
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine-Level Programming
V:
Advanced Topics

15-213: Introduction to Computer Systems
9th Lecture, Sep. 29, 2015

Instructors:
Randal E. Bryant and David R. O’Hallaron

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Memory Layout
 Buffer Overflow

 Vulnerability
 Protection

 Unions

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Linux Memory
Layout

 Stack
 Runtime stack (8MB limit)
 E. g., local variables

 Heap
 Dynamically allocated as needed
 When call malloc(), calloc(), new()

 Data
 Statically allocated data
 E.g., global vars, static vars, string constants

 Text / Shared Libraries
 Executable machine instructions
 Read-only

Hex Address

00007FFFFFFFFFFF

000000

Stack

Text
Data

Heap

400000

8MB

not drawn to scale

Shared
Libraries

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Allocation
Example
char big_array[1L<<24]; /* 16 MB */
char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main ()
{
 void *p1, *p2, *p3, *p4;
 int local = 0;
 p1 = malloc(1L << 28); /* 256 MB */
 p2 = malloc(1L << 8); /* 256 B */
 p3 = malloc(1L << 32); /* 4 GB */
 p4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
}

not drawn to scale

Where does everything go?

Stack

Text
Data

Heap

Shared
Libraries

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Example
Addresses

local 0x00007ffe4d3be87c
p1 0x00007f7262a1e010
p3 0x00007f7162a1d010
p4 0x000000008359d120
p2 0x000000008359d010
big_array 0x0000000080601060
huge_array 0x0000000000601060
main() 0x000000000040060c
useless() 0x0000000000400590

address range ~247

00007F

000000

Text
Data

Heap

not drawn to scale

Heap

Stack

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Memory Layout
 Buffer Overflow

 Vulnerability
 Protection

 Unions

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recall: Memory Referencing Bug Example

 Result is system specific

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

typedef struct {
 int a[2];
 double d;
} struct_t;

double fun(int i) {
 volatile struct_t s;
 s.d = 3.14;
 s.a[i] = 1073741824; /* Possibly out of bounds */
 return s.d;
}

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example
typedef struct {
 int a[2];
 double d;
} struct_t;

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

Location
accessed by
fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Such problems are a BIG deal

 Generally called a “buffer overflow”
 when exceeding the memory size allocated for an array

 Why a big deal?
 It’s the #1 technical cause of security vulnerabilities

 #1 overall cause is social engineering / user
ignorance

 Most common form
 Unchecked lengths on string inputs
 Particularly for bounded character arrays on the stack

 sometimes referred to as stack smashing

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

String Library Code
 Implementation of Unix function gets()

 No way to specify limit on number of characters to read

 Similar problems with other library functions
 strcpy, strcat: Copy strings of arbitrary length
 scanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */
char *gets(char *dest)
{
 int c = getchar();
 char *p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\0';
 return dest;
}

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Vulnerable Buffer Code

void call_echo() {
 echo();
}

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

btw, how big
is big enough?

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Disassembly

 00000000004006cf <echo>:
 4006cf: 48 83 ec 18 sub $0x18,%rsp
 4006d3: 48 89 e7 mov %rsp,%rdi
 4006d6: e8 a5 ff ff ff callq 400680 <gets>
 4006db: 48 89 e7 mov %rsp,%rdi
 4006de: e8 3d fe ff ff callq 400520 <puts@plt>
 4006e3: 48 83 c4 18 add $0x18,%rsp
 4006e7: c3 retq

 4006e8: 48 83 ec 08 sub $0x8,%rsp
 4006ec: b8 00 00 00 00 mov $0x0,%eax
 4006f1: e8 d9 ff ff ff callq 4006cf <echo>
 4006f6: 48 83 c4 08 add $0x8,%rsp
 4006fa: c3 retq

call_echo:

echo:

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack

echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unused

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example

echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
}Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

buf

Before call to gets

 . . .
 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:
00 40 06 f6

00 00 00 00

20 bytes unused

[3][2][1][0]

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #1

echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
}Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

 . . .
 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:
00 40 06 f6

00 00 00 00

unix>./bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
00 32 31 30

Overflowed buffer, but did not corrupt state

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #2

echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
}Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

 . . .
 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:

00 00 00 00

unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30

Overflowed buffer and corrupted return pointer

00 40 00 34

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #3

echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
}Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

 . . .
 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:

00 00 00 00

unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30

Overflowed buffer, corrupted return pointer, but program seems to work!

00 40 06 00

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #3
Explained

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

 . . .
 400600: mov %rsp,%rbp
 400603: mov %rax,%rdx
 400606: shr $0x3f,%rdx
 40060a: add %rdx,%rax
 40060d: sar %rax
 400610: jne 400614
 400612: pop %rbp
 400613: retq

register_tm_clones:

00 00 00 00

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30

“Returns” to unrelated code
Lots of things happen, without modifying critical state
Eventually executes retq back to main

00 40 06 00

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Injection Attacks

Input string contains byte representation of executable code
Overwrite return address A with address of buffer B
When Q executes ret, will jump to exploit code

int Q() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

void P(){
 Q();
 ...
}

return
address
A

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploi
t
code

paddata
written
by gets()

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploits Based on Buffer
Overflows

 Buffer overflow bugs can allow remote
machines to execute arbitrary code on
victim machines

 Distressingly common in real progams
 Programmers keep making the same mistakes
 Recent measures make these attacks much more difficult

 Examples across the decades
 Original “Internet worm” (1988)
 “IM wars” (1999)
 Twilight hack on Wii (2000s)
 … and many, many more

 You will learn some of the tricks in attacklab
 Hopefully to convince you to never leave such holes in

your programs!!

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: the original Internet
worm (1988)

 Exploited a few vulnerabilities to spread
 Early versions of the finger server (fingerd) used gets() to

read the argument sent by the client:
 finger droh@cs.cmu.edu

 Worm attacked fingerd server by sending phony argument:
 finger “exploit-code padding new-return-address”
 exploit code: executed a root shell on the victim machine

with a direct TCP connection to the attacker.
 Once on a machine, scanned for other machines to

attack
 invaded ~6000 computers in hours (10% of the Internet)

 see June 1989 article in Comm. of the ACM
 the young author of the worm was prosecuted…
 and CERT was formed… still homed at CMU

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 2: IM War
 July, 1999

 Microsoft launches MSN Messenger (instant messaging
system).

 Messenger clients can access popular AOL Instant
Messaging Service (AIM) servers

AIM
server

AIM
client

AIM
client

MSN
client

MSN
server

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IM War (cont.)
 August 1999

 Mysteriously, Messenger clients can no longer access AIM
servers

 Microsoft and AOL begin the IM war:
 AOL changes server to disallow Messenger clients
 Microsoft makes changes to clients to defeat AOL

changes
 At least 13 such skirmishes

 What was really happening?
 AOL had discovered a buffer overflow bug in their own

AIM clients
 They exploited it to detect and block Microsoft: the

exploit code returned a 4-byte signature (the bytes at
some location in the AIM client) to server

 When Microsoft changed code to match signature,
AOL changed signature location

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)
From: Phil Bucking <philbucking@yahoo.com>
Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.
...
It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.
....
Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,
Phil Bucking
Founder, Bucking Consulting
philbucking@yahoo.com

It was later determined
that this email
originated from within
Microsoft!

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Worms and Viruses
 Worm: A program that

 Can run by itself
 Can propagate a fully working version of itself to other

computers

 Virus: Code that
 Adds itself to other programs
 Does not run independently

 Both are (usually) designed to spread
among computers and to wreak havoc

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

OK, what to do about buffer
overflow attacks

 Avoid overflow vulnerabilities

 Employ system-level protections

 Have compiler use “stack canaries”

 Lets talk about each…

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1. Avoid Overflow Vulnerabilities
in Code (!)

 For example, use library routines that limit
string lengths
 fgets instead of gets
 strncpy instead of strcpy
 Don’t use scanf with %s conversion specification

 Use fgets to read the string
 Or use %ns where n is a suitable integer

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 fgets(buf, 4, stdin);
 puts(buf);
}

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2. System-Level Protections
can help

 Randomized stack
offsets
 At start of program, allocate

random amount of space on
stack

 Shifts stack addresses for
entire program

 Makes it difficult for hacker to
predict beginning of inserted
code

 E.g.: 5 executions of memory
allocation code

 Stack repositioned each
time program executes

main

Applicatio
n

Code

Random
allocation

Stack base

B?

B?

exploit
code

padlocal 0x7ffe4d3be87c 0x7fff75a4f9fc 0x7ffeadb7c80c 0x7ffeaea2fdac 0x7ffcd452017c

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2. System-Level Protections can help

 Nonexecutable code
segments
 In traditional x86, can

mark region of memory
as either “read-only” or
“writeable”

 Can execute
anything readable

 X86-64 added explicit
“execute” permission

 Stack marked as non-
executable

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploi
t
code

paddata
written
by gets()

Any attempt to execute this code will fail

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3. Stack Canaries can help
 Idea

 Place special value (“canary”) on stack just beyond
buffer

 Check for corruption before exiting function
 GCC Implementation

 -fstack-protector
 Now the default (disabled earlier)

unix>./bufdemo-sp
Type a string:0123456
0123456

unix>./bufdemo-sp
Type a string:01234567
*** stack smashing detected ***

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Protected Buffer
Disassembly

 40072f: sub $0x18,%rsp
 400733: mov %fs:0x28,%rax
 40073c: mov %rax,0x8(%rsp)
 400741: xor %eax,%eax
 400743: mov %rsp,%rdi
 400746: callq 4006e0 <gets>
 40074b: mov %rsp,%rdi
 40074e: callq 400570 <puts@plt>
 400753: mov 0x8(%rsp),%rax
 400758: xor %fs:0x28,%rax
 400761: je 400768 <echo+0x39>
 400763: callq 400580 <__stack_chk_fail@plt>
 400768: add $0x18,%rsp
 40076c: retq

echo:

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Setting Up Canary

echo:
. . .
movq %fs:40, %rax # Get canary
movq %rax, 8(%rsp) # Place on stack
xorl %eax, %eax # Erase canary
. . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0]buf

Before call to gets

20 bytes unusedCanary
(8 bytes)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Checking Canary

echo:
. . .
movq 8(%rsp), %rax # Retrieve from

stack
xorq %fs:40, %rax # Compare to canary
je .L6 # If same, OK
call __stack_chk_fail # FAIL

.L6: . . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}Return Address

Saved %ebp

Stack Frame
for main

[3][2][1][0]

Saved %ebx

Canary

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unusedCanary
(8 bytes)

00 36 35 34

Input: 0123456

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Return-Oriented
Programming Attacks

 Challenge (for hackers)
 Stack randomization makes it hard to predict buffer location
 Marking stack nonexecutable makes it hard to insert binary

code
 Alternative Strategy

 Use existing code
 E.g., library code from stdlib

 String together fragments to achieve overall desired
outcome

 Does not overcome stack canaries

 Construct program from gadgets
 Sequence of instructions ending in ret

 Encoded by single byte 0xc3
 Code positions fixed from run to run
 Code is executable

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Gadget Example #1

 Use tail end of existing functions

long ab_plus_c
 (long a, long b, long c)
{

 return a*b + c;

}

00000000004004d0 <ab_plus_c>:
 4004d0: 48 0f af fe imul %rsi,%rdi

 4004d4: 48 8d 04 17 lea (%rdi,%rdx,1),%rax

 4004d8: c3 retq

rax  rdi + rdx

Gadget address = 0x4004d4

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Gadget Example #2

 Repurpose byte codes

void setval(unsigned *p) {

 *p = 3347663060u;

}

<setval>:
 4004d9: c7 07 d4 48 89 c7 movl $0xc78948d4,(%rdi)
 4004df: c3 retq

rdi  rax

Gadget address = 0x4004dc

Encodes movq %rax, %rdi

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROP Execution

 Trigger with ret instruction
 Will start executing Gadget 1

 Final ret in each gadget will start next
one









c3c3Gadget 1 codeGadget 1 code

c3c3Gadget 2 codeGadget 2 code

c3c3Gadget n codeGadget n code

Stack

%rsp%rsp

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Memory Layout
 Buffer Overflow

 Vulnerability
 Protection

 Unions

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Union Allocation
 Allocate according to largest element
 Can only use one field at a time

union U1 {
 char c;
 int i[2];
 double v;
} *up;

union U1 {
 char c;
 int i[2];
 double v;
} *up;

struct S1 {
 char c;
 int i[2];
 double v;
} *sp;

struct S1 {
 char c;
 int i[2];
 double v;
} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

typedef union {
 float f;
 unsigned u;
} bit_float_t;

typedef union {
 float f;
 unsigned u;
} bit_float_t;

float bit2float(unsigned u)
{
 bit_float_t arg;
 arg.u = u;
 return arg.f;
}

float bit2float(unsigned u)
{
 bit_float_t arg;
 arg.u = u;
 return arg.f;
}

unsigned float2bit(float f)
{
 bit_float_t arg;
 arg.f = f;
 return arg.u;
}

unsigned float2bit(float f)
{
 bit_float_t arg;
 arg.f = f;
 return arg.u;
}

Using Union to Access Bit
Patterns

Same as (float)
u ?

Same as (unsigned)
f ?

u

f

0 4

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering
Revisited

Idea
 Short/long/quad words stored in memory as 2/4/8

consecutive bytes
 Which byte is most (least) significant?
 Can cause problems when exchanging binary data

between machines
Big Endian

 Most significant byte has lowest address
 Sparc

Little Endian
 Least significant byte has lowest address
 Intel x86, ARM Android and IOS

 Bi Endian
 Can be configured either way
 ARM

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example
 union {
 unsigned char c[8];
 unsigned short s[4];
 unsigned int i[2];
 unsigned long l[1];
 } dw;

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

32-bit

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

64-bit

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example
(Cont).

int j;
for (j = 0; j < 8; j++)
 dw.c[j] = 0xf0 + j;

printf("Characters 0-7 == [0x%x,0x%x,0x%x,0x
%x,0x%x,0x%x,0x%x,0x%x]\n",
 dw.c[0], dw.c[1], dw.c[2], dw.c[3],
 dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n",
 dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf("Ints 0-1 == [0x%x,0x%x]\n",
 dw.i[0], dw.i[1]);

printf("Long 0 == [0x%lx]\n",
 dw.l[0]);

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on IA32

Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf3f2f1f0]

Output:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

LSB MSB LSB MSB

Print

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on Sun

Big Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]
Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7]
Long 0 == [0xf0f1f2f3]

Output on Sun:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

MSB LSBMSB LSB

Print

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on x86-
64

Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf7f6f5f4f3f2f1f0]

Output on x86-64:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

LSB MSB

Print

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Compound
Types in C

 Arrays
 Contiguous allocation of memory
 Aligned to satisfy every element’s alignment requirement
 Pointer to first element
 No bounds checking

 Structures
 Allocate bytes in order declared
 Pad in middle and at end to satisfy alignment

 Unions
 Overlay declarations
 Way to circumvent type system

	Slide 1
	Today
	x86-64 Linux Memory Layout
	Memory Allocation Example
	x86-64 Example Addresses
	Today
	Recall: Memory Referencing Bug Example
	Memory Referencing Bug Example
	Such problems are a BIG deal
	String Library Code
	Vulnerable Buffer Code
	Buffer Overflow Disassembly
	Buffer Overflow Stack
	Buffer Overflow Stack Example
	Buffer Overflow Stack Example #1
	Buffer Overflow Stack Example #2
	Buffer Overflow Stack Example #3
	Buffer Overflow Stack Example #3 Explained
	Code Injection Attacks
	Exploits Based on Buffer Overflows
	Example: the original Internet worm (1988)
	Example 2: IM War
	IM War (cont.)
	Slide 24
	Aside: Worms and Viruses
	OK, what to do about buffer overflow attacks
	1. Avoid Overflow Vulnerabilities in Code (!)
	2. System-Level Protections can help
	2. System-Level Protections can help
	3. Stack Canaries can help
	Protected Buffer Disassembly
	Setting Up Canary
	Checking Canary
	Return-Oriented Programming Attacks
	Gadget Example #1
	Gadget Example #2
	ROP Execution
	Today
	Union Allocation
	Using Union to Access Bit Patterns
	Byte Ordering Revisited
	Byte Ordering Example
	Byte Ordering Example (Cont).
	Byte Ordering on IA32
	Byte Ordering on Sun
	Byte Ordering on x86-64
	Summary of Compound Types in C

