the ith first-order equation only, then 0x;/da and &£;,
have the same sign. However, since g, = 0, %y = fio + A8« = fia, and thus,
just as in the case of maximization models without constraints, dx; /0« and f;, must
have the same sign, or

0

fia a);i =0 (6-84)

This result holds for the case of n variables as well as for just two variables; its
precise statement is given in the problems following. The result follows because of
the conditions on the principal minors imposed by the second-order conditions for
a constrained maximum. '

In the case of d1*/dc, however, a sign is never implied by the sufficient
second-order conditions alone, no matter how the parameter « enters the first-order
equations. Suppose, for example, @ enters only the constraint, i.e., the third first-order
equation. Then —&£,, = —%,, = 0, and

OA"  —gaH3

- = _5" (€118 — £2,) 20 (6-85)

The cofactor Hs3, while a principal minor, is not a border-preserving principal minor.
The border row and column of H are deleted when forming His. Hence, no sign is
implied for 0A*/dc. If o enters any of the other equations, then the off-diagonal
cofactors H3, and Hs, will enter the expressions. These expressions are likewise not
signed by the maximum conditions.
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For the same reasons, it is apparent that any time the parameter « enters the
constraint, off-diagonal cofactors will be present in the expressions for dx; /da. Thus
no refutable implications are possible in models for a parameter that appears in the
constraint.

Example. To illustrate the principles just developed, let us return to the profit max-
imization model, slightly modified. Consider a firm with production y = f(x;, x3)
selling output y at price p. The firm hires input x, at wage w,; x,, however, represents
the entrepreneur’s input and is fixed at some level xJ. The firm seeks to maximize
net rents R, the difference between total revenue and the total factor cost of x,. Alge-
braically, the model is

maximize
X, X2

R = pf(xi, x2) —wixy
subject to
Xy = xg

Although we have essentially solved this model in Chap. 4, by directly substituting

the constraint into the objective function, we shall analyze it here as a constrained

maximization model. Even though in this particular example the constraint says that x,

is fixed, we treat x, as a variable, maintaining the structure of the Lagrangian analysis.
Using the Lagrangian

£ = pfxy, x3) —wix; +).(x3 —x2)

the first-order conditions are

£ = pfitx,x3) —w,; =0 (6-86a)
£r = pfolxi, x2) =2 =0 (6-86b)
g;\ = Xg — Xy = 0 (6‘866')

Equation (6-86a) says that the firm will hire x; until the value of its marginal prod-
uct of that factor equals its wage, as previously derived. Equation (6-86b) identifies
the Lagrange multiplier A as the value of the marginal product of the entrepreneurial
input. Whereas the wage of factor 1 is exogenously set by the competitive labor mar-
ket, the wage of factor 2 is endogenously “imputed.” If a competitive market existed
for entrepreneurial services, another firm would be willing to pay A for this owner’s
services.

The sufficient second-order condition is that the bordered Hessian determinant
formed from the second partials of &£ is positive:

pfin pho 0

Pfa pfn -1
0 -1 0

H= >0 (6-87)

Evaluating this determinant (say, by the third row, which has two zeros in it) yields
pfi1 < 0. Note that no restriction is placed on f,; since only x, is really variable (even
though we treat x; as variable in the constrained model), the only margin on which the
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firm adjusts is how much x, to hire. Only diminishing marginal product of x, is thus
required for an interior maximum.

Assuming the sufficient second-order condition holds, the first-order equations
can be solved simultaneously for the explicit choice functions:

x; =x;(wi, p,x3)
X =X (w,, P, xg) (6-88)
A= A*(wl, p,xg)

These choice functions represent the factor demands for x, and x, (trivial, in the case
of xp; x; = x3) and the profit-maximizing imputed value of entrepreneurial input.
Multiplying Eq. (6-86a) by x|, (6-86b) by x;, and adding,

p(fix{ + fox3) = wix{ + A% (6-89)

If the production function is homogeneous of degree 1 (constant returns to scale), then
from Euler’s theorem, the left-hand side of this identity is py*. In that case, (6-89)
can be interpreted as Total Revenue = Total Cost, where the total factor cost of x,
is its imputed opportunity cost A*x}. Thus with constant returns to scale, the product
is “exhausted”; i.e., the revenue received by the firm is exactly accounted for by the
total factor cost. Incidentally, (6-89) is an identity in wy, xg, and p, not in x; and x;.
This relation holds only for values of the factors satisfying the first-order equations,
assuming the sufficient second-order conditions are also satisfied.

Letus now investigate the comparative statics of this model. Note that the param-
eter w, enters only the objective function, whereas xJ enters the constraint. Substituting
the solutions (6-88) back into the first-order equations yields the identities

Pfl(xf,)f;) -w; =0
ph(x;,x5) -2 =0 (6-90)
xg —x;=0

Since the parameter w, enters only the first first-order equation, we expect therefore to
be able to derive a refutable implication for this parameter. The parameter xJ, on the
other hand, appears in the constiraint; we expect no refutable implication for this param-
eter. Differentiating these identities first with respect to w, produces the matrix equation

ox;
(an phin 0\ (_I 1
3w1
ax; .
pfa pfn -1 — |=1]0 (6-91)
s 8W1
0. -1 of | & 0
/ 8W|/
Solving for dx}/dw,
oxt H -1
SHh_Hun_ T .o (6-92a)

ow, H —-pfu
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Also, as expected, since x; 1s fixed,
BX; _ H|2 0 _
dw, H —pfi

0 (6-92b)

and
oA _ ﬂ . —'ple
ow, H —pfi

As we showed earlier, a sign is never implied for rates of change of the La-
grange multiplier with respect to any parameter. However, Eq. (6-92¢) shows that
if the marginal product of x, increases with an increase in the entrepreneurial input
(meaning, in the two-factor case, that the two factors are complements), the imputed
marginal value of the entrepreneurial input moves in the opposite direction as the wage
of x,. (If elevators are fixed in supply, an increase in the wages of elevator operators
will lower the imputed marginal value of elevators.)

Differentiating Egs. (6-90) with respect to xJ produces the matrix equation

=0 (6-92¢)

/ oxy /
pin pfa 0 — 0

dx)
Bx;v
pfn pfa —1 — | = 0 (6-93)
. 0x;
oA
0 -1 0 5 —1
0x;
Solving,
ax¥ —H
ad R Pl g (6-94a)
0x; H =pfn
Also, since x, = xJ,
ax; —H -
i NP Piu _ (6-94b)
ax; H —pfn
and
9r*  —Hy  —p’ - £
s P*(fnfn = 1) 20 (6-94c)
0x3 H —pfu
Note the curious “reciprocity” result x7/dx) = —3A*/dw,, since Hy; = Hs).

We shall have more to say about these types of relations in the next chapter. Note
also from Eq. (6-94¢) that an increase in the parametric entrepreneurial input level
has an unpredictable effect on the imputed marginal value of the entrepreneurial in-
put. Only if we assume, additionally, that the production function is concave so that
furfaz — f5 > 01is 8A*/3x3 < 0. In that case, as in ordinary profit maximization, x,
exhibits diminishing marginal product, lowering its marginal value as more x, is uti-
lized. Thus, assuming information in addition to the maximization hypothesis leads to
additional results.

To sum up, for parameters entering only the objective function, refutable impli-
cations are possible. Because such a parameter, w,, enters one and only one first-order
condition, a sign can be determined for dxj/dw,. For parameters entering the con-
straint, such as xg in this model, refutable implications are not possible on the basis of
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the maximization hypothesis alone, though additional assumptions may yield useful
propositions.

PROBLEMS

1. Consider the constrained maximum problem

maximize
f(xh "'7xllsala -~~,am) e y

subject to
g(xlaw-,xmal»---’am) :0

Prove that if some parameter «; enters the ith first-order relation and that equation only,
then
ox;
L - >0

ia; aa
i

2. Prove the same result if there is more than one constraint.

3. Show that diminishing marginal utility in each good neither implies nor is implied by
convexity of the indifference curves.

4. Find the maximum or minimum values of the following functions f(x,, x;) subject to
the constraints g(x,, x,) = 0 by the method of direct substitution and by Lagrange mul-
tipliers. Be sure to check the second-order conditions to see if a maximum or minimum
(if either) is achieved.

(a) f(x1,x2) = Xx1x2; g(x1, X2) = 2 — (x) + X2).

(b) f(x1,x) = x1+ Xx2; g1, X2) = 1 — x1x5.

(c) f(x1,x) = x1x3; 8(x1, x,) = M — p)x) — p2x,, where py, p,,and M are parameters.
(d) f(x1,x2) = pixy + paxa; g(x1, x2) = U® — x1x,.

5. Show that the second-order conditions for Probs. 4(a) and 4(b) are equivalent; also that
the second-order conditions for Probs. 4(c) and 4(d) are equivalent.

6. Consider the class of models

maximize

y = flx1, x2) +ax,
subject to

g(x1, x2) + Bx, =0

where x; and x, are choice variables and « and B are parameters. Using the Lagrangian
£ = fx1, %) +ax; 4 A(g(x, x2) + Bxa)

(a) Prove that dx|/da > O but that no refutable comparative statics result is available
for B. _
(b) Prove that dx} /3 = A*(3x;/0a) + x5 (31" /0x).
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Consider a general maximization problem
maximize
Y= f(-xlsx27 a)
subject to
glx, x) =k
where x,; and x, are choice variables, and o and k are parameters. Using the Lagrangian
i = f(xl’xz,a) + A'(k - g(xlv-x'l))

(a) Prove that f,,(dx}/3k) + fr,(0x/0k) = dL* /0.
(b) What functional forms of the objective function and constraint would lead to the
simple reciprocity result dx;/dk = 9A*/da?

. Consider a firm that hires two inputs x; and x, at factor prices w, and w,, respectively.

If this firm is one of many identical firms, then in the long run, the profit-maximizing
position will be at the minimum of its average cost (AC) curve. Analyze the comparative
statics of this firm in the long run by asserting the behavioral postulate

minimize
WXy + woxg

fx1, x2)
where y = f(x;, x,) is the firm’s production function.
(a) Show that the first-order necessary conditions for min ACare w; —AC* f; =0, i =
1, 2, where AC* is min AC. Interpret.
(b) Show that the sufficient second-order conditions for min AC are the same as for
profit maximization in the short run (fixed-output price), that is,

<0 fn<0 fufzz—f;zz>0

(Hint: In differentiating the product AC* f;, remember that AC*/dx; = 0 by the
first-order conditions.)
(c) Find all partials of the form 9dx;/dw;. (Remember that w, and w, appear in AC.)
Show that 9x; /dw; < 0is not implied by this model, nor is dx;/dw; = 9x7/0w;.
(d) Show that fix] + f,x; = y*.Is this Euler’s theorem? (If it is, you have just proved
that all production functions are linear homogeneous!)

AC =

. Consider a firm with the production function y = f(x;, x;), which sells its output in a

competitive output market at price p. It is, however, a monopsonist in the input market,

i.e., it faces rising factor supply curves, in which the unit factor prices w; and w, rise

with increasing factor usage, that is, w, = k;x;, w, = kyx,. The firm is asserted to be a

profit maximizer.

(a) How might one represent algebraically a decrease in the supply of factor 1?

(b) If the supply of x; decreases, will the use of factor 1 decrease? Demonstrate.

(c) What will happen to the usage of factor 2 if the supply of x, decreases?

(d) Explain, in about one sentence, why factor demand curves for this firm do not exist.

(e) Suppose the government holds the firm’s use of x, constant at the previous profit-
maximizing level. If the supply of x; decreases, will the use of x; change by more
or less, absolutely, than previously? .

Prove the propositions stated at the end of Sec. 6.5 thatif a function f (x), x = (xj, ..., x,,)

is quasi-concave and linear homogeneous, it is (weakly) concave, and if f is strictly

quasi-concave and homogeneous of degree r, 0 < r < 1, it is strictly concave.
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CHAPTER

7

THE ENVELOPE
THEOREM AND
DUALITY

7.1 HISTORY OF THE PROBLEM

In the early 1930s, 2 very distinguished economist, Jacob Viner, was analyzing the
behavior of firms in the short and long run. Viner defined the *‘short run” as a time
period in which one factor of production, presumably capital, was fixed, while the
other factor, labor, was variable. He posited a series of short-run cost curves, whose
minimum points (for successively larger capital inputs) first fall and then rise. Viner
reasoned that if both inputs were variable, the resulting “long-run” average cost
would always be less than or equal to the corresponding short-run cost. He therefore
concluded that the long-run average cost curve should be drawn as an “envelope” to
all the short-run curves. The eventual diagram, pictured in Fig. 7-1, now appears in
virtually all intermediate price theory texts.

However, Viner also was puzzled by the fact that the resulting long-run curve
did not pass through the minimum points of the short-run curves, since reducing unit
costs seemed to increase available profits. Moreover, at the points of tangency, the
slopes of the long-run and short-run curves were the same, indicating that average
cost was falling (or rising) at the same rate, irrespective of whether capital was being
held constant. Viner therefore apparently asked his draftsman, Wong, to draw a long-
run average cost curve that was both an envelope curve to the short-run curves and
that also passed through the minimum points of the short-run curves. When Wong
indicated the impossibility of this joint occurrence, Viner opted to draw the long-run
average cost curve through the minimum points of the short-run average cost curves,

151
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C(y)

FIGURE 7-1
The modern Viner-Wong diagram shows the long-run average cost curve as an envelope to the short-
run average cost curves.

rather than as an envelope curve.! The egos of many succeeding economists have
been soothed by that decision. '

The problem was soon analyzed algebraically by Paul Samuelson, who demon-
strated the correctness of the tangency of such long- and short-run curves.* However,
it remained somewhat of a puzzle that the rate of change of an objective function
should be the same whether or not one variable is held constant. Perhaps most sur-
prising, as economists investigated this puzzle further, was the discovery that the
relationships that underlie this “envelope theorem” also reveal the basic theorems
about the existence of refutable comparative statics theorems. It is to this larger issue
that we now turn.

7.2 THE PROFIT FUNCTION

Samuelson began his analysis as follows. Consider a general maximization model
with two decision variables, x; and x,, and one parameter, «:

See Jacob Viner, “Cost Curves and Supply Curves,” Zeitschrift fur Nationalokonomie, 3:1931. Re-
printed in AEA Readings in Price Theory, Irwin, Homewood, IL, 1952.

tSee Paul Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, MA,
1947.
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maximize

y = fx1,x2, )

(The generalization to n variables is trivial; we will later consider models with
multiple parameters.) The first-order necessary conditions are, of course, f; = f, =
0; assuming the sufficient second-order conditions hold, the explicit choice functions

x; = x/(a) are derived as the solutions to the first-order equations. If we now
substitute these solutions into the objective function, we obtain the function
¢ (@) = fxj(a), x; (), @) (7-1)

The function ¢ (@) is the value of the objective function f when the x;’s that maximize
f(for given @) are used. Therefore, ¢ (o) represents the maximum value of f, for any
specified . We call ¢() the indirect objective function.

How does ¢ vary (as compared to /) when o varies? Differentiating with
respect to «,

*
0x;

dxy
(ba(a) — fl _+f2_ +fa

do do
However, from the first-order conditions, f; = f, = 0; hence the first two terms on

the right-hand side vanish. Therefore,
(ba (C() = fa . (7'2)

Equation (7-2) says that as « changes, the rate of change of the maximum value of
f, where x; and x, vary optimally as « varies, equals the rate of change of f as «
varies, holding x; and x, constant! This result has puzzled many economists long
after the publication of Viner’s original article.

Before we study the geometry of Eq. (7-2), let us verify the result for the profit
maximization model. The explicit choice functions (factor demand functions) that
result from the hypothesis, maximize 7 = pf(x;, x,) —wx; — wox, are, again,
x1 = x{(wy, wa, p), X, = x5(wy, wa, p). If these profit-maximizing levels of input
are substituted into the objective function, the resulting profit level, by definition,
must be the maximum profits attainable at those factor and output prices. Alge-
braically,

¥ (wi, wo, p) = pf(x],x3) —wix{ — wax; (7-3)

The function 7*(w |, w,, p) is called the profit function; it is the indirect ob-
jective function for this model. Its value is always the maximum value of profits for
given wy, wj, and p.

How do profits vary when, say, w; changes? One could simply differentiate
the objective function with respect to w,, holding not only other prices constant, but
the input levels x; and x, constant as well. In that case, we would find

T
an
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No assumption of profit maximization is invoked here. This relation simply says,
for example, that if a firm employed 100 workers, and if wages increased by, say,
$1, profits would start to decrease (note the minus sign) by $100 (100 workers times
$1, the change in the wage rate). However, a profit-maximizing firm would start to
reduce the number of its workers as wages increased. If we want to evaluate how
maximum profit varies when w, changes, we must differentiate the indirect profit
function. Differentiating (7-3) with respect to wy,

d* : axy dx3
o =P+ i) i =5 g

Combining the terms involving dx}/dw,, etc., yields

o™ xy 0
o =<pf.—wl)(a >+<pf2—wZ)< =2 ) —
W

ow w 1

However, the terms in parentheses on the right-hand side are zero at profit-maxi-
mizing values of x; and x, Therefore,
am* am

=—x = — 7-4
8‘,4/1 i 8W1 ( )

where the latter term must be evaluated at x}. Equation (7-4) says that starting at
some profit-maximizing input levels, the instantaneous rate of change of profits with
respect to a change in a factor price is the same whether or not the factors are held
fixed or whether they in principle can vary as that factor price changes. Moreover,
the value of this instantaneous rate of change is simply the negative of the factor
demand function for x;, x; = x{(w,, wa, p), evaluated at the particular prices for
which the input levels are in fact profit-maximizing.

We can get a better understanding of what is going on here by considering the
geometry more closely. Suppose the factor and output prices have the specific values

0 ,,0 ,0 * * ; iad-
wi, wy, p-. Some values of x| and x; are implied:

x)=x;(wl,wd, p°) x) =x;(w? wl, p°)

Let us vary w, only, holding w, and p fixed at the above values, and observe how
the level of profit varies. In particular, we shall initially hold x; and x, fixed at x}
and x2. In Fig. 7-2, the “constrained” profit function

w(wy, wd, p° x0, x3) = pOf (xx3) — wix? — wix? (7-5)

shows the level of profits as wl varies, holding everything else constant, i.e., for
given wj and p°, with x; = x?, x, = xJ. [Note that every variable in Eq. (7-5) has
a superscript 0 except w.] Note also that 7w (w,, w9, p°, x?, x9) is a linear function
in w,. Its slope is 37 /0w, = —x!.

Now consider where the profit function 7 *(w,, w3, p°) lies in relation to this
line. Since 7*(wy, w, p°) is by definition the maximum profits for given factor and
output prices, it must in general lie above the straight line defined by 7 (w;, w3, p°,
xl 5 X2} However when w; = w?, exactly the correct input levels are used since

x{ and x? were defined as the profit-maximizing input levels when w; = w?. Thus,
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7 (wy, w, PO, 19, x9) = pPf(x?, x9) — wixd — wix3

T (wy, w3, p%)

TI* (H/l W2, 0)

o wd i

FIGURE 7-2
The profit function 7*(w;, w9, p°) and the profit function 7 (w, w9, p°, x¥, x9), where x¥ and x9
are those levels that maximize profits when wy = w?.

atw, wl,n (wl,wg, 0)—7r(w1,w2,p %7, x )Whenwlgéwl,themputlew

els x and x2 are wrong, ’ 1.e., non- proﬁt—max1m1zmg Hence 7*(wy, w2, pY) =
yr(wl, w2, PP, x0, x2) on both sides of w?. But observe the geometrlc consequences
of this in Fig. 7-2. Assurnmg * and 7 are both differentiable, 7* and w must be
tangent to each other at w{. Tangency means that 7* and 7 have the same slope at
w(l). This is precisely Eq. (7-4), dn* /0w, = dn/dw; = —x{.

Suppose we had started at some other level of w, say w|. In that case we would
have held x; and x, fixed at the levels implied by that wage, x! = xf(w], w?, p%),
x5 = x3(w}, w3, p°). The resulting constrained profit function would be some other
straight line tangent to * at this different value of w;; their common slope at this
point would be —x;(w}, w9, p°). We can see the reason for the name “envelope” the-
orem: the profit function 7 *(wy, w,, p) is the envelope of all the p0531ble constrained
profit lines as w is varied.

However, we have more information than just the equality of slope of 7w and 7 *.
Since 7* lies above 7w on both sides of w? 1 T (wy, w2, p") must be more convex (or
less concave) than 7w (w1, wz, p x1 X ) But in this model, 7 is linear, and therefore

*(wy, w9, p°) must be convex in w, as shown in Fig. 7-2. That the indirect function
is convex (we assume strictly convex) has major consequences for the comparative
statics of this model. Convexity in w, means 3%m* /awf > 0. But from Eq. (7-4),

dm*/aw; = —x{(w;, wa, p). Differentiating both sides therefore yields
*m* axy
= — >0 7-6

Since in this model the factor demand function x{(w;, wy, p) is in fact the
negative of the first partial of 7*(w,, w,, p) with respect to w,, the slope of the
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factor demand function (its first partial with respect to w) is the negative second
partial derivative of * with respect to w;. Since this second partial of * is positive
(nonnegative), the slope of the factor demand function must be negative. Thus (in this
model at least), the curvature of the indirect objective function (the profit function,
here) directly implies an important comparative statics result.

By symmetry, it follows obviously that 7 *(w;, w,, p) is convex in w,, yielding
the same comparative statics result for that factor. Itis also the case that 7 *(w, w», p)
is convex in output price p, and that therefore 927 * /dp? = 8y* /dp > 0. The proof and
geometrical explanation of this are left as an exercise. We now turn to an examination
of the general maximization model. Can the preceding results be derived without
resort to visual geometry?

7.3 GENERAL COMPARATIVE STATICS ANALYSIS:
UNCONSTRAINED MODELS

Consider any two-variable model, maximize y = f(x;, x», &), where x; and x, are
the choice variables and, for the moment, « is a single parameter representing
some constraint on the maximizing agent’s behavior. The first-order equations are
f1 = f» = 0. By solving the first-order equations simultaneously, assuming unique
solutions, explicit choice functions x; = x{{«), x, = x;(a) are implied. Again,
the refutable propositions consist of the implications of maximization regarding the
directions of change in some or all x;’s as « changes. The “indirect objective func-
tion” is, again, ¢ (a) = f(x](a), x;(a), a). By definition, ¢ («) gives the maximum
value of f for given «. At what rates do ¢(«) and f(x, «) vary (both first- and
second-order rates of change) as « changes?

In Fig. 7-3, ¢(e) is plotted for various a’s. For an arbitrary a° some x¥ =
x¥(a®) and x9 = x}(a®) are implied. Consider the behavior of f(x;, x;, ) when x;
and x, are held fixed at x? and x? as opposed to when they are variable. Since ¢ (a)
is the maximum value of ffor given «, in general, f < ¢. When o = o, the “correct”
x;’s are chosen, and therefore ¢ («) = f (x, x», &) at that one point. On both sides
of o, the “wrong” (i.e., nonmaximizing) x;’s are used, and thus by definition,

o f

¢ (o))

f&x9, %5, @)

feh,xd, o) FIGURE 7-3

The indirect objective function ¢ (@) is
an envelope curve to the direct objective
o functions for various ¢’s.
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F&x% %2 @) < ¢(a) in any neighborhood around «°. Unless f has some sort of
nondifferentiable corner at a®, ¢ and f must be tangent at «°, and, moreover, f
must be either more concave or less convex than ¢ there. Since this must happen
for arbitrary «, similar tangencies occur at other values of «. It is apparent from the
diagram that ¢ («) is the envelope of the f(x;, x2, @)’s for each o. How do we derive
these properties algebraically?

Consider a new function, the difference between the actual and the maximum
value of f for given «,

F(X[, X2, (X) — f(XI,XQ, a) - ¢(a)

called the primal-dual objective function. Since f < ¢ for x #x* and f = ¢ for
x; = x, F has a maximum (of zero) when x; = x;“(a).’r Moreover, we can consider
F(x,, x,, &) as a function of three independent variables, x;, x», and «. That is, just
as for a given « there are values of x; and x, that maximize f, for given x; and x,,
there is some value of @ which makes those x;’s the “correct” (i.e., maximizing)
values. For example, for a given amount of labor and capital, there is some set of
factor and output prices for which those input levels would be the profit-maximizing
values.

This maximum position of F(x,, x,, &) can be described by the usual first-
and second-order conditions. The first-order conditions are that f (x;, x,, @) — ¢ («)
has zero partial derivatives with respect to the original choice variables x; and x,,
and also a:

h=hEH=0 i=12 (7-7)
and
Fo=fo—ta=0 (7-8)

Equations (7-7) are simply the original maximum conditions. Equation (7-8) is the
“envelope” result, ¢, = f,. These first-order conditions hold whenever x; = x(«),
f=1,2

The sufficient second-order conditions state that the Hessian matrix of second
partials of F(x1, x5, ) (with respect to x1, x,, and «) is negative definite, or that its
principal minors alternate in sign. By inspection, F1; = fi;,etc.,and Fyq = foo — Paq-
Thus,

Fun Fa Fi M fe S
H=\|Fy Fn F|=|fa fz Jou (7-9)
Fal Fa2 Fo.'a fal f(x2 faa - ¢aa

tIf we think of x} and x3 as an “efficient” allocation of resources, and x; and x; as any other allocation,
then this says that efficient allocation occurs when “waste” equals zero.



158  THE STRUCTURE OF ECONOMICS

These second-order conditions include the original ones ( f1; <0, fi) f2» — ffz
> 0, etc.) in the top left corner. In addition, the sufficient second-order conditions
also imply Fuy < 0, 0r foo — Puo < 0. Moreover, it is from this inequality that all
known comparative statics results (in maximization models) flow.

The first-order envelope result (7-8), with the functional dependence noted, is
do(@) = fo(x] (@), x5 (@), o). Differentiating both sides with respect to « yields
0x;

¢aa - fax1 8 + fatz

From the sufficient second-order conditions, therefore, and using Young’s theorem,

+faa

dx; ax3
a fotot floz ] + f2a 5ot >0
This analysis is readily generalized to the n-variable case, producing the condition
- ax)
Zf,a (7-10)

Equation (7-10) is the general and fundamental comparative statics equation
for all unconstrained maximization models. As it stands, however, it is too general to
be of much use. In order for a mode] to have refutable implications, it must contain
more structure than just a general maximization problem. Suppose therefore that
some « enters only one first-order condition f; = 0, i.e., fjo = O for j #i. Then
Eq. (7-10) reduces to a single term,

*

3!
fal 50 (7-11)
do

This is Samuelson’s famous “conjugate pairs” result. In maximization models, if
some parameter ¢« enters only the ith first-order equation, the response of the ith
choice variable x; to a change in that parameter is in the same direction as the effect
« has on the first-order equation.

The significance of this theorem lies in its application to some important
models. For example, in the profit maximization model, the parameter w, enters
only the first first-order equation 77; = pf; — w| =0; it enters with a negative sign:
dm; /0wy = — 1. Thus, the conjugate pairs theorem states that the response of x} to
an increase in wy will be negative, and similarly for x3. The theorem also applies to
the constrained cost minimization model, as we shall presently see.

In the more general case where x is a vector of decision variables (xi, ..., x,),
and « is a vector of parameters « = («y, ..., ®,), the second-order conditions
for maximizing F(x, o) = f(x,a) — ¢ (o) with respect to « are that the matrix
Fye = faa — Pua 18 negative semidefinite. The usual comparative statics results fol-
low from the negativity of the diagonal elements of this matrix. However, a richer
set of theorems is also available from the other properties of negative semidefinite
matrices: The principal minors of the terms in f,, — ¢4, alternate in sign.

The envelope theorem also reveals the origins of the nonintuitive “reciprocity”
conditions that appear in maximization models. Recall that in the profit maximization
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model, we derived dx;/dw, = dx;/0w,. This result can be more clearly shown by
first noting that each factor demand is the negative first partial of 7* with respect

to its factor price, i.e., " = —xj(w;, wa, p), m; = —x;(w;, w,, p). Applying
Young’s theorem on invariance of cross-partials to the order of differentiation to
w*(wy, wo, p) therefore yields m, = ~0x]/0w, = —0dx;/dw; = m;;. Thus this

curious result is no more curious than Young’s theorem itself.

All reciprocity theorems are in fact simply the application of Young’s theorem
to the indirect objective function. Suppose there are two parameters « and 8 so that
the model is maximize y = f(x;, x3, &, B). The implied choice functions are then
x; =x/ (e, B), 1 =1, 2, and the indirect objective function is ¢ (e, B) = f (x] («, B),
x5 (o, B), a, B). Then noting that ¢, (a, B) = fa,

*

0

¢aﬂ(a1ﬁ) fal )/;l +fa2 xﬁ +faﬂ

Similarly,
* ax*

$palat, B) = fﬂl +fﬂ2 +fﬂa

Since pop = Ppas
ax; ox; 0xy 0x;y
floz 51 f2a 52 flﬂ St f2ﬂ . 2 (7']2)

For the general case of n decision variables,

me —Zfﬂ = (7-13)

However, these relations are most interestmg when each parameter enters only one
first-order equation. In that case, Eq. (7-13) reduces to nne term on each side, as in
the profit maximization model.

7.4 MODELS WITH CONSTRAINTS

Most models in economics involve one or more side constraints. A particularly
important model, for example, is

minimize
€ = Z WiX;
subject to
flEg e, 5 =3
If fis a production function of » inputs, xy, ..., x,, and the w;’s are factor prices,

this famous model, which we shall presently analyze in detail, describes achieving
some output level y° at minimum cost.
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The extension of the results for unconstrained maximization models to models
involving one or more side conditions (constraints) depends critically on whether
the parameters enter only the objective function or whether they enter the constraints
also (or exclusively). Note that in the preceding cost minimization model, the prices
enter only the objective function, whereas the specified output level enters only the
constraint. We shall show that if the parameters enter only the objective function, the
comparative statics results are the same as for unconstrained models. However, if a
parameter enters a constraint, as that parameter changes, the constraint space also
changes, destroying the relation ¢y, > fae. Let us investigate these more general
models.

The traditional derivation of the envelope theorem for models with one con-
straint proceeds as follows.

Consider

maximize
fxp, oo, xp,@) =y
subject to
GAXyy s 50y Xps ) =10
The Lagrangian is £ = f + Ag. Setting the first partials of £ equal to 0,

Li=fi+rg=0 i=1,...,n (7-14)
$=g=0 (7-15)
Solving these equations for
% =x(a) i=1,....n
A=)"(a)
we define
Y= flxi, ..., x,,a) = ¢(x) (7-16)

as before. Here, ¢ () is the maximum value of y for any «, for x;’s that satisfy the
constraint.

How does ¢ («) change when « changes? Differentiating (7-16) with respect
to o

ag axr
— = i — . 7-17
do Z : Jo +J ( )
Here, however, f; # 0. Differentiating the constraint
glxy (@), ..., x;(@),a) =0

with respect to «,

ox*
5 g =0 (7-18)

oxa

Zgi'
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Multiply Eq. (7-18) by A, and add to Eq. (7-17). (This adds zero to that expression.)
Then

a¢ ox’ ox’
= =3 i fat D A+ Ag
o Zf8a+f+zg8a+g
ox!
=2 (i +28) 50 + fut Age
o
Using the first-order conditions (7-14),
0
% b g =, (7-19)

Jo

where &, is the partial derivative of the Lagrangian function with respect to «, hold-
ing the x;’s fixed. Thus, in evaluating the response of the indirect objective function
to a change in a parameter in a constrained maximization model, the Lagrangian
function plays an analogous role to the objective function in an unconstrained model.

We can derive the envelope theorenm for constrained maximization models
more conveniently using primal-dual analysis. It is still the case in these models
that ¢ (a) > f(x1, ..., x,.a), but in this case, the variables must also satisfy the
constraint. The primal-dual model is therefore

maximize
FO, X, @) — @)
subject to
ElXys « ocn Xy, @) =0

treating o as a (vector of ) decision variables as well as the x;’s. The Lagrangian for
the primal-dual problem is

L= f(x,..., X0, ) — (@) +Ag(x1, ..., Xp, )

Setting the first partials of &£ with respect to the x;’s and A equal to zero produces the
ordinary first-order equations (7-14) and (7-15) for a constrained maximum; setting
the first partial of & with respect to « equal to zero produces the envelope relation
(7-19) above.

Comparative Statics: Primal-Dual Analysis

We now investigate, using primal-dual analysis, the conditions under which refutable
propositions appear in constrained maximization models. We already know from
traditional methods developed in Chap. 6 that no refutable propositions appear for
parameters that appear in the constraint. We refer the reader to Silberberg’s 1974
comparative statics paper for the general results. We can demonstrate the nature of
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the more likely useful results using the following simple model. Consider

maximize

fG,x,a)=y

subject to

8(x1,x2,8) =0

In this model, a single parameter « enters the objective function only, and another
parameter, 3, enters the constraint only. Using Lagrangian techniques, the first-order
equations are solved for the explicit choice equations

X = xT(as .B)
x; = x;(a, B)

Substituting these solutions into the objective function yields the maximum value
of f(x1, xp, @) for given « and B, for x; and x; that satisfy the constraint:

¢(a, B) = f(x{(a, B), x;(a, B), @)

Since ¢ («, B) is the maximum value of f for given o and B, ¢(a, B) > f(xy, x3, @)
for any x;’s that satisfy the constraint. Thus, the function F(x;,x;, @, B) =
f(xy, x2, o) — ¢(a, B) has a maximum (of zero) for any x;’s that satisfy the con-
straint. However, F(x;, x,, @, B) is a function of four independent variables, one of
which, «, does not enter the constraint. Therefore, starting with values of x;, x;, and
B which satisfy the constraint, and holding them fixed at those values, the constraint
does not further impinge on the choice of « that maximizes F(x;, x;, «, 8). The
constraint affects the values of x| and x, that can be chosen, but not the maximizing
value of «. In the o dimension(s), therefore, F(x, x, &, B) has an unconstrained
maximum. (Consider, for example, what happens when some good, say, air, enters a
person’s utility function, but not the budget constraint, there being no price paid for
breathing. In that case, we breathe until the marginal utility of air is zero; i.e., we
consume in the manner of an unconstrained maximum in that dimension.)
The Lagrangian for this primal-dual problem is

EB——:f(xl,...,xn,a)—¢(oz,,3)—|-/\g(x1,...,x,,,;8)

The envelope relations are obtained by cetting the first partials of & with respect to
a and B equal to zero, yielding

fa - ¢cx =0 (7"20a)
—¢s +2gp =0 (7-20b)

Equation (7-20a) is just Eq. (7-8), the same envelope relation for unconstrained
models. Moreover, since this primal-dual model is an unconstrained maximum in &,
Foo = faa — Paa < 0, assuming, as always, the sufficient second-order conditions.
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The fundamental comparative sta'tics result (7-10) follows as before:

dx| 0x;
fla————l-f2a—— >0 (7_10)
do ao
If o represents a vector of parameters that enter the objective function only, then the
matrix of terms ( f,o — Pae) Must be negative semidefinite; Eq. (7-10) then follows
from the fact that the diagonal elements are nonpositive.

No such easy relationships exist with regard to changes in 8. To best see this,
try to construct a diagram like Fig. 7-3 for the parameter 8. Plot 8 on the horizontal
axis and f and ¢ («, B) on the vertical axis. Hold @ constant throughout. At some
value A%, x¥ = x}(a®, B9, x2 = x3(a BO) are implied. The next step is to vary
the parameter in question, holding x, and x, constant. However, it is impossible to
do that for 8. In the first place, since S is not a variable in the objective function
f, it is impossible to plot f against 8. Second, if x, and x, are held constant, S
cannot be changed without violating the constraint! Thus the procedure for showing
the greater relative concavity of f vs. ¢ breaks down for parameters entering the
constraint: One cannot change only one variable in an equation without destroying
the equality. As a result, no refutable hypotheses are implied by the maximization
hypothesis alone, for parameters that enter the constraini.

In the case where B is a vector of two or more parameters (8, ..., B,), it
is possible to hold x,, x, and « constant and characterize the §;’s that solve the
primal-dual problem. Since the original objective function does not contain any of
the B;’s, the primal-dual problem reduces to

maximize
B
—¢(a, B)
subject to
gx,B)=0

where x = (x;, x,) (or, for that matter, a general n-dimensional vector of decision
variables). Of course, maximizing —¢ (o, ) is the same as minimizing ¢ («, 8); thus
in this case, the indirect objective function is convex in the B parameters, subject to
constraint, i.e.,in the parameters that enter the constraint exclusively. If the constraint
is linear in the B;’s, then the indirect objective function must be quasi-convex in these
parameters (though linearity is not a necessary condition for quasi-convexity).

Example. In the important consumer model, utility of goods is maximized subject to
a linear budget constraint:

maximize
U (xl ) xZ)
subject to

pxit+px, =M
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Using Lagrangian methods, the implied choice functions are the Marshallian demands
x; = x'(p1, pa, M), i = 1, 2. Substituting these functions into the objective function
yields the indirect utllztyfunctton U*(p1, p2, M) = U(xy(py, p2, M), x5(py, prs M)).
The primal-dual problem is thus

maximize
U(x, x2) = U*(p1, p2, M)
subject to
piXi+ paxa =M

where the maximization runs over x,, x,, and the parameters p;, p,, and M. Since all
the parameters are in the constraint exclusively, the maximization problem with respect
to the prices and money income is simply

maximize

"'U*(Pl: Pz, M)

subject to
pxi+px, =M

This says that choosing goods x; and x, so as to maximize utility (subject to the budget
constraint) is equivalent to choosing prices and money income so as to minimize the
indirect utility function, also, of course, subject to the budget constraint. Since the
budget constraint is /inear in prices and money income, this implies that the indirect
utility function is quasi-convex in prices and money income. The result generalizes
immediately to the case of n goods.

Keciprocity relations can be derived in these models using the envelope rela-
tions (7-20). Writing these relations as identities and showing the functional depen-
dencies using the explicit choice functions, we have

(@, B) = foa(x{(a, B), x5 (a, B), @) (7-21a)
pp(a, B) = A (a0, B)gp(x] (a, B), x; (e, B), B) (7-21b)

Identity (7-21a) is the same as in the case of models without constraints, because
the « parameters enter only the objective function. For two such parameters «; and
as, we derive the reciprocity conditions displayed in Eqs. (7-12) and (7-13) in the
same manner as before. In addition, since ¢, = ¢g,, we derive, using the product
as well as the chain rule on the right-hand side of (7-215),

8x2 dxy 0x; ar*
— 7-22
(815 e + 828 Y ) + g e (7-22)

dxy
,B f2a ,3

An additional set of reciprocity relations is available in the case of two parameters
B1 and B, that both enter the constraint only; these relationships necessarily involve
the partial derivatives of A* as well, as is apparent from (7-21b). We leave these

f]oz
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derivations as an exercise for the student. At this level of generality, these reciprocity
relations are not very interesting, but in many more specialized models, (7-22)
reduces to interesting expressions. Last, very general reciprocity relations can be
derived in models in which the parameters enter both the objective function and the
constraint, but there are no known instances of any interesting ones.

Axn Important Special Case

Most of the useful models encountered in economics involve expressions that are
linear in at least some of the parameters, typically the prices of goods or factors.
Consider, therefore, models in which the objective function involves the expression

S ax;:

maximize
y= f(x,a) =6(x1,...,xn)—|—2a,~x,- (7-23)

subject to
glxy, ..., X, B) =0 (7-24)
where x = (xj, ..., Xx,), the vector of decision variables, @ = («, ..., «,), and B

is any vector of parameters entering the constraint only. Parameters that enter the
constraint are assumed to be absent from the objective function.

Denote the indirect objective function ¢ («, 8). We know from the preceding
analysis that the function f(x,«a) — ¢ («, B) must be concave in « and that the
matrix ( foo —$ee) must therefore be negative semidefinite. The parameters 8 and the
functional form of g are irrelevant, as long as the first- and second-order conditions
are satisfied. However, since f is linear in the «;’s, f,o = 0, and thus f has no
effect on the curvature of the primal-dual function. Therefore, for these models,
—¢ 1is concave (or, alternatively, ¢ is convex) in «, and the matrix [—¢,,] must
be symmetric (by Young’s theorem) and negative semidefinite (or, [¢,.] is positive
semidefinite). In the case of minimization models with these properties, ¢ () is
concave, and [¢y] 1S a negative semidefinite matrix.

Even more important than these curvature properties are the implications for

“deriving useful comparative statics theorems. By the envelope theorem, ¢, = f,, =
x} in these models. Therefore, the matrix [@qq] consists of the terms 0x/dc ;. From
symmetry, dx;'/de; = 9x}/da;. The properties of positive semidefinite matrices

- include nonnegative diagonal terms, 1.e., dx;"/da; > 0, and positive principal minors

of higher order. These results comprise the useful theorems in economics.
The profit function derived above exhibited these properties (but note that the

«;’s are the negative prices). In the next chapter we will study the cost minimization

model, which has a similar structure. We shall show that the cost function associated
with production functions with the usual properties must be concave, and the demand
functions implied by that model are negatively sloped.
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Interpretation of the Lagrange Multiplier

The Lagrange multiplier A has been carried along thus far mainly as a convenient way
of stating the first- and second-order conditions for maximization. In fact, the main
reason for the use of Lagrangian techniques in economics (and also other sciences)
is that A often has an interesting interpretation of its own.

Consider the constrained maximization model

maximize

fxi, x2) =y
subject to

g(x1, %) =k

Usually we set the constraint equation equal to zero; here, it equals some arbitrary
value k. By stating the constraint in this manner, we can consider parametric changes
in the value of the g function. Using the Lagrangian

£ = f(x1,x2) + Ak — g(x1, x2))

the usual first-order equations are

L1 = filxy, %3) — Agilxy, x3) =0 (7-25a)
&£y = falxy, x2) — Aga(x1, x2) =0 (7-25b)
L =k—gx;,x)=0 (7-25¢)

From Eqs. (7-25a) and (7-25b),

_Nh_»r
81 &

A (7-26)
However, a more revealing expression for A can be obtained using the envelope
theorem.

By solving Egs. (7-25) simultaneously, we obtain the explicit choice functions
x{(k), x3(k), and A* (k). Substituting these solutions into f (x;, x,) yields the indirect
objective function

¢ (k) = fxi(k), x;(k))

By the envelope theorem for constrained maximization models, Eq. (7-19),

L

or(k) = — = 1*(k) (7-27)
_ ok

That is, the Lagrange multiplier A equals the rate of change of the maximum (or min-

imum, as the case may be) value of the objective function with respect to parametric

changes in the value of the constraint.
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Consider Eq. (7-19) again, ¢, (o) = f, + Ag,. We can understand this relation
by using (7-27). Think of (7-19) as

o9 _of , of %
da  da  9g da

When a parameter that enters both the objective function and the constraint changes,
it produces two separate effects. First, the objective function is affected directly, as
indicated by the term df/0c. In addition, the value of the constraint is affected, by
the amount dg/dc. This is then converted to units of the objective function f by
multiplying by A(= 9df/dg). The sum of these two effects is the total impact of a
change in o on the maximum value of y.

A common application of Eq. (7-27) concerns models in which the objective
function is some sort of value of output function, which is maximized subject to a
resource constrained to some level k. If an additional increment of resource, Ak,
became available, output would increase by some amount Ay* & A*Ak; in other
words, A* is the marginal value of that resource. In a competitive economy, firms
would be willing to pay A* for each increment in the resource. In the mathematical
programming literature, A* is called a shadow price of the resource. In a model
in which output of society is maximized subject to constraints of parametric labor
and capital constraints, the Lagrange multipliers associated with those constraints
impute shadow factor prices, i.e., a wage and rental rate to labor and capital.. In the
next chapter, in a model in which total cost is minimized subject to producing some
parametric output level, A* measures the change in total cost if output is changed,
1.e., marginal cost. We shall explore these relationships in the chapters following.

Consider again the model

maximize

f,x) =y
subject to
g(xi, x2) =k
Since the parameter k enters the constraint, we know that in general, the sign of

dA*/0k 1s indeterminate. However, in some important models, additional assump-
tions provide a sign for this term. Differentiating Eqs. (7-25) with respect to k,

Ly £2 81\ (8xf ( 0\

ok
L Lo & 0% = 0 (7-28)
: ok
Ir* |
\—81 —g 0 } Py ‘1}
Solving for ar*/ ok,
' 0A*  Ha

ok H
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where H is the bordered Hessian determinant of the Lagrangian &£. From the sufficient
second-order conditions, H > 0. Suppose now that f and g are strictly increasing
functions so that A* > 0 (why?). Suppose in addition that f is a concave and g is
a convex function. Then —g must be concave, and thus &£ is concave. In this case,
then, Hy; = £11%y — £3, > 0, and thus 9A*/9k < 0.If g is linear, these conditions
are met as long as f is concave. It is also possible to show, via primal-dual methods,
that if 91*/9k < 0, &£ must be a strictly concave function; the proof is left as an
exercise.

These results generalize in a straightforward manner to maximization models
with multiple constraints,

maximize
fx)=y
subject to
g(x) <k
where x = (X, ..., %), 8(x) =g’ (x1, ..., xp),andk=(ky, ..., kn), j=1,...,m.

The choice functions x = x*(k) and the Lagrange multipliers A*(k) implied by this
model are obtained by simultaneous solution of the first-order Lagrangian condi-
tions, assuming the sufficient second-order conditions hold. The indirect cbjective
function is ¢ (k) = f(x*(k)). By the envelope theorem, A/*(k) = 3¢ /9k/, the
marginal value of relaxing the jth “resource constraint” k/, measured by the result-
ing increase in the value of the objective function. If f(x) is concave and g’ (x) is
convex for j = 1,...,m, ¢ (k) is concave in k, and thus (pw) = (91*/3k) is neg-
ative semidefinite. Since the diagonal elements of (¢y;) would then be nonpositive,
this implies that 1*/dk < 0. In many important models, the constraints are linear;
such a specification satisfies the conditions of this theorem.

The proof relies on the definitions of concave and convex functions. Let k! and
k? be two arbitrary values of the k vectors, and denote the implied choice vectors
as x! = x*(k"), x> = x*(k?). Let k' = tk' + Q —0)k?, x* = tx! + (1 —-1)x?,
0 <t < 1. By convexity of the constraints,

gxy <tg(xH + (1 —g@®) <tk' + (1 — k> = k'

Therefore, x’ is a feasible choice for, or solution to, this model; it satisfies the
constraints when k = k’.
Since f(x) i1s concave,

fED = tfEH + A —nf@E* =to6k") + (1~ )oKk
But by the definition of ¢, ¢ (k') > f(x"). Therefore,
¢ (k") > top k") + (1 — 1)p(k?)

Therefore, ¢ (k) is concave in k. Assuming differentiability, the Hessian matrix ¢y 1S
of course negative semidefinite, yielding the usual comparative statics results in those
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cases. An important application of this result occurs in the “small country” models
of international trade, where total output of an economy is maximized subject to
endowment constraints. The factor prices are the associated Lagrange multipliers of
those endowment constraints. If the production functions are concave, this theorem
implies that an increase in the endowment of some factor cannot increase that factor’s
price. This model will be developed more fully in the chapters on general equilibrium.

Le Chatelier Effects

We now consider the responses of decision variables to a change in some parameter
when an additional just-binding constraint is added to the model. We investigated
these Le Chételier effects in Chap. 4 for the profit maximization model. We showed
in that model that if one factor is held constant at its profit-maximizing level, then
in a neighborhood of that equilibrium the demand for the remaining factor becomes
less elastic. We now consider more general models, and, as always, we are most
interested in discovering the structure of models that yield predictable differences
in the responses of the choice variables to parameter changes when a just-binding
constraint is added. Since no refutable results are available in models in which pa-
rameters enter the constraint as well as the objective function, we limit the discussion
to models in which some parameters « enter the objective function only and other
parameters 8 enter the constraint only. To save notational clutter, we shall use vector
notation throughout this section. Thus, recapitulating, consider

maximize
y=f,a)
subject to
glx, ) =0
where x = (xy, ..., x,) and @ and B are vectors of parameters that appear only in the

objective function and constraint, respectively. Assuming the first-order necessary
and second-order sufficient conditions hold, we derive the explicit choice functions
x*(a, B) and A*(«, B). The indirect objective function is ¢ («, B) = f(x*(a, B), @).
Since the expression f(x, «) — ¢ («, B) has an unconstrained maximum in «, we
were able to derive the general comparative statics result for any particular scalar «

3xi
> fagr 20 (7-10)

Suppose now an additional constraint, i(x) = 0, that is consistent with the
original equilibrium is added to the model. That is, defining x° = x*(a®, %), we
require that £(x%) = 0. We say this constraint is just binding, because it does not
disturb the original maximum position. However, it does affect the rates of change
of the decision variables as the parameter changes. Let us denote the new choice
functions, which are solutions to the original first-order conditions and 4 (x) = 0 also,
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o(a®, B%) = ¢5(a?, B

oo, B)
®S(at, B)

FIGURE 7-4

The indirect objective functions ¢ (e, B) and ¢°(c, B) plotted against o, ¢¥(«, f) being the indirect
objective function when the just binding constraint A(x) = 0 is added. The constraint h(x) = 0 is
added so as not to disturb the solution x® = x*(@%, 8%). By this construction, ¢ (e, B) = ¢5(, B)
when @ = o, and ¢ (a, B) > ¢°(a, B) in any neighborhood of . Therefore, the function F(a, B) =
¢(a, B) — ¢°(a, B) has an unconstrained minimum with respect to & at ¥, It follows that ¢ (e, B) is
tangent to ¢*(a, B) at a®, and ¢ (e, B) is relatively more convex or less concave than ¢5(a, B) in a
neighborhood of . This implies that ¢g,q; > 3., in a neighborhood of ol

as x* (o, B) (s for “short run”), and the new indirect objective function as ¢°(«a, B).
We show these curves in Fig. 7-4. Ry construction, when o = «® and 8 = B°, ¢ = ¢*,
but for a # a® or B # B°, ¢ > ¢*. Equivalently, the function F (e, 8) = ¢ — ¢* has an
unconstrained minimum value (of zero) at («®, 8°) with respect to both « and B as
long as these parameters are not in the auxiliary constraint. Assuming differentiability
of these functions, this means that ¢° is relatively more concave than ¢. The implied
necessary first-order conditions are

Fo=¢.— ¢, =0 (7-29a)
Fp=¢p—¢5=0 (7-29b)

The necessary second-order condition is that the matrix F,g of second partials with
respect to o and B is positive semidefinite. This condition implies that the submatrices
F,, and Fgg are positive semidefinite as well, and thus the diagonal elements of those
matrices are nonnegative. Thus for any particular scalar parameter «,

Faa — ¢aa - ¢;a = 0 (7'30)
Using the analysis leading up to (7-10), this yields

- axr  oxf
ol ———=—1]=0 7-31
Z f ( da da ) ( )

i=l
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Although (7-31) summarizes the available comparative statics Le Chételier results
for the « parameters, the most useful results occur when the conditions of the con-
jugate pairs theorem hold, i.e., when some particular o enters only the ith first-order
equation. In that case, (7-31) reduces to one term, yielding
ax; ox;
fo=—2 fu— 20 (7-32)
o da
Since f;, can be negative, we cannot simply cancel this term out. However, since
dx;/dc and dx /0« have the same sign as fi,, thc response of x; to a change in «
_is always greater in absolute value in the absence of an auxiliary constraint:

axr| |ox:
o do

(7-33)

The Le Chételier results are usually stated in terms of the effects of holding one
of the choice variables constant. We see here that this is unnecessarily restrictive.
The only important restriction on the auxiliary constraint is that it cannot incorpo-
rate the parameters in question. The Le Chatelier results thus hold for constraints
more complicated than simply x, = x°. Moreover, the process can be repeated as
additional just-binding constraints are added.

The B parameters generally do not yield a simple result such as (7-32), since
an expression in the Lagrange multiplier is always present. Consider, however, the
important special case of models in which the constraint takes the form g(x) = k.
Define the Lagrangian for this model as £ = f(x, &) + A(k — g(x)) and assume
unique interior solutions x*(c, k) and A*(t, k). Let ¢ (o, k) be the indirect objective
function. From (7-27), ¢ = A*(x, k). We know from general comparative statics
analysis that dA*/dk = 0. Curiously enough, however, a systematic prediction is
available rfor the Le Chatelier cffects.

Add an additional nonbinding constraint #(x) = 0 as before. Let ¢*(«, k) be
the indirect objective function when this new constraint is added, and let A* (, k) be
the resulting solution for the Lagrange multiplier for the constraint g(x) = k. The
function ¢ — ¢° has an unconstrained minimum with respect to k. The necessary
first-order conditions are ¢, — ¢; = 0, 1i.e., that A* = A°. The second-order condition
says that ¢ — @3, > G, and so

ar* 9’
—_ >
ok — 9k
Thus even at this rather general level, even though both terms in (7-34) are unsigned
by maximization, it is still the case that a smaller change in A occurs when & changes
when an auxiliary constraint is added to the model. In the next chapter we study
the cost minimization model; the Lagrange multiplier turns out to be the marginal
cost function. This result says that even though minimization does not imply a sign
for the slope of the marginal cost function, it is nonetheless true that the marginal

cost function either rises faster or falls slower in the short run than in the long
run.

(7-34)
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PROBLEMS
1. Consider maximization models with the specification
maximize
y = fx1, %, a)
subject to
gx1, x2) =k

with Lagrangian & = f(x, x3, @) + A[k — g(x,, x2)], where x, and x, are choice variables

and o and k are pararmeters.

(a) Define ¢(«, k) = maximum value of y for given « and % in this model. On a graph
with « on the horizontal axis and ¢ and f on the vertical axis, explain geometrically
the envelope results ¢, = f, and ¢oy > faq-

(b) On asimilar graph, explain why it is not possible to carry out a similar procedure for
the parameter k. How does this result relate to the appearance of refutable coniparative
statics theorems in economics?

(c) Using the results of (a), prove that

ox ax
fla ! + f2a 2 > 0
do do

(1) Using the primal-dual methodology, prove algebraically the envelope theorem results:

(l) ¢a - fa
(it) Pua > fou
(iii) ¢y = 2"

(e) Prove that fi,(3xy/0k) + f2,(0x5/0k) = 9A*/0cx.

(f) Assume that the objective function f measures the net value of some activity, and
the constraint represents a restriction on some resource. Using result (iii) in part (d),
explain why the Lagrange multiplier imputes a shadow price to the resource, i.e., a
marginal value of that resource in terms of the objective specified in the model. Also,
in these models, what can be said, if anything, about how this marginal evaluation of
the resource changes as the constraint eases, i.e., as k increases?

(g) Suppose now that the objective function is linear in «, 1.e., f (x|, x2, &) = h{xy, x3) +
ax;. Prove that ¢ (@) is convex in «, and, assuming the sufficient second-order con-
ditions hold, ¢, > 0.

2. Consider models with the specification

maximize
y = f(x]1x2) + h(x1) Q!)

subject to

glx,x, ) =0

where x; and x, are choice variables and @ and 8 are parameters that enter only the
functions shown.
(a) Derive arefutable comparative statics result. for «, and show that no such result exists
for B.
(b) Let@ (e, B) =maximum value of y for given o and 8 in this model. Using the primal-
dual methodology, prove the envelope theorem results:
(i) G = ha(x, @)
(ii) ¢p = A*gp(x], x;, B), where A" is the Lagrange multiplier.
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(c) Prove the “reciprocity” theorem

L [ ax; g dxy N 0x; N arr
e K_BE =B e 52 \ ga 8 \ aa

(d) On a graph with y on the vertical axis and « on the horizontal axis, sketch possible
curves ¢ (o, B) and f(x¥, xJ) + h(x}, ) where x¥, x2 and 8° are some fixed values
of those variables. Demonstrate graphically that ¢, = 4, and also that ¢,, > h,,.

(e) Explain why it is not possible to carry out a similar procedure for the parameter S, and
thus why no refutable comparative statics theorems are available for this parameter
from maximization alone.

. Consider the model,

minimize
WX + Waxy

Y

where x; and x, are factor inputs, w; and w, are factor prices, and y = g(x;, x,) is

a production function. Let AC*(w,, w;) be the minimum average cost for given factor

prices.

(a) Explain how the factor demands x/(w,, w,) and the indirect objective function are
derived. Prove that the factor demands are homogeneous of degree 0 and that AC* is
homogeneous of degree 1 in the factor prices.

(b) On a graph with AC and AC* on the vertical axis, and w, on the horizontal axis, plot
a typical AC and AC~. Show graphically that AC* is necessarily concave in w, {and,
of course, w, also.)

(c) What is the slope of AC* at any given w,?

{d) Using this graphical analysis, show that 8(x}/y*)/dw; < 0.

(e) Show that the elasticity of demand for factor 1 is less than the elasticity of output
supply with respect to w. '

(f) Set up the primal-dval model, minimize AC — AC*, and derive the above results
algebraically.

{g) Contrast the factor demands derived from this model, x](w,, w;), with the factor
demands x”(w,, w,, p) derived from, maximize pf(x;, xa) — w X, — w,X,, where
output price p is parametric. Display the first-order couditions for both models, and
explain the relation between the models by explaining the following identity, where
p* = AC*(w,, wo):

AC =

xT(wi, wo) = x{ (wi, wa, p*(w, w2))

(h) From this identity, show that the elasticity of demand for x; derived from min AC,
[(wy/x7)(0x7/0w,)] is equal to the elasticity of demand derived from profit maxi-
mization, plus an output effect which equals the share spent on x, times the output
price elasticity of x;.

. Consider a profit-maximizing firm employing two factors. Define the short run as the

condition where the firm behaves as if it were under a total expenditure constraint; i.e., in

the short run, total expenditures are fixed (at the long-run profit-maximizing level). The
long run is the situation where no additional constraints are placed on the firm.

(a) Are these short-run demands necessarily downward-sloping?

(b} Show that the short-run factor demand curves for this model are not necessarily less
elastic than the long-run factor demand curves. Why does this anomalous result arise
for this model?
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(c) Show thatif a factor is inferior in terms of its response to a change in total expenditure,
the slope of the long-run factor demand is necessarily more negative than the short-run
demand for that factor. ,

5. Consider models with the specification

maximize

y:f(xh""xn)

subject to
glxy, .... Xy} =k

Let ¢ (k) = maximum value of f for given k. Assuming an interior solution exists, prove
that if fand g are both homogeneous of the same degree r, then ¢ (k) is linear in %, i.e.,
¢ (k) = ak, where a is an arbitrary constant, and thus the Lagrange multiplier for such
models is a constant. . '
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