
Double-precision floating-point format
Double-precision floating-point format is a computer number format, usually occupying 64 bits in computer
memory; it represents a wide dynamic range of numeric values by using a floating radix point.

Floating point is used to represent fractional values, or when a wider range is needed than is provided by fixed
point (of the same bit width), even if at the cost of precision. Double precision may be chosen when the range
or precision of single precision would be insufficient.

In the IEEE 754-2008 standard, the 64-bit base-2 format is officially referred to as binary64; it was called
double in IEEE 754-1985. IEEE 754 specifies additional floating-point formats, including 32-bit base-2 single
precision and, more recently, base-10 representations.

One of the first programming languages to provide single- and double-precision floating-point data types was
Fortran. Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point
data types depended on the computer manufacturer and computer model, and upon decisions made by
programming-language implementers. E.g., GW-BASIC's double-precision data type was the 64-bit MBF
floating-point format.

IEEE 754 double-precision binary floating-point format: binary64
Exponent encoding
Endianness
Double-precision examples
Execution speed with double-precision arithmetic

Implementations
C and C++
Fortran
Common Lisp
Java
JavaScript

See also
Notes and references

Double-precision binary floating-point is a commonly used format on PCs, due to its wider range over single-
precision floating point, in spite of its performance and bandwidth cost. It is commonly known simply as
double. The IEEE 754 standard specifies a binary64 as having:

Sign bit: 1 bit
Exponent: 11 bits
Significand precision: 53 bits (52 explicitly stored)

Contents

IEEE 754 double-precision binary floating-point format: binary64

https://en.wikipedia.org/wiki/Computer_number_format
https://en.wikipedia.org/wiki/Dynamic_range
https://en.wikipedia.org/wiki/Radix_point
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/Standardization
https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Computer_manufacturer
https://en.wikipedia.org/wiki/GW-BASIC
https://en.wikipedia.org/wiki/64-bit_MBF
https://en.wikipedia.org/wiki/Sign_bit
https://en.wikipedia.org/wiki/Exponent
https://en.wikipedia.org/wiki/Significand
https://en.wikipedia.org/wiki/Precision_(arithmetic)

The sign bit determines the sign of the number (including when this number is zero, which is signed).

The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023
represents the actual zero. Exponents range from −1022 to +1023 because exponents of −1023 (all 0s) and
+1024 (all 1s) are reserved for special numbers.

The 53-bit significand precision gives from 15 to 17 significant decimal digits precision (2−53 ≈ 1.11 × 10−16).
If a decimal string with at most 15 significant digits is converted to IEEE 754 double-precision representation,
and then converted back to a decimal string with the same number of digits, the final result should match the
original string. If an IEEE 754 double-precision number is converted to a decimal string with at least 17
significant digits, and then converted back to double-precision representation, the final result must match the
original number.[1]

The format is written with the significand having an implicit integer bit of value 1 (except for special data, see
the exponent encoding below). With the 52 bits of the fraction (F) significand appearing in the memory format,
the total precision is therefore 53 bits (approximately 16 decimal digits, 53 log10(2) ≈ 15.955). The bits are laid
out as follows:

The real value assumed by a given 64-bit double-precision datum with a given biased exponent and a 52-bit
fraction is

or

Between 252=4,503,599,627,370,496 and 253=9,007,199,254,740,992 the representable numbers are exactly
the integers. For the next range, from 253 to 254, everything is multiplied by 2, so the representable numbers
are the even ones, etc. Conversely, for the previous range from 251 to 252, the spacing is 0.5, etc.

The spacing as a fraction of the numbers in the range from 2n to 2n+1 is 2n−52. The maximum relative
rounding error when rounding a number to the nearest representable one (the machine epsilon) is therefore
2−53.

The 11 bit width of the exponent allows the representation of numbers between 10−308 and 10308, with full
15–17 decimal digits precision. By compromising precision, the subnormal representation allows even smaller
values up to about 5 × 10−324.

Exponent encoding

https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/Exponent_bias
https://en.wikipedia.org/wiki/Significant_figures
https://en.wikipedia.org/wiki/Significand
https://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg
https://en.wikipedia.org/wiki/Exponent_bias
https://en.wikipedia.org/wiki/Machine_epsilon

The double-precision binary floating-point exponent is encoded using an offset-binary representation, with the
zero offset being 1023; also known as exponent bias in the IEEE 754 standard. Examples of such
representations would be:

e =000000000012=00116=1: (smallest exponent for normal numbers)

e =011111111112=3ff16=1023: (zero offset)

e =100000001012=40516=1029:

e =111111111102=7fe16=2046: (highest exponent)

The exponents 00016 and 7ff16 have a special meaning:

000000000002=00016 is used to represent a signed zero (if F = 0) and subnormals (if F ≠ 0);
and
111111111112=7ff16 is used to represent ∞ (if F = 0) and NaNs (if F ≠ 0),

where F is the fractional part of the significand. All bit patterns are valid encoding.

Except for the above exceptions, the entire double-precision number is described by:

In the case of subnormals (e = 0) the double-precision number is described by:

Although the ubiquitous x86 processors of today use little-endian storage for all types of data (integer, floating
point), there are a number of hardware architectures where floating-point numbers are represented in big-
endian form while integers are represented in little-endian form.[2] There are ARM processors that have half
little-endian, half big-endian floating-point representation for double-precision numbers: both 32-bit words are
stored in little-endian like integer registers, but the most significant one first. Because there have been many
floating-point formats with no "network" standard representation for them, the XDR standard uses big-endian
IEEE 754 as its representation. It may therefore appear strange that the widespread IEEE 754 floating-point
standard does not specify endianness.[3] Theoretically, this means that even standard IEEE floating-point data
written by one machine might not be readable by another. However, on modern standard computers (i.e.,
implementing IEEE 754), one may in practice safely assume that the endianness is the same for floating-point
numbers as for integers, making the conversion straightforward regardless of data type. (Small embedded
systems using special floating-point formats may be another matter however.)

0 01111111111 002 ≙ 3FF0 0000 0000
000016 ≙ +20 × 1 = 1

0 01111111111 00012 ≙ 3FF0 0000 0000
000116 ≙ +20 × (1 + 2−52) ≈ 1.0000000000000002, the smallest number > 1

0 01111111111 00102 ≙ 3FF0 0000 0000

Endianness

Double-precision examples

https://en.wikipedia.org/wiki/Offset-binary
https://en.wikipedia.org/wiki/Normal_number_(computing)
https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Infinity
https://en.wikipedia.org/wiki/NaN
https://en.wikipedia.org/wiki/Significand
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Floating-point
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/External_Data_Representation
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Embedded_system

000216 ≙ +20 × (1 + 2−51) ≈ 1.0000000000000004

0 10000000000 002 ≙ 4000 0000 0000
000016 ≙ +21 × 1 = 2

1 10000000000 002 ≙ C000 0000 0000
000016 ≙ −21 × 1 = −2

0 10000000000 10002 ≙ 4008 0000 0000
000016 ≙ +21 × 1.12 = 112 = 3

0 10000000001 002 ≙ 4010 0000 0000
000016 ≙ +22 × 1 = 1002 = 4

0 10000000001 01002 ≙ 4014 0000 0000
000016 ≙ +22 × 1.012 = 1012 = 5

0 10000000001 10002 ≙ 4018 0000 0000
000016 ≙ +22 × 1.12 = 1102 = 6

0 10000000011 0111002 ≙ 4037 0000 0000
000016 ≙ +24 × 1.01112 = 101112 = 23

0 01111111000 10002 ≙ 3F88 0000 0000
000016 ≙ +2−7 × 1.12 = 0.000000112 = 0.01171875 (3/256)

0 00000000000 00012 ≙ 0000 0000 0000
000116 ≙ +2−1022 × 2−52 = 2−1074
≈ 4.9406564584124654 × 10−324 (Min. subnormal positive double)

0 00000000000 112 ≙ 000F FFFF FFFF
FFFF16 ≙ +2−1022 × (1 − 2−52)
≈ 2.2250738585072009 × 10−308 (Max. subnormal double)

0 00000000001 002 ≙ 0010 0000 0000
000016 ≙ +2−1022 × 1
≈ 2.2250738585072014 × 10−308 (Min. normal positive double)

0 11111111110 112 ≙ 7FEF FFFF FFFF
FFFF16 ≙ +21023 × (1 + (1 − 2−52))
≈ 1.7976931348623157 × 10308 (Max. Double)

0 00000000000 002 ≙ 0000 0000 0000
000016 ≙ +0

1 00000000000 002 ≙ 8000 0000 0000
000016 ≙ −0

0 11111111111 002 ≙ 7FF0 0000 0000
000016 ≙ +∞ (positive infinity)

1 11111111111 002 ≙ FFF0 0000 0000
000016 ≙ −∞ (negative infinity)

0 11111111111 00012 ≙ 7FF0 0000 0000
000116 ≙ NaN (sNaN on most processors, such as x86 and ARM)

0 11111111111 10012 ≙ 7FF8 0000 0000
000116 ≙ NaN (qNaN on most processors, such as x86 and ARM)

0 11111111111 112 ≙ 7FFF FFFF FFFF
FFFF16 ≙ NaN (an alternative encoding of NaN)

0 01111111101 012
= 3fd5 5555 5555 555516 ≙ +2−2 × (1 + 2−2 + 2−4 + ... + 2−52)
≈ 1/3

0 10000000000 10010010000111111011010101000100010000101101000110002
= 4009 21fb 5444 2d1816 ≈ pi

Encodings of qNaN and sNaN are not completely specified in IEEE 754 and depend on the processor. Most
processors, such as the x86 family and the ARM family processors, use the most significant bit of the
significand field to indicate a quiet NaN; this is what is recommended by IEEE 754. The PA-RISC processors
use the bit to indicate a signaling NaN.

By default, 1/3 rounds down, instead of up like single precision, because of the odd number of bits in the
significand.

In more detail:

Given the hexadecimal representation 3FD5 5555 5555 555516,
 Sign = 0
 Exponent = 3FD16 = 1021
 Exponent Bias = 1023 (constant value; see above)
 Fraction = 5 5555 5555 555516
 Value = 2(Exponent − Exponent Bias) × 1.Fraction – Note that Fraction must not be converted to
decimal here
 = 2−2 × (15 5555 5555 555516 × 2

−52)
 = 2−54 × 15 5555 5555 555516
 = 0.333333333333333314829616256247390992939472198486328125
 ≈ 1/3

Using double-precision floating-point variables and mathematical functions (e.g., sin, cos, atan2, log, exp and
sqrt) are slower than working with their single precision counterparts. One area of computing where this is a
particular issue is for parallel code running on GPUs. For example, when using NVIDIA's CUDA platform,
calculations with double precision take, depending on a hardware, approximately 2 to 32 times as long to
complete compared to those done using single precision.[4]

Doubles are implemented in many programming languages in different ways such as the following. On
processors with only dynamic precision, such as x86 without SSE2 (or when SSE2 is not used, for
compatibility purpose) and with extended precision used by default, software may have difficulties to fulfill
some requirements.

Execution speed with double-precision arithmetic

Implementations

https://en.wikipedia.org/wiki/NaN#Encoding
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Single_precision
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/SSE2

C and C++ offer a wide variety of arithmetic types. Double precision is not required by the standards (except
by the optional annex F of C99, covering IEEE 754 arithmetic), but on most systems, the double type
corresponds to double precision. However, on 32-bit x86 with extended precision by default, some compilers
may not conform to the C standard and/or the arithmetic may suffer from double rounding.[5]

Fortran provides several integer and real types, and the 64-bit type real64, accessible via Fortran's intrinsic
module iso_fortran_env, corresponds to double precision.

Common Lisp provides the types SHORT-FLOAT, SINGLE-FLOAT, DOUBLE-FLOAT and LONG-
FLOAT. Most implementations provide SINGLE-FLOATs and DOUBLE-FLOATs with the other types
appropriate synonyms. Common Lisp provides exceptions for catching floating-point underflows and
overflows, and the inexact floating-point exception, as per IEEE 754. No infinities and NaNs are described in
the ANSI standard, however, several implementations do provide these as extensions.

On Java before version 1.2, every implementation had to be IEEE 754 compliant. Version 1.2 allowed
implementations to bring extra precision in intermediate computations for platforms like x87. Thus a modifier
strictfp was introduced to enforce strict IEEE 754 computations.

As specified by the ECMAScript standard, all arithmetic in JavaScript shall be done using double-precision
floating-point arithmetic.[6]

IEEE 754, IEEE standard for floating-point arithmetic

1. William Kahan (1 October 1997). "Lecture Notes on the Status of IEEE Standard 754 for Binary
Floating-Point Arithmetic" (http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF)
(PDF). Archived (https://web.archive.org/web/20120208075518/http://www.cs.berkeley.edu/~wk
ahan/ieee754status/IEEE754.PDF) (PDF) from the original on 8 February 2012.

2. Savard, John J. G. (2018) [2005], "Floating-Point Formats" (http://www.quadibloc.com/comp/cp
0201.htm), quadibloc, archived (https://web.archive.org/web/20180703001709/http://www.quadi
bloc.com/comp/cp0201.htm) from the original on 2018-07-03, retrieved 2018-07-16

3. "pack – convert a list into a binary representation" (http://www.perl.com/doc/manual/html/pod/pe
rlfunc/pack.html).

C and C++

Fortran

Common Lisp

Java

JavaScript

See also

Notes and references

https://en.wikipedia.org/wiki/C_data_types#Basic_types
https://en.wikipedia.org/wiki/C99
https://en.wikipedia.org/wiki/Rounding#Double_rounding
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/Strictfp
https://en.wikipedia.org/wiki/ECMAScript
https://en.wikipedia.org/wiki/JavaScript_(programming_language)
https://en.wikipedia.org/wiki/IEEE_754
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://web.archive.org/web/20120208075518/http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.quadibloc.com/comp/cp0201.htm
https://web.archive.org/web/20180703001709/http://www.quadibloc.com/comp/cp0201.htm
http://www.perl.com/doc/manual/html/pod/perlfunc/pack.html

4. "Nvidia's New Titan V Pushes 110 Teraflops From A Single Chip" (https://www.tomshardware.c
om/news/nvidia-titan-v-110-teraflops,36085.html). Tom's Hardware. 2017-12-08. Retrieved
2018-11-05.

5. "Bug 323 – optimized code gives strange floating point results" (https://gcc.gnu.org/bugzilla/sho
w_bug.cgi?id=323). gcc.gnu.org. Archived (https://web.archive.org/web/20180430012629/http
s://gcc.gnu.org/bugzilla/show_bug.cgi?id=323) from the original on 30 April 2018. Retrieved
30 April 2018.

6. ECMA-262 ECMAScript Language Specification (http://www.ecma-international.org/publication
s/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf) (PDF) (5th
ed.). Ecma International. p. 29, §8.5 The Number Type. Archived (https://web.archive.org/web/2
0120313145717/http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-
262%205th%20edition%20December%202009.pdf) (PDF) from the original on 2012-03-13.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Double-precision_floating-point_format&oldid=975978799"

This page was last edited on 31 August 2020, at 14:00 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

https://www.tomshardware.com/news/nvidia-titan-v-110-teraflops,36085.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323
https://web.archive.org/web/20180430012629/https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
https://web.archive.org/web/20120313145717/http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
https://en.wikipedia.org/w/index.php?title=Double-precision_floating-point_format&oldid=975978799
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

