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Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
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Everything is bits
 Each bit is 0 or 1
 By encoding/interpreting sets of bits in various ways

 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

 Why bits?  Electronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires 

0.0V
0.2V

0.9V
1.1V

0 1 0
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For example, can count in 
binary

 Base 2 Number Representation
 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104  as 1.11011011011012 X 213
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Encoding Byte Values
 Byte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex Decim
al

Binary
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Example Data Representations

C Data Type Typical 32-
bit

Typical 64-
bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8
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Boolean Algebra
 Developed by George Boole in 19th Century

 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
  A&B = 1 when both A=1 and B=1

Or
  A|B = 1 when either A=1 or B=1

Not
  ~A = 1 when A=0

Exclusive-Or (Xor)
  A^B = 1 when either A=1 or B=1, but not both
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General Boolean Algebras
 Operate on Bit Vectors

 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

  01101001
& 01010101
  01000001

  01101001
| 01010101
  01111101

  01101001
^ 01010101
  00111100

  
~ 01010101
  10101010  01000001 01111101 00111100 10101010
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Example: Representing & 
Manipulating Sets

 Representation
 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j   A∈

  01101001 { 0, 3, 5, 6 }
  76543210

  01010101 { 0, 2, 4, 6 }
  76543210

 Operations
 &    Intersection 01000001 { 0, 6 }
 |     Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^     Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~     Complement 10101010 { 1, 3, 5, 7 }
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Bit-Level Operations in C
 Operations &,  |,  ~,  ^ Available in C

 Apply to any “integral” data type
 long, int, short, char, unsigned

 View arguments as bit vectors
 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41  0xBE➙

 ~010000012  10111110➙ 2

 ~0x00  0xFF➙
 ~000000002  11111111➙ 2

 0x69 & 0x55  0x41➙
 011010012 & 010101012  01000001➙ 2

 0x69 | 0x55  0x7D➙
 011010012 | 010101012 ➙ 011111012
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Contrast: Logic Operations in C
 Contrast to Logical Operators

 &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

 Examples (char data type)
 !0x41    0x00➙
 !0x00    0x01➙
 !!0x41    0x01➙

 0x69 && 0x55    0x01➙
 0x69 || 0x55    0x01➙
 p && *p (avoids null pointer access)
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Contrast: Logic Operations in C
 Contrast to Logical Operators

 &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

 Examples (char data type)
 !0x41    0x00➙
 !0x00    0x01➙
 !!0x41    0x01➙

 0x69 && 0x55    0x01➙
 0x69 || 0x55    0x01➙
 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)… 
one of the more common oopsies in 
C programming
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Shift Operations
 Left Shift: x << y

 Shift bit-vector x left y positions
– Throw away extra bits on left

 Fill with 0’s on right
 Right Shift: x >> y

 Shift bit-vector x right y positions
 Throw away extra bits on right

 Logical shift
 Fill with 0’s on left

 Arithmetic shift
 Replicate most significant bit on left

 Undefined Behavior
 Shift amount < 0 or  word size≥

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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 Summary
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Encoding Integers

  short int x =  15213;
  short int y = -15213;

 C short 2 bytes long

 Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative
 1 for negative

Unsigned Two’s Complement

Sign
Bit

B2T (X )   xw 1 2w 1  xi 2
i

i0

w 2

B2U(X )  xi 2
i

i0

w 1



 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 
y -15213 C4 93 11000100 10010011 
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Two-complement Encoding Example 
(Cont.)

  x =      15213: 00111011 01101101
  y =     -15213: 11000100 10010011

Weight 15213 -15213 
1 1 1 1 1 
2 0 0 1 2 
4 1 4 0 0 
8 1 8 0 0 

16 0 0 1 16 
32 1 32 0 0 
64 1 64 0 0 

128 0 0 1 128 
256 1 256 0 0 
512 1 512 0 0 

1024 0 0 1 1024 
2048 1 2048 0 0 
4096 1 4096 0 0 
8192 1 8192 0 0 

16384 0 0 1 16384 
-32768 0 0 1 -32768 

Sum  15213  -15213 
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Numeric Ranges
 Unsigned Values

 UMin = 0
000…0

 UMax =  2w – 1
111…1

 Two’s Complement Values
 TMin =  –2w–1

100…0
 TMax =  2w–1 – 1

011…1
 Other Values

 Minus 1
111…1

Values for W = 16
 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 
TMax 32767 7F FF 01111111 11111111 
TMin -32768 80 00 10000000 00000000 
-1 -1 FF FF 11111111 11111111 
0 0 00 00 00000000 00000000 
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Values for Different Word Sizes

 Observations
 |TMin | = TMax + 1

 Asymmetric range
 UMax = 2 * TMax 

+ 1 

 C Programming
 #include <limits.h>
 Declares constants, e.g.,

 ULONG_MAX
 LONG_MAX
 LONG_MIN

 Values platform specific

 W 
 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 
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Unsigned & Signed Numeric Values
 Equivalence

 Same encodings for 
nonnegative values

 Uniqueness
 Every bit pattern represents 

unique integer value
 Each representable integer has 

unique bit encoding
  Can Invert Mappings

 U2B(x)  =  B2U-1(x)
 Bit pattern for unsigned 

integer
 T2B(x)  =  B2T-1(x)

 Bit pattern for two’s comp 
integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
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T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Mapping Between Signed & 
Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement 
numbers:
 Keep bit representations and reinterpret
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Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U
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Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16
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+ + + + + +• • •
- + + + + +• • •

ux
x

w–1 0

Relation between Signed & 
Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax  + 1

2’s Complement 
Range

Unsigned
Range

Conversion Visualized
 2’s Comp. → Unsigned

 Ordering Inversion
 Negative → Big Positive
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Signed vs. Unsigned in C
 Constants

 By default are considered to be signed integers
 Unsigned if have “U” as suffix

0U, 4294967259U
 Casting

 Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;
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Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression, 
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation
0 0U == unsigned

-1 0 < signed
-1 0U > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > signed
 2147483647 2147483648U > unsigned
 2147483647 (int) 2147483648U > signed
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Summary
Casting Signed  Unsigned: Basic ↔

Rules
 Bit pattern is maintained
 But reinterpreted
 Can have unexpected effects: adding or 

subtracting 2w

 Expression containing signed and unsigned int
 int is cast to unsigned!!
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Sign Extension
 Task:

 Given w-bit signed integer x
 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:
 X’  =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X 

X  • • • • • •

• • •

w

wk
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Sign Extension Example

 Converting from smaller to larger integer data 
type

 C automatically performs sign extension

  short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011
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Summary:
Expanding, Truncating: Basic 
Rules
 Expanding (e.g., short int to int)

 Unsigned: zeros added
 Signed: sign extension
 Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated
 Result reinterpreted
 Unsigned: mod operation
 Signed: similar to mod
 For small numbers yields expected behavior
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Unsigned Addition

 Standard Addition Function
 Ignores carry output

 Implements Modular Arithmetic
s =  UAddw(u , v) = u + v  mod 2w

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w 
bits

UAddw(u , v)
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Visualizing (Mathematical) Integer 
Addition

 Integer Addition
 4-bit integers u, v
 Compute true sum 

Add4(u , v)
 Values increase 

linearly with u and v
 Forms planar 

surface

Add4(u , v)

u
v

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition
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Visualizing Unsigned Addition

 Wraps Around
 If true sum  2≥ w

 At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0

2

4

6

8

10

12

14

16
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Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level 
Behavior
 Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);

 t = u + v
 Will give s == t

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)
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TAdd Overflow
 Functionality

 True sum requires 
w+1 bits

 Drop off MSB
 Treat remaining 

bits as 2’s comp. 
integer

–2w –1

–2w

0

2w –1–1

2w–1
True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver
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Visualizing 2’s Complement 
Addition

 Values
 4-bit two’s comp.
 Range from -8 to +7

 Wraps Around
 If sum  2w–1

 Becomes 
negative

 At most once
 If sum < –2w–1

 Becomes 
positive

 At most once

TAdd4(u , v)

u
v
PosOver

NegOver

-8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4
6

-8

-6

-4

-2

0

2

4

6

8
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C: signed vs. unsigned overflow
 C language only specifies overflow for unsigned 

variables!
Signed Overflow in C is undefined behavior!

– Historic reasons: Some C implementations used 
one’s complement representation.

Added by TCM 2023

/* This may be optimized to return 0 */
int detect_overflow_s(int x)
{
    return x+1 < x;
}

int detect_overflow_u(unsigned x)
{
    return x+1 < x;
}

int main()
{
    if(detect_overflow_s(0x7fffffff))
        printf("Signed overflow detected\n");
    if(detect_overflow_u(0xffffffff))
        printf("Unsigned overflow detected\n");
    return 0;
}

/* This may be optimized to return 0 */
int detect_overflow_s(int x)
{
    return x+1 < x;
}

int detect_overflow_u(unsigned x)
{
    return x+1 < x;
}

int main()
{
    if(detect_overflow_s(0x7fffffff))
        printf("Signed overflow detected\n");
    if(detect_overflow_u(0xffffffff))
        printf("Unsigned overflow detected\n");
    return 0;
}

On gcc 12 with -Og  prints 
only 
Unsigned overlfow detected
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Multiplication
 Goal: Computing Product of w-bit numbers x, y

 Either signed or unsigned
 But, exact results can be bigger than w bits

 Unsigned: up to 2w bits
 Result range: 0  ≤ x * y  (2≤ w – 1) 2  =  22w – 2w+1 + 1

 Two’s complement min (negative): Up to 2w-1 bits
 Result range: x * y   (–2≥ w–1)*(2w–1–1)  =  –22w–2 + 2w–1

 Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

 Result range: x * y  (–2≤ w–1) 2  =  22w–2

 So, maintaining exact results…
 would need to keep expanding word size with each product 

computed
 is done in software, if needed

 e.g., by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

 Standard Multiplication 
Function
 Ignores high order w bits

 Implements Modular 
Arithmetic
UMultw(u , v) = u   · v  mod 2w

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w  bits

Operands: w bits

Discard w bits: w 
bits

UMultw(u , v)
• • •
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Signed Multiplication in C

 Standard Multiplication 
Function
 Ignores high order w bits
 Some of which are different for 

signed vs. unsigned multiplication
 Lower bits are the same

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w  bits

Operands: w bits

Discard w bits: w 
bits

TMultw(u , v)
• • •
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Power-of-2 Multiply with Shift
 Operation

 u << k gives u * 2k

 Both signed and unsigned

 Examples
 u << 3 == u * 8
 (u << 5) – (u << 3) == u * 24
 Most machines shift and add faster than multiply

 Compiler generates this code automatically

• • •
0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k  bits

Operands: w bits

Discard k  bits: w 
bits

UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••
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Unsigned Power-of-2 Divide with Shift
 Quotient of Unsigned by Power of 2

 u >> k gives  ⌊u / 2k⌋ 

 Uses logical shift

0 0 1 0 0 0•••
u
2k/

u / 2kDivision: 

Operands: •••

k
••• •••

•••0 0 0••• •••

⌊u / 2k⌋ •••Result:

.

Binary Point

0

0 0 0•••0

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 
x >> 1 7606.5 7606 1D B6 00011101 10110110 
x >> 4 950.8125 950 03 B6 00000011 10110110 
x >> 8 59.4257813 59 00 3B 00000000 00111011 
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Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
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Arithmetic: Basic Rules
 Addition:

 Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

 Unsigned: addition mod 2w

 Mathematical addition + possible subtraction of 2w

 Signed: modified addition mod 2w (result in proper range)
 Mathematical addition + possible addition or subtraction of 

2w

 Multiplication:
 Unsigned/signed: Normal multiplication followed by truncate, 

same operation on bit level
 Unsigned: multiplication mod 2w

 Signed: modified multiplication mod 2w (result in proper range)
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Why Should I Use Unsigned?
 Don’t use without understanding implications

 Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];

 Can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
  . . .
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Counting Down with Unsigned
 Proper way to use unsigned as loop index

unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];

 See Robert Seacord, Secure Coding in C and C++
 C Standard guarantees that unsigned addition will behave 

like modular arithmetic
 0 – 1  UMax

 Even better
size_t i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];

 Data type size_t defined as unsigned value with length = word size
 Code will work even if cnt = UMax
 What if cnt is signed and < 0?
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Why Should I Use Unsigned? 
(cont.)

 Do Use When Performing Modular Arithmetic
 Multiprecision arithmetic

 Do Use When Using Bits to Represent Sets
 Logical right shift, no sign extension
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Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
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Byte-Oriented Memory 
Organization

 Programs refer to data by address
 Conceptually, envision it as a very large array of bytes

 In reality, it’s not, but can think of it that way
 An address is like an index into that array

 and, a pointer variable stores an address

Note: system provides private address spaces to each 
“process”
 Think of a process as a program being executed
 So, a program can clobber its own data, but not that of others

• • •
00•••

0
FF•

••F



Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Words
 Any given computer has a “Word Size”

 Nominal size of integer-valued data
 and of addresses

 Until recently, most machines used 32 bits (4 bytes) as word 
size
 Limits addresses to 4GB (232 bytes)

 Increasingly, machines have 64-bit word size
 Potentially, could have 18 EB (exabytes) of addressable 

memory
 That’s 18.4 X 1018

 Machines still support multiple data formats
 Fractions or multiples of word size
 Always integral number of bytes
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Word-Oriented Memory Organization

 Addresses Specify Byte 
Locations
 Address of first byte in word
 Addresses of successive words 

differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

0000

0004

0008

0012

0000

0008
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Example Data Representations

C Data Type Typical 32-
bit

Typical 64-
bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8
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Byte Ordering
 So, how are the bytes within a multi-byte word 

ordered in memory?
 Conventions

 Big Endian: Sun, PPC Mac, Internet
 Least significant byte has highest address

 Little Endian: x86, ARM processors running Android, iOS, 
and Windows
 Least significant byte has lowest address
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Byte Ordering Example
 Example

 Variable x has 4-byte value of 0x01234567
 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Representing Integers
Decimal: 15213
Binary:  0011 1011 0110 1101
Hex:    3    B    6    D

Decimal: 15213
Binary:  0011 1011 0110 1101
Hex:    3    B    6    D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun

6D
3B
00
00

IA32
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Examining Data 
Representations

 Code to Print Byte Representation of Data
 Casting pointer to unsigned char * allows treatment as a 

byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
  size_t i;
  for (i = 0; i < len; i++)
    printf(”%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
  size_t i;
  for (i = 0; i < len; i++)
    printf(”%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}
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show_bytes Execution Example
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
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Representing Pointers

Different compilers & machines assign different locations to 
objects

Even get different results each time run program

int B = -15213;
int *P = &B;
int B = -15213;
int *P = &B;

x86-64Sun IA32
EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00
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char S[6] = "18213";char S[6] = "18213";

Representing Strings
 Strings in C

 Represented by array of characters
 Each character encoded in ASCII format

 Standard 7-bit encoding of character set
 Character “0” has code 0x30

– Digit i  has code 0x30+i
 String should be null-terminated

 Final character = 0
 Compatibility

 Byte ordering not an issue

IA32 Sun
31

38

32

31

33

00

31

38

32

31

33

00
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Integer C Puzzles
• X < 0 → ((x*2) < 0)
• ux >= 0
• X & 7 == 7 → (x<<30) < 0
• ux > -1
• x > y → -x < -y
• x * x >= 0
• x > 0 && y > 0 → x + y > 0
• X >= 0 → -x <= 0
• X <= 0 → -x >= 0
• (x|-x)>>31 == -1
• ux >> 3 == ux/8
• x >> 3 == x/8
• x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization
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Bonus extras
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Application of Boolean Algebra
 Applied to Digital Systems by Claude Shannon

 1937 MIT Master’s Thesis
 Reason about networks of relay switches

 Encode closed switch as 1, open switch as 0

A

~A

~B

B

Connection when
  
 A&~B | ~A&B

  

A&~B

~A&B = A^B
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Binary Number Property

 w = 0:
 1 = 20

 Assume true for w-1:
 1 + 1 + 2 + 4 + 8 + … + 2w-1 + 2w    =    2w + 2w    =    2w+1  

Claim
1 + 1 + 2 + 4 + 8 + … + 2w-1  = 2w

=    2w
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Code Security Example

 Similar to code found in FreeBSD’s implementation 
of getpeername

 There are legions of smart people trying to find 
vulnerabilities in programs

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
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Typical Usage
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf(“%s\n”, mybuf);
}
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Malicious Usage
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    . . .
}

/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);



Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mathematical Properties
 Modular Addition Forms an Abelian Group

 Closed under addition
0   UAddw(u , v)     2w –1

 Commutative
UAddw(u , v)  =   UAddw(v , u)

 Associative
UAddw(t, UAddw(u , v))  =   UAddw(UAddw(t, u ), v)

 0 is additive identity
UAddw(u , 0)  =  u

 Every element has additive inverse
 Let UCompw (u )  = 2w – u

UAddw(u , UCompw (u ))  =  0
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Mathematical Properties of TAdd
 Isomorphic Group to unsigneds with UAdd

 TAddw(u , v) =  U2T(UAddw(T2U(u ), T2U(v)))
 Since both have identical bit patterns

 Two’s Complement Under TAdd Forms a Group
 Closed, Commutative, Associative, 0 is additive identity
 Every element has additive inverse

TCompw(u) 
 u u TMinw

TMinw u TMinw




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Characterizing TAdd

 Functionality
 True sum requires w+1 

bits
 Drop off MSB
 Treat remaining bits as 

2’s comp. integer
u

v

< 0 > 0
< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)
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Negation: Complement & Increment
 Claim: Following Holds for 2’s Complement

 ~x + 1 == -x

 Complement
 Observation: ~x + x == 1111…111 == -1

 Complete Proof?

1 0 0 1 0 11 1 x
0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1
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Complement & Increment 
Examples

x = 15213

x = 0

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 
~x -15214 C4 92 11000100 10010010 
~x+1 -15213 C4 93 11000100 10010011 
y -15213 C4 93 11000100 10010011 
 

 Decimal Hex Binary 
0 0 00 00 00000000 00000000 
~0 -1 FF FF 11111111 11111111 
~0+1 0 00 00 00000000 00000000 
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Code Security Example #2
 SUN XDR library

 Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

ele_src

malloc(ele_cnt * ele_size)
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XDR Code
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
    /*
     * Allocate buffer for ele_cnt objects, each of ele_size bytes
     * and copy from locations designated by ele_src
     */
    void *result = malloc(ele_cnt * ele_size);
    if (result == NULL)

/* malloc failed */
return NULL;

    void *next = result;
    int i;
    for (i = 0; i < ele_cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele_src[i], ele_size);

/* Move pointer to next memory region */
next += ele_size;

    }
    return result;
}
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XDR Vulnerability

 What if:
 ele_cnt = 220 + 1
 ele_size = 4096 = 212

 Allocation = ??

 How can I make this function secure?

malloc(ele_cnt * ele_size)



Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

leaq (%rax,%rax,2), %rax
salq $2, %rax

Compiled Multiplication Code

 C compiler automatically generates shift/add code 
when multiplying by constant

long mul12(long x)
{
  return x*12;
}

t <- x+x*2
return t << 2;

C Function

Compiled Arithmetic Operations Explanation
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shrq $3, %rax

Compiled Unsigned Division Code

 Uses logical shift for unsigned
 For Java Users 

 Logical shift written as >>>

unsigned long udiv8
      (unsigned long x)
{
  return x/8;
}

# Logical shift
return x >> 3;

C Function

Compiled Arithmetic Operations Explanation
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Signed Power-of-2 Divide with Shift
 Quotient of Signed by Power of 2

 x >> k gives   ⌊x / 2k ⌋
 Uses arithmetic shift
 Rounds wrong direction when u < 0

0 0 1 0 0 0•••
x
2k/

x / 2kDivision: 

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary 
y -15213 -15213 C4 93 11000100 10010011 
y >> 1 -7606.5 -7607 E2 49  11100010 01001001 
y >> 4 -950.8125 -951 FC 49 11111100 01001001 
y >> 8 -59.4257813 -60 FF C4 11111111 11000100 
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Correct Power-of-2 Divide
 Quotient of Negative Number by Power of 2

 Want  ⎡x / 2k ⎤   (Round Toward 0)
 Compute as  ⎣(x+2k-1)/ 2k ⎦

 In C: (x + (1<<k)-1) >> k
 Biases dividend toward 0

Case 1: No rounding

Divisor: 

Dividend:

0 0 1 0 0 0•••

u

2k/

 ⎡ u / 2k⎤  

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect



Carnegie Mellon

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Power-of-2 Divide (Cont.)

Divisor: 

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/
 ⎡ x / 2k ⎤ 

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1
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testq %rax, %rax
js L4

L3:
sarq $3, %rax
ret

L4:
addq $7, %rax
jmp L3

Compiled Signed Division Code

 Uses arithmetic shift for 
int

 For Java Users 
 Arith. shift written as >>

long idiv8(long x)
{
  return x/8;
}

if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;

C Function

Compiled Arithmetic Operations Explanation
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Arithmetic: Basic Rules
 Unsigned ints, 2’s complement ints are 

isomorphic rings: isomorphism = casting

 Left shift
 Unsigned/signed: multiplication by 2k

 Always logical shift

 Right shift
 Unsigned: logical shift, div (division + round to zero) by 2k

 Signed: arithmetic shift
 Positive numbers: div (division + round to zero) by 2k

 Negative numbers: div (division + round away from 
zero) by 2k

Use biasing to fix
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Properties of Unsigned Arithmetic
 Unsigned Multiplication with Addition Forms 

Commutative Ring
 Addition is commutative group
 Closed under multiplication

0   UMult≤ w(u , v)  ≤  2w –1
 Multiplication Commutative

UMultw(u , v)  =   UMultw(v , u)
 Multiplication is Associative

UMultw(t, UMultw(u , v))  =   UMultw(UMultw(t, u ), v)
 1 is multiplicative identity

UMultw(u , 1)  =  u
 Multiplication distributes over addtion

UMultw(t, UAddw(u , v))  =   UAddw(UMultw(t, u ), UMultw(t, v))



Carnegie Mellon

87Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of Two’s Comp. Arithmetic
 Isomorphic Algebras

 Unsigned multiplication and addition
 Truncating to w bits

 Two’s complement multiplication and addition
 Truncating to w bits

 Both Form Rings
 Isomorphic to ring of integers mod 2w

 Comparison to (Mathematical) Integer Arithmetic
 Both are rings
 Integers obey ordering properties, e.g.,

U > 0  → u + v > v
u > 0, v > 0  → u · v > 0

 These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)
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 Address Instruction Code Assembly Rendition
 8048365: 5b                   pop    %ebx
 8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx
 804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading Byte-Reversed Listings
 Disassembly

 Text representation of binary machine code
 Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
 Value: 0x12ab
 Pad to 32 bits: 0x000012ab
 Split into bytes: 00 00 12 ab
 Reverse: ab 12 00 00
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