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If a force F(7) acts on a viscously damped spring-mass system as shown in Fig. 3.1, the
equation of motion can be obtained using Newton’s second law:

mx + cx + kx = F(1) (3.1)

Since this equation is nonhomogeneous, its general solution x(f) is given by the sum of the

homogeneous solution, x;(7), and the particular solution, x,(¢). The homogeneous solu-
tion, which is the solution of the homogeneous equation

mx +cx +kx=0 (3.2)

represents the free vibration of the system and was discussed in Chapter 2. As seen in Section
2.6.2, this free vibration dies out with time under each of the three possible conditions of
damping (underdamping, critical damping, and overdamping) and under all possible initial

conditions. Thus the general solution of Eq. (3.1) eventually reduces to the particular solu-
tion x(¢), which represents the steady-state vibration. The steady-state motion is present
as long as the forcing function is present. The variations of homogeneous, particular, and
general solutions with time for a typical case are shown in Fig. 3.2. It can be seen that
xp(t) dies out and x(r) becomes x,(f) after some time (7 in Fig. 3.2). The part of the
motion that dies out due to damping (the free-vibration part) is called transient. The rate at
which the transient motion decays depends on the values of the system parameters k, ¢, and
m. In this chapter, except in Section 3.3, we ignore the transient motion and derive only the

particular solution of Eq. (3.1 ), which represents the steady-state response, under harmonic
forcing functions.
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FIGURE 3.1 A spring-mass-damper system.
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FIGURE 3.2 Homogenous, panicular, and general solutions

of Eq. (3.1) for an underdamped case.



Resposta de um sistema sem amortecimento e de 1GL a uma excitacao harmonica

Before studying the response of a damped system, we consider an undamped system sub-
jected to a harmonic force, for the sake of simplicity. If a force F(1) = F cos wt acts on
the mass m of an undamped system, the equation of motion, Eq. (3.1), reduces to

mx + kx = Fycos wt (3.3)
The homogeneous solution of this equation is given by
xp(t) = C) cos wyt + Cysin wt (3.4)

where @, = (k/m)'/? is the natural frequency of the system. Because the exciting force
F(r) is harmonic, the particular solution x () is also harmonic and has the same frequency
w. Thus we assume a solution in the form

xp(1) = X cos wt (3.5)

where X is an constant that denotes the maximum amplitude of x (r). By substituting
Eq. (3.5) into Eq. (3.3) and solving for X, we obtain

F 5
X=—2>2 = st (3.6)

k — maw’ w \2
1 — PR
wy

where 8;, = Fy/k denotes the deflection of the mass under a force F and is sometimes
called static de fection because F; is a constant (static) force. Thus the total solution of
Eqg. (3.3) becomes

Fi
x(1) = Ccos wt + Cysinw,t + —  _cos et (3.7)
k — mw

Using the initial conditions x(¢ = 0) = xgand x(r = 0) = x;, we find that

Fy _f.[;

C,=xg——— =
: 0 k — ma® Ty

and hence

Fy Xp ) .
x(t) ={xg— ——5 |coswyt + | — |sinw,t
k — mew” W,

Fy
+ —2 COs
k — mw

(3.8)

(3.9)



The maximum amplitude X in Eq. (3.6) can be expressed as

X |
X__ v (3.10)
8y

-(2)

The quantity X /&, represents the ratio of the dynamic to the static amplitude of motion
and is called the magni fcation factor, ampli fcation fictor, or amplitude ratio. The vari-
ation of the amplitude ratio, X /8. with the frequency ratio r = w/w, (Eq. 3.10) is
shown in Fig. 3.3. From this figure, the response of the system can be identified to be of
three types.

i | l | = r= (wlw,)

FIGURE 3.3 Magnification factor of an undamped system, Eq. (3.10).
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https://www.youtube.com/watch?v=BE827gwnnk4

Casel. When(0 < w/w, < 1, the denominator in Eq. (3.10) is positive and the response
is given by Egq. (3.5) without change. The harmonic response of the system x () is said to
be in phase with the external force as shown in Fig. 3.4.

1) = F, cos wf
Hi=F,
£ ]
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x 1) = X cos wi
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FIGURE 3.4 Harmonic response when
0 < wlw, <1,




Case 2. When w/w, > 1, the denominator in Eq. (3.10) is negative, and the steady-state
solution can be expressed as
.J:p(!) = —X cos w! (3.11)

where the amplitude of motion X is redefined to be a positive quantity as

X = .:. (3.12)
w \2
Wy

The variations of F(r) and x () with time are shown in Fig. 3.5. Since x () and F{(1) have
opposite signs, the response is said to be 1 80° out of phase with the external force. Further,
as w/w, — 00, X — (). Thus the response of the system to a harmonic force of very high
frequency is close to zero.

Fl1)= F,cos ax

Fy

NN AN
N_ "

At) = — X cos wi

NN

FIGURE 3.5 Harmonic response when
w/w, = 1.




Case 3. When @/w, =1, the amplitude X given by Eg. (3.10) or (3.12) becomes
infinite. This condition, for which the forcing frequency w is equal to the natural frequency
of the system w,, is called resonance. To find the response for this condition, we rewrite

Eq. (3.9) as

Xy . COS il — COS w,!
x(1) = xpcos @yt + —sinawy + 8y
w, w 12
1 — —_—
wﬂ

Since the last term of this equation takes an indefinite form for @ = w,, we apply L'Hos-
pital’s rule [3.1] to evaluate the limit of this term:

(3.13)

[ d
—(cos wt — cos wyt)
) COS @ — COS wy! . dw
lim = lim ;
[ el ] I 2 =l d ] -
Wy — dw m%
. I sin wt wyl
= lim = ——sin wyl (3.14)
W iy (] 2
25
L ‘-Ur:
Thus the response of the system at resonance becomes
X B )t
x(1) = xpcos wyt + =0 sin wyt + SO0 sin Wyl (3.15)

Wy

It can be seen from Eq. (3.15) that at resonance, x(r) increases indefinitely. The last term of
Eq. (3.15) is shown in Fig. 3.6, from which the amplitude of the response can be seen to
increase linearly with time.

_rp{.rjl f

0

FIGURE 3.6 Response when w/w, = 1.

x(r) = (.‘ru S

()
k — mw”

0 Xo | .
| COs wyl + | = | S1n iyl
k — mw w,

COs il (3.9)
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The total response of the system, Eq. (3.7) or Eq. (3.9), can also be expressed as

3_[ L2
x(1) = Acos (@t — ¢) + : ~cos wt;  for— <1

m @

il
cos wi; for— =1

w \2 iy
-1+ =
Wy

x(t) = Acos (@, — &) —

(3.16)

(3.17)

where A and ¢ can be determined as in the case of Eq. (2.21). Thus the complete motion
can be expressed as the sum of two cosine curves of different frequencies. In Eq. (3.16),
the forcing frequency @ is smaller than the natural frequency, and the total response is
shown in Fig. 3.7(a). In Eq. (3.17), the forcing frequency is greater than the natural fre-

quency, and the total response appears as shown in Fig. 3.7(b).

F x
x(1) = (Iu - ﬁ) cos wyf + (m—ﬂ) sin @,
i

+ Fo (3.9)
— | cOs Wi !
k — o

).'(!} 4

x(1)

FIGURE 3.7 Total response.
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Resposta de um sistema com amortecimento e de 1GL a uma excitacao harmonica

—

If the forcing function is given by F(t) = F; cos wt, the equation of motion becomes
mx + cx + kx = Fycos wt (3.24)

The particular solution of Eq. (3.24) is also expected to be harmonic; we assume it in
the form!

xp(t) = X cos (wr — &) (3.25)

where X and ¢ are constants to be determined. X and ¢» denote the amplitude and phase angle
of the response, respectively. By substituting Eq. (3.25) into Eq. (3.24), we arrive at

X[(k — mw?) cos (wt — ¢) — cwsin(wt — ¢)] = Fycos ot (3.26)
Using the trigonometric relations

cos (wf — &) = cos wt cos ¢ + sin wt sin ¢

sin (@t — &) = sin wt cos ¢ — cos wr sin ¢

in Eq. (3.26) and equating the coefficients of cos @t and sin @ on both sides of the result-
ing equation, we obtain

X[(k — me?) cos ¢ + cwsin ] = F,
X[(k — mw?®) sind — cwcos d] =0 (3.27)

Solution of Eq. (3.27) gives

X = (3.28)

and

(3.29)



By inserting the expressions of X and ¢ from Egs. (3.28) and (3.29) into Eq. (3.25), we
obtain the particular solution of Eq. (3.24). Figure 3.10(a) shows typical plots of the forc-
ing function and (steady-state) response. The various terms of Eq. (3.26) are shown vecto-
rially in Fig. 3.10(b). Dividing both the numerator and denominator of Eq. (3.28) by k and

making the following substitutions

L. 2{w,,

.
2V mk m
F

0 . .
= — = deflection under the static force F;, and

¢, 2mw,

£
I

[ .
r = — = frequency ratio
Ly

we obtain

and

ANV

{a) Graphical representation

FIGURE 3.10 Representation of forcing function and response.

(3.31)

il

Reference

cw X

>
mer- X

(b) Vectorial representation
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As stated in Section 3.3, the quantity M = X /8, is called the magni fcation fictor, ampli-
feation fictor, or amplitude ratio. The variations of X /8, and ¢ with the frequency ratio
r and the damping ratio { are shown in Fig. 3.11.

The following characteristics of the magnification factor (M) can be noted from

Eq. (3.30) and Fig. 3.11(a):

1.

b

S

For an undamped system (£ = 0), Eq. (3.30) reduces to Eq. (3.10), and M — 20 as
r—1.
Any amount of damping ({ = 0) reduces the magnification factor (M) for all values

of the forcing frequency.

For any specitied value of r, a higher value of damping reduces the value of M.

In the degenerate case of a constant force (when r = 0), the value of M = 1.

The reduction in M in the presence of damping is very significant at or near resonance.
The amplitude of forced vibration becomes smaller with increasing values of the forc-
ing frequency (that is, M — 0 as r — ©0).
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FIGURE 3.11 Variation of X and ¢ with frequency ratio r.
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7. For) < [ < ?12-, the maximum value of M occurs when (see Problem 3.32)

r=\1-27? or o= w0,V — 27 (3.32)

which can be seen to be lower than the undamped natural frequency w, and the
damped natural frequency wy = 0, V1 — 2.

. The maximum value of X (when r = V1 — 27%)is given by

X 1
(&ﬁt)m&x 20V — fz (3:33)

and the value of X at w = w, by

X =L
% Y. (3.34)

Equation (3.33) can be used for the experimental determination of the measure of
damping present in the system. In a vibration test, if the maximum amplitude of the
response ( X) ., is measured, the damping ratio of the system can be found using Eq.
(3.33). Conversely, if the amount of damping is known, one can make an estimate of
the maximum amplitude of vibration.

. For{ = \.rl_E % = Owhenr = 0.For{ = ﬁ- the graph of M monotonically decreases
with increasing values of r.

15



The following characteristics of the phase angle can be observed from Eq. (3.31) and
Fig. 3.11(b):

1.

For an undamped system ({ = 0), Eq. (3.31) shows that the phase angle is 0 for

(0 << r << 1 and 180° for r = 1. This implies that the excitation and response are in
phase for 0 << r << | and out of phase forr =1 when{ = (.

For{ = 0and 0 < r << 1, the phase angle is given by 0 << ¢ << 90°, implying that
the response lags the excitation.

For{ = Oand r > 1, the phase angle is given by 90° << ¢ <C 180°, implying that
the response leads the excitation.

For { = 0 and r = 1, the phase angle is given by ¢ = 90°, implying that the phase
difference between the excitation and the response is 90°.

For { = 0 and large values of r, the phase angle approaches 180°, implying that the
response and the excitation are out of phase.

16



3.4.1 The complete solution is given by x{r) = x,(f) + x,(t) where x;(r) is given by Eq.

Total Response (2.70). Thus, for an underdamped system, we have

(1) = Xpe ™ cos(wyt — dyg) + Xcos(wt — &) (3.35)

wy = V1 — P w,

X and ¢ are given by Eqgs. (3.30) and (3.31), respectively, and X and db [different from
those of Eq. (2.70)] can be determined from the initial conditions. For the initial condi-
tions, x(r = 0) = xyand (1 = 0) = %, Eq. (3.35) yields

xp = Xy cos by + X cos ¢

Xg = — {w, X, cos ¢y + wyXysin gy + wX sin ¢ (3.36)

The solution of Eq. (3.36) gives X and dy as

)

| ==

X, = I:(_rn — X cos )2 + ]—l(gmnxﬂ + iy — {w, X cos ¢ — wX sin :ﬁ:}z]

g

{w,xy + vy — {w,X cosd — wX singd

wq( xg — X cos ¢) J

b (3.37)

tan qfiﬂ =

1 1

o {[1 - (3)2]2 ; [2;2]2}'“ TNV

2w
¢ = tan™ n = tan™ ( 2 1)
=i
w"

xp(1) = X cos (wr — ¢) (3.25)

| <

x(1) = Xe ¢ cos (\/1 — Pwnt — qf)) (2.70)



3.4.2
Quality Factor
and Bandwidth

For small values of damping (¢ < 0.05), we can take

X X 1
(a)m = (a—h =3 =9 339

The value of the amplitude ratio at resonance is also called Q factor or quality fictor of the
system, in analogy with some electrical-engineering applications, such as the tuning circuit
of a radio, where the interest lies in an amplitude at resonance that is as large as possible
[3.2]. The points R; and R», where the amplification factor falls to Q/ V2, are called hal f
power points because the power absorbed ( AW) by the damper (or by the resistor in an
electrical circuit), responding harmonically at a given frequency, is proportional to the
square of the amplitude (see Eq. (2.94)):

— 2
ﬁ.W = qrcwX X/(Ss‘

L=
I
|-

IS

b —————— ———

Bandwidth‘
| || e
R, 10 R, “n
Half-power points

FIGURE 3.12 Harmonic-response curve showing half-
power points and bandwidth.
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The difference between the frequencies associated with the half-power points R; and R is
called the bandwidrh of the system (see Fig. 3.12). To find the values of R; and R», we set

X /8, = @/ V2 in Eq. (3.30) so that
1 Q

_ 1
\/(l — rz}2 + (25}‘}2 B \/’L; B 2\/2_5"

or
-2 -4y + (1 -8 =0
The solution of Eq. (3.40) gives
m=1-22-2V1+70, rB=1-22+u4\V1i+{

For small values of £, Eq. (3.41) can be approximated as

where w; = w|R] and wy = w|ﬁ-:. From Eq. (3.42),

@3 — wf = (@ + oy)(w; — ;) = (R} — R)wj = 4{w;,

Using the relation
wy + @ = 2w,
in Eq. (3.43), we find that the bandwidth Aw is given by
Aw = wr — ay = 2w,
Combining Egs. (3.38) and (3.45), we obtain

~ L@
20w — wy

0

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

It can be seen that the quality factor O can be used for estimating the equivalent viscous

damping in a mechanical system.”
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Exemplos e exercicios

Plate Supporting a Pump

A reciprocating pump, weighing 150 1b, is mounted at the middle of a steel plate of thickness 0.5 in.,
width 20 1in., and length 100 in., clamped along two edges as shown in Fig. 3.9. During operation of
the pump, the plate is subjected to a harmonic force, (1) = 50 cos 62.832¢ Ib. Find the amplitude of
vibration of the plate.

g Sy

% T — |
F(£), (1)
< 100 in. -

AN




Solution: The plate can be modeled as a fixed-fixed beam having Young’s modulus ( £) = 30 X 10°
psi, length (1) = 100 in., and area moment of inertia (1) = 75(20)(0.5)> = 0.2083 in*. The bending
stiffness of the beam 1s given by

1921 192(30 X 10°)(0.2083)
P (100)3

= 1200.0 Ib/in. (E.1)

The amplitude of harmonic response is given by Eq. (3.6) with Fy = 50 b, m = 150/386.4 Ib-sec?/in.
(neglecting the weight of the steel plate), k = 1200.0 1b/in., and w = 62.832 rad/s. Thus Eq. (3.6)
gives

Fy 50

X = =
k — mw®  1200.0 — (150/386.4)(62.832)>

= —0.1504 in. (E.2)

The negative sign indicates that the response x(z) of the plate is out of phase with the excitation F(z).

x,(t) = X cos wt

21



Total Response of a System

Find the total response of a single-degree-of-freedom system with m = 10 kg, ¢ = 20 N-s/m,
k = 4000 N/m, xo = 0.01 m, and x; = 0 under the following conditions:

a. Anexternal force F(t) = Fycos @ t acts on the system with F, = 100 N and @ = 10 rad/s.

b.  Free vibration with F(¢) = 0. a. From the given data, we obtain
| k /4000
w, = E = —10 = 20 rad/s
F 100
5y = — =—— =0.025m
k 4000

20

C
C T T m 2v(a000)(10)
w; = V1 = Pw, = V1 — (0.05)%20) = 19.974984 rad/s

= 0.05

w_m_

r=-—= = 0.5
w, 20
Oyt 0.025
X = = = 0.03326 m (E.1)
V(L =2+ (2407 [(1 - 0059 +(2-0.5-0.5)2 ]2
20r 2-0.05-0.5
¢ = tan™! d 2) = tan”! 2) = 3.814075° (E.2)
1 —r 1 —05
x0 = Xo cos ¢g + X cos ¢ Using the initial conditions, xo = 0.01 and xy = 0, Eq. (3.36) yields:

%o = — {w,Xg cos by + wyXysindy + wX sin ¢ (3.36) 0.01 = X, cos ¢y + (0.03326)(0.997785)



or

X, cos ¢y = —0.023186

(E.3)

0 = —(0.05)(20) Xpcos ¢ + Xo(19.974984) sin ¢y + (0.03326)(10) sin(3.814075°) (E.4)

Substituting the value of X cos ¢ from Eq. (E.3) into (E.4), we obtain
Xp sin ¢pg = —0.002268
Solution of Egs. (E.3) and (E.5) yields

Xp = [(Xo cos ¢g)? + (Xpsin ¢g)?['/? = 0.023297

and

S1n
tan ¢y = = 0.0978176

or
by = 5.586765°

(E.5)

(E.6)

(E.7)

23



b. For free vibration, the total response is given by
x(1) = Xpe ¢ cos (wyt — ) (E.8)

Using the initial conditions x(0) = x; = 0.01 and x(0) = x3 = 0, X and ¢ of Eq. (E.8) can
be determined as (see Egs. 2.73 and 2.75):

vo— | 2 4 [£eno 242 0012 4 [0:05-20-001 2 1f2_0010012 E£9)
0= | X0 "y B e 19.974984 e

xg + {w, x 0.05-20
b = tan™ [ =2 €00 ) _ oni( — = —2.865984° (E.10)
W Iu 19974934

Note that the constants X, and ¢ in cases (a) and (b) are very different.

24



3.11 A spring-mass system, resting on an inclined plane, is subjected to a harmonic force as
shown in Fig. 3.38. Find the response of the system by assuming zero initial conditions.

KOLrouw) \:ﬁ

flt) = F,cos wt

FIGURE 3.38 mq;L + K (x Fool ) = Won 8 ¢+ Fwswl
'hqf Pk - FusMwJC
X, - O st + (G smuwE

Xp = Fork (oo w T
I-v*
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3.24 Derive the equation of motion and find the steady-state response of the system shown in Fig. 3.44
for rotational motion about the hinge O for the following data: k; = k, = 5000 N/m,
a=02m, b=05m [/ =1m M =50kg, m =10kg, Fj = S00N, @ = 1000 rpm.

Uniform rigid bar, mass m

I \

ékz

Ht) = F,sin wt

I kb6 ;
\JD@ r $ M8

|

NNAANNNY

| o - -

7 H\ﬂ; M
(0]
ky
S
: ’ [ - - ( \/b
FIGURE 3.44

0,
J,

]

]k,o\e’
F (&)
sl ®) @ 4//#10& kzbz)é ~ ﬁfc,}wwf
ﬁr = b, o ut

.y
KK LS = (Tem{D)w ©

/l’”__’?z F *’Wl(fz)

R

2

2

n
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3.25 Derive the equation of motion and find the steady-state solution of the system shown in Fig. 3.45
for rotational motion about the hinge O for the following data: k = 5000 N/m,

[ =1mym=10kg, My = 100 N-m,

Uniform rigid bar,

@ = 1000 rpm.

R

k Mycoswt - - massm
NN\

(6 — —Je L :
Hf’"’if @

LSS ‘

DI SN 3l .

4 - 4 gl
FIGURE 3.45

(e
1

L
Z,

6.
9, -

sl 3¢ 3(
4
—z.ihfmi

O wouwl

+ My coswt
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3.30

A four-cylinder automobile engine is to be supported on three shock mounts, as indicated in
Fig. 3.46. The engine-block assembly weighs 500 Ib. If the unbalanced force generated by
the engine is given by 200 sin 100 777 Ib, design the three shock mounts (each of stiffness &
and viscous-damping constant ¢) such that the amplitude of vibration is less than 0.1 in.

Chassis

FIGURE 3.46 Four-cylinder automobile engine.
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Exercicios selecionados [RAO]

match the items in the two columns below:

2
1. Magnification factor of an undamped system a. i
W, —
I + (2¢r)> 1/2
2. Period of beating b.
(1 — rzjz + (2{1’)2
3. Magnification factor of a damped system c. n
Wy — W)
1
4. Damped frequency d. 5
1l —r
S. Quality factor e. w, VI — (;2

1 1/2
6. Displacement transmissibility f. |: > g}
(1 —=r9) )



3.1

3.2

3.3

3.8

3.26

A weight of 50 N is suspended from a spring of stiffness 4000 N/m and is subjected to a har-
monic force of amplitude 60 N and frequency 6 Hz. Find (a) the extension of the spring due
to the suspended weight, (b) the static displacement of the spring due to the maximum
applied force, and (c) the amplitude of forced motion of the weight.

A spring-mass system is subjected to a harmonic force whose frequency is close to the nat-
ural frequency of the system. If the forcing frequency is 39.8 Hz and the natural frequency is
40.0 Hz, determine the period of beating.

Consider a spring-mass system, with &k = 4000 N/m and m = 10 kg, subject to a harmonic
force F(t) = 400 cos 10r N. Find and plot the total response of the system under the follow-
ing initial conditions:

d. X(]:'U.l ITI,JE."[}:(]
b. Xp = 0, JET[} = 10 m/s
c. xo=0.1m,xyg=10m/ss

A mass m is suspended from a spring of stiffness 4000 N/m and is subjected to a harmonic
force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude of the forced
motion of the mass is observed to be 20 mm. Find the value of m.

Consider a spring-mass-damper system with k = 4000 N/m, m = 10 kg, and ¢ = 40 N-s/m.
Find the steady-state and total responses of the system under the harmonic force
F(t) = 200 cos 10t N and the initial conditions x, = 0.1 m and x, = 0.

30



3.44 The landing gear of an airplane can be idealized as the spring-mass-damper system shown in
Fig. 3.52. If the runway surface is described y(t) = yj cos wt, determine the values of k and
c that limit the amplitude of vibration of the airplane (x) to 0.1 m. Assume m = 2000 kg,
Yo = 0.2 m, and w = 157.08 rad/s.

Housing with
strut and
viscous damping

Mass of
aircraft, m

! |
Wheel —>| | || _ | |

Asad

(a)

m

FIGURE 3.52 Modeling of landing gear.
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