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Left Ventricle Segmentation in Cardiac MR: A Systematic

Mapping of the Past Decade

MATHEUS A. O. RIBEIRO and FÁTIMA L. S. NUNES, Universidade de São Paulo

Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart
disease. However, repetitive manual segmentation of these images requires considerable human effort and
can decrease diagnostic accuracy. In recent years, several fully and semi-automatic approaches have been
proposed, mainly using image-based, atlas, graph, deformable model, and artificial intelligence methods. This
article presents a systematic mapping on left ventricle segmentation, considering 74 studies published in the
past decade. The main contributions of this review are definition of the main segmentation challenges in these
images; proposal of a new schematization, dividing the segmentation process into stages; categorization and
analysis of the segmentation methods, including hybrid combinations; and analysis of the evaluation process,
metrics, and databases. The performance of the methods in the most used public database is assessed, and
the main limitations, weaknesses, and strengths of each method category are presented. Finally, trends, chal-
lenges, and research opportunities are discussed. The analysis indicates that methods from all categories can
achieve good performance, and hybrid methods combining deep learning and deformable models obtain the
best results. Methods still fail in specific slices, segment wrong regions, and produce anatomically impossible
segmentations.
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1 INTRODUCTION

Cardiovascular diseases (heart diseases) lead the world ranking as the highest cause of mortality,
and their incidences are increasing [9, 13, 112]. To decrease these indices, there are studies pursu-
ing new biomarkers—that is, accurate metrics capable of diagnosing heart diseases [87]. Clinical
metrics such as ejection fraction (EF), as well as mass and shape of the left ventricle (LV),
are examples of biomarkers capable of diagnosing various diseases [74, 109], such as cardiomy-
opathies [89], cardiac dyssynchrony [33], cardiac insufficiency [10], and coronary artery disease
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[77, 92]. Segmentation of the LV in medical images can be used for obtaining these metrics [5],
allowing their reconstruction, visualization, and manipulation in a 3D environment.

Among the different modalities of medical images, cardiac magnetic resonance (CMR) is
considered the gold standard in the analysis of the heart function because it can discriminate the
different types of cardiac tissues [34, 49, 96]. The manual segmentation of the LV by an expert
is a process that requires substantial human effort, usually being restricted to the end-diastole

(ED) and end-systole (ES) phases, which are the most important for obtaining biomarkers [78].
Continuous and repetitive image analysis, such as that required in this process, can lead to visual
fatigue, loss of concentration, and, consequently, diagnostic accuracy decrease [104]. Thus, much
effort has been employed in the creation of fully and semi-automatic segmentation methods capa-
ble of achieving the same quality provided by an expert. However, due to the heterogeneity of the
exams, fully automatic segmentation of the LV is still an open problem in the literature [11].

The main objective of this systematic mapping is to assemble, analyze, and determine the current
strategies used in the segmentation of the LV in short-axis CMR images, as well as their limitations,
evaluation metrics, and image databases used. A total of 74 studies, published over the past decade,
were considered in this study.

Although other reviews have been carried out on this matter [40, 76, 78, 129], the state of the
art has presented considerable changes in the past decade, mainly due to the expressive increase
in artificial intelligence (AI) techniques applied in medical image processing. Among all AI
approaches, deep learning (DL) methods have grown in popularity since 2017, achieving good
performance in public databases [11] but still failing in many cases. This stimulated the creation
of new hybrid approaches, combining DL with other classic segmentation methods. These new
approaches, datasets, and metrics used to evaluate them, as well as a general schematization of
the steps involved in the segmentation process, are not explored in the previous reviews. Thus,
considering the complexity and importance of the LV segmentation problem and the evolution
of the state of the art, the following contributions are offered in the present systematic mapping:
(i) a new schematization of the segmentation process and classification of the proposed methods;
(ii) the main public image databases are pooled, presented, and discussed; (iii) the main metrics
employed to evaluate segmentation methods are categorized and presented; (iv) the performance
of methods using public databases is assessed; (v) the main limitations, weaknesses, and strengths
of all method categories are presented; (vi) the advantages that hybrid approaches and shape re-
strictions can provide are discussed; and (vii) trends and research opportunities related to the
challenges identified in the included studies are highlighted.

The rest of the article is organized as follows. A description of the CMR examination and the
challenges in the segmentation of the LV are provided in Section 2. The procedure and criteria
for the systematic mapping are presented in Section 3, whereas the overview of the analyzed
studies is presented in Section 4. The stages of pre-processing, region of interest (ROI) extraction,
segmentation itself, and post-processing of the analyzed studies are detailed in Sections 5, 6, 7, and
8, respectively. Evaluation metrics are described in Section 9, and the public image databases are
presented in Section 10. Finally, a discussion, limitations, and conclusion respectively are carried
out in Sections 11, 12, and 13.

2 CMR EXAMINATION

The CMR examination is an important method used in the diagnosis of heart disease. Due to
the high contrast between regions where there is—or not—blood (e.g., inside the LV cavity),
CMR images can discriminate the internal region from the myocardial region, favoring anatomical
analysis and obtaining biomarkers associated with heart function [34, 49, 96].
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Fig. 1. Summary of CMR examination of the LV. (A) Anatomy of the heart. (B) Example of a short-axis CMR
image. (C) Orientation used to obtain the images. (D) Example of a CMR examination. (E) Examples of the
variability present in CMR images, including variations regarding the shape, size, intensity, rotation, and
location of the LV. Heart images were inspired by Marieb et al. [66], and CMR images were taken from the
public databases Sunnybrook, Sata-13, Kaggle, and ACDC (Section 10).

Generally, CMR images are represented using grayscale. The intensity of each pixel is related
to the resonance of hydrogen atoms in different tissues of the human body when exposed to radio
frequency waves [67]. Thus, in CMR images, regions with higher blood concentrations, such as
the inside of the LV, appear brighter, whereas regions where there are muscles or air, such as the
myocardium and lungs, appear darker (Figure 1(B)).

Analysis of the CMR examination usually considers one of three planes, defined according to
three axes: short-axis, long-axis, and four-chamber axis (Figure 1(C)). Slices are defined considering
planes parallel to the one chosen. An image is obtained for each slice, usually comprising a region of
a few millimeters in thickness [67]. The short-axis orientation is the most used for the LV analysis
because it does not include the atria, veins, and arteries, which have similar intensities and can hin-
der identifying the structures. The images are obtained between the base and apex of the heart [78].

Utilizing an electrocardiogram (ECG), the obtained images can be synchronized with the heart
rate, enabling the analysis of specific phases of the cardiac cycle (Figure 1(D)). Due to the long time
spent in the segmentation task, combined with fatigue and loss of concentration caused by con-
tinuous and repetitive image analysis [104], the delineation of the LV is usually restricted only to
the ED and ES phases, considering the regions delimited by the endocardium and epicardium [78].
Based on segmentation of the LV in these two phases, relevant diagnostic biomarkers can be ob-
tained. This entire process requires a time period varying between 10 and 25 minutes [22, 98, 106].

2.1 CMR Image Segmentation Challenges

One of the factors hindering the fully and semi-automatic segmentation of the LV is the presence
of great variability between different CMR images. Ideally, in short-axis images, the bright region
delimited by the endocardium has a circular shape, whereas the darker region of the myocardium,
between the endocardium and the epicardium, has a ring-like shape. However, several artifacts
and variations contribute to altering the patterns and increasing the segmentation difficulty
(Figure 1(E)):
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Table 1. Keywords and Related Terms

Keywords Related Terms

segmentation edge, boundary
left ventricle myocardium, heart, cardiac

MRI magnetic resonance imaging, MR imaging, MR images

• Presence of papillary muscles and trabeculations in the LV internal region, which have sim-
ilar tones to the myocardium and can be confusing [11, 61];
• Blur caused by movement of the heart, the patient, or breathing [106, 111];
• Inclusion of the atrium and the outflow tract in slices close to the base, with intensities

similar the internal region of the LV [118];
• Very small LV size in slices near the apex [126];
• Similar intensity between the myocardium and nearby regions, such as the liver and lungs,

which can hinder epicardial extraction [21, 63, 115];
• Shape variation of the LV between slices and between patients [37, 64];
• Presence of cardiomyopathies that lead to deformations in the LV shape and increase shape

variation;
• Low resolution and noise caused by MRI machines [50].

3 METHODS

The systematic mapping followed four main stages: planning, selection of primary studies, data
extraction, and interpretation of results. The databases used were defined according to studies
obtained in a previous exploratory analysis, including ScienceDirect,1 ACM,2 PubMed,3 and IEEE.4

To achieve the proposed objective in this systematic mapping, the following research questions
were proposed:

(1) What methods have been used to segment the LV in short-axis CMR images?
(2) What are the limitations of these methods?
(3) What are the main image databases used in the evaluation?
(4) What are the main evaluation metrics used?

Table 1 shows the keywords and related terms searched in the databases. This review considered
only primary studies that propose methods for segmenting the LV in short-axis CMR images. The
searches were performed considering the titles and keywords of the studies.

Of all databases, only ScienceDirect does not have the option to restrict the search to the title
and keywords. In this case, the search was performed considering the abstract and the result was
subsequently reviewed manually.

Table 2 describes the inclusion (I), exclusion (E), and quality (Q) criteria used. Only studies that
satisfy the inclusion criteria and do not satisfy any exclusion criteria were accepted. In the first and
second stages of the selection, studies prior to 2010 and with fewer than 5 pages were excluded,
as in the selected databases they refer to ongoing research, generally without conclusive results.
In the following stages, the titles and abstracts were evaluated, and the contents of the remaining
studies were analyzed in full. Studies not written in English or that did not process short-axis CMR
images of human hearts were excluded. Studies that used examinations with the application of

1https://www.sciencedirect.com.
2https://dl.acm.org.
3https://www.ncbi.nlm.nih.gov/pubmed.
4https://ieeexplore.ieee.org/Xplore/home.jsp.
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Table 2. Inclusion, Exclusion, and Quality Criteria Used in the Selection of Primary Studies

Criteria Description

I1 Proposition of methods for segmentation of the LV in CMR images
E1 The study was published before 2010
E2 The study has fewer than five pages
E3 The images used are not exclusively of short-axis CMR
E4 The methods are not applied in 2D objects
E5 Does not propose/evaluate methods for segmentation of the LV
E6 Secondary study (e.g., reviews)
E7 Study not written in English
E8 The images are not of human hearts
E9 Use of medications to increase contrast
E10 Use of special CMR images
E11 Does not perform segmentation of the endocardium
E12 Quality score less than 3
Q1 The study describes a pre-processing stage of the images
Q2 The segmentation method is proposed and presented clearly (e.g., formulas,

flowcharts)
Q3 The method is clearly evaluated (e.g., tables, graphs)
Q4 Evaluation was carried out with public image databases
Q5 The results were compared with other approaches in the literature
Q6 The limitations of the method are presented and discussed

Fig. 2. Search results for each stage of the selection. Percentages refer to the total number of studies returned.

previous medications, such as contrasts, or that did not perform segmentation of the endocardium
were also excluded. Figure 2 summarizes the stages for selecting and applying exclusion criteria.
Each circle represents a stage and indicates the amount of studies that remain after applying the
exclusion criteria, represented by the smaller circles. The numbers within the exclusion criteria
show the number of studies excluded by each one.

Finally, the quality of all remaining studies was measured according to the criteria presented in
Table 2. The quality criteria were defined in accordance with the research objectives and review
questions. For each criterion, a score from the set {0, 0.5, 1} was assigned, respectively indicating
that the study does not comply or partially or totally complies with the criterion. A criterion was
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Fig. 3. Percentage of studies that meet the quality criteria. Percentages refer to the total number of studies
included.

defined as “partially fulfilled” if it is cited but not detailed. For example, in studies where the
comparison of results was only done with a specific approach or subjectively (e.g., only visual
comparisons), the Q5 criterion was classified as partially fulfilled. Of all 1,121 returned studies, 74
(6.6%) satisfied all of the criteria and were accepted for the next stage (data extraction).

4 OVERVIEW OF THE INCLUDED STUDIES

Figure 3 shows the amount of compliance of the selected studies regarding quality criteria. Almost
all studies include methods that are presented (Q2) and evaluated (Q3) clearly, with the presence of
diagrams, graphs, tables, and formulas. About a third of the methods (31.1%) were evaluated using
private image databases (Q4), and the majority (94.6%) compared the results with other approaches
(Q5). Despite the variability and the challenging contents of CMR images (Section 2), only 6.8% of
the studies mention some pre-processing stage (Q1) and about a third (32.4%) does not present the
limitations of the proposed approach (Q6).

4.1 Processing Stages

Generically, the segmentation procedure can be defined as the process that receives images con-
taining or not objects of interest as input and returns a set of contours or regions indicating the
location of these objects. For the segmentation of the LV, this procedure can be divided into the fol-
lowing stages: pre-processing, ROI extraction, segmentation itself, and post-processing. Figure 4
illustrates these stages, including, at each stage, the techniques used in the analyzed studies. Only
the segmentation stage itself is mandatory, although the others help to reduce the complexity of
the problem and rectify the contours. Non-mandatory stages are represented with dashed lines.

The pre-processing stage (Section 5) refers to procedures performed on the images to reduce
variability between images and facilitate the segmentation process. Only 12.1% of the studies de-
scribe this stage.

The ROI extraction stage is responsible for limiting the region of the image where the segmen-
tation method will be applied, reducing the complexity of the problem and execution time. The
methods presented in this stage are divided into two categories: manual and automatic. In the first
group, the approaches are built based on the delimitation of an initial contour (IC), reference points
selection (RPS), sub-image selection (SIS), or first frame segmentation (FFS). In the second group,
it is common to use AI or image processing (IP) techniques or to employ a fixed region selection
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Fig. 4. Schematization of the processes used in the segmentation of the 74 analyzed studies. The percentages
refer to the total number of studies analyzed. Dashed lines indicate non-mandatory stages.

(FRS). The details of the techniques are presented in Section 6. Although optional, this stage is
found in most studies (89.2%).

In the segmentation stage (Section 7), the percentages of each category in Figure 4 and the
intersections respectively indicate the proportion of studies that use methods in each category
and the proportion of hybrid methods. The segmentation task was divided into five main cate-
gories, according to how frequently it was used in studies: atlas (Section 7.1), graphs (Section 7.2),
deformable models (DM) (Section 7.3), image-based (IB) (Section 7.4), and AI (Section 7.5). An-
other approach, which does not fall into any of the categories, is discussed in Section 7.7. About
27.1% of the studies present hybrid methods that combine strategies from two or more categories.
The methods that combine DM with AI and DM with IB methods correspond to a fifth and a
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quarter of all hybrid methods, respectively. Only two studies combined these three approaches,
and none of the analyzed studies were classified into more than three categories.

It is important to notice that even though some approaches use methods from different cate-
gories for ROI extraction and segmentation stages, they are only classified as hybrid if the combi-
nation is used in the segmentation stage. For example, in the work of Hu et al. [39], although DL
is used alongside IB methods, since it is applied to only extract the ROI through an initial contour,
this study is not classified as hybrid.

After obtaining the segmentation, some studies (10.8%) perform an additional post-processing
stage (Section 8). In this stage, the contours are refined, smoothness is increased, and the failures
caused in the previous stages are reduced.

4.2 Segmentation Process

Table 3 shows the summary contour of primary studies. The studies were classified into each of
the five segmentation categories in Figure 4, in which hybrid categories have the plus sign. The
column “Basic Principle” describes more specifically the techniques of each category used in the
segmentation stage of each study, whereas the “ROI” column indicates the category that belongs
to the method utilized to extract the ROI. Other considerations made are detailed in the following.

Table 3. Summary of the 74 Investigated Studies

Category Ref. Basic Principle ROI A/S EPI AD Evaluation Databases
Atlas [130] Atlas – Fully Yes Yes Private

[8] Multi-atlas – Fully Yes Yes Private
DM [115] Active contour IP Fully Yes No Sunnybrook

[44] Active contour IP Fully Yes No York, Sunnybrook
[102] Active contour IP Fully Yes No Private
[43] Active contour IC Semi Yes No York
[1] Active contour IC Semi Yes No York
[75] Active shape model RPS Semi Yes Yes York
[2] Active shape model – Fully Yes Yes Private
[83] Active shape model FFS Semi Yes Yes York
[91] Elastic deformable mesh IC Semi Yes Yes Sunnybrook
[81] Deformable mesh FFS Semi No No Private
[61] Level set IC Semi Yes No Sunnybrook
[95] Level set IC Semi Yes No Sunnybrook
[118] Level set RPS Semi Yes No Sunnybrook
[4] Level set RPS Semi No No Private
[111] Level set RPS Semi Yes No Private
[107] Level set IP Fully Yes No Private
[79] Level set IC Semi Yes Yes York
[42] Level set – Fully Yes Yes Sunnybrook
[21] Deformable surface IP Fully Yes Yes Private

Graph [82] Graph cut FFS Semi No No Private
[65] Graph cut RPS Semi No Yes LV-11
[6] Graph cut FFS Semi Yes Yes Private
[64] Graph cut FFS Semi Yes No LV-11
[70] Graph cut FFS Semi Yes Yes Private
[125] Random walk RPS Semi No No Sunnybrook
[32] Random walk RPS Semi Yes Yes Private
[15] Sinc. superpixels with Graph – Fully No No York, Sunnybrook

AI [14] C-means IP Fully Yes Yes The heart database
[35] C-means IP Fully No No Private
[124] C-means IP Fully No Yes Sunnybrook

(Continued)
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Table 3. Continued

Category Ref. Basic Principle ROI A/S EPI AD Evaluation Databases
[127] Convolutional neural network AI Fully No Yes Sunybrook
[98] Convolutional neural network AI Fully Yes Yes LV-11, Kaggle
[101] Convolutional neural network AI Fully No Yes Sunnybrook
[131] Convolutional neural network – Fully Yes Yes ACDC, Sunnybrook
[31] DBN SIS Semi Yes Yes Private
[30] Encoder-decoder network RPS Semi Yes Yes Private
[29] Encoder-decoder network SIS Semi Yes Yes Private
[56] Fully convolutional network AI Fully No Yes Sunnybrook, Kaggle
[45] Fully convolutional network IP Fully Yes Yes ACDC, Kaggle, LV-11
[85] Fully convolutional network – Fully Yes Yes Sunnybrook
[47] Random/Mondrian forest FFS Semi No No ACDC
[23] U-Net AI Fully Yes Yes Sunnybrook
[103] U-Net AI Fully Yes Yes ACDC
[90] U-Net AI Fully No Yes Private
[128] U-Net AI Fully Yes Yes Sunnybrook, ACDC
[126] U-Net AI Fully No Yes York, Sunnybrook
[100] U-Net AI Fully Yes Yes ACDC
[20] U-Net FRS Fully Yes Yes Sunnybrook, ACDC
[22] U-Net SIS Semi Yes Yes Sunnybrook
[18] U-Net SIS Semi No Yes ACDC

IB [39] Thresholding + DP AI Fully Yes Yes Sunnybrook
[106] Thresholding IP Fully No No Private

Atlas + AI [122] Multi-atlas + fusion network RPS Semi Yes Yes SATA-13, Sunnybrook
[7] Multi-atlas + SVM/KNN RPS Semi Yes Yes SATA-13

DM + Graph [26] Level set + Graph cut RPS Semi Yes No Sunnybrook
[25] Level set + Graph cut RPS Semi Yes No Sunnybrook, LV-11, York

DM + AI [119] Active contour + U-Net AI Fully Yes Yes Private
[5] Level set + Autoenconders AI Fully No Yes Sunnybrook
[105] Level set + C-means FRS Fully Yes No Sunnybrook
[71] Level set + DBN IC Semi No Yes Sunnybrook

DM + AI + IB [73] Level set + DBN + Thresholding AI Fully Yes Yes Sunnybrook
[72] Level set + DBN + Thresholding AI Fully No Yes Sunnybrook

DM + IB [50] Active contour + Thresholding IP Fully Yes No Private
[108] Active contour + Thresholding SIS Semi No No Sunnybrook
[37] Active contour + DP FRS Fully Yes No Sunnybrook
[88] Active contour + DP IC Semi No No York
[89] Active contour + DP IC Semi No No Sunnybrook, York

DM + Other [63] Active contour + PCNN IP Fully Yes Yes Sunnybrook
Graph + Atlas [36] Graph cut + Multi-atlas IP Fully Yes Yes Private

[46] Graph cut + Multi-atlas – Fully Yes Yes Private
AI + IB [38] GMM + DP FRS Fully Yes No Sunnybrook

[60] K-means+ Thresholding + DP FRS Fully Yes No Sunnybrook

ROI, method used to extract the region of interest; A/S, fully automatic/semi-automatic; EPI, method also segments the
epicardium; AD, needs annotated databases. Other acronyms can be found in Section 7.

Automaticity (A/S). The methods are defined as semi-automatic if they need any user inter-
action during the ROI extraction stage (Figure 4). In all studies, user interactions refer to man-
ual procedures used to select the LV region or initialize the main method in the ventricular re-
gion (Section 6). Thus, in the analyzed studies, any manual procedure is contained in the ROI
extraction stage. Although presented as fully automatic, methods in which the images used need
to be cut or resized manually before segmentation were also considered as semi-automatic, since
this step can be considered as manual ROI extraction. This practice is common in DL methods, in
which networks usually need images with a specific size. In some cases [23, 101], automatic ROI
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Fig. 5. Need for annotated databases according to the automaticity of methods.

extraction procedures were presented. Studies that do not define automatic methods or report only
that there have been changes in the images are classified as semi-automatic.

Epicardium segmentation (EPI). All methods proposed in the studies included perform the seg-
mentation of the endocardium, used in the calculation of the volume of blood pumped by the heart.
However, only 70.3% of these also segment the epicardium. For individual methods, the strategy
used in the segmentation of the epicardium is similar to that used in the segmentation of the endo-
cardium. However, for some hybrid methods, methods from different categories are used to obtain
each contour. Such strategies are detailed in Section 7.8.

Use of annotated databases (AD). This column shows the methods that need sets of examples
previously segmented for their execution. These examples are used, for example, to create statis-
tical models, to train AI techniques, as atlases, or to assist in the ROI extraction stage. Most of the
approaches (60.8%) use annotated databases. Fully automatic methods have, in general, a greater
need for annotated examples, as illustrated in Figure 5.

Databases used in the evaluation. This column indicates which image databases are used to
evaluate the methods. The past decade has seen an increase in the number of public databases
(Section 10), mainly directed to competitions in the segmentation area. Although increasingly
common, many approaches still use private databases (Q4 in Figure 3), making it difficult to
compare performance between different approaches. It is important to note that databases that
mix public and private images were not considered as public databases, as, for example, in the
work of Woo et al. [111].

5 PRE-PROCESSING

Pre-processing is the first stage before segmentation, mainly used to reduce the variability of im-
ages. Any process carried out prior to the ROI extraction stage and the application of the segmen-
tation method was interpreted as pre-processing of the main method.

In the analyzed studies, the pre-processing stage reduces noise, normalizes the image color in-
tensities, and enhances contrast to better identify the endocardium region. In the work of Wu et al.
[115], partial differential equations of fourth order are used to remove noise in homogeneous re-
gions, preserving edges and highlighting the myocardium, whereas Dakua [25] uses an anisotropic
filter based on statistical models.

Other options include the use of the median filter [91] to reduce blur and image normalization
[45, 107], which performs pixel intensity redistribution over a predetermined interval.
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Table 4. Approaches Used for Extracting the ROI

Type Category Freq. (%)
Manual Reference points selection (RPS) 16.2

Initial contour (IC) 12.2
First frame segmentation (FFS) 9.5
Sub-image selection (SIS) 6.8

Auto Artificial intelligence (AI) 20.3
Image processing (IP) 17.6
Fixed region selection (FRS) 6.8

N/A – 10.8

6 ROI EXTRACTION

ROI extraction is the second stage before segmentation. In contrast to the pre-processing, almost
all analyzed methods (89.2%) have this stage, which is important for reducing complexity, com-
putational cost, and initialization of segmentation methods in subsequent stages. In the present
review, “extracting the ROI” is defined as any procedure used to locate the LV in the image, either
by selecting a sub-image, by selecting reference points, or by defining an initial contour.

The approaches were separated into categories, according to the strategy employed, as shown
in Table 4. Each category was classified as automatic or manual. Descriptions for each approach
are given in the following.

6.1 Manual ROI Extraction

Reference points selection. In this approach, the user selects points in the LV region. Points can be
used to initialize a DM [4, 111, 118] or to align atlases [7, 122]. They can also indicate regions
inside and outside the endocardium, helping to define edge weights in graph-based approaches
[25, 26, 32, 65, 125].

Initial contour. An initial contour is given by the user in the region close to the endocardium,
usually with primitive shapes such as circles or rectangles. This strategy is mainly used in the
initialization of DM [43, 61, 71, 91, 95] and in methods that use polar coordinates, such as dynamic

programming (DP) [88, 89].
First frame segmentation. In this category, the user performs manual segmentation of the images

in the first frame. Segmentation can be propagated to the next frames, creating point-to-point
relationships [81], or can be used to define edge weights in graph-based approaches [6, 64, 82].
It can also be used in the construction of specific patient models, such as point dictionaries [83],
distributions of radial distances and intensities [70], or pixel classifier training [47].

Sub-image selection. In this category, the sub-image containing the LV is manually selected [108].
It is the procedure commonly used in DL methods, in which fixed-size manual cuts are necessary
due to the model restrictions [18, 22, 29]. In some cases, rotations and centralizations [31] are also
employed.

6.2 Automatic ROI Extraction

Artificial intelligence. In this approach, an AI model is trained utilizing annotation examples. The
model can be used to obtain the initial contour, the center of the LV, or the sub-image (e.g., rec-
tangle). The initial contour is used in the initialization of a more precise method, such as a DM
[119] or a more specific AI model [103]. The sub-image is primarily obtained based on regression,
in which the coordinates of the delimiting rectangle are estimated [5, 38, 72, 90, 101, 126, 127]. Re-
gression is also used to obtain the center of the LV [98]. The model can also be trained to classify
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possible sub-images [56] or to classify pixels that belong or not to the object of interest, in which
the sub-image is obtained around the classified region [39, 100, 128].

Image processing. Image processing includes methods that use classic IB techniques such as
edge detection, image subtraction, thresholding, and mathematical morphology. In general, the
approaches utilize two characteristics of CMR images: (i) difference in intensity between the my-
ocardium and the LV in the endocardial region, and (ii) heartbeat in different frames of the cardiac
cycle. Regarding the first characteristic, clustering and thresholding techniques are commonly
used to determine brighter regions of the image. Due to the lighter shade, the endocardial region
is one of the highlighted regions. The ROI can be found considering the region with the largest
size [102], its circularity [35], its proximity to the center of the image [14], or using these factors
together [124]. Edge detection filters, such as Canny [44], can also be used to highlight the endo-
cardium. Regarding the second characteristic, image subtraction is the most used approach since
it highlights edge regions where there is movement, such as the endocardium. Subtraction can oc-
cur between consecutive frames [107, 115], or frames referring to the ED and ES phases [50, 106].
The image can also be compared with an image generated from the average of the frames [21, 63].
The LV can be identified by looking for circular objects using the Hough transform [115] or by
calculating the center of mass of an image [107]. These procedures are usually performed in the
middle slice (between the base and the apex) of the set of images and at the ED phase, as in this
phase the internal region of the LV has a maximum size and does not suffer interference from the
atrium and the outflow tract.

Fixed region selection. This includes methods that use specific restrictions from the authors
themselves to select the sub-image, based on experience and a priori knowledge about the image
databases used. Examples include selecting a fixed-size rectangle centered on the image [37, 38, 60]
or where the heart is often present in the analyzed examples [105].

7 SEGMENTATION METHODS

The main segmentation method is employed after completing the ROI extraction stage. All of the
methods listed here are fully automatic since any manual intervention is performed in the previous
stages.

7.1 Atlas

In this category are the approaches that use segmented and labeled examples (called atlases) to
segment the LV. The main idea of the method is to find a transformation function, or registration,
capable of mapping the labeled regions of an atlas to regions of the target image and then use
them to classify the pixels. Classically, only one atlas is used in the process. However, all analyzed
works use multiple atlases in segmentation, a method called multi-atlas segmentation.

The multi-atlas segmentation strategy can be divided into four main phases: registration, selec-
tion, label propagation, and fusion of atlases. Registration can be performed using affine [8, 130] or
non-rigid [46] transformations. The process is intended to minimize a cost function that can con-
sider the intensity, gradient [7], and mutual information [8], among others. For semi-automatic
methods, the registration is carried out based on reference points selected by the user.

The atlas set most similar to the target image is selected after the registration. The similarity can
be achieved using the same function as the registration. DL methods can also be used to extract
features and choose atlases [122].

Each atlas of the chosen set then has its labels propagated. The propagation can consider points
or set of points, called patches. For each pixel in the target image, its label can be obtained from
the combination of nearby patches contained in each selected atlas. This stage is called atlas fusion

and can be done in several ways.
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The fusion can be carried out by voting, where each patch has a weight proportional to its rele-
vance [8]. Machine learning methods, such as support vector machines (SVM), can use information
obtained from patches to classify each pixel, and deep neural networks can be trained for this pur-
pose [122]. The problem can be mapped as a problem of minimum cut in graphs, where each pixel
is represented by a node and edges connect each pixel with those corresponding to each atlas, with
weight proportional to the similarity [46].

7.2 Graph-Based Approaches

In the analyzed studies in this category, the images are represented as graphs, where each pixel
is represented by a vertex and edges connect each pair of 4-neighbors. Minimum graph cut is the
predominant technique used in the analyzed studies.

A graph cut can be defined as a set of edges that, when removed, divide the graph into disjoint
subgraphs, in such a way that each subgraph (e.g., set of pixels) is associated with a class. Each
class is represented by at least one seed vertex. The cut must be made in such a way that only the
vertices belonging to each class remain connected to the corresponding seeds. The seed vertices
can be from the graph itself when the class of any vertex is known. This occurs, for example, when
there is manual selection of points [25, 26, 65]. Another option is defining additional vertices, called
terminals, which are initially connected with all vertices of the graph and each one represents a
class [6, 36, 46].

The effectiveness of the minimum graph cut method depends on the cost function and the
strategy used to define the edge weights. For a pair of neighboring vertices representing pix-
els, the weight of the edge connecting them must reflect the probability of the pair belonging
to the same class. In this case, the similarity of pixel intensity is the most widely used factor
[6, 25, 36, 46, 64, 65, 82]. On the edges connecting vertices representing pixels and terminal ver-
tices, the weight reflects the probability that the vertex belongs to the terminal class. The distance
from a vertex to a target can be considered as the weight sought, so the shorter the distance, the
greater the probability that this vertex belongs to the LV region. The target can be a seed vertex
[26], the LV center [6, 82], or the resulting structure in the segmentation of the anterior frame
[64]. The weight can also be determined using atlases to build probabilistic models, indicating the
probability that each vertex belongs to a class [36] or including new edges, connecting vertices of
the target image and the corresponding atlas set [46].

The cost function can also consider the shape of the cut [64]. In segmentation methods of the
two ventricles, in which two cuts are made, the shape of one can be used to rectify the other [65].
The best cut is achieved by minimizing the cost function. However, for classifications of multiple
regions, obtaining the optimal result is complex and therefore the problem can be relaxed [70].

Another approach that uses a similar strategy is the random walk [32, 125]. Instead of cuts,
each vertex is classified individually. Each edge receives a weight proportional to the probability
of being crossed in a random walk. A vertex is classified with the same label as the first seed
vertex that is reached if a random walk starts at that vertex. In the work of Cai et al. [15], spectral
graphs are used. Instead of just vertices of nearby pixels connecting, all vertices are connected,
and groups are obtained based on similarity, called superpixels. The superpixels of each image are
synchronized to achieve segmentation.

7.3 Deformable Models

The DM category is the most present in the analyzed studies, parallel to AI. In DM approaches,
segmentation is obtained interactively from the deformation of a contour or surface. The models
need to be initialized in some region of the image, and their evolution is guided by minimizing
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an energy function. The function can have several terms related to image information, such as
intensities, gradients, textures, and the shape of the DM itself, ensuring its smoothness.

One of the oldest and most used types of DM is active contours, or snakes. Originally proposed
by Kass et al. [41], the energy function of the active contour is divided into internal and exter-
nal forces. Using variational methods to minimize the function, energies are converted into forces
capable of deforming the contour. The internal forces are responsible for maintaining the smooth
shape of the contour, whereas the external forces use information from the image to guide the con-
tour. Another widely used approach is the level set. In it, the energy function is defined for larger
dimensions (e.g., 3D), and the contour is obtained implicitly from the projection of the function at
a certain level, usually zero. This strategy allows the segmentation of multiple objects. For exam-
ple, in the work of Liu et al. [61], the contour of the endocardium and epicardium is respectively
defined as the level zero and level k of a level set function.

Generally, in works that use only DM, the internal energy is defined based on restrictions that
consider simple geometric shapes, such as circles or ellipses [43, 115, 118], an association between
the shape of the endocardium and the epicardium [44, 63, 111], or statistical models constructed
based on examples (Section 7.6). In the work of Arrieta et al. [4] and Khamechian and Saadatmand-
Tarzjan [44], an additional restriction prevents the epicardium and endocardium contours from
touching.

External energy is the most altered among the approaches presented in the analyzed studies. In
general, external energy uses information from the image and can be composed by terms related
to the edge or region of the image. Edge-based terms use information about the image’s gradient,
so the contour is guided to the edges of the image. In contrast, region-based terms use information
about the intensity and homogeneity of regions defined in the images to guide the contour. With
exception of the work of Tufvesson et al. [102], which proposes a specific region term based on
balloon force, all other studies analyzed are based on models proposed previously in the literature.

The region-based term originally proposed in the work of Chan and Vese [17] is the most used
[5, 79, 111]. The term favors segmentation in images with little or no edges. In some level set
approaches, the term has been adapted to include topology preservation [4], avoiding the seg-
mentation of disconnected regions, and local and global image information [26, 95], improving
performance in cases with little homogeneity. Other terms include those proposed in the work of
Li et al. [53], used by Hu et al. [37], and the term proposed another work by Li et al. [52], used by
Wang et al. [105], that proposes alternatives for cases with little homogeneity.

The edge-based term uses two variations. The first was originally proposed in work by Li et al.
[54], where an evolution method using regularized distances is presented to avoid the level set reset
problem. Although the described method can also be used in region-based terms, the proposed
approach uses only edge-based terms. This variation is used in work by Liu et al. [61] and in
conjunction with DL methods [71–73]. The second variation is the one originally proposed in
work by Xu and Prince [117], which presents a new type of snake, called gradient vector flow snake.
Its formulation uses an edge map and increases the movement freedom of the contour, allowing
the segmentation of concave regions. This variation is combined with the forces that help expand
the contour, such as the balloon force [63] and the force proposed in work by Lee et al. [50]. It
can also be approximated by convolution functions, as proposed by Wu et al. [115], to decrease
computational processing time.

One of the problems with edge-based terms is their susceptibility to noise and their dependence
on the existence of a high gradient value at the expected contour location. However, region-based
terms usually require different homogeneous regions. As seen in Section 2, both problems can exist
in CMR images. For this reason, some studies use a mixed approach. The DM STACS (stochastic ac-
tive contour scheme), originally proposed by Pluempitiwiriyawej et al. [80], is a mixed approach
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example. Its energy terms are adapted in the work of Khamechian and Saadatmand-Tarzjan
[43, 44].

Three analyzed studies propose other types of DM. In the work of Schaerer et al. [91], the my-
ocardium is represented by a triangular mesh that is deformed according to dynamic elastic equa-
tions. Deformation parameters are estimated by examples. One of the advantages of this method
is that the use of dynamic equations reinforces temporal smoothness between frames. Cordero-
Grande et al. [21] model the DM evolution problem in a framework based on Markov random
fields. The framework encompasses characteristics such as image intensities, and gradients and
uses maximum likelihood estimators to estimate parameters. In the work of Punithakumar et al.
[81], non-rigid transformations are used to evolve a DM and point-to-point relationships are cre-
ated between segmentations of adjacent frames to restrict evolution.

One of the main limitations of DM is a high sensitivity to initialization. For the contour to evolve
correctly, it should start close to the correct location. A very distant start-up increases the chances
of the contour getting stuck in a local minimum. For this reason, these methods depend on a good
initialization (Section 6). In some approaches, the endocardial contour can be used to initialize the
epicardium contour [115]. For processing a cardiac sequence, the segmentation result of a previous
frame can be used in the initialization of the DM [44, 81, 118]. The temporal coherence between
adjacent frames can be explored in the energy function, as in methods that use optical flow [1, 108].
In hybrid approaches (Section 7.8), the segmentation resulting from another method can be used
in the DM initialization.

Other types of DM are those based on the active shape model. Analogous to the active contour,
the method uses a point distribution model constructed from aligned segmented examples capable
of representing the object of interest. Based on an initial contour, seed points are defined, and de-
formations are calculated considering the restrictions imposed by the model, to prevent generating
inconsistent formats. This method was adapted for cases of abnormal hearts by Albá et al. [2]. One
of the advantages of this method is the possibility of creating specific patient models that are up-
dated with each new segmented image [83]. Different models can be built considering the spatial
and temporal variations of the CMR exams and combined to perform the segmentation [75].

7.4 IB Methods

IB methods use attributes intrinsic to the image, such as color and texture, to perform the segmen-
tation. The classification used in this category is the same as that proposed in the work of Petitjean
and Dacher [78] and includes methods of thresholding, region growth, and DP.

In the context of this review, thresholding is used to classify image pixels into two classes by
comparing their intensity with a fixed value, called a threshold. This method is used primarily
to segment the endocardium and explores the property that regions with blood appear brighter
than muscles and nearby regions (Section 2). Thus, the objective is to find the threshold that best
highlights the internal region of the endocardium. It can be found using the Otsu algorithm [72, 73],
analyzing the Fourier transform of the intensity histogram [108], or using an interactive method
[50, 106].

Due to the absence of contrast in the region close to the epicardium, threshold methods are not
usually applied in its segmentation. In this case, DP is normally used [39, 60]. DP-based methods
aim to find an optimal path based on minimizing a cost function. This function uses an edge map,
where lower costs are added in pixels representing the edges. This method is usually applied using
polar coordinates, to reduce the complexity of the problem. The map can be obtained using the
gradient image [88, 89] or applying the Canny edge detector [50]. In some cases, the non-maxima
gradient suppression technique is applied to produce thinner edges and improve results [37, 39, 60].
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7.5 Artificial Intelligence

The AI-based methods are the most used in the analyzed studies, in parallel with DM. Approxi-
mately, almost half of the studies (44.6%) employ AI to perform the segmentation. This category
includes supervised and unsupervised learning methods to perform classification or regression.
Of these, most use DL (75.7%). Considering the good performance achieved by DL in many fields,
including medical image analysis [59], the use of AI-based methods in the segmentation of the LV
has grown in popularity since 2017, although more conventional categories still remained, such as
DM-based and graph-based approaches [78].

7.5.1 Deep Learning. In this review, the oldest DL method is the one presented in the work
of Ngo and Carneiro [71], which uses deep belief network (DBN). One of the advantages of
DL methods over other methods discussed is the ability to automatically learn the characteristics
inherent to the image, which are necessary to perform segmentation, without having to manually
define specific cost functions for graphs, energy for DM, and registration for atlas.

Notwithstanding automatic learning, it is still necessary to define the architecture and the loss
function. Of all DL architectures, those based on convolutional neural networks (CNNs) are
the most used in cardiac image processing [5, 98, 127]. For segmentation, specifically, fully convo-

lutional networks (FCN) are widely used CNN variations, because they can make pixel-by-pixel
predictions, producing as output binary masks indicating the classification of each pixel in the
image [29, 45, 56, 85].

The U-Net network [86] is the most used and explored FCN in the literature [58] because it
achieves good results in the segmentation of medical images [103]. In the analyzed approaches,
the proposals mostly include changes in the structure and use of this network. The most used
loss function is the Dice loss, based on the evaluation metric of the same name (Section 9). Other
functions include Jaccard [22, 23] and cross-entropy [103].

Several modifications for the U-Net are presented in the analyzed studies, to improve perfor-
mance. Modifications include the addition of batch normalization and residual learning [22], and
interleaved attention blocks, recurring feedback, and in-depth supervision [100]. Cong and Zhang
[20] propose Invert-U-Net, a variation that has a greater number of filters in shallow layers of
the network, unlike the original U-Net. According to the authors, this configuration can help the
network detect more detailed patterns regarding edges and shapes, as well as improve network per-
formance. However, in the work of Vigneault et al. [103], the Omega-Net variation has a specific
module that performs image transformations, preparing them to be used as input to the U-Net net-
work. Images of different resolutions can be used to improve accuracy in edge regions [101, 131].

One of the problems with DL methods is the number of parameters that must be learned, which
are usually in the millions and consume a lot of time and computational resources for the training
phase. Some studies propose optimization techniques to minimize these limitations. In the work
of Curiale et al. [23], a U-Net is presented that uses sparse information to avoid overfitting and
reduce the complexity of the model. In the work of Charmchi et al. [18], Fourier and gradient flow
analysis are applied to the convolutions of a U-Net network, which allows to detect and remove
less relevant layers or replace filters with simpler variations. In this case, the authors were able to
reduce the number of parameters to be learned from 31 million to 0.5 million.

The similarity between image slices and close frames can also be explored. In the work of Yang
et al. [119], a 2D U-Net performs the initial segmentation of each image of a cardiac cycle of the
same slice. The resulting masks and original images are collected in volumes and used as input
to a 3D U-Net, which rectify the segmentation. Savioli et al. [90] add a recurring layer that is
able to retain information about previously segmented frames, promoting temporal coherence. In
the approach presented in the work of Zhang et al. [128], the contextual information of slices in
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sequence is used in a model adapted from the U-Net, which receives not only the image of a slice
but also the image and the segmentation from the previous slice. LSTM (long short-term memory)
modules, which can incorporate temporal coherence, are used in conjunction with an FCN in the
work of Du et al. [30].

Another category of DL methods that does not use convolutions includes those based on au-
toencoders. One of the advantages of this category is the ability to carry out part of the training
in an unsupervised way, requiring a smaller number of annotated examples [73]. In the analyzed
approaches, autoencoders are used in DBN for pixel classification [71–73] and regression [31]. In
the work of Avendi et al. [5], sparse autoencoders are trained in an unsupervised manner and used
to start stacked autoencoders.

7.5.2 Other AI Methods. For unsupervised approaches, clustering methods based on fuzzy
C-means are the most used. The fuzzy C-means method divides the image pixels into N classes
(e.g., endocardium, myocardium, background), according to a similarity function, which indicates
the probability of each pixel belonging to each class. The function can consider information
such as intensity [105], distance [35], and/or format [124]. In the work of Hu et al. [38], another
clustering approach uses the Gaussian mixture model (GMM), where each class is represented
by a Gaussian, which is embedded in the histogram of image intensities using the expectation-
maximization algorithm. The model is used to indicate the probability that each pixel belongs to
every one of the classes.

Two supervised approaches are proposed in the work of Bai et al. [7], which uses SVM and
k-nearest neighbors (KNN) for atlas classification (see Section 7.8), and in the work of Koné and
Boulmane [47], which uses hybrid forests. In the latter, random and Mondrian forests are used
together in the classification of pixels based on information about intensity and position. For each
segmented slice, the model is optimized, promoting consistency between slices.

7.6 Shape Restrictions

During segmentation, several anatomical restrictions can be added to facilitate the application
of methods and prevent the generation of segmentations with impossible shapes. For example,
the contour of the endocardium can be restricted within the epicardium [70], or it can be used
to initialize DM to segment the epicardium [26, 73]. However, the most used type of anatomical
restriction is the LV shape prior.

Anatomically, the LV has a round shape in the short axis images (Section 2). This information
can be used to extract the ROI, through the Hough transform, to identify circles (Section 6), for
image transformation into polar coordinates, given the center of the LV, as is done in DP methods
(Section 7.4) and in clustering methods, to select the most circular object [35]. In DM, a new energy
term can be integrated considering circular shape prior, preventing the contour to evolve into
irregular shapes due to noise [43, 44, 107, 115, 118]. Similarly, cost terms can be added to ensure a
good choice of the C-means method [124] or to define weights in graphs [125]. Another way used
independent of the method category and widely used to impose the circular shape prior is to obtain
the convex hull. In this strategy, some contour points produced by the method are interpolated to
obtain a convex contour [38, 39, 47, 60].

The circular shape prior can be understood as a weak restriction, insufficient to capture all of the
anatomical characteristics of the LV and the variations found in CMR exams. Segmented examples
can be used to build strong priors capable of representing the LV shape in detail. The examples can
be analyzed to obtain parameters of Markov random fields [21], elasticity and deformation of DM
[91], and construction of ellipses [14]. The most common approach includes aligning the example
images. This is already done naturally in atlas-based methods (Section 7.1) and the active shape
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model, which use them to build point distribution models (Section 7.3). Aligned images can be
used to build distance distribution models between the center and the contour edges. This model
can be used to define costs in graph cut [6, 82] and random walk [32] methods or energy terms
in DM [73]. A variation proposed in the work of Mahapatra [64, 65] calculates distance and angle
distributions between points in the left and right ventricles. Probability maps can also be created,
associating the probability of each pixel belonging to the LV, and used in AI training [131], to
define DM energy terms [42] and weights in graphs [36].

7.7 Other Approaches

This category only has the pulse-coupled neural network (PCNN) method. Despite being de-
fined as a neural network, the PCNN cannot be classified as AI because it does not have a training
phase. In this method, each neuron represents a pixel and receives a different stimulus according to
its intensity. After receiving a specific amount of stimulus, a neuron is activated and sends pulses
to nearby neurons, which are interpreted as stimuli. In the work of Ma et al. [63], a simplified
PCNN is proposed. In this study, the synchronization of neuron pulsations is analyzed to obtain
segmentation.

7.8 Hybrid Methods

Several hybrid strategies have been proposed to overcome the limitations inherent to each ap-
proach. In this review, any study that integrates methods from different categories was defined as
a hybrid. Two types of hybrid approaches were considered: approaches that use the methods to-
gether to segment the endocardium and/or epicardium (h1), and approaches that use one method
for the endocardium and another for the epicardium (h2). Table 5 presents the hybrid strategies
used.

DM methods are the most prevalent in hybrid approaches because of their high accuracy. Due
to the sensitivity of initialization, they are commonly used to rectify endocardium segmentations
produced by other methods (e.g., AI) or initiated in the endocardium to segment the epicardium.
AI has been used to learn characteristics relevant to atlas selection or to restrict the evolution of a
DM. Multi-atlas methods have been united to methods that use graphs in the choice of examples
used in defining costs in graphs or to construct them.

Only the approach proposed in the work of Ngo et al. [73] can be classified as belonging to the
two types of hybrids. Proposed as an extension of the work of Ngo and Carneiro [71, 72], the hybrid
method uses the Otsu threshold to segment the endocardium. This segmentation is rectified by a
DM that includes energy terms based on the classification of a DBN. To segment the epicardium,
rays are launched from the center of the attained endocardium to find edge points. Another DM
is initialized at these points and segments the epicardium.

8 POST-PROCESSING

The optional post-processing stage is the last part of the segmentation process and is related to the
refinement and adjustments applied to the segmentations. Post-processing methods can be divided
into removing disconnected regions and holes, smoothing contours, and checking consistency
between segmentations.

Smoothing methods seek to remove sudden variations and discrepancies in the contours. Di-
vergent points can be found by calculating the distance between each point and its neighbors
and then removed if it exceeds a threshold value [98]. The abrupt variations can be detected by
analyzing the image in the frequency domain. Considering the distance between each point and the
contour center, the Fourier transform is applied to detect high frequencies, which are attenuated
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Table 5. Hybrid Approaches Proposed in the Analyzed Studies

Type Ref. Method Strategy

h1 [46] Graph + Atlas Aligned multi-atlas pixels are connected using graphs; graph
cut reveals segmentation

[36] Graph + Atlas Probabilistic map built by multi-atlas and used to define
graph cut weights

[7] Atlas + AI Choice of atlases based on the classification of SVM and KNN
[122] Atlas + AI DL extract features used in the multi-atlas fusion
[71] DM + AI DBN segmentation included in the DM energy function
[5] DM + AI Autoencoder segmentation included in the DM energy

function
[119] DM + AI DL segmentation rectified by DM
[72] DM + AI + IB Otsu threshold segmentation rectified by DM and restricted

by DBN
[88] DM + IB DM applied to polar coordinates solved by DP
[89] DM + IB DM applied to polar coordinates solved by DP
[108] DM + IB Threshold segmentation rectified by optical flow

h2 [26] DM + Graph Graph cut for endocardium and DM for epicardium
[25] DM + Graph Graph cut for endocardium and DM for epicardium
[63] DM + Other PCNN for endocardium and DM for epicardium
[50] DM + IB Threshold for endocardium and DM for epicardium
[37] DM + IB DM for endocardium and DP for epicardium
[105] DM + AI DM for endocardium and C-means for epicardium
[60] AI + IB KVP for endocardium and DP for epicardium
[38] AI + IB MMG for endocardium and DP for epicardium

h1 + h2 [73] DM + AI + IB Otsu threshold rectified by DM restricted by DBN for
endocardium and DM for epicardium

Classification: h1, mixture of methods to segment the same region of the heart; h2, utilization of individual methods for
the segmentation of the endocardium and epicardium.

[38, 60]. Along with these rectifications, the contour points can also be interpolated to generate
cubic splines [98] and Bezier curves [60].

One of the possible problems, mainly in pixel classification methods, is the presence of discon-
nected regions and holes in the LV region. Connected component analysis is used to remove discon-
nected regions, adopting the permanence of the largest region and the removal of the other regions
[20, 45]. In the work of Koné and Boulmane [47], the region that has the greatest intersection with
the segmented region of the previous slice is chosen. Mathematical morphology operations can be
used to fill holes [45, 101].

Consistency between segmentations is also a factor that can be explored after applying the main
segmentation method. The analysis of connected components can be applied in the 3D domain to
ensure consistency between segmentations of different slices [45]. In the work of Savioli et al. [90],
energy optimization methods based on conditional random fields and semantic flow are applied to
segment different frames, reinforcing the temporal consistency.

9 EVALUATION METHODS

All studies included in the review perform some type of evaluation of the proposed method (cri-
terion Q3 in Figure 3). The evaluation is done by comparing the segmentation obtained by the
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Fig. 6. The most used geometric metrics in the evaluation methods.

method with the segmentation carried out by experts (ground truth). The evaluation metrics were
divided into two categories: geometric metrics and clinical metrics.

9.1 Geometric Metrics

The geometric metrics consist of values based on the joint analysis of the segmentations produced
by the method and by the expert, considering geometric information such as placement in the
image, distances between contours, overlap of regions, and shape. They are generic metrics that
do not consider the specific context of the LV and can therefore be applied to other segmentation
problems.

The graph in Figure 6 shows the most used geometric metrics in the analyzed studies. Only
metrics used by at least two studies were included.

Table 6 presents the equation definitions of the metrics included in Figure 6. In it, Ω, S, andG are
respectively defined as the sets of all points in the image, the points of the segmentation resulting
from the proposed method, and the ground truth points. These sets can consider 2D (slice) or 3D
(volume) space and are not limited to the pixels of the image. All metrics are formulated according
to these sets and are classified, when relevant, as overlap or distance metrics. The “Other” category
indicates that the metric does not fit the previous two categories.

9.1.1 Overlap Metrics. In the overlap metrics, the evaluation is interpreted as a classification
problem, in which the sets S and G indicate the points correctly classified (i.e., belonging to the
region defined by the segmentation). All metrics, with the exception of the conformity coefficient,
comprise values between 0 (worst result) and 1 (best result).

The most widely used metric is the Dice, also known as the F-score. Usually, the evaluation is
performed considering the entire space. However, due to the small size of the LV in relation to
the whole image, there is an imbalance between the positive and negative classes, impacting the
result of metrics that depend on Ω and favoring the use of more stable metrics, such as the Dice
and Jaccard. A more balanced option is to consider Ω as the ROI, performed in the work of Tan
et al. [98] for the calculation of specificity and negative predictive value. The downside of this
approach is that it is difficult to compare results, due to the varying size and location of the ROI.

9.1.2 Distance Metrics. Used in conjunction with the overlap metrics, the distance metrics in-
dicate how close two segmentations are in space. In this category, the sets S and G usually refer
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Table 6. Formulations of the Main Geometric Metrics Used in the Studies Analyzed
for the Segmentation Evaluation

Class Metric Definition/Formula

Overlap Dice
2|S ∩G |
|S | + |G |

Jaccard
|S ∩G |
|S ∪G |

Conformity coefficient
3Dice − 2

Dice

Sensitivity
|S ∩G |
|G |

Specificity
|Ω | − |S ∪G |
|Ω −G |

Accuracy 1 +
|S ∩G | − |S ∪G |

|Ω |

Positive predictive value (PPV)
|S ∩G |
|S |

Negative predictive value (NPV)
|Ω − (S ∪G ) |
|Ω − S |

Distance Hausdorff max(max
s ∈S

min
д∈G
| |s − д | |,max

д∈G
min
s ∈S
| |s − д | |)

P2C
1

|S |
∑
s ∈S

min
д∈G
| |s − д | |

APD
Similar to P2C, but only if д is in the perpendicular line

of the tangent line defined by s

RMSE
1

|S |

√∑
s ∈S

min
д∈G
| |s − д | |2

Mean absolute distance
1

2
��
�

1

|S |
∑
s ∈S

min
д∈G
| |s − д | | + 1

|G |
∑
д∈G

min
s ∈S
| |s − д | |��

�

Other Good contours (GC) Proportion of the contours where APD is < 5 mm

Shape similarity See Section 9.1.3

G is the set of points of the ground truth, S is the set of points of the segmentation performed by the method,
| |. | | is the Euclidean distance, and Ω is the set of all points.

only to the contours, disregarding the internal regions of the segmentations. In most cases, image
resolution information is used to convert the distance from pixels to millimeters.

The most used distance metric is the average perpendicular distance (APD). This metric
is very similar to the point-to-curve distance (P2C), which indicates the average distance from
each point in S to the closest point inG. However, APD only considers the points ofG that are in the
perpendicular line of the tangent line of S defined by s ∈ S [84]. This allows the detection of spikes
and other contour deviations that can be ignored by the P2C metric. Other metrics similar to P2C
and APD are the root mean squared error (RMSE), which considers quadratic distances, and the
absolute average distance, which considers not only the distance from each point in S toG but also
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from each point in G to S . Considering only the average distance can hide specific segmentation
faults. Therefore, the Hausdorff distance is used to find such discrepancies. It measures the largest
distance between any point in one of the segmentations and the other segmentation.

The distance calculation varies according to the space adopted. For example, for the point-to-
surface distance (P2S), the P2C variant for 3D space (Table 6), two studies [2, 21] use the distance
between points, whereas in the work of Zhuang et al. [130], the distance between points and trian-
gles is calculated. The same is true for the Hausdorff distance. For the ACDC database (Section 10),
it is defined between points and triangles, whereas in the work of Yang et al. [122], the distance
between points is used.

9.1.3 Other Metrics. In the studied papers, the average of the metrics is usually the most
prevalent value presented. When 2D space is considered, the average is calculated from all slices,
whereas for 3D, the average is calculated from all volumes for each patient. To ensure that the
approaches have good results across all slices, the good contours (GC) metric is used. Originally
proposed as one of the evaluation metrics of the Sunnybrook database (Section 10) for 2D space, it
indicates the proportion of contours segmented by the method where APD is < 5 mm in relation
to the ground truth, which is considered a good contour.

One of the problems with distance metrics is that they do not consider segmentation shapes.
To consider both shape and distance, shape similarity is used in some other approaches. Proposed
in the work of Pluempitiwiriyawej et al. [80], the metric is applied in 2D space and uses distance
maps, which indicate that the distance of each pixel to the contours. Based on the maps, a phase
map is constructed, containing the angle of each pixel. The maps obtained for the segmented image
and the ground truth image are subtracted and used in the final metric calculation.

9.2 Clinical Metrics

Unlike geometric metrics, clinical metrics are specific to the area of cardiology and are used by
doctors in the diagnosis of diseases [87, 110]. They are individually quantified for each set of a
patient’s segmented slices, calculated based on the LV volume.

For obtaining the volumes, Simpson’s method is one of the most important and most used
method [87]. In it, the volume is obtained from the sum of the segmented areas of each slice,
considering the thickness and spacing between slices [16]. The ED and ES volumes (VED and VES ,
respectively) are the most used to calculate the metrics. The EF is the most used in the analyzed
studies and indicates the percentage of blood ejected from the LV during the cardiac cycle, as
defined in Equation (1).

EF = 100% ∗ VED −VES

VED

(1)

In the analyzed studies, the evaluation of clinical metrics is done by comparing the values ob-
tained by the proposed method with the values provided by the expert. The difference in metrics
can be obtained and the Bland-Altman [12] or linear regression graphs can be used for analyzing
volumes, ejection fractions, myocardial mass (MM), and so forth. Pearson’s correlation coefficient
is also used to find out if there is a linear correlation between the obtained values.

10 PUBLIC DATABASES

As shown in criterion Q4 of Figure 3, about two-thirds (69%) of the analyzed studies use public
databases in the evaluation of methods. Table 7 summarizes the main information from these
databases. With the exception of the Heart Database and York, all databases were proposed in
competitions. The geometric and clinical metrics in the respective columns of Table 7 show the
metrics used for evaluation in each database.
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Table 7. Summary of the Public Databases Used in the Analyzed Studies

Name Year Freq. (%) Patients Ground
Truth

Geometric
Metrics

Clinical Metrics Space

The Heart Database 2006 1.4 18 Endo, Epi P2S Volumes, MM, EF 3D

York 2008 16.2 33 Endo, Epi Landmark error,
volumetric error

Volumes 2D

Sunnybrook 2009 48.6 45 Endo, Epi Dice, APD, GC Volumes, MM, EF 2D

LV-2011 2011 6.8 200 (100
train and
100 test)

Myo Jaccard,
sensitivity,
specificity, PPV,
NPV

Volumes, MM, EF 2D

SATA-13 2013 4.1 155 (83 train
and 72 test)

Myo Dice, symmetric
Hausdorff
distance

– –

Kaggle 2015 4.1 1,140 N/A – Volumes N/A

ACDC 2017 10.8 150 (100
train and
50 test)

Myo Dice, Hausdorff
distance

Volumes, MM, EF 3D

The Heart Database.5 Proposed in the work of Najman et al. [69], the database contains 18 cases
of patients with symptoms of acute myocardial infarction. The images were segmented by two
experts at the ED and ES phases and by an automatic method in the other phases of the cardiac
cycle.

York.6 This database contains sequences obtained from 33 patients, including cases of cardiomy-
opathies, aortic regurgitation, and ischemia [3]. All images from slices where the endocardium
and epicardium are visible were manually segmented (5,011 of 7,980 images). In this database, the
contours are represented by 32 points, available in pixel coordinates. The proposed evaluation
method uses the landmark error, calculated in the same way as P2C, but only for the 32 points.
The volumetric error metric indicates the average of the landmark error from each slice within a
volume.

Sunnybrook.7 Also known as the MICCAI (Medical Image Computing and Computer-Assisted In-
tervention) 2009 database due to the conference in which the competition took place, Sunnybrook
has 45 cases including normal patients, heart failure with and without ischemia, and hypertrophic
cardiomyopathy [84]. It is the most used public database in the analyzed studies. The three main
metrics coincide with the most used metrics in Figure 6. During the event, the database was evenly
divided into training, validation, and online datasets. The conference site is no longer active, and
therefore all sets were made available.

LV-11.8 This database was also made available by the MICCAI conference, which took place in
2011. It contains 200 exams, including cases with coronary artery disease and myocardial infarc-
tion [97]. Half of the database (100 cases) was separated for training and the rest for testing. Only
training cases have ground truth. To participate in the competition, which still accepts new sub-
missions, the segmentations for the testing set must be sent online. One of the restrictions of the

5The Heart Database: http://laurentnajman.org/heart (2006).
6Cardiac MRI dataset—York: http://jtl.lassonde.yorku.ca/software/datasets/ (2008).
7The Sunnybrook Cardiac Data: http://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/ (2009).
8International Workshop on Statistical Atlases and Computational Models of the Heart: http://www.cardiacatlas.org/
challenges/lv-segmentation-challenge/ (2011).

ACM Computing Surveys, Vol. 54, No. 11s, Article 241. Publication date: September 2022.

http://laurentnajman.org/heart
http://jtl.lassonde.yorku.ca/software/datasets/
http://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/
http://www.cardiacatlas.org/challenges/lv-segmentation-challenge/


241:24 M. A. O. Ribeiro and F. L. S. Nunes

database is that the images cannot be used for other purposes that do not involve the creation of
segmentation methods.

SATA-13.9 Used during the workshop entitled Multi-Atlas Labeling beyond the Cranial Vault,
also from the MICCAI conference, the database contains 155 cases, 83 for training and 72 for testing.
The images were taken from a larger database, called DETERMINE (Defibrillators to Reduce Risk by
Magnetic Resonance Imaging Evaluation), which contains cases of patients with coronary artery
disease and ventricular dysfunction. Despite focusing on atlas-based methods, the event is open
for submission to any type of approach.

Kaggle.10 Kaggle is the database used in the Second Annual Data Science Bowl competition,
with the participation of 192 teams, for the creation of algorithms to estimate ventricular volume.
This database is the largest of those cited, containing 1,140 cases of ED and ES volumes, taken
from various sources. Due to the objective of the event, the images do not have the ground truth,
only the volumes. During the competition, the database was divided into training, validation, and
testing sets, and users could use the Sunnybrook database to train the models.

ACDC.11 ACDC is the most recent database, containing 150 cases (100 for training and 50 for test-
ing), equally distributed among healthy patients, with myocardial infarction, and dilated and hyper-
trophic cardiomyopathies [11]. In addition to segmentation, the competition also evaluated meth-
ods for classifying pathologies, providing additional patient information such as weight, height,
and age. An analysis of the competition results and submitted methods is available in [11]. New
submissions can still be prepared for the testing set.

Several similarities and differences can be observed in the databases. All databases, with the
exception of SATA-13, calculate the ED and ES phase volumes. However, the space considered to
obtain the geometric metrics varies between 2D and 3D. For 2D spaces, metrics are calculated for
each image individually, whereas for 3D spaces, they are obtained for each volume. This difference
can cause discrepancies in the value of the metrics, which hinders comparing results between
different databases and different methods.

The representation of the ground truth also occurs in different ways. For LV-2011, SATA-13,
and ACDC databases, a mask (i.e., image with individual classification for each pixel) for the
myocardium is used. For the Heart Database, York, and Sunnybrook databases, a set of pix-
els representing the contours are provided for the endocardium and epicardium. The region
around the epicardium contains the endocardium region so that the myocardium region can
be obtained by subtracting them. These characteristics can modify the values obtained by the
metrics.

The York and LV-2011 databases are the only ones that provide the ground truth for all phases
of the cardiac cycle. The others, with the exception of Kaggle, provide only the ED and ES phases,
which are necessary for calculating the main clinical metrics.

11 DISCUSSION

11.1 Comparison between Methods

Table 8 shows the results for the geometric metrics used in the Sunnybrook database. Although
other databases are presented in Section 10, only the results for the Sunnybrook database are
presented, as it is the most used public database in the analyzed studies and does not have an
official classification table. Due to the great variability in the use of metrics, only the studies that

9SATA Segmentation Challenge: https://doi.org/10.7303/syn3193805 (2013).
10Data Science Bowl Cardiac Challenge Data: https://www.kaggle.com/c/second-annual-data-science-bowl (2015).
11Automated Cardiac Diagnosis Challenge: https://www.creatis.insa-lyon.fr/Challenge/acdc/ (2017).
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Table 8. Results of Methods for the Sunnybrook Database

Type Ref. Method Group Endocardium Epicardium

Used Dice APD (mm) GC (%) Dice APD (mm) GC (%)

Fully [39] IB val+on 0.90 (0.03) 1.95 (0.48) 96.80 (7.00) 0.93 (0.02) 1.98 (0.53) 98.4 (6.50)

[124] AI val 0.89 (0.03) 2.23 (0.50) – – – –

[126] AI val+on 0.93 (0.03) 1.46 (0.23) 100 – – –

[127] AI val+on 0.92 (0.03) 2.00 (0.29) 98.35 (3.44) – – –

[101] AI val+on 0.91 2.08 96.80 – – –

[85] AI all 0.92 (0.01) 2.23 (0.31) 94.19 (7.38) 0.93 (0.02) 2.13 (0.28) 95.64 (7.11)

[42] DM 3 cases 0.91 (0.07) 1.21 (1.29) – 0.96 (0.02) 0.87 (0.52) –

[60] AI + IB all 0.88 (0.03) 2.36 (0.39) 91.17 (8.52) 0.94 (0.02) 2.19 (0.49) 90.78 (10.68)

[38] AI + IB all 0.89 (0.03) 2.24 (0.40) 91.06 (9.42) 0.94 (0.02) 2.21 (0.45) 91.21 (8.52)

[37] DM + IB all 0.89 (0.04) 2.30 (0.36) 92.72 (6.86) 0.93 (0.02) 2.20 (0.45) 94.33 (7.88)

[5] DM + AI val+on 0.94 (0.02) 1.81 (0.44) 96.69 (5.70) – – –

[105] DM + AI 7 cases 0.94 1.23 100 – – –

[72] DM + AI + IB val 0.88 (0.03) 2.34 (0.46) 95.91 (5.28) – – –

[73] DM + AI + IB val 0.88 (0.03) 2.34 (0.46) 95.91 (5.28) 0.93 (0.02) 2.08 (0.28) 94.95 (6.18)

[63] DM + Other all 0.86 (0.05) 2.35 (0.54) 91.20 (13.23) 0.92 (0.02) 2.41 (0.45) 93.32 (10.72)

Semi [125] Graph val 0.88 (0.03) 2.41 (0.38) 93.10 (6.30) – – –

[118] DM all 0.92 (0.02) 1.77 (0.32) – 0.94 (0.02) 1.85 (0.38) –

[95] DM val 0.95 (0.03) – – 0.97 (0.01) – –

[61] DM val 0.92 (0.03) 1.76 (0.57) 97.83 (0.21) 0.95 (0.01) 1.95 (0.43) 97.48 (0.33)

[91] DM on 0.87 (0.04) 2.97 (0.37) – 0.92 (0.02) 3.14 (0.33) –

[122] Atlas + AI val 0.92 (0.04) 2.04 (0.44) 97.58 (7.12) 0.95 (0.01) 1.90 (0.22) 100

[26] DM + Graph – 0.97 (0.01) – – 0.95 (0.01) – –

[71] DM + AI all 0.90 (0.03) 2.08 (0.40) 97.91 (6.18) – – –

[108] DM + IB val 0.90 (0.01) – – – – –

The values are presented in the average format (std). The best result for each metric is highlighted in bold. Fully, fully
automatic; Semi, semi-automatic; val, validation dataset; on, online dataset; “–,” not informed.

used the metrics originally proposed by the database are displayed. In cases where more than one
result was reported (e.g., for different groups in the database), only the result that contains the best
Dice is displayed. The group used column indicates which sets of cases from the database were
used to calculate the metrics. The best value for each metric is highlighted in bold.

Generally, semi-automatic methods obtained higher Dice values than the fully automatic ones,
indicating better overlapping of the segmentations. In contrast, fully automatic methods showed
better consistency and proximity between contours, with lower APD and higher values for good
contours. Manual contour initialization can contribute to greater variability in the segmentation
of semi-automatic methods, whereas fully automatic methods usually include strategies to better
restrict the shape of contours, providing greater consistency between segmentations.

The results presented in the analyzed studies suggest that approaches from all categories are able
to obtain results close to those of the experts. All average values for Dice are above 0.85, which is
a value considered excellent by some authors [4, 64]. Similarly, average APD values below 3 mm
and percentages above 90% for GC were achieved by all approaches, indicating that the contours
obtained are close to the ground truth in the images of several slices.
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Fig. 7. Limitations most pointed out by the methods related to the segmentation problem. Only non-hybrid
methods are considered.

Among all categories, DM-based methods and hybrid methods containing DM approaches
achieved the best results for both endocardial and epicardial segmentations. It should be empha-
sized that type h2 hybrid methods (Table 5) were analyzed as individual methods for each seg-
mentation. For fully automatic methods, the hybrid methods composed by AI and DM approaches
proposed in the work of Avendi et al. [5] and Wang et al. [105] achieved the best Dice values for
the endocardium (0.94). For semi-automatic methods, the graph-based method proposed in the
work of Dakua [26] achieved the best Dice (0.97), followed by the DM of Soomro et al. [95] (0.95).
DM methods showed very precise segmentations, proven by the lowest APD values for both the
endocardium and the epicardium.

For fully automatic approaches, DL methods showed results very close to those of DM. The
method proposed in work by Yang et al. [126] achieved a value just 0.01 below the best result Dice
value. Despite not having the best APD, this method presents good stability when achieving a low
standard deviation, of only 0.23 mm and a GC rate of 100%.

11.2 Limitations of the Approaches

To understand the main difficulties encountered by the methods of each category, the limitations
presented in the studies were categorized and summarized in Figure 7. Hybrid approaches were dis-
regarded due to the lack of clarity, in the text of the analyzed studies, regarding which constituent
method is related to each limitation.

In general, the most cited difficulty in all categories refers to the segmentation of apical slices.
In these slices, the reduced LV size, combined with low resolution and the presence of noise in
the images, hinder defining cost/energy functions, aligning atlas and pixel classification, thus im-
pacting the methods of all categories. An alternative to minimize this problem is to impose spatial
restrictions between apical slices and nearby slices, which have a larger ventricular area.

The segmentation of basal slices is the second biggest difficulty pointed out, which is faced
mainly by methods of the DM and AI categories. In these slices, regions of the atrium and the
outflow tract may fuse, which have intensities similar to the LV, resulting in images with little or
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no presence of edges. Thus, DM can “leak,” and methods of AI and thresholding may erroneously
include such regions. A possible solution is to include shape prior constraints, given that adding
these regions produces distorted shapes.

Confusion with regions close to the heart is another difficulty encountered by all categories.
Such regions include the lungs and liver, which have color intensities similar to the myocardium
and the cardia, which has a shape and intensity similar to the endocardium. This limitation indi-
cates the importance of choosing a good ROI extraction method.

One of the problems most indicated in studies that apply DL methods is the production of seg-
mentations representing impossible anatomies. The absence of shape restrictions increases the
creation of anatomically impossible segmentations by these methods. Anatomical errors include
results in which the endocardial region is not included in the epicardial region, the presence of
holes within the regions, and the classification of multiple disconnected regions for the same class.
In a study for the public ACDC database [11], it was found that despite achieving results very close
to those of the experts, DL methods can produce many anatomically impossible segmentations. For
the best method, the manual analysis of segmentation performed by experts showed that in 41 of
50 CMR examinations (82%), the method produces anatomically incorrect segmentations in at least
one image, indicating that the analysis of the overlap and distance geometric metrics is not enough
to assess the anatomical coherence of the segmentations. The production of disconnected regions
can also occur in atlas-based methods, depending on how the multi-atlas fusion is done. Anatomy
errors are strongly related to the apical and basal slices, due to the specific characteristics of these
slices, mentioned in Section 2. Other studies of DL methods [11, 99] have shown that DL methods
produce worse results for these slices.

A way to improve the performance of DL and atlas methods is to increase both the quantity and
variability of the segmented examples used. In a study carried out in the work of Tao et al. [99],
databases of exams from different suppliers and medical centers were used to train three CNNs.
In the analysis of the results, it was found that the training CNN with the greatest amount and
variability of images achieved the best results. However, there is not always a sufficient number
of examples to cover the entire population of interest, and there is no guarantee that the data
augmentation approaches, which usually include rotations, translations, and noise addition, are
able to represent all variability of the examinations. Because of this lack of coverage, many AI
methods can fail in more uncommon cases, such as when the patient has a heart disease that
changes the shape and function of the LV (e.g., cardiomyopathies). Another issue that hinders data
augmentation is that randomly deforming the image can produce anatomically incorrect training
samples. To address these issues, recent studies have proposed new data augmentation strategies
that use active shape models to create valid examples [57] and generative adversarial networks to
interpolate between slices [116].

In contrast to DL and atlas methods, energy-based methods (e.g., clustering, DM, graphs) require
few, if any, annotated examples. One of the advantages of these methods is that several terms, in-
cluding image information and shape priors, can be added and adjusted to prevent the creation of
anatomically impossible segmentations and to guarantee highly accurate and good quality of the
contours. However, such cost/energy functions need to be defined manually, and there is no guar-
antee that they will achieve good results in all possible variations. In this scenario, the definition
of a function that covers all cases is a very complex problem, forcing authors to make assumptions
and relaxations (e.g., approximating the distribution of intensities to a Gaussian distribution). Thus,
those methods are usually designed to be case specific, and they can present performance diver-
gence if applied in cases not considered by the function [24]. DL methods, however, are able to
learn functions automatically from training samples, even when generic and simple loss functions,
such as cross-entropy and Dice, are used for training.
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11.3 Difficulties in Evaluating Approaches

There are several problems regarding the evaluation of the proposed approaches. Results from
different databases can be impacted by the characteristics of the database, such as resolution, slice
thickness, image acquisition protocols, and so forth. This complicates comparing results for private
databases.

Even for methods that use the same public databases, two general questions make comparison
difficult: how to use the databases and what method is used to calculate the metrics. In the Sun-
nybrook database (Table 8), some studies use the entire database, whereas others use one of the
subdatasets (training, validation, and online), choose a random sample, or do not inform how it is
used. In addition, metrics can be calculated based on different premises, such as considering a 2D
or 3D space, using different units of measurement (e.g., pixel instead of millimeters), and dividing
results for the ED and ES phases. Similar problems were encountered in other databases.

In addition to the general issues mentioned, there are specific difficulties observed in the ana-
lyzed studies:

(1) The various metrics are usually presented as the averages of all tested cases, which can
hide potential limitations in specific regions of the LV, such as the apical and basal slices
(Figure 7).

(2) The original evaluation method employed in the Sunnybrook competition only calculates the
Dice and APD metrics for good contours [84]. This makes comparison difficult, especially
when GC values are not presented. In addition, it is not clear if the original evaluation method
was applied in all analyzed studies.

(3) Many CMR examinations include extra slices showing regions outside the range defined be-
tween the apex and the base of the heart. These slices can contain structures very similar to
the LV, such as the left atrium and the outflow tract (Section 2.1), which can be mistakenly
segmented, especially by automatic approaches. This is a problem because the segmenta-
tion of extra slices can significantly change the estimation of clinic metrics. However, many
segmentation evaluation procedures, such as the one employed in the Sunnybrook database
(Section 10), only considers the interval defined by the ground truth and ignores extra seg-
mentations. Thus, even with good results, it is not clear if segmentation methods are able to
only produce segmentations in valid slices.

(4) Few studies present specific results for each pathology. Although the databases contain dif-
ferent cases of heart disease, the evaluation of the methods and calculation of the metrics
generally consider the whole set of cases, not allowing to individually analyze the perfor-
mance of the method for each heart disease.

(5) The overlap and distance metrics together can provide clues about the proximity of seg-
mentations but fail to detect anatomical errors. In the ACDC database (Section 10), for ex-
ample, the images produced by DL methods had to be evaluated manually by experts to
detect anatomical errors. As this is one of the major problems of recent DL methods, it is
necessary to create metrics to automatically identify anatomical errors. Metrics such as
shape similarity (Section 9.1.3) are alternatives that can be explored.

(6) Many methods and evaluation procedures analyze images individually, without considering
inter-slice and inter-frame consistency. Although maintaining good performance in many
images, it is not clear if those methods can maintain consistency between consecutive images.
In addition, since many databases only have ground truth segmentations for ED and ES
phases, it is unknown if the approaches can perform well in all of the slices generated during
the entire examination.
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Table 9. Comparison of Results for Two AI Methods That Used Different Training
and Testing Databases

Atlas + AI [122]

Training Database Testing Database 3D Dice 3D Hausdorff

Sunnybrook Sata-13 0.73 (0.06) 15.32 (3.88)

Sata-13 Sunnybrook 0.77 (0.04) 10.68 (3.84)

Sata-13 Sata-13 0.83 (0.04) 11.35 (3.53)

AI [45]

Training Database Testing Database Jaccard Sensitivity Specificity PPV

ACDC LV-2011 0.71 (0.13) 0.91 (0.06) 0.81 (0.15) 0.82 (0.12)

LV-2011 LV-2011 0.74 (0.15) 0.96 (0.03) 0.84 (0.16) 0.87 (0.10)

Training Database Testing Database 3D Dice ED 3D Dice ES 3D Hausdorff ED 3D Hausdorff ES

LV-2011 ACDC 0.85 0.86 11.78 11.98

ACDC ACDC 0.89 0.9 9.84 12.58

11.4 Generalization Ability of the Methods

The generalization ability is another important issue to be highlighted. In most of the analyzed
studies, the methods are evaluated using a single database, which complicate knowing how the
methods can be generalized to function on other databases, given the great variation observed in
the exams.

The generalization problem can be observed in approaches that need annotated examples, such
as those based on atlas and AI. Table 9 presents the results achieved when alternating training and
testing between different databases for a hybrid method of atlas and AI [122] and only AI [45]. As
observed, there is a decrease in the overlap metrics, indicating that the methods cannot generalize
the problem and are restricted to the databases used. However, the Hausdorff distance reported is
slightly shorter when there is alternation between databases, indicating that notwithstanding the
difference in databases, the methods are still able to produce segmentations close to the ventricular
region.

The arrival of AI methods observed in recent years, mainly driven by technology evolution and
the availability of DL techniques, has been considered as the great promise for solving segmenta-
tion problems in several domains. Part of the justification for such a promise is the fact that DL
frees the developer from the feature extraction phase, which is crucial for the efficient functioning
of classic AI methods. It appears, however, that the large number of examples required for training
these methods is still a limiting factor for the complete success of these approaches. In addition, the
flexibility of these approaches, made possible by the large set of parameter combinations, can be an
additional difficulty factor for their application, limiting the generalization ability of the methods.
Finally, the variability of CMR images (Section 10), as already mentioned, imposes another barrier
for generalizing the results.

A factor that can hinder the evaluation of generalization ability is the segmentation bias related
to the database used in the training of AI methods, obtaining of atlases, or adjusting cost/energy
functions in DM and graph approaches. Given that the segmentations in a database are usually
done by few experts and may follow specific protocols, the methods can become biased. In the
work of Bernard et al. [11], it is shown that intra- and inter-observer variability can be sometimes
even greater than between experts and automatic methods. This can create uncertainty about
segmentation performance. Although applied in a different domain (prostate zonal segmentation),
an example of the discussion on this matter is presented in the work of Liu et al. [62].
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11.5 General Critical Analysis

Based on the set of analyzed studies, it was possible to perceive the following:

• Processing stages are variable, but the success of the segmentation is highly dependent on
the correct ROI extraction method. In many of the analyzed studies, this stage is still manual.
Although almost half currently do it in an automated way, several methods still require some
initialization by the user. This indicates that fully automatic methods for ROI extraction still
need to be explored to both improve the accuracy of segmentation and decrease the human
effort employed in this task.
• As mentioned in Section 11.3, even though it is not considered in some evaluation procedures,

the automatic detection of valid slices is important to calculate clinic metrics. However, in
most studies, it is assumed that all images contain valid slices and the LV is always present,
or it is expected that the method will not make segmentations in extra slices. Thus, auto-
matic approaches to detect the valid segmentation interval is a topic that needs to be further
explored.
• Considering the segmentation stage, the AI category was the one with the highest number

of studies included in the past decade, in parallel with DM. Although DL is a recent trend,
the widespread application of this approach still requires the developer to define architec-
tures and loss functions. In addition, the limited amount of available segmented examples
impacts the performance of DL in specific cases, such as the presence of heart disease. The
construction of new architectures, training strategies, and data augmentation approaches
can produce research objects that have great potential for scientific contribution in the med-
ical image segmentation area and in image processing as a whole.
• Few studies perform post- and pre-processing stages. The definition of specific methods for

these stages is essential to reduce the high variability observed in CMR images, the presence
of errors, and the complexity of the main segmentation method.
• The past decade has shown a raising availability of public databases in this area, driven

mainly by competitions proposed to researchers. However, the different image character-
istics, as well as the differences in the format and type of information provided in each
database, still make it difficult to compare the approaches. The standardization of informa-
tion and the availability of algorithms for calculating metrics are topics that can be further
explored.
• The reproducibility of the approaches is an underexplored topic. As show in Section 11.4,

the performance decreases when training and testing are done in different databases, with
different image variations. Since most studies are adjusted to and only perform evaluation
in one database (Table 3), it is not clear whether the same approaches can work in databases
containing different varieties of cases and pathologies. Benchmarks and analysis can provide
more evidence about the reproducibility of these approaches.
• Even though all approaches show promising results, they still have limitations. There is no

method category that stands out in all situations considering the high variability of images.
Thus, considering clinical practice, no method can produce reliable segmentation automati-
cally for all slices in every type of patient cases. The development of hybrid approaches that
combine the strengths of each method category, which have been little explored over the
past decade, offers a promising path for the area.

12 LIMITATIONS OF THE CURRENT STUDY

Considering the systematic mapping presented in this article, the following limitations must be
highlighted:
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• Searched databases: Although we searched the main databases that index studies in the health
and computer applications areas, relevant studies exclusively published in other databases
could be missing in the analysis (e.g., [28, 68]). In the work of Dakua and Sahambi [28], a
cantilever beam is used with random walks to segment the LV, whereas in the work of Mo
et al. [68], Poincaré maps are used. This is always a limitation in systematic mapping, as the
scope should be limited so as to become the research viable.
• Hybrid methods: In this work, a hybrid method is any approach that combines methods from

two or more different segmentation categories (Section 7.8). Our classification considers only
the segmentation stage (Figure 4) and not the ROI extraction stage. Thus, even if a study
uses methods from other categories in the ROI extraction stage, it is not considered hybrid
(e.g., [39, 45]). If other stages were considered, different interpretation and analysis of the
presented results could be achieved.
• Influence of other stages on the results: In Sections 11.1 and 11.2, only the segmentation stage

is considered in the limitations and performance analysis. Although the segmentation stage
is the most important and the only one mandatory, it is not clear how much the results can
be influenced by the other stages. For example, poor results in apical slices can be related to a
poorly extracted ROI, and generalization performance may be influenced by pre-processing
methods. Given this uncertainty, it is assumed that the main segmentation methods are re-
sponsible for the obtained results. The influence of other stages on the segmentation quality
is a topic that needs to be further explored.
• Other image types: In this mapping, we focus on short-axis CMR images. Many other image

types and views not included in the present article can be used in the segmentation of the
LV, such as computerized tomography [121, 132], echocardiogram [55, 123], and long-axis
CMR [51, 93]. In addition, specific CMR images, such as late gadolinium enhancement CMR
used in segmentation of cardiac fibrosis and scars were not explored [114]. Although many
approaches presented here can be applied in different image modalities, such as DL, methods
that use specific information about images, such as DM and graphs, require different cost and
energy functions, being applied in a particular image type. Again, adequate analysis requires
a scope delimitation in systematic mapping, and the analysis presented in this current study
cannot be extended to studies outside the scope considered here.
• Segmentation of other cardiac regions and other body parts: Many methods presented in the

included works can be adapted and applied to segment other cardiac regions, such as the
right ventricle [11] and atria [19, 120]. However, this work focuses on the LV segmentation.
Given that the accurate segmentation of other structures is important in diagnosis, this is a
topic that must be further explored. Likewise, articles that segment other parts of the human
body (e.g., [27]) were not considered.
• New studies not included in this review: Given that the LV segmentation field is very active,

new studies were published after the period considered in the search during this review,
including new energy terms for level set approaches that impose shape restrictions [94] and
new DL network architectures that explore temporal consistency [48, 113]. Although not
included in the analysis, it is observed that these studies follow tendencies pointed out in
this article.

13 CONCLUSION

In this review, a systematic mapping about LV segmentation methods in CMR images is presented.
Dividing the LV segmentation process into stages (pre-processing, ROI extraction, segmentation,
and post-processing) allowed analyzing the most used techniques and the results achieved in each
processing stage.
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The analysis of results for the Sunnybrook public database, the most used in the analyzed stud-
ies, indicates that methods of all categories have attained satisfactory performance, considering
both semi-automatic and fully automatic approaches. Among them, DM and DL methods stand
out. Difficulties in the construction of energy functions for DMs and generation of anatomically
impossible segmentations of DL can be solved with the addition of shape priors and the creation
of hybrid methods.

Despite the good results, there is still uncertainty about the generalization ability of methods.
The variability of exams and evaluation methods makes it difficult to properly compare approaches.
However, with the increased number of public databases available and the trend toward standard-
ization of metrics, it is expected that more accurate and coherent evaluations can be carried out
in the future. Furthermore, the high number of annotated examples favor the creation of new AI
methods, atlases, and the construction of strong shape priors, but without abandoning precise
methods like DM.

Considering the results presented in the analyzed studies and the topics covered in this review,
there is considerable space for contributions to this area, especially with regard to the construc-
tion of hybrid methods, proposing new evaluation metrics, providing adequate databases, and
algorithms that can take into account the range of characteristics that are included in the medical
images used in the area.
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