
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits
 Each bit is 0 or 1
 By encoding/interpreting sets of bits in various ways

 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

 Why bits? Electronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

0.0V
0.2V

0.9V
1.1V

0 1 0

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For example, can count in
binary

 Base 2 Number Representation
 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values
 Byte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex Decim
al

Binary

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-
bit

Typical 64-
bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra
 Developed by George Boole in 19th Century

 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
 A&B = 1 when both A=1 and B=1

Or
 A|B = 1 when either A=1 or B=1

Not
 ~A = 1 when A=0

Exclusive-Or (Xor)
 A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras
 Operate on Bit Vectors

 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Representing &
Manipulating Sets

 Representation
 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j A∈

 01101001 { 0, 3, 5, 6 }
 76543210

 01010101 { 0, 2, 4, 6 }
 76543210

 Operations
 & Intersection 01000001 { 0, 6 }
 | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C
 Operations &, |, ~, ^ Available in C

 Apply to any “integral” data type
 long, int, short, char, unsigned

 View arguments as bit vectors
 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 0xBE➙

 ~010000012 10111110➙ 2

 ~0x00 0xFF➙
 ~000000002 11111111➙ 2

 0x69 & 0x55 0x41➙
 011010012 & 010101012 01000001➙ 2

 0x69 | 0x55 0x7D➙
 011010012 | 010101012 ➙ 011111012

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C
 Contrast to Logical Operators

 &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

 Examples (char data type)
 !0x41 0x00➙
 !0x00 0x01➙
 !!0x41 0x01➙

 0x69 && 0x55 0x01➙
 0x69 || 0x55 0x01➙
 p && *p (avoids null pointer access)

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C
 Contrast to Logical Operators

 &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

 Examples (char data type)
 !0x41 0x00➙
 !0x00 0x01➙
 !!0x41 0x01➙

 0x69 && 0x55 0x01➙
 0x69 || 0x55 0x01➙
 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
one of the more common oopsies in
C programming

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations
 Left Shift: x << y

 Shift bit-vector x left y positions
– Throw away extra bits on left

 Fill with 0’s on right
 Right Shift: x >> y

 Shift bit-vector x right y positions
 Throw away extra bits on right

 Logical shift
 Fill with 0’s on left

 Arithmetic shift
 Replicate most significant bit on left

 Undefined Behavior
 Shift amount < 0 or word size≥

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
 Summary

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers

 short int x = 15213;
 short int y = -15213;

 C short 2 bytes long

 Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative
 1 for negative

Unsigned Two’s Complement

Sign
Bit

B2T (X)   xw 1 2w 1  xi 2
i

i0

w 2

B2U(X)  xi 2
i

i0

w 1



 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement Encoding Example
(Cont.)

 x = 15213: 00111011 01101101
 y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges
 Unsigned Values

 UMin = 0
000…0

 UMax = 2w – 1
111…1

 Two’s Complement Values
 TMin = –2w–1

100…0
 TMax = 2w–1 – 1

011…1
 Other Values

 Minus 1
111…1

Values for W = 16
 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Values for Different Word Sizes

 Observations
 |TMin | = TMax + 1

 Asymmetric range
 UMax = 2 * TMax

+ 1

 C Programming
 #include <limits.h>
 Declares constants, e.g.,

 ULONG_MAX
 LONG_MAX
 LONG_MIN

 Values platform specific

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
 Equivalence

 Same encodings for
nonnegative values

 Uniqueness
 Every bit pattern represents

unique integer value
 Each representable integer has

unique bit encoding
  Can Invert Mappings

 U2B(x) = B2U-1(x)
 Bit pattern for unsigned

integer
 T2B(x) = B2T-1(x)

 Bit pattern for two’s comp
integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Mapping Between Signed &
Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement
numbers:
 Keep bit representations and reinterpret

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + +• • •
- + + + + +• • •

ux
x

w–1 0

Relation between Signed &
Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
 2’s Comp. → Unsigned

 Ordering Inversion
 Negative → Big Positive

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C
 Constants

 By default are considered to be signed integers
 Unsigned if have “U” as suffix

0U, 4294967259U
 Casting

 Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation
0 0U == unsigned

-1 0 < signed
-1 0U > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > signed
 2147483647 2147483648U > unsigned
 2147483647 (int) 2147483648U > signed

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed Unsigned: Basic ↔

Rules
 Bit pattern is maintained
 But reinterpreted
 Can have unexpected effects: adding or

subtracting 2w

 Expression containing signed and unsigned int
 int is cast to unsigned!!

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension
 Task:

 Given w-bit signed integer x
 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:
 X’ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension Example

 Converting from smaller to larger integer data
type

 C automatically performs sign extension

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic
Rules
 Expanding (e.g., short int to int)

 Unsigned: zeros added
 Signed: sign extension
 Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated
 Result reinterpreted
 Unsigned: mod operation
 Signed: similar to mod
 For small numbers yields expected behavior

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings
 Summary

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Addition

 Standard Addition Function
 Ignores carry output

 Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w
bits

UAddw(u , v)

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Visualizing (Mathematical) Integer
Addition

 Integer Addition
 4-bit integers u, v
 Compute true sum

Add4(u , v)
 Values increase

linearly with u and v
 Forms planar

surface

Add4(u , v)

u
v

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Visualizing Unsigned Addition

 Wraps Around
 If true sum 2≥ w

 At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0

2

4

6

8

10

12

14

16

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level
Behavior
 Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);

 t = u + v
 Will give s == t

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TAdd Overflow
 Functionality

 True sum requires
w+1 bits

 Drop off MSB
 Treat remaining

bits as 2’s comp.
integer

–2w –1

–2w

0

2w –1–1

2w–1
True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Visualizing 2’s Complement
Addition

 Values
 4-bit two’s comp.
 Range from -8 to +7

 Wraps Around
 If sum  2w–1

 Becomes
negative

 At most once
 If sum < –2w–1

 Becomes
positive

 At most once

TAdd4(u , v)

u
v
PosOver

NegOver

-8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4
6

-8

-6

-4

-2

0

2

4

6

8

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C: signed vs. unsigned overflow
 C language only specifies overflow for unsigned

variables!
Signed Overflow in C is undefined behavior!

– Historic reasons: Some C implementations used
one’s complement representation.

Added by TCM 2023

/* This may be optimized to return 0 */
int detect_overflow_s(int x)
{
 return x+1 < x;
}

int detect_overflow_u(unsigned x)
{
 return x+1 < x;
}

int main()
{
 if(detect_overflow_s(0x7fffffff))
 printf("Signed overflow detected\n");
 if(detect_overflow_u(0xffffffff))
 printf("Unsigned overflow detected\n");
 return 0;
}

/* This may be optimized to return 0 */
int detect_overflow_s(int x)
{
 return x+1 < x;
}

int detect_overflow_u(unsigned x)
{
 return x+1 < x;
}

int main()
{
 if(detect_overflow_s(0x7fffffff))
 printf("Signed overflow detected\n");
 if(detect_overflow_u(0xffffffff))
 printf("Unsigned overflow detected\n");
 return 0;
}

On gcc 12 with -Og prints
only
Unsigned overlfow detected

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiplication
 Goal: Computing Product of w-bit numbers x, y

 Either signed or unsigned
 But, exact results can be bigger than w bits

 Unsigned: up to 2w bits
 Result range: 0 ≤ x * y (2≤ w – 1) 2 = 22w – 2w+1 + 1

 Two’s complement min (negative): Up to 2w-1 bits
 Result range: x * y (–2≥ w–1)*(2w–1–1) = –22w–2 + 2w–1

 Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

 Result range: x * y (–2≤ w–1) 2 = 22w–2

 So, maintaining exact results…
 would need to keep expanding word size with each product

computed
 is done in software, if needed

 e.g., by “arbitrary precision” arithmetic packages

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Multiplication in C

 Standard Multiplication
Function
 Ignores high order w bits

 Implements Modular
Arithmetic
UMultw(u , v) = u · v mod 2w

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w
bits

UMultw(u , v)
• • •

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Multiplication in C

 Standard Multiplication
Function
 Ignores high order w bits
 Some of which are different for

signed vs. unsigned multiplication
 Lower bits are the same

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w
bits

TMultw(u , v)
• • •

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-2 Multiply with Shift
 Operation

 u << k gives u * 2k

 Both signed and unsigned

 Examples
 u << 3 == u * 8
 (u << 5) – (u << 3) == u * 24
 Most machines shift and add faster than multiply

 Compiler generates this code automatically

• • •
0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w
bits

UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Power-of-2 Divide with Shift
 Quotient of Unsigned by Power of 2

 u >> k gives ⌊u / 2k⌋

 Uses logical shift

0 0 1 0 0 0•••
u
2k/

u / 2kDivision:

Operands: •••

k
••• •••

•••0 0 0••• •••

⌊u / 2k⌋ •••Result:

.

Binary Point

0

0 0 0•••0

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic: Basic Rules
 Addition:

 Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

 Unsigned: addition mod 2w

 Mathematical addition + possible subtraction of 2w

 Signed: modified addition mod 2w (result in proper range)
 Mathematical addition + possible addition or subtraction of

2w

 Multiplication:
 Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level
 Unsigned: multiplication mod 2w

 Signed: modified multiplication mod 2w (result in proper range)

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Should I Use Unsigned?
 Don’t use without understanding implications

 Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];

 Can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
 . . .

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting Down with Unsigned
 Proper way to use unsigned as loop index

unsigned i;
for (i = cnt-2; i < cnt; i--)
 a[i] += a[i+1];

 See Robert Seacord, Secure Coding in C and C++
 C Standard guarantees that unsigned addition will behave

like modular arithmetic
 0 – 1  UMax

 Even better
size_t i;
for (i = cnt-2; i < cnt; i--)
 a[i] += a[i+1];

 Data type size_t defined as unsigned value with length = word size
 Code will work even if cnt = UMax
 What if cnt is signed and < 0?

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Should I Use Unsigned?
(cont.)

 Do Use When Performing Modular Arithmetic
 Multiprecision arithmetic

 Do Use When Using Bits to Represent Sets
 Logical right shift, no sign extension

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte-Oriented Memory
Organization

 Programs refer to data by address
 Conceptually, envision it as a very large array of bytes

 In reality, it’s not, but can think of it that way
 An address is like an index into that array

 and, a pointer variable stores an address

Note: system provides private address spaces to each
“process”
 Think of a process as a program being executed
 So, a program can clobber its own data, but not that of others

• • •
00•••

0
FF•

••F

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Words
 Any given computer has a “Word Size”

 Nominal size of integer-valued data
 and of addresses

 Until recently, most machines used 32 bits (4 bytes) as word
size
 Limits addresses to 4GB (232 bytes)

 Increasingly, machines have 64-bit word size
 Potentially, could have 18 EB (exabytes) of addressable

memory
 That’s 18.4 X 1018

 Machines still support multiple data formats
 Fractions or multiples of word size
 Always integral number of bytes

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Word-Oriented Memory Organization

 Addresses Specify Byte
Locations
 Address of first byte in word
 Addresses of successive words

differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-
bit

Typical 64-
bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering
 So, how are the bytes within a multi-byte word

ordered in memory?
 Conventions

 Big Endian: Sun, PPC Mac, Internet
 Least significant byte has highest address

 Little Endian: x86, ARM processors running Android, iOS,
and Windows
 Least significant byte has lowest address

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example
 Example

 Variable x has 4-byte value of 0x01234567
 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Integers
Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun

6D
3B
00
00

IA32

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examining Data
Representations

 Code to Print Byte Representation of Data
 Casting pointer to unsigned char * allows treatment as a

byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
 size_t i;
 for (i = 0; i < len; i++)
 printf(”%p\t0x%.2x\n",start+i, start[i]);
 printf("\n");
}

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
 size_t i;
 for (i = 0; i < len; i++)
 printf(”%p\t0x%.2x\n",start+i, start[i]);
 printf("\n");
}

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

show_bytes Execution Example
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Pointers

Different compilers & machines assign different locations to
objects

Even get different results each time run program

int B = -15213;
int *P = &B;
int B = -15213;
int *P = &B;

x86-64Sun IA32
EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char S[6] = "18213";char S[6] = "18213";

Representing Strings
 Strings in C

 Represented by array of characters
 Each character encoded in ASCII format

 Standard 7-bit encoding of character set
 Character “0” has code 0x30

– Digit i has code 0x30+i
 String should be null-terminated

 Final character = 0
 Compatibility

 Byte ordering not an issue

IA32 Sun
31

38

32

31

33

00

31

38

32

31

33

00

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Integer C Puzzles
• X < 0 → ((x*2) < 0)
• ux >= 0
• X & 7 == 7 → (x<<30) < 0
• ux > -1
• x > y → -x < -y
• x * x >= 0
• x > 0 && y > 0 → x + y > 0
• X >= 0 → -x <= 0
• X <= 0 → -x >= 0
• (x|-x)>>31 == -1
• ux >> 3 == ux/8
• x >> 3 == x/8
• x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bonus extras

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Application of Boolean Algebra
 Applied to Digital Systems by Claude Shannon

 1937 MIT Master’s Thesis
 Reason about networks of relay switches

 Encode closed switch as 1, open switch as 0

A

~A

~B

B

Connection when

 A&~B | ~A&B

A&~B

~A&B = A^B

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Number Property

 w = 0:
 1 = 20

 Assume true for w-1:
 1 + 1 + 2 + 4 + 8 + … + 2w-1 + 2w = 2w + 2w = 2w+1

Claim
1 + 1 + 2 + 4 + 8 + … + 2w-1 = 2w

= 2w

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Security Example

 Similar to code found in FreeBSD’s implementation
of getpeername

 There are legions of smart people trying to find
vulnerabilities in programs

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Typical Usage
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf(“%s\n”, mybuf);
}

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malicious Usage
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 . . .
}

/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mathematical Properties
 Modular Addition Forms an Abelian Group

 Closed under addition
0  UAddw(u , v)  2w –1

 Commutative
UAddw(u , v) = UAddw(v , u)

 Associative
UAddw(t, UAddw(u , v)) = UAddw(UAddw(t, u), v)

 0 is additive identity
UAddw(u , 0) = u

 Every element has additive inverse
 Let UCompw (u) = 2w – u

UAddw(u , UCompw (u)) = 0

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mathematical Properties of TAdd
 Isomorphic Group to unsigneds with UAdd

 TAddw(u , v) = U2T(UAddw(T2U(u), T2U(v)))
 Since both have identical bit patterns

 Two’s Complement Under TAdd Forms a Group
 Closed, Commutative, Associative, 0 is additive identity
 Every element has additive inverse

TCompw(u) 
 u u TMinw

TMinw u TMinw





Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Characterizing TAdd

 Functionality
 True sum requires w+1

bits
 Drop off MSB
 Treat remaining bits as

2’s comp. integer
u

v

< 0 > 0
< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Negation: Complement & Increment
 Claim: Following Holds for 2’s Complement

 ~x + 1 == -x

 Complement
 Observation: ~x + x == 1111…111 == -1

 Complete Proof?

1 0 0 1 0 11 1 x
0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complement & Increment
Examples

x = 15213

x = 0

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
~x -15214 C4 92 11000100 10010010
~x+1 -15213 C4 93 11000100 10010011
y -15213 C4 93 11000100 10010011

 Decimal Hex Binary
0 0 00 00 00000000 00000000
~0 -1 FF FF 11111111 11111111
~0+1 0 00 00 00000000 00000000

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Security Example #2
 SUN XDR library

 Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

ele_src

malloc(ele_cnt * ele_size)

Carnegie Mellon

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

XDR Code
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL)

/* malloc failed */
return NULL;

 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);

/* Move pointer to next memory region */
next += ele_size;

 }
 return result;
}

Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

XDR Vulnerability

 What if:
 ele_cnt = 220 + 1
 ele_size = 4096 = 212

 Allocation = ??

 How can I make this function secure?

malloc(ele_cnt * ele_size)

Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

leaq (%rax,%rax,2), %rax
salq $2, %rax

Compiled Multiplication Code

 C compiler automatically generates shift/add code
when multiplying by constant

long mul12(long x)
{
 return x*12;
}

t <- x+x*2
return t << 2;

C Function

Compiled Arithmetic Operations Explanation

Carnegie Mellon

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

shrq $3, %rax

Compiled Unsigned Division Code

 Uses logical shift for unsigned
 For Java Users

 Logical shift written as >>>

unsigned long udiv8
 (unsigned long x)
{
 return x/8;
}

Logical shift
return x >> 3;

C Function

Compiled Arithmetic Operations Explanation

Carnegie Mellon

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Power-of-2 Divide with Shift
 Quotient of Signed by Power of 2

 x >> k gives ⌊x / 2k ⌋
 Uses arithmetic shift
 Rounds wrong direction when u < 0

0 0 1 0 0 0•••
x
2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011
y >> 1 -7606.5 -7607 E2 49 11100010 01001001
y >> 4 -950.8125 -951 FC 49 11111100 01001001
y >> 8 -59.4257813 -60 FF C4 11111111 11000100

Carnegie Mellon

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Power-of-2 Divide
 Quotient of Negative Number by Power of 2

 Want ⎡x / 2k ⎤ (Round Toward 0)
 Compute as ⎣(x+2k-1)/ 2k ⎦

 In C: (x + (1<<k)-1) >> k
 Biases dividend toward 0

Case 1: No rounding

Divisor:

Dividend:

0 0 1 0 0 0•••

u

2k/

 ⎡ u / 2k⎤

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

Carnegie Mellon

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Power-of-2 Divide (Cont.)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/
 ⎡ x / 2k ⎤

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

Carnegie Mellon

84Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

testq %rax, %rax
js L4

L3:
sarq $3, %rax
ret

L4:
addq $7, %rax
jmp L3

Compiled Signed Division Code

 Uses arithmetic shift for
int

 For Java Users
 Arith. shift written as >>

long idiv8(long x)
{
 return x/8;
}

if x < 0
 x += 7;
Arithmetic shift
return x >> 3;

C Function

Compiled Arithmetic Operations Explanation

Carnegie Mellon

85Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic: Basic Rules
 Unsigned ints, 2’s complement ints are

isomorphic rings: isomorphism = casting

 Left shift
 Unsigned/signed: multiplication by 2k

 Always logical shift

 Right shift
 Unsigned: logical shift, div (division + round to zero) by 2k

 Signed: arithmetic shift
 Positive numbers: div (division + round to zero) by 2k

 Negative numbers: div (division + round away from
zero) by 2k

Use biasing to fix

Carnegie Mellon

86Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of Unsigned Arithmetic
 Unsigned Multiplication with Addition Forms

Commutative Ring
 Addition is commutative group
 Closed under multiplication

0 UMult≤ w(u , v) ≤ 2w –1
 Multiplication Commutative

UMultw(u , v) = UMultw(v , u)
 Multiplication is Associative

UMultw(t, UMultw(u , v)) = UMultw(UMultw(t, u), v)
 1 is multiplicative identity

UMultw(u , 1) = u
 Multiplication distributes over addtion

UMultw(t, UAddw(u , v)) = UAddw(UMultw(t, u), UMultw(t, v))

Carnegie Mellon

87Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of Two’s Comp. Arithmetic
 Isomorphic Algebras

 Unsigned multiplication and addition
 Truncating to w bits

 Two’s complement multiplication and addition
 Truncating to w bits

 Both Form Rings
 Isomorphic to ring of integers mod 2w

 Comparison to (Mathematical) Integer Arithmetic
 Both are rings
 Integers obey ordering properties, e.g.,

U > 0 → u + v > v
u > 0, v > 0 → u · v > 0

 These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)

Carnegie Mellon

88Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Address Instruction Code Assembly Rendition
 8048365: 5b pop %ebx
 8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
 804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings
 Disassembly

 Text representation of binary machine code
 Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
 Value: 0x12ab
 Pad to 32 bits: 0x000012ab
 Split into bytes: 00 00 12 ab
 Reverse: ab 12 00 00

	Slide 1
	Today: Bits, Bytes, and Integers
	Everything is bits
	For example, can count in binary
	Encoding Byte Values
	Example Data Representations
	Today: Bits, Bytes, and Integers
	Boolean Algebra
	General Boolean Algebras
	Example: Representing & Manipulating Sets
	Bit-Level Operations in C
	Contrast: Logic Operations in C
	Contrast: Logic Operations in C
	Shift Operations
	Today: Bits, Bytes, and Integers
	Encoding Integers
	Two-complement Encoding Example (Cont.)
	Numeric Ranges
	Values for Different Word Sizes
	Unsigned & Signed Numeric Values
	Today: Bits, Bytes, and Integers
	Mapping Between Signed & Unsigned
	Mapping Signed  Unsigned
	Mapping Signed  Unsigned
	Relation between Signed & Unsigned
	Conversion Visualized
	Signed vs. Unsigned in C
	Casting Surprises
	Summary Casting Signed ↔ Unsigned: Basic Rules
	Today: Bits, Bytes, and Integers_clipboard0
	Sign Extension
	Sign Extension Example
	Summary: Expanding, Truncating: Basic Rules
	Today: Bits, Bytes, and Integers
	Unsigned Addition
	Visualizing (Mathematical) Integer Addition
	Visualizing Unsigned Addition
	Two’s Complement Addition
	TAdd Overflow
	Visualizing 2’s Complement Addition
	Slide 41
	Multiplication
	Unsigned Multiplication in C
	Signed Multiplication in C
	Power-of-2 Multiply with Shift
	Unsigned Power-of-2 Divide with Shift
	Today: Bits, Bytes, and Integers
	Arithmetic: Basic Rules
	Why Should I Use Unsigned?
	Counting Down with Unsigned
	Why Should I Use Unsigned? (cont.)
	Today: Bits, Bytes, and Integers
	Byte-Oriented Memory Organization
	Machine Words
	Word-Oriented Memory Organization
	Example Data Representations
	Byte Ordering
	Byte Ordering Example
	Representing Integers
	Examining Data Representations
	show_bytes Execution Example
	Representing Pointers
	Representing Strings
	Integer C Puzzles
	Bonus extras
	Application of Boolean Algebra
	Binary Number Property
	Code Security Example
	Typical Usage
	Malicious Usage
	Mathematical Properties
	Mathematical Properties of TAdd
	Characterizing TAdd
	Negation: Complement & Increment
	Complement & Increment Examples
	Code Security Example #2
	XDR Code
	XDR Vulnerability
	Compiled Multiplication Code
	Compiled Unsigned Division Code
	Signed Power-of-2 Divide with Shift
	Correct Power-of-2 Divide
	Correct Power-of-2 Divide (Cont.)
	Compiled Signed Division Code
	Arithmetic: Basic Rules
	Properties of Unsigned Arithmetic
	Properties of Two’s Comp. Arithmetic
	Reading Byte-Reversed Listings

