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Vibracao Livre:
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Visao geral

* Vibracdes de sistemas de 1 GL

* Vibracoes de sistemas com 2 GL * Livres

« Vibrac&es de sistemas com n GL ? [FEmEEEes ErTTienicas
* Vibracdes de sistemas continuos * Forcadas gerais

* |lustracdes experimentais

* Solucdes analiticas [integracao e Laplace]
e Solucdes numeéricas
* Solucdes numéricas por Elementos Finitos
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Sistemas de 1 GL: comentarios sobre idealizacao [ou modelagem]
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(a) Idealization of the
tall structure

L

FIGURE 2.4 Modeling of tall structure as spring-mass system.

FIGURE 2.3 The space needle (structure).
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Spring Constant of a Rod

Find the equivalent spring constant of a uniform rod of length [, cross-sectional area A, and Young’s
modulus E subjected to an axial tensile (or compressive) force F as shown in Fig. 1.24(a).

]
| __—>F
4
I—.{ ! :—I—.{ & -1-|
(a)
i = F
o
= AE
I
(b) Solution: The elongation (or shortening) & of the rod under the axial tensile (or compressive) force
F can be expressed as
a Fl
1" % T E T AE (E1)
change in length  § force F
where g = — = —is the strain and o = = —1s the stress induced in the rod.
original length [ areda

Using the definition of the spring constant k, we obtain from Eq. (E.1):

_ forceapplied _F AE B2
17/08/2020 B resulting de flection . R (E2)
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(a) Cantilever with end force
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W= mg T

(b) Equivalent spring

Spring Constant of a Cantilever Beam

Find the equivalent spring constant of a cantilever beam subjected to a concentrated load F at its end
as shown in Fig. 1.25(a).

Solution: We assume, for simplicity, that the self weight (or mass) of the beam is negligible and the
concentrated load F is due to the weight of a point mass (W = mg). From strength of materials
[1.26], we know that the end deflection of the beam due to a concentrated load F = W is given by

_wr

5=
3EI

(EI)

where E is the Young's modulus and 7 is the moment of inertia of the cross section of the beam about

the bending or z-axis (i.e., axis perpendicular to the page). Hence the spring constant of the beam is
(Fig. 1.25(b)):

W 3E1
= — ="

5= (E2)
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In many practical applications, several linear springs are used in combination. These
springs can be combined into a single equivalent spring as indicated below.

Case 1: Springs in Parallel. To derive an expression for the equivalent spring constant
of springs connected in parallel, consider the two springs shown in Fig. 1.27(a). When a
load W is applied, the system undergoes a static deflection &g as shown in Fig. 1.27(b).
Then the free-body diagram, shown in Fig. 1.27(c), gives the equilibrium equation

W = IIElclaﬁt + kzasl (1.8)
UL kid, kyby
ky k
kl% %kz ki ky
L | —5—
8]
Y ] ]
]i, i, If keq denotes the equivalent spring constant of the combination of the two springs, then
(a) (b) ©) for the same static deflection &, we have
W = kaqast (1-9}
FIGURE 1.27 Springs in parallel. _ _
Equations (1.8) and (1.9) give
keq = ki + ky (1.10)
In general, if we have n springs with spring constants ky, k», ..., k, in parallel, then the
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equivalent spring constant k.q can be obtained:

ke = ki + ky + - + K, (1.11)



Case 2: Springs in Series. Next we derive an expression for the equivalent spring con-
stant of springs connected in series by considering the two springs shown in Fig. 1.28(a).
Under the action of a load W, springs 1 and 2 undergo elongations §; and §,, respectively,
as shown in Fig. 1.28(b). The total elongation (or static deflection) of the system, g, is
given by
Ot = 01 + 0 (1.12)

Since both springs are subjected to the same force W, we have the equilibrium shown in
Fig. 1.28(c):

W = klﬁl

W = k26, (1.13)

If keq denotes the equivalent spring constant, then for the same static deflection,

W = kegdst (1.14)

17/08/2020

(a)

FIGURE 1.28

Springs in series.
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Equations (1.13) and (1.14) give
k16| == k262 &= keqﬁst

or
kegOs KeDs
§i=——r and = —— (1.15)
ki k>
Substituting these values of §; and &, into Eq. (1.12), we obtain
keqast + keqast =5
ki k> ’
—that is,
1 1,1 B
keq ki ko '
Equation (1.16) can be generalized to the case of n springs in series:
1 l 1
L N S 3 1.17)
keq kl 2 kn
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Figure 1.29 shows the suspension system of a freight truck with a parallel-spring arrangement. Find
the equivalent spring constant of the suspension if each of the three helical springs is made of steel
with a shear modulus G = 80 X 10? N/m? and has five effective turns, mean coil diameter
D = 20 ¢m, and wire diameter d = 2 cm.

Solution: The stiffness of each helical spring is given by

G (0.02)%(80 x 10°%)

k

= 40,000.0 N/m
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8D*n 8(0.2)%(5)

(See inside front cover for the formula.)
Since the three springs are identical and parallel, the equivalent spring constant of the suspen-
sion system is given by

ke = 3k = 3(40,000.0) = 120,000.0 N/m
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Torsional Spring Constant of a Propeller Shaft

Determine the torsional spring constant of the steel propeller shaft shown in Fig. 1.30.

Solution: We need to consider the segments 12 and 23 of the shaft as springs in combination. From
Fio. 1.30 the toraue induced at anv cross section of the shaft (such as AA or BB) can be seen to be
equal to the torque applied at the propeller, T. Hence the elasticities (springs) corresponding to the
two segments 12 and 23 are to be considered as series springs. The spring constants of segments 12

and 23 of the shaft (k,, and k) are given by

Gl,, Gm(Dly—d) (80 x10%)7(0.3* — 0.2%)

k =
N2 L, 32145 32(2)

= 25.5255 % 10° N-m/rad
Glyy Gm(D3 —d3) (80 X 10%)#(0.25* — 0.15%

I 321y 32(3)

klz3

= 8.9012 X 10° N-m/rad
Since the springs are in series, Eq. (1.16) gives

ki ki, (25.5255 % 10°)(8.9012 % 10°)

= = 6.5997 X 10° N-m/rad
(25.5255 X 10° + 8.9012 X 10°)

b =k

hy2 23
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Equivalent & of Hoisting Drum

A hoisting drum, carrying a steel wire rope, is mounted at the end of a cantilever beam as shown in
Fig. 1.31(a). Determine the equivalent spring constant of the system when the suspended length of
the wire rope is [. Assume that the net cross-sectional diameter of the wire rope is d and the Young's
modulus of the beam and the wire rope is E.

Solution: The spring constant of the cantilever beam is given by

3EI 3E( 1 Eat®
ky = — = —| —a’ | = = (E1)
b p\12 4p*
The stiffness of the wire rope subjected to axial loading is
AE _ wd’E
k, = = E.2

Since both the wire rope and the cantilever beam experience the same load W, as shown in Fig.
1.31(b), they can be modeled as springs in series, as shown in Fig. 1.31(c). The equivalent spring
constant keq is given by

1 1 1 4b° 4
—_— = — — = +
kq ko ko Ear wd’E
or
r = E mat>d? (E.3)
“ 4\ 7d?b® + lat’
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Beam

Rope

(b)

FIGURE 1.31 Hoisting drum.
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1.11 A machine of mass m = 500 kg is mounted on a simply supported steel beam of length
[ = 2 m having a rectangular cross section (depth = 0.1 m, width = 1.2 m) and Young’s
modulus E = 2.06 X 10" N/m? To reduce the vertical deflection of the beam, a spring of
stiffness k is attached at mid-span, as shown in Fig. 1.71. Determine the value of k needed to
reduce the deflection of the beam by

a. 25 percent of its original value.
b. 50 percent of its original value.
c. 75 percent of its original value.

Assume that the mass of the beam is negligible.
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1.18 The static equilibrium position of a massless rigid bar, hinged at point O and connected with
springs k; and k», is shown in Fig. 1.74. Assuming that the displacement (x) resulting from
the application of a force F at point A is small, find the equivalent spring constant of the sys-
tem, k,, that relates the applied force F to the displacement xas F = k_ x

K_eq=3k/4
! k= 2k
Fy 0~
¢A . |
_Tl i e

k,=k
T
T

FIGURE 1.74 Rigid bar connected by springs.
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1.20 Figure 1.76 shows a uniform rigid bar of mass m that is pivoted at point O and connected by
springs of stiffnesses k; and k,. Considering a small angular displacement  of the rigid bar
about the point O, determine the equivalent spring constant associated with the restoring
moment.

mg 1 A

FIGURE 1.76 Rigid bar connected by
springs.
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1.39 Find the spring constant of the bimetallic bar shown in Fig. 1.89 in axial motion.

2 cm | —Steel,
E=207% 10° Pa
0.5 cm-:‘::::
Aluminum,
. 0.5m . E=83x 10°Pa

l- c— =X

w

y
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Movimento harmonico

hence the mass m of the spring-mass system are displaced from their middle positions by
an amount x (in time #) given by

x = Asinf = Asinwt (1.30)

This motion is shown by the sinusoidal curve in Fig. 1.46. The velocity of the mass m at
time 7 is given by
d
d—:=mAcmm1 (1.31)
and the acceleration by
dx

7 = —w’Asin ot = —’x (1.32)
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FIGURE 1.46 Scotch yoke mechanism.
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Harmonic motion can be represented conveniently by means of a vector OP of magnitude
A rotating at a constant angular velocity w. In Fig. 1.47, the projection of the tip of the vec-
tor X = OP on the vertical axis is given by

vy = A sin wt

and its projection on the horizontal axis by
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x = Acos wt

(1.33)

(1.34)

|

One
cycle
of motion

|
|
|
i
-
|
|
|
|
|
|
|

E ]

!

x= Aco
|
|
|
|
|
|
1

T

F—————
ly = isin wlr- Angular

| displacement

_ N S —_— A .

0 = wt

FIGURE 1.47 Harmonic motion as the projection of the end of a rotating vector.
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As seen above, the vectorial method of representing harmonic motion requires the
description of both the horizontal and vertical components. It is more convenient to rep-
resent harmonic motion using a complex-number representation. Any vector X in the xy-
plane can be represented as a complex number:

—

X =a+ib (1.35)
where i = V=1 and a and b denote the x and y components of X , respectively (see
Fig. 1.48). Components a and b are also called the real and imaginary parts of the vector
X. If A denotes the modulus or absolute value of the vector X, and @ represents the argu-
ment or the angle between the vector and the x-axis, then X can also be expressed as

X = Acosf + iAsin@ (1.36)
with
A= (d+ b))/ (1.37)
and
b
f = tan"' — (1.38)
a
Noting that it = o B PP = —i it = 1, ..., cos # and i sin # can be expanded in a series as
o> 6 (i6)>  (i0)*
cmﬁ—l—5+E—---=l+ 2 + m +--- (1.39)
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¥ (Imaginary)
!

3 ¥
X=a+ ib= Ae"

o

= 1 (Real)

FIGURE 1.48 Representation of a complex number.

& @
isin@ =il ——+——---
3! 5!

Equations (1.39) and (1.40) yield

(cos@ +isinf) =1 +i6 +

and
(cos@ —isinf) =1 —if +
Thus Eq. (1.36) can be expressed as

X = A(cos 6 +

9)2 N
() (o)}
2! 3!

(i6)*  (i0)°
2 3

isin @) = Ae"

(1.40)

(1.41)

(1.42)

(1.43)



Using complex-number representation, the rotating vector X of Fig. 1.47 can be written as
X = Ae'™ (1.51)

—
where @ denotes the circular frequency (rad/sec) of rotation of the vector X in counter-

clockwise direction. The differentiation of the harmonic motion given by Eq. (1.51) with Im
respect to time gives e
= X =iwX e
IX _ 4 (pdiony = iwAc® = iwX 1.52 S
df = dr £ = liAe = [l ( . } w2 it Re
dzf d i ) —s "'>= _wz »
3 = - (iwAd) = —Ae® = —@? X 153 7
t

Thus the displacement, velocity, and acceleration can be expressed agt FIGURE 1.49 Displacement, velocity, and accelerations as rotating vectors.

displacement = Re[ Ae''] = A cos wt (1.54)
velocity = Re[iwAe™] = —wA sin wt
= wA cos (wf + 90°) (1.55)
acceleration = Re[ —w’Ae™'] = —w’A cos wt
= w’A cos (wf + 180°) (1.56)

where Re denotes the real part. These quantities are shown as rotating vectors in Fig. 1.49.
It can be seen that the acceleration vector leads the velocity vector by 90°, and the latter
leads the displacement vector by 90°.
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Beats. When two harmonic motions, with frequencies close to one another, are added, the

resulting motion exhibits a phenomenon known as beats. For example, if
x(t) = X cos wt
x5(t) = X cos(w + )t

where 6 is a small quantity, the addition of these motions yields

x(t) = xy(t) + xo(t) = X[cos wr + cos(w + )t]

A+ B A—B
cos A + cos B = 2 cos 7 Cos 7

Eq. (1.65) can be rewritten as

[.n*}—EJF:THE—Ir +§r
X Ll‘_‘ihzt‘:ﬂﬂm 2

Using the relation

(1.63)
(1.64)

(1.65)

(1.66)

(1.67)

This equation is shown graphically in Fig. 1.53. It can be seen that the resulting motion,
(1), represents a cosine wave with frequency @ + §/2, which is approximately equal to
w, and with a varying amplitude of 2X cos 6¢/2. Whenever the amplitude reaches a max-
imum, it is called a beat. The frequency (&) at which the amplitude builds up and dies
down between 0 and 2X i1s known as beat frequency. The phenomenon of beats is often
observed in machines, structures, and electric power houses. For example, in machines and
structures, the beating phenomenon occurs when the forcing frequency is close to the nat-

ural freqéfits”of the system (see Section 3.3.2).
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Beat period,

2@
Th= - 2X cos F
2X o 2

-2X ~—-

FIGURE 1.53 Phenomenon of beats.

https://en.wikipedia.org/wiki/Beat (acoustics)

Ver beat.m
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