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Digital images are everywhere—from our cell phones to the pages of our online news sites. How we choose
to use digital image processing raises a surprising host of legal and ethical questions that we must address.
What are the ramifications of hiding data within an innocent image? Is this an intentional security practice
when used legitimately, or intentional deception? Is tampering with an image appropriate in cases where
the image might affect public behavior? Does an image represent a crime, or is it simply a representation of a
scene that has never existed? Before action can even be taken on the basis of a questionable image, we must
detect something about the image itself. Investigators from a diverse set of fields require the best possible
tools to tackle the challenges presented by the malicious use of today’s digital image processing techniques.

In this survey, we introduce the emerging field of digital image forensics, including the main topic areas of
source camera identification, forgery detection, and steganalysis. In source camera identification, we seek to
identify the particular model of a camera, or the exact camera, that produced an image. Forgery detection’s
goal is to establish the authenticity of an image, or to expose any potential tampering the image might have
undergone. With steganalysis, the detection of hidden data within an image is performed, with a possible
attempt to recover any detected data. Each of these components of digital image forensics is described in
detail, along with a critical analysis of the state of the art, and recommendations for the direction of future
research.
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1. INTRODUCTION

With the advent of the Internet and low-price digital cameras, as well as powerful image
editing software (such as Adobe Photoshop and Illustrator, and GNU Gimp), ordinary
users have more access to the tools of digital doctoring than ever before. At the same
time our understanding of the technological, ethical, and legal implications associated
with image editing falls far behind. When such modifications are no longer innocent
image tinkerings and start implying legal threats to a society, it becomes paramount to
devise and deploy efficient and effective approaches to detect such activities [Popescu
and Farid 2005a].

Digital Image and Video Forensics research aims at uncovering and analyzing the
underlying facts about an image or video. Its main objectives comprise: tampering
detection (cloning, healing, retouching, splicing), hidden data detection/recovery, and
source identification with no prior measurement or registration of the image.

Though image manipulation is not new, its prevalence in criminal activity has surged
over the past two decades, as the necessary tools have become more readily available,
and easier to use. In the criminal justice arena, we most often find tampered images
in connection with child pornography cases. The 1996 Child Pornography Prevention
Act (CPPA) extended the existing federal criminal laws against child pornography to
include certain types of “virtual porn”. Notwithstanding, in 2002, the United States
Supreme Court found that portions of the CPPA, being excessively broad and restric-
tive, violated First Amendment rights. The Court ruled that images containing an
actual minor or portions of a minor are not protected, while computer generated im-
ages depicting a fictitious “computer generated” minor are constitutionally protected.
However, with computer graphics, it is possible to create fake scenes visually indistin-
guishable from real ones [Ng and Chang 2009]. In this sense, one can apply sophisti-
cated approaches to give more realism to the created scenes deceiving the casual eye
and conveying a criminal activity. In the United States, a legal burden exists for “a
strong showing of the photograph’s competency and authenticity”1 when such evidence
is presented in court. In response, tampering detection and source identification are
tools to satisfy this requirement.

Data hidden within digital imagery represents a new opportunity for traditional
criminal activities. Most notably, the investigation of Juan Carlos Ramirez Abadia,
a Columbian drug trafficker arrested in Brazil in 2008, uncovered voice and text
messages hidden within images of a popular cartoon character [Herald Sun 2008;
Folha de São Paulo 2008] on the suspect’s computer. Similarly, a 2007 study2 performed
by Purdue University found data hiding tools on numerous computers seized in con-
junction with child pornography and financial fraud cases. While a serious hinderance
to a criminal investigation, data hiding is not a crime in itself; crimes can be masked by
its use. Thus, an investigator’s goal here is to identify and recover any hidden evidence
within suspect imagery.

In our digital age, images and videos reach us at remarkable speed and frequency.
Unfortunately, there are currently no established methodologies to verify their au-
thenticity and integrity in an automatic manner. Digital image and video forensics are
still emerging research fields with important implications for ensuring the credibility
of digital contents. As a consequence, on a daily basis we are faced with numerous
images and videos—and it is likely that at least a few have undergone some level of
manipulation. The implications of such tampering are only beginning to be understood.

1Bergner v. State, 397 N.E.2d 1012, 1016 (Ind. Ct. App. 1979).
2http://www.darkreading.com/security/encryption/showArticle.jhtml?articleID=208804788.
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(a) Oscar Rejland’s analog composition, 1857. (b) Nikola Tesla’s laboratory, 1899.

Fig. 1. Two early examples of analog compositions.

In the following sections, we provide a comprehensive survey of the most relevant
works with respect to this exciting new field of the unseen in digital imagery. Section 2
presents some brief historical remarks regarding image doctoring, including its impact
on society. Section 3 is a thorough tour of the vision techniques for the forensics of the
unseen, covering all the main areas of interest. Finally, in Section 4, we wrap up the
survey and present some conclusions.

Throughout this survey, we emphasize approaches that we believe to be more ap-
plicable to forensics. Notwithstanding, most publications in this emerging field still
lack important discussions about resilience to counterattacks, which anticipate the
existence of forensic techniques [Gloe et al. 2007]. As a result, the question of trustwor-
thiness of digital forensics arises, for which we try to provide some positive insights.

2. HISTORICAL REMARKS

Image doctoring in order to represent a scene that never happened is as old as the
art of the photograph itself. Shortly after the Frenchman Nicéphore Niepce [Coe 1990]
created the first photograph in 1814,3 there were the first indications of doctored
photographs. Figure 1(a) depicts one of the first examples of image forgery. The pho-
tograph, an analog composition of 30 images,4 is known as The Two Ways of Life and
was created by Oscar G. Rejland in 1857. Figure 1(b) depicts another old example of
analog montage. The image is a publicity photo taken in 1899 at Nikola Tesla’s labora-
tory in Colorado Springs, Colorado, where the inventor worked before he established
his Wardenclyffe laboratory on Long Island. The photo sports a double exposure—
his pose and the sparks were recorded at different times, avoiding his electrocution
[Broad 2009].

In more recent times, we’ve seen an increase in questionable image processing. On
March 31st, 2003, the Los Angeles Times showed on its front cover an image from
photojournalist Brian Walski, in which a British soldier in Iraq stood trying to control a
crowd of civilians in a passionate manner. The problem was that the moment depicted
never happened (see Figure 2(a)). The photograph was a composite of two different
photographs merged to create a more appealing image. The doctoring was discovered
and Walski was fired.

In the 2004 presidential campaign, John Kerry’s allies were surprised by a pho-
tomontage that appeared in several newspapers purporting to show Kerry and Jane
Fonda standing together at a podium during a 1970s anti-war rally (see Figure 2(c)). As

3Recent studies [Marien 2006] have pointed out that the photograph was, indeed, invented concurrently by
several researchers such as Nicphore Niepce, Louis Daguerre, Fox Talbot, and Hercule Florence.
4Available in http://www.bradley.edu/exhibit96/about/twoways.html.
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(a) Montage (2003) of a British soldier in
Iraq trying to control a crowd of civilians
in a passionate manner. Credits to Brian
Walski.

(b) Iranian montage (2008) of missiles
streaking heavenward.

(c) Montage (2004) of John Kerry and Jane Fonda standing together at a
podium during a 1970s anti-war rally. Credits to Ken Light (left), Associated
Press (middle), and Owen Franken (right).

Fig. 2. Some common press media photomontages.

a matter of fact, the photograph was a fake. Kerry’s picture was taken at an anti-war
rally in Mineola, NY. on June 13th, 1971 by photographer Ken Light. Fonda’s picture
was taken during a speech at Miami Beach, FL. in August, 1972 by photographer Owen
Franken.

On April 5th, 2009, the Brazilian newspaper Folha de São Paulo published an arti-
cle [Folha de São Paulo 2009] on how the Brazilian Chief of Staff at that point, Dilma
Rousseff (a possible runner for the presidential office on the 2010 election), has ac-
tively participated in the resistance against the military regime, such as the planning
and preparations of robberies and kidnappings. As part of the article, the newspaper
printed an alleged image of the Repression Police Internal files of Secretary Rousseff
stating that it came from the Public Archive of São Paulo, that houses the collection
of documents from that period of time. A further analysis of the document pointed out
that the object in question was a fabrication. The photograph in the document is the
result of a splicing operation from a different grayscale image, the text is the result of
a digitally manipulated insertion, and it has not originated from a scanning procedure
of a typewritten document [Goldenstein and Rocha 2009].

The scientific community has also been subject to forgeries. A particular case of scien-
tific fraud involving doctored images in a renowned scientific publication has shed light
to a problem believed to be far from the academy. In 2004, the South Korean profes-
sor Woo-Suk Hwang and colleagues published in Science important results regarding
advances in stem cell research [Hwang et al. 2005; Kavanagh 2006]. Less than one
year later, an investigative panel pointed out that nine out of eleven customized stem
cell colonies that Hwang had claimed to have made involved doctored photographs of
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two other, authentic, colonies. Sadly, this is not a detached case. In at least one jour-
nal5 [Pearson 2005], it is estimated that as many as 20% of the accepted manuscripts
contain figures with improper manipulations, and roughly 1% with fraudulent manip-
ulations [Farid 2006b; Pearson 2005].

Photo and video retouching and manipulation are also used for political purposes. On
July 10, 2008, various major daily newspapers published a photograph of four Iranian
missiles streaking heavenward (see Figure 2(b)). Surprisingly, shortly after the photo’s
publication, a small blog provided evidence that the photograph had been doctored.
The media, left in a somewhat embarrassing position, was forced to publish a plethora
of retractions and apologies [Nizza and Witty 2008].

It has long been said that an image worth a thousand words. Recently, a study
conducted by Italian Psychologists have investigated how doctored photographs of
past public events affect memory of those events. Their results indicate that doctored
photographs of past public events can influence memory, attitudes and behavioral
intentions [Sacchi et al. 2007]. That might be one of the reasons that several dictatorial
regimes routinely wiped out of their photographic records images of people who had
fallen out of favor with the system [Farid 2006a].

According to Wang [2009], with the availability of sophisticated and low-cost digital
video cameras and the convenience of video sharing websites such as YouTube, digital
videos are playing a more important role in our daily life. However, we can not take
the authenticity of such videos for granted.

Although video tampering is relatively harder to perform than image tampering, it
is not uncommon to find some dubious video editing cases in real life.

Video tampering can be as simple as inserting advertisements during broadcasting
of sporting events or as complex as removing people digitally from a video. For instance,
in December 2000, the CBS emblem on the frame depicted in Figure 3(a) of a live video
broadcast was inserted so as to conceal the NBC emblem that was on display in the
background.

Figure 3(b) depicts the final screen shot of a Republican National Committee political
video of a U.S. soldier watching a television from December 2005. In this last shot, we
read “Our soldiers are watching and our enemies are too”. However, this video was
digitally altered. It is an edition of another video where the soldier was watching the
movie How the Grinch Stole Christmas.

Figure 3(c) depicts a Russian talk show in the fall of 2007. The video frames the polit-
ical analyst Mikhail Delyagin making some sharp remarks about president Vladimir
Putin. Later, when the program was broadcast, the analyst and his comments were
digitally removed from the show. However, the technicians neglected to erase his hand
and legs in one shot [Wang 2009].

3. VISION TECHNIQUES FOR THE UNSEEN

In this section, we survey many of the state-of-the-art approaches for image and video
forensics, pointing out their advantages and limitations. In order to alleviate confusion
with symbols that are used in different contexts by different works, we have changed
nearly all of the symbols used throughout this section to resolve any ambiguity.

3.1. Image Manipulation Techniques

In the forensic point of view, it is paramount to distinguish simple image enhancements
from image doctoring. We note that any image operation can be used to deceive the
viewer; the distinction comes down to the intent of the person performing the image

5Journal of Cell Biology.
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(a) CBS broadcast, December 2000.

Original video

What was broadcast

(b) RNC political propaganda, December 2005.

(c) Russian talk show in 2007. Prominent po-
litical analyst, Mikhail Delyagin, was digitally
erased from the show except his hand and legs.

Fig. 3. Some video tampering examples.

editing. Despite this burden, we generally find common operations falling into two
categories.

On one extreme, we define image enhancements as operations performed in one
image with the intention to improve its visibility. There is no local manipulation or
pixel combination. Some image operations in this category are contrast and brightness
adjustments, gamma correction, scaling, and rotation, among others. On the other
extreme, image tampering operations are those used with the intention to deceive
the viewer at some level. In these operations, normally one performs localized image
operations such as pixel combinations and tweaks, copy/paste, and composition with
other images. In between these extremes, there are some image operations that by
themselves are not considered forgery operations but might be combined for such
objective. Image sharpening, blurring, and compression are some of such operations.

Some common image manipulations with the intention of deceiving a viewer include
the following.

(1) Composition or Splicing. It consists of the composition (merging) of an image Ic
using parts of one or more parts of images I1 · · · Ik. For example, with this approach,
a politician in I1 can be moved beside a person from I2, without even knowing such
person.

(2) Retouching, Healing, Cloning. These approaches consist of the alteration of parts of
an image or video using parts or properties of the same image or video. Using such

ACM Computing Surveys, Vol. 43, No. 4, Article 26, Publication date: October 2011.



Vision of the Unseen 26:7
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Fig. 4. Toy example of possible image manipulations, including cloning, edge smoothing, splicing, and
healing.

techniques, one can make a person 10 or 20 years younger (retouching and healing)
or even change a crime scene eliminating a person in a photograph (cloning).

(3) Content Embedding or Steganography. The goal of steganography is to convey a
message by hiding it in a cover media (for the work considered here, the cover media
consists of an image or video) without affecting the cover’s statistical properties,
which might be used for detection.

Figure 4 depicts some possible image manipulations. From the original image (top
left), we clone several small parts of the same image in order to eliminate some parts
of it (e.g., the two people standing in front of the hills). Then we can use a process of
smoothing to feather edges and make the cloning less noticeable. We can use this image
as a host for another image (bottom left) and then create a composite. After the combi-
nation, we can use healing operations to adjust brightness, contrast, and illumination.
This toy example was created in five minutes using the open-source software Gimp.

Sometimes the edge between image enhancing and faking is so thin that depending
on the context, only the addition of text to a scene may fool the viewer. Figure 5 depicts
one example of two photographs presented by Colin Powell at the United Nations in
2003. The actual images are low-resolution, muddy aerial surveillance photographs of
buildings and vehicles on the ground in Iraq. They were used to justify a war. Note that
the text addition in this case was enough to mislead the United Nations [Morris 2008].
However, many other simple image operations exist that many be considered purely
innocuous, such as red eye removal, contrast enhancement, lossless compression and
affine transformation. With these examples, no visual information representing objects
in the image is lost, and they may be treated as conceptually invertible.

3.2. Important Questions

In general, in digital image and video forensics, given an input digital image, for
instance, one wants to answer the following important questions [Sencar and Memon
2008].

—What imaging equipment produced this image?
– Was this image acquired from camera vendor Cv,1 or Cv,2?
– Was this image originally acquired with camera C as claimed?
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Sanitization of Ammunition Depot at Taji

Fig. 5. Photographs presented by Colin Powell at the United Nations in 2003. (U.S. Department of State)

—What is the processing history of this image?
– Is this image an original image or has it been created from the composition (splic-

ing) of other images?
– Does this image represent a real moment in time or has it been tampered with to

deceive the viewer?
– Which part of this image has undergone manipulation and to what extent? What

are the impacts of such modifications?
—Does this image conceal any hidden content?

– Which algorithm or software has been used to perform the hiding?
– Is it possible to recover the hidden content?

It is worth noting that most techniques for digital images and video are blind and
passive. The approach is blind when it does not use the original content for the analysis.
The approach is passive when it does not use any watermarking-based solution for the
analysis.

Although digital watermarking can be used in some situations, the vast majority
of digital contents do not have any digital watermarking. Any watermarking-based
solution would require an implementation directly in the acquisition sensor, making
its use restrictive. Furthermore, such approaches might lead to quality loss due to the
markings [Ng et al. 2006; Sencar and Memon 2008].

We break up the image and video forensics approaches proposed in the literature
into three categories, discussed in the next sections.

(1) Camera sensor fingerprinting or source identification
(2) Image and video tampering detection
(3) Image and video hidden content detection/recovery

3.3. Source Camera Identification

With Source Camera Identification, we are interested in identifying the data acquisition
device that generated a given image for forensics purposes [Swaminathan et al. 2009].
Source camera identification may be broken into two classes: device class identification
and specific device identification. In general, source camera identification relies on the
underlying characteristics of the components of digital cameras. These characteristics
may take the form of image artifacts, distortions, and statistical properties of the

ACM Computing Surveys, Vol. 43, No. 4, Article 26, Publication date: October 2011.



Vision of the Unseen 26:9

Lens Filters Color Filter Array Sensor Camera Processing

Fig. 6. The image acquisition pipeline.
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Fig. 7. An example of binary camera classification with SVM. A feature vector is constructed out of the
calculated features for a given image. Training sets are built out of a collection of feature vectors for each
camera class. The machine learning is used for classification of images with unknown sources.

underlying data. These characteristics are usually imperceptible to the human eye,
but visible effects can also contribute clues for identification.

In general, we treat digital image acquisition as a pipeline of stages. Figure 6
illustrates the flow of data, with light initially passing through a lens and possibly
through a filter (e.g., to remove infrared or ultra-violet light). If the camera supports
color, a Color Filter Array (CFA) is usually placed over the sensor to accommodate
different color channels. Popular CFA configurations include the RGB Bayer Pattern
(most common), and the CMYK subtractive color model (available on some higher end
sensors). In a standard consumer grade camera, the sensor will be a silicon CCD or
CMOS. The image processing will take place in logic designed by individual camera
or chipset manufacturers within the camera itself. Each of these pipeline components
induce anomalies in images that can be used to identify a source camera.

3.3.1. Device Class Identification. The goal of device class identification is to identify the
model and/or manufacturer of the device that produced the image in question. For
digital cameras, we consider the image acquisition pipeline, where the lens, size of the
sensor, choice of CFA, and demosaicing and color processing algorithms found in the
camera processing logic to provide features. It is important to note that many manu-
facturers use the same components, thus, the discriminatory power of some techniques
may be limited. Many of the techniques that we will discuss here treat the underlying
camera characteristics as features for machine learning, which separates images into
particular camera classes. Thus, we can treat device class identification as a traditional
classification problem. Support Vector Machines (SVM), shown in Figure 7, is a popu-
lar binary classifier for device class separation. It can also be extended for multiclass
classification. In this section, we will review the relevant techniques used to identify
device classes.
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From the lens, radial distortions can be introduced immediately into the image acqui-
sition pipeline. Radial distortion is commonly found with inexpensive cameras/lenses.
Choi et al. [2006] introduce a method to extract aberrations from images, which are
then treated as features for classification. As described in Choi et al. [2006], radial
distortion can be modeled through the second order for reasonable accuracy:

ru = rd + d1r3
d + d2r5

d, (1)

where d1 and d2 are the first and second degree distortion parameters, and ru and rd are
the undistorted radius and the distorted radius. The radius is simply the radial distance√

x2 + y2 of some point (x, y) from the center of the distortion (typically the center of
the image). The parameters d1 and d2 are treated as features for an SVM learning
system. These features, however, are not used in Choi et al. [2006] by themselves—
they are combined with the 34 image features introduced in Kharrazi et. al [2004]
(described in this article), in a fusion approach. Thus, the utility of this approach
may be seen as a supplement to other, stronger features derived from elsewhere in the
acquisition pipeline. The average accuracy of this technique is reported to be about 91%
for experiments performed on three different cameras from different manufacturers.

Image color features exist as artifacts induced by the CFA and demosaicing algo-
rithm of a color camera, and represent a rich feature set for machine-learning-based
classification. Kharrazi et al. [2004] define a set of image color features that are shown
to be accurate for device class identification using SVMs. Average pixel values, RGB
pairs correlation, neighbor distribution center of mass, RGB pairs energy ratio, and
wavelet domain statistics are all used as features. Further, image quality features are
also used to supplement the color features in Kharrazi et al. [2004]. Pixel-difference-
based measures (including mean square error, mean absolute error, and modified in-
finity norm), correlation-based measures (including normalized cross correlation, and
the Czekonowksi correlation, described in this article), and spectral-distance-based
measures (including spectral phase and magnitude errors) are all used. For binary
classification, Kharrazi et al. [2004] report between 90.74% and 96.08% prediction ac-
curacy. For multiclassification considering five cameras, prediction accuracy between
78.71% and 95.24% is reported. These results were confirmed in Tsai and Wu [2006].

The CFA itself as a provider of features for classification has been studied in Celiktu-
tan et al. [2005]. The motivation for using just the CFA and its associated demosaicing
algorithm is that proprietary demosaicing algorithms leave correlations across adja-
cent bit planes of the images. Celiktutan et al. [2005] define a set of similarity measures
{m1, m2, m3}, with kNN and SVM used for classification.

The first approach is a binary similarity measure. A stencil function is first defined

δn
c (a, b) =

⎡
⎢⎣

1 if pc = 0 pn = 0
2 if pc = 0 pn = 1
3 if pc = 1 pn = 0
4 if pc = 1 pn = 1

⎤
⎥⎦ , (2)

where b is a bit plane (image matrix), and a indicates one of four agreement scores:
1, 2, 3, and 4. The subscript c defines some central pixel, and superscript n denotes one
of the four possible neighbor pixels.

We sum δn
c (a, b) over its four neighbors (n runs over its East, West, South, and North

neighbors), as well as over all the pixels (c runs over the M × N pixels). After the
summations, the sub- and superscripts can be omitted.

Before feature generation, the agreement scores are normalized to obtain a PDF:

Ab
a = δ(a, b)

/ ∑
a

δ(a, b). (3)
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Based on this four-bin histograms, we are able to define the binary Kullback–Leibler
distance as

m1 = −
4∑

n=1

A7
n log

A7
n

A8
n
, (4)

where A is the normalized agreement score.
The second approach is also a binary similarity measure, but uses a neighborhood

weighting mask as opposed to a stencil function. Each binary image yields a 512-bin
histogram computed using the weighted neighborhood. Each score is computed with
the following function:

S =
7∑

i=0

pi2i. (5)

The neighborhood weighting mask applied to a pixel pi by this function is:

1 2 4
128 256 8
64 32 16

.

The final binary similarity is computed based on the absolute difference between the
nth histogram bin in the 7th bit plane and same of the 8th after normalization:

m2 =
511∑
n=0

∣∣S7
n − S8

n

∣∣. (6)

Quality measures, as mentioned earlier, make excellent features for classification.
The Czenakowski distance is a popular feature for CFA identification because it is
able to compare vectors with non-negative components—exactly what we find in color
images. The third feature of Celiktutan et al. [2005] is the Czenakowski distance
defined as:

m3 = 1
MN

M−1∑
i=0

N−1∑
j=0

(
1 − 2

∑3
k=1 min(Ik(i, j), Îk(i, j))∑3
k=1(Ik(i, j) + Îk(i, j))

)
. (7)

Denoising is necessary for calculating this distance metric. Ik(i, j) represents the
(i, j)th pixel of the kth band of a color image, with Îk being the denoised version. With
these three similarity measures, Celiktutan et al. [2005] generate 108 binary similarity
features and 10 image quality similarity features per image. The best reported perfor-
mance for this technique (using SVM for classification) is near 100% accuracy for the
two-camera classification problem, 95% accuracy for the three-camera classification
problem, and 62.3% accuracy for a six-camera classification problem.

A major weakness of the approaches described thus far is a lack of rigor in the analysis
of the experimental results reported, compared with other security related vision and
pattern recognition fields such as biometrics and tracking. All report raw classification
results for only a handful of different cameras. Thus, it is often difficult to determine
how well these techniques perform in practice. This is a common problem of this subfield
in general. By varying the SVM margin after classification, a set of marginal distances
can be used to build a Receiver Operator Characteristic curve. From this curve, a more
thorough understanding of the False Reject Rate (FRR) and False Accept Rate (FAR)
can be gained. Also of interest is more comprehensive testing beyond limited camera
classes. For a more accurate picture of the FAR, a statistically large sampling of images
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from cameras outside the known camera classes should be submitted to a system. None
of the papers surveyed attempted this experiment. Further, the techniques introduced
thus far are all shown to succeed on images with low levels of JPEG compression. How
well these techniques work with high levels of compression has yet to be shown. Not
all work suffers from a dearth of analysis, however.

The Expectation/Maximization algorithm [Popescu 2004] is a powerful technique
for identifying demosaicing algorithms (and even more useful for forgery detection,
described in Section 3.4.4), and does not rely on classification techniques directly,
but can take advantage of them in extensions to the base work [Bayram et al. 2005,
2006b]. The motivating assumption of the EM algorithm is that rows and columns
of interpolated images are likely to be correlated with their neighbors. Kernels of a
specified size (3 × 3, 4 × 4, and 5 × 5 are popular choices) provide this neighborhood
information to the algorithm. The algorithm itself can be broken into two steps. In the
Expectation (E) step, the probability of each sample belonging to a particular model is
estimated. In the Maximization (M) step, the specific form of the correlations between
samples is estimated. Both steps are iterated till convergence.

In detail, we can assume that each sample belongs to one of two models. If a sample
is linearly correlated with its neighbors, it belongs to M1. If a sample is not correlated
with its neighbors, it belongs to M2. The linear correlation function is defined as:

f (x, y) =
k∑

u,v=−k

αu,v f (x + u, y + v) + N (x, y). (8)

In this linear model, f (·, ·) is a color channel (R, G, or B) from a demosaiced image, k is
an integer, and N (x, y) represents independent, identically distributed samples drawn
from a Gaussian distribution with zero mean and unknown variance. �α is a vector of
linear coefficients that express the correlations, with α0,0 = 0.

The E step estimates the probability of each sample belonging to M1 using Bayes’
rule:

Pr{ f (x, y) ∈ M1| f (x, y)} = Pr{ f (x, y)| f (x, y) ∈ M1}Pr{ f (x, y) ∈ M1}∑2
i=1 Pr{ f (x, y)| f (x, y) ∈ Mi}Pr{ f (x, y) ∈ Mi}

. (9)

Pr{ f (x, y) ∈ M1} and Pr{ f (x, y) ∈ M2} are prior probabilities assumed to be equal to
1/2. If we assume a sample f (x, y) is generated by M1, the probability of this is:

Pr{ f (x, y)| f (x, y) ∈ M1} = 1

σ
√

2π

[
− 1

2σ 2

(
f (x, y) −

k∑
u,v=−k

αu,v f (x + u, y + v)
)2]

. (10)

We estimate the variance σ 2 in the M step. M2 is assumed to have a uniform distri-
bution.

The M step computes an estimate of �α using weighted least squares (in the first
round of the E step, �α is chosen randomly):

E(�α) =
∑
x,y

w(x, y)
(

f (x, y) −
k∑

u,v=−k

αu,v f (x + u, y + v)
)2

. (11)

The weights w(x, y) are equivalent to Pr{ f (x, y) ∈ M1| f (x, y)}. This error function
is minimized via a system of linear equations before yielding its estimate. Both the
steps are executed until a stable �α results. The final result maximizes the likelihood of
observed samples.

Popescu [2004] asserts that the probability maps generated by the EM algorithm
can be used to determine which demosaicing algorithm a particular camera is using.
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These probabilities tend to cluster—thus, an external machine learning algorithm
for classification is not necessary. For a test using eight different demosaicing algo-
rithms [Popescu 2004], the EM algorithm achieves an average classification accuracy
of 97%. In the worst case presented (3×3 median filter vs. variable number of gradients),
the algorithm achieves an accuracy of 87%. Several extensions to the EM algorithm
have been proposed. Bayram et al. [2005] apply the EM algorithm to a camera iden-
tification problem, using SVM to classify the probability maps. Bayram et al. [2005]
report success as high as 96.43% for the binary classification problem, and 89.28% for
the multiclass problem. Bayram et al. [2006b] introduce better detection of interpola-
tion artifacts in smooth images as a feature to fuse with the standard EM results. For
a three camera identification problem, Bayram et al. [2006b] achieve results as high
as 97.74% classification accuracy. Other variations include the use of modeling error,
instead of interpolation filter coefficients [Long and Huang 2006], and the computation
of error based on the assumption of CFA patterns in an image [Swaminathan et al.
2006].

3.3.2. Specific Device Identification. The goal of specific device identification is to identify
the exact device that produced the image in question. For specific device identifica-
tion, we require more detail beyond what we’ve discussed so far with source model
identification. Features in this case may be derived from:

—hardware and component imperfections, defects, and faults;
—effects of manufacturing process, environment, operating conditions;
—aberrations produced by a lens, noisy sensor, dust on the lens.

It is important to note that these artifacts may be temporal by nature, and thus, not
reliable in certain circumstances.

Early work [Kurosawa et al. 1999] in imaging sensor imperfections for specific device
identification focused on detecting fixed pattern noise caused by dark current in digital
video cameras. Dark current is the rate that electrons accumulate in each pixel due to
thermal action. This thermal energy is found within inverse pin junctions of the sensor,
and is independent of light falling on it. In their work, the authors just intensify the
fixed pattern noise components while proposing their detection as local pixel defects.
The work, as presented in [Kurosawa et al. 1999], provides no quantitative analysis,
and thus, the actual utility of dark currents cannot be assessed.

A more comprehensive use of sensor imperfections is presented in Geradts et al.
[2001], where “hot pixels,” cold/dead pixels, pixel traps, and cluster defects are used for
detection. Hot pixels are individual pixels on the sensor with higher than normal charge
leakage. Cold or dead pixels (Figure 8) are pixels where no charge ever registers. Pixel
traps are an interference with the charge transfer process and results in either a partial
or whole bad line, that is either all white or all dark. While these features are compelling
for identifying an individual sensor, one immediate problem with defective pixels that
we can think of is that there are cameras that eliminate them by post-processing their
images on-board. Geradts et al. [2001] also do not provide a quantitative analysis that
we can use to assess the effectiveness of defective pixels analysis. Thus, we turn to
more extensive work for reliable forensics.

Lukas et al. [2006] present a more formal quantification and analysis of sensor noise
for identification, with work that is the strongest for this type of forensics. Referring to
the hierarchy of sensor noise in Figure 9, we see two main types of pattern noise: fixed
pattern noise and photo-response nonuniformity noise. Fixed pattern noise (FPN) is
caused by the dark currents described in this article, and is not considered in Lukas
et al. [2006]. The authors state that the reason is FPN primarily refers to pixel-to-pixel
differences when the sensor array is not exposed to light. Basically, FPN is an additive
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Fig. 8. Dead pixels (circled in yellow) present in an image from a thermal surveillance camera.

Pattern Noise

Photo Response
Non-Uniformity Noise

Fixed Pattern Noise

Pixel Non-Uniformity
Low-frequency

Defects

Fig. 9. Hierarchy of Pattern Noise.

noise, which depends on exposure and temperature. It can be suppressed on-the-fly
by some in-camera devices by subtracting a dark frame from the image right after its
capture.

Photo-response nonuniformity noise (PRNU) is primarily caused by pixel non-
uniformity noise (PNU). PNU is defined as different sensitivity various pixels have
to light caused by the inconsistencies of the sensor manufacturing process. Low fre-
quency defects are caused by light refraction on particles on or near the camera, opti-
cal surfaces, and zoom settings. Lukas et al. [2006] do not consider this type of noise,
but Dirik et al. [2008] do. The temporal nature of such particle artifacts brings into
question their reliability—except when dealing with short sequences of images from
the same period.

To use PNU as a characteristic for sensor fingerprinting, the nature of the noise
must first be isolated. An image signal μ exhibits properties of a white noise signal
with an attenuated high frequency band. The attenuation is attributed to the low-pass
character of the CFA algorithm (which, in this case, we are not interested in). If a
large portion of the image is saturated (pixel values set to 255), it will not be possible to
separate the PNU from the image signal. In a forensic scenario, we will likely not have a
blank reference image that will easily allow us to gather the PNU characteristics. Thus,
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the first stage of the PNU camera identification algorithm is to establish a reference
pattern Pc, which is an approximation to the PNU. The approximation, Ī(k) is built from
the average of K different images of a uniformly lit scene k = 1, . . . , K:

Ī(k) = 1
K

K∑
k=1

Ik. (12)

The approximation can be optimized to suppress the scene content by applying a de-
noising filter λ, and averaging the noise residuals ξ (k) instead of the original images
I(k):

ξ̄ (k) = Ī(k) − λ(I(k))
K

. (13)

Lukas et al. [2006] report that a wavelet-based denoising filter works the best.
To determine if an image belongs to a particular known camera, a correlation ρc is

simply calculated between the noise residual of the image in question ξ = I − λ(I) and
the reference pattern Pc (a bar above the symbol represents mean):

ρc(I) = (ξ − ξ̄ ) · (Pc − P̄c)
‖ξ − ξ̄‖‖Pc − P̄c‖

. (14)

The results of Lukas et al. [2006] are expressed in terms of FRR and FAR (proper
ROC curves are not provided, however), with very low FRR (between 5.75 × 10−11 and
1.87×10−3) reported when a FAR of 10−3 is set for an experiment with images from nine
different cameras. Excellent correlations are shown for all tests, indicating the power
this technique has for digital image forensics. An enhancement to this work has been
proposed by Sutcu et al. [2007], with a technique to fuse the demosaicing characteristics
of a camera described earlier with the PNU noise. Performance is enhanced by as much
as 17% in that work over the base PNU classification accuracy.

One drawback of PRNU noise when used for camera and sensor fingerprinting is that
its detection is sensitive to appropriate synchronization. A slight scaling or cropping
operation on the image can lead to an unsuccessful detection [Goljan and Fridrich 2008].
Geometrical transformations (e.g., scaling and rotation) cause desynchronization and
introduce distortions due to resampling.

In this regard, Goljan and Fridrich [2008] have extended previous camera identifi-
cation technology based on sensor noise [Lukas et al. 2006] to a more general setting
when the image under investigation has undergone cropping and scaling operations.
Prior to perform the reference pattern comparisons, the authors deploy a brute force
search to find the scaling factor of the analyzed image. Thereafter, the authors use the
peak to correlation (PCE) of the normalized cross-correlation (NCC) surface between
the reference patterns (the resized image under investigation and the camera reference
pattern) in order to estimate the cropping parameters. This is performed till a stopping
criteria is achieved. The authors report good results for reliable camera identification
for images linearly scaled down by a factor of 0.5 or more and images with 90% or more
cropped away.

Although Goljan and Fridrich [2008]’s work is important towards a more reliable
camera identification process, it is worth noting that: (1) the quality of the response
depends on the image content and subsequent JPEG compression; and (2) it is
computationally intensive. In this context, there is room for research. For instance,
one could think of a more efficient way of estimating the cropping and scaling
parameters other than brute force and also in how to perform the comparisons of the
reference patterns. The authors, themselves, propose at the very end of their work,
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that a hierarchical search could be employed to achieve a 4 times reduction in search
time [Goljan and Fridrich 2008].

3.3.3. Specific Device Identification from Analog Media. What do we do if instead of a digital
object, only its analog form is available? One example is forged currency, when a digital
scan of a real banknote is printed on a printer [Goljan et al. 2008]. Does the sensor
pattern noise fingerprint survive the digital-to-analog conversion? Goljan et al. [2008]
have proposed to investigate these questions.

As discussed earlier in this article, sensor noise-based signatures (namely PRNU)
need proper synchronization to work. Goljan et al. [2008] discuss approaches to cir-
cumvent the most influential factors in identifying the sensor from a printed picture:
(1) the accuracy of the angular alignment when scanning, (2) printing quality, (3) paper
quality, and (4) size of the printed picture. Geometrical transformations are the most
difficult problem to address.

To tackle the geometrical transformations problem, Goljan et al. [2008] deploy the
same technique used in Goljan and Fridrich [2008] to find the cropping and scaling
parameters on the scanned object of investigation. With these parameters, the authors
modify the object in question and compare it to a set of reference patterns. The one
signaling the highest response is considered the reference pattern of the camera that
acquired the image. The reported results show that the PRNU camera signature is
robust with respect to high quality printing and scanning. However, for regular paper
prints identification, there is still room for research.

3.3.4. Specific Device Identification – Camcorders. Since digital camcorders use, in essence,
the same capturing imaging sensors, another valid question that arises is whether or
not we can correctly identify them. According to Chen et al. [2007a], determining if two
videoclips come from the same source could be an important tool for fighting motion pic-
ture piracy. Approaches limited to identifying only the camcorder model could be easily
extended from previous work such as Kharrazi et al. [2004], Popescu [2004], Popescu
and Farid [2005a, 2005b], Swaminathan et al. [2006], where the authors propose to
identify different traces of image processing unique to a specific camcorder.

Recently, Chen et al. [2007a] have investigated the PRNU noise signatures proposed
in Lukas et al. [2006] to differentiate specific camcorders (e.g., same brand and model).
According to the authors, the approach discussed in Lukas et al. [2006] cannot be used
directly because the spatial resolution of the video is usually smaller than typical still
images and each frame can be subjected to different compression levels. First, the
authors estimate the PRNU noise from the video clip taking advantage of its temporal
resolution using a maximum likelihood estimator. Afterwards, the PRNU signature is
filtered to eliminate blockiness artifacts present due to different video coding formats
(lossy compression). Given two filtered PRNU signatures, they are processed using
normalized cross-correlation and the peak to correlation energy coefficient is calculated
over the NCC surface to establish whether or not they have a common origin.

The authors report that about 40 seconds of video is enough for a reliable decision.
However, if the video is low quality, more frames need to be used. Research oppor-
tunities are available when dealing with larger compression and decreasing spatial
resolution videoclips. For instance, for some “Internet quality” videos in LP resolu-
tion (264 × 352, 150Kb/sec. bit-rate) a 10-minute video sequence would be required for
signature estimation.

Finally, it is worth mentioning one limitation of the method. For simplification pur-
poses, the authors have assumed all frames in a video clip have the same variance
(distortion caused by independent noise components). The authors themselves point
out that some video coding schemes (e.g., DVD) use variable bit rate coding leading to
almost constant picture quality, while others (e.g., DTV) use constant bit rate coding
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leading to variable quality. Therefore, the adaptive estimation of the variance could
give better results and it is worth investigating.

3.3.5. Counter Forensic Techniques against Camera Identification. Like any subfield of digi-
tal forensics, camera identification is susceptible to counter forensic techniques. Gloe
et al. [2007] introduce two techniques for manipulating the image source identification
of Lukas et al. [2006]. This work makes the observation that applying the wavelet
denoising filter of Lukas et al. [2006] is not sufficient for creating a quality image.
Thus, a different method, flatfielding, is applied to estimate the FPN and the PRNU.
FPN is a signal independent additive noise source, while PRNU is a signal dependent
multiplicative noise source. For the FPN estimate, a dark frame Idark estimate is created
by averaging J images Idark taken in the dark (with the lens cap on, for instance):

Idark estimate = 1
J

∑
J

Idark. (15)

For the PRNU estimate, K images of a homogeneously illuminated scene Ilight with
Idark estimate subtracted are required. To calculate the flatfield frame If lat f ield, these im-
ages are averaged:

If lat f ield = 1
K

∑
K

(Ilight − Idark estimate). (16)

With an estimate of the FPN and PRNU of a camera, a nefarious individual can
suppress the noise characteristics of an image from a particular camera to avoid iden-
tification in some (not all) cases. An image Î with suppressed noise characteristics is
simply created by noise minimization:

Î = I − Idark estimate

If lat f ield
. (17)

Gloe et al. [2007] note that perfect flatfielding is, of course, not achievable, as an
immense number of parameters (exposure time, shutter speed, and ISO speed) would
be needed to generate Idark estimate and If lat f ield. Thus, they fix upon a single parameter
set for their experiments. Results for this technique are reported for RAW and TIFF
images. While powerful, flatfielding is not able to prevent identification in all images
it is applied to. Figure 8 in Gloe et al. [2007] appears to depict many instances of a
correctly identified camera after the application of flatfielding, with the authors stating
“correct identification of image origin was successfully prevented only for a subset of
images”. This subset is not identified.

Simply reducing the impact of camera identification by PRNU is not the only thing
one can do with flatfielding. After this technique has been applied, a noise pattern from
a different camera can be added with inverse flatfielding. An image Î f orge with forged
noise characteristics is created from the precomputed flatfielding information from any
desired camera:

Î f orge = Î · If lat f ield f orge + Idark f orge. (18)

Experiments for this technique are also presented in Gloe et al. [2007], where images
from a Canon Powershot S70 are altered to appear to be from a Canon Powershot S45.
While most correlation coefficients mimic the S45, some still remain characteristic of
the S70. The counterforensic techniques of Gloe et al. [2007] are indeed useful in many
circumstances, but are shown to be too simplistic to fool a detection system absolutely.
Further, such limited testing only hints at the potential of such techniques. As the
“arms race” continues, we expect attacks against camera identification to increase in
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sophistication, allowing for more comprehensive parameter coverage and better noise
modeling.

3.3.6. Distinguishing Computer Graphics from Digital Photography. As noted in Section 1,
there is an important legal burden to distinguish imagery consisting of computer graph-
ics (CG) from digital photography. Thus, in some cases where the authenticity of an
image is in question, before we apply the source camera identification techniques pre-
viously detailed, we can check if an image was produced by a camera in the first place.
The techniques for CG detection fall into three categories [Ng and Chang 2009]: statis-
tical wavelet features, physical models of images and camera related characteristics.
In this section, we will review the most relevant work for each category.

Lyu and Farid [2005] introduced a statistical model based on first- and higher-order
wavelet statistics that is able to reveal the difference between CG imagery and digi-
tal photographs that are indistinguishable to the human eye. For feature extraction,
images are decomposed in frequency space into multiple scales and orientations, in-
cluding vertical V ertc

i (x, y), horizontal Horizc
i (x, y), and diagonal Diagc

i (x, y) subbands,
where c ∈ {r, g, b} for color imagery. For the statistical model, two sets of statistics are
calculated. First, the first four order statistics (mean, variance, skewness, and kurto-
sis) of the sub-band coefficient histograms of the decompositions are computed. Second,
higher-order statistics are calculated based on the errors in a linear predictor of coeffi-
cient magnitude. Using an SVM classifier with both orders of statistical features, Lyu
and Farid [2005] show that this model can correctly classify 67% of photorealistic im-
ages, while only mis-classifying 1% of the photographic images for a dataset of 40,000
photographic images and 6,000 CG images. In similar work, Wang and Moulin [2006]
use wavelet statistics, but improve the computational efficiency of Lyu and Farid [2005]
by a 4× speed enhancement.

Ng et al. [2005] propose a geometry based image model that is motivated by the phys-
ical differences between CG imagery and photographic imagery. The authors develop
two levels of image discrimination: image-process authenticity and scene authenticity.
Image-process authenticity is defined as images acquired by a sensor based image ac-
quisition device, such as a camera or scanner. Scene authenticity is defined as the result
of a snapshot of a physical light field. A series of features that capture information to
support both definitions are computed. These features include:

(1) Local Fractal Dimension: to capture the texture complexity in photographs.
(2) Local Patch Vectors: to capture the characteristics of the local edge profile.
(3) Surface Gradient: to capture the shape of a camera response function.
(4) Principle Components of Local Quadratic Geometry: to capture the artifacts due to

the CG polygonal model.
(5) Beltrami Flow Vector: to capture the artifacts due to the color independence as-

sumption in CG.

These above five features are considered together, producing a vector field on the
image domain. The actual features used as input to an SVM classification system are
rigid body moment statistics computed from the vector field. On a data set consisting of
3200 images including the categories of CG images, personal photographs, photographs
collected from Google Image Search, and CG images re-imaged by a camera system,
Ng et al. [2005] report a classification accuracy of 83.5%.

Camera specific characteristics, such as what we’ve looked at for source identification
can also be used to distinguish CG images from photographs. Revisiting the work of
Lukas et al. [2006], Dehnie et al. [2006] use noise characteristics to establish the dif-
ference between different camera classes and CG images. The idea is that even though
different cameras possess unique noise characteristics, statistical properties exist that
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correlate these characteristics across cameras to some degree. CG images do not posses
these common noise characteristics. Dehnie et al. [2006] present compelling results of
statistical difference for CG images generated by Maya and 3D Studio Max software,
and digital photographs. The Bayer pattern also lends clues to distinguishing the origin
of an image. Dirik et al. [2007] takes the idea of demosaicing features from Bayram
et al. [2005] and Swaminathan et al. [2006], but modifies their usage by detecting the
presence of CFA interpolation as opposed to estimating CFA interpolation coefficients.
The presence of chromatic aberration in an image is also used as a feature. In a variety
of test cases using an SVM classifier, Dirik et al. [2007] show accuracy of over 90%.
Gallagher and Chen [2008] also propose a demosaicing detection approach, this time by
considering the weighted linear combination of neighboring pixel values. The authors
suggest that the weights directly affect the variance of the distributions from which
interpolated pixels values are drawn. Very high accuracy is achieved (98.4% average
accuracy) on Columbia’s ADVENT6 data set using an unnamed machine learning clas-
sifier. Gallagher and Chen [2008] contains experiments only on JPEG imagery, and
adjusts the compression parameters in many experiments; it is unclear what effect the
underlying quantization is having on the correlation algorithm.

Rocha and Goldenstein [2007, 2010] have showed that the Progressive Randomiza-
tion meta-descriptor, previously introduced for Steganalysis [Rocha and Goldenstein
2006], is also suitable for distinguishing computer generated from natural images. The
method captures the differences between image classes (e.g., natural and CG images)
by analyzing the statistical artifacts inserted during controlled perturbation processes
with increasing randomness.

Methods for distinguishing computer graphics from digital photography are also
prone to counterforensics techniques. A simple countermeasure that can be used by an
attacker is the re-imaging technique introduced in Ng et al. [2005], whereby the detec-
tor is confused by being presented with a photograph of a CG scene. Ng et al. [2005]
addresses this problem by using this type of data in their SVM training set. Yu et al.
[2008] presents another technique to detect re-imaging, harnessing the observation
that the specularity of a recaptured photograph is modulated by the mesostructure
of the photograph’s surface. Thus, its spatial distribution can be used for classifica-
tion. On a small data set of 400 images (200 original and 200 re-imaged), the authors
validate their statistical classifiers. As with source camera identification, counterforen-
sics techniques here are in their infancy, and we expect to see attacks that are more
sophisticated than re-imaging emerge in the near future.

3.4. Image and Video Tampering Detection

In general, image and video tampering detection approaches [Farid 2009] rely on an-
alyzing several properties such as: detection of cloned regions, analysis of feature
variations collected from sets of original and tampered scenes, inconsistencies in the
features, inconsistencies regarding the acquisition process, or even structural incon-
sistencies present in targeted attacks. In the following, we describe each one of such
approaches and their limitations.

3.4.1. Image Cloning Detection. Cloning is one of the simplest forgeries an image can
undergo. It is known as copy/move and also is present in more sophisticated operations
such as healing. Often, the objective of the cloning operation is to make an object
“disappear” from one scene using properties of the same scene (e.g., neighboring pixels
with similar properties). Cloning detection is a problem technically easy to solve using
exhaustive search. However, such brute-force solutions are computationally expensive.

6http://www.ee.columbia.edu/ln/dvmm/downloads/PIM PRCG dataset/.
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Fridrich et al. [2003] propose a faster and more robust approach for detecting dupli-
cated regions in images. The authors use a sliding window over the image and calculate
the discrete cosine transform (DCT) for each region.7 Each calculated DCT window is
stored row-wise in a matrix AD. The authors propose to calculate a quantized DCT in
order to be more robust and perform matchings for non-exact cloned regions. The next
step consists of lexicographically sorting matrix AD and searching for similar rows.
To reduce the resulting false positives, the authors proposed a post-processing step in
which they only consider two rows as a clone candidate if more rows share the same
condition and are close in the image space to these two rows. Popescu and Farid [2004a]
propose a similar approach switching the DCT calculation to a Karhunen-Loeve Trans-
form and reported comparable results.

As we discussed in Section 1, forgeries are present in the scientific community.
Some authors may use image tampering to improve their results and make them
look more attractive. Farid [2006b] have framed the detection of some scientific image
manipulations as a two-stage segmentation problem. The proposed solution is suited
for grayscale images such as gel DNA response maps. In the first iteration, the image is
grouped, using intensity-based segmentation into regions corresponding to the bands
(gray pixels) and the background. In the second iteration, the background region is
further grouped into two regions (black and white pixels) using the texture-based
segmentation. Both segmentations are performed using normalized cuts [Shi and Malik
2000]. The authors suggest that the healing and cloning operations will result in large
segmented cohesive regions in the background that are detectable using a sliding
window and ad-hoc thresholds. This approach seems to work well for naive healing
and cloning operations, but only a few images were tested. It would be interesting to
verify if a copied band of another image still would lead to the same artifacts when
spliced in the host image.

3.4.2. Video Splicing and Cloning Detection. Wang and Farid [2007b] argue that the two
previous approaches are too computationally inefficient to be used in videos or even
for small sequences of frames and propose an alternative solution to detect duplicated
regions across frames. Given a pair of frames I(x, y, τ1) and I(x, y, τ2), from a station-
ary camera, the objective is to estimate a spatial offset (
x, 
y) corresponding to a
duplicated region of one frame placed in another frame in a different spatial loca-
tion. Towards this objective, the authors use phase correlation estimation [Castro and
Morandi 1987]. First, the normalized cross power spectrum is defined:

�(ωx, ωy) = F(ωx, ωy, τ1)F∗(ωx, ωy, τ2)
||F(ωx, ωy, τ1)F∗(ωx, ωy, τ2|| , (19)

where F(·) is the Fourier transform of a frame, ∗ is the complex conjugate, and || · ||
is the complex magnitude. Phase correlation techniques estimate spatial offsets by ex-
tracting peaks in ψ(x, y), the inverse Fourier transform of �(ωx, ωy). A peak is expected
at origin (0,0) as it is a stationary camera. Peaks at other positions denote secondary
alignments that may represent a duplication but also simple camera translations (for
nonstationary cameras). The spatial location of a peak corresponds to candidate spatial
offsets (
x,
y). For each spatial offset, the authors calculate the correlation between
I(x, y, τ1) and I(x, y, τ2) to determine if an offset corresponds to a determined duplica-
tion. Toward this objective, each frame is tiled into 16 × 16 overlapping (1 pixel) blocks
and the correlation coefficient between each pair of corresponding blocks is computed.
Blocks whose correlation is above a threshold are flagged as duplications. The authors
also propose an extension for non-stationary cameras. For that, they calculate a rough

7In the Appendix A, we present a brief description of the discrete cosine transform and JPEG compression.

ACM Computing Surveys, Vol. 43, No. 4, Article 26, Publication date: October 2011.



Vision of the Unseen 26:21

Fig. 10. Some examples from the Columbia Splicing data set. We emphasize the splicing boundaries in
yellow.

measure of the camera motion and compensate by selecting subsequent nonoverlap-
ping frames. One drawback of this approach is that it assumes that the duplicated
regions are rough operations (they do not undergo significant adjustments in the host
frame).

Wang and Farid [2007a] present an approach for detecting traces of tampering in
interlaced and de-interlaced videos. For de-interlaced videos, the authors use an ex-
pectation maximization algorithm to estimate the parameters of the underlying de-
interlacing algorithm. With this model, the authors can point out the spatial/temporal
correlations. Tampering in the video is likely to leave telltale artifacts that disturb
the spatial/temporal correlations. For interlaced videos, the authors measure the inter-
field and inter-frame motion that are often the same for an authentic video, but may be
different for a doctored video. Although effective to some extent, it is worth discussing
some possible limitations. The solution suitable for interlaced videos is sensitive to
compression artifacts hardening the correlations estimation. In addition, a counter-
attack to the de-interlacing approach consists of performing the video tampering and
then generating an interlaced video (splitting the even and odd scan lines), and ap-
plying a de-interlacing algorithm on top of that to generate a new de-interlaced video
whose correlations will be intact.

3.4.3. Variations in Image Features. Bayram et al. [2006a] have framed the image forgery
detection problem as a feature and classification fusion problem. The authors claim
that doctoring typically involves multiple steps, which often demand a sequence of
elementary image processing operations such as scaling, rotation, contrast shift, and
smoothing, among others. The authors develop single weak “experts” to detect each such
elementary operations. Thereafter, these weak classifiers are fused. The authors have
used features borrowed from the Steganalysis literature (cf., Sec. 3.5) such as image
quality metrics [Avcibas et al. 2003], binary similarity measures [Avcibas et al. 2005],
and high order separable quadrature mirror filters statistics [Lyu and Farid 2004]. The
main limitation with such approach is that the elementary operations by themselves
do not constitute doctoring operations. Hence, this approach needs to be used wisely to
point out localized operations. In this case, abrupt brightness and contrast changes in
regions in the host image may point to forgeries (e.g., when splicing different images).
However, local intrinsic changes need to be accounted for in order to reduce the high
rate of false positives. Finally, for criminal forgeries, it is likely that the forger will seek
to match the target and host images in such a way to reduce these subtleties.

Ng and Chang [2004] have proposed a feature-based binary classification system
using high order statistics to detect image composition. For that, the authors use
bicoherence features motivated by the effectiveness of the bicoherence features for
human-speech splicing detection [Nemer et al. 2001]. Bicoherence is the third order
correlation of three harmonically related Fourier frequencies of a signal �(ω) (normal-
ized bispectrum). The authors report an accuracy of ≈71% on the Columbia Splicing
data set [Columbia DVMM Research Lab. 2004]. The Columbia data set, however, is
composed of small composite images without any kind of post-processing. Figure 10
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depicts four images from the data set. Finally, it is worth noting that the bicoherence
features calculation is a computationally intensive procedure, often O(n4) where n is
the number of pixels of an image.

Shi et al. [2007] propose a natural image model to separate spliced images from
natural images. The model is represented by features extracted from a given set of test
images and 2D arrays produced by applying multisize block discrete cosine transform
(MBCT) to the given image. For each 2D array, the authors calculate a prediction-
error 2D array, its wavelet sub-bands, and 1D and 2D statistical moments. In addition,
the authors also calculate Markov transition probability matrices for the 2D array
differences that are taken as additional features. Although effective for simple image
splicing procedures (copying and pasting) such as the ones in the Columbia Splicing
data set with ≈ 92% accuracy, the approach does not seem to be effective for more
sophisticated compositions that deploy adaptive edges and structural propagation [Sun
et al. 2005]. This is because the transition matrices are often unable to capture the
subtle edge variation upon structural propagation. In addition, such an approach is a
binary-based solution; it does not point out possible forgery candidate regions.

3.4.4. Inconsistencies in Image Features. When splicing two images to create a composite,
one often needs to re-sample an image onto a new sampling lattice using an interpo-
lation technique (such as bi-cubic). Although imperceptible, the re-sampling contains
specific correlations that, when detected, may represent evidence of tampering. Popescu
and Farid [2005a] describe the form of these correlations, and proposes an algorithm for
detecting them in an image. The authors showed that the specific form of the correla-
tions can be determined by finding the neighborhood size, �, and the set of coefficients,
�β, that satisfy: �Mi = ∑�

j=−� β j �Mi+ j in the equation⎛
⎝ �Mi −

�∑
j=−�

β j �Mi+ j

⎞
⎠ · �μ = 0, (20)

where �μ is the signal, and �Mi is the ith row of the re-sampled matrix. The authors
pointed out that, in practice, neither the samples that are correlated, nor the specific
form of the correlations are known. Therefore, the authors employ an expectation
maximization algorithm (EM) similar to the one in Section 3.3.1 to simultaneously
estimate a set of periodic samples correlated to their neighbors and, an approximation
form for these correlations. The authors assume that each sample belongs to one of
two models. The first model M1, corresponds to those samples si that are correlated to
their neighbors and are generated according to the following model:

M1 : si =
�∑

k=−�

βksi+k + N (i), (21)

where N (i) denote independently, and identically distributed samples drawn from a
Gaussian distribution with zero mean and unknown variance σ 2. In the E-step, the
probability that each sample si belonging to model M1 can be estimated through Bayes
rule similarly to Eq. (9), Section 3.3.2, where si replaces f (x, y). The probability of
observing a sample si knowing it was generated by M1 is calculated in the same way
as in Eq. (10), Section 3.3.2, where si again replaces f (x, y). The authors claim that
the generalization of their algorithm to color images is fairly straightforward. They
propose to analyze each color channel independently. However, the authors do not
show experiments for the performance of their algorithm under such circumstances
and to what extent such an independence assumption is valid. Given that demosaiced
color images present high pixel correlation, such analysis would be valuable.
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It is assumed that the probability of observing samples generated by the outlier
model, Pr{si|si ∈ M2}, is uniformly distributed over the range of possible values of si.
Although, it might seem a strong assumption, the authors do not go into more detail
justifying the choice of the uniform distribution for this particular problem. In the
M-step, the specific form of the correlations between samples is estimated minimizing
a quadratic error function. It is important to note that the re-sampling itself does not
constitute tampering. One could just save space by down-sampling every picture in a
collection of pictures. However, when different correlations are present in one image,
there is a strong indication of image composition. The authors have reported very good
results for high-quality images. As the image is compressed, specially under JPEG
2000, the re-sampling correlates and hence tampering becomes harder to detect. It is
worth noting that it is also possible to perform a counter attack anticipating the tamper-
ing detection and, therefore, destroying traces of resampling. Gloe et al. [2007] present
a targeted attack in which the pixel correlations are destroyed by small controlled
geometric distortions. The authors superimpose a random disturbance vector to each
individual pixel’s position. To deal with possible jitter effects, the strength of distortion
is adaptively modulated by the local image content using simple edge detectors.

3.4.5. Lighting Inconsistencies. When creating a digital composite (e.g., two people stand-
ing together), it is often difficult to match the lighting conditions from the individual
photographs. Johnson and Farid [2005] present a solution that analyzes lighting in-
consistencies to reveal traces of digital tampering. Standard approaches for estimating
light source direction begin by making some simplifying assumptions such as: (1) the
surface is Lambertian (it reflects light isotropically); (2) it has a constant reflectance
value; (3) it is illuminated by a point light source infinitely far away; among others.
However, to estimate the lighting direction, standard solutions require knowledge of
the 3D surface normals from, at least, four distinct points on a surface with same re-
flectance, which is hard to find from a single image and no objects of known geometry
in the scene. The authors have used a clever solution first proposed by Nillius and
Eklundh [2001] that estimates two components of the light source direction from a
single image. The authors also relax the constant reflectance assumption by assuming
that the reflectance for a local surface patch is constant. This requires the technique to
estimate individual light source directions for each patch along a surface. Figure 11(a)
depicts an example where lighting inconsistencies can point out traces of tampering.

More recently, Johnson and Farid [2007a] extended this solution to complex lighting
environments by using spherical harmonics. Under the aforementioned simplifying
assumptions, an arbitrary lighting environment can be expressed as a non-negative
function on the sphere, L( �A). �A is a unit vector in Cartesian coordinates and the value
of L( �A) is the intensity of the incident light along direction �A. If the object being
illuminated is convex, the irradiance (light received) at any point on the surface is due
only to lighting environment (no cast shadows or inter-reflections).

It is worth noting, however, that the assumptions of the authors limit the applicability
of the algorithm. Real-world effects, such as interreflections, shadows, and changes in
albedo can affect the estimates. In addition, sometimes there are cases where different
lighting environments give rise to similar model coefficients, and therefore, the lighting
differences are indistinguishable.

As a result, the irradiance, ι( �U ), can be parametrized by the unit length surface
normal �U and written as a convolution of the reflectance function on the surface,
�( �A, �U ), with the lighting environment L( �A):

ι( �U ) =
∫

�

L( �A)�( �A, �U ) d� (22)
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Host image

Spliced image

Source Θ2

Source Θ1

(a) Composite example with lighting in-
consistencies.

Galileo's Tomb,
Santa Croce, Florence

Grace Cathedral, 
San Francisco

The Uffizi Gallery,
Florence

St. Peter's Basilica,
Rome

(b) Four light probes from different lighting envi-
ronments. Credits to Paul Debevec and Dan
Lemmon.

Fig. 11. Lighting and forgeries.

where � represents the surface. For a Lambertian surface, the reflectance function is
a clamped cosine:

�( �A, �U ) = max( �A · �U , 0). (23)
The convolution in Eq. (22) can be simplified by expressing both the lighting environ-

ment and the reflectance functions in terms of spherical harmonics. The authors have
validated their approach on a series of light probe images and showed good capability
to estimate the lighting environment and its inconsistencies. A light probe image is
an omnidirectional, high dynamic range image that records the incident illumination
conditions at a particular point in space (see Figure 11(b)). Lighting environments can
be captured by a variety of methods such as photographing a mirror sphere or through
panoramic photographic techniques [Debevec 1998].

When analyzing the occluding contours of objects in real images, it is often the case
that the range of surface normals is limited. Therefore, small amounts of noise in
either the surface normals or the measured intensities can cause large variations in
the estimation of the lighting environment [Johnson and Farid 2007a]. Finally, another
drawback of this solution is that to inspect an image for forgery detection, the occluding
contours of objects in the scene must be pointed out manually.

More recently, the work of Johnson and Farid [2007b] has also investigated lighting
inconsistencies across specular highlights on the eyes to identify composites of people.
The position of a specular highlight is determined by the relative positions of the light
source, the reflective surface and the viewer (or camera). According to the authors,
specular highlights that appear on the eye are a powerful cue as to the shape, color,
and location of the light source(s). Inconsistencies in these properties of the light can
be used as telltales of tampering. It is worth noting that specular highlights tend to be
relatively small on the eye giving room to a more skilled forger to manipulate them to
conceal traces of tampering. To do so, shape, color, and location of the highlight would
have to be constructed so as to be globally consistent with the lighting in other parts
of the image.
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Fig. 12. Camera Response Function Estimation. (a) R1 and R2 are two regions with constant radiance. The
third column images are a combination of R1 and R2. (b) The irradiances of pixels in R1 map to the same
point ι1, in RGB color space. The same happens for pixels in R2 which maps to ι2. However, the colors of the
pixels in the third column results from the linear combination of ι1 and ι2. (c) The camera response function
fcam warps the line segment in (b) into a curve during read-out.

3.4.6. Acquisition Inconsistencies. In the same way that we can use camera properties to
point out the camera that captured an image, we also can use them as a digital X-ray
for revealing forgeries [Chen et al. 2007b].

Lin et al. [2005] present an approach that explores camera response normality and
consistency functions to find tampering footprints. An image is tagged as doctored if the
response functions are abnormal or inconsistent to each other. The camera response
function is a mapping relationship between the pixel irradiance and the pixel value.
For instance, suppose a pixel is on an edge and the scene radiance changes across
the edge and is constant on both sides of the edge (Figure 12(a)). Therefore, the irra-
diance of the pixel on the edge should be a linear combination of those of the pixels
clear off the edges (Figure 12(b)). Due to nonlinear response of the camera, the linear
relationship breaks up among the read-out values of these pixels (Figure 12(c)). The
authors estimate the original linear relationship when calculating the inverse camera
response function [Lin et al. 2004]. Although effective in some situations, this ap-
proach has several drawbacks. Namely, (1) to estimate the camera response function,
the authors must calculate an inverse camera response function which requires learn-
ing a Gaussian Mixture Model from a database with several known camera response
functions (DoRF) [Lin et al. 2005]. If the analyzed image is a composite of regions from
unknown cameras, the model is unable to point out an estimation for the camera re-
sponse function; (2) the approach requires the user to manually select points on edges
believed to be candidates for splicing; (3) the solution requires high contrast images
to perform accurate edge and camera normality estimations; (4) the approach might
fail if the spliced images are captured by the same camera and not synthesized along
the edges of an object; (5) Finally, it is likely the solution does not work with CMOS
adaptive sensors that dynamically calculate the camera response function to produce
more pleasing pictures.

Chen et al. [2007b] propose to use inconsistencies in the photo-response nonunifor-
mity noise (cf., Sec. 3.3.2) to detect traces of tampering. The method assumes that either
the camera that took the image or at least some other pristine images taken by the
camera are available. The algorithm starts by sliding a 128 × 128 block across the im-
age and calculating the value of the test statistics, pB, for each block B. The probability
distribution function pdf (x|H0) of pB under H0 is estimated by correlating the PRNU
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Fig. 13. The top row depicts histograms of single quantized signals with steps 2 (left) and 3 (right). The
bottom row depicts histograms of double quantized signals with steps 3 followed by 2 (left), and 2 followed by
3 (right). Note the periodic artifacts in the histograms of double quantized signals. Credits to Alin Popescu.

noise residuals from other cameras and is modeled as a generalized Gaussian. For each
block, pdf (x|H1) is obtained from a block correlation predictor and is also modeled as
a generalized Gaussian. For each block B, the authors perform Neyman-Pearson hy-
pothesis testing by fixing the false alarm rate Fa and decide that B has been tampered
if pB < Th. The threshold Th is determined from the condition Fa = ∫

T h pdf (x|H0) dx.

3.4.7. JPEG Inconsistencies. Some forgery detection approaches are devised specifically
for a target. Popescu and Farid [2004b] discuss the effects of double quantization for
JPEG images and presents a solution to detect such effects. Double JPEG compression
introduces specific artifacts not present in single compressed images. The authors also
note that evidence of double JPEG compression, however, does not necessarily prove
malicious tampering. For example, it is possible for a user to simply re-save a high
quality JPEG image with a lower quality.8 Figure 13 depicts an example of the double
quantization effect over a 1D toy example signal μ[t] normally distributed in the range
[0, 127].

Inspired by the pioneering work of Popescu and Farid [2004b] regarding double
quantization effects and their use in forensics, He et al. [2006] propose an approach
to locate doctored parts in JPEG images by examining the double quantization effect
hidden among DCT coefficients. The idea is that as long as a JPEG image contains
both the doctored part and the pristine part, the discrete cosine coefficient histograms
of the pristine part will still have the double quantization effect (DQ), because this
part of the image is the same as that of the double compressed original JPEG image.
However, the histograms of a doctored part will not have the same DQ effects, if the
doctored part is taken from a different image format, or different JPEG image. Some
possible reasons for these observations are: (1) absence of the first JPEG compression
in the doctored part; (2) mismatch of the DCT grid of the doctored part with that of the
pristine part; or (3) composition of DCT blocks along the boundary may carry traces
of the doctored and pristine parts given that it is not likely that the doctored part
exactly consists of 8 × 8 blocks. It is worth noting, however, that this solution will
not work in some circumstances. For instance, if the original image to contribute to
the pristine part is not a JPEG image, the double quantization effect of the pristine
part cannot be detected. In addition, the compression levels also affect the detection.
Roughly speaking, the smaller the ratio of the second quantization step with respect to
the first one, the harder the detection of the DQ effects. Finally, if the forger re-samples

8A brief summary of JPEG compression is presented in Appendix 4.
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the grid of the DCT (shift the image one pixel), it is possible to destroy the traces of the
double quantization and generate a complete new quantization table.

3.5. Image and Video Hidden Content Detection/Recovery

Steganography is the art of secret communication. Its purpose is to hide the presence of
communication—a very different goal than Cryptography, which aims to make commu-
nication unintelligible for those that do not possess the correct access rights [Anderson
and Petitcolas 1998].

Applications of Steganography can include feature location (identification of subcom-
ponents within a data set), captioning, time-stamping, and tamper-proofing (demon-
stration that original contents have not been altered). Steganography and Steganalysis
have received a lot of attention around the world in the past few years [Rocha and
Goldenstein 2008]. Unfortunately, not all applications are harmless; strong indications
exist that Steganography has been used to spread child pornography on the Inter-
net [Hart 2004; Morris 2004], and as an advanced communication tool for terrorists and
drug-dealers [Herald Sun 2008; Folha de São Paulo 2008]. In the aftermath of the 9/11
events, some researchers have suggested that the Al Qaeda network used Steganogra-
phy techniques to coordinate the World Trade Center attacks. Almost six years later,
nothing was proved [Wallich 2003; Cass 2003; Kumagai 2003; Rocha and Goldenstein
2008]. Indeed, according to the High Technology Crimes Annual Report [USPS 2003;
NHTCU 2008], Steganography threats can also appear in conjunction with dozens of
other cyber-crimes such as: fraud and theft, computer cracking, online defamation,
intellectual property offenses, and online harassment.

In response to such problems, the forensic analysis of such systems is paramount. We
refer to Forensic Steganalysis as the area related to the detection and recovery of hidden
messages. In this forensic scenario, we want to distinguish non-stego or cover objects,
those that do not contain a hidden message, and stego-objects, those that contain a
hidden message with the additional requirement of recovering its content as a possible
proof basis for the court.

In the following sections, we present representative research with respect to the
identification and recovery of hidden messages in digital multimedia. When possible,
we emphasize approaches that can be used as an aid for criminal prosecution in a
court of law. The fundamental goal of Steganalysis is to reliably detect the existence
of hidden messages in communications and, indeed, most of the approaches in the
literature have addressed only the detection problem. However, for forensics purposes,
we are interested in the higher level of analysis going one step further and attempting
to recover the hidden content.

We can model the detection of hidden messages in a cover medium as a classification
problem. In Steganalysis, we have two extreme scenarios: (1) Eve, an eavesdropper,
has only some level of suspicion that Alice and Bob are covertly communicating; and
(2) Eve may have some additional information about Alice and Bob’s covert communi-
cations such as the algorithm they have used, for instance. In the first case, we have
a difficult forensic scenario where Eve would need to deploy a system able to detect
all forms of Steganography (Blind Steganalysis). In the latter case, Eve might have
additional information reducing her universe of possible hiding algorithms and cover
media (Targeted Steganalysis).

In general, steganographic algorithms rely on the modification of some component of
a digital object with a pseudorandom secret message [Anderson and Petitcolas 1998].
In digital images, common components used to conceal data are: (1) the least signifi-
cant bits (LSBs); (2) DCT coefficients in JPEG-compressed images; and (3) areas with
richness in details [Cox et al. 2008].
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Fig. 14. Typical steganography and steganalysis scenario.

Figure 14 depicts a typical Steganography and Steganalysis scenario. When embed-
ding a message in an image, one can take several steps in order to avoid message
detection such as choosing an embedding key, compressing the message, and applying
statistical profiling in the message and the cover media. On the other hand, in the
Steganalysis scenario, we can try to point out the concealment whether performing
statistical analysis on the input image, or on the image and on a set of positive and
negative training examples. If we have additional information, this can be used to per-
form a targeted attack. In the following sections, we present some approaches used to
detect such activities using either targeted or blind attacks.

3.5.1. Targeted Steganalysis. Some successful approaches for targeted Steganalysis pro-
posed in the literature can estimate the embedding ratio or even reveal the secret
message with the knowledge of the steganographic algorithm being very useful for
forensics.

Basic LSB embedding can be reliably detected using the histogram attack as proposed
by Westfeld and Pfitzmann [1999]. Any possible LSB embedding procedure will change
the contents of a selected number of pixels and therefore will change the pixel value
statistics in a local neighborhood.

A K-bit color channel can represent 2K possible values. If we split these values into
2K−1 pairs that only differ in the LSBs, we are considering all possible patterns of
neighboring bits for the LSBs. Each of these pairs are called pair of value (PoV) in the
sequence [Westfeld and Pfitzmann 1999].

When we use all the available LSB fields to hide a message in an image, the dis-
tribution of odd and even values of a PoV will be the same as the 0/1 distribution of
the message bits. The idea of the statistical analysis is to compare the theoretically
expected frequency distribution of the PoVs with the real observed ones [Westfeld and
Pfitzmann 1999]. However, we do not have the original image and thus the expected
frequency. In the original image, the theoretically expected frequency is the arithmeti-
cal mean of the two frequencies in a PoV. As we know, the embedding function only
affects the LSBs, so it does not affect the PoV’s distribution after an embedding. There-
fore, the arithmetical mean remains the same in each PoV, and we can derive the
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expected frequency through the arithmetic mean between the two frequencies in each
PoV.

As presented in Provos and Honeyman [2001] and Westfeld and Pfitzmann [1999],
we can apply the χ2 (chi squared-test) T over these PoVs to detect hidden messages

T =
k∑

i=1

(
freqobs

i − freqexp
i

)2

freqexp
i

, (24)

where k is the number of analyzed PoVs, f reqobs
i and f reqexp

i are the observed frequen-
cies and the expected frequencies respectively. A small value of T points out that the
data follows the expected distribution and we can conclude that the image was tweaked.
We can measure the statistical significance of T by calculating the PR-value, which
is the probability that a chi-square distributed random variable with k − 1 degrees of
freedom would attain a value larger than or equal to T :

Pr(T ) = 1

2
k−1

2 �
( k−1

2

)
∫ ∞

T
e

−x
2 x

k−1
2 −1 dx. (25)

If the image does not have a hidden message, T is large and Pr(T ) is small. In practice,
we calculate a threshold value Tth so that Pr(Tth) = η where η is the chosen significance
level. The main limitation with this approach is that it only detects sequential embed-
dings. For random embeddings, we could apply this approach window-wise. However,
in this case it is effective only for large embeddings such as the ones that modify, at
least, 50% of the available LSBs. For small embeddings, there is a simple counterattack
that breaks down this detection technique. For that, it is possible to learn the basic
statistics about the image and to keep such statistics when embedding the message.
For instance, for each bit modified to one, another one is flipped to zero. Indeed, as
we shall show later, Outguess9 is one approach that uses such tricks when performing
embeddings in digital images.

Fridrich et al. [2001] present RS analysis. It consists of the analysis of the LSB loss-
less embedding capacity in color and gray-scale images. The lossless capacity reflects
the fact that the LSB plane—even though it looks random—is related to the other bit
planes [Fridrich et al. 2001]. Modifications in the LSB plane can lead to statistically
detectable artifacts in the other bit planes of the image. The authors have reported good
results (detection for message-sizes as small as ≈ 2 − 5% on a limited set of images for
the Steganography tools: Steganos, S-Tools, Hide4PGP, among others.10

A similar approach was devised by Dumitrescu et al. [2002] and is known as sample
pair analysis. Such an approach relies on the formation of some subsets of pixels
whose cardinalities change with LSB embedding, and such changes can be precisely
quantified under the assumption that the embedded bits form a random walk on the
image. Consider the partitioning of an input image in vectorized form U into pairs of
pixels (pu, pv). Let P be the set of all pairs. Let us partition P into three disjoint sets
X, Y , and Z, where

X = {(pu, pv) ∈ P | (pv is even and pu < pv) or (pv is odd and pu > pv)}
Y = {(pu, pv) ∈ P | (pv is even and pu > pv) or (pv is odd and pu < pv)}
Z = {(pu, pv) ∈ P | (pu = pv)}. (26)

9http://www.outguess.org/.
10http://members.tripod.com/steganography/stego/software.html.
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Fig. 15. Transitions between primary sets under LSB changing.

Furthermore, let us partition the subset Y into two subsets, W, and V, where V = Y \W,
and

Y = {(pu, pv) ∈ P | (pu = 2k, pv = 2k + 1) or (pu = 2k + 1, pv = 2k)}. (27)

The sets X, W, V, and Z are called primary sets and P = X ∪ W ∪ V ∪ Z. When one
embeds content in an image, the LSB values are altered and therefore the cardinalities
of the sets will change accordingly. As we show in Figure 15, we have four possible
cases π ∈ {00, 01, 10, 11}. Let p be the relative amount of modified pixels in one image
due to embedding. Hence, the probability of a state change is given by

ρ(00,P) = (1 − p/2)2

ρ(01,P) = ρ(10,P) = p/2(1 − p/2)2

ρ(11,P) = (p/2)2 (28)

and the cardinalities after the changes are

|X ′| = |X|(1 − p/2) + |V |p/2
|V ′| = |V |(1 − p/2) + |X|p/2

|W ′| = |W |(1 − p + p2/2) + |Z|p(1 − p/2). (29)

It follows that

|X ′| − |V ′| = (|X| − |V |)(1 − p). (30)

The authors have empirically noted that, on average, for natural images (no hidden
content) |X| = |Y |. Therefore,

|X ′| − |V ′| = |W |(1 − p). (31)

Observe in Figure 15 that the embedding process does not alter W ∪ Z. Hence, we define
γ = |W | + |Z| = |W ′| + |Z′| yielding

|W ′| = (|X ′| − |V ′|)(1 − p)2 + γ p(1 − p/2). (32)

Given that |X ′|+|V ′|+|W ′|+|Z′| = |P|, we have the estimation of the embedded content
size

0.5γ p2 + (2|X ′| − |P|)p + |Y ′| − |X ′| = 0. (33)
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This approach has been tested in Cox et al. [2008] over three data sets summing up to
5,000 images. The data sets comprise raw, compressed, and also scanned images. The
approach is able to detect messages as small as 5% of the available space for normal
LSB embedding with no statistical profiling.

Ker [2007b] has studied the statistical properties of the analysis of pairs and also
proposes an extension using weighted least squares. Recently, Bohme [2008] presented
an extension for JPEG covers. Several other approaches have been designed to de-
tect targeted Steganalysis specifically in the JPEG domain [Fridrich 2004; Pevny and
Fridrich 2005; Fu et al. 2006].

Shi et al. [2003] have analyzed the gradient energy flipping rate during the embed-
ding process. The hypothesis is that the gradient energy varies consistently when the
image is altered to conceal data.

For most of the above techniques, the authors do not discuss possible counter-attacks
to their solutions. For instance, the sample pairs solution [Dumitrescu et al. 2002]
and the RS analysis [Fridrich et al. 2001] rely on the analysis of groups of modified and
nonmodified pixels. What happens if someone knows these detection solutions and
compensates for the group distribution for each modified pixel? Do the solutions still
work after such kind of statistical profiling?

3.5.2. Blind Steganalysis. Most of the blind- and semi-blind detection approaches rely
on supervised learning techniques. The classifiers used in existing blind and semi-blind
Steganalysis refer to virtually all categories of classical classification such as regres-
sion, multivariate regression, one class, two class, and hyper-geometric classifications,
among others.

Both in blind and semi-blind scenarios, the classifier is a mapping that depends on
one or more parameters that are determined through training and based on the desired
tradeoff between both type of errors (false accept and false reject) that the classifier
can make. Therefore, Steganalysis begins with the appropriate choice of features to
represent both the stego and non-stego objects.

In the semi-blind scenario, we select a set of stego algorithms and train a classifier
in the hope that when analyzing an object concealing a message embedded with an
unknown algorithm, the detector will be able to generalize. On the other hand, in
the complete blind scenario, we only train a set of cover objects based on features we
believe will be altered during the concealment of data. In this case, we train one-class
classifiers and use the trained model to detect outliers.

Some of the most common features used in the literature to feed classifiers are based
on wavelet image decompositions, image quality metrics, controlled perturbations, mo-
ment functions, and histogram characteristic functions.

Lyu and Farid [2002a, 2002b] introduce a detection approach based on probability
distribution functions of image sub-bands coefficients. This work has become a basis
for several others. The motivation is that natural images have regularities that can be
detected by high-order statistics through quadrature mirror filter (QMF) decomposi-
tions [Vaidyanathan 1987].

The QMF decomposition divides the image into multiple scales and orienta-
tions. We denote the vertical, horizontal, and diagonal sub-bands in a given scale
{i = 1 . . . n} as V erti(x, y), Horizi(x, y), Diagi(x, y), respectively. Figure 16 depicts one
image decomposition with three scales. Lyu and Farid [2002a, 2002b] propose to de-
tect hidden messages using two sets of statistics collected throughout the multiple
scales and orientations. The first set of statistics comprises mean, variance, skewness,
and kurtosis. These statistics are unlikely to capture the strong correlations that exist
across space, orientation, scale and color. Therefore, the authors calculate a second set
of statistics based on the errors in a linear predictor of coefficient magnitude. For the
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Fig. 16. Image sub-bands QMF decomposition.

sake of illustration, consider a vertical sub-band of a gray image at scale i, V erti(x, y).
A linear predictor for the magnitude of these coefficients in a subset of all possible
spatial, orientation, and scale neighbors is given by

|Verti(x, y)| = w1|Verti(x − 1, y)| + w2|Verti(x + 1, y)| + w3|Verti(x, y − 1)|
+w4|Verti(x, y + 1)| + w5

∣∣∣Verti+1

(x
2

,
y
2

)∣∣∣ + w6|Diagi(x, y)|

+w7

∣∣∣Diagi+1

(x
2

,
y
2

)∣∣∣ , (34)

where |·| represents absolute value and w j are the weights. We can represent this linear
relationship in matrix form as �V = Q �W, where the column vector �W = (w1, . . . , w7)T ,
the vector �V contains the coefficient magnitudes of Vi(x, y) strung out into a column
vector, and the columns of the matrix Q contain the neighboring coefficient magnitudes
as in Eq. (34) also strung out into column vectors. The coefficients are determined
through the minimization of the quadratic error function

ε( �W) = [ �V − Q �W]2. (35)

This error is minimized through differentiation with respect to �W. Setting the result
equal to zero, and solving for �W, we have

�W = (QT Q)−1 QT �V. (36)

Finally, the log error in the linear predictor is given by

�ε = log2
�V − log2 (Q �W). (37)

It is from this error that the additional mean, variance, skewness, and kurtosis statis-
tics are collected. This process is repeated for each sub-band, and scale. From this
set of statistics, the authors train the detector with images with and without hidden
messages.

Lyu and Farid [2004, 2006] have extended this set of features to color images and
proposes a one-class classifier with hyper-spheres representing cover objects. Outliers
of this model are tagged as stego objects. A similar procedure using Parzen-Windows
was devised by Rodriguez et al. [2007] to detect anomalies in stego systems.

Rocha and Goldenstein [2006, 2010] have presented the Progressive Randomization
metadescriptor for Steganalysis. The principle is that it captures the difference between
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image classes (e.g., with and without hidden messages) by analyzing the statistical ar-
tifacts inserted during controlled perturbation processes with increasing randomness.

Avcibas et al. [2003] have presented a detection scheme based on image quality
metrics (IQMs). The motivation is that the embedding can be understood as an addition
of noise to the image therefore degrading its quality. They have used multivariate
regression analysis for detection. Avcibas et al. [2005] have introduced an approach
that explores binary similarity measures within image bit planes. The basic idea is
that the correlation between the bit planes as well as the binary texture characteristics
within the bit planes differ between a stego image and a cover image.

Histogram characteristic functions and statistics of empirical co-occurrence matrices
also have been presented with relative success [Shi et al. 2005; Chen et al. 2006; Xuan
et al. 2006, 2005; Fridrich 2004].

Despite of all the advances, one major drawback of the previous approaches is that
most of them are only able to point out whether or not a given image contains a
hidden message. Currently, with classifier-based blind or semi-blind approaches it is
extremely difficult or even impossible to identify portions of the image where a message
is hidden and perform message extraction or even only point out possible tools used in
the embedding process. A second drawback in this body of work is the lack of counter-
analysis techniques to assess the viability of the existing research. Outguess11 [Provos
2001] and F5 [Westfeld 2001] are two early examples of such works.

Outguess is a steganographic algorithm that relies on data specific handlers that
extract redundant bits and write them back after modification. For JPEG images,
Outguess preserves statistics based on frequency counts. As a result, statistical tests
based on simple frequency counts are unable to detect the presence of steganographic
content [Provos 2001]. Outguess uses a generic iterator object to select which bits in
the data should be modified. In addition, F5 was proposed with the goal of providing
high steganographic capacity without sacrificing security. Instead of LSB flipping (tra-
ditional embedding approaches), the embedding operation in F5 preserves the shape
of the DCT histogram. The embedding is performed according to a pseudorandom path
determined from a user pass-phrase. Later on, Fridrich et al. [2002] provided a targeted
attack that detects messages embedded with the F5 algorithm throughout a process
called calibration. With this approach, we estimate the original cover-object from the
suspected stego-object. In the case of JPEG images, for instance, this is possible because
the quantized DCT coefficients are robust to small distortions (the ones performed by
some steganographic algorithms) [Cox et al. 2008]. The approach of Fridrich et al.
[2002] is no longer as effective if we improve F5 with some sort of statistical profiling
preserving not only the DCT histogram shape but also compensating for the modified
coefficients.

Much more work of this sort is essential, given that this scenario looks like an
arms race in which Steganographers and Steganalyzers compete to produce better
approaches in a technological escalation.

In the Stegi@Work section, we present a common framework that allows us to com-
bine most of the state of the art solutions in a compact and efficient way toward the
objective of recovering the hidden content.

Some other flaws related to the classifier-based blind or semi-blind approaches are
the following.

—The choice of proper features to train the classifier upon is a key step. There is
no systematic rule for feature selection. It is mostly a heuristic, trial and error
method [Chandramouli and Subbalakshmi 2004].

11http://www.outguess.org/.
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—Some classifiers have several parameters that have to be chosen (type of kernels,
learning rate, training conditions) making the process a hard task [Chandramouli
and Subbalakshmi 2004].

—To our knowledge, a standard reference set has yet to emerge in the Steganalysis
field to allow fair comparison across different approaches. One step in that direction
is the work of Rocha et al. [2008] which presents two controlled data sets to test
hidden message detection approaches and the work of Ker [2007a] which presents a
new benchmark for binary steganalysis methods.

3.5.3. Stegi@Work. What is needed for today’s forensics applications is a scalable
framework that is able to process a large volume of images (the sheer volume of images
on sites such as Flickr and Picasa is testament to this). As we have repeatedly seen
throughout this article, individual techniques for forensic analysis have been developed
for specific tools, image characteristics, and imaging hardware, with results presented
in the limited capacity of each individual work’s focus. If a high-capacity framework for
digital image and video forensics was available, the forensic tools presented in this arti-
cle could be deployed in a common way, allowing the application of many tools against
a candidate image, with the fusion of results giving a high-confidence answer as to
whether an image contains steganographic content, is a forgery, or has been produced
by a particular imaging system. In our own work in the “Vision of the Unseen,” we have
focused on the development of a cross-platform distributed framework specifically for
Steganalysis, embodying the above ideas, that we call Stegi@Work. In this section, we
will summarize the overall architecture and capabilities of the Stegi@Work framework
as an example of what a distributed forensics framework should encompass.

Stegi@Work, at the highest architectural level (details in Figure 17), consists of
three entities. A requester client issues jobs for the system to process. Each job consists
of a file that does or does not contain steganographic content. This file is transmit-
ted to the Stegi server, which in turn, dispatches the job’s processing to the worker
clients. Much like other distributed computing frameworks such as Seti@home12 and
Folding@home,13 worker clients can be ordinary workstations on a network with CPU
cycles to spare. The Stegi server collects the results for each job, and performs fusion
over the set of results, to come to a final conclusion about the status of the file in
question. Each network entity may be connected via a LAN, or logically separated by
firewalls in a WAN, facilitating the use of worker clients or requestor clients on a secure
or classified network, while maintaining presence on an insecure network, such as the
Internet. The Stegi server exists as the common point of contact for both.

The specifics of job communication (details in Figure 18), include the specific defini-
tions for each job packet transmitted between network entities. Between the requester
client and the Stegi server, both job request and job results packets are exchanged.
In a job request, the file in question is transmitted to the server, along with optional
tool selection and response requests. If these are not specified, the server can choose
them automatically based on the type of the submitted file, as well as a defined site
policy. The server receives a detailed report packet from each worker client, including
the results of all of the tools applied against a file, as well as additional details about
the job, such as execution time. Additional status packets are transmitted between all
network entities, including server status to a worker client, notifying it that a job (with
the file and appropriate tools) is ready, worker client status to the server, indicating
the current state of a job, and server status to a worker client indicating what should
be known about a job that is in the system.

12http://setiathome.berkeley.edu/.
13http://folding.stanford.edu/.
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The Stegi@Work architecture provides tool support for each worker client in the form
of a wrapper API around the tool for each native platform. This API defines process
handling, process status, and control signaling, allowing the Stegi server full control
over each process on each worker client. The current system as implemented supports
wrappers written in C/C++, Java, and Matlab, thus supporting a wide range of tools on
multiple platforms. Network communication between each native tool on the worker
client and the Stegi@Work system is defined via a set of XML messages. We have
created wrappers for the popular analysis tools stegdetect14 and Digital Invisible Ink
Toolkit,15 as well as a custom tool supporting signature-based detection, as well as the
statistical χ2 test.

In order for high portability, allowing for many worker clients, the Stegi@Work frame-
work has been implemented in Java, with tool support, as mentioned above, in a variety
of different languages. This is accomplished through the use of Java Native Interface16

(JNI), with Win32 and Linux calls currently supported. The Stegi@Work server is built
on top of JBOSS,17 with an Enterprise Java Beans18 (EJB) 3.0 object model for all
network entities. GUI level dialogues are available for system control at each entity
throughout the framework.

The actual use cases for a system like Stegi@Work extend beyond large-scale forensics
for intelligence or law enforcement purposes. Corporate espionage remains a serious
threat to business, with loss estimates as high as $200 billion.19 An enterprise can
deploy requestor clients at the outgoing SMTP servers to scan each message attachment
for steganographic content. If such content is detected, the system can quarantine
the message, issue alerts, or simply attempt to destroy [Johnson and Jajodia 1998;
Petitcolas et al. 1998] any detected content automatically, and send the message back
on its way. This last option is desirable in cases where false positives are more likely,
and thus, a problem for legitimate network users. Likewise, a government agency may
choose to deploy the system in the same manner to prevent the theft of very sensitive
data.

4. CONCLUSIONS

A remarkable demand for image- and video-based forensics has emerged in recent
years in response to a growing need for investigative tools for a diverse set of needs.
From the law enforcement community’s perspective, image based analysis is crucial
for the investigation of many crimes, most notably child pornography. Yet, crime that
utilizes images is not limited to just pornography, with entities as diverse as Colom-
bian drug cartels taking advantage of steganography to mask their activities. From
the intelligence community’s perspective, the ability to scan large amounts of secret
and public data for tampering and hidden content is of interest for strategic national
security. As the case of the Iranian missiles has shown, state based actors are just as
willing to abuse image processing as common criminals.

But the obvious crimes are not necessarily the most damaging. The digital world
presents its denizens with a staggering number of images of dubious authenticity.
Disinformation via the media has been prevalent throughout the last century, with
doctored images routinely being used for political propaganda. But now, with the near
universal accessibility of digital publishing, disinformation has spread to commercial

14http://www.outguess.org/detection.php.
15http://diit.sourceforge.net/.
16http://swik.net/JNI+Tutorial.
17http://www.jboss.org/.
18http://www.conceptgo.com/gsejb/index.html.
19http://news.bbc.co.uk/2/hi/technology/5313772.stm.
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advertising, news media, and the work of malicious pranksters. Is it at all possible to
determine whether an image is authentic or not? If we cannot determine the authen-
ticity, what are we to believe about the information the image represents?

Digital Image and Video Forensics research is an important emerging field in com-
puting that acts as a countermeasure to the intentional misuse of digital image editing
tools. As we have seen in this survey, the main objectives of digital image and video
forensics include tampering detection (cloning, healing, retouching, splicing), hidden
messages detection/recovery, and source identification with no prior measurement or
registration of the image (the availability of the original reference image or video). We
have taken a look at many individual algorithms and techniques designed for very
specific detection goals. However, the specific nature of the entire body of digital image
and video forensics work is its main limitation at this point in time. How is an inves-
tigator able to choose the correct method for an image at hand? Moreover, the sheer
magnitude of images that proliferate throughout the Internet poses a serious challenge
for large-scale hidden content detection or authenticity verification.

In response to this challenge, we make several recommendations for researchers
working in this field. First, work on decision level and temporal fusion serves as an
excellent basis for operational systems. Combining information from many algorithms
and techniques yields more accurate results—especially when we do not know precisely
what we are looking for. Second, the need for large distributed (or clustered) systems
for parallel evaluation fills an important role for national and corporate security. Our
Stegi@Work system is an example of this. Third, the evaluation of existing and new
algorithms must be improved. The analysis of detection results in nearly all papers
surveyed lacks the rigor found in other areas of digital image processing and computer
vision, making the assessment of their utility difficult. More troubling, in our survey,
only a few papers on counterforensics for image based forensics were found, leading us
to question the robustness of much of the work presented here to a clever manipulator.
Finally, for forgery detection and steganalysis, more powerful algorithms are needed to
detect specifics about manipulations found in images, not just that an image has been
tampered with. Despite these shortcoming, the advancement of the state of the art will
continue to improve our Vision of the Unseen.

APPENDIX

A. Discrete Cosine Transform and JPEG Compression

The discrete cosine transform (DCT) algorithm is one of the main components of the
JPEG compression technique [Gonzalez and Woods 2007]. The JPEG standard specifies
two compression schemes: a lossless predictive scheme and a lossy scheme based on
the discrete cosine transform (DCT). For the lossy part, the most used technique is
based on a subset of the DCT-based modes of operation. In this appendix, we present a
summary of the baseline method. In general, JPEG compression works as follows:

(1) Split the image into 8 × 8 blocks.
(2) Transform each block via DCT. This outputs a multidimensional array of 64 coeffi-

cients. For this intent, the pixels in the image samples grouped in the 8 × 8 blocks
are shifted from unsigned to signed integers (i.e., from [0, 255] → [−128, 127]).
Thereafter, the DCT of the blocks is computed. Let f (x, y) denote an 8 × 8 image
block, then its DCT takes the form

D(ωx, ωy) = 1
4

c(ωx)c(ωy)
7∑

x=0

7∑
y=0

f (x, y) cos
(2x + 1)ωxπ

16
cos

(2y + 1)ωyπ

16
, (38)

where ωx, ωy = 0, . . . , 7, and c(ω) = 1√
2
, for ω = 0, and c(ω) = 1 otherwise.

ACM Computing Surveys, Vol. 43, No. 4, Article 26, Publication date: October 2011.



26:38 A. Rocha et al.

(3) Use a lossy quantizer to round each of the resulting coefficients. This is essentially
the compression stage and it is where data is lost. Small unimportant coefficients
are rounded to 0 while larger ones lose some of their precision. Quantization is
a point-wise operation defined as a division by a quantization step followed by
rounding to the nearest integer.

Dquant(ωx, ωy) =
⌊D(ωx, ωy)

s(ωx, ωy)
+ 1

2

⌋
, ωx, ωy = 0, . . . , 7, (39)

where s(ωx, ωy) is a frequency-dependent quantization step and it is related to
the JPEG compression quality. For more details on how to find s(ωx, ωy) and the
quantization tables used in JPEG compression, please refer to Gonzalez and Woods
[2007].

(4) Use a lossless quantizer. At this stage, the array of streamlined coefficients is
further compressed using lossless entropy compression. The most frequently used
procedure is Huffman coding, while arithmetic coding is also supported.

(5) Decompressing. To decompress, use the entropy decoding, de-quantization, and the
inverse DCT procedures, in this order.
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