Floating Point

15-213: Introduction to Computer Systems 4th Lecture, Sep. 10, 2015

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Bits to right of "binary point" represent fractional powers of 2

Represents rational number:
$$\sum_{k=-i}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value
Representation

```
5 3/4 101.11<sub>2</sub>
2 7/8 10.111<sub>2</sub>
1 7/16 1.0111<sub>2</sub>
```

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0 ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value
 - llue Representation
 - **1/3**

0.0101010101[01]...2

1/5

0.001100110011[0011]...2

1/10

0.0001100110011[0011]...2

- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

Single precision: 32 bits

Double precision: 64 bits

Extended precision: 80 bits (Intel only)

S	ехр	frac					
1	15-bits	63 or 64-bits					

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: $\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ϵ)
 - Get extra leading bit for "free"

Normalized Encoding Example

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_{2}$ $= 1.1101101101101_{2} \times 2^{13}$

```
v = (-1)^s M 2^E
E = Exp - Bias
```

Significand

```
M = 1.11011011011012
frac = 11011011011010000000000000002
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100<sub>2</sub>
```

Result:

Denormalized Values

$$v = (-1)^{s} M 2^{E}$$

E = 1 - Bias

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac = 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., 1.0/0.0 = -1.0/-0.0 = +5, 1.0/-0.0 = -5
- Case: exp = 111...1, frac = 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

								$V = (-1)^s V \ge 1$
	S	exp	frac	E	Value			n: E = Exp – Bias
	0	0000	000	-6	0			d: E = 1 – Bias
	0	0000	001	-6	1/8*1/64	=	1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	=	2/512	closest to zero
numbers								
	0	0000	110	-6	6/8*1/64	=	6/512	
	0	0000	111	- 6	7/8*1/64	=	7/512	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/512	smallest norm
	0	0001	001	-6	9/8*1/64	=	9/512	Smanest norm
	0	0110	110	-1	14/8*1/2	=	14/16	
	0	0110	111	-1	15/8*1/2	=	15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	=	1	
numbers	0	0111	001	0	9/8*1	=	9/8	closest to 1 above
	0	0111	010	0	10/8*1	=	10/8	closest to 1 above
	0	1110	110	7	14/8*128	=	224	
	0	1110	111	7	15/8*128	=	240	largest norm
	0	1111	000	n/a	inf			

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- \blacksquare x +_f y = Round(x + y)
- $x_f y = Round(x_y)$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (¬☜)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+ᢒ)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

```
7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)
```

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is o
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)
 Value Binary Rounded Action Rounded Value
 2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.00110₂ 10.01₂ (>1/2—up) 2 1/4

2 7/8 10.11100₂ 11.00₂ (1/2—up) 3

2 5/8 10.10100₂ 10.10₂ (1/2—down) 2 1/2

FP Multiplication

- $-(-1)^{s1}$ M1 2^{E1} x $(-1)^{s2}$ M2 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- $-(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}
 - *Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Get binary points lined up

- Fixing
 - If M \geq 2, shift M right, increment E
 - •if M < 1, shift M left k positions, decrement E by k</p>
 - Overflow if E out of range
 - Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

Associative?

No

- Overflow and inexactness of rounding
- (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
- 0 is additive identity?
- Every element has additive inverse? Yes
 - Yes, except for infinities & NaNs
 Almost
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$?

Almost

Except for infinities & NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?
 Yes
 - But may generate infinity or NaN
 - Multiplication Commutative?
 Yes
 - Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20
 - 1 is multiplicative identity?
 Yes
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
 - 1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$?
 - Except for infinities & NaNs

Almost

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - \blacksquare int \rightarrow float
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
* x == (int)(float) x
\cdot x == (int)(double) x
• f == (float)(double) f
• d == (double)(float) d
• f == -(-f);
\cdot 2/3 == 2/3.0
* d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Additional Slides

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction
- s exp frac
 1 4-bits 3-bits
- Postnormalize to deal with effects of rounding

Case Study

- Convert 8-bit unsigned numbers to tiny floating point format
 Example Numbers
- **128 10000000**
 - 15 00001101
 - 33 00010001
 - 35 00010011
- 138 10001010
 - 63 00111111

Normalize

s exp frac
1 4-bits 3-bits

- Requirement
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

Value Binary Fraction Exponent

```
128 10000000 1.0000000 7
```

15 00001101 1.1010000 3

17 00010001 **1**.0001000 **4**

19 00010011 1.0011000 4

138 10001010 1.0001010 7

63 00111111 1.1111100 5

Rounding

1.BBGRXXX

Guard bit: LSB of

result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

- Round up conditions
 - Round = 1, Sticky = $1 \rightarrow > 0.5$
 - Guard = 1, Round = 1, Sticky = 0 → Round to even

```
Incr? Rounded
Value Fraction
              GRS
 128 1.0000000 000 N
                       1.000
 15
     1.1010000 100 N
                        1.101
 17
     1.0001000 010 N
                        1.000
 19
     1.0011000 110 Y
                        1.010
 138 1.0001010 011 Y
                        1.001
 63
     1.1111100 111Y
                       10.000
```

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	ExpAdjusted		Result
128	1.000	7	128	
15	1.101	3	15	
17	1.000	4	16	
19	1.010	4	20	
138	1.001	7	134	
63 :	10.000	5	1.000/6	64

Interesting Numbers

{single,double}

Description exp fracNumeric Value

• Single
$$\approx 1.4 \times 10^{-45}$$

■ Double
$$\approx 4.9 \times 10^{-324}$$

Largest Denormalized 00...00 11...11 (1.0 – ε)
$$\times$$
 2^{-{126,1022}}

■ Single
$$\approx 1.18 \times 10^{-38}$$

■ Double
$$\approx 2.2 \times 10^{-308}$$

■ Single
$$\approx 3.4 \times 10^{38}$$

■ Double
$$\approx 1.8 \times 10^{308}$$