MAT6682 - Tópicos de Análise Funcional - 2023 Lista 1

1. Preliminares

- **1.** Sejam X um \mathbb{K} -espaço vetorial e $\varphi, \varphi_1, \dots, \varphi_n : X \to \mathbb{K}$ funcionais lineares.
 - a) Mostre que φ é combinação linear de $\varphi_1, \dots, \varphi_n$ se, e somente se, $\bigcap_{i=1}^n \operatorname{Ker}(\varphi_i) \subset \operatorname{Ker}(\varphi)$.
 - b) Mostre que $\{\varphi_1, ..., \varphi_n\}$ é LI se, e somente se, existem $x_1, ..., x_n \in X$ tais que $\varphi_i(x_j) = \delta_{ij}$, $1 \le i, j \le n$. Mostre também que, neste caso, $X = \bigcap_{i=1}^n \operatorname{Ker}(\varphi_i) \oplus \operatorname{span}\{x_1, ..., x_n\}$.
- **2.** Sejam X um \mathbb{K} -espaço vetorial e H um subespaço vetorial de X. Mostre que as seguintes afirmações são equivalentes:
 - a) H é um hiperplano¹ de X.
 - b) Existe $x_0 \in X$ tal que $X = H \oplus \text{span}\{x_0\}$.
 - c) Existe um funcional linear não nulo $\varphi: X \to \mathbb{K}$ tal que $H = \text{Ker}(\varphi)$.
- **3.** Seja X um espaço normado.
 - a) Mostre que se H é um hiperplano de X, então ou H é fechado, ou H é denso.
 - b) Dado $\varphi: X \to \mathbb{K}$ um funcional linear, mostre que φ é contínuo se, e somente se, $\operatorname{Ker}(\varphi)$ é fechado. Conclua que ou φ é contínuo, ou $\operatorname{Ker}(\varphi)$ é denso.
- **4.** Seja $(X, \|\cdot\|)$ um espaço normado de dimensão finita e fixe $\{x_1, ..., x_n\}$ uma base de X. Defina $\|\cdot\| : \mathbb{K}^n \to [0, +\infty)$ por

$$|||(\lambda_1,\ldots,\lambda_n)||| = \left\|\sum_{i=1}^n \lambda_i x_i\right\|.$$

Mostre que $\|\cdot\|$ é uma norma em \mathbb{K}^n equivalente²à norma euclidiana. Conclua que $(\mathbb{K}^n, \|\cdot\|_2)$ e $(X, \|\cdot\|)$ são isomorfos. Em particular, $(X, \|\cdot\|)$ é de Banach.

- **5.** Seja X um espaço normado. Mostre que se X^* é separável, então X também é separável. A recíproca é verdadeira?
- **6.** Sejam X e Y espaços normados, $J_X: X \to X^{**}$, $J_Y: Y \to Y^{**}$ as aplicações canônicas e $T: X \to Y$ um operador linear contínuo.
 - a) Mostre que $(J_X)^* \circ J_{X^*} = \operatorname{Id}_{X^*}$.
 - b) Mostre que $T^{**} \circ J_X = J_Y \circ T$.
 - c) Mostre que T é isomorfismo de X sobre Y, então T^* é isomorfismo de Y^* sobre X^* .
 - d) Mostre que se X é de Banach e T^* é isomorfismo de Y^* sobre X^* , então T é isomorfismo de X sobre Y.
 - e) Conclua que se *X* é reflexivo e *Y* é isomorfo a *X*, então *Y* também é reflexivo.

 $^{^1}$ Um subespaço vetorial próprio H de um \mathbb{K} -espaço vetorial X é um hiperplano se H é maximal com respeito à inclusão, isto é, se para todo subespaço vetorial Y de X tal que H ⊂ Y ⊂ X, tem-se Y = H ou Y = X.

²Duas normas $\|\cdot\|_1$ e $\|\cdot\|_2$ em um \mathbb{K} -espaço vetorial X são *equivalentes* se existem constantes $0 < C_1 \le C_2$ tais que $C_1\|x\|_1 \le \|x\|_2 \le C_2\|x\|_1$ para todo $x \in X$.

7. Dados X um espaço normado e A um subconjunto de X, o anulador de A é o conjunto

$$A^{\perp} = \{x^* \in X^* : x^*(x) = 0 \text{ para todo } x \in A\}.$$

Mostre que um subespaço Y de X é denso se, e somente se, $Y^{\perp} = \{0\}$.

- 8. Sejam X um espaço de Banach, Y um espaço normado e $(T_n)_{n\geq 1}$ uma sequência em $\mathcal{L}(X,Y)$ que converge pontualmente para uma função $T:X\to Y$. Mostre que T é um operador linear contínuo satisfazendo $\|T\|\leq \liminf\|T_n\|$. Mostre, através de um exemplo, que a desigualdade pode ser estrita.
- **9.** Considere $X = \{(x_n)_n \in \mathbb{K}^{\mathbb{N}} : (nx_n)_{n1} \in \ell_1\}$ munido da norma $\|\cdot\|_1$ e o operador linear $T : \ell_1 \to X$ dado por $T((x_n)_n) = \left(\frac{x_n}{n}\right)_n$. Mostre que T é contínuo e bijetor, mas T^{-1} não é contínuo. Por que isto não viola o Teorema da Aplicação Aberta?
- **10.** Considere $C^1[0,1] = \{f : [0,1] \to \mathbb{R} : f \text{ \'e de classe } \mathscr{C}^1 \text{ em } [0,1] \}$ munido da norma $\|\cdot\|_{\infty}$ e o operador linear $T : C^1[0,1] \to C[0,1]$ dado por T(f) = f'. Mostre que o gráfico de T é fechado, mas T não é contínuo. Por que isto não viola o Teorema do Gráfico Fechado?
- 11. Sejam X um um espaço normado e $P: X \to X$ um operador linear contínuo.
 - a) Mostre que P é uma projeção³ se, e somente se, P^* é uma projeção.
 - b) Mostre que se P é uma projeção, então Id P também é projeção e o núcleo e a imagem de P são fechados.
- **12.** Dados X um espaço normado e Y um subespaço de X, dizemos que Y é complementado em X se Y é fechado e existe um subespaço fechado Z de X tal que $X = Y \oplus Z$.
 - a) Mostre que se $P: X \to X$ é uma projeção contínua, então P(X) é complementado em X.
 - b) Mostre que se X é de Banach e Y é complementado em X, então existe uma projeção contínua $P: X \to X$ com imagem Y.
- **13.** Considere o operador linear $P: c_{00} \rightarrow c_{00}$ dado por

$$P((x_n)_n) = (x_1 + x_2, 0, x_3 + 2x_4, 0, x_5 + 3x_6, 0, ...).$$

a) Mostre que

$$P(c_{00}) = \{(x_n)_n \in c_{00} : x_{2n} = 0 \text{ para todo } n \ge 1\}$$

e que

$$Ker(P) = \{(x_n)_n \in c_{00} : x_{2n-1} + nx_{2n} = 0 \text{ para todo } n \ge 1\}.$$

Conclua que $P(c_{00})$ e $\operatorname{Ker}(P)$ são fechados e $c_{00} = P(c_{00}) \oplus \operatorname{Ker}(P)$.

- b) Mostre que *P* é uma projeção descontínua.
- 14. Seja X um espaço de Banach e sejam Y e Z subespaços fechados tais que $X=Y\oplus Z$. Considere o espaço $Y\times Z$ munido da norma

$$\|(y,z)\|_1 = \|y\| + \|z\|, \forall (y,z) \in Y \times Z.$$

Mostre que $(Y \times Z, \|\cdot\|_1)$ é completo. Conclua que X e $Y \times Z$ são isomorfos.

- **15.** Mostre que se X é um espaço normado e F é um subespaço de dimensão finita de X, então existe uma projeção contínua $P: X \to X$ com imagem F.
- **16.** Mostre que se X é um espaço de Banach de dimensão infinita, então toda base algébrica de X é não enumerável. (Sugestão: use o Teorema de Baire.)

³Uma *projeção* em um K-espaço vetorial *X* é uma aplicação linear *P* : *X* → *X* tal que $P \circ P = P$.