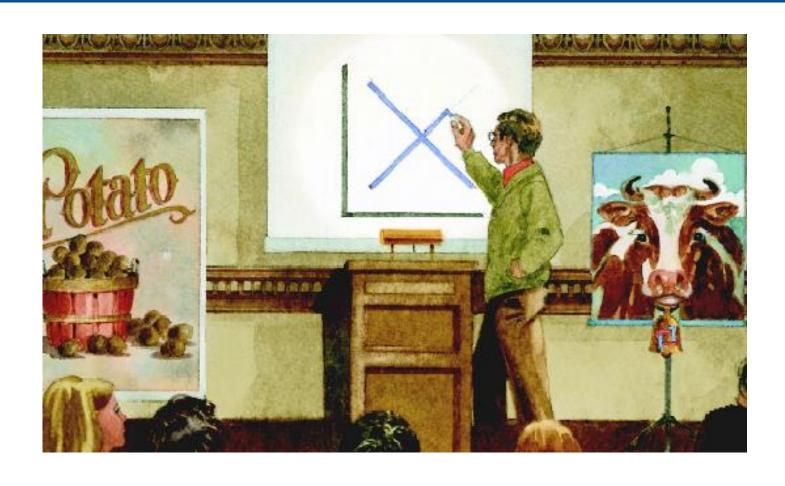


ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO

FORMANDO ENGENHEIROS E LÍDERES

PRO3362 - Engenharia Econômica & Finanças

2º Semestre 2023: Segundas 13h10; Quintas 7h30


Prof. Dr. Erik Rego – erikrego@usp.br – sala FG223

linkedin.com/in/erik-rego-021124/

lattes.cnpq.br/6689850159735369

MATEMÁTICA FINANCEIRA

AULA 01 – MATEMÁTICA FINANCEIRA

- **1.1** Juro
- 1.2 Juro Simples
- **1.3 Juro Composto**
- 1.4 Comparação Juros Simples e Composto

AULA 01 – MATEMÁTICA FINANCEIRA

- **1.1** Juro
- 1.2 Juro Simples
- **1.3 Juro Composto**
- 1.4 Comparação Juros Simples e Composto

PERGUNTA INICIAL

Se eu te pedir \$1.000,00 emprestado, para te pagar o mesmo

\$1.000,00 ao final da disciplina, o que você acharia?

E se fosse ao final da sua graduação?

VALOR DO DINHEIRO NO TEMPO

Ponderar:

- Será que eu vou te pagar ? (risco de crédito)
- O poder de compra de \$1.000,00 até o final do curso será o mesmo ? (Inflação)
- O que você deixou de fazer nesse período? Viagens, compras, etc. (custo de oportunidade)
- Se você permanecesse com \$1.000,00 poderia aplicá-los e ganhar rendimentos !
 (remuneração)

OU SEJA...

Dinheiro tem um custo associado ao tempo!

Logo, Nunca some valores em datas diferentes!

CRÉDITO OU DÉBITO?

Na compra de varejo, quando o caixa

te pergunta a forma do uso do cartão...

FATORES DE PRODUÇÃO E SUAS REMUNERAÇÕES

Trabalho → Salário

Capacidade empresarial → Lucro

Tecnologia → Royalty

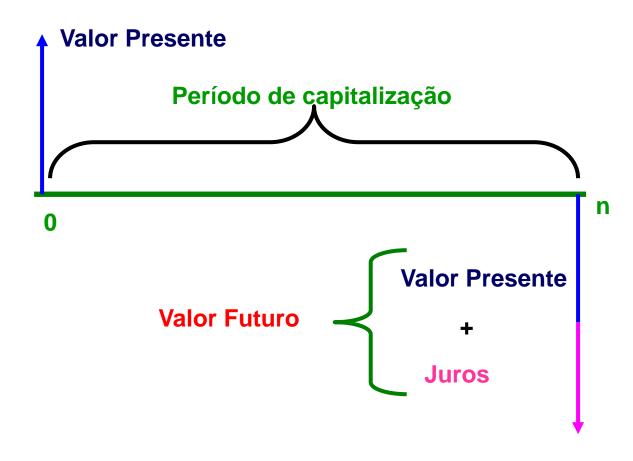
Terra → Aluguel

Capital → Juro

VALOR DO DINHEIRO NO TEMPO

DIAGRAMA DE FLUXO DE CAIXA

Seta para cima : entrada de caixa


Escala horizontal : tempo ou período de capitalização

Seta para baixo : saída de caixa

DIAGRAMA DE FLUXO DE CAIXA

VEREMOS 2 CÁLCULOS DE JUROS

Juros Simples

Juros Compostos

AULA 01 – MATEMÁTICA FINANCEIRA

- **1.1 Juro**
- 1.2 Juro Simples
- **1.3 Juro Composto**
- 1.4 Comparação Juros Simples e Composto

JUROS SIMPLES

É aquela na qual a taxa de juros incide somente sobre o capital inicial. Neste regime de capitalização, os juros variam linearmente em função do tempo.

É utilizado nos mercados internacionais. No Brasil, por convenção, apenas operações dolarizadas utilizam este regime

Formulação:

```
• FV_1 = PV + PV \cdot i
```

•
$$FV_2 = FV_1 + PV \cdot i$$
 ou $PV + PV \cdot i + PV \cdot i$

•
$$FV_3 = FV_2 + PV \cdot i$$
 ou $PV + PV \cdot i + PV \cdot i + PV \cdot i$

JUROS SIMPLES

Exemplo

Um investidor aplica \$ 100 mil por três anos a taxa de juros de 5% a.a. Qual os juros totais obtidos e qual o montante ao final de cada ano?

Juros para os 3 anos:

```
J = PV.i.n
J = 100.000 x 5/100 x 3
J = US$ 15.000
```

Fórmula Geral:

Ano a ano:

$$FV_1 = 100.000 (1+0.05 \times 1)$$

 $FV_1 = 105.000
 $FV_2 = 100.000 (1+0.05 \times 2)$
 $FV_2 = 110.000
 $FV_3 = 100.000 (1+0.05 \times 3)$
 $FV_3 = 115.000

Uma instituição financeira empresta R\$ 12.000, cobrando após um ano R\$ 14.400. Qual foi a taxa de juros simples cobrada?

Valor Presente (PV) = R
$$$$$
 12.000
Valor Futuro (FV) = R $$$ 14.400

$$FV=PV^*(1+i.n)$$

$$14.400 = 12.000^*(1+i.1)$$

$$(1+i)=14.400/12.000$$

$$i = 14.400/12.000 - 1 = 20\% \text{ a.a.}$$

Fonte: Müller; Antonik (2012)

Ao aplicarmos R\$ 48.400, recebemos de juro o valor de R\$ 1.452. Qual será a taxa de juros ganha na aplicação?

$$FV=PV^*(1+i.n)$$

$$(PV+J) = PV^*(1+i.1)$$

$$48.400+1.452 = 48.400 (1+i.1)$$

$$48.400+1.452 = 48.400 +48.400^*i$$

$$Taxa de Juros (i) = J/PV = 1.452/48.400$$

$$i = 1.452/48.400 = 3\%$$

Fonte: Müller; Antonik (2012)

Ponto de Atenção!

Taxa (i)

е

Número de Períodos (n)

devem estar sempre na

mesma base!!

TAXAS EQUIVALENTES

Conceito de Taxa Equivalente: duas taxas (i₁ e i₂) são ditas equivalentes quando ambas incidindo sobre o mesmo valor presente (PV) pelo mesmo período (n) resultam num mesmo valor futuro (FV)

$$FV = PV (1 + i_1 \times n_1) e FV = PV (1 + i_2 \times n_2)$$

TAXAS EQUIVALENTES

Quais a taxa mensal equivalente a 9% a.a, juro simples?

Mensal ←→ Anual

$$\begin{aligned} \text{FV}_{\text{cálculo mensal}} &= \text{FV}_{\text{cálculo anual}} \\ \text{PV.} (1 + i_{\text{m}}.n_{\text{m}}) &= \text{PV.} (1 + i_{\text{a}}.n_{\text{a}}) \\ \text{PV.} (1 + i_{\text{m}}.12) &= \text{PV.} (1 + i_{\text{a}}.1) \\ i_{\text{m}} .12 &= i_{\text{a}}.1 \\ i_{\text{m}} &= \left(i_{\text{a}} .1 \right) / 12 \\ i_{\text{m}} &= 9\% / 12 \\ i_{\text{m}} &= 0,75\% \text{ a.m.} \end{aligned}$$

$$i_a * 1 = i_s * 2 = i_d * 3 = i_t * 4 = i_m * 12 = i_d * 360$$

Num banco faço um empréstimo por 2 meses para pagar R\$ 500.000, sendo que o banco já desconta na frente R\$ 30.000 e deposita a diferença na conta corrente. Qual a taxa de juros simples mensal e anual do empréstimo?

$$FV = PV.(1+i_m.n_m)$$

$$500.000 = 470.000.(1+i_m.2)$$

$$500.000/470.000 = 1+i_m.2$$

$$i_m = 3,19\% \text{ a.m.}$$

$$12 \cdot i_m = i_a.1$$

$$i_a = 3,19\% * 12$$

$$i_a = 38,28\% \text{ a.a.}$$

AULA 01 – MATEMÁTICA FINANCEIRA

- **1.1 Juro**
- 1.2 Juro Simples
- 1.3 Juro Composto
- 1.4 Comparação Juros Simples e Composto

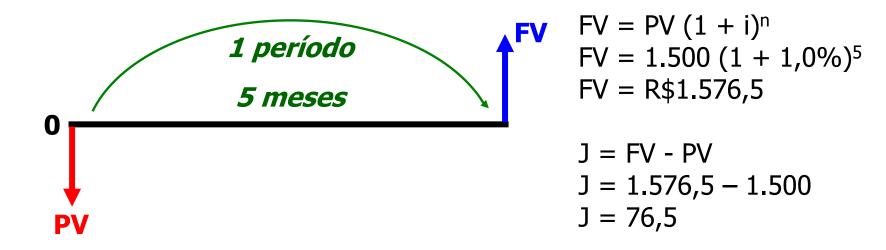
JURO COMPOSTO

É aquela em que a taxa de juros incide sobre o capital inicial acrescido de juros acumulados até o período anterior. Neste regime de capitalização a taxa varia exponencialmente em função do tempo. Mais comum, sobretudo no sistema financeiro brasileiro.

$$FV_1 = PV + PV \times i$$

$$FV_2 = FV_1 + FV_1 \times i = FV_1 \times (1 + i)$$

$$FV_2 = (PV + PV \times i) \times (1 + i)$$


$$FV_2 = PV \times (1 + i) \times (1 + i)$$
Fórmula Geral: $FV = PV \times (1 + i)^n$

JURO COMPOSTO

R\$ 1.500 são aplicados num CDB de um banco em regime de juros compostos, por cinco meses, com taxa de 1,0% a.m. Calcular o montante (FV) e os juros.

http://epx.com.br/ctb/hp12c.php

Você me empresta R\$5.000 por 6 meses a taxa de 2% a.m. Meio ano depois, eu continuo "duro", e você aceita receber apenas a metade do montante devido. Quanto eu te pago?

$$FV = PV.(1+i_m)^n$$

$$FV = 50\% * PV.(1+i_m)^n$$

$$FV = 50\% * 5.000 * (1+2\%)^6$$

$$FV = 50\% * 5.000 * 1,126162$$

$$FV = $ 2.815,41$$

Qual será a taxa de juros anuais de uma aplicação de R\$ 1,0 milhão que deverá render um valor futuro de R\$ 1,6 milhão no prazo de 5 anos?

FV = PV.
$$(1+i_a)^n$$
a
1.600.000 = 1.000.000. $(1+i_a)^5$
1,6 = $(1+i_a)^5$
 $(1,6)^{(1/5)}$ = $(1+i_a)$
 i_a = 9,86% a.a.

Daqui há 18 meses deve-se efetuar um pagamento de R\$ 500.000 referente a um empréstimo, sendo a taxa de juros de 5% a.m, qual o valor do empréstimo?

FV = PV.
$$(1+i_m)^{\Lambda nm}$$

 $500.000 = PV.(1+5\%)^{\Lambda 18}$
PV = $500.000 / ((1+5\%)^{\Lambda 18})$
PV = $500.000 / 2,406619$
PV = \$ 207.760

Ponto de Atenção!

Taxa (i)

е

Número de Períodos (n)

devem estar sempre na

mesma base!!

TAXAS EQUIVALENTES

Quais a taxa mensal proporcionais a 9% a.a, juro composto?

Mensal ←→ Anual

$$\begin{aligned} FV_{c\'{a}lculo\ mensal} &= FV_{c\'{a}lculo\ anual} \\ PV.(1+i_m)^{Nm} &= PV.(1+i_a)^{Na} \\ PV.(1+i_m)^{12} &= PV.(1+i_a)^1 \\ (1+i_m)^{12} &= (1+i_a)^1 \\ (1+i_m) &= (1+i_a)^{(1/12)} \\ i_m &= (1+i_a)^{(1/12)} - 1 \\ i_m &= (1+9\%)^{(1/12)} - 1 \\ i_m &= 0,72\%\ a.m. \end{aligned}$$

$$(1+i_{aa}) = (1+i_{as})^2 = (1+i_{aq})^3 = (1+i_{at})^4 = (1+i_{ab})^6 = (1+i_{am})^{12} = (1+i_{ad})^{360}$$

EXERCÍCIO TAXA EQUIVALENTE

Dado i=20% a.a., determinar as taxas mensal e bimestral

Mensal ←→ Anual

$$\begin{aligned} \text{FV}_{\text{cálculo mensal}} &= \text{FV}_{\text{cálculo anual}} \\ \text{PV.} (1+i_{\text{m}})^{\text{Nm}} &= \text{PV.} (1+i_{\text{a}})^{\text{Na}} \\ \text{PV.} (1+i_{\text{m}})^{12} &= \text{PV.} (1+i_{\text{a}})^{1} \\ (1+i_{\text{m}})^{12} &= (1+i_{\text{a}})^{1} \\ (1+i_{\text{m}}) &= (1+i_{\text{a}})^{(1/12)} \\ i_{\text{m}} &= (1+i_{\text{a}})^{(1/12)} - 1 \\ i_{\text{m}} &= (1+20\%)^{(1/12)} - 1 \\ i_{\text{m}} &= 1,53\% \text{ a.m.} \end{aligned}$$

Bimestral ←→ Anual

$$\begin{aligned} \text{FV}_{\text{cálculo bimestral}} &= \text{FV}_{\text{cálculo anual}} \\ \text{PV.} (1+i_b)^{\text{Nb}} &= \text{PV.} (1+i_a)^{\text{Na}} \\ \text{PV.} (1+i_b)^6 &= \text{PV.} (1+i_a)^1 \\ (1+i_b)^6 &= (1+i_a)^1 \\ (1+i_b) &= (1+i_a)^{(1/6)} \\ i_b &= (1+i_a)^{(1/6)} - 1 \\ i_b &= (1+20\%)^{(1/6)} - 1 \\ i_b &= 3,085\% \text{ a.b.} \end{aligned}$$

EXERCÍCIOS DE FIXAÇÃO

$$FV = PV \times (1 + i)^n$$

$$PV = 10.000$$

$$i = 20\%$$
 aa

$$n = 3$$
 meses

$$PV = 6.000$$

$$i = 2\%$$
 am

$$n = 2$$
 anos

TAXA ACUMULADA

Quadro de Rentabilidades

Mês	Rentab.	CDI	
Fev/15	0,74	0,82	
Mar/15	0,93	1,03	
Abr/15	0,85	0,95	
Mai/15	0,89	0,98	
Jun/15	0,96	1,06	
Jul/15	1,07	1,18	
Ago/15	1,02	1,11	
Set/15	1,01	1,11	
Out/15	1,01	1,11	
Nov/15	0,96	1,06	
Dez/15	1,06	1,16	
Jan/16	0,96	1,05	

Período	Acumulado		
relloud	Rentab.	CDI	
No mês anterior	0,96	1,05	
No ano	1,49	1,21	
Últimos 12 meses	12,08	13,37	
Últimos 24 meses	22,96	25,74	
Últimos 36 meses	31,78	36,20	

Patrimônio Líquido R\$ 77.061.263,42

TAXA ACUMULADA

Você aplicou num fundo de renda variável R\$ 50.000,00 e obteve as rentabilidades abaixo:

Mês 1: 1,25%

Mês 2: 0,80%

Mês 3: 0,90%

Mês 4: 1,70%

Determinar a rentabilidade acumulada e o valor de resgate no final do período.

TAXA ACUMULADA

Você aplicou num fundo de renda variável R\$ 50.000,00 e obteve as rentabilidades:

mês1: 1,25%; mês2: 0,80%; mês 3: 0,90%; mês 4: 1,70%

$$FV_{1} = PV + PV \times i_{1}$$

$$FV_{2} = FV_{1} + FV_{1} \times i_{2} = FV_{1} \times (1 + i_{2})$$

$$FV_{2} = (PV + PV \times i_{1}) \times (1 + i_{2})$$

$$FV_{2} = PV \times (1 + i_{1}) \times (1 + i_{2})$$

$$FV_{3} = PV \times (1 + i_{1}) \times (1 + i_{2}) \times (1 + i_{3})$$

$$FV_{4} = PV \times (1 + i_{1}) \times (1 + i_{2}) \times (1 + i_{3}) \times (1 + i_{4})$$

$$FV_{4} = 50.000 \times (1 + 1,25\%) \times (1 + 0,8\%) \times (1 + 0,9\%) \times (1 + 1,7\%)$$

$$FV_{4} = R\$ 52.364,59$$

Num banco faço um empréstimo por 2 meses para pagar R\$ 500.000, sendo que o banco já desconta na frente R\$ 30.000 e deposita a diferença na conta corrente. Qual a taxa de juros composta mensal e anual do empréstimo?

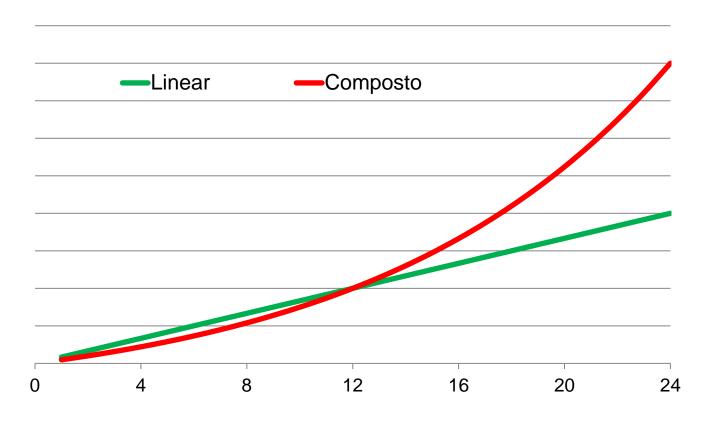
FV = PV.
$$(1+i_m)^n$$

 $500.000 = 470.000.(1+i_m)^2$
 $(500.000/470.000)^{(1/2)} = 1+i_m$
 $i_m = 3,14\% \text{ a.m.}$
 $(1+i_m)^{12} = (1+i_a)^1$

 $(1+3,14\%)^{12}-1=i_a$

 $i_a = 44,95\%$ a.a.

AULA 01 – MATEMÁTICA FINANCEIRA


- **1.1 Juro**
- 1.2 Juro Simples
- **1.3 Juro Composto**
- 1.4 Comparação Juros Simples e Composto

COMPARANDO SIMPLES E COMPOSTO

Um gerente de banco te dá a opção de aplicar R\$100.000,00 a 9,0% a.a. linear ou 9,0% a.a. composto, qual das duas aplicações te dará o maior retorno?

COMPARANDO SIMPLES E COMPOSTO

Um gerente de banco te dá a opção de aplicar R\$100.000,00 a 9,0% a.a. linear ou 9,0% a.a. composto, qual das duas aplicações te dará o maior retorno?

	Juro Simples			Juro Composto			
Meses	Cálculo do Juro	Juro	Montante	Cálculo do Juro	Juro	Montante	
6	100.000*(9%*6/12)	4.500	104.500	100.000*((1+9%)^(6/12)-1)	4.403	104.403	
9	100.000*(9%*9/12)	6.750	106.750	100.000*((1+9%)^(9/12)-1)	6.677	106.677	
12	100.000*(9%*12/12)	9.000	109.000	100.000*((1+9%)^(12/12)-1)	9.000	109.000	
15	100.000*(9%*15/12)	11.250	111.250	100.000*((1+9%)^(15/12)-1)	11.374	111.374	
18	100.000*(9%*18/12)	13.500	113.500	100.000*((1+9%)^(18/12)-1)	13.799	113.799	
21	100.000*(9%*21/12)	15.750	115.750	100.000*((1+9%)^(21/12)-1)	16.278	116.278	
24	100.000*(9%*24/12)	18.000	118.000	100.000*((1+9%)^(24/12)-1)	16.278	118.810	

TAXAS EQUIVALENTES

Você prefere emprestar R\$50.000 por 48 meses a taxa de 12% a.a. juro simples ou 11% a.a. juro composto?

$$50.000 \times (1 + 12\% * 48/12) = 74.000,00$$

$$50.000 \times (1 + 11\%)^{48/12} = 75.903,52$$

TAXAS EQUIVALENTES

Qual equivalência de taxa de juro simples para 11% a.a. juro composto, no exemplo de 48 meses?

Simples ←→ Composto

$$FV_{c\'{a}lculo\ simples} = FV_{c\'{a}lculo\ composto}$$

$$PV.(1+i_s\ x\ n) = PV.(1+i_c)^n$$

$$PV.(1+i_s\ x\ 48/12) = PV.(1+i_c)^{48/12}$$

$$(1+i_s\ x\ 4) = (1+i_c)^4$$

$$i_s\ x\ 4 = [(1+i_c)^4 - 1]$$

$$i_s = [(1+i_c)^4 - 1]/4$$

$$i_s = [(1+11\%)^4 - 1]/4$$

$$i_s = [1,518 - 1]/4$$

$$i_s = 12,9518\%$$

Taxas de juros sobem pelo 16º mês

seguido, diz Anefac

SÃO PAULO - As taxas de juros das operações de crédito voltaram a subir em janeiro de 2016, na 16ª elevação mensal consecutiva, de acordo com a Associação Nacional dos Executivos de Finanças, Administração e Contabilidade (Anefac).

Segundo a Anefac, as seis linhas de crédito pesquisadas tiveram aumento de juros no mês (juros do comércio, cartão de crédito rotativo, cheque especial, crédito direto para financiamento de veículos, empréstimo pessoal de bancos e empréstimo pessoal de financeiras). Com isso, a taxa média de juros geral para pessoa física subiu 0,11 ponto percentual de dezembro para janeiro deste ano e atingiu 7,67% ao mês (142,74% ao ano). Esse é a maior taxa desde fevereiro de 2005.

No caso das empresas, também houve elevação nas três linhas de crédito pesquisadas (capital de giro, desconto de duplicatas e conta garantida). A taxa de juros média geral para pessoa jurídica apresentou elevação de 0,06 ponto percentual ao passar de 4,27% ao mês (65,16% ao ano) em dezembro de 2015 para 4,33% ao mês (66,31% ao ano) em janeiro de 2016. Esse é o maior patamar desde fevereiro de 2009.

De acordo com o diretor de estudos e pesquisas econômicas da Anefac, Miguel José Ribeiro de Oliveira, um dos motivos que explicam as elevações dos juros é o cenário econômico, que aumenta o risco de os índices de inadimplência também subirem. "Este momento se baseia no fato de os índices de inflação estarem mais elevados, com aumento de impostos e juros maiores, que reduzem a renda das famílias. Agregado ao baixo crescimento econômico, deverá promover alta dos índices de

EXAME.COM

desco escapa

indenização

Φ

Ö

São Paulo - O Tribunal de Justiça do Rio de Janeiro anulou ontem uma decisão que condenava o <u>Bradesco (http://exame.abril.com.br/topicos/bradesco)</u> a pagar indenização de 1,4 trilhão de reais a um correntista que teve 4.505,30 reais desviados da sua conta em 1994. Procurado por EXAME.com, o banco afirmou que não comenta assuntos que estão correndo na Justiça.

Na época, Walter Vital Bandeira de Mello entrou com uma ação pedindo reparação de danos. A retirada do dinheiro teria acontecido depois de o aposentado ter sido abordado por um rapaz oferecendo ajuda, dentro da sua agência bancária. A Justiça determinou a devolução da quantia com correção monetária e juros no mesmo percentual que seria cobrado caso o cliente ficasse com a conta no vermelho e caísse no cheque especial. O Bradesco recorreu, mas a decisão foi mantida.

A lógica de fazer o banco arcar com sua própria política fez o montante devido crescer astronomicamente: com o processo se arrastando na Justiça, a conta chegou a 700.000 reais apenas quatro anos depois do ocorrido, pulando para 9 milhões em 2000 e incríveis 1,4 trilhão de reais em 2012.

O Órgão Especial do Tribunal de Justiça do Rio de Janeiro decidiu anular o pagamento por considerar que a chamada capitalização anual dos juros - ou a cobrança dos famosos "juros sobre juros" – teria acarretado uma pena extorsiva. Agora, serão acrescidos juros simples sobre o valor extraviado do aposentado, que já faleceu. O beneficiário será seu filho, Guilherme de Gusmão Bandeira de Mello. A soma final ainda não foi definida.

No julgamento de ontem, o desembargador Cláudio de Mello Tavares reconheceu que os bancos adotam o cálculo de juros compostos, mas afirmou que a prática seria lamentável, pois penalizaria os consumidores que não batem à porta do Judiciário para questionar a cobrança abusiva. "É surrealista que uma conta de 4.505 reais hoje bata à porta de 1 trilhão. Seria aplicar a lei de Talião. Nós vamos ratificar esta ilegalidade? Claro que não", afirmou.

Obrigado