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Foreword

Although Machine Learning is currently a hot topic, with several research break-
throughs and innovative applications, the area is missing a literature that provides,
in a practical and accessible way, theoretical issues that provided the foundation
of the area. Statistical learning theory plays an important role in many research
breakthroughs in machine learning. There is a classical and excellent literature
in the area. However, most of them assume a strong mathematical and statistical
knowledge. The book, written by Rodrigo Fernandes de Mello and Moacir Antonelli
Ponti, both with much experience in the area, provides an innovative and clear
approach to present the main concepts in statistical learning theory. The authors
were very competent in the choice of the issues to be covered and on how to explain
them in an easy and didactic way. The idea of providing elegant algorithms for the
implementation of several important issues in statistical learning theory, the book
motivates the reader and demystifies the impression that this is a dry and difficult
issue. Using the R Statistical Software, the examples of source code are easy to
follow and give deep insights to the reader. This book will be a very important source
of knowledge for those interested in learning and pursuing a career in machine
learning.

The authors present concepts, methods, and algorithms in a simple and intuitive
way. The textbook could be a relevant tool for master’s and PhD students interested
in understanding and exploring the theoretical aspects of ML.

LTCI, Télécom ParisTech, Paris, France Albert Bifet
University of São Paulo, São Paulo, Brazil André Carlos P. de L. F. de Carvalho
University of Porto, Porto, Portugal João Gama
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Chapter 1
A Brief Review on Machine Learning

1.1 Machine Learning Definition

The area of Machine Learning (ML) is interested in answering how a computer can
“learn” specific tasks such as recognize characters, support the diagnosis of people
under severe diseases, classify wine types, separate some material according to its
quality (e.g. wood could be separated according to its weakness, so it could be later
used to build either pencils or houses). Those and many other applications make
evident the usefulness of ML to tackle daily problems and support specialists to
take decisions, attracting researchers from different areas of knowledge [1, 17].

In this situation you may ask: but how can a computer learn? Or how can
one ensure an algorithm is in fact learning? Before answering such questions we
should start by addressing human learning about some subject. Consider a child
looking at a chair for the first time ever. How could a child associate the physical
object to the concept of a chair? Parents or relatives would first tell him/her that
the object being observed is a chair, but (s)he must find a way to extract relevant
features to characterize it as a chair. For example: is color an important variable
in order to define the concept chair? Well, probably not because one chair could
be black, but there are chairs in several other colors. As an alternative, someone
would say the shape provides an important feature. Yes, the shape would be indeed
a more adequate feature to associate this object to the class or label “chair”. By
analyzing this simple example, we notice human beings rely on features (also called
attributes or even variables) to build up some type of classification function (or
simply classifier) f to map an object x into a label y, i.e. f (x) = y.

As humans, we are constantly observing different scenarios and attempting
to extract relevant features to take conclusions on different tasks. For example,
based on the variables of temperature and humidity, we could conclude about the
feasibility of playing soccer this evening [8]. We refer to those variables as input
variables because they will be taken as input to learn some concept (e.g. viability of
playing soccer). In this example, the input variables are only associated to weather
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Fig. 1.1 Letter “A” in a
bitmap representation

conditions (temperature and humidity), but we could also include health conditions
(e.g. past injuries, pain). As in this situation we simply want to predict whether some
person will play soccer or not, the output variable (a.k.a. class or label) is either
positive (yes) or negative (no). Therefore, based on our past experiences and given
the current input variables, we must decide whether the output is either yes or no.

There are more complex situations in which the output variable can assume
more than two labels. For example, consider a bitmap representing a letter from the
alphabet (for instance the letter “A” in Fig. 1.1). Now consider the output variable
as an integer value, which assumes 0 for “A”, 1 for “B”, and so on. This is the sort
of situation we have more than two classes. But how could we learn those bitmap
representations for the whole alphabet?

To make the computer learn the alphabet representation, we should first build
up a training set containing n examples. This term “example” is used to refer to
the features provided to represent a given letter so it can be learned. For now, let
us consider the features as the image of such a letter. We could have letter “A”
graphed in different manners, every one constituting one different example (Fig. 1.2
illustrates one example of each letter to be learned). In order to make a simple
representation, we will consider letter “A” organized as a binary row vector, as listed
in Table 1.1, having 1 as a black and 0 as a white pixel. This vector (a.k.a. feature
vector) organization is typically used in ML to represent an example. We can see
every element of this vector as associated to one input variable, as illustrated in
Table 1.2. In this case, each input variable is the pixel value at a given space location
(0 or 1). After defining such input variables for our first training example, we add
an extra column to our table to represent the output variable, which corresponds to
the class (see the last variable in Table 1.2).

Before moving on, we recall a summary of the most important terminology used
until now:

1. an example (also known as instance or observation) is an observed object of
interest (e.g. a letter from the alphabet);

2. a feature (also known as attribute or characteristic) is an input variable that is
used to characterize the example (e.g. black and white pixels for images);
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Fig. 1.2 Alphabet in a bitmap representation

Table 1.1 Letter “A” organized as a binary row vector

A: 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1

Table 1.2 Illustrating the variables composing the binary row vector for letter “A”, in which Pi

refers to the i-th pixel of the bitmap

Letter P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

A: 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0

P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34

1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0

P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 class

1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0

3. the class of an example is its label typically defined by some specialist of the
application domain (e.g. class “A” has label 0);

4. a classifier is a function f that maps the set of features x into some label y,
therefore it is expected to be capable of classifying examples which were never
seen before (typically referred to as unseen examples).

By adding up more rows to Table 1.2, we obtain something similar to Table 1.3,
which contains several examples to be learned (one per row). This is the notation
considered throughout this book. This data table is commonly referred to as dataset,
which contains both the input variables (features) and the supervision, i.e., the class
or label, which was (most probably) defined by a specialist. Datasets like this are
provided to a classification algorithm which must infer a classifier f : X → Y ,
having xi ∈ X as the features of the example at row i and yi ∈ Y as the
corresponding class to be learned (last column). We expect this algorithm to find
the best possible classifier for such a problem. In summary, this is how we typically
approach ML tasks involving supervision (i.e., when we have classes) (Fig. 1.3).
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Table 1.3 Illustrating a dataset with training examples for the classes ‘A’ (label 0), ‘B’ (label 1),
‘C’ (label 2) and ‘D’ (label 3)

Features Label

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 3

Fig. 1.3 Alternative
instances for the letters of the
alphabet in a bitmap
representation (‘A’,‘A’,‘C’,‘I’,
and ‘J’)

There are other types of learning as briefly discussed in the next section, however
the type we approach throughout this book is the one we have just introduced which
is referred to as supervised learning. Just to motivate association, the reader is
invited to think about real-world problems and how to obtain relevant features and
define classes. This may even motivate philosophical thinking about how humans
often define hard labels (sometimes even binary labels) for every day problems and
how that could influence in prejudging and stereotyping things. Also observe that
classes or labels are often dependent on the bias imposed by our relatives, friends
and other peers, as well as the environment we live in.

1.2 Main Types of Learning

The area of Machine Learning is typically organized in two main branches: super-
vised learning; and non-supervised learning. Supervised learning was introduced
in the previous section. In that type of learning, the ML algorithm receives pre-
labeled input examples and intends to converge to the best as possible classifier
f : X → Y , so one can predict labels for unseen examples with high accuracy.
Non-supervised learning is associated to the process of building up models
after analyzing the similarities among input data [4]. For example, the clustering
algorithm k-Means attempts to find k representative groups according to the relative
distance of points in R

m [1]. The main characteristic of this second type of learning
is that algorithms do not have access to labels, therefore the problem is no longer to
find a map f , but instead analyze how points are organized in the input space. Later
on, a specialist may assess the results and conclude whether the groups are relevant
or not. Such analysis may not be even possible in some scenarios due to the large
amount of data [9].
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Supervised learning has its foundations on the Statistical Learning Theory (SLT),
proposed by Vapnik [15, 16], which defines the conditions that learning is ensured.
Although the importance of non-supervised learning, it still requires studies to
provide stronger theoretical guarantees [3, 14]. This book intends to tackle only
supervised learning.

1.3 Supervised Learning

As previously introduced, supervised learning consists in finding the best as possible
classifier f : X → Y for a given problem. The algorithm responsible for finding
this mapping is referred to as classification algorithm, which infers a model from
every input example x ∈ X and its respective class y ∈ Y . As we will see in the
next chapter, this model is an approximation for the joint probability distribution
(JPD) of variables X and Y . For now, we are much more interested in discussing
about the issues involved when searching for the best classifier f .

As a classifier can be seen as a function f : X → Y , the easiest way to
understand how to obtain the best as possible mapping is probably by considering
a regression problem as provided in [13, 17]. In a regression, Y is not a set of
discrete labels, but often a range of real values, and, therefore, it will be easier to
depict an example for f and understand how well (or how bad) a classifier can
be. For instance, consider we want to find a function to map the input variable
atmospheric pressure to the output class rain probability (which
is seen as a continuous variable in range [0, 1]), as shown in Table 1.4. Thus,
our problem is to answer whether it will rain next, according to the current
atmospheric pressure measurement. In order to proceed, take a training set of
previous observations from which we learn the best function, given the current
atmospheric pressure, to produce the probability of raining as output. Listing 1.1
illustrates the program used to generate Table 1.4. Throughout this book, our
programs are written to run on the R Statistical Software, provided by the R
Foundation for Statistical Computing.1

1Complete source-codes are available at the repository https://github.com/maponti/
ml_statistical_learning. For more information, we suggest the reader to study the R manuals
available at https://www.r-project.org.

https://github.com/maponti/ml_statistical_learning
https://github.com/maponti/ml_statistical_learning
https://www.r-project.org
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Table 1.4 Training examples
of the regression problem

x y

63.16 0.28

64.54 0.29

67.62 0.39

57.81 0.14

71.43 0.50

71.17 0.44

62.73 0.27

65.44 0.35

75.71 0.54

64.47 0.32

62.02 0.23

70.92 0.46

Listing 1.1 Read and show regression data

# Code t o produce t h e examples o f r e g r e s s i o n problem
# Data columns are l o c a t e d i n d i f f e r e n t f i l e s
x <− read . t a b l e ( " a t m o s p h e r i c _ p r e s s u r e . d a t " )
y <− read . t a b l e ( " r a i n _ p r o b a b i l i t y . d a t " )

x <− p r e s s u r e $ p r e s s u r e [ 7 : 1 9 ]
x <− l o g ( x )
p l o t ( x , y )

Figure 1.4 illustrates both dimensions, i.e., the input variable and the output class,
for this toy problem. We observe there is some sort of linear relationship between
those variables, therefore we could consider a set of linear functions to estimate
classifier f . But, by using a linear f , some points of this training set will not
coincide with the function, i.e., we will not avoid errors on the training sample,
as distances of points from f confirm. So, how about using a polynomial function
g as shown in Fig. 1.5. Function g would fit perfectly on this sample. This question
motivates the Bias-Variance Dilemma from Statistics [17], which is here basically
translated to: is it the linear or the polynomial function more appropriate to fit this
training sample? To answer that question, we need to quantify appropriateness.

Loss Function This measure of appropriateness requires what is referred to as loss
function, which is responsible for quantifying error or risk [16, 17]. Two of the most
commonly used loss functions are: (1) the 0–1-loss function, and (2) the squared-
error loss function. The first basically consists in counting how many times the
output class is misclassified by f , as defined in Eq. (1.1). The squared-error loss
function quantifies errors in a continuous way such as shown in Eq. (1.2), thus it is
adequate when the classifier output is in R, such as in regression problems.
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Fig. 1.4 Dataset of pressure
x and probability of rain y
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Fig. 1.5 Regression of
pressure x and probability of
rain y using linear and
polynomial functions
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�0−1(X, Y, f (X)) =
{

1, if f (X) �= Y

0, otherwise.
(1.1)

�squared(X, Y, f (X)) = (Y − f (X))2 (1.2)

After selecting the most adequate loss function,2 we now have a way to quantify
appropriateness (in fact, we now leave that word because it may sound subjective
and use just “error” or “risk” instead) and then we can get back to the main question:
is it the linear or the polynomial function more appropriate to address the problem
described earlier (Fig. 1.5)? By only analyzing the loss on the training data, one
might say that the polynomial function is better. However, to properly answer this
question, we must evaluate how well both classifiers are when predicting unseen
examples.

Why unseen examples? Because that allows us to confirm whether classifiers
are biased to simply represent training data. For instance, consider two students
trying to learn computer programming by themselves. Let us assume the first
student memorizes as much as possible book A, while the second has a different
strategy: (s)he will avoid memorization and will study using a variety of books as
well as coding some applications. Now we consider two tests applied to assess the
knowledge acquired by both students:

1. The first test is only based on examples detailed in book A—so the first student
would most probably get a perfect score, while the second would get a fair grade;

2. The second test is based on several unseen books (excluding all books both
students had seen before), programs and general problems—the second student
would probably get a fair score again, while the first would fail miserably. What
did it happen? The first student memorized book A!

We probably observed this scenario several times, but which is best? In terms
of supervised learning, the capacity of knowledge generalization is best. When
generalizing, the student indeed learns a subject and how to apply it on real-world
situations rather than just memorize it. How could one measure such achievement?

Risk In the same manner, a classifier f is expected to provide fair results for
unseen examples. You can think about it as a test using questions from books the
students were not given in advance. To compute how good a classifier is, we must
consider the expected value of the loss function as defined (expressed by :=) in
Eq. (1.3). This measure results in the expected risk R(.) of some classifier f , given
any possible example x ∈ X (including unseen ones) which should be correctly
labeled as y ∈ Y . The expected value can be roughly interpreted as the average
value of the loss, given every possible input example. Notice this is not feasible for
real-world problems which hardly ever provide access to all examples covering the
whole space of possibilities.

R(f ) := E(�(X, Y, f (X))). (1.3)

2Observe one can still define another function instead of using those.
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Fig. 1.6 Discretized
estimation of the probability
distribution function (PDF) of
X (atmospheric pressure)
considering 1000
measurements
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To compute the expected value, we need the joint probability distribution
(JPD) of variables X and Y so that there is full access to every combination of x ∈ X

versus their corresponding classes y ∈ Y . To introduce the concept of this JPD,
consider 1000 measurements of the atmospheric pressure as input variable X, which
were collected along years. Figure 1.6 illustrates a discretized estimation of the
probability distribution function (PDF) of X considering those 1000 measurements.
Let us consider this PDF of X as a good estimation for its real PDF function, as if
we had access to the universe of all measurements for such a World region. Then,
observe pressure values around 70 kPa are much more probable, thus we will have
many more training examples assuming values close to it while inferring classifier
f , just because values around 70 kPa are the most common.

Now consider the classes or labels (i.e. rain probability) associated to those 1000
measurements of atmospheric pressure, whose PDF estimative is shown in Fig. 1.7.
Observe that both PDFs for X and Y are very close to the Normal distribution (they
were in fact synthetically produced using that distribution). The joint probability
distribution (JPD) P(X × Y ) is responsible for associating the input examples
x ∈ X to their corresponding output classes y ∈ Y , as illustrated for those
1000 measurements in Fig. 1.8. This is just an example in which the complete
JPD is not available, because such distribution would require every possible
pair (atmospheric pressure, rain probability) and not just 1000 measurements. The
actual JPD would require infinite data observations once each variable is in R.
In fact, ML supervised algorithms attempt to find the best classifier f fitting
P(X × Y ) with the lowest possible error. Now we can infer what most probably
happens when a given atmospheric pressure is observed. For instance, consider the
current atmospheric pressure is 65 kPa, so we analyze range [64.5, 65.5] (centered
at 65 kPa) to check for the most probable value for Y (see Fig. 1.9).
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Fig. 1.7 Discretized
estimation of the probability
distribution function (PDF) of
Y (rain probability)
considering 1000
measurements
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Fig. 1.9 Defining range
[64.5, 65.5] for variable X

(centered at 65 kPa)
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Fig. 1.10 Histogram
illustrating the possible values
for Y (rain probability), given
the range of interest for
X ∈ [64.5, 65.5] (centered at
65 kPa)

Rain probability
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This is exactly what the mapping f is expected to produce. Afterwards, we
analyze the PDF for Y but only when 64.5 ≤ X ≤ 65.5, as illustrated in Fig. 1.10,
providing the following probabilities:

P(0.27 ≤ Y ≤ 0.28) = 0.019,

P (0.28 ≤ Y ≤ 0.29) = 0.058,

P (0.29 ≤ Y ≤ 0.30) = 0.019,

P (0.30 ≤ Y ≤ 0.31) = 0.058,



12 1 A Brief Review on Machine Learning

P(0.31 ≤ Y ≤ 0.32) = 0.156,

P (0.32 ≤ Y ≤ 0.33) = 0.235,

P (0.33 ≤ Y ≤ 0.34) = 0.274,

P (0.34 ≤ Y ≤ 0.35) = 0.117,

P (0.35 ≤ Y ≤ 0.36) = 0.039,

P (0.36 ≤ Y ≤ 0.37) = 0.019,

from which we conclude the most probable event is in range [0.33, 0.34], as
given by P(0.33 ≤ Y ≤ 0.34) = 0.274. So our classifier would provide some value
in such range [0.33, 0.34] as output (e.g. its central value 0.335).

This scenario allows us to draw two important conclusions:

1. classifier f estimated with 1000 training examples does not provide a determin-
istic answer about the correct class. Instead, it provides an answer under some
probability (0.274 in this case). So never expect a classifier to be perfect, only
for very simple toy scenarios;

2. R(f ) (see Eq. (1.3)) can never be directly computed for real-world problems, as
the real JPD P(X × Y ) is not available. This is only possible when dealing with
very simple countable problems.

In practice, classification algorithms attempt to estimate the JPD relying on input
examples. The best classifier f is the one that better fits P(X × Y ), and any
divergence between f and its JPD implies loss. Therefore, we can formulate risk
R(f ) as the integral of divergence:

∫
X×Y

�(X, Y, f (X)) d(X × Y ). (1.4)

Of course, there are problems for which the JPD P(X × Y ) has a finite and
accessible number of possibilities, consequently R(f ) is computable. For example,
consider a fair die was thrown and let: (1) the input variable X = 1, if an even
number occurs (i.e., 2, 4 or 6), and X = 0 otherwise; (2) in addition, let a second
variable to represent the class or label, having Y = 1 if the number is prime (i.e.,
2, 3 or 5) and Y = 0, otherwise.

In this problem, a single thrown will produce the following joint probabilities:

P(X = 0 × Y = 0) = P(1) = 1

6
, probability of observing 1,

P (X = 0 × Y = 1) = P(3, 5) = 2

6
, probability of observing 3 or 5,

P (X = 1 × Y = 0) = P(4, 6) = 2

6
, probability of observing 4 or 6,
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Fig. 1.11 Throwing a die:
joint probability distribution
for variables X and Y
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P(X = 1 × Y = 1) = P(2) = 1

6
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which are used to compose the JPD for variables X and Y as illustrated in Fig. 1.11.
In this particular situation, we can compute all necessary probabilities to have

the JPD and, because of that, R(f ) is computable. This simple situation allows us
to assess what is the best possible classifier: any function f that makes the perfect
regression over the JPD, as shown in Fig. 1.11. As result, if this classifier receives
X = 0, it will have two options to select from:

P(X = 0 × Y = 0) = P(1) = 1

6
, probability of having value 1

P(X = 0 × Y = 1) = P(3, 5) = 2

6
, probability of having either value 3 or 5,

and given the most probable is P(X = 0 × Y = 1) = 2
6 , f should provide Y = 1

as output. However, it outputs the incorrect answer for 1
6 of examples. That allows

us to conclude that even such perfect classifier is prone to make mistakes, with an
average error of 1

3 for every input.
For the sake of comparison, consider that any other algorithm converged to

another classifier g with the following representation for the same JPD:

Pg(X = 0 × Y = 0) = 0

6
,

Pg(X = 0 × Y = 1) = 3

6
,
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Pg(X = 1 × Y = 0) = 3

6
,

Pg(X = 1 × Y = 1) = 0

6
,

in this latter situation, the expected risk R(g) is:

P(X = 0 × Y = 0) − Pg(X = 0 × Y = 0) = 1

6
− 0

6
= 1

6
,

P (X = 0 × Y = 1) − Pg(X = 0 × Y = 1) = 2

6
− 3

6
= −1

6
,

P (X = 1 × Y = 0) − Pg(X = 1 × Y = 0) = 2

6
− 3

6
= −1

6
,

P (X = 1 × Y = 1) − Pg(X = 1 × Y = 1) = 1

6
− 0

6
= 1

6
,

whose sum provides an incorrect value of R(g) = 0, due to negative values cancel
out positive ones. Thus, we should use the squared-error loss function instead:

R(g) = (
1
6

)2 + (− 1
6

)2 + (− 1
6

)2 + (
1
6

)2 = 4

36
= 1

9
,

making evident the error of g given unseen examples.
If the JPD is available though, we could compute R(.) for any classifier learned

during the training stage. Note that most real-world problems do not fit in this
case, that is why Machine Learning has been widely studied and employed: to
estimate good enough classifiers from limited data, without having access to the
real JPD.

Empirical Risk At this point, we are prepared to take a next step. There is no way
of computing R(.) assuming P(X × Y ) is unknown at the time of learning. So how
could one measure the loss of classifier f and conclude about its usefulness for
some problem? We start by estimating the risk based only on the training examples,
given they are sampled from the same JPD, as defined in Eq. (1.5). This estimator is
referred to as the empirical risk of classifier f .

Remp(f ) := 1

n

n∑
i=1

�(Xi, Yi, f (Xi)) (1.5)

Can one use this risk estimative to select the best classifier? This question is
central for the SLT and it is not that simple to answer. To investigate whether
the empirical risk Remp(.) can be used as a good estimator for risk R(.), Vapnik
considered the Law of Large Numbers, one of the most important theorems from
Statistics [5]. However, he faced many challenges to employ this law, requiring a
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set of assumptions about input examples. To begin with, the Law of Large Numbers
(Eq. (1.6)) states the mean of some random variable Ξ converges to the expected
value of the underlying distribution P as the sample size n goes to infinity, provided
Ξi is drawn in an independent and identical manner from P , i.e.:

1

n

n∑
i=1

Ξi → E(Ξ), for n → ∞. (1.6)

Observe this theorem is very close to what Vapnik needed. So, by showing that
the empirical risk Remp(.) converges to risk R(.) for any classifier f , then one could
select the best candidate among them (see Eq. (1.7)).

1

n

n∑
i=1

�(Xi, Yi, f (Xi)) → E(�(Xi, Yi, f (Xi))), for n → ∞ (1.7)

Recall that the best classifier is the one providing minimal risk R(.). However,
there are several assumptions to be held:

1. The joint probability distribution P(X × Y ) is unknown at the time of training;
2. No assumption is made about the joint probability distribution P(X × Y );
3. Labels may assume nondeterministic values;
4. The joint probability distribution P(X × Y ) is static/fixed;
5. Examples must be sampled in an independent and identical manner;

The first assumption states the joint probability distribution P(X×Y ) is unknown
at the time of training, as a consequence the supervised algorithm must estimate
it without any previous knowledge but only using samples drawn from this JPD.
Observe P(X × Y ) is estimated using an indirect access to itself, once training
examples provide a pointwise perspective of this distribution. If the joint probability
distribution is known, one could simply estimate its parameters by using some fitting
process. By assuming the JPD is unknown, learning would be possible given any
data probability distribution.

The second assumption states the joint probability distribution P(X × Y ) may
come from any family of distributions. It can either be Normal, Poisson, Binomial
or any other [12]. This assumption makes impossible the selection of a given family
to later estimate its parameters. As a consequence, the Statistical Learning Theory
works in an agnostic way about P(X × Y ).

In the third assumption, labels may have nondeterministic values. The first reason
is that data collection may impose noise to labels. For instance, suppose a person
is classifying customers from a Web commerce application and misses the correct
label in some situations. It should not be impossible to learn even in the presence
of such eventual errors. The second reason for this assumption is that classes may
overlap, e.g. when throwing a die, as previously seen. For example, the classification
of people according to sex, given their height as input variable X [17]. Such a
variable is not sufficient to completely separate male and female classes apart,
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Fig. 1.12 Probability
distributions of male and
female according to height in
meters, with vertical lines
indicating the mean of the
distributions
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especially due to some height intervals as illustrated in Fig. 1.12. It is difficult to
find a good classifier for this problem once there is a significant overlap of class
distributions, as depicted in the grey area.

This third assumption is very important because data may contain incorrect labels
or a mixture of them. To exemplify this mixture, consider Fig. 1.13 which shows a
P(X × Y ) for this problem involving heights. A classification would bisect the
heights into two regions, but there is still a significant overlap. Compare it with
Fig. 1.12, which shows heights versus densities. To improve classification results,
we should consider more meaningful variables to compose the input set X.

The fourth assumption states the joint probability distribution P(X × Y ) is
static, i.e., it never changes along time. This is necessary because the empirical
risk (Eq. (1.5)) is required to approximate R(.) as the sample size n tends to
infinity, otherwise variations in the mapping from X to Y would cause conflicts to
ensure such approximation. It is obvious that if the JPD starts representing a given
association from X to Y and then changes it, all previous training is useless. Time
series and data stream applications suffer in such a context, as data behavior may
change and therefore impact in the joint probability distribution.

As last assumption, examples must be statistically independent from each other
and be sampled in an identical manner. To illustrate, see Fig. 1.14 in which a bag
contains three balls enumerated as 1, 2 and 3. Now consider the probability of
drawing either ball 1, 2 or 3 which is equal to P(ball = 1) = P(ball = 2) =
P(ball = 3) = 1/3. After drawing ball 1 without replacement, the probabilities
change to P(ball = 1) = 0, P(ball = 2) = 1/2 and P(ball = 3) = 1/2. This
happens because the event of drawing ball 1 influences the probability of future
events, what is assumed not to occur in the context of the Statistical Learning
Theory. Therefore, the SLT considers the sampling with replacement from the JPD.
As part of this last assumption, examples must be sampled in an identical manner,
meaning each one of the three balls must have the same probability of being chosen,
consequently there is no bias to define one of them as preferred.

All those assumptions are necessary to employ the Law of Large Numbers, which
is used in the context of the SLT to ensure the empirical risk Remp(.) is a good
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Fig. 1.13 Classifying sex according to heights. Top: a histogram and density of observed heights;
right: the distribution of classes Male (−1) and Female (1); center: joint probability distribution
(observe the need for plotting variables X, Y and the densities separately). A classifier would bisect
the height axis into two classes

estimator for the expected risk R(.). Equation (1.8) defines this concept in a reduced
form when compared to Eq. (1.7).

Remp(f ) → R(f ), for n → ∞ (1.8)

In fact, the best classifier fi is the one whose risk R(.) is the lowest, i.e.
R(fi) ≤ R(fj ) for all j . However, there is no approach to compute R(.) for real-
world problems, so Remp(.) is computed instead for all classifiers f1, . . . , fk , so that
the one with the smallest empirical risk can be selected. As seen in the next chapter,
this strategy is not that simple, once several other conditions rely on the described
assumptions to make the empirical risk a good estimator for the (expected) risk.
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Fig. 1.14 Statistical independence illustrated through the sampling with and without replacement

Generalization The concept of generalization considers both the expected and the
empirical risks, and it relies on the Law of Large Numbers which computes the
absolute value of the difference between the average estimation of variable Ξ and
its expected value (Eq. (1.9)). Such difference can be seen as a measure of distance
between the estimator and the expected value. The less precise the estimator is, the
greater such a distance is. The perfect estimator produces distance equals to zero.

∣∣ 1
n

∑n
i=1 Ξi − E(Ξ)

∣∣ (1.9)

This concept is used in supervised learning to characterize how well the
empirical risk Remp(.) estimates risk R(.). A classifier fi is said to generalize when
|Remp(fi)−R(fi)| ≈ 0. Observe this does not ensure the best classifier is indeed fi ,
it only informs us that the empirical risk of this classifier is a good estimator for its
expected risk, given some sample from the joint probability distribution P(X × Y ).
Being the empirical risk a good estimator of R(.), we can use Remp(.) as a proxy
measure to select the best classifier.

Now, suppose all empirical risks of classifiers f1, . . . , fk provide a good enough
generalization. Those risks can be used to sort classifiers out according to their
losses, in form Remp(fi) ≤ Remp(fj ) ≤ . . . in order to select the best one. From
this perspective, we see how important is to build up some theoretical foundation to
ensure good estimators.

In a practical point of view, people usually have a dataset with several examples
which are divided into two sets: a training and a test set. The training set (seen
examples) is used to infer classifiers f1, . . . , fk from. The test set contains unseen
examples and is used to verify if the inferred classifiers are indeed good enough
and which is the best. This simple evaluation technique relies on this concept of
generalization and attempts to verify the risk of every classifier fi , given unseen
examples.

We can use this simple scenario to evaluate the generalization of any classifier f .
Let a supervised algorithm infer f over the training set and consider the empirical
risk Remp(f ) = 0.01. Then, f is used to classify examples from the test set,
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producing a loss equals to 0.11. The absolute difference |Remp(f ) − 0.11| =
|0.01 − 0.11| = 0.1 provides a measure of how good the risk estimation is. Note
that, instead of computing |Remp(f ) − R(f )|, we calculated |Remp(f ) − R′

emp(f )|,
given R′

emp(f ) is the empirical risk computed for an unseen finite sample (test set).
As discussed in the next chapter, this last generalization in terms of two samples
(one for training and another for testing) is an approximation for |Remp(f ) − R(f )|
after the Symmetrization lemma [17].

In order to assess the generalization of both classifiers illustrated in Fig. 1.4,
suppose the linear classifier f has the following empirical risk Remp(f ) = 0.12
while the expected is R(f ) = 0.10, and the polynomial classifier g has Remp(g) = 0
but R(g) = 0.9. In this situation, the classifier providing the best generalization is
f , once |Remp(f ) − R(f )| = 0.02 is minimal so that it is the best estimative for
risk R(.). By having a set of classifiers with a good enough generalization capacity,
we can choose the one with the smallest empirical risk.

1.4 How a Supervised Algorithm Learns?

A supervised learning algorithm attempts to induce the best classifier f as possible
so that f : X → Y provides the minimal risk R(f ). In this context, observe
classifier f can also work as an approximation or regression function for the
joint probability distribution P(X×Y ), as illustrated in Fig. 1.15. So any supervised
learning algorithm (e.g. Naive Bayes, SVM, Multilayer Perceptron, etc.) builds up
some regression function, which is the same as inferring a classifier from a given
training sample. Of course, if the sample collected from P(X × Y ) is not sufficient,
such regression will produce unacceptable losses.

Classifier f comes from a space of admissible functions F . This space defines
the bias of the supervised algorithm, that is, functions in F are often restricted to
some types or families (e.g. linears, 2-order polynomials, etc.). As a consequence,
if P(X × Y ) has nonlinear characteristics but f has a linear bias, the supervised
algorithm will produce an insufficient approximation that misses output classes
more often than we wish. Although a classifier is in fact a regression function for
the JPD, we can see it in another way which is by using hyperplanes or functions to
“shatter” (or split) the input space into different regions. To better understand this
approach, let us analyze a two-class dataset.

Let dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} in which xi ∈ R
2 corresponds

to the input variables (or input space) of example i, and yi ∈ {+1,−1} is its
corresponding class. Consider the two input variables are temperature and humidity
measurements, while the class defines whether a person plays (+1) or does not
play (−1) soccer under such conditions. Figure 1.16 illustrates this dataset, having
n = 100 examples in which the circles represents label −1 (no), while the plus sign
is associated with +1 (yes). By analyzing this plot, we have a good idea about how
points are distributed in this bidimensional space.
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Fig. 1.15 Regression
function produced to
approximate the joint
probability distribution
illustrated in Fig. 1.13
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Fig. 1.16 Input space of
examples containing two
variables (temperature in
Celsius and humidity in
percentages) and two classes
({−1,+1}) for the problem of
playing soccer
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A supervised learning algorithm attempts to estimate P(X × Y ) according to
the available data sample D drawn from P(X × Y ) in an independent and identical
manner. As observed, there is a concentration of positive instances around a given
mean point, and a concentration of negative instances around another mean. Let us
assume that P(X × Y ) is modeled by two Normal (or Gaussian) distributions as
illustrated in Fig. 1.17, as the sample size n → ∞.

Consider the JPD is known, so that one is able to employ a supervised learning
algorithm whose space of admissible functions (or bias) F only contains Gaussian
functions. Now consider our algorithm found a classifier f which is a composition
of two Gaussian functions, each one centered at a different mean to represent each
class. By assigning an identifier to each Gaussian (either −1 or +1), we can define
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Fig. 1.17 Joint probability
distribution P(X × Y ) for the
problem of playing soccer
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the output labels for examples. All those steps make sense, but most well-known
supervised learning algorithms are typically based on something simpler than that.

As an alternative to Gaussian functions, most of the supervised learning algo-
rithms build linear hyperplanes to “shatter” the input space into regions, as shown
in Fig. 1.18. Thus, every point on one side of the hyperplane will be classified as
+1, while points on the other will be labeled as −1. Points lying on the hyperplane
represent a tie, and, in principle, have no class assigned. Observe that this simpler
approach was as effective (for this problem) as the Gaussians. In this case, we say
the supervised learning algorithm has a linear bias instead.

The space containing all possible functions considered by a supervised algo-
rithm, that is, the algorithm bias, is illustrated using a box as shown in Fig. 1.19.
Inside such a box, the algorithm bias is circumscribed according to its restrictions.
For example, the supervised algorithm called Perceptron [6] considers a single
linear hyperplane to separate examples of binary problems, while the Multilayer
Perceptron (MLP) may employ more than a single hyperplane to separate two or
more classes. Therefore, the Perceptron bias is more restricted than the MLP.3 As a
consequence, the region illustrating the Perceptron bias is smaller than the one for
MLP. We suggest the reader to associate a smaller region as a space containing less
admissible functions to infer classifiers from.

We now illustrate the binary problem AND (examples defined in Table 1.5) in
Fig. 1.20. Let B be the set of binary numbers. The input space contains examples
xi ∈ B

2 and the corresponding output classes yi = {0, 1}. This problem is used
to discuss the Perceptron and MLP biases. By analyzing Fig. 1.20, we see a single

3When this algorithm employs more than a single hyperplane, otherwise it is the same as the
Perceptron.
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Fig. 1.18 Shattering of the input space of examples containing two variables (temperature and
humidity) and two classes ({−1,+1}) for the problem of playing soccer

linear hyperplane is enough to provide the correct labels for AND, therefore the
Perceptron algorithm satisfies such a task. However, what happens if we decide to
employ the Perceptron to solve the problem XOR (Fig. 1.21)? Observe this new task
requires a space with more admissible functions than a single hyperplane. This could
be solved by using a Gaussian function as shown in Fig. 1.22, so it would provide
an activation to characterize whether the class is 0 or 1. Another possible solution,
considered by the Multilayer Perceptron (MLP), is to use more than a single linear
hyperplane as shown in Fig. 1.23.

By using more than one hyperplane, MLP is capable of representing nonlinear
behaviors. Comparing the Perceptron against the Multilayer Perceptron, we con-
clude the first has a linear while the second has a nonlinear bias if more hyperplanes
are combined, as illustrated in Fig. 1.19. The Perceptron bias is more restricted (also
referred to as a stronger bias), as it contains less functions (only linear ones) inside
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Fig. 1.19 Box illustrating the
universe of admissible
functions Fall for any
supervised learning
algorithm. Subspace
FPerceptron corresponds to the
Perceptron bias while FMLP
to the MLP bias (for MLP
using two or more
hyperplanes)

Table 1.5 Problem AND:
Input space of examples and
the corresponding classes

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

Fig. 1.20 Problem AND
whose points correspond to
examples and their shapes to
classes: circle is associated to
class 0, and cross to 1.
Hyperplane illustrates a
possible classifier
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such space region, while the MLP bias is less restricted (also referred to as weaker),
containing nonlinear functions. This is the case if and only if MLP considers two or
more linear hyperplanes, otherwise it will have the same bias as the Perceptron.

All this analysis supports the study of the Bias-Variance Dilemma (discussed in
Sects. 1.3 and 1.4). By having a smaller subspace (a.k.a. stronger bias) of admissible
functions, the Perceptron has less variance associated to the convergence to its best
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Fig. 1.21 Illustration of the
problem XOR in which points
correspond to examples and
their shapes to classes: circle
is associated to class 0, and
cross to 1
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Fig. 1.22 Problem XOR
approached with a Gaussian
function
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classifier f
(b)
Perceptron ∈ FPerceptron. On the other hand, MLP has a greater variance,

what makes it require more samples to converge to its best classifier f
(b)
MLP ∈ FMLP.

Back to problem XOR, let us suppose the Perceptron and MLP were trained
to infer their best classifiers f

(b)
Perceptron and f

(b)
MLP, respectively. In such scenario,

f
(b)
Perceptron is not enough to solve this task, producing a greater risk. On the other

hand, MLP would provide a solution using two hyperplanes as shown in Fig. 1.23.
How does that affect the biases of both algorithms? Figure 1.24 illustrates a possible
location for those best classifiers. Observe the Perceptron would never converge to
f

(b)
MLP, because it is outside of its space of admissible functions.

For the problem AND, a single hyperplane is enough (Fig. 1.20), consequently the
two-hyperplane MLP and the Perceptron represent the same solution as illustrated
in Fig. 1.25. Note the biases of both algorithms and the location of the best classifier
f (b), which ends up to be the same for both classification algorithms.
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Fig. 1.23 Problem XOR
approached with the
Multilayer Perceptron (MLP)
using two linear hyperplanes
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Fig. 1.24 The universe of
functions Fall which contains
the Perceptron and MLP
biases. The best Perceptron
classifier is different from the
best for MLP

Fig. 1.25 The universe of
functions Fall contains all
biases, including a more
restricted subspace of
functions related to the
Perceptron and MLP biases.
For the problem AND, the best
Perceptron classifier is the
same as for MLP
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Fig. 1.26 The best of all classifiers fBayes and the biases of MLP and Perceptron. (a) fBayes is
not contained in the biases of MLP and Perceptron; (b) fBayes is contained in Perceptron, and
consequently in MLP bias; (c) fBayes is only inside the MLP bias

This second situation is very interesting. Both algorithms will attempt to
converge to f (b) = f

(b)
Perceptron = f

(b)
MLP. Which one should we use (the Perceptron

or the MLP) to tackle such a task? Both can be used, but the smaller variance helps
the Perceptron converge faster to f (b), so it would be undoubtedly a better choice.

We conclude the Perceptron bias is enough for the problem AND, while it is not
sufficient for XOR. The reader is invited to analyze the biases of other supervised
algorithms. Whenever the algorithm bias is not sufficient to induce a suitable
classifier for a given task, we should allow more admissible functions. That is why
we represent such weaker bias with a greater region as shown in Fig. 1.19. Now we
recall that if MLP is parametrized to use a single hyperplane, it will have the same
bias as the Perceptron. By using more hyperplanes, we make the space larger, i.e.
the bias weaker.

After introducing the concept of algorithm bias, let us introduce the Bayes
classifier fBayes, which is the best function in F . As illustrated in Fig. 1.26, an
algorithm may converge to it only if such function is inside its bias. Classifier
fBayes is the best approximation for the joint probability distribution P(X × Y ),
thus reducing the expected risk R(fBayes) as much as possible. Depending on the
data, that might not be exactly zero, because classes may be overlapped due to
nondeterminism or noise (e.g. the problem involving a die).

Figure 1.26a depicts the situation in which the Perceptron and MLP do not
contain fBayes, so they would converge to f

(b)
Perceptron and f

(b)
MLP, respectively. In

Fig. 1.26b, both algorithms can converge to fBayes, so fBayes = f
(b)
Perceptron = f

(b)
MLP;

and finally, in Fig. 1.26c, the MLP bias contains fBayes, so fBayes = f
(b)
MLP but

f
(b)
Perceptron �= fBayes, thus MLP may converge to such best function as more training

examples are provided.
It is also worth mentioning that a given algorithm bias may contain more than

one classifier providing the same solution, i.e. more than a single fBayes, f
(b)
Perceptron

and f
(b)
MLP in Fall . Observe we could slightly move the hyperplanes from Figs. 1.20

and 1.23 and still have the same classification results.
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Fig. 1.27 When the space of
admissible functions
Falgorithm grows, its
probability of containing the
memory-based classifier
increases. This is just an
illustration: this probability
function is not necessarily a
sigmoid such as depicted
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Algorithm Bias and the Memory-Based Classifier The algorithm bias is a central
concept for the Statistical Learning Theory. For example, consider an algorithm has
a bias containing a memory-based classifier fm capable of producing an empirical
risk Remp(fm) = 0 by memorizing all training examples, but failing for unseen
examples. In detail, in a binary classification problem, for any unseen example
received as input, this algorithm produces a random output: let 50% of examples
lying in class +1 while the other half in −1. Obviously, in average, it will output
+1 correctly for half of unseen examples, misclassifying the other half. Assessing
fm with the 0−1-loss function, we observe R(fm) = 0.5, as half of unseen examples
will be associated to the wrong class. As a consequence, fm does not provide a good
generalization, i.e., |Remp(fm) − R(fm)| = 0.5, once it will never approach zero as
the sample size n tends to infinity. Therefore, any algorithm capable of admitting the
memory-based classifier may eventually converge to fm and, thus, never generalize
knowledge.

This is one of the most important issues studied by the SLT: an algorithm
should never have the memory-based classifier inside its bias Falgorithm, otherwise
no learning is guaranteed, but solely the memorization of training examples. That
represents a challenge: by setting a bias with more admissible functions to address
a given problem, space Falgorithm will contain more classifiers to choose from,
increasing the probability of containing the memory-based classifier (as shown in
Fig. 1.27).

From Fig. 1.27, we conclude some bias is necessary to ensure learning, once
a larger space of admissible functions may contain the memory-based classifier.
For example, consider the data depicted in Fig. 1.28 and assume the supervised
algorithm is capable of inferring any polynomial function. Therefore, it could
converge to a perfect nonlinear function with Remp(f ) = 0, i.e., it does not make
mistakes in the training sample, however it could fail miserably on unseen examples,
an unacceptable result.
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Fig. 1.28 The dotted line shown is the real model, from which noisy sample data (circles) were
obtained. A regression is approached by two algorithms with different biases: the first includes
only linear functions, while the second includes a high-order polynomial function, resulting in a
memory-based model. (a) Noisy sample of points, (b) different models to fit the points

The concepts introduced so far are detailed, in the point of view of SLT, in
Chap. 2. However, before that, it is important to have tools to instantiate such
concepts in practical scenarios. The Perceptron and the Multilayer Perceptron
were selected since those algorithms provide excellent case studies for supervised
learning.

1.5 Illustrating the Supervised Learning

This section introduces the Perceptron and the Multilayer Perceptron, including
their formulations and implementations using the R language [10].

1.5.1 The Perceptron

As discussed in Sect. 1.4, the Perceptron bias is linear and therefore it contains less
functions inside space FPerceptron than any MLP using more than a single hyper-
plane. As a consequence, this algorithm is adequate to model linearly separable
problems such as AND and OR. On the other hand, the Perceptron does not suit more
complex problems (even toy problems such as XOR).
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Fig. 1.29 The Perceptron: input xi ∈ R
k , k connection weights wj and the bias term θ . This

neuron computes net as a sum of inputs multiplied by weights plus θ . The real-valued output is
given by ŷi = g(net)

The Perceptron algorithm was proposed by Rosenblatt [11] in 1957. It considers
an artificial neuron or unit4 that receives an input example xi to produce an output
class yi , as illustrated in Fig. 1.29. Such input example xi ∈ R

k , i.e. it contains a list
of indexed variables j = 1, . . . , k.

The neuron multiplies every input value xi,j by a weight wj as well as constant
1 by the bias term5 denoted by θ . As a next step, this algorithm computes a term
net = ∑k

j=1 xi,jwj + θ . Note this represents a linear combination of xi,j , for which
θ is the interception in relation to the axes defined by xi,j∀i. Next, the Perceptron
applies a heaviside (or step) function g(net) (Eq. (1.10)), in which ε is a user-defined
parameter, producing the output class ŷi for example xi .

g(net) =
{

1, iff net > ε

0, otherwise
(1.10)

In order to better understand the Perceptron algorithm, we approach a problem
with a single variable xi,1,∀i provided as input. Let every real input value 0 ≤
xi,1 ≤ 0.5 be assigned to class 0, while 0.5 < xi,1 ≤ 1.0 is assigned to class 1, such
as the training sample provided in Table 1.6. Figure 1.30 shows the expected classes
yi for every possible input value in range [0, 1].

In this case, the Perceptron adapts parameters w1 (weight) and θ (bias) to build
up a linear function net = xi,1w1 +θ , in form of ax +b, having x = xi,1 and b = θ ,
as shown in Fig. 1.31. If we set ε = 0 and apply every value of net into Eq. (1.10),
we obtain the expected outputs as shown in the same figure. The Perceptron learning
process consists in searching for adequate weights wj and bias θ such that ax + b

has the correct linear shape.

4The term neuron is used due to the biological neuron motivation.
5The reader may not confuse this bias term with the Bias-Variance Dilemma. The bias term θ is
simply a space interception value.
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Table 1.6 The Perceptron:
training sample for a
single-variable problem

Input variable Output class

0.0 0

0.1 0

0.2 0

0.3 0

0.4 0

0.5 0

0.6 1

0.7 1

0.8 1

0.9 1

1.0 1

Fig. 1.30 The Perceptron on
a simple problem: the
expected classes for the range
of the input variable
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x_1

y

0
1

To adapt weights and the bias term, the Perceptron considers the empirical
risk Remp(fcandidate), i.e., the error considering the training set for every candidate
classifier. The squared-error is used as the loss function to compute the empirical
risk (as defined in Eq. (1.11)), because it provides a convex function when the
classes involved in the problem are linearly separable, i.e., separable using a linear
hyperplane. We discuss about this issue later on. For now, let us employ this function
to find the solution.

�squared(xi, yi, g(xi)) = (yi − g(xi))
2 (1.11)

At this point, it may be clear that we want to minimize error (or risk) considering
the training sample. In that sense, g(.) should produce the smallest error when
analyzing an input example xi , as defined in Eq. (1.12). Figure 1.32 illustrates
this squared-error function in terms of the free variables, i.e., variables adapted by
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Fig. 1.31 The Perceptron on
a simple problem: linear
approximation given net
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Perceptron while finding a good linear approximation function to solve this problem.
The Perceptron aims to converge to the minimum of function E2.

E2 =
n∑

i=1

�squared(xi, yi, g(xi)) =
n∑

i=1

(yi − g(xi))
2 (1.12)

Let us assume this squared-error function provides a perfect paraboloid as shown
in Fig. 1.32, what might not occur once it depends on the available training examples
and also on the loss function. Consider also initial values w1 = −1 and θ = 1. We
would have a linear function net as shown in Fig. 1.33, when analyzing the input and
output spaces X and Y , respectively. After applying the heaviside function g(net)
(Eq. (1.10)) with ε = 0.5, we would obtain a plot as shown in Fig. 1.34.
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Fig. 1.33 The Perceptron:
input and output spaces X

and Y for function net
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Fig. 1.34 The Perceptron:
input and output spaces X

and Y for function g(net)
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For the sake of simplicity, observe w1 = −1 as a projected point touching the
squared error function illustrated in Fig. 1.32. Now, let the Perceptron adapt w1 so
it converges to a good enough function g(net). The gradient information on the
projected point indicates the direction, i.e. how to modify w1, in order to approach
the solution with the smallest risk as possible. Note the same happens for variable θ .

As there is a negative tendency at point w1 = −1, given by the tangent slope, the
Perceptron should increase the value of w1. This is exactly what is defined by the
Gradient Descent (GD) method as formalized in Eq. (1.13), in which η ∈ (0,∞) is
a user-defined parameter, a.k.a. gradient step.

In the case of a negative derivative, ∂E2

∂w1
< 0, its multiplication by −η results

in an increment of the current w1(t). Of course, if η is too small, this increment
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Fig. 1.35 Squared-error
function E2 in terms of the
free variable w1
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will be also small, taking too long to converge to the minimal squared error. On the
other hand, if η is too great, then w1(t + 1) may cross the minimum and reach the

other side, thus the derivative ∂E2

∂w1
will be positive in the next step (Fig. 1.35). Note

η influences the convergence rate and, in some cases, can even cause divergence.
Equation (1.14) defines the GD method for the second free variable θ .

w1(t + 1) = w1(t) − η
∂E2

∂w1
(1.13)

θ(t + 1) = θ(t) − η
∂E2

∂θ
(1.14)

Now, the formulation to adapt the Perceptron variables is presented. As first

requirement, terms ∂E2

∂w1
and ∂E2

∂θ
must be computed, given E2 = ∑n

i=1(yi−f (xi))
2,

and f (xi) written as:

f (xi) = g(neti ) = g

⎛
⎝ k∑

j=1

xi,jwj + θ

⎞
⎠ .

However, as g(.) is the heaviside function, we could not directly differentiate it.
As an approximation, Rosenblatt relaxed such differentiation by considering:

f (xi) = neti =
k∑

j=1

xi,jwj + θ,
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then, the squared-error function is given by:

E2 =
n∑

i=1

(yi − f (xi))
2 =

n∑
i=1

⎛
⎝yi −

⎡
⎣ k∑

j=1

xi,jwj + θ

⎤
⎦
⎞
⎠

2

,

so, ∂E2

∂w1
and ∂E2

∂θ
are found via the chain rule for derivatives as follows:

∂E2

∂w1
= 2

n∑
i=1

(yif − f (xi))
∂ [yi − f (xi)]

∂w1
,

and:

∂E2

∂θ
= 2

n∑
i=1

(yi − f (xi))
∂ [yi − f (xi)]

∂θ
.

Recall yi is the expected output class for example i (i.e., a label defined by some
specialist), thus when differentiating it in terms of either w1 or θ , yi is disconsidered.
Differentiating ∂−f (xi )

∂w1
and ∂−f (xi )

∂θ
:

∂ − f (xi)

∂w1
= −∂

[
xi,1w1 + θ

]
∂w1

= −xi,1,

and:

∂ − f (xi)

∂θ
= −∂

[
xi,1w1 + θ

]
∂θ

= −1.

The Gradient Descent method is formulated as follows:

w1(t + 1) = w1(t) − η
∂E2

∂w1

= w1(t) − η 2
n∑

i=1

(yi − f (xi))(−xi,1),

and:

θ(t + 1) = θ(t) − η
∂E2

∂θ

= θ(t) − η 2
n∑

i=1

(yi − f (xi))(−1),
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which, in open-form, is written as:

w1(t + 1) = w1(t) − η
∂E2

∂w1

= w1(t) − η 2
n∑

i=1

(yi − [
xi,1w1 + θ

]
)(−xi,1), (1.15)

and, finally:

θ(t + 1) = θ(t) − η
∂E2

∂θ

= θ(t) − η 2
n∑

i=1

(yi − [
xi,1w1 + θ

]
)(−1). (1.16)

Observe constant 2 is irrelevant due to another constant η defining the gradient
step. Those two last equations correspond to the Perceptron learning process, as
implemented in Listing 1.2. Instead of adapting w1 and θ after analyzing all input
examples, as the summation used in Eqs. (1.15) and (1.16), our code performs the
GD method on an example basis.

The R functions in Listing 1.2 implement a simple classification task in which
a single variable represents the input, i.e. xi ∈ R, producing output classes in
set {0, 1}. This listing contains: (1) the heaviside function (lines 4-9); (2) the
Perceptron training function, which returns the model, i.e. the learned parameters
w1 and θ (lines 14-87); (3) a function responsible to perform the classification of
new instances, given the trained model (lines 92-115); and, finally, (4) a demo
function with training and test sets (lines 127-169).

Listing 1.2 The Perceptron—implementation of the simplest classification task (“perceptron.r”)

1 # Source code f i l e : " p e r c e p t r o n . r "
2
3 # H e a v i s i d e f u n c t i o n w i t h a d e f a u l t e p s i l o n
4 g <− f u n c t i o n ( ne t , e p s i l o n = 0 . 5 ) {
5 i f ( n e t > e p s i l o n ) {
6 re turn ( 1 )
7 } e l s e {
8 re turn ( 0 )
9 }

10 }
11
12 # T h i s i s t h e f u n c t i o n t o t r a i n t h e P e r c e p t r o n
13 # Observe e t a and t h r e s h o l d assume d e f a u l t v a l u e s
14 p e r c e p t r o n . t r a i n <− f u n c t i o n ( t r a i n . t a b l e , e t a = 0 . 1 ,
15 t h r e s h o l d =1e −2) {
16
17 # Number o f i n p u t v a r i a b l e s
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18 nVars = nco l ( t r a i n . t a b l e )−1
19
20 c a t ( " Randomizing w e i g h t s and t h e t a i n r a n g e [ −0.5 , 0 . 5 ] \ n

" )
21
22 # Randomiz ing w e i g h t s
23 weight s = r u n i f ( min= −0.5 , max = 0 . 5 , n=nVars )
24
25 # Randomiz ing t h e t a
26 t h e t a = r u n i f ( min= −0.5 , max = 0 . 5 , n =1)
27
28 # T h i s sum o f squared e r r o r s w i l l accumu l a t e a l l e r r o r s
29 # o c c u r r i n g a long t r a i n i n g i t e r a t i o n s . When t h i s e r r o r i s
30 # below a g i v e n t h r e s h o l d , l e a r n i n g s t o p s .
31 sumSquaredEr ro r = 2∗ t h r e s h o l d
32
33 # L e ar n i ng i t e r a t i o n s
34 whi le ( sumSquaredEr ro r > t h r e s h o l d ) {
35
36 # I n i t i a l i z i n g t h e sum o f squared e r r o r s as z e r o
37 # t o s t a r t c o u n t i n g and l a t e r e v a l u a t e t h e t o t a l
38 # l o s s f o r t h i s d a t a s e t i n t r a i n . t a b l e
39 sumSquaredEr ro r = 0
40
41 # I t e r a t e a long a l l rows ( examples ) c o n t a i n e d i n
42 # t r a i n . t a b l e
43 f o r ( i i n 1 : nrow ( t r a i n . t a b l e ) ) {
44
45 # Example x _ i
46 x_ i = t r a i n . t a b l e [ i , 1 : nVars ]
47
48 # E x p e c t e d o u t p u t c l a s s
49 # Observe t h e l a s t column o f t h i s t a b l e
50 # c o n t a i n s t h e o u t p u t c l a s s
51 y_ i = t r a i n . t a b l e [ i , nco l ( t r a i n . t a b l e ) ]
52
53 # Now t h e P e r c e p t r o n p r o d u c e s t h e o u t p u t
54 # c l a s s u s i n g t h e c u r r e n t v a l u e s f o r
55 # w e i g h t s and t h e t a , t h e n i t a p p l i e s t h e
56 # h e a v i s i d e f u n c t i o n
57 hat _y_ i = g ( x_ i %∗% weights + t h e t a )
58
59 # T h i s i s t h e e r r o r , r e f e r r e d t o as ( y _ i − g ( x _ i ) )
60 # i n t h e P e r c e p t r o n f o r m u l a t i o n
61 E r r o r = y_ i − hat _y_ i
62
63 # As p a r t o f t h e G r a d i e n t Descen t method , we here
64 # compute t h e p a r t i a l d e r i v a t i v e o f t h e Squared

Error
65 # f o r t h e c u r r e n t example i i n t e r m s o f w e i g h t s and
66 # t h e t a . Observe c o n s t a n t 2 i s n o t n e c e s s a r y , once

we
67 # can s e t e t a u s i n g t h e v a l u e we d e s i r e
68 dE2_dw1 = 2 ∗ E r r o r ∗ −x_ i
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69 dE2_ d t h e t a = 2 ∗ E r r o r ∗ −1
70
71 # T h i s i s t h e G r a d i e n t Descen t method t o adap t
72 # w e i g h t s and t h e t a as d e f i n e d i n t h e f o r m u l a t i o n
73 weight s = weight s − e t a ∗ dE2_dw1
74 t h e t a = t h e t a − e t a ∗ dE2_ d t h e t a
75
76 # A ccumul a t i n g t h e squared e r r o r t o d e f i n e
77 # t h e s t o p c r i t e r i o n
78 sumSquaredEr ro r = sumSquaredEr ro r + E r r o r ^2
79 }
80
81 c a t ( "Sum of s q u a r e d e r r o r s = " , sumSquaredError , " \ n " )
82 }
83
84 # R e t u r n i n g w e i g h t s and t h e t a , once t h e y r e p r e s e n t
85 # t h e s o l u t i o n
86 r e t = l i s t ( )
87 r e t $ we ight s = weight s
88 r e t $ t h e t a = t h e t a
89
90 re turn ( r e t )
91 }
92
93 # T h i s i s t h e f u n c t i o n t o e x e c u t e t h e P e r c e p t r o n
94 # over unseen da ta ( new examples )
95 p e r c e p t r o n . t e s t <− f u n c t i o n ( t e s t . t a b l e , weights , t h e t a ) {
96
97 # Here we p r i n t o u t t h e e x p e c t e d c l a s s ( y i ) f o l l o w e d by

t h e
98 # o b t a i n e d one ( h a t _ y i ) when c o n s i d e r i n g w e i g h t s and

t h e t a .
99 # Of course , f u n c t i o n p e r c e p t r o n . t r a i n s h o u l d be c a l l e d

100 # p r e v i o u s l y t o f i n d t h e v a l u e s f o r w e i g h t s and t h e t a
101 c a t ( " # y i \ t h a t _ y i \ n " )
102
103 # Number o f i n p u t v a r i a b l e s
104 nVars = nco l ( t e s t . t a b l e )−1
105
106 # For e v e r y row i n t h e t e s t . t a b l e
107 f o r ( i i n 1 : nrow ( t e s t . t a b l e ) ) {
108
109 # Example i
110 x_ i = t e s t . t a b l e [ i , 1 : nVars ]
111
112 # E x p e c t e d c l a s s f o r example i
113 y_ i = t e s t . t a b l e [ i , nco l ( t e s t . t a b l e ) ]
114
115 # Outpu t c l a s s produced by t h e P e r c e p t r o n
116 hat _y_ i = g ( x_ i %∗% weights + t h e t a )
117
118 c a t ( y_ i , " \ t " , hat _y_ i , " \ n " )
119 }
120 }
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121
122 # T h i s i s an example o f l e a r n i n g t h e s i m p l e s t problem
123 # To run t h i s example :
124 # 1) Open t h e R S t a t i s t i c a l S o f t w a r e
125 # 2) s o u r c e ( " p e r c e p t r o n . r " )
126 # 3) p e r c e p t r o n . run . s i m p l e ( )
127 #
128 p e r c e p t r o n . run . s i m p l e <− f u n c t i o n ( ) {
129
130 # T h i s i s a t a b l e w i t h t r a i n i n g examples
131 t r a i n . t a b l e = matrix ( c ( 0 . 0 , 0 ,
132 0 . 1 , 0 ,
133 0 . 2 , 0 ,
134 0 . 3 , 0 ,
135 0 . 4 , 0 ,
136 0 . 5 , 0 ,
137 0 . 6 , 1 ,
138 0 . 7 , 1 ,
139 0 . 8 , 1 ,
140 0 . 9 , 1 ,
141 1 . 0 , 1 ) ,
142 nrow =11 ,
143 nco l =2 ,
144 byrow=TRUE)
145
146 # T h i s i s a t a b l e w i t h t e s t examples .
147 # The l a s t column o n l y shows t h e e x p e c t e d
148 # o u t p u t and i t i s n o t used i n t h e t e s t i n g s t a g e
149 t e s t . t a b l e = matrix ( c ( 0 . 0 5 , 0 ,
150 0 . 1 5 , 0 ,
151 0 . 2 5 , 0 ,
152 0 . 3 5 , 0 ,
153 0 . 4 5 , 0 ,
154 0 . 5 5 , 1 ,
155 0 . 6 5 , 1 ,
156 0 . 7 5 , 1 ,
157 0 . 8 5 , 1 ,
158 0 . 9 5 , 1 ) ,
159 nrow =10 ,
160 nco l =2 ,
161 byrow=TRUE)
162
163 # T r a i n i n g t h e P e r c e p t r o n t o f i n d w e i g h t s and t h e t a
164 t r a i n i n g . r e s u l t = p e r c e p t r o n . t r a i n ( t r a i n . t a b l e )
165
166 # T e s t i n g t h e P e r c e p t r o n w i t h t h e w e i g h t s and t h e t a found
167 p e r c e p t r o n . t e s t ( t e s t . t a b l e , t r a i n i n g . r e s u l t $ weights ,
168 t r a i n i n g . r e s u l t $ t h e t a )
169
170 re turn ( t r a i n i n g . r e s u l t )
171 }
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To run this example, the reader must load the source code in the R Statistical Soft-
ware. Afterwards, (s)he may execute function perceptron.run.simple().6

Notice the expected and obtained output classes may contain errors when the input
variable xi,1 is nearby the transition value 0.5, as it is the point splitting up labels 0
and 1.

By running perceptron.run.simple(), the textual output should be
similar to the one illustrated in Listing 1.3. At first, w1 and θ are randomized, then
the Perceptron starts iterating on training examples until the sum of squared errors
(for the entire set) converges to zero. The expected yi and the obtained ŷi classes for
every test example are listed. A careful reader may note that one of the output classes
ŷi is not correct in Listing 1.3 because: (1) the hyperplane was fitted according to
the training set; and (2) the test set contains unseen examples whose variations were
not seen during training.

Listing 1.3 Text output produced by function perceptron.run.simple()

Randomizing w e i g h t s and t h e t a i n r a n g e [ −0.5 , 0 . 5 ] . . .
Accumulated sum of s q u a r e d e r r o r s = 2
Accumulated sum of s q u a r e d e r r o r s = 2
Accumulated sum of s q u a r e d e r r o r s = 2
Accumulated sum of s q u a r e d e r r o r s = 2
Accumulated sum of s q u a r e d e r r o r s = 1
Accumulated sum of s q u a r e d e r r o r s = 0
# y i h a t _ y i
0 0
0 0
0 0
0 0
0 0
1 0
1 1
1 1
1 1
1 1
$ w e i g h t s
[ 1 ] 0 .3979496

$ t h e t a
[ 1 ] 0 .2652314

In order to visualize how the Perceptron separates the input space, see function
perceptron.simple.hyperplane.plot(w,t) in Listing 1.4 which plots
the resulting hyperplane. It requires weight w1 and theta θ obtained after running
function perceptron.run.simple() from Listing 1.4. An example of
hyperplane is illustrated in Fig. 1.36 (note the effect of the heaviside function, which
discretizes output values as either 0 or 1).

6We suggest to execute this function several times, in order to see the effects of using different
starting random values for weight w1 and θ .
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Listing 1.4 The Perceptron—function for plotting the hyperplane found for the simplest classifi-
cation task

source ( " p e r c e p t r o n . r " )

# T h i s f u n c t i o n p l o t s t h e h y p e r p l a n e found f o r t h i s s i m p l e s t
# problem which c o n s i d e r s a s i n g l e i n p u t v a r i a b l e .
# V a r i a b l e s range . s t a r t and range . end d e f i n e t h e i n t e r v a l o f
# v a l u e s f o r t h e s i n g l e i n p u t v a r i a b l e composing t h e problem

.
# T h i s s i m p l e problem has a s i n g l e v a r i a b l e composing e v e r y
# example i , which i s x _ i , 1
p e r c e p t r o n . s i m p l e . h y p e r p l a n e . p l o t <− f u n c t i o n ( weight , t h e t a ,

range . s t a r t =0 ,
range . end =1) {

# Number o f v a r i a b l e s i s 1
nVars = 1

# We w i l l now d e f i n e t h e same range f o r t h e i n p u t
v a r i a b l e .

# T h i s range w i l l c o n t a i n 100 d i s c r e t i z e d v a l u e s
range _ of _ e v e r y _ i n p u t _ v a r i a b l e =

seq ( range . s t a r t , range . end , l e n g t h =100)
x_1 = range _ of _ e v e r y _ i n p u t _ v a r i a b l e

# Computing n e t f o r e v e r y i n p u t v a l u e o f v a r i a b l e x _ i , 1
a l l _ n e t s = cbind ( x_ 1 , 1 ) %∗% c ( weight , t h e t a )

# T h i s v a r i a b l e a l l _ n e t s c o n t a i n s a l l n e t v a l u e s f o r a l l
# v a l u e s assumed by v a r i a b l e x _ 1 . V a r i a b l e h a t _ y w i l l
# c o n t a i n t h e P e r c e p t r o n o u t p u t s a f t e r a p p l y i n g t h e
# h e a v i s i d e f u n c t i o n
hat _y = rep ( 0 , l e n g t h ( a l l _ n e t s ) )
f o r ( i i n 1 : l e n g t h ( a l l _ n e t s ) ) {

hat _y [ i ] = g ( a l l _ n e t s [ i ] )
}

# V a r i a b l e h y p e r p l a n e w i l l c o n t a i n two columns , t h e f i r s t
# c o r r e s p o n d s t o t h e i n p u t v a l u e o f x _ i , 1 and t h e second
# t o t h e c l a s s produced by t h e P e r c e p t r o n
h y p e r p l a n e = cbind ( x_ 1 , hat _y )

# P l o t t i n g t h e h y p e r p l a n e found by t h e P e r c e p t r o n
p l o t ( h y p e r p l a n e )

re turn ( h y p e r p l a n e )
}

In order to analyze the obtained hyperplane, the heaviside function is omitted so
that the output is only net(.) in function perceptron.simple.hyperplane.
plot.without.g(). The Perceptron was executed five times using function
perceptron.run.simple(), recording the corresponding weights and thetas
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Fig. 1.36 Illustration of the
hyperplane (dashed line)
produced by the Perceptron,
with outputs ŷi along
different input values of xi,1
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(see Listing 1.5). Then, each pair weight and theta were used to compute five
different functions net(.) using function perceptron.simple.hyperplane.
plot.without.g().

Listing 1.5 The Perceptron—plotting the hyperplane in terms of function net

source ( " p e r c e p t r o n . r " )

# T h i s f u n c t i o n p l o t s t h e h y p e r p l a n e found f o r t h i s s i m p l e s t
# problem which c o n s i d e r s a s i n g l e i n p u t v a r i a b l e and
# f u n c t i o n n e t o n l y .
# V a r i a b l e s range . s t a r t and range . end d e f i n e t h e i n t e r v a l o f
# v a l u e s f o r t h e s i n g l e i n p u t v a r i a b l e composing t h e problem

.
# T h i s s i m p l e problem has a s i n g l e v a r i a b l e composing e v e r y
# example i , which i s x _ i , 1
p e r c e p t r o n . s i m p l e . h y p e r p l a n e . p l o t . w i t h o u t . g <−

f u n c t i o n ( weight , t h e t a , range . s t a r t =0 ,
range . end =1) {

# Number o f v a r i a b l e s i s 1
nVars = 1

# We w i l l now d e f i n e t h e same range f o r t h e i n p u t
v a r i a b l e .

# T h i s range w i l l c o n t a i n 100 d i s c r e t i z e d v a l u e s
range _ of _ e v e r y _ i n p u t _ v a r i a b l e =

seq ( range . s t a r t , range . end , l e n g t h =100)
x_1 = range _ of _ e v e r y _ i n p u t _ v a r i a b l e

# Computing n e t f o r e v e r y i n p u t v a l u e o f v a r i a b l e x _ i , 1
a l l _ n e t s = cbind ( x_ 1 , 1 ) %∗% c ( weight , t h e t a )
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# T h i s v a r i a b l e a l l _ n e t s c o n t a i n s a l l n e t v a l u e s f o r
e v e r y

# v a l u e assumed by v a r i a b l e x _ 1 . V a r i a b l e h a t _ y w i l l
c o n t a i n

# P e r c e p t r o n o u t p u t s b e f o r e a p p l y i n g t h e h e a v i s i d e
f u n c t i o n

hat _y = rep ( 0 , l e n g t h ( a l l _ n e t s ) )
f o r ( i i n 1 : l e n g t h ( a l l _ n e t s ) ) {

hat _y [ i ] = a l l _ n e t s [ i ] # No h e a v i s i d e f u n c t i o n g ( n e t )
}

# V a r i a b l e h y p e r p l a n e w i l l c o n t a i n two columns , t h e f i r s t
# c o r r e s p o n d s t o t h e i n p u t v a l u e o f x _ i , 1 and t h e second
# t o t h e c l a s s produced by t h e P e r c e p t r o n
h y p e r p l a n e = cbind ( x_ 1 , hat _y )

# P l o t t i n g t h e h y p e r p l a n e found by P e r c e p t r o n i n t e r m s o f
# f u n c t i o n n e t
p l o t ( h y p e r p l a n e )

re turn ( h y p e r p l a n e )
}

Listing 1.6 implements the repeated training executions. Figure 1.37
exemplifies five net(.) functions. Each training stage is executed after calling
perceptron.run.simple(), which invokes perceptron.train() and,
consequently, the heaviside function g(net), using the threshold ε = 0.5. By
omitting the heaviside function in Fig. 1.37, one can see the effects produced by
parameter ε, as defined in Eq. (1.10).

Figure 1.37 makes evident that parameter ε is responsible for defining the same
central point for hyperplanes in terms of the y-axis, so their slopes change but
they preserve the same pivot. Even for different positive slopes, the classification
results are the same after applying g(net). Also observe that training with different
values of ε make hyperplanes assume different pivots as shown in Fig. 1.38 for
ε = {0.25, 0.50, 0.75}. In fact, any other value of ε would not affect the final result,
once Eq. (1.10) simply uses it as a heaviside threshold, to separate label 0 from 1.

Listing 1.6 Details about the several training executions

source ( " p e r c e p t r o n −h y p e r p l a n e −w i t h o u t −g . r " )

# T h i s f u n c t i o n i s used t o run t h e t r a i n i n g s t a g e f o r t h e
# s i m p l e s t c l a s s i f i c a t i o n t a s k . Each t r a i n i n g w i l l produce
# a d i f f e r e n t p a i r o f w e i g h t and t h e t a , which are t h e n used
# t o p l o t f u n c t i o n n e t
run . s e v e r a l . t i m e s <− f u n c t i o n ( t i m e s =5) {

# Sav i ng t h e r e s u l t s f o r each f u n c t i o n n e t
n e t . f u n c t i o n s = l i s t ( )

# For each e x e c u t i o n
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f o r ( i i n 1 : t i m e s ) {
# C a l l t r a i n i n g
t r a i n i n g . e x e c u t i o n = p e r c e p t r o n . run . s i m p l e ( )

# O b t a i n i n g f u n c t i o n n e t
n e t . f u n c t i o n s [ [ i ] ] =

p e r c e p t r o n . s i m p l e . h y p e r p l a n e . p l o t . w i t h o u t . g (
t r a i n i n g . e x e c u t i o n $ weight ,
t r a i n i n g . e x e c u t i o n $ t h e t a )

}

# P l o t t i n g
p l o t ( n e t . f u n c t i o n s [ [ 1 ] ] , c o l =1)
f o r ( i i n 2 : t i m e s ) {

p o i n t s ( n e t . f u n c t i o n s [ [ i ] ] , c o l = i ) r e s u l t s
}

}

We have already advanced in several aspects of the Perceptron algorithm, but
illustrations are still needed to understand the error and the squared-error functions.
In Listing 1.7, function perceptron.simple.error() produces the error,
i.e., the difference between the expected and obtained classes yi − ŷi . It also plots
such an error in terms of weight and theta, as shown in Fig. 1.39. Observe weight
and theta variations imply in a linear surface of errors.

By using the gradient to modify the free variables so that they minimize the error,
the solution would tend to minus infinity because the function has an undefined
minimal point, therefore there is no stop condition. One might even think about
applying the Newton-Raphson method [18] to find successive approximations for
the roots of this real-valued error function, but positive and negative errors might
cancel out each other. Consequently, the roots may not represent the zero error as
expected.

Fig. 1.37 Results provided
by function net under five
different training stages with
parameter ε = 0.5
(Eq. (1.10))
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Fig. 1.38 Result provided by function net and the use of different values for parameter epsilon
(Eq. (1.10)): ε = {0.25, 0.50, 0.75}

That is why the squared-error function (shown in Fig. 1.40) is more adequate
for the Gradient Descent method. Supervised learning algorithms assume there is
a single minimum for this squared-error function. However, there are scenarios
in which several local minima exist, leading to a partial and insufficient solution.
For example, problem XOR requires two hyperplanes, as shown in Fig. 1.23.
Consequently, the Perceptron would find a local solution, confirming its bias is
insufficient to learn the problem XOR.
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Listing 1.7 Functions to study how the Perceptron error behaves

source ( " p e r c e p t r o n . r " )

p e r c e p t r o n . s i m p l e . e r r o r <− f u n c t i o n ( range . s t a r t =−1,
range . end =1 , mu=1e −10) {

# D e f i n i n g t h e t a b l e w i t h examples
# N e g a t i v e s
t a b l e = cbind ( seq ( 0 , 0 . 5 , l e n g t h =100) , rep ( 0 , 1 0 0 ) )
# P o s i t i v e s
t a b l e = rbind ( t a b l e , cbind ( seq ( 0 . 5 +mu , 1 , l e n g t h =100) ,

rep ( 1 , 1 0 0 ) ) )

# We w i l l now d e f i n e t h e same range f o r t h e f r e e
v a r i a b l e s

# w e i g h t and t h e t a . Range c o n t a i n s 100 d i s c r e t i z e d v a l u e s
range _ f o r _ f r e e _ v a r i a b l e s =

seq ( range . s t a r t , range . end , l e n g t h =100)
w e i g h t = range _ f o r _ f r e e _ v a r i a b l e s
t h e t a = range _ f o r _ f r e e _ v a r i a b l e s

# Sum o f e r r o r s w h i l e v a r y i n g w e i g h t and t h e t a
e r r o r _ f u n c t i o n = matrix ( 0 , nrow= l e n g t h ( w e i g h t ) ,

nco l = l e n g t h ( t h e t a ) )

# For each w e i g h t
f o r (w i n 1 : l e n g t h ( w e i g h t ) ) {

# For each t h e t a
f o r ( t i n 1 : l e n g t h ( t h e t a ) ) {

# Compute a l l n e t v a l u e s
n e t = cbind ( t a b l e [ , 1 ] , rep ( 1 , nrow ( t a b l e ) ) ) %∗%

c ( w e i g h t [w] , t h e t a [ t ] )
# D e f i n i n g a v e c t o r t o save t h e P e r c e p t r o n o u t p u t s
hat _y = rep ( 0 , l e n g t h ( n e t ) )
# Produc ing t h e o u t p u t c l a s s e s
f o r ( n i n 1 : l e n g t h ( n e t ) ) {

# g ( n e t ) was removed t o improve i l l u s t r a t i o n
hat _y [ n ] = n e t [ n ]

}

# These are t h e e x p e c t e d c l a s s e s
y = t a b l e [ , 2 ]

# Computing t h e e r r o r
e r r o r = y − hat _y

# Sav i ng t h e t o t a l e r r o r i n t h e m a t r i x
e r r o r _ f u n c t i o n [w, t ] = sum ( e r r o r )
# T h i s l a s t i n s t r u c t i o n makes p o s i t i v e and n e g a t i v e
# t e r m s c a n c e l each o t h e r

}
}
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# P l o t t i n g t h e e r r o r
f i l l e d . contour ( e r r o r _ f u n c t i o n )

}

p e r c e p t r o n . s i m p l e . s q u a r e d . e r r o r <− f u n c t i o n ( range . s t a r t =−10,
range . end =10 ,
mu=1e −10) {

# D e f i n i n g t h e t a b l e w i t h examples
t a b l e = cbind ( seq ( 0 , 0 . 5 , l e n g t h =100) , rep ( 0 , 100) )
t a b l e = rbind ( t a b l e , cbind ( seq ( 0 . 5 +mu , 1 , l e n g t h =100) ,

rep ( 1 , 100) ) )

# We w i l l now d e f i n e t h e same range f o r t h e f r e e
v a r i a b l e s

# w e i g h t and t h e t a . Range c o n t a i n s 100 d i s c r e t i z e d v a l u e s
range _ f o r _ f r e e _ v a r i a b l e s =

seq ( range . s t a r t , range . end , l e n g t h =50)
w e i g h t = range _ f o r _ f r e e _ v a r i a b l e s
t h e t a = range _ f o r _ f r e e _ v a r i a b l e s

# Sum o f squared e r r o r s w h i l e v a r y i n g w e i g h t and t h e t a
e r r o r _ f u n c t i o n = matrix ( 0 , nrow= l e n g t h ( w e i g h t ) ,

nco l = l e n g t h ( t h e t a ) )

# For each w e i g h t
f o r (w i n 1 : l e n g t h ( w e i g h t ) ) {

# For each t h e t a
f o r ( t i n 1 : l e n g t h ( t h e t a ) ) {

# Compute a l l n e t v a l u e s
n e t = cbind ( t a b l e [ , 1 ] , rep ( 1 , nrow ( t a b l e ) ) ) %∗%

c ( w e i g h t [w] , t h e t a [ t ] )
# D e f i n i n g a v e c t o r t o save t h e P e r c e p t r o n o u t p u t s
hat _y = rep ( 0 , l e n g t h ( n e t ) )
# Produc ing t h e o u t p u t c l a s s e s
f o r ( n i n 1 : l e n g t h ( n e t ) ) {

# g ( n e t ) was removed t o improve i l l u s t r a t i o n
hat _y [ n ] = n e t [ n ]

}

# These are t h e e x p e c t e d c l a s s e s
y = t a b l e [ , 2 ]

# T h i s i s squared t o a v o i d n e g a t i v e and p o s i t i v e
# v a l u e s t o a m o r t i z e each o t h e r
s q u a r e d . e r r o r = ( y − hat _y ) ^2

# Sav ing t h e t o t a l squared e r r o r i n t h e m a t r i x
e r r o r _ f u n c t i o n [w, t ] = sum ( s q u a r e d . e r r o r )

}
}

# We app ly a l o g on t h e squared e r r o r f u n c t i o n t o improve
# i l l u s t r a t i o n , o t h e r w i s e we do n o t s e e t h e p a r a b o l o i d as
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# c l e a r as i n t h i s form .
f i l l e d . contour ( l o g ( e r r o r _ f u n c t i o n ) )

}

The concept of convexity is what supports the use of the squared-error function
to guide learning. In a simple way, any line segment connecting two function points
must lie above or on the curve to make it convex, as shown in Fig. 1.41. The most
important reference for the reader is that every convex function has minima. Also
notice the set of points above the function (a.k.a. epigraph) must form a convex set,
as illustrated in Fig. 1.42.7 If the supervised learning algorithm considers a convex
error function, then the adaptation of free variables will eventually converge to a
minimum. As cases of study, this chapter covers the Perceptron and Multilayer
Perceptron (MLP) algorithms.

αf (a) + (1 − α)f (b) ≥ f (αa + (1 − α)b), ∀α ∈ [0, 1] (1.17)

Fig. 1.39 The Perceptron:
error function yi − ŷi
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Fig. 1.40 The Perceptron:
squared-error function
(yi − ŷi )
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7The book Convex Optimization [2] is suggested.
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Fig. 1.41 Example of a
convex function

x
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Fig. 1.42 The epigraph of a
convex function must form a
convex set of points
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Jensen’s inequality (Eq. (1.17)) formalizes when a function f (.) is convex. It
connects two points f (a) and f (b) through an affine function, so that α = 1
corresponds to f (a), and α = 0 to f (b), otherwise, provided α ∈ [0, 1], the affine
point lies on the mapping connecting f (a) to f (b) (see Fig. 1.41).

Next, the problem AND is addressed for which the input and the output spaces
are listed in Table 1.5, as discussed in Sect. 1.4 (see Fig. 1.20). Instead of receiving
a single input variable, this problem deals with two, i.e. xi,1 and xi,2, in attempt to
produce the expected output yi , for every example i. Observe the Perceptron always
outputs a single variable for any classification task.

In this task, the Perceptron computes the following function net =∑2
j=1 xi,jwj + θ = xi,1w1 + xi,2w2 + θ and then applies the activation function

to produce classes ŷi = g(net), ∀i (Eq. (1.10)). Listing 1.8 provides two additional
functions to implement the problem AND, which also considers our previous codes.
By running function perceptron.run.AND(), the Perceptron is trained to
infer a model, whose hyperplane is plotted afterwards (Fig. 1.43). We suggest the
reader to run function perceptron.run.AND() several times and observe how
the hyperplane changes, due to the algorithm converges to different solutions given
weights and theta are randomly initialized.
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Listing 1.8 Additional functions to implement the problem AND

source ( " p e r c e p t r o n . r " )

# T h i s i s an example o f l e a r n i n g t h e problem AND
#
# To run t h i s example :
#
# 1) Open t h e R S t a t i s t i c a l S o f t w a r e
# 2) s o u r c e ( " p e r c e p t r o n −AND . r " )
# 3 ) p e r c e p t r o n . run . AND ( )
#
p e r c e p t r o n . run .AND <− f u n c t i o n ( ) {

# T h i s i s a t a b l e w i t h a l l p o s s i b l e examples
# f o r t h e problem AND . In t h i s case we w i l l
# use t h e same t a b l e f o r t r a i n i n g and t e s t i n g ,
# j u s t because we know a l l p o s s i b l e b i n a r y
# c o m b i n a t i o n s
t a b l e = matrix ( c ( 0 , 0 , 0 , # 0 AND 0 = 0

0 , 1 , 0 , # 0 AND 1 = 0
1 , 0 , 0 , # 1 AND 0 = 0
1 , 1 , 1 ) , # 1 AND 1 = 1

nrow =4 ,
nco l =3 ,
byrow=TRUE)

# T r a i n i n g t h e P e r c e p t r o n t o f i n d w e i g h t s and t h e t a
t r a i n i n g . r e s u l t = p e r c e p t r o n . t r a i n ( t a b l e )

# T e s t i n g t h e P e r c e p t r o n w i t h t h e w e i g h t s and t h e t a found
p e r c e p t r o n . t e s t ( t a b l e , t r a i n i n g . r e s u l t $ weights ,

t r a i n i n g . r e s u l t $ t h e t a )

# P l o t t i n g t h e h y p e r p l a n e found
p e r c e p t r o n . h y p e r p l a n e . p l o t ( t r a i n i n g . r e s u l t $ weights ,

t r a i n i n g . r e s u l t $ t h e t a )
}

# T h i s f u n c t i o n p l o t s t h e h y p e r p l a n e found f o r a g i v e n
# c l a s s i f i c a t i o n t a s k w i t h two i n p u t v a r i a b l e s o n l y .
# V a r i a b l e s range . s t a r t and range . end d e f i n e t h e i n t e r v a l
# f o r v a r i a b l e s composing t h e problem . The problem AND
# has two v a r i a b l e s composing each example i , which are
# x _ i , 1 and x _ i , 2
p e r c e p t r o n . h y p e r p l a n e . p l o t <− f u n c t i o n ( weights , t h e t a ,

range . s t a r t =0 ,
range . end =1) {

# V a r i a b l e w e i g h t s d e f i n e t h e number o f i n p u t v a r i a b l e s
# we have , so we can use t h i s i n f o r m a t i o n t o c r e a t e
# axes i n a m u l t i d i m e n s i o n a l i n p u t space i n o r d e r t o
# s e e how i n p u t s mod i f y t h e o u t p u t c l a s s p r o v i d e d by
# t h e P e r c e p t r o n



50 1 A Brief Review on Machine Learning

nVars = l e n g t h ( weight s )

# We w i l l now d e f i n e t h e same range f o r e v e r y i n p u t
# v a r i a b l e . T h i s range w i l l c o n t a i n 100 d i s c r e t i z e d
# v a l u e s
range _ of _ e v e r y _ i n p u t _ v a r i a b l e =

seq ( range . s t a r t , range . end , l e n g t h =100)

x_1 = range _ of _ e v e r y _ i n p u t _ v a r i a b l e
x_2 = range _ of _ e v e r y _ i n p u t _ v a r i a b l e

# F u n c t i o n o u t e r combines e v e r y p o s s i b l e v a l u e f o r
# v a r i a b l e x _1 a g a i n s t e v e r y p o s s i b l e v a l u e f o r x _ 2 .
# Observe t h e y are c o n t i n u o u s v a l u e s which were n e v e r
# seen ( we e x p e c t e i t h e r 0 or 1 ) by t h i s P e r c e p t r o n
# d u r i n g t h e t r a i n i n g s t a g e . A l so o b s e r v e v a l u e 1
# i n s i d e t h e cbind , which r e f e r s t o t h e 1 ∗ t h e t a w h i l e
# comput ing f u n c t i o n n e t . O p e r a t i o n %∗% c o r r e s p o n d s
# t o t h e d o t p r o d u c t .
a l l _ n e t s = outer ( x_ 1 , x_ 2 , f u n c t i o n ( x , y ) {

cbind ( x , y , 1 ) %∗% c ( weights , t h e t a ) } )

# T h i s v a r i a b l e a l l _ n e t s c o n t a i n s a l l n e t v a l u e s f o r
# e v e r y c o m b i n a t i o n be tween v a r i a b l e s x _1 and x _ 2 .
# V a r i a b l e y w i l l c o n t a i n t h e P e r c e p t r o n o u t p u t s a f t e r
# a p p l y i n g t h e h e a v i s i d e f u n c t i o n
y = matrix ( 0 , nrow=nrow ( a l l _ n e t s ) , nco l = nco l ( a l l _ n e t s ) )
f o r ( row i n 1 : nrow ( a l l _ n e t s ) ) {

f o r ( c o l i n 1 : nco l ( a l l _ n e t s ) ) {
y [ row , c o l ] = g ( a l l _ n e t s [ row , c o l ] )

}
}

# P l o t t i n g t h e h y p e r p l a n e found by t h e P e r c e p t r o n
f i l l e d . contour ( x_ 1 , x_ 2 , y )

}

The reader should also apply the Perceptron on the problem XOR to notice that it
never finds a suitable hyperplane. It will fail for at least 25% of examples because
when the hyperplane answers correctly for one of the classes, it will misclassify
half of examples associated to the other class, as seen in Fig. 1.44. Since the error
does not converge to zero, the threshold must be significantly increased so that the
hyperplane can be plotted. As already discussed, the hyperplane will change along
every run, providing different classification answers.

Problems such as XOR motivated the design of supervised learning algorithms
using multiple hyperplanes. The Multilayer Perceptron (MLP) is a remarkable
example among all other algorithms, what motivated its discussion along the next
section.
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Fig. 1.43 Hyperplane found
by the Perceptron trained on
the problem AND
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Fig. 1.44 Different attempts to use a single hyperplane to solve the problem XOR
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xi,2 w2 f (net) ŷi
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Fig. 1.45 A single unit or neuron of the Multilayer Perceptron, in which f (.) is the activation
function

1.5.2 Multilayer Perceptron

The problem XOR is a toy example to motivate solutions for more complex
classification tasks. Those complex scenarios require supervised learning algorithms
to employ multiple hyperplanes, such as the Multilayer Perceptron (MLP). MLP
considers multiple units (or neurons) of the Perceptron algorithm organized in
consecutive layers.

An MLP unit (or neuron) is illustrated in Fig. 1.45, showing input variables
xi,1, . . . , xi,k as well as the output variable ŷi for some example i, weights
w1, . . . , wk and θ . Similarly to the Perceptron, an MLP neuron computes function
net = ∑k

j=1 xi,jwj + θ , however its output is given by an arbitrary activation
function f (net). The most commonly used activation function is the sigmoid, whose
effect is illustrated in conjunction with the heaviside function in Fig. 1.46. Notice
such activation provides continuous outputs, in contrast with discrete ones from the
heaviside function.

f (net) = 1

1 + e−net (1.18)

Equation (1.18) is differentiable, making possible the use of the Gradient Descent
(GD) method to address the MLP learning. In contrast, the heaviside function
g(net) had to be disconsidered while formulating the Perceptron (or it might be
differentiated in parts).

Units or neurons are connected to form an architecture such as the one illustrated
in Fig. 1.47, which contains two neurons in the input layer, two others in the
hidden layer, and a single one in the output layer. The number of neurons at the
input layer must always match the number of input variables. For example, for the
problem XOR, two neurons are needed in the input layer. Neurons in this first layer
build identity functions, i.e., their output is the same value they receive as input, so
weights and theta are not necessary.
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Fig. 1.46 The outputs
produced by the heaviside
versus the sigmoid function
according to the input value
net
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Fig. 1.47 An example of an MLP architecture with two neurons at the input layer, two others at
the hidden layer, and, finally, a single neuron at the output layer

The hidden layer defines the number of hyperplanes to shatter (or divide) the
input space. Again, the problem XOR requires two hyperplanes, consequently this
layer must be set with two neurons. There are several problems that cannot be
plotted due to the input space dimensionality, thus classification results must be
considered in order to set an adequate number of neurons. At last, the output layer
must contain sufficient neurons to encode all output classes. As XOR is a two-class
problem, a single output neuron is enough, finally concluding the MLP architecture
to tackle this specific classification task.

For such architecture, the following free variables are set:
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1. Input layer—there is no weight nor theta to adapt, because they act as identity
functions. They output the same value received as input;

2. Hidden layer—every neuron is identified by a number, in this situation neurons
are indexed by j = {0, 1}, so we have weights wh

j,0 and wh
j,1, and θh

j , where
superscript h indicates variables belonging to the hidden layer, and the second
subscript (either 0 or 1) indexes the source neuron of the input layer;

3. Output layer—every neuron is also identified by a number, however, in this case,
there is a single neuron k = {0}. Weights for neuron k are wo

k,0 and wo
k,1, in

which superscript o means the output layer, and the second subscript (either 0 or
1) is associated to the source neuron of the hidden layer.

Learning is therefore the process of adapting all those free variables in attempt
to answer the correct output classes for the problem XOR. As piece of information,
more than a single hidden layer may be used to shatter the input space, however this
book will not cover it.

How should those free variables be adapted? Again, a loss function such as
squared-error (yi − ŷi )

2 may be computed along the training set. For the Perceptron,
this is a convex function due to the simplification ŷi = neti , which is easily seen
once neti is linear and the expected class yi is a constant, therefore the result is
indeed a power of two for some linear function, forming a convex function.

By using a differentiable activation function, such as in MLP, no simplification
is required. For the usual MLP, the squared-error loss function takes a constant
yi minus the sigmoid function f (neti ), producing a quasi-convex function which
also allows learning but under some conditions. Figure 1.48 illustrates quasi-
convex8 functions typically associated with the Multilayer Perceptron. Jensen’s
Inequality 1.17 connects a pair of points f (a) to f (b) so the region between them
can be evaluated in terms of convexity. For example, Fig. 1.49 shows the convex
interval as a shaded area and the non-convex intervals are outside.

The reader should plot function (c − f (net))2 for values of net ∈ R varying
constant c.9 Observe how net influences in the squared-error function, as depicted
in Fig. 1.48. If net is too great or too small, observe we may be out of the convex
region and any neighborhood around provides no direction for the GD method, i.e.,
the derivative of this error function is numerically equal to zero.

Figure 1.49 shows a more interesting situation, in which besides interval [a, b] is
not convex, the GD method can be applied once the derivative is not null. This
scenario can indeed happen to MLP and it is not difficult to understand why.
Consider one has two variables xi,1 and xi,2 for some input example i. Let xi,1
be in range [105, 106] and xi,2 be in [−1, 1], and weights and thetas be randomly
initialized in interval [−1, 1]. Consequently, function net = xi,1w1 +xi,2w2 +θ will
produce very large or very small values, impacting the convergence to the minimal
squared error. To solve this issue, either w1 could be initialized in a smaller interval

8We suggest the book Convex Optimization [2] for further references and to complement studies.
9Constant c is the expected class and it is in range [0, 1].
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Fig. 1.48 Illustration of
quasi-convex functions
produced when using the
squared-error loss function
for the Multilayer Perceptron
using different values for
c = {0, 0.25, 0.5, 0.75, 1} in
a function c − f (net)
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Fig. 1.49 The effect of net in
the quasi-convex function
produced by using the
squared-error loss function
for the Multilayer Perceptron,
given constant c = 0.5. The
region below the line is
quasi-convex in terms of net
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to force xi,1 to fit in the same scale as xi,2w2 or all inputs could be normalized in
range [−1, 1], so one input will not dominate net. That is why normalization is so
used while tackling classification problems with neural networks. By ensuring that,
we can proceed with the GD method to find the squared-error minimum.

We formalize MLP with the squared-error function:

E2
i = (yi − f (neti ))

2 , (1.19)

in which f (neti ) corresponds to the output MLP produces for example i. Rewriting
term f (neti ):
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E2
i =

∑
k

(
yi,k − f o

k

(
netoi,k

))2 =
⎛
⎝yi,k − f o

k

⎡
⎣∑

j

f h
j (nethj )w

o
k,j + θo

k

⎤
⎦
⎞
⎠

2

,

(1.20)

in which f o
k (netoi,k) is the sigmoid function (Eq. (1.18)) applied by the kth MLP

neuron at the output layer, that is why the superscript o is used (meaning out-
put); f h

j (nethj ) refers to the output produced by neuron j at the hidden layer
(superscript h); wo

k,j is the weight from neuron k at the output layer receiving input

f h
j (nethj ) from the hidden layer (first subscript k indexes the owner neuron, and

subscript j identifies the neuron from the preceding layer which provides the input);
θo
k is the bias term from neuron k at the output layer; the internal summation indexed

with j is responsible for computing netoi,k (Eq. (1.19) defined this same term as neti
for simplification purposes), thus:

netoi,k =
∑
j

f h
j (nethj )w

o
k,j + θo

k ,

and, finally, the external summation in terms of k computes the overall divergences
for all output neurons. In particular, for the problem XOR, term k = 0 meaning there
is only one output neuron. The same happens with the expected output yi,k , which
is a single value for every example i, that is why we used the simplified version yi

in Eq. (1.19).
This squared-error function (Eq. (1.20)) allows us to proceed with the GD method

to train all MLP free variables. For XOR, the GD method will consider:

1. Equation (1.21) to adapt every weight wh
j,l connecting input neuron l to hidden

neuron j ;
2. Equation (1.22) to adapt every weight wo

k,j connecting hidden neuron j to output
neuron k.

wh
j,l(t + 1) = wh

j,l(t) − η
∂E2

i

∂wh
j,l

(1.21)

wo
k,j (t + 1) = wo

k,j (t) − η
∂E2

i

∂wo
k,j

(1.22)

To complement, Eqs. (1.23) and (1.24) provide the GD method to adapt the free
variable θ for every neuron at either the hidden or the output layer along iterations:
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θh
j (t + 1) = θh

j (t) − η
∂E2

i

∂θh
j

, (1.23)

θo
k (t + 1) = θo

k (t) − η
∂E2

i

∂θo
k

. (1.24)

Despite the Gradient Descent equations are the same for weights in both layers
as well as for thetas, the partial derivatives:

∂E2
i

∂wh
j,l

,
∂E2

i

∂wo
k,j

,
∂E2

i

∂θh
j

, and
∂E2

i

∂θo
k

change. Consequently, we must compute the partial derivatives for this problem XOR
to exemplify the MLP formulation, however this solution still supports a general-
purpose algorithm.

The partial derivatives for the output layer are found in advance, once they are
simpler to obtain:

∂E2
i

∂wo
k,j

=∂
∑

k(yi,k − ŷi,k)
2

∂wo
k,j

=
∑

k

(
yi,k − f o

k

(∑
j f h

j (nethj )w
o
k,j + θo

k

))2

∂wo
k,j

, (1.25)

given a training example i, neuron k at the output layer, and neuron j at the hidden
layer.

The differentiation employs the chain rule as follows:

∂E2
i

∂wo
k,j

=
∑

k

2
(
yi,k − ŷi,k

) ∂
(
yi,k − ŷi,k

)
∂wo

k,j

,

as yi,k is a constant defining the expected class to be produced by output neuron k,
assuming zero while deriving in terms of wo

k,j :

∂E2
i

∂wo
k,j

=
∑

k

2(yi,k − ŷi,k)
∂ − ŷi,k

∂wo
k,j

,

thus, we still need to solve the derivative ∂−ŷi,k

∂wo
k,j

. As the reader may recall, ŷi,k =
f o

k (netoi,k), i.e., the output value produced by output neuron k is the result of the
sigmoid function, defined in Eq. (1.18):
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∂ − ŷi,k

∂wo
k,j

= ∂ − f o
k (netoi,k)

∂wo
k,j

= ∂ − (1 + e
−netoi,k )−1

∂wo
k,j

=
∂ −

(
1 + e

−
[∑

j f h
j (nethj )wo

k,j +θo
k

])−1

∂wo
k,j

.

We know the sigmoid function (Eq. (1.18)) has the following derivative in terms
of net:

∂f (net)

∂net
= f (net)(1 − f (net)),

what simplifies our formulation:

∂ − f o
k (netoi,k)

∂wo
k,j

= −
[
f o

k (netoi,k)(1 − f o
k (netoi,k))

∂netoi,k
∂wo

k,j

]
,

so, we still need to find the following partial derivative:

∂netoi,k
∂wo

k,j

= ∂
∑

j f h
j (nethi,j )w

o
k,j + θo

k

∂wo
k,j

= f h
j (nethi,j ).

Connecting all terms, the update rule for weights at the output layer is:

wo
k,j (t + 1) = wo

k,j (t) − η
∂E2

i

∂wo
k,j

wo
k,j (t + 1) = wo

k,j (t) − η 2(yi − ŷi,k)
∂ −

[
f o

k (netoi,k)
]

∂wo
k,j

wo
k,j (t + 1) = wo

k,j (t)

− η 2(yi − f o
k (netoi,k))

(− [
f o

k (netoi,k)(1 − f o
k (netoi,k))

]) ∂netoi,k
∂wo

k,j

wo
k,j (t + 1) = wo

k,j (t)

− η 2(yi − f o
k (netoi,k))

(− [
f o

k (netoi,k)(1 − f o
k (netoi,k))

])
f h

j (nethi,j ).
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Similarly, the Gradient Descent formulated for theta from output neuron k is:

θo
k (t + 1) = θo

k (t) − η 2(yi − f o
k (netoi,k))

(− [
f o

k (netoi,k)(1 − f o
k (netoi,k))

])
1,

which has another term instead of f h
j (nethi,j ), once the derivative:

∂netoi,k
∂θo

k

=
∂
[∑

j f h
j (nethi,j )w

o
k,j + θo

k

]
∂θo

k

= 1,

results in the number 1. Finally, we have the update rules for weights and thetas at
the output layer.

Next, the corresponding rules for the hidden layer must be found. First we detail
the derivative of the squared-error in terms of weights wh

j,l :

∂E2
i

∂wh
j,l

= ∂
∑

k(yi,k − ŷi,k)
2

∂wh
j,l

=
∑

k

(
yi,k − f o

k

(∑
j f h

j (nethi,j )w
o
k,j + θo

k

))2

∂wh
j,l

=
∑

k

(
yi,k − f o

k

(∑
j f h

j

(∑
l xi,lw

h
j,l + θh

j

)
wo

k,j + θo
k

))2

∂wh
j,l

,

given:

nethi,j =
∑

l

xi,lw
h
j,l + θh

j . (1.26)

Thus, the partial derivative is defined as:

∂E2
i

∂wh
j,l

= 2
∑

k

(yi,k − ŷi,k)

(
∂yi,k − ŷi,k

∂wh
j,l

)

= 2
∑

k

(yi,k − f o
k (netoi,k))

(
∂ − f o

k (netoi,k)

∂wh
j,l

)
,

having:

∂ − f o
k (netoi,k)

∂wh
j,l

= −∂f o
k (netoi,k)

∂netoi,k

∂netoi,k
∂wh

j,l

= −f o
k (netoi,k)(1 − f o

k (netoi,k))
∂netoi,k
∂wh

j,l

,
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in which:

∂f o
k (netoi,k)

∂netoi,k
= f o

k (netoi,k)(1 − f o
k (netoi,k)),

for the sigmoid function.
Now we solve:

∂netoi,k
∂wh

j,l

,

which is formulated in terms of the chain rule:

∂netoi,k
∂wh

j,l

=
∂
[∑

j f h
j (

∑
l xi,lw

h
j,l + θh

j )wo
k,j + θo

k

]
∂wh

j,l

= ∂f h
j (nethi,j )

∂nethi,j

∂nethi,j
∂wh

j,l

,

having nethi,j defined in Eq. (1.26), obtaining:

∂ − f o
k (netoi,k)

∂wh
j,l

= −∂f o
k (netoi,k)

∂netoi,k

∂netoi,k
∂wh

j,l

= −f o
k (netoi,k)(1 − f o

k (netoi,k))
∂netoi,k
∂wh

j,l

= −f o
k (netoi,k)(1 − f o

k (netoi,k))
∂f h

j (nethi,j )

∂nethi,j

∂nethi,j
∂wh

j,l

= −f o
k (netoi,k)(1 − f o

k (netoi,k))
[
f h

j (nethi,j )(1 − f h
j (nethi,j ))

] ∂nethi,j
∂wh

j,l

= −f o
k (netoi,k)(1 − f o

k (netoi,k))
[
f h

j (nethi,j )(1 − f h
j (nethi,j ))

]
xi,l,

and, finally:

∂E2
i

∂wh
j,l

= 2
∑

k

(
yi,k − f o

k (netoi,k)
) (∂ − f o

k (netoi,k)

∂wh
j,l

)
,

= 2
∑

k

(yi,k − f o
k (netoi,k))

(
−f o

k (netoi,k)(1 − f o
k (netoi,k))

[
f h

j (nethi,j )(1 − f h
j (nethi,j ))

]
xi,l

)
.
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Connecting all terms, the update rule for weights at the hidden layer is:

wh
j,l(t + 1) = wh

j,l(t) − η
∂E2

i

∂wh
j,l

wh
j,l(t + 1) = wh

j,l(t) − η 2
∑

k

(yi − ŷi,k)
∂ − ŷi,k

∂wh
j,l

wh
j,l(t + 1) = wh

j,l(t) − η 2
∑

k

(yi − f o
k (netoi,k))

∂ − f o
k (netoi,k)

∂wh
j,l

wh
j,l(t + 1) = wh

j,l(t)

− η 2
∑

k

(yi − f o
k (netoi,k))

(
−f o

k (netoi,k)(1 − f o
k (netoi,k))

[
f h

j (nethi,j )(1 − f h
j (nethi,j ))

]
xi,l

)
,

and, because some terms are independent of index k, we can simplify the previous
formulation as follows:

wh
j,l(t + 1) = wh

j,l(t)

− η 2
∑

k

(yi − f o
k (netoi,k))

(−f o
k (netoi,k)(1 − f o

k (netoi,k))
[
f h

j (nethi,j )(1 − f h
j (nethi,j ))

]
xi,l)

wh
j,l(t + 1) = wh

j,l(t)

− η 2
[
f h

j (nethi,j )(1 − f h
j (nethi,j ))

]

xi,l

∑
k

(yi − f o
k (netoi,k))(−f o

k (netoi,k)(1 − f o
k (netoi,k))).

Similarly, the Gradient Descent method formulated for theta of hidden neuron
j is:

θh
j (t + 1) = θh

j (t)

− η 2
[
f h

j (nethi,j )(1 − f h
j (nethi,j ))

]

(1)
∑

k

(yi − f o
k (netoi,k))(−f o

k (netoi,k)(1 − f o
k (netoi,k))),

given:

∂nethi,j
∂θh

j

= 1.
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We omit constant 2 in all gradient rules, because the gradient step η is already
a constant set up by the user. After having all the Gradient Descent rules, the MLP
source code, using the R language, is detailed in Listing 1.9.

Listing 1.9 The Multilayer Perceptron implementation

# T h i s i s t h e MLP s i g m o i d a c t i v a t i o n f u n c t i o n
f <− f u n c t i o n ( n e t ) {

r e t = 1 . 0 / ( 1 . 0 + exp(− n e t ) )
re turn ( r e t )

}

# T h i s f u n c t i o n i s used t o b u i l d up t h e MLP a r c h i t e c t u r e , i .
e . ,

# t h e neurons c o n t a i n e d i n t h e h idden and t h e o u t p u t l a y e r s
# w i t h t h e i r r e s p e c t i v e w e i g h t s and t h e t a s randomly

i n i t i a l i z e d .
mlp . a r c h i t e c t u r e <− f u n c t i o n ( i n p u t . l a y e r . s i z e = 2 ,

h i d d e n . l a y e r . s i z e = 2 ,
o u t p u t . l a y e r . s i z e = 1 ,
f . n e t = f ) {

# Here we c r e a t e a l i s t t o c o n t a i n t h e l a y e r s i n f o r m a t i o n
l a y e r s = l i s t ( )

# T h i s i s t h e h i d d e n l a y e r i n which w e i g h t s and t h e t a s
# were i n i t i a l i z e d i n a random manner ( u s i n g r u n i f ) i n
# i n t e r v a l [ −1 ,1] . Term i n p u t . l a y e r . s i z e +1 r e f e r s t o
# t h e number o f neurons i n t h e i n p u t l a y e r ( a w e i g h t
# per u n i t ) , p l u s an a d d i t i o n a l e l e m e n t t o d e f i n e t h e t a
l a y e r s $ h i d d e n = matrix ( r u n i f ( min=−1, max=1 ,

n= h i d d e n . l a y e r . s i z e ∗ ( i n p u t . l a y e r . s i z e +1) ) ,
nrow= h i d d e n . l a y e r . s i z e ,
nco l = i n p u t . l a y e r . s i z e +1)

# The same as t h e h i dde n l a y e r happens here , b u t f o r t h e
# o u t p u t l a y e r
l a y e r s $ o u t p u t = matrix ( r u n i f ( min=−1, max=1 ,

n= o u t p u t . l a y e r . s i z e ∗ ( h i d d e n . l a y e r . s i z e +1) ) ,
nrow= o u t p u t . l a y e r . s i z e ,
nco l = h i d d e n . l a y e r . s i z e +1)

# D e f i n i n g a l i s t t o r e t u r n e v e r y t h i n g :
# − t h e number o f u n i t s or neurons a t t h e i n p u t l a y e r
# − t h e number o f u n i t s a t t h e h i dde n l a y e r
# − t h e number o f u n i t s a t t h e o u t p u t l a y e r
# − l a y e r s i n f o r m a t i o n ( i n c l u d i n g w e i g h t s and t h e t a s )
# − t h e a c t i v a t i o n f u n c t i o n used i s a l s o r e t u r n e d
r e t = l i s t ( )
r e t $ i n p u t . l a y e r . s i z e = i n p u t . l a y e r . s i z e
r e t $ h i d d e n . l a y e r . s i z e = h i d d e n . l a y e r . s i z e
r e t $ o u t p u t . l a y e r . s i z e = o u t p u t . l a y e r . s i z e
r e t $ l a y e r s = l a y e r s
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r e t $ f . n e t = f . n e t

re turn ( r e t )
}

# T h i s f u n c t i o n p r o d u c e s t h e MLP o u t p u t a f t e r p r o v i d i n g
i n p u t

# v a l u e s . Term a r c h i t e c t u r e r e f e r s t o t h e model produced by
# f u n c t i o n mlp . a r c h i t e c t u r e . Term d a t a s e t c o r r e s p o n d s t o t h e
# examples used as i n p u t t o t h e MLP . Term p i s a s s o c i a t e d t o
# t h e i d e n t i f i e r o f t h e c u r r e n t example b e i n g forwarded .
f o r w a r d <− f u n c t i o n ( a r c h i t e c t u r e , d a t a s e t , p ) {

# O r g a n i z i n g d a t a s e t as i n p u t examples x
x = matrix ( d a t a s e t [ , 1 : a r c h i t e c t u r e $ i n p u t . l a y e r . s i z e ] ,

nco l = a r c h i t e c t u r e $ i n p u t . l a y e r . s i z e )
# O r g a n i z i n g d a t a s e t as e x p e c t e d c l a s s e s y a s s o c i a t e d t o
# i n p u t examples x
y = matrix (

d a t a s e t [ , ( a r c h i t e c t u r e $ i n p u t . l a y e r . s i z e +1) : nco l ( d a t a s e t
) ] ,

nrow=nrow ( x ) )

# S u b m i t t i n g t h e p−t h i n p u t example t o t h e h i dde n l a y e r
n e t _h = a r c h i t e c t u r e $ l a y e r s $ h i d d e n %∗%

c ( as . v e c t o r ( t s ( x [ p , ] ) ) , 1 )
f _ n e t _h = a r c h i t e c t u r e $ f . n e t ( n e t _h )

# Hidden l a y e r o u t p u t s as i n p u t s f o r t h e o u t p u t l a y e r
n e t _o = a r c h i t e c t u r e $ l a y e r s $ o u t p u t %∗% c ( f _ n e t _h , 1 )
f _ n e t _o = a r c h i t e c t u r e $ f . n e t ( n e t _o )

# Here we have t h e f i n a l r e s u l t s produced by t h e MLP
r e t = l i s t ( )
r e t $ f _ n e t _h = f _ n e t _h
r e t $ f _ n e t _o = f _ n e t _o

re turn ( r e t )
}

# T h i s f u n c t i o n i s r e s p o n s i b l e f o r t r a i n i n g , i . e . , a d a p t i n g
# w e i g h t s and t h e t a s f o r e v e r y neuron ( or u n i t ) . I t

b a s i c a l l y
# a p p l i e s t h e G r a d i e n t Descen t Method .
b a c k p r o p a g a t i o n <− f u n c t i o n ( a r c h i t e c t u r e , d a t a s e t ,

e t a = 0 . 1 , t h r e s h o l d =1e −3) {

x = matrix ( d a t a s e t [ , 1 : a r c h i t e c t u r e $ i n p u t . l a y e r . s i z e ] ,
nco l = a r c h i t e c t u r e $ i n p u t . l a y e r . s i z e )

y = matrix (
d a t a s e t [ , ( a r c h i t e c t u r e $ i n p u t . l a y e r . s i z e +1) : nco l ( d a t a s e t

) ] ,
nrow=nrow ( x ) )
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c a t ( " I n p u t d a t a . . . \ n " )
p r i n t ( x )

c a t ( " Expec ted o u t p u t . . . \ n " )
p r i n t ( y )

c a t ( " E n t e r t o s t a r t r u n n i n g . . . " )
r e a d l i n e ( )

s q u a r e d _ e r r o r = t h r e s h o l d ∗ 2

# T h i s loop w i l l run u n t i l t h e average squared e r r o r i s
# below some t h r e s h o l d v a l u e .
whi le ( s q u a r e d _ e r r o r > t h r e s h o l d ) {

# I n i t i a l i z i n g t h e squared e r r o r t o measure t h e l o s s
# f o r a l l examples i n t h e t r a i n i n g s e t
s q u a r e d _ e r r o r = 0

# For e v e r y example a t i n d e x ( row ) p
f o r ( p i n 1 : nrow ( x ) ) {

# A p p l y i n g t h e i n p u t example a t i n d e x p
f = f o r w a r d ( a r c h i t e c t u r e , d a t a s e t , p )

# G e t t i n g r e s u l t s t o adap t w e i g h t s and t h e t a s
e r r o r = ( y [ p , ] − f $ f _ n e t _o )

# Computing term d e l t a f o r t h e o u t p u t l a y e r
# which s i m p l i f i e s n e x t c o m p u t a t i o n s i n v o l v e d
# i n t h e G r a d i e n t Descen t method
d e l t a _o = e r r o r ∗ f $ f _ n e t _o ∗ (1− f $ f _ n e t _o )

# T h i s i s t h e squared e r r o r used as s t o p c r i t e r i o n .
# Term sum ( e r r o r ^ 2 ) i s used because t h e l a s t l a y e r
# ( i . e . , t h e o u t p u t l a y e r ) may have more than a
# s i n g l e neuron . We a l s o use a power o f two t o
# e n s u r e n e g a t i v e and p o s i t i v e v a l u e s do n o t
# n u l l i f y each o t h e r .
s q u a r e d _ e r r o r = s q u a r e d _ e r r o r + sum ( e r r o r ^2 )

# Computing term d e l t a f o r t h e h i d d e n l a y e r
w_o = a r c h i t e c t u r e $ l a y e r s $ o u t p u t [ ,

1 : a r c h i t e c t u r e $ h i d d e n . l a y e r . s i z e ]
d e l t a _h = ( f $ f _ n e t _h ∗ (1 − f $ f _ n e t _h ) ) ∗

sum ( as . v e c t o r ( d e l t a _o ) ∗ as . v e c t o r (w_o ) )

# A dap t i ng w e i g h t s and t h e t a s a t t h e o u t p u t l a y e r
a r c h i t e c t u r e $ l a y e r s $ o u t p u t =

a r c h i t e c t u r e $ l a y e r s $ o u t p u t + e t a ∗ d e l t a _o %∗%
c ( f $ f _ n e t _h , 1 )

# A d a p t i n g w e i g h t s and t h e t a s a t t h e h i d d e n l a y e r
a r c h i t e c t u r e $ l a y e r s $ h i d d e n =
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a r c h i t e c t u r e $ l a y e r s $ h i d d e n + e t a ∗ d e l t a _h %∗%
c ( x [ p , ] , 1 )

}

# D i v i d i n g t h e t o t a l squared e r r o r by nrow t o f i n d
# t h e average which we d e c i d e d t o use as s t o p

c r i t e r i o n
s q u a r e d _ e r r o r = s q u a r e d _ e r r o r / nrow ( x )

# P r i n t i n g t h e average squared e r r o r o u t
c a t ( " Squared e r r o r = " , s q u a r e d _ e r r o r , " \ n " )

}

# R e t u r n i n g t h e t r a i n e d a r c h i t e c t u r e , which can now
# be used f o r e x e c u t i o n .
re turn ( a r c h i t e c t u r e )

}

# T h i s f u n c t i o n i s used t o t e s t t h e MLP
mlp . t e s t <− f u n c t i o n ( a r c h i t e c t u r e , d a t a s e t , debug=T ) {

# O r g a n i z i n g d a t a s e t as i n p u t examples x
x = matrix ( d a t a s e t [ , 1 : a r c h i t e c t u r e $ i n p u t . l a y e r . s i z e ] ,

nco l = a r c h i t e c t u r e $ i n p u t . l a y e r . s i z e )

# O r g a n i z i n g d a t a s e t as e x p e c t e d c l a s s e s y a s s o c i a t e d t o
# i n p u t examples x
y = matrix (

d a t a s e t [ , ( a r c h i t e c t u r e $ i n p u t . l a y e r . s i z e +1) : nco l ( d a t a s e t
) ] ,

nrow=nrow ( x ) )

c a t ( " E n t e r t o s t a r t t e s t i n g . . . " )
r e a d l i n e ( )

o u t p u t = NULL

# For e v e r y example a t i n d e x ( row ) p
f o r ( p i n 1 : nrow ( x ) ) {

# A p p l y i n g t h e i n p u t example a t i n d e x p
f = f o r w a r d ( a r c h i t e c t u r e , d a t a s e t , p )

# I f debug i s t r u e , show a l l i n f o r m a t i o n
# r e g a r d i n g c l a s s i f i c a t i o n
i f ( debug ) {

c a t ( " I n p u t p a t t e r n = " , as . v e c t o r ( x [ p , ] ) ,
" Expec ted = " , as . v e c t o r ( y [ p , ] ) ,

" P r e d i c t e d = " , as . v e c t o r ( f $ f _ n e t _o ) , " \ n " )
}

# C o n c a t e n a t i n g a l l o u t p u t v a l u e s as rows i n a mat r i x ,
# so we can check them o u t l a t e r .
o u t p u t = rbind ( o u t p u t , as . v e c t o r ( f $ f _ n e t _o ) )
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}

# R e t u r n i n g r e s u l t s
re turn ( o u t p u t )

}

# T h i s f u n c t i o n i s u s e f u l t o produce a d i s c r e t e
# ( e i t h e r y e s or no ) h y p e r p l a n e t o s h a t t e r t h e
# i n p u t space o f examples
d i s c r e t i z e . h i p e r p l a n e <− f u n c t i o n ( img , range = c ( 0 . 4 5 , 0 . 5 5 )

) {
i d s _ n e g a t i v e = which ( img < range [ 1 ] )
i d s _ p o s i t i v e = which ( img > range [ 2 ] )
i d s _ h i p e r p l a n e = which ( img >= range [ 1 ] & img <= range [ 2 ] )

img [ i d s _ n e g a t i v e ] = 0
img [ i d s _ p o s i t i v e ] = 1
img [ i d s _ h i p e r p l a n e ] = 0 . 5

img
}

# T h i s i s a f u n c t i o n t o t r a i n and t e s t t h e XOR problem
xor . t e s t <− f u n c t i o n ( e t a = 0 . 1 , t h r e s h o l d =1e −3) {

# Loading t h e d a t a s e t " xor . d a t "
d a t a s e t = as . matrix ( read . t a b l e ( " xor . d a t " ) )

# B u i l d i n g up t h e MLP a r c h i t e c t u r e w i t h random w e i g h t s
# and t h e t a s . Observe we have two u n i t s a t t h e i n p u t
# l a y e r ( what i s t h e number o f i n p u t v a r i a b l e s ) , we
# have two u n i t s a t t h e h i dde n l a y e r ( so we w i l l have
# two h y p e r p l a n e s t o s h a t t e r t h e space o f examples as
# e x p e c t e d ) , and we have a s i n g l e u n i t a t t h e o u t p u t
# l a y e r t o p r o v i d e t h e answer as 0 or 1 ( a c t u a l l y
# v a l u e s i n range [ 0 , 1 ] )
model = mlp . a r c h i t e c t u r e ( i n p u t . l a y e r . s i z e = 2 ,

h i d d e n . l a y e r . s i z e = 2 ,
o u t p u t . l a y e r . s i z e = 1 ,
f . n e t = f )

# Now we t r a i n t h e a r c h i t e c t u r e " model " t o b u i l d up
# t h e " t r a i n e d . model "
t r a i n e d . model = b a c k p r o p a g a t i o n ( model , d a t a s e t , e t a = e t a ,

t h r e s h o l d = t h r e s h o l d )

# Then we t e s t t h e " t r a i n e d . model " u s i n g t h e same
# XOR d a t a s e t . For more complex problems , we w i l l use
# unseen examples .
mlp . t e s t ( t r a i n e d . model , d a t a s e t )

# B u i l d i n g up h y p e r p l a n e s t o p l o t
x = seq ( −0 . 1 , 1 . 1 , l e n g t h =100)
h i p e r p l a n e _1 = outer ( x , x ,
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f u n c t i o n ( x , y ) { cbind ( x , y , 1 ) %∗%
t r a i n e d . model$ l a y e r s $ h i d d e n [ 1 , ] } )

h i p e r p l a n e _2 = outer ( x , x ,
f u n c t i o n ( x , y ) { cbind ( x , y , 1 ) %∗%

t r a i n e d . model$ l a y e r s $ h i d d e n [ 2 , ] } )

c a t ( " P r e s s e n t e r t o p l o t bo th h i p e r p l a n e s . . . " )
r e a d l i n e ( )

# P l o t t i n g t h e h y p e r p l a n e s b u i l t a t t h e h i dde n l a y e r
f i l l e d . contour ( d i s c r e t i z e . h i p e r p l a n e ( h i p e r p l a n e _ 1) +

d i s c r e t i z e . h i p e r p l a n e ( h i p e r p l a n e _ 2) )
}

We approach the problem XOR by calling function xor.test() with the
default parameters. However, before invoking it, we need to load its source code
using source("mlp.r"); (using the R Statistical Software). After running
xor.test(), the reader will observe the input examples and expected output
classes, as shown next:

> xor . t e s t ( )
I n p u t d a t a . . .

[ , 1 ] [ , 2 ]
[ 1 , ] 0 0
[ 2 , ] 0 1
[ 3 , ] 1 0
[ 4 , ] 1 1
Expec ted o u t p u t . . .

[ , 1 ]
[ 1 , ] 0
[ 2 , ] 1
[ 3 , ] 1
[ 4 , ] 0
E n t e r t o s t a r t r u n n i n g . . .

then, by typing “enter”, messages about the training iterations are shown, until the
average squared error converges to some value below the pre-defined threshold:

Squared e r r o r = 0 .00100089
Squared e r r o r = 0 .001000691
Squared e r r o r = 0 .001000491
Squared e r r o r = 0 .001000292
Squared e r r o r = 0 .001000093
Squared e r r o r = 0 .0009998944
E n t e r t o s t a r t t e s t i n g . . .

by typing “enter” again, the classification results are provided:

I n p u t p a t t e r n = 0 0 Expec ted = 0 P r e d i c t e d = 0 .03463937
I n p u t p a t t e r n = 0 1 Expec ted = 1 P r e d i c t e d = 0 .9699704
I n p u t p a t t e r n = 1 0 Expec ted = 1 P r e d i c t e d = 0 .97008
I n p u t p a t t e r n = 1 1 Expec ted = 0 P r e d i c t e d = 0 .03163266
P r e s s e n t e r t o p l o t bo th h i p e r p l a n e s . . .
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Fig. 1.50 The hyperplanes
plotted after training the
Multilayer Perceptron to
solve the problem XOR
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Observe the obtained outputs are not exactly the same as the expected ones, however
they close enough. By setting a smaller threshold in Listing 1.9, one can obtain a
better approximation to the expected classes. If the user types “enter” again, (s)he
will see the two hyperplanes inferred during the training stage, as illustrated in
Fig. 1.50.

For illustration purposes, consider the problem of Optical Character Recognition
(OCR), in which the characters are represented using binary matrices:

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 0 1 1 0

0 1 1 0 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 0 1 1 0

0 1 1 0 1 1 0

0 0 0 0 0 0 0

and

0 0 0 0 0 0 0

0 1 1 1 1 0 0

0 1 1 0 1 1 0

0 1 1 0 1 1 0

0 1 1 1 1 0 0

0 1 1 0 1 0 0

0 1 1 0 1 1 0

0 1 1 0 1 1 0

0 1 1 1 1 1 0

0 0 0 0 0 0 0

,

in which the first represents character “A” and, the second, character “B”. So, let
MLP be trained to learn those characters. As first step, one needs to set the number
of input units (or neurons) for this MLP instance. Observe matrices contain 10 × 7
cells, so there will be 70 neurons at the input layer. Since, no one knows10 how to set
the number of hyperplanes, i.e., number of units in the hidden layer, we could guess

10We can take advantage of the Statistical Learning Theory to set an adequate number of
hyperplanes depending on the target problem. This is discussed in Chap. 2.
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it by trying some number such as 3 or 5, what is fine for a first attempt. Finally,
a single output neuron is used, so MLP could associate “A” to the output value 0
and “B” to 1. That is indeed possible, however what if we decide to “activate” one
output neuron for every different example? In such situation, we should define two
neurons at the output layer, then when “A” is given as input, MLP would produce
the pair (1, 0), and when “B” is received, it would output (0, 1). In this manner,
each output neuron represents one input character. By defining the number of output
neurons as the number of classes, MLP tends to avoid as much as possible any class
overlapping. Such a class mixing may happen due to the output layer combines the
hyperplanes built in the hidden layer.

Listing 1.10 includes the previous source code (Listing 1.9) and adds up a new
function to train and test the OCR problem. The reader must load this code, run
function ocr.test() and attempt other parameters instead of the default ones.

Listing 1.10 Additional function to solve the OCR problem

source ( " mlp . r " )

# S o l v i n g t h e O p t i c a l C h a r a c t e r R e c o g n i t i o n (OCR) problem .
o c r . t e s t <− f u n c t i o n ( e t a = 0 . 1 , t h r e s h o l d =1e −3) {

# Loading t h e d a t a s e t
d a t a s e t = as . matrix ( read . t a b l e ( " ocr−a s v e c t o r . d a t " ) )

# Loading a t e s t s e t w i t h unseen examples
t e s t . d a t a s e t = as . matrix ( read . t a b l e ( " t e s t −ocr−a s v e c t o r .

d a t " ) )

# B u i l d i n g up t h e a r c h i t e c t u r e w i t h 70 u n i t s a t t h e i n p u t
# l a y e r , 5 u n i t s ( so 5 h y p e r p l a n e s ) a t t h e h i dde n l a y e r
# and 2 a t t h e o u t p u t l a y e r .
model = mlp . a r c h i t e c t u r e ( i n p u t . l a y e r . s i z e = 10∗ 7 ,

h i d d e n . l a y e r . s i z e = 5 ,
o u t p u t . l a y e r . s i z e = 2 , f . n e t = f )

# T r a i n i n g
t r a i n e d . model = b a c k p r o p a g a t i o n ( model ,

d a t a s e t ,
e t a = e t a ,
t h r e s h o l d = t h r e s h o l d )

# T e s t i n g f o r unseen examples
mlp . t e s t ( t r a i n e d . model , t e s t . d a t a s e t )

}

The files used in this problem are ocr-asvector.dat and test-ocr-
asvector.dat. Both transform those previously presented binary matrices into
binary vectors, and add the expected output values at the end. After calling function
ocr.test(), we will see the following output:
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I n p u t d a t a . . .
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ] [ , 7 ] [ , 8 ] [ , 9 ] [ , 1 0 ]

[ 1 , ] 0 0 0 0 0 0 0 0 0 1
[ 2 , ] 0 0 0 0 0 0 0 0 1 1

[ , 1 1 ] [ , 1 2 ] [ , 1 3 ] [ , 1 4 ] [ , 1 5 ] [ , 1 6 ] [ , 1 7 ] [ , 1 8 ] [ , 1 9 ]
[ , 2 0 ]

[ 1 , ] 1 1 0 0 0 1 1 1 1
1

[ 2 , ] 1 1 0 0 0 1 1 0 1
1

[ , 2 1 ] [ , 2 2 ] [ , 2 3 ] [ , 2 4 ] [ , 2 5 ] [ , 2 6 ] [ , 2 7 ] [ , 2 8 ] [ , 2 9 ]
[ , 3 0 ]

[ 1 , ] 0 0 1 1 0 1 1 0 0
1

[ 2 , ] 0 0 1 1 0 1 1 0 0
1

[ , 3 1 ] [ , 3 2 ] [ , 3 3 ] [ , 3 4 ] [ , 3 5 ] [ , 3 6 ] [ , 3 7 ] [ , 3 8 ] [ , 3 9 ]
[ , 4 0 ]

[ 1 , ] 1 0 1 1 0 0 1 1 1
1

[ 2 , ] 1 1 1 0 0 0 1 1 0
1

[ , 4 1 ] [ , 4 2 ] [ , 4 3 ] [ , 4 4 ] [ , 4 5 ] [ , 4 6 ] [ , 4 7 ] [ , 4 8 ] [ , 4 9 ]
[ , 5 0 ]

[ 1 , ] 1 0 0 1 1 1 1 1 0
0

[ 2 , ] 0 0 0 1 1 0 1 1 0
0

[ , 5 1 ] [ , 5 2 ] [ , 5 3 ] [ , 5 4 ] [ , 5 5 ] [ , 5 6 ] [ , 5 7 ] [ , 5 8 ] [ , 5 9 ]
[ , 6 0 ]

[ 1 , ] 1 1 0 1 1 0 0 1 1
0

[ 2 , ] 1 1 0 1 1 0 0 1 1
1

[ , 6 1 ] [ , 6 2 ] [ , 6 3 ] [ , 6 4 ] [ , 6 5 ] [ , 6 6 ] [ , 6 7 ] [ , 6 8 ] [ , 6 9 ]
[ , 7 0 ]

[ 1 , ] 1 1 0 0 0 0 0 0 0
0

[ 2 , ] 1 1 0 0 0 0 0 0 0
0

Expec ted o u t p u t . . .
[ , 1 ] [ , 2 ]

[ 1 , ] 1 0
[ 2 , ] 0 1
E n t e r t o s t a r t r u n n i n g . . .
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in which two vectors were provided, the first corresponding to the matrix repre-
senting character “A” and the second to “B”. Next, the expected values are listed,
activating either one of the output neurons according to the input character. After
typing “enter”, some output information similar to the following is produced:

Squared e r r o r = 0 .001000569
Squared e r r o r = 0 .001000473
Squared e r r o r = 0 .001000378
Squared e r r o r = 0 .001000283
Squared e r r o r = 0 .001000188
Squared e r r o r = 0 .001000092
Squared e r r o r = 0 .0009999973
E n t e r t o s t a r t t e s t i n g . . .

which corresponds to the average squared error produced at every training iteration,
until the stop criterion is reached, i.e., converging to threshold. Another “enter” will
produce a result similar to:

I n p u t p a t t e r n = 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0
0
1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1

1
0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0

Expec ted o u t p u t = 1 0
O b t a i n e d o u t p u t = 0 .9632798 0 .03591298

I n p u t p a t t e r n = 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1
1
0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1

0
0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

Expec ted o u t p u t = 0 1
O b t a i n e d o u t p u t = 0 .05629617 0 .9356224

which shows both input examples (in form of vectors), their expected and
obtained outputs. The first input example should produce the following output
pair (1, 0) as it corresponds to a noisy version of character “A”. In fact, it produced
(0.96327978, 0.03591298), being very close to the expected values once the first
neuron is obviously activated. The second example should produce (0, 1) and,
in fact, it generated (0.05629617, 0.93562236), respecting the idea of mostly
activating the second neuron.

To improve visualization, those two input vectors are shown next, after being
organized as binary matrices:
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0 1 0 0 0 0 1
0 0 1 1 1 0 0
1 1 1 1 1 1 0
0 0 1 0 1 1 0
0 1 1 0 0 1 0
0 1 1 1 1 1 0
0 1 1 0 1 1 0
0 1 1 0 1 1 0
0 1 0 0 1 1 0
0 0 1 0 0 0 0

,

0 0 0 0 0 0 0
0 1 1 1 1 0 0
0 1 1 1 1 1 0
1 1 0 0 1 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 0 1 1 0
1 1 0 0 1 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0

.

Both test examples contain some noise, however MLP is still capable of learning
how to separate them out. We now suggest the reader to extend this problem
to cover all English characters and digits, train and test the MLP for unseen
examples (with some random noise, for example). We suggest as many neurons
at the output layer as the number of possible input characters. About the number
of hidden units, the reader may try different values in attempt to produce good
results. More information will be provided on that matter throughout this book.
Finally, the reader may download the datasets available at the UC Irvine Machine
Learning Repository (http://archive.ics.uci.edu/ml), design, train and test different
MLP instances on other classification tasks, such as Iris (http://archive.ics.uci.edu/
ml/datasets/Iris) and Wine (http://archive.ics.uci.edu/ml/datasets/Wine). The reader
may also perform experiments using the MNIST handwritten digit database and
compare the MLP results against others reported in literature [7].

1.6 Concluding Remarks

This chapter presented a brief review on Machine Learning (ML), mainly focusing
on supervised learning algorithms. This type of learning was tackled due to it relies
on the theoretical foundation provided by the Statistical Learning Theory (SLT).
After introducing the main aspects of the SLT, such as its assumptions, the concept
of loss function, the empirical and expected risks, more information was provided
about how the Bias-Variance Dilemma is considered in the context of ML and,
finally, introduced two well-known supervised learning algorithms (Perceptron and
Multilayer Perceptron) for illustration purposes. All those concepts are essential to
support the next chapters.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Wine
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1.7 List of Exercises

1. Run the Perceptron on the problem XOR and assess the obtained results. Take
your own conclusions why this algorithm cannot learn in such scenario;

2. Randomly select 30% of the examples contained in the Iris dataset to compose
your test set. Then use the remaining 70% to form your training set. Start training
an Multilayer Perceptron using three hidden neurons and, then, compute the
error for the same training examples and, afterwards, the error taking the test
examples. Observe how those two errors deviate one another as the number of
hidden neurons is increased. A good enough model has to provide close enough
errors. When their absolute deviation grows, it means MLP is considering too
many (or too few if reducing) hidden units.11

3. Using the Wine dataset, train and test the Multilayer Perceptron. Then, assess the
obtained results.12

4. Based on the previous exercise, notice how the quasi-convexity present in the
MLP squared-error function affects training and testing. So, normalize all Wine
input attributes in range [0, 1] and observe the new results.

5. Consider the MNIST database to train and test a Multilayer Perceptron algorithm
with a varying number of hidden neurons.13 MNIST is already segmented into
training and test sets. Compute errors on the test set and compare to the ones
listed in http://yann.lecun.com/exdb/mnist.
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Chapter 2
Statistical Learning Theory

2.1 Motivation

This chapter starts by describing the necessary concepts and assumptions to ensure
supervised learning. Later on, it details the Empirical Risk Minimization (ERM)
principle, which is the key point for the Statistical Learning Theory (SLT). The ERM
principle provides upper bounds to make the empirical risk a good estimator for the
expected risk, given the bias of some learning algorithm. This bound is the main
theoretical tool to provide learning guarantees for classification tasks. Afterwards,
other useful tools and concepts are introduced.

As discussed in Chap. 1, there is a great variety of algorithms used to approach
classification tasks. In some way, those algorithms divide the input space of
examples into different regions, creating a set of decision boundaries according to
some supervised learning process. By learning, we mean inferring rules to work
on unseen data from examples organized in terms of the pair: input variables (or
attributes) and labels (or classes). In order to recall the basic notation, a classifier is
a function f : X → Y , in which1:

1. X = {x1, . . . , xn} is the input space, in which every xi is typically in the
Euclidean space and may contain multiple dimensions, in form xi ∈ R

k;
2. Y = {y1, . . . , yn} is the output space, given every yi is also usually in the

Euclidean space and may contain more than a single dimension, in form yi ∈ R
q ;

3. f is referred to as model, classifier or classification function.

The input space X is composed of variables or attributes associated to the
classification task, which must be representative enough to allow the proper learning

1It is worth to mention that elements in X and Y may be even in another space, such as the
Topological, but some mapping is considered to bring them to the Hilbert space in order to respect
the definition.
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of a concept. For instance, in order to classify an object as a domestic cat in contrast,
for example, to a horse, the “number of legs” is not a good attribute. Better features
would be “has whiskers”, “has claws”, etc. The output space Y contains all labels,
classes or categories to be learned (and later predicted) given examples in X. In
a binary scenario, it is usual to define Y ∈ {−1,+1}, having classes as either
positive or negative. Note that f is called a classifier—a model, map or function
that is capable of producing a label yi from some input vector xi ∈ X—and
not a classification algorithm. For illustration purposes, f can be a set of weights
and biases after training an instance of the Multilayer Perceptron, or also a set of
parameters computed using the Logistic Regression algorithm. Therefore, classifier
f is the result of a supervised learning algorithm after the training stage.

After this first step, some important questions arise in the context of supervised
learning: How to prove that a given algorithm is capable of learning from examples?
How good can some classifier f be? Those are the main motivations for the
Statistical Learning Theory (SLT) [1, 15, 16], a theoretical framework designed to
understand and assess learning, under some reasonable assumptions.

The key notion of learning theory is to find an algorithm that, provided enough
data, outputs a classification hypothesis with a probability close to one, given a
small error. In other words, it concerns finding guarantees for classification tasks,
and quantifying how much data is required to obtain such learning guarantees. Two
main parts are fundamental for the study of this learning theory: (1) the first is the
Empirical Risk Minimization (ERM) principle, which approximates the true (and
unknown) loss function by taking only the observed examples (from the training
set), and uses the hypothesis that minimizes the error inside the training set; (2) the
second involves finding a trade-off between the complexity of the hypothesis space,
i.e., the bias of the classification algorithm, and the classification error computed on
the training data (the empirical risk).

Assumptions are necessary to ensure learning in the context of the SLT, as
proposed by Vapnik [15, 16]. They are as follows:

1. No assumption is made about the joint probability function P(X × Y );
2. Examples must be sampled from P(X × Y ) in an independent manner;
3. Labels may assume non-deterministic values due to noise and class overlapping;
4. P(X × Y ) is fixed (static, so it does not change along time);
5. P(X × Y ) is unknown at the training stage.

As a consequence of those assumptions, this chapter introduces more concepts
on joint probabilities, loss functions, risk and generalization applied to classifiers.

2.2 Basic Concepts

Most of the content of this section is covered in Chap. 1, but here we revisit them
under another perspective, making the reader more aware about some specific
properties in the light of the learning theory. We begin by defining joint probabilities,
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data independency, loss functions and risk as well as we raise the question of how to
provide learning guarantees through generalization. We then discuss the consistency
of classifiers, and look at typical undesired scenarios in which the resulting model
fails to learn, i.e., it will overfit or underfit examples.

2.2.1 Probability Densities and Joint Probabilities

Probability density functions (PDFs) support us to estimate the likelihood of the
occurrence of a given event X assuming values in some interval. This is important
because one can determine P(X), for every possible value of X = x, only for
discrete random variables, while continuous random variables require the definition
of intervals. This happens due to the probability of X on any particular value x (there
are infinite possible values) tends to 0, and that is why some interval is required.

Given a probability density function (PDF) f (x), the probability of an interval A

is given by the area under the function f (x) along A, i.e., the integral of f (x) over
A, written as:

P(A) =
∫

A

p(x)dx.

For example, observe the PDF depicted in Fig. 2.1, whose areas under the curve
define the probability of randomly selecting a value within intervals A and B: the
light gray area is P(0.229 ≤ A ≤ 0.231) = 0.02 and the dark gray area is
P(0.249 ≤ B ≤ 0.251) = 0.05. Note that, if one chooses a very narrow interval, the
area (and thus the probability) will approach zero because there are infinite numbers
for x ∈ R.

Having this notation, the conditions required for a measurable function to be a
valid density function are:

Fig. 2.1 Example of a
probability density function
over the real line (x-axis).
Shaded in light gray is the
area for the interval
0.229 ≤ A ≤ 0.231, which is
P(A) = 0.02, and, in dark,
the area for the interval
0.249 ≤ B ≤ 0.251,
P(B) = 0.05

x

f(
x)

0.21 0.23 0.25 0.27 0.29
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f (x) ≥ 0 for all x∫
R

f (x)dx = 1,

in which the first guarantees that P(A) ≥ 0 for any set A, and, the second, that the
probability along the whole real line must sum up to 1 (or 100% as humans usually
consider).

To motivate with an example, consider a company sells fresh mushrooms in packs
of portions weighing 0.25 kg. One could well figure out that mushroom portions
will not weigh exactly 0.25 lb. In fact, even considering a scale of limited precision
(say 4 digits), the probability of finding a pack weighing exactly 0.2500 is still
low. In practice, to study the probabilities of buying a pack weighing such specific
value in kilograms, we estimate a PDF using the following procedure: first, we
randomly select 10,000 packs of mushrooms and weigh those, creating a histogram
of the resulting weights. A plot of a histogram by grouping the observations into
8 bins would look like Fig. 2.2a. By increasing the number of bins to 30 (and,
therefore, decreasing the steps or intervals in the x-axis), the histogram would look
like Fig. 2.2b. Now let intervals eventually get so small that we would represent the
probability distribution of X as a curve (see the curve fitted along the histogram of
Fig. 2.2b). We could, by using the data collected weighing 10,000 packs, determine
the probability that a randomly selected pack weighs between 0.24 and 0.26 lb, i.e.,
P(0.24 < X < 0.26), as illustrated through the shaded area shown in Fig. 2.2c.

A classifier is an approximation of a special probability density function referred
to as P(X × Y ), also known as the joint probability density function, which
describes the joint behavior of two variables, having X as the input space of
examples (variables or attributes used to compose examples) and Y as the output

Kilograms

a b c
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0.22 0.23 0.24 0.25 0.26 0.27 0.28

Fig. 2.2 Practical example of a probability density function. (a) By looking at the density
frequency of observations, it is possible to picture how the data is distributed; (b) with sufficient
data and by increasing the resolution of the histogram, we can fit a continuous function as shown
in gray; (c) PDF to compute probabilities over intervals
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Fig. 2.3 Example of a joint probability distribution between variables, showing how X and Y

depend on each other: (a) for each pair X, Y , the grayscale shows the joint probability value; (b) a
curve that explains the probabilities for Y , when observing a fixed value X = 2

space (or classes). In order to be considered a joint probability density function,
P(X × Y ) is required to satisfy the following conditions:

P(X × Y ) ≥ 0 for all X, Y∫ ∫
P(X × Y )dXdY = 1.

A synthetic example of a joint distribution over two variables X and Y is
shown in Fig. 2.3a for 8 possible values of each variable. The grayscale codifies the
probability value for each combination (X, Y ), which is seen as a probability map.
Observe that there is a clear behavior for X = 1 · · · 5, and, then, a different behavior
for X = 6 · · · 8. By fixing the event of the variable X and varying Y , we have a
curve for the joint probability P(X, Y ) for a given X, for example P(X = 2, Y )

as shown in Fig. 2.3b. Fixing X = 2, variable Y has its maximum probability at
P(X = 2, Y = 5) = 0.45.

To improve the comprehension, consider an example of a joint probability
density function produced after rolling a die from which two discrete random
variables X and Y were obtained, respectively:

1. Let X = 1 if an even number occurs, i.e., 2, 4 or 6, and X = 0 for any odd
number;

2. Let Y = 1 if the number is prime, i.e., 2, 3 or 5, and Y = 0 otherwise.
3. The joint probabilities for values of X and Y are given by:
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Fig. 2.4 (a) Illustration of the joint probability distribution P(X × Y ) for the problem of rolling a
die, and (b) a candidate classifier fi(X) obtained for the same problem

P(X = 0, Y = 0) = P {{1, 3, 5} ∩ {1, 4, 6}} = 1

6

P(X = 1, Y = 0) = P {{2, 4, 6} ∩ {1, 4, 6}} = 2

6

P(X = 0, Y = 1) = P {{1, 3, 5} ∩ {2, 3, 5}} = 2

6

P(X = 1, Y = 1) = P {{2, 4, 6} ∩ {2, 3, 5}} = 1

6
.

Notice we do not have a continuous problem in this scenario, but a discrete one. If
we observe X = 0, should we most probably expect to have a prime number Y = 1
or a composite (non-prime) number Y = 0? Looking at the joint probabilities above,
when observing an odd number (X = 0), we are most likely to have a prime than a
composite one. Figure 2.4a illustrates P(X × Y ) for this problem.

Let us see the same problem in the point of view of some classifier f . Note that
f is an approximation function for the joint probability density function P(X × Y ).
Given we had access to a sample of pairs {(x1, y1), . . . , (xn, yn)} ∈ X ×Y , we wish
to obtain the best approximation that produces:

P(X = 0, Y = 0) = 1

6

P(X = 1, Y = 0) = 2

6
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P(X = 0, Y = 1) = 2

6

P(X = 1, Y = 1) = 1

6
.

In this case, pairs (x, y) are easy to be listed and obtained, because they are part
of a finite set of possibilities, which is not possible when dealing with continuous
variables. From this example, when attempting to predict whether the die produced
a prime number (Y = 1) or not (Y = 0) given the number is even (X = 1), we have:

P(X = 1, Y = 0) =
2
6

1
6 + 2

6

≈ 0.66

P(X = 1, Y = 1) =
1
6

1
6 + 2

6

≈ 0.33,

and, as consequence, we have most likely Y = 0. Similarly, if the die provided an
odd number, i.e., X = 0, then:

P(X = 0, Y = 0) =
1
6

1
6 + 2

6

≈ 0.33

P(X = 0, Y = 1) =
2
6

1
6 + 2

6

≈ 0.66,

and we should go for Y = 1. Although there is a most probable event, even
for this simple problem, the random variable X is not enough to provide a single
answer (100% sure). This is because the relationship between X and Y may contain
uncertainties. In another example (already discussed in Chap. 1), we could have
a variable X describing people’s heights, while Y is associated to sex. In such a
circumstance, just observing a certain height, we would also be unsure whether a
person is male or female because X is not sufficient to allow separating sexes.

Looking again at Fig. 2.4a that illustrates the joint probability density function
P(X × Y ) for the problem involving a die, now Fig. 2.4b presents a candidate
classifier fi(x ∈ X), or simply f (X). This classifier f (X) has some divergence or
difference when compared to P(X × Y ), which can be measured using an integral
as follows:

R(f ) =
∫

X×Y

‖P(X × Y ) − (X, f (X))‖ dX × Y,

having some pointwise norm of differences between P(X × Y ) and f (X). This
divergence defines the expected risk, or simply the risk, of classifier f (X), estimated
after a training stage performed on a given sample {(x1, y1), . . . , (xn, yn)} ∈ X×Y .
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The expected risk of classifier f (X) will be referred throughout this book as R(f ).
Consequently, the best as possible classifier is the one that minimizes such risk, in
form:

fbest = arg min
fi

R(fi), ∀i. (2.1)

If i represents a finite number of possibilities, we can assess all of them to
find fbest, otherwise we should attempt to obtain an approximation, by iteratively
converging to the best classifier.

When one or more random variables, i.e. X and Y , are continuous, the risk R(f )

cannot be calculated because the fifth assumption states we do not have full access
to the joint probability density function P(X × Y ) and, consequently, fbest cannot
be found as in Eq. (2.1). Not having full access to P(X × Y ) also implies that this
function is not known beforehand, otherwise we could just employ some fitting
strategy to find its parameters. For example, if P(X × Y ) is known to be a 2-
dimensional Gaussian distribution, the JPD could be estimated via its parameters
mean and standard deviation for X and Y in order to find fbest.

Instead of assuming knowledge about P(X × Y ), we assume the sampling of
pairs {(x1, y1), . . . , (xn, yn)} ∈ X ×Y is possible from this joint probability density
function, which is then used to estimate candidate classifiers fi(X) and select the
best one. Now the reader may ask how to assess the quality of a given classifier f

if R(f ) is not computable. In fact, a computable approximation for this risk exists
as seen later on this chapter. It is also worth to mention that the discrete set of
examples must always be sampled in an independent and identically manner, as
described next.

2.2.2 Identically and Independently Distributed Data

According to the SLT, we assume examples are sampled in an identically and
independently form (or identically and independently distributed—i.i.d.) from the
joint probability density function, also referred to as joint probability distribution,
P(X × Y ). This basically means that the probability of obtaining a first training
example, such as the pair (x1, y1), does not affect the probabilities of subsequent
drawings, e.g., (x2, y2).

Suppose we have an opaque bowl containing four numbered balls: 1, 2, 3 and
4. Let a ball be randomly drawn from the bowl, its number noted, and placed back
into the bowl which is then shaked before the next draw. We know the probability
of getting a ball with a particular number tag is always 1

4 : if we first draw the
ball number 1, there is no change in the probability for future drawings. This is
often called drawing with replacement. When drawing without replacement, we do
not put back the ball after it was drawn. Instead, we randomly choose from the
remaining balls, changing the probabilities after every draw. Before drawing any
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ball, the probability of getting ball #1 is 1
4 . Suppose we first draw ball number 1.

Then, in the next round, the probability of drawing ball #1 is zero and the remaining
others now have a probability of 1

3 . In this situation, we say the events are dependent
on each other.

Note that it is rare to be able to perform a census for a given task, that is,
to completely collect data from some target population. That is why in practice
data analysis is usually carried out using a sample that represents a subset of the
individuals (commonly referred to as examples or observations), and it is often a
small fraction of the population. When i.i.d. sampling is used, each example in the
population has the same chance of being observed. If during the data collection,
one was permitted to choose the examples to be sampled, it is most likely that
such a sample would be skewed towards some subset of the universe of possible
observations. Another possible scenario is called convenience sample, in which
those easily accessible individuals/examples are more likely to be sampled. In those
two cases the i.i.d. assumption is not valid.

Independent and Dependent Sampling In summary, the samples are dependent if
the values in one sample affect the values in the other; the samples are independent
if the values in one sample reveal no information about samples drawn next.

Examples of Sampling in Practice

• Face detection:

– A sample of face images coming from a random group of different ethnicities,
sex and age can be considered an independent sample in terms of human faces;

– In the same application, a sample of face images coming from a group
of graduate students from a research institute or laboratory is likely to be
dependent, since they may have biased characteristics.

• Handwritten recognition:

– In character recognition, it is safe to assume that randomly selected characters
written by a large number of people are independent in terms of the whole
population of handwritten characters;

– In a system that attempts to predict a word in a given language, e.g.
English, the sample (sequence of characters) is dependent due to the current
observation affects the following ones, for example, when a consonant is
written, say “z”, it reveals information about the next character, for example
the probability of observing “j” will be close to zero, while observing vowels
will have greater likelihoods.

• Drug effectiveness to blood pressure reduction:

– If we sample the blood pressure of the same group of people before and after
they are medicated, there is dependency once measurements were taken from
the same people: the ones with the highest blood pressure in the first measure
will likely have the highest blood pressure in the second one as well;
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(a) (b)

Fig. 2.5 An example of sampling resulting in (a) i.i.d. and (b) non-i.i.d. data

– On the other hand, by giving one group of people an active drug and a
placebo to a different group, both randomly assigned, the samples can be
considered independent because knowing something about the distribution of
values when measuring one group does not provide information about the
distribution of values in the second one.

In Fig. 2.5, we show an illustration of sampling that will result in both i.i.d. and
non-i.i.d. data: using the face detection example, the scenario in Fig. 2.5a happens
when we collect data from a large and random group of people from different
ethnicities, ages, and sexes; whereas, in (b), we have a sample that is skewed towards
some sub-group of the population.

In data stream problems [4, 14], it is common to have one observation affecting
the probability of the next ones. In scenarios such as depicted in Fig. 2.6a, by using
a set of current observations it is possible to predict with future data which makes
the i.i.d. assumption invalid. Note that it could be the case that a data stream is
independent, and then it is not possible to predict future observations based on a set
of observed ones, see for example Fig. 2.6b. Therefore, while in the second example
we consider the data to be i.i.d., in the first one, the i.i.d. assumption is invalid.

In another practical scenario, consider the Sunspot [19] time series illustrated in
Fig. 2.7. Observe there is a trend component with sinusoidal characteristics, indi-
cating some dependency among data observations. If we use the same observations
from this time space to form the training and test sets, examples will be dependent.
The Statistical Learning Theory is not adequate to deal with such type of data.

In the case of Sunspot, it is not difficult to check that if some value in range
[150, 160] is observed at the current time instant, there is a high probability that
the next value will also lie in the same interval or around it. On the other hand, the
probability of drawing a next far value, e.g. one in range [0, 10], is close to zero.
Here, the time plays a very important role to define the dependencies among data
observations (or data examples). To better understand this scenario, Fig. 2.8a shows
a histogram that provides a simplified view for the distribution of the Sunspot time
series. Next, we compare how knowledge about the current value x(t) influences
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Fig. 2.6 Examples of data collected over time: (a) dependent data; (b) identically and independent
distributed data
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Fig. 2.7 Yearly numbers of sunspots, as from the World Data Center (SIDC). Obtained from the
package “datasets” of the R Statistical Software
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(a) Yearly sunspots observations
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Fig. 2.8 Histograms produced based on the yearly numbers of Sunspots: (a) the histogram for the
whole time series; (b–f) histograms to show how the current observation x(t) affects a next one

Table 2.1 Window of
observations of the Sunspot
time series organized in two
columns, having each row
with the current x(t) and its
next observation x(t + 1)

x(t) x(t + 1)

5.0 11.0

11.0 16.0

16.0 23.0

23.0 36.0

36.0 58.0

58.0 29.0

29.0 20.0

20.0 10.0

10.0 8.0

8.0 3.0

in the distribution of a next x(t + 1). The Sunspot time series is organized in a
two-column dataset, a subset of those is listed in Table 2.1, in which x(t) is the
input variable X and x(t + 1) is seen as the expected output (or class) Y . Then, we
compute the probability of finding the next x(t +1) providing the current value x(t),
as presented in code Listing 2.1.

Listing 2.1 Read and show regression data

# T h i s package i s n e c e s s a r y t o e x e c u t e f u n c t i o n embedd ( )
r e q u i r e ( t s e r i e s C h a o s )

# Produc ing a 2−column d a t a s e t w i t h examples ( x ( t ) , x ( t +1) )
X = embedd ( t s ( s u n s p o t . y e a r ) , m=2 , d =1)
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# F i n d i n g t h e min imal and maximal v a l u e s f o r t h i s t i m e
s e r i e s

minValue = min ( s u n s p o t . y e a r )
maxValue = max ( s u n s p o t . y e a r )

# S p l i t i n g t h e v a l u e s i n t o 5 i n t e r v a l s so we w i l l use each
o f

# them t o compute p r o b a b i l i t i e s
n I n t e r v a l s = 5

# Compute t h e p r o b a b i l i t y f o r e v e r y i n t e r v a l
i n t e r v a l s = seq ( minValue , maxValue , l e n g t h = n I n t e r v a l s +1)
f o r ( i i n 1 : n I n t e r v a l s ) {

s t a r t I n t e r v a l = i n t e r v a l s [ i ]
e n d I n t e r v a l = i n t e r v a l s [ i +1]

c a t ( " I n t e r v a l [ " , s t a r t I n t e r v a l , " , " , e n d I n t e r v a l ,
" ] has p r o b a b i l i t i e s f o r a n e x t v a l u e \ n " )

f o r ( j i n 1 : n I n t e r v a l s ) {
# D e f i n i n g t h e c u r r e n t v a l u e f o r
# s t a r t I n t e r v a l <= x ( t ) < e n d I n t e r v a l
i d s = which (X[ , 1 ] >= s t a r t I n t e r v a l & X[ , 1 ] <

e n d I n t e r v a l )

# Coun t ing o c c u r r e n c e s i n s i d e e v e r y i n t e r v a l f o r
x ( t +1)
i n s i d e = sum (X[ i d s , 2 ] >=

i n t e r v a l s [ j ] & X[ i d s , 2 ] < i n t e r v a l s [ j + 1 ] )

# E s t i m a t i n g t h e p r o b a b i l i t i e s f o r x ( t +1)
p r o b a b i l i t y = i n s i d e / nrow (X[ i d s , ] )

c a t ( " \ t r a n g e [ " , i n t e r v a l s [ j ] , " , " ,
i n t e r v a l s [ j + 1 ] , " ] = " , p r o b a b i l i t y , " \ n " )

}
}

The following output is obtained after running Listing 2.1:

I n t e r v a l [ 0 , 3 8 . 0 4 ] has p r o b a b i l i t i e s f o r a n e x t v a l u e
r a n g e [ 0 , 3 8 . 0 4 ] = 0 .8098592
r a n g e [ 3 8 . 0 4 , 7 6 . 0 8 ] = 0 .1408451
r a n g e [ 7 6 . 0 8 , 1 1 4 . 1 2 ] = 0 .04225352
r a n g e [ 1 1 4 . 1 2 , 1 5 2 . 1 6 ] = 0 .007042254
r a n g e [ 1 5 2 . 1 6 , 1 9 0 . 2 ] = 0

I n t e r v a l [ 3 8 . 0 4 , 7 6 . 0 8 ] has p r o b a b i l i t i e s f o r a n e x t v a l u e
r a n g e [ 0 , 3 8 . 0 4 ] = 0 .3095238
r a n g e [ 3 8 . 0 4 , 7 6 . 0 8 ] = 0 .5357143
r a n g e [ 7 6 . 0 8 , 1 1 4 . 1 2 ] = 0 .1309524
r a n g e [ 1 1 4 . 1 2 , 1 5 2 . 1 6 ] = 0 .02380952
r a n g e [ 1 5 2 . 1 6 , 1 9 0 . 2 ] = 0

I n t e r v a l [ 7 6 . 0 8 , 1 1 4 . 1 2 ] has p r o b a b i l i t i e s f o r a n e x t v a l u e
r a n g e [ 0 , 3 8 . 0 4 ] = 0
r a n g e [ 3 8 . 0 4 , 7 6 . 0 8 ] = 0 . 4 5
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r a n g e [ 7 6 . 0 8 , 1 1 4 . 1 2 ] = 0 . 375
r a n g e [ 1 1 4 . 1 2 , 1 5 2 . 1 6 ] = 0 . 125
r a n g e [ 1 5 2 . 1 6 , 1 9 0 . 2 ] = 0 . 0 5

I n t e r v a l [ 1 1 4 . 1 2 , 1 5 2 . 1 6 ] has p r o b a b i l i t i e s f o r a n e x t v a l u e
r a n g e [ 0 , 3 8 . 0 4 ] = 0
r a n g e [ 3 8 . 0 4 , 7 6 . 0 8 ] = 0 .0625
r a n g e [ 7 6 . 0 8 , 1 1 4 . 1 2 ] = 0 . 5
r a n g e [ 1 1 4 . 1 2 , 1 5 2 . 1 6 ] = 0 . 375
r a n g e [ 1 5 2 . 1 6 , 1 9 0 . 2 ] = 0

I n t e r v a l [ 1 5 2 . 1 6 , 1 9 0 . 2 ] has p r o b a b i l i t i e s f o r a n e x t v a l u e
r a n g e [ 0 , 3 8 . 0 4 ] = 0
r a n g e [ 3 8 . 0 4 , 7 6 . 0 8 ] = 0
r a n g e [ 7 6 . 0 8 , 1 1 4 . 1 2 ] = 0 . 2
r a n g e [ 1 1 4 . 1 2 , 1 5 2 . 1 6 ] = 0 . 4
r a n g e [ 1 5 2 . 1 6 , 1 9 0 . 2 ] = 0 . 4

Notice probabilities change for different intervals of x(t). Those changes occur due
to some level of dependency between variables x(t) and x(t+1), matching X = x(t)

and Y = x(t + 1). Figure 2.8 shows the data distribution for the entire time series.
Figure 2.8b–f illustrate the distributions while taking some current observation x(t)

to predict a next x(t + 1). Observe how the current observation, drawn from one of
the five intervals, affects the probability of a next.

To complement, let a time series be represented by the random variable S

produced using a Normal distribution with mean equals to 0 and variance equals
to 1, i.e., N (μ = 0, σ 2 = 1), as shown in Fig. 2.9. By executing the same code on
this new time series, we obtain histograms such as presented in Fig. 2.10a–e. In this
situation, observe distributions are very similar, meaning that s(t) has no influence
in a next observation, once data examples are independent from each other.

By analyzing the Sunspot and the Normal distributed series through the Auto-
Correlation Function [3], one can assess dependencies, as shown in Fig. 2.11.
Figure 2.11a confirms dependencies among data observations for Sunspot due to the
great correlation values. The second series does not contain relevant dependencies,
once correlations are below 10% (dashed line in Fig. 2.11b).
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Fig. 2.9 First 2000 instances of the randomly generated time series
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Fig. 2.10 Histograms based on the random variable S following a Normal distribution: (a) the
histogram for the entire time series; (b–f) histograms to show how the current observation s(t)

affects a next one
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Fig. 2.11 Autocorrelation function applied on: (a) the Sunspot time series; and (b) the Normal
distributed time series

2.2.3 Statistical Learning Theory Assumptions

Provided the foundations, we detail the assumptions taken by the Statistical
Learning Theory (SLT) in order to ensure supervised learning:

Examples Must be Sampled in an Independent Manner By assuming indepen-
dency, SLT is sure the data distribution never changes so P(X×Y ) can be estimated
using a sample;
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No Assumption Should be Made About the Joint Probability Distribution
P(X × Y) Therefore the distribution could be any one;

P(X×Y) Is Unknown at Training As a consequence of the previous assumption,
there is no prior about P(X × Y ), what is different than considering data coming
from a family of distributions (e.g. Normal and Poisson), as required by many
statistical methods. If one has any knowledge about the family of P(X × Y ), then
the problem is reduced to estimate its parameters (e.g., mean and standard deviation,
if it were a Normal distribution). Instead, SLT relies on having a sufficiently large
set of training examples from which P(X × Y ) is estimated. Observe this is much
more general than assuming a family of distributions;

P(X×Y) Is Fixed/Static In order to estimate P(X×Y ), a classification algorithm
needs enough training examples. Any change in this joint function would jeopardize
such an estimation, once additional data examples would require some learning
drift. This assumption is also justified due to data examples must be independent
from each other, otherwise P(X × Y ) would change along samplings, as illustrated
in the previous section. As a consequence, SLT is not suitable for problems
involving dependent data, as typical for real-world time series and with concept drift
detection [4, 14]. However, it is important to assess data dependency as performed
in the previous section;

Labels Can Assume Non-deterministic Values This assumption is justified,
firstly because data may contain noisy labels, i.e., some class yi may be incorrect
labeled. Of course, a small portion of labels is expected to be wrong, otherwise
learning would be impossible. Secondly, it is fair to assume there is some degree of
class overlapping, as previously discussed in the problem of rolling a die. Illustrating
this concept using the classification of sex according to people’s heights, it is not
possible to assign a unique label for someone 1.70-m tall (given by X = 1.70). In
practice, it is important to find the conditional probabilities P(Y = female|X = x)

and P(Y = male|X = x), i.e., which are the probabilities of such a person to be
female or male knowing X = 1.70? For instance, let the conditional probability
P(Y = male|X = 1.7) = 0.6, an average error of 40% is expected (i.e., the
complement of such probability). That concludes the SLT requirements to ensure
supervised learning. Next sections formalize this very useful framework.

2.2.4 Expected Risk and Generalization

SLT intends to obtain a measure of performance for any classifier f built upon
some sample D = {(x1, y1), (x2, y2), · · · , (xn, yn)} from a fixed joint probability
density function P(X × Y ). This measure, referred to as expected risk, is defined
using the expected value of the loss or risk of classifier f , when every possible
example from P(X × Y ) is evaluated:

R(f ) := E(�(X, Y, f (X)),



2.2 Basic Concepts 91

in which �(.) is a loss function. This risk quantifies the integral of divergences
between the expected outcomes and those obtained after applying f (X) ∀X, given
some P(X × Y ).

As discussed in Chap. 1, 0–1 and squared losses are common functions to
quantify classification and regression error, as defined in Eqs. (2.2) and (2.3),
respectively.

�0−1(X, Y, f (X)) =
{

1, if f (X) �= Y,

0, otherwise.
(2.2)

�squared(X, Y, f (X)) = (Y − f (X))2 (2.3)

Given f is linear, the squared-loss function produces a convex optimization
problem, making possible the use of the Gradient Descent method to adapt learning
parameters, as previously discussed in Chap. 1.

The expected risk should not be confused with the average error for classifier
f . In fact, they are related but different: the average error is calculated on a sample,
while the expected risk assumes some joint probability density function P(X ×
Y ), so the integral of divergences between P(X × Y ) and its estimator f can be
computed, in form:∫

X×Y

‖�(P (X × Y ) − (X, f (X)))‖ dX × Y,

in which �(.) is the selected loss function.
The expected risk considers all possible data examples, including the ones out

of the training set (defined as population in Statistics [11]). This is only available
in simplistic scenarios, such as the rolling of a die (Chap. 1), for which P(X ×
Y ) is known. To contrapose, take the problem of playing soccer according to the
assessment of temperature and humidity, as mentioned in Chap. 1. Because those
variables are continuous, we cannot know P(X×Y ) for every possible pair. Observe
the input variable X is given by a pair of temperature and humidity values, while the
output class Y can assume “yes” or “no”. This would be the same as having a space
with two axes associated to real values and a third to a binary (discrete) variable.

For realistic classification tasks, a finite set of n examples (x, y) sampled from
P(X×Y ) is often insufficient to compute the expected risk. On the other hand, those
training examples can be used to compute the empirical risk of some classifier f :

Remp(f ) = 1

n

n∑
i=1

�(xi, yi, f (xi)).

The empirical risk assesses only a finite training set. That might not be enough,
since the best classifier estimated using those examples could perform poorly when
applied on unseen examples. This context emphasizes the importance of having the
empirical risk as a good estimator for the expected risk.
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Generalization is the concept relating the empirical and the expected risks, as
follows:

G = |Remp(f ) − R(f )|.

This difference allows to understand how some classifier f performs on unseen
examples, i.e. how such classifier behaves provided new data. A classifier is said to
generalize when the difference between those risks is sufficiently small, meaning it
performs similarly over seen and unseen examples. This implies the empirical risk
must be a good estimator of the expected risk, so that we use it to select the best
among all candidate classifiers.

An important theoretical step may be noticed: if generalization is ensured,
one could use empirical risks of classifiers f0, . . . , fk to select the best for new
data. The proof of this claim is the central subject for the Statistical Learning
Theory, detailed later in this chapter. Also observe any classifier presenting
good generalization does not necessarily imply risks are small. Generalization
simply informs us when the empirical risk, i.e., Remp(f ), is a good estimator of
R(f ), supporting the selection of the best classifier using Remp(f ). The concept
of generalization is paramount for the area of Machine Learning, since it ensures
learning from some finite sample.

2.2.5 Bounds for Generalization: A Practical Example

Let a binary classification task in which two vectors w+ and w− correspond to
the average of positive and negative training instances, respectively. The difference
vector:

w = w+ − w−,

is normal, i.e., orthogonal, to the hyperplane separating examples from both
classes [12].

Listing 2.2 illustrates this problem with 200 random numbers drawn from two 2-
dimensional Gaussian distributions, whose mean vectors are μ+ = [0.9, 0.5] for the
positive class, and μ− = [0.3, 0.3] for the negative. This instance used a diagonal
covariance matrix with σ = 0.1 to represent the linear dependencies for such 2-
dimensional vectors.
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Listing 2.2 Read and show regression data

# C r e a t i n g t h e da ta p o s i t i v e and n e g a t i v e examples
n <− 200
sigma <− 0 . 1
m_p <− c ( 0 . 9 , 0 . 5 )
m_n <− c ( 0 . 3 , 0 . 3 )
posc <− rbind ( rnorm ( n , m_p [ 1 ] , s igma ) , rnorm ( n , m_p [ 2 ] ,

s igma ) )
negc <− rbind ( rnorm ( n , m_n [ 1 ] , s igma ) , rnorm ( n , m_n [ 2 ] ,

s igma ) )

# S c a t t e r p l o t o f da ta
p l o t ( t ( posc ) , pch =1 , x l im =c ( 0 , 1 . 2 ) , y l im =c ( 0 , 1 . 0 ) )
par ( new = TRUE)
p l o t ( t ( negc ) , pch =5 , axes =F , x l a b =" " , y l a b =" " )

We can then compute and plot the average vectors for each class, as well as the
hyperplane, which is the eigenvector orthogonal to w. It crosses w at its central point
as seen in Fig. 2.12, and exemplified in Listing 2.3.

Listing 2.3 Read and show regression data

# Computing t h e average f o r each c l a s s
w_p <− c ( mean ( posc [ 1 , ] ) , mean ( posc [ 2 , ] ) )
w_n <− c ( mean ( negc [ 1 , ] ) , mean ( negc [ 2 , ] ) )

# p l o t t i n g t h e average v e c t o r s
arrows ( 0 , 0 , w_p [ 1 ] ,w_p [ 2 ] )
arrows ( 0 , 0 , w_n [ 1 ] ,w_n [ 2 ] )

# Computing t h e v e c t o r o f t h e d i f f e r e n c e ’w’
w <− w_p − w_n

# t h e v e c t o r t o be p l o t t e d i s more i n t e r e s t i n g i f we
# t r a n s l a t e i t s o r i g i n t o t h e p o i n t where w_n ends
wvec <− c (w_n [ 1 ] , w_n [ 2 ] , w[ 1 ] +w_n [ 1 ] , w[ 2 ] +w_n [ 2 ] )
arrows ( wvec [ 1 ] , wvec [ 2 ] , wvec [ 3 ] , wvec [ 4 ] , c o l =2)

# Computing t h e c e n t r a l p o i n t o f ’ wvec ’
# Obs : wvec [ 1 ] = wvec x _1 p o i n t ; wvec [ 2 ] = wvec y _1 p o i n t
# wvec [ 3 ] = wvec x _2 p o i n t ; wvec [ 4 ] = wvec y _2 p o i n t
wmid <− c ( mean ( c ( wvec [ 1 ] , wvec [ 3 ] ) ) , mean ( c ( wvec [ 2 ] , wvec [ 4 ] )

) )

# The h y p e r p l a n e i s o r t h o g o n a l t o wvec , so we compute two
p o i n t s

# by r o t a t i n g t h e wvec 90 d e g r e e s i n bo th d i r e c t i o n s and
add ing

# t h e c e n t r a l p o i n t o f v e c t o r ’w’
hx <− c (−( wvec [4] −wvec [ 2 ] ) +wmid [ 1 ] , ( wvec [4] −wvec [ 2 ] ) +wmid

[ 1 ] )
hy <− c ( ( wvec [3] −wvec [ 1 ] ) +wmid [ 2 ] , −(wvec [3] −wvec [ 1 ] ) +wmid

[ 2 ] )
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# f i n a l l y , we p l o t t h e r e s u l t i n g h y p e r p l a n e
l i n e s ( hx , hy , c o l =3)

In Fig. 2.12, we see the decision boundary, i.e., hyperplane, is not perfect because
there is some degree of class overlapping, thus the empirical risk is not zero. In fact,
this classifier is very sensitive to outliers: as an exercise, try to include a single
outlier example, then compute the hyperplane again to see how it changes.

Despite its limitations, this classifier is yet representative in the point of view
of risk, because it always outputs the same hyperplane for a given training set,
consequently its empirical risk is deterministic. Considering vectors w+

D and w−
D ,

computed using a training dataset x ∈ D, the empirical risk of classifier f is
defined as:

E [f (D)] = ED

[
w+

s − w−
s

]
= ED

[
w+

s

] − ED

[
w−

s

]
= Ey=+1 [x] − Ey=−1 [x] .

Let us see, in practice, how the expected value of the classifier changes for
samples under different sizes. This allows to analyze how likely a classifier has
been misled by the training set. In particular, we are interested in how to bound
the probability of some classifier being misled, i.e., what we believe to be the best
classifier f , serving the lowest empirical risk, may fail for unseen examples, as
confirmed by a greater expected risk.
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Fig. 2.12 Example of a two-class dataset: positive and negative. The black arrows represent the
average vectors computed for each class, the light gray arrow depicts w, and the dark gray dashed
line is the decision boundary, i.e., hyperplane inferred by this classification algorithm
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We then wish to bound the probability of error and ask the question: how likely
have we been misled by the worst possible function f , i.e., the function that provides
Remp(f ) ∼ 0 (looks good on the training set), while, in fact, the expected risk is
R(f ) > ε? Let n be the sample size, this can be written for a single function as
P(|Remp(f ) − R(f )| > ε), and given the sample was independently and uniformly
drawn, then the probability would be (1 − R(f )) for the first example.2 Due to the
sample independence, the probabilities are multiplied, yielding:

P(|Remp(f ) − R(f )| > ε) = (1 − R(f ))n,

since we are assuming an error equal or greater than ε, it is possible to rewrite as an
inequality:

P(|Remp(f ) − R(f )| > ε) ≤ (1 − ε)n,

finally, we approximate it to an exponential using Stirling’s formula [5, 20],
producing a slightly larger term:

P(|Remp(f ) − R(f )| > ε) ≤ exp(−εn).

In this case, the probability a classifier f produces an empirical risk equals to
zero, while the expected risk is greater than ε, becomes exponentially smaller as the
sample size n → ∞. To find ε that satisfies some divergence t , we set:

exp(−εn) = t

−εn = ln(t)

n = 1

ε
− ln (t)

n = 1

ε
ln

(
1

t

)

ε = 1

n
ln

(
1

t

)
.

Thus, ε = 1
n

ln
(

1
t

)
ensures a right-side probability equals to t . For example, let

us set it as 1%, i.e., t = 0.01, what produces:

ε = 1

n
ln(100),

2Remember that R(f ) represents how likely it is for a randomly selected sample to be misclassified
by f .
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Fig. 2.13 Density distributions of training errors over 1000 random experiments using different
sample sizes n = (a) 64, (b) 32, (c) 16, (d) 8. The training error, a.k.a., the empirical risk, computed
for the whole dataset with n = 400 examples is shown as a dashed vertical line (∼10%)

therefore the upper bound can be computed by the logarithm of 100 divided by the
number of examples. By using this formulation, a sample of n = 450 would be
enough to achieve ε ≈ 0.01.

To illustrate how the sample size influences the error estimates, we produce
a series of simulations with a reduced number of examples nr used to compute
average vectors w+ and w− (randomly choosing nr < n, in which n is the total
number of training examples). By measuring the error estimates in the whole
dataset, we observed an error of ∼ 5%. In order to proceed with the analysis, we
draw 1000 training sets Dnr , with sizes nr = [64, 32, 16, 8], ensuring class balance,
and compute a histogram of errors to show how the empirical risk deviates as the
training set size is reduced. Those results, shown in Fig. 2.13, empirically confirm
that error estimates are jeopardized when relying on small samples.

Unfortunately, such analysis is not as simple in practice. The scenario described
is feasible when having a single or a small set of functions, but, depending on the
target problem, classification algorithms may produce infinite functions to tackle a
task. From that, we define the set or class of functions considered by a classification
algorithm as:

F = {f1, f2, · · · , fn, · · · } .
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From this definition, our new problem deals with a subspace F of functions from
which we wish the empirical risk to be a good estimator for the expected risk taking
any function in F , as the sample size n is increased. By holding this property,
we could select the best classifier in F by only assessing empirical risks to find
Remp(fbest) ≤ Remp(fi), for all i = 1, . . . , n.

We remember that this set of admissible functions F represent the bias of some
classification algorithm, for example: (1) the Perceptron contains all possible linear
functions inside such bias, as discussed in Chap. 1; and (2) the Multilayer Perceptron
has even more functions (linear and nonlinear ones), when the number of neurons
at the hidden layer is greater than one. Now we discuss about the concepts of Bayes
risk and Consistency.

2.2.6 Bayes Risk and Universal Consistency

Considering a space of admissible functions F , an algorithm is consistent with
respect to such a bias if it converges to the best classifier in F , as the sample size
increases. Consistency is a property associated to a set of functions (not just one
particular), allowing us to study the asymptotic convergence behavior, i.e., as the
sample size tends to infinite.

In order to ensure generalization, Vapnik [16] relied on consistency concepts
to prove that a classification algorithm starts with some initial function and
converges, as the sample size increases, to the best classifier in F . We here
recall each classification algorithm may have its own bias F , which may overlap
for different algorithms. For instance, the Perceptron has every linear function
in FPerceptron, while the Multilayer Perceptron potentially has more functions in
FMLP ⊇ FPerceptron. The only situation in which FMLP = FPerceptron is when MLP
has a single neuron at the hidden layer. MLP forms more complex functions, as
more neurons are added into its hidden layer.

There are different types of consistencies defined in the literature. As described in
Chap. 1, consider the best possible classifier for a problem, referred to as the Bayes
classifier fBayes, which is certainly contained in the space of all functions Fall.3

The Bayes consistency states that, as the sample size increases, the classification
algorithm must approach the best classifier, i.e.:

lim
n→∞ E [�(X, Y, f (X))] = R(fBayes),

where space Fall is considered, and R(fBayes) is the Bayes risk which assumes the
lowest possible loss for a given problem.

In practical scenarios, classification algorithms do not span the whole space of
functions Fall, but a subspace instead. In this case, we must define the property of

3This space contains every possible function to tackle any problem.



98 2 Statistical Learning Theory

consistency with respect to a subspace of functions F ⊂ Fall; thus, a classification
algorithm is consistent when it converges to the best classifier in F , i.e.:

lim
n→∞ E [�(X, Y, f (X))] = R(fF ).

By using the notions of consistency, the best classifier inside F is:

fF = arg min
f ∈F

R(f ),

and the Bayes classifier is:

fBayes = arg min
f ∈Fall

R(f ).

By considering that samples are uniformly drawn from some joint probability
density function P(X × Y ), we say a classification algorithm is consistent with
respect to Bayes if the expected risk R(fi) of some classifier fi , inferred by this
algorithm, converges to R(fBayes):

P(R(fi) − R(fBayes) > ε) → 0 as n → ∞.

Likewise, a classification algorithm is said to be consistent with respect to F ,
if the expected risk R(fi) of some classifier fi , inferred using this algorithm,
converges to R(fF ), then:

P(R(fi) − R(fF ) > ε) → 0 as n → ∞.

In summary, those definitions explore classification biases having a fixed but
unknown joint density distribution P(X × Y ). There is still another type of
consistency called the universal consistency. A classification algorithm is said to be
universally consistent if it is consistent with respect to subspace F for any possible
joint probability density function P(X × Y ). This consistency is fundamental to the
Statistical Learning Theory, given P(X × Y ) is assumed to be unknown.

2.2.7 Consistency, Overfitting and Underfitting

It is possible to relate consistency and learning errors by looking at how far our
solution is from some target classifier. For instance, let fi be some current solution,
fF the best classifier in F , and fBayes the best classifier in Fall. Two learning errors
can be defined:

• Estimation error: represents how far our solution fi is from the best possible
classifier fF ∈ F . This error is resultant of the uncertainty present in training
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Fig. 2.14 Illustration of scenarios having the current classifier fi (cross), the best classifier inside
the subspace of functions fF (diamond), and the best classifier fBayes (star) in the space containing
all functions Fall: (a) small subspace of functions often privileges a small estimation error, while
it produces a greater approximation error; and (b) large subspace of functions that will likely have
a smaller approximation error, but often a greater estimation error

data (e.g., class overlapping or mislabeled examples) and it can be seen as the
statistical variance;

• Approximation error: represents how far fF is from the best classifier fBayes
given the whole space of functions Fall. This error is resultant of the bias
imposed by the algorithm and might be interpreted as the statistical bias.

The total error, i.e., how far our solution fi is from the best classifier fBayes, is
defined in terms of approximation and estimation errors:

R(fi) − R(fBayes) = (R(fi) − R(fF ))︸ ︷︷ ︸
estimation error

+ (R(fF ) − R(fBayes))︸ ︷︷ ︸
approximation error

. (2.4)

Figure 2.14 illustrates two scenarios according to Eq. (2.4): (1) it is easier to
converge to the best classifier inside F using a restricted subspace, but it may span
a space far from fBayes; on the other hand, (2) a wider subspace is likely to contain
a solution closer to fBayes, but it also faces greater difficulties to convergence to the
best solution fF ∈ F .

By defining a subspace F , we set a balance between estimation and approxima-
tion errors: (1) a stronger bias produces lower variances, or small estimation errors,
but leads to greater approximation errors; and (2) a weaker bias produces greater
variances, or greater estimation errors, however leading to smaller approximation
errors. From this perspective, we revisit the definitions of underfitting and overfitting
in the context of Machine Learning (depicted in Fig. 2.15):
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complexity of the class of functions

error/risk

risk
approximation error estimation error

(Underfitting) (Overfitting)

Fig. 2.15 As the complexity of the function subspace increases, approximation and estimation
errors show different behavior. If the subspace is restricted, underfitting is most probably observed.
On the other hand, by allowing the complexity to grow beyond the necessary, estimation error
increases causing overfitting. The challenge is then to find a balanced subspace (adapted from [18])

• Underfitting: for a small F , estimation error is small but approximation error is
large;

• Overfitting: for a large F , estimation error is large but approximation error is
small.

Given those two definitions, let us recall the problem XOR, as discussed in
Chap. 1. Employing the Perceptron results in underfitting since fF is not even
enough to represent the training data. By considering MLP with 2 neurons at the
hidden layer, the bias becomes sufficient for the task. It is small enough to prevent
a large estimation error, but big enough to ensure convergence to fF = fBayes. To
contrast, if one guesses a larger number of neurons at the hidden layer, it would
result in a much larger subspace than necessary, leading to overfitting.4 In fact,
the convergence to fBayes becomes harder due to estimation error: the resulting
function is likely to be much more complex than the problem needs, producing
small empirical risk but great expected risk when unseen examples present any
small data variation. This simple example shows an important issue when designing
classification algorithms: we should use a subspace which is sufficient and necessary
for a given problem, because by using either an insufficient an overcomplex
subspace, we may incur in under or overfitting, respectively.

4In case of XOR, the dataset has a finite number of possibilities. Thus, considering all of them were
provided, overfitting is not verifiable in practice because memorization is indeed enough when new
examples are equal to the ones in the training set.



2.2 Basic Concepts 101

Feature 1

F
ea

tu
re

 2

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Feature 1

F
ea

tu
re

 2

(a) (b)

Fig. 2.16 Two types of binary classification tasks (a) linearly separable, and (b) nonlinearly
separable

2.2.8 Bias of Classification Algorithms

The bias of a classification algorithm is defined in terms of a subspace F ⊆ Fall
(most likely F ⊂ Fall), as discussed before. How is such set of admissible
functions influenced? First of all, that depends on the input space. For example,
consider a linearly separable problem, as illustrated in Fig. 2.16a. Any classification
algorithm considering linear hyperplanes would be enough to provide good results.
In a more complex scenario, such as shown in Fig. 2.16b, we need a more complex
bias to tackle the problem such as a subspace F containing Gaussian functions.

Although such Gaussian bias works, one could instead apply the following
nonlinear transformation on every input vector (x1, x2) from Fig. 2.16b:

T

([
x1

x2

])
=

⎡
⎣ x2

1√
2x1x2

x2
2

⎤
⎦ ,

obtaining a 3-dimensional space, in which examples are linearly separable (see
Fig. 2.17). In that sense, instead of increasing the subspace of classification func-
tions, one can transform the input examples in order to simplify the space of
functions and, thus, solve such a task.

The subspace of functions, often referred to as the algorithm bias, has also
other terms: (1) the hypothesis bias is defined by the representation language of
hypothesis or models, e.g.: if-then-else rules, decision trees, networks, graphs, topo-
logical spaces, etc. For example, MLP uses weights to represent linear hyperplanes
shattering the input space, while C4.5 and J48 employ tree nodes to orthogonally
shatter every variable in the input space of examples [2]; (2) the preference bias
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Fig. 2.17 3D views of the space obtained after the nonlinear transformation on training examples.
The last also depicts a hyperplane allowing linear separation of the classes

defines the conditions under which the algorithm prefers one classifier over another.
This is common when, given the current classifier fi , the algorithm needs to opt for
a next candidate classifier; and (3) the search bias defines some heuristic or search
criterion to look for more solutions inside F . In this book, we simply refer to all
those biases as the algorithm bias.

2.3 Empirical Risk Minimization Principle

The Empirical Risk Minimization (ERM) principle, a central subject to SLT,
provides the foundation for ensuring learning generalization. ERM relies on the
concept of universal consistency and on the Law of Large Numbers to provide
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an upper bound so the training error (empirical risk) is a good estimator for the true
error (expected risk).

As previously discussed, all consistency definitions are based on the expected
risk of classifiers. However, there is no way to compute it without knowing the joint
probability density function P(X × Y ). How could we rely on the empirical risk as
an estimator given possible generalization issues related to under and overfitting?
This question motivated Vapnik [16] to define relationships and bounds to allow the
use of Remp as a sufficient estimator for the expected risk through the concept of
universal consistency with respect to a subspace or algorithm bias F .

By assuming a subspace of functions F , a loss function, and the universal
consistency, SLT attempts to converge to fi ∈ F such that:

fi = arg min
f ∈F

Remp(f ).

According to the Law of Large Numbers, assuming data (examples) are indepen-
dent and identically distributed (i.i.d.), the average of a sample ξ1, . . . , ξn converges
to the expected value of variable ξ as the sample size increases, i.e.:

1

n

n∑
i=1

ξi → E [ξ ] with n → ∞,

which was considered to assume the empirical risk asymptotically converges to the
expected risk:

Remp(f ) = 1

n

n∑
i=1

�(xi, yi, f (xi)) → E [�(xi, yi, f (xi))] with n → ∞.

However, the Law of Large Numbers could only be used if the joint probability
density function P(X×Y ) is kept static and data are i.i.d., that is why both properties
are mandatory assumptions.

The Chernoff inequality [6], later extended by Hoeffding, is already an upper
bound for the Law of Large Numbers. Let ξi be random values in interval [0, 1], the
empirical risk approximates the expected risk given a divergence of less than ε with
the following probability:

P

(∣∣∣∣∣
1

n

n∑
i=1

ξi − E [ξ ]

∣∣∣∣∣ > ε

)
≤ 2 exp(−2nε2). (2.5)

Here the Chernoff inequality provides the right-side term 2 exp(−2nε2) to
bound the probability that such approximation differs at least by ε. Observe this
negative exponential function provides smaller values as the sample size n increases.
Rewriting it in terms of risks:
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P(|Remp(f ) − R(f )| > ε) ≤ 2 exp(−2nε2), (2.6)

as a consequence, more training examples facilitate convergence to the best classifier
f ∈ F .

Besides the i.i.d. and the fixed joint probability density function assumptions,
there is another limitation to be addressed in this formulation: the Chernoff
inequality is valid for the Law of Large Numbers if and only if classifier f is
set without any a priori knowledge about data. This is a very tricky issue. In fact
Inequality (2.5) holds only when the function being used as estimator is data-
independent. However, that does not happen a priori, since the classifier is chosen
according to training examples. Therefore, a method had to be designed to surpass
such issue.

2.3.1 Consistency and the ERM Principle

Let us consider a space of examples versus class labels (X × Y ), which is produced
using a deterministic function:

Y =
{

−1 if X < 0.5,

1 if X ≥ 0.5.

A classifier f with zero training error, i.e. memorizing yi for every input sample
xi , can be defined as follows:

f (x) =
{

yi if x = xi for some i = 1, · · · , n,

1 otherwise.

Although training error is zero, it assigns a fixed label 1 to unseen examples,
consequently it works by guessing such label for examples outside the training
set. After training, consider new examples with equal class probability, thus f will
misclassify 50% of those future instances. Its misclassification is comparable with
the flipping of a fair coin.

In this scenario, we have what is called a memory-based classifier, which is
an extreme situation of overfitting. For every new data point x, it is optimal while
assigning labels to memorized training instances, but behaves randomly for unseen
examples. Therefore, f has the poorest as possible generalization, i.e., empirical
risk does not approximate the expected risk. As a consequence, ERM Principle is
inconsistent.

At this point, we need to evaluate whether the class of functions in F provides
universal consistency to the ERM Principle. Thus, if F contains any memory-
based classifier, the ERM principle is always inconsistent. On the other hand, if
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the classification algorithm bias is restricted to a particular subspace F ⊂ Fall not
containing any memory-based classifier, the ERM Principle is consistent and,
therefore, learning can be ensured.

2.3.2 Restriction of the Space of Admissible Functions

As the consistency guarantee of the ERM Principle can be viewed as restricting
the algorithm bias, SLT always evaluates the space of admissible functions fi ∈
F for the worst-case scenario. It considers any classifier fi can be selected, even
including the worst possible fw. So, if the worst classifier has an empirical risk
Remp(fw) converging to expected risk R(fw) as the sample size increases, then
any other classifier fi ∈ F will also converge. Consequently, this classification
algorithm is capable of learning. In that way, we can set the function for the Law
of Large Numbers as the worst classifier which does not depend on that training
data anymore, but simply on a definition. As consequence, an important issue was
solved.

The uniform convergence ensures, for every function in F , the divergence
|Remp(f ) − R(f )| decreases as n → ∞. As a result, the following inequality is
valid for a small epsilon:

|Remp(f ) − R(f )| ≤ ε for all f ∈ F ,F ⊂ Fall, as n → ∞.

Therefore, the divergence between empirical and expected risks will never be
greater than a given ε, given the whole F . As this is a space of functions, the worst-
case scenario is mathematically represented as the supreme of differences [7]:

sup
f ∈F

|Remp(f ) − R(f )| ≤ ε.

Figure 2.18 illustrates the risk curves from a hypothetical restricted space of
functions F , in which fF is the best function in F . Note that for any f ∈ F ,
there will be a maximum distance ε between the curves of the expected R(.) and the
empirical risk Remp(.).

As the supreme represents an upper bound for differences related to every
function f ∈ F , it is possible to write:

|Remp(f ) − R(f )| ≤ sup
f ∈F

|Remp(f ) − R(f )|.

We need to reduce the probability of having classifiers fi producing errors close
to zero for the training set, i.e., Remp(fi) ∼ 0, while the true error is in fact large,
say R(fi) > Remp(fi). Thus, we rewrite the previous inequality as follows:
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complexity of the class of functions

risk

f ffi

Remp( f )

R( f )

Fig. 2.18 Expected (light gray) and empirical (dark gray) risk curves traced according to the
classifiers contained in a restricted space of functions F ⊂ Fall: the arrow represents the
maximum distance ε between curves

P
(|Remp(fi) − R(fi)| > ε

) ≤ P

(
sup
f ∈F

|Remp(f ) − R(f )| > ε

)
. (2.7)

Now we have, on the right side of Inequality (2.7), the same scenario considered
by the Law of Large Numbers, thus such theoretical foundation can be applied
to provide convergence as the sample size increases. This formulation is valid if
and only if a fixed set of restricted functions f ∈ F is taken into account. Thus,
instead of employing the Law of Large Numbers for a given classifier f inferred
from training examples, making this law inconsistent, SLT considers all classifiers
inside the algorithm bias. Consequently, the Law of Large Numbers is consistent so
the uniform convergence of probabilities is ensured as n → ∞.

In summary, the Law of Large Numbers is uniformly valid over a static set of
functions for every ε > 0 (remember ε represents a distance), as follows:

P

(
sup
f ∈F

|Remp(f ) − R(f )| > ε

)
→ 0 as n → ∞,

in which this probability is an upper limit for the worst possible classifier fw ∈ F ,
and thus for every f ∈ F .
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Considering the distance between the expected risk of any classifier fi versus the
best classifier fF , both in F , it is now clear that:

|R(fi) − R(fF )| > 0,

because the expected risk of the best classifier is always smaller or equal to any
other. This makes the absolute operator unnecessary:

|R(fi) − R(fF )| = R(fi) − R(fF ).

By adding the empirical risks, we have:

R(fi) − R(fF )

= R(fi)
[−Remp(fi) + Remp(fi) − Remp(fF ) + Remp(fF )

] − R(fF ),
(2.8)

in which the term inside square brackets sums up to zero. From this equation, SLT
defines upper bounds useful to study the consistency of a classification algorithm
regarding its worst-case scenario.

We know Remp(fi)−Remp(fF ) ≤ 0, given fi is optimized using the training set,
so it will produce a lower empirical risk, even when compared to the best classifier.
This confirms that the learning process relies on training set to minimize error. See
Section 5.4 of [12] for more details. Then, we write the following upper bound:

R(fi) − Remp(fi)+Remp(fi) − Remp(fF )︸ ︷︷ ︸
A

+Remp(fF ) − R(fF )

≤ R(fi) − Remp(fi) + Remp(fF ) − R(fF ),

(2.9)

in which the right-side term of the inequality was produced by removing term A,
given it is always less or equal to zero.

Observe that the right-side term of Inequation (2.9) considers the sum of
distances between the expected and the empirical risks for fi and fF . If we say
the worst classifier is the one with the maximum distance, then it is possible to
obtain:

R(fi) − Remp(fi) + Remp(fF ) − R(fF ) ≤ 2 sup
f ∈F

|Remp(f ) − R(f )|, (2.10)

which is an upper bound for the worst classifier in F .
Interestingly, all work presented so far was dedicated to provide upper limits.

This is the way SLT addresses the problem: by fixing and ensuring consistency for
the worst classifier, every other scenario will also be consistent. Then, by using
Inequation (2.10), it is possible to write:
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P (|R(fi) − R(fF )| > ε) ≤ P

(
sup
f ∈F

|Remp(f ) − R(f )| > ε/2

)
,

which is an enough condition to ensure consistency to the ERM Principle.
Some important remarks follows this result:

1. We need to restrict the space of admissible functions of a classification algorithm
in order to make the ERM Principle consistent. The inherent nature of a problem
sets up the necessary bias constraints. For example, the Perceptron bias is not
enough to learn the problem XOR leading to underfitting;

2. The more functions F contains, the greater is the supreme of the distance:
supf ∈F , |Remp(f ) − R(f )|, allowing the algorithm to select more complex
functions;

3. If available, those more complex functions are likely to be selected because
supervised learning algorithms are driven by the optimization of some loss
function over the training data;

4. As more functions are added to F , it is harder to ensure consistency for the ERM
Principle and therefore learning;

5. Since the uniform convergence relies on restricting the subspace of functions,
without a sufficiently restricted bias, there is no learning guarantee;

6. We cannot say there is no learning when the ERM principle is inconsistent, but
no learning guarantee is provided according to SLT.

2.3.3 Ensuring Uniform Convergence in Practice

We now define the properties F must hold to ensure uniform convergence. Let
the bias of some classification algorithm be defined by a finite subspace F =
{f1 · · · fm} of admissible functions. Every individual function in that subspace
respects the Law of Large Numbers, having the Chernoff bound as follows:

P(|Remp(fi) − R(fi)| > ε) ≤ 2 exp(−2nε2). (2.11)

We need to ensure the same for all functions in F , rewriting Inequation (2.11)
to include the probabilities of all individual functions:

P

(
sup
f ∈F

|Remp(f ) − R(f )| > ε

)

= P(|Remp(f1) − R(f1)| > ε ∨ |Remp(f2) − R(f2)| > ε ∨ · · ·
∨ |Remp(fm) − R(fm)| > ε), (2.12)

in which ∨ is a logical OR operator. Let a set of events whose associated probabilities
are given by disjunct elements {P1, P2, . . . , Pm}. As a consequence, the probability
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of observing any event is:

{P1, P2, . . . , Pm} =
m∑

i=1

Pi.

Now suppose some events are dependent, i.e. there is some degree of intersection
such as in a Venn diagram, therefore the union of all elements represent a lower
bound for such sum, in form:

{P1, P2, . . . , Pm} <

m∑
i=1

Pi.

Consequently, it is possible to found the following upper bound for Inequal-
ity (2.12):

P(|Remp(f1) − R(f1)| > εP (|Remp(f2) − R(f2)| > ε ∨ · · ·
∨ |Remp(fm) − R(fm)| > ε)

≤
m∑

i=1

P(|Remp(fi) − R(fi)| > ε),

Given:

P(|Remp(fi) − R(fi)| > ε) ≤ 2 exp(−2nε2),

we have:

P(|Remp(f1) − R(f1)| > ε) ≤ 2 exp(−2nε2)

P (|Remp(f2) − R(f2)| > ε) ≤ 2 exp(−2nε2)

...

P (|Remp(fm) − R(fm)| > ε) ≤ 2 exp(−2nε2)

Therefore, summing all such inequations, we have the uniform convergence consid-
ering all functions f1 · · · fm inside the finite subspace F as:

P

(
sup
f ∈F

|Remp(f ) − R(f )| > ε

)
≤

m∑
i=1

P(|Remp(fi) − R(fi)| > ε)

≤ 2m exp(−2nε2), (2.13)

As F is finite, m is a constant supporting the upper bound at the right-side term,
and then the uniform convergence is valid as n → ∞. This solves the consistency
for any finite subspace F , but raises the question about how to deal with subspaces
containing an infinite number of functions.
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2.4 Symmetrization Lemma and the Shattering Coefficient

The symmetrization lemma and the shattering coefficient are necessary to ensure the
ERM principle in the context of infinite spaces of functions. The symmetrization
lemma uses a ghost sample, or virtual sample, in order to map infinite spaces into
an enumerable space of functions. The shattering coefficient is a function relating
the sample size with the maximal number of distinct classifications. Therefore, the
shattering coefficient is a measurable function of learning capacity, counting the
number of different classifiers in the algorithm bias.

A ghost sample is an unknown sample with size n drawn from the same joint
distribution P(X × Y ) and independently from the training sample. For a single
sample:

sup
f ∈F

|R(f ) − Remp(f )|

Adding the second sample with same size n:

sup
f ∈F

|R(f ) − Remp(f )| ≤ sup
f ∈F

|R(f ) − Remp(f )| + sup
f ∈F

|R(f ) − R′
emp(f )|.

We can simplify this formulation for the worst classifier fw ∈ F as:

Remp(fw) − R(fw) ≤ Remp(fw) − R(fw) −
[
R′

emp(fw) − R(fw)
]

= |Remp(fw) − R′
emp(fw)|,

so note the absolute value is needed because we cannot ensure the difference
between the empirical risks is positive. In addition, recall Remp(fw) ≤ R(fw).

The divergence |Remp(fw)−R′
emp(fw)| can be rewritten in terms of the supreme:

|Remp(fw) − R′
emp(fw)| = sup

f ∈F
|Remp(f ) − R′

emp(f )|,

however this inequality has to be rewritten in terms of ε. At first:

P

(
sup
f ∈F

|Remp(f ) − R(f )| > ε

)
≤ 2m exp(−2nε2).

With the addition of the ghost sample, we have 2n examples so 2m exp(−2nε2)

becomes 2m exp(−2(2n)ε2), simplifying:

2m exp(−2(2n)ε2) = 2m exp(−4nε2)
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= 2m exp

(
−n

ε2

4

)

= 2m exp

(
−n

ε2

22

)

= 2m exp

(
−n

(ε

2

)2
)

so, finally, we obtain:

P( sup
f ∈F

|R(f ) − Remp(f )| > ε) ≤ 2P( sup
f ∈F

|R′
emp(f ) − Remp(f )| > ε/2)

≤ 2m exp(−nε2).

This demonstrates the symmetrization lemma [9] which cancels out the
expected risk. Note the ghost sample is a conceptual object, and we do not have to
draw it, but this step allows us to remove term R(f ), which cannot be computed
assuming the joint probability distribution is unknown. This will be used later to
find bounds for infinite subspaces of functions.

According to the symmetrization lemma, the empirical risks for two different
and independent samples from P(X × Y ) approach each other as n → ∞.
The symmetrization lemma is necessary to cancel out risk R(f ), which is not
computable, as well as to prove convergence for the ERM Principle having a
subspace F with infinite functions.

2.4.1 Shattering Coefficient as a Capacity Measure

Besides subspace F contains an infinite number of functions, there is a finite
number of classification possibilities for some sample. For instance, in a binary
classification problem, i.e., Y = {−1,+1}, there is an infinite number of available
functions to classify data points, however each function f ∈ F can only provide
at most 2n different classification results over some sample with n examples.
Figure 2.19 illustrates how infinite functions may produce the same classification
result in terms of the available data.

If two distinct classifiers f, g ∈ F produce decision functions with equal
classification results, then their empirical risks are the same, i.e., Remp(f ) =
Remp(g). For instance, let n = 2, then there are 2n = 22 = 4 different ways
of classifying one sample, and 22n = 24 = 16 ways of classifying two samples
together, each with n = 2 examples. Therefore, there are at most 22n different
classification results when considering both samples at the same time, as shown
in Fig. 2.20.
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Let:

1. Z(n) = {(x1, y1), · · · , (xn, yn), } be a training set with n instances;
2. |FZn | be the cardinality of subspace F for set Zn, which is seen as the number

of functions producing different classification results for Zn;

then, the maximum number of distinct functions in F is:

N (F , n) = max
{|FZn |

∣∣ x1, · · · , xn ∈ X
}
, (2.14)

which is a function of n referred to as the shattering coefficient for subspace F .
If N (F , n) = 2n, then there is at least one sample with n instances that can

be classified in all possible ways, having two labels5 Y = {−1,+1}. Then, we say
that F is capable of shattering at least one sample in all possible ways, as ensured
by the maximum operator in Eq. (2.14), provided the data organization in the input
space. This does not mean that every sample will be classified (shattered) in all
possible ways, but at least one of them.

The shattering coefficient is a capacity measure function for F , as it allows to
quantify the number of distinct classification results. Besides being referred to as a

Fig. 2.19 Given a finite
number of input examples,
there are infinite functions
providing the same
classification result
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Fig. 2.20 For n = 2, there are 4 different ways of classifying one sample

5As a binary classifier is considered, this is a power of two.
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coefficient, the shattering is a function providing the cardinality for Zn as n → ∞.
Consequently, it outputs the number of admissible functions in F as n → ∞, which
is associated to the complexity of such subspace. A larger subspace F will certainly
have a shattering curve growing faster as n → ∞ (see Fig. 2.21).

2.4.2 Making the ERM Principle Consistent for Infinite
Functions

Now we connect the symmetrization lemma to the consistency of the ERM
Principle given a finite number of functions. In order to proceed, we should consider
2n instances, having half in one sample and the remaining half in a ghost sample.
For a problem with l labels, the maximal number of functions producing distinct
classification results for both samples combined is given by l2n. Assuming a
problem with two labels, the shattering coefficient is N (F , 2n) = 22n.

From the symmetrization lemma:

P( sup
f ∈F

|R(f ) − Remp(f )| > ε) ≤ 2P( sup
f ∈F

|R′
emp(f ) − Remp(f )| > ε/2),

Vapnik substituted the supreme over F for the supreme over FZ2n
, in which Z2n

represents the union of both samples:

2P( sup
f ∈F

|R′
emp(f ) − Remp(f )| > ε/2) = 2P( sup

f ∈FZ2n

|R′
emp(f ) − Remp(f )| > ε/2),

Fig. 2.21 Illustration of the
shattering coefficient for two
different subspaces: F
(dashed curve) has a less
complex shattering function
than F ′ (gray curve)
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having FZ2n
as the algorithm bias provided 2n instances.6

As FZ2n
contains at most N (F , 2n) distinct classification functions, it is

possible to employ the Chernoff bound as follows:

2P( sup
f ∈FZ2n

|R′
emp(f ) − Remp(f )| > ε/2) ≤ 2N (F , 2n) exp(−nε2/4),

in which term N (F , 2n) replaces the number of functions m, defined in Eq. (2.13).
There are some important remarks about this result. First, consider the shattering

coefficient is significantly smaller than 22n, i.e., N (F , 2n) ≤ (2n)k given some
constant k:

• Then the shattering coefficient grows in a polynomial way, and by plugging it
into the Chernoff bound:

2N (F , 2n) exp(−nε2/4) = 2(2n)k exp(−nε2/4)

= 2 exp(k log(2n) − nε2/4),

the whole expression converges to zero, as n → ∞;
• Therefore, the Empirical Risk Minimization Principle is consistent with

respect to F when the shattering coefficient grows polynomially.

Second, considering the full space of functions Fall, and therefore the less
restricted bias as possible:

• It should be clear that by having all functions, a sample could be classified in all
possible ways independently of its size, i.e., N (F , 2n) = 22n.

• By substituting this term in the Chernoff bound:

2N (F , 2n) exp(−nε2/4) = 2(22n) exp(−nε2/4)

= 2 exp(n(2 log(2) − ε2/4)), (2.15)

the resulting expression does not converge to zero as n increases, once ε ≥ 0 but
a sufficiently small value so that ε2/4 < 2 log(2);

• Therefore, we cannot conclude the ERM Principle is consistent with respect to
Fall, so learning is not ensured when no restricted bias is set;

• On the other hand, we cannot conclude the ERM Principle is inconsistent for
Fall, because Eq. (2.15) provides a sufficient condition for consistency, but not a
necessary one.

6Remember the number of instances affect the number of distinct admissible functions.
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Finally, Vapnik and Chervonenkis proved the following condition is necessary to
ensure the consistency of the ERM Principle:

log N (F , n)

n
→ 0. (2.16)

The reason for this condition will become clearer in Sect. 2.5.
It is possible to notice that if N (F , n) is polynomial, then the condition is valid.

However, if we have an unrestricted space, i.e., F = Fall, then N (F , n) = 2n for
every value of n and:

log N (F , n)

n
= log(2n)

n
= n

n
= 1.

Thus, the ERM Principle is not consistent given Fall.

2.5 Generalization Bounds

The SLT bounds the probability of having “bad” classifiers, i.e., the ones with large
divergences from their expected risks. We can interpret this bound like in a statistical
test: for instance, by setting a confidence level of 0.01, the chance of observing a
divergence above ε in between the empirical and expected risks is less than 1% over
random samples. This is also the source of the Valiants’s Probably Approximately
Correct (PAC) [13] term: the confidence parameter δ represents how probable an
algorithm has been misled by the training set.

In fact, SLT is interested in bounding the probability of having an error around
zero for the training set, while the true error is in fact large. From that idea, we take
the Chernoff bound:

P( sup
f ∈F

|R(f ) − Remp(f )| > ε) ≤ 2N (F , 2n) exp(−nε2/4),

to be studied in terms of δ > 0, which is an acceptable probability of divergence
between risks:

P( sup
f ∈F

|R(f ) − Remp(f )| > ε) ≤ δ,
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and, then solving it for ε:

2N (F , 2n) exp(−nε2/4) = δ

exp(−nε2/4) = δ

2N (F , 2n)

log(exp(−nε2/4) = log(δ) − log(2N (F , 2n))

−nε2/4 = log(δ) − log(2N (F , 2n))

ε2 = −4

n
(log(δ) − log(2N (F , 2n)))

ε =
√

−4

n
(log(δ) − log(2N (F , 2n))).

Since the term is upper bounded by a probability of error δ, it is possible to
substitute ε:

sup
f ∈F

|R(f ) − Remp(f )| > ε

sup
f ∈F

|R(f ) − Remp(f )| >

√
−4

n
(log(δ) − log(2N (F , 2n))).

If δ represents the probability that |R(f ) − Remp(f )| is above some ε, i.e., the
probability of being misled by the training set, then the complement 1 − δ is the hit
chance or the probability that such divergence is less than or equal to ε:

sup
f ∈F

|R(f ) − Remp(f )| ≤ ε

sup
f ∈F

|R(f ) − Remp(f )| ≤
√

−4

n
(log(δ) − log(2N (F , 2n))).

Pay attention to the relational operator, which was inverted due to the focus on the
hitting probability 1 − δ.

As in Sect. 2.3.2, we assume the empirical risk is a lower bound for the expected
risk, i.e., Remp(f ) ≤ R(f ). Also remember the subspace may contain the memory-
based classifier, i.e., the worst function fw ∈ F , so:

R(fw) − Remp(fw) ≤
√

−4

n
(log(δ) − log(2N (F , 2n))).

and, finally, the generalization bound allowing the selection of the worst
classifier is:
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R(fw) ≤ Remp(fw)︸ ︷︷ ︸
training error

+
√

−4

n
(log(δ) − log(2N (F , 2n)))︸ ︷︷ ︸

divergence factor ε

. (2.17)

This bound is an important result to ensure generalization in case subspace F is
simple but enough to tackle some classification problem. Enough because such
space is required to admit functions (bias) capable of classifying the training sample
while, at the same time, it is expected to have a polynomial shattering coefficient.

In Eq. (2.17), terms “training error” Remp(f ) and “divergence factor” ε control
the trade-off between the empirical risk and the generalization. Observe two
scenarios: first, when the training error is equal to 0, but the divergence factor is
equal to ∞, resulting in overfitting:

R(f ) ≤ 0︸︷︷︸
training error

+ ∞︸︷︷︸
divergence factor ε

= ∞.

Second, when the divergence factor is equal to 0, but the training error is ∞, leading
to underfitting:

R(f ) ≤ ∞︸︷︷︸
training error

+ 0︸︷︷︸
divergence factor ε

= ∞.

In this sense, finding a good balance between those terms is the key issue to ensure
learning.

By looking at Eq. (2.17), it is now clear why Eq. (2.16) from Sect. 2.4.2 is a
condition for consistency:

log N (F , n)

n
→ 0.

The generalization bound also allows the intuitive analysis of further scenarios.
When empirical risk and divergence factor are both small, the expected risk is also
small with a high probability if:

• the subset of functions F is restricted, with a finite number of functions
producing distinct classification results (there is a restricted bias);

• and, despite restricted, F is still capable of representing the training set, avoiding
underfitting.

In this scenario, there is a high probability of learning a concept from data.
On the other hand, in a more complex classification problem—e.g., a feature

space with unclear structure in terms of the class distribution—we need to relax
the bias, and therefore consider a greater subspace of admissible functions F , so
classifiers will be capable of representing viable solutions. As this subspace tends to
the full space Fall, we have N (F , n) → 2n for all n, reducing the probability of
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learning a concept eventually to zero. In such scenario, it is not possible to define an
upper bound, and therefore we cannot ensure the empirical risk is a good estimator
for the expected risk, which is the main point of the ERM Principle.

Fortunately, even for complex problems, it is possible to restrict F , and make
the ERM Principle consistent. That is why it is important to assess different
techniques under different biases to address the same problem, justifying ensembles
on complex scenarios. By defining a set of classification algorithms with restricted
and diverse subspaces, it is still possible to ensure learning. Ensembles are out of the
scope of this book, but we suggest the reader to refer to [8, 10] for further details.

2.6 The Vapnik-Chervonenkis Dimension

The shattering coefficient can be estimated for some space F in order to study
its influences on the Chernoff bound. However, in order to simplify learning
guarantees, Vapnik and Chervonenkis [15, 16] proposed a capacity measure to
characterize the exponential growth of the shattering coefficient. This measure is
known as the Vapnik-Chervonenkis (VC) dimension.

They assumed that a sample Zn containing n examples is shattered by a class
of functions F if it can produce all possible binary classifications for Zn, i.e., the
cardinality is |FZn | = 2n. VC dimension of F is defined as the largest integer n

such that Zn is shattered in all possible ways. Mathematically:

V C(F ) = max
[
n ∈ Z

+∣∣ |FZn | = 2n for some Zn

]
.

If the VC dimension is finite for the class of functions in F , then the shattering
coefficient grows polynomially as the sample size goes to infinity. This implies
in consistency for the ERM Principle, and therefore ensures learning. Otherwise,
if there is no such maximum, the VC dimension is infinite, meaning there is at
least one sample that can be shattered in all possible ways, producing 2n different
binary classifications. As previously seen, this is the case in which consistency is
not ensured for the ERM Principle, consequently there is no learning guarantee
according to such principle.

For example, let a sample having 3 examples in R
2 and F containing only linear

functions. If this sample is distributed along a line, as in Fig. 2.22a, we could shatter
this sample in only 6 different ways, which is less than 2n = 23 = 8. But using
a different setting as in Fig. 2.22b, F is capable of shattering the sample in all 2n

possible ways, and therefore F has a VC dimension at least equal to 3—note that
the value of 3 refers to the sample size n. We say “at least”, because we should
still evaluate it for the next sample size. Observe it is not necessary that all 3-point
samples to be classified in all possible ways, but having just one sample is already
enough. Observe that depends on the organization of points in the input space.

Following the same example, for a classification problem in which Zn ∈ R
2 with

F containing only linear functions, F is capable of shattering samples in at least
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(a) three points organized along a line
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(b) three points organized in 2 dimensions, in a triangular pattern

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

Fig. 2.22 Assuming subspace F contains all linear functions, and a sample of 3 examples is
organized along a line (a). Then, there are 6 different ways to shatter those points. But if those 3
points are organized in a different way (b), then there are 2n = 23 = 8 shattering possibilities

23 = 8 ways, and we know that V C(F ) ≥ 3. But so far we only know that its
minimal value is equal to 3, and not the actual VC dimension. This is because VC is
a function of n that provides a maximum value for which the cardinality |FZn | = 2n

still holds. We already tried n = 3, but we still do not know the behavior when
increasing n: Will the VC dimension grow for the same subspace of functions F ?

By considering n = 4 and the same subspace of linear functions (see Fig. 2.23),
one might conclude it is not possible to shatter those points in all 24 = 16 ways. In
order to be sure, we have to verify this for all possible sample settings (input space
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Fig. 2.23 Assuming subspace F contains all linear functions and a sample with 4 examples.
There are at most 2n = 24 = 16 shattering possibilities

organizations) and prove there is no sample with n = 4 in R
2 that can be shattered

in all possible ways, but this is not a trivial task. Alternatively, it is possible to use a
result about linear hyperplanes as follows.

Linear Hyperplanes and VC Dimension If subspace F contains all possible
(n − 1)-linear hyperplanes to classify points in R

n, its VC dimension is n + 1.
For example, considering an input space R

2 and having 1-dimensional hyperplanes
(lines), the VC dimension is equal to 3.

One way to interpret the VC dimension is via the behavior of N (F , n) as a
function of n. Considering the input examples are in R

2 (see Figs. 2.22 and 2.23),
note the shattering coefficient has an exponential behavior up to the VC dimension,
i.e., for n = 1, 2, 3, then it becomes polynomial for n ≥ 4. Therefore, 2n = 23 = 8
produces the maximum size n for which the sample can be shattered in all possible
ways. Also observe that, from the algorithm bias, one can find the VC dimension,
and, thus, analyze if the ERM Principle is consistent. Finally, it allows to conclude
whether learning is guaranteed or if nothing can be said.
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Fig. 2.24 Interpreting the
margin bound as main
motivation to the Support
Vector Machines
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2.6.1 Margin Bounds

Consider linear functions are available to shatter a linearly separable sample in input
space R2. The margin of a classifier f is the shortest distance from any example to
hyperplane, as depicted in Fig. 2.24.

This concept is relevant once there is a proof about the VC dimension for a class
of linear functions Fp, confirming margin ρ is bounded by the ratio of the radius R

of the smallest hypersphere enclosing all data points (see Fig. 2.24):

V C(Fp) ≤ min

(
d,

4R2

ρ2

)
+ 1,

in which d is the dimension of the input space, i.e., Rd .
Consequently, by maximizing margin ρ, we minimize the VC dimension. In

this sense, the margin can be used as a capacity measure to a class of functions,
which is the main motivation for the Support Vector Machines (SVM). Thus,
the correspondent shattering coefficient grows slower, so the term associated with
the divergence factor in Inequality (2.17) becomes smaller, supporting the faster
convergence of the empirical risk to the expected one.

Vapnik also connected the margin bound to the ERM Principle by finding:

R(f ) ≤ ν(f ) +
√

c

n

(
R

ρ2
log(n2) + log(1/δ)

)
,
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in which ν(f ) is the fraction of training examples presenting margin ≤ ρ. By
using such formulation, the margin maximization provides consistency for the ERM
Principle. In fact, this generalization bound finds the best decision function to
separate examples from different classes, leading to the lowest shattering coefficient
and, consequently, to the best possible classification algorithm: the Support Vector
Machines (SVMs).

2.7 Computing the Shattering Coefficient

In our point of view, the Shattering coefficient is the most important function to be
computed and used to assess the uniform convergence of any supervised learning
algorithm All results discussed in this section are work in progress, last updates in
[21]. Two cases of the Shattering coefficient are commonly studied and illustrated
in the literature [18]. The first considers the scenario in which N (F , 2n) = nk ,
i.e., the Shattering coefficient is any kth-order polynomial function (given k is a
constant), so that the Chernoff bound becomes:

2 exp (log N (F , 2n) − nε2/4)

2 exp (log nk − nε2/4)

2 exp (k log n − nε2/4),

allowing us to conclude that the linear term −nε2/4 will asymptotically dominate
k log n as n → ∞. As consequence, we have a negative exponential function which
certainly converges to zero. Such convergence ensures the probability term on the
right-side of the Empirical Risk Minimization principle also converges to zero (see
Sect. 2.3 for more details), so that the empirical risk Remp(f ) is a good estimator for
the expected risk R(f ), as we desire.

The second scenario considers the exponential function N (F , 2n) = 2n:

2 exp (log N (F , 2n) − nε2/4)

2 exp (log 2n − nε2/4)

2 exp (n log 2 − nε2/4),

from which learning is not guaranteed, given log 2 > ε2/4 once we always set ε < 1
to measure the divergence between the empirical and the expected risks.

From this perspective, we conclude the Shattering coefficient N (F , 2n) is
essential to prove learning guarantees to supervised machine algorithms. In addition,
by having such growth function, we can also find out the minimal sample size to
ensure ε as divergence factor. In that sense, the Shattering coefficient N (F , 2n)

of any d-dimensional Hilbert space H being classified with a single (d − 1)-
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dimensional hyperplane is [17]:

N (F , 2n) = 2
d∑

i=0

(
n − 1

i

)
, (2.18)

for a generalized data organization with sample size equals n.

Proof Let a sample with 2d instances in general organization in a d-dimensional
Hilbert space H which must be classified using a single (d − 1)-dimensional
hyperplane. At first, consider d = 2 then 2d = 4 instances projected into a 0-
dimensional Hilbert space, forming a single point (see Fig. 2.25). In that scenario,
either the point could be classified as laying on one side of the hyperplane or on
the other size, composing a total of 2 possibilities (either positive or negative, for
example), thus:

2

(
4 − 1

0

)
= 2.

Then, consider the same 2d = 4 instances are now projected into an 1-
dimensional Hilbert space. In such data organization, we have six possible clas-
sifications in addition to the previous space dimension (see Fig. 2.25). Therefore,
until now, we have 8 possible classifications when combining both spaces, in form:

2

(
1∑

i=0

(
4 − 1

i

))
= 8.

Observe that every time we project the points to a greater dimension, we reorganize
them into a generalized form, to next analyze all different classifications obtained
when compared to previous spaces. Next, we project points into a 2-dimensional
Hilbert space which can be classified into six other forms that remain different from
the previous projections (see Fig. 2.25), so that:

2

(
2∑

i=0

(
4 − 1

i

))
= 14.

This remains valid for any space dimensionality. In case of any other sample with
more elements, this is, if we add a single instance into this even sample, it is obvious
that the number of possible classifications can only be equal or greater than for this
current sample, therefore the Shattering coefficient is a monotonically increasing
function. From this, we conclude the proof for any 2d × 2β sample size for β ∈ Z+,
what is enough to study the Shattering coefficient of hyperplane-based supervised
learning algorithms.
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Fig. 2.25 Illustrating the
proof on Shattering
coefficient

From this, we can conclude that:

N (F , 2n) = 2
d∑

i=0

(
n − 1

i

)
= 2n − 2

n∑
i=d+1

(
n − 1

i

)
,

therefore, the definition of a d-dimensional Hilbert space implies in a reduction
of the exponential space of admissible functions 2n of 2

∑n
i=d+1

(
n−1

i

)
. In such a

manner, in addition to characterize the cardinality of the algorithm bias, we can
also understand its complement to the space containing all possible classifiers for a
sample size with n examples.

From this conclusion, we also notice that whenever h < n, there is a reduction
in the space containing all admissible functions 2n, so that such reduction allows to
obtain:
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2 exp (log N (F, 2n) − nε2/4)

= 2 exp

(
log

(
2n − 2

n∑
i=d+1

(
n − 1

i

))
− nε2/4

)
,

as consequence, learning is ensured if and only if (both terms are always positive):

log

(
2n − 2

n∑
i=d+1

(
n − 1

i

))
< nε2/4.

Therefore, when d ≥ n, we cannot define a more restrictive bias, as consequence
the Shattering coefficient is:

N (F , 2n) = 2
d∑

i=0

(
n − 1

i

)
= 2n

and learning cannot be ensured according the ERM principle [16].
All the previous conclusions were drawn for a single hyperplane shattering some

input space. If we use multiple indexed hyperplanes to classify a given generalized
input space, then Shattering coefficient is:

N (F , 2n) = 2
d∑

i=0

(
n − 1

i

)p

,

due to the direct combination of p (d −1)-dimensional hyperplanes used to classify
the d-dimensional Hilbert space H , and considering each hyperplane is different
from any other so that it can be combined to provide the output space Y .

As last consequence, we suggest the computation of the Shattering coefficient for
the supervised learning algorithms in order to prove their uniform convergences and
their minimal training set sizes. For instance, suppose the training of an artificial
neural network with p neurons, which must produce a classifier f whose empirical
risk Remp(f ) (this may be seen as the risk computed on a test sample) diverges
from the expected risk R(f ), seen as the risk for unseen data, at most by 5%, so that
ε = 0.05 and:

P(sup
f ∈F

|Remp(f ) − R(f )| > ε) ≤ 2N (F , 2n) exp (−nε2/4)

P (sup
f ∈F

|Remp(f ) − R(f )| > 0.05) ≤ 2

(
2

d∑
i=0

(
n − 1

i

)p
)

exp (−n 0.052/4),

then we may compute the probability δ in form:
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δ = 2

(
2

d∑
i=0

(
n − 1

i

)p
)

exp (−n 0.052/4),

thus, by defining some δ one wishes to ensure, for example, δ = 0.01, one will have
a probability of divergence between the empirical and expected risks less than or
equal to 0.01 from which the minimal training set size n can be found:

0.01 = 2

(
2

d∑
i=0

(
n − 1

i

)p
)

exp (−n 0.052/4).

In such scenario, in 99% of cases, the empirical risk Remp(f ) will be a good
estimator for the actual risk R(f ), therefore providing strong learning bounds to
researchers and machine learning users. For instance, if we consider an input space
in R

2, the following bound is found:

0.01 = 4 exp (−0.000625n)(2−p(n2 − 3n + 2)p + (n − 1)p + 1)

In order to carry on with this instance, let p = 5, so we have:

0.01 = 4 exp (−0.000625n)(2−5(n2 − 3n + 2)5 + (n − 1)5 + 1)n ≈ 199,281,

the number of training examples necessary to ensure such predefined learning
guarantee. For the sake of comparison, if we set ε = 0.1 and solve for the sample
size we obtain n ≈ 43,755, significantly reducing the training set size required,
however a greater divergence between risks is acceptable. This assessment of the
Shattering coefficient is especially necessary to take conclusions on the current Deep
Learning approaches that have been empirically proposed in the literature.

2.8 Concluding Remarks

This chapter introduced the main concepts of the Statistical Learning Theory,
including the empirical risk, the expected risk, the Empirical Risk Minimization
Principle, the Symmetrization lemma, the Shattering coefficient, the Generalization
Bound, and the VC dimension. Then, the maximal margin bound was introduced
to justify why Support Vector Machines are taken as the most effective classifi-
cation algorithm from literature. At last, we discuss and formulate the Shattering
coefficient for general data organizations in any d-dimensional Hilbert space.
Relationships among such concepts were discussed in order to provide guarantees
for the supervised machine learning scenario. Next chapter employs all the same
concepts as tools to assess learning algorithms.
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2.9 List of Exercises

After reading the paper “Statistical Learning Theory: Models, Concepts, and
Results” by von Luxburg, U. and Schölkopf, B. and complement all concepts
discussed throughout this chapter, address the following tasks:

1. What is the relation between the Statistical Learning Theory and the Principle of
Minimum Description Length?

2. What is the association between the restriction of the space of admissible
functions (Sect. 2.3.2) and the No Free Lunch Theorem?

3. Is the Generalization Bound a regularization? How do you compare it with the
Tikonov Regularization?

4. How can you compare the Probably Approximately Correct (PAC) framework
with the Statistical Learning Theory?

5. What is the Rademacher complexity and its relation with supervised learning?
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Chapter 3

3.1 Practical Aspects of the Statistical Learning Theory

Chapter 2 introduced the concepts and formulation developed in the context of
the Statistical Learning Theory. In this chapter, those concepts are illustrated
using the following algorithms: Distance-Weighted Nearest Neighbors, Perceptron,
Multilayer Perceptron, and Support Vector Machines.

3.2 Distance-Weighted Nearest Neighbors

The Distance-Weighted Nearest Neighbors (DWNN) algorithm [1, 2], based on the
K-Nearest Neighbors (KNN), defines the number of k closest neighbors considering
radial basis functions weighing the influence of training examples. To define
DWNN, first consider a training set (a.k.a. knowledge base in this circumstance)
composed of n pairs (x1, y1), . . . , (xn, yn) ∈ X × Y , having X as the input space of
examples and Y as their class labels. In this scenario, DWNN receives a query point
(or unseen example) xq to compute the classification output as follows:

f (xq) =
∑n

i yiwi(xq)∑n
i wi(xq)

,

in which the weighing function is:

wi(xq) = exp

(− ∥∥xi − xq

∥∥2
2

2σ 2

)
,

Assessing Supervised Learning Algorithms
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Fig. 3.1 Example of radial
functions assuming different
values for the spreading
parameter σ = {3, 2, 1, 0.5};
a small σ leads to relevant
weights only for nearest
points, while a large σ

provides relevant weights also
for distant objects
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Fig. 3.2 Examples drawn from an identity function (a) input space with 9 points; (b) the spread
defined by σ = 0.02 does not allow any neighbor for xq = 0.5, so we cannot predict its output

having
∥∥xi − xq

∥∥2
2 as the L2-norm (Euclidean norm) between vectors xi and xq , and

σ as the spread of the radial function. Thus, the greater σ is, the more open is the
radial function as illustrated in Fig. 3.1.

Figure 3.2a illustrates a training set in R
2, in which there is a linear association

between every input variable xi and output class yi . For instance, the example or
point xi = 4 is associated to the output class yi = 4, and so on. Notice, we have
more than two classes in this scenario, in fact this is a regression problem in which
there is a linear association between xi and yi .

Consider data were produced using an identity function, and let σ ≥ 0 (given
σ ∈ R+). Now let the smallest possible value for σ , which makes it greater than
zero but small enough to avoid nearest neighbors xi , as illustrated in Fig. 3.2b.
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Still in this context, let σ = 0.01 and the query point xq = 0.5, resulting in no
closest neighbor for all training examples, as computed next:

wxi=0(xq) = exp

(− ∥∥xi − xq

∥∥2
2

2σ 2

)
= exp

(− ∥∥(0) − xq

∥∥2
2

2σ 2

)

= exp

(
−‖(0) − (0.5)‖2

2

2σ 2

)
= exp

(
0.25

2 × 0.012

)
≈ 0

wxi=1(xq) = exp

(− ∥∥xi − xq

∥∥2
2

2σ 2

)
= exp

(− ∥∥(1) − xq

∥∥2
2

2σ 2

)

= exp

(
−‖(1) − (0.5)‖2

2

2σ 2

)
= exp

(
0.25

2 × 0.012

)
≈ 0.

In this manner, the output class for xq = 0.5 is:

f (xq = 0.5) =
∑n

i yi0∑n
i 0

= 0

0
, (3.1)

being undefined. This happens because there is no nearby point in the training set.
So, having σ = 0.01, DWNN would classify query points only if they were very
close to the training examples. Now consider we make σ so small that it will tend to
zero by the positive side, i.e., σ → 0+. In such circumstance, DWNN would only
produce outputs for query points that coincide with that exact training example. This
is the perfect instance to represent the memory-based classifier (see Chaps. 1 and 2
for a detailed discussion). Observe this classifier only memorizes training examples,
consequently it is incapable of generalizing learning. This is the most representative
situation of overfitting, i.e., the classifier only memorizes (it does not learn) the
training set.

Going to the other extreme in which σ → +∞, the weighing function would
produce:

wxi=−5(xq) = exp

(− ∥∥xi − xq

∥∥2
2

2σ 2

)
= exp

(− ∥∥(−5) − xq

∥∥2
2

2σ 2

)

= exp

(
−‖(−5) − (0.5)‖2

2

2σ 2

)
= exp

(
30.25

2 × ∞2

)
≈ 1

wxi=5(xq) = exp

(− ∥∥xi − xq

∥∥2
2

2σ 2

)
= exp

(− ∥∥(5) − xq

∥∥2
2

2σ 2

)
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= exp

(
−‖(5) − (0.5)‖2

2

2σ 2

)
= exp

(
20.25

2 × ∞2

)
≈ 1.

So, weights are equal to 1 for any value of xi , even those far from xq = 0.5.
Then, the output class will be:

f (xq = 0.5) =
∑n

i yi1∑n
i 1

=
∑n

i yi

n
= 1

n

n∑
i

yi ,

i.e., the average value for all yi taking the training set. In fact, we now tend to
the average value given all output classes in the training set. This is the most
representative situation of underfitting, meaning this classifier is not even capable
of modeling the training set.

From those two extreme scenarios, we observe σ is the parameter defining the
learning bias for DWNN. When σ → 0+, DWNN produces the memory-based
classifier (overfitting), and if σ → +∞, it builds up an average-based classifier
(underfitting). Notice σ must be set so that it provides a representative enough model
for this identity function. But what would be the most adequate value for it?

To answer that question, we should investigate the association between the input
space and the output classes. After plotting this problem, one could simply decide
to set σ , so every query point xq would have at least two nearest neighbors. By
proceeding with that approach, we would obtain the output results illustrated in
Fig. 3.3, in which an affine relationship is defined for the two closest points. As a
drawback, we may notice our training set is not enough to characterize this linear
association when the query point is significantly smaller than −4 or greater than 4,
i.e., when xq < −4 or xq > 4.

What does it happen if σ is small enough so there is only a single nearest
neighbor? In that situation, DWNN would produce outputs as shown in Fig. 3.4,
in which query points lead to a discontinuous step function.

Notice the influence σ has on a more complex regression between the input and
output spaces, such as in Figs. 3.5 and 3.6. If σ is enough to have a single neighbor,
we would have a function composed of steps; while for σ defining two nearest
points, we would have a linear approximation; and if σ sets between 2 and 4 nearest
neighbors, DWNN is capable of outputting something similar to such sinusoidal
function. The question that stays is: Is this approximately sinusoidal output the best?
That should be evaluated over unseen examples in order to take a final conclusion.

Let us analyze the influence of distinct radial basis functions in the bias of such
algorithm, given σ → 0+ and σ → +∞. Consider an infinite number of training
points on xi producing the linear identity function illustrated in Fig. 3.7, showing
what happens for a small σ . Observe an asymptotic infinite number of radial basis
functions along xi , every one centered at each one of the query points.

By setting σ → +∞, a single and unique radial basis function is defined along
xi as shown in Fig. 3.7b. Observe it would be impossible to plot such radial function.

Thus, when σ → 0+, DWNN considers an infinite set of all possible radial basis
functions, while for σ → +∞, its bias contains a single radial. Both situations
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Fig. 3.3 Output results
provided by DWNN given
σ = 0.35, which is enough to
set two nearest neighbors for
each input example. We
highlight a test example at
xi = 0.5. Note that, given the
limited training set, we can
only predict from −4 to 4,
also, we just plot a single
radial function for clarity
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Fig. 3.4 A discontinuous
step function when σ

provides a single nearest
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(a) Input data (b) Approximation with ∼ 2−4 neighbors
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Fig. 3.5 A more complex function (a) to be learned by DWNN: a choice of σ that includes ∼2–4
neighbors produces an approximation for the sinusoidal data (b)
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Fig. 3.6 Illustration of the radial basis functions built with (a) small σ , insufficient to obtain a
useful representation and (b) a single radial basis function covering all data points, yielding to a
weighted average of all outputs (dashed line)
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Fig. 3.7 Illustration of radial basis functions built when (a) σ → 0+ and (b) σ → +∞

are illustrated side by side in Fig. 3.8, having Fall as the space containing every
possible function, Fσ→0+ as an illustration for the space containing every possible
radial basis function provided by DWNN when σ → 0+, and finally Fσ→+∞
corresponds to a space containing only a single radial basis function, i.e. the one
providing the average along every possible query point.

Note the memory-based classifier is most likely to be selected when the space
of functions, i.e., the algorithm bias, is less restricted. We may also refer to it as a
weaker bias. At the same time, it is possible to understand why a very small space
of functions imply underfitting. In this case, we can say it has a strong bias.

Listing 3.1 presents the implementation of the DWNN algorithm using the R
Statistical Software, whose main function is dwnn(). The reader is suggested to
execute testIdentity() to assess the effect of σ = {0.01, 0.1, 100}. For σ =
0.01, all DWNN output classes will be NaN, i.e., not a number, due to the division
by zero from Eq. (3.1). For σ = 0.1, the number of neighbors is adequate for this
problem. For σ = 100, DWNN will consider all points as neighbors, tending to the
average.
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σ → 0DWNN + DWNN σ → +∞

Fig. 3.8 Spaces of admissible functions (or biases) for the DWNN: (a) σ → 0+; (b) a single
function for σ → +∞

Listing 3.1 Distance-Weighted Nearest Neighbor (DWNN) algorithm

# Computing t h e L2−norm be tween v e c t o r x _q and x _ i
e u c l i d e a n <− f u n c t i o n ( x_ i , x_q ) {

s q r t ( sum ( ( x_ i−x_q ) ^2 ) )
}

# T h i s i s t h e w e i g h i n g f u n c t i o n
w_ i <− f u n c t i o n ( d i s t , s igma ) {

exp(− d i s t ^2 / (2 ∗ s igma ^2) )
}

# T h i s i s t h e DWNN a l g o r i t h m . I t r e c e i v e s t h e t r a i n i n g s e t ,
# t h e t e s t s e t and t h e n sigma .
dwnn <− f u n c t i o n ( t r a i n i n g . s e t , t e s t . s e t , s igma = 1) {

# Number o f i n p u t a t t r i b u t e s ( we c o n s i d e r o n l y t h e
# l a s t one as t h e o u t p u t c l a s s )
n A t t r s = nco l ( t r a i n i n g . s e t )−1
c l a s s = nco l ( t r a i n i n g . s e t )

o b t a i n e d = rep ( 0 , nrow ( t e s t . s e t ) )

# For e v e r y example i n t h e t e s t s e t
f o r ( q i n 1 : nrow ( t e s t . s e t ) ) {

x_q = as . v e c t o r ( t e s t . s e t [ q , 1 : n A t t r s ] )
num = 0
den = 0

# Computing t h e o u t p u t c l a s s based on e v e r y
# example i i n t h e t r a i n i n g s e t
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f o r ( i i n 1 : nrow ( t r a i n i n g . s e t ) ) {
# Computing t h e L2−norm
d i s t = e u c l i d e a n ( t r a i n i n g . s e t [ i , 1 : n A t t r s ] , x_q )

# Computing t h e w e i g h t
w e i g h t = w_ i ( d i s t , s igma )
num = num + w e i gh t ∗ t r a i n i n g . s e t [ i , c l a s s ]
den = den + we i gh t

}

# The o u t p u t c l a s s a c c o r d i n g t o DWNN
produced _ o u t p u t = num / den
o b t a i n e d [ q ] = produced _ o u t p u t

}

# L i s t o f DWNN r e s u l t s
r e t = l i s t ( )

# The o b t a i n e d c l a s s a f t e r e x e c u t i n g DWNN
r e t $ o b t a i n e d = o b t a i n e d

# The a b s o l u t e e r r o r i n t e r m s o f t h e e x p e c t e d c l a s s
# v e r s u s t h e o b t a i n e d one
r e t $ a b s E r r o r = abs ( t e s t . s e t [ , c l a s s ] − o b t a i n e d )

# Here we save t h e e x p e c t e d c l a s s f o r l a t e r use
# ( i f n e c e s s a r y )
r e t $ e x p e c t e d = t e s t . s e t [ , c l a s s ]

re turn ( r e t )
}

# T e s t t h e i d e n t i t y f u n c t i o n
t e s t I d e n t i t y <− f u n c t i o n ( s igma = 0 . 0 1 ) {

# D e f i n i n g t h e t r a i n i n g s e t
t r a i n i n g . s e t = cbind ( seq ( −5 ,5 , by =1) , seq ( −5 ,5 , by =1) )

# D e f i n i n g t h e t e s t s e t
t e s t . s e t = cbind ( seq ( −5 . 5 , 5 . 5 , by =1) , seq ( −5 . 5 , 5 . 5 , by =1) )

r e s u l t s = dwnn ( t r a i n i n g . s e t , t e s t . s e t , s igma )

# P l o t t i n g t h e t r a i n i n g s e t
p l o t ( t r a i n i n g . s e t , x l a b =" x_ i ( i n p u t v a l u e ) " ,

y l a b =" y_ i ( e x p e c t e d c l a s s ) " )
o b t a i n e d . r e s u l t = cbind ( t e s t . s e t [ , 1 ] , r e s u l t s $ o b t a i n e d )
# P l o t t i n g t h e DWNN r e s u l t s f o r t h e unseen example ( i n

red )
p o i n t s ( o b t a i n e d . r e s u l t , c o l =2)

re turn ( r e s u l t s )
}
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Similarly, Listing 3.2 presents another problem involving a sinusoidal function
with some noise added. We also invite the reader to execute function testSin()
for different values of σ . Of course, if σ is too small, NaNs will be produced. If σ is
too large, results will tend to the average of yi . A fair value for σ is in range [2, 5]
as the reader may conclude.

Listing 3.2 Using DWNN on the input examples produced using a sinusoidal function with added
noise

source ( " dwnn . r " )

# T e s t t h e s i n u s o i d a l f u n c t i o n
t e s t S i n <− f u n c t i o n ( s igma = 0 . 0 1 ) {

# Produc ing da ta
data = s i n (2 ∗ p i ∗ seq ( 0 , 2 , l e n g t h =100) ) +

rnorm ( mean=0 , sd = 0 . 1 , n =100)
t r a i n i n g . i d s = sample ( 1 : l e n g t h ( data ) , s i z e =50)
t e s t . i d s = s e t d i f f ( 1 : l e n g t h ( data ) , t r a i n i n g . i d s )

# D e f i n i n g t h e t r a i n i n g s e t
t r a i n i n g . s e t = cbind ( t r a i n i n g . i d s , data [ t r a i n i n g . i d s ] )

# D e f i n i n g t h e t e s t s e t
t e s t . s e t = cbind ( t e s t . i d s , data [ t e s t . i d s ] )

# Running DWNN
r e s u l t s = dwnn ( t r a i n i n g . s e t , t e s t . s e t , s igma )

# P l o t t i n g t h e t r a i n i n g s e t
p l o t ( t r a i n i n g . s e t , x l a b =" x_ i ( i n p u t v a l u e ) " ,

y l a b =" y_ i ( e x p e c t e d c l a s s ) " )
o b t a i n e d . r e s u l t = cbind ( t e s t . s e t [ , 1 ] , r e s u l t s $ o b t a i n e d )

# P l o t t i n g t h e DWNN r e s u l t s f o r unseen examples ( i n red )
p o i n t s ( o b t a i n e d . r e s u l t , c o l =2)

re turn ( r e s u l t s )
}

3.3 Using the Chernoff Bound

As approached in Sect. 2.4.2, the Statistical Learning Theory allows us to prove:

P

(
sup
f ∈F

|R(f ) − Remp(f )| > ε

)
≤ 2P

(
sup
f ∈F

|R′
emp(f ) − Remp(f )| > ε/2

)

= 2P

(
sup

f ∈FZ2n

|R′
emp(f ) − Remp(f )| > ε/2

)
≤ 2N (F , 2n) exp

(
−nε2/4

)
,
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having the right-side term provided by the Chernoff bound and, in particular, term
N (F , 2n) is the Shattering coefficient for two samples with n examples each. We
here remind the reader that this coefficient is indeed a function of n.

For instance, consider we have three arbitrary classification algorithms A1, A2
and A3, each one with the following Shattering coefficients as n increases:

N (F , 2n)A1 = n2

N (F , 2n)A2 = n4

N (F , 2n)A3 = 2n.

Plugging those in 2N (F , 2n) exp(−nε2/4), for ε = 0.1, and plotting it for n from
1 to 20,000 we can analyze the algorithms convergence as shown in Fig. 3.9a, b.
This analysis is produced using Listing 3.3.

Listing 3.3 Assessing three Shattering coefficients according to the number of training examples n

e p s i l o n = 0 . 1
n = 1:20000
N_F_2n_A1 = n ^2
N_F_2n_A2 = n ^4
N_F_2n_A3 = 2^ n

Upper _ bound _A1 = 2∗N_F_2n_A1∗exp(−n∗ e p s i l o n ^2 / 4)
Upper _ bound _A2 = 2∗N_F_2n_A2∗exp(−n∗ e p s i l o n ^2 / 4)
Upper _ bound _A3 = 2∗N_F_2n_A3∗exp(−n∗ e p s i l o n ^2 / 4)

par ( mfrow=c ( 1 , 2 ) )
p l o t ( Upper _ bound _A1 , c o l =1 , t =" l " ,

x l a b =" 2 Samples wi th n examples each " ,
y l a b =" P r o b a b i l i t y bound " )

l i n e s ( Upper _ bound _A2 , c o l =2 , )
l i n e s ( Upper _ bound _A3 , c o l =3)

p l o t ( l o g ( Upper _ bound _A1 ) , c o l =1 , t =" l " ,
y l im = l o g ( range ( Upper _ bound _A2 ) ) ,
x l a b =" 2 Samples wi th n examples each " ,
y l a b =" N a t u r a l Logar i thm of t h e P r o b a b i l i t y bound "

)
l i n e s ( l o g ( Upper _ bound _A2 ) , c o l =2)
l i n e s ( l o g ( Upper _ bound _A3 ) , c o l =3)

We observe algorithm A1 converges faster to zero, with the following upper
bound for 10,000 training examples:

P( sup
f ∈F

|R(f ) − Remp(f )| > ε) ≤ 0.00278,

meaning the empirical risk is a good estimator for the expected risk, given an
acceptable divergence of ε = 0.1 with the probability less than or equal to 0.00278.
Observe the need for defining a given acceptable divergence ε between the estimator
and the expected value, so we can obtain the upper-bound limit for such probability.
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Fig. 3.9 Assessing three different Shattering coefficients according to the number of training
examples n

In the same scenario, we may notice A2 requires much more training examples to
provide a similar upper-bound, because it has a more complex space of admissible
functions, therefore its Shattering coefficient is greater. Finally, A3 cannot be even
seen in the figure, because it is exponential and produces points off the chart.

By having this piece of information, one can better choose a classification
algorithm. Certainly not A3, because it would never converge to an acceptable
upper-bound probability. We still have A1 and A2 to choose from: so which is the
best? For now we only know the empirical risk is a good estimator for both A1 and
A2. So, let us investigate those in more detail.

Let the empirical risks of A1 and A2 be equal, supf ∈FA1
Remp(f ) =

supf ∈FA2
Remp(f ) = 0.05. Now we are sure about selecting A1 instead of A2,

as it provides the same empirical risk and it converges faster according to the
Chernoff bound, requiring less training examples to learn. In this scenario, we
ensure:

P( sup
f ∈FA1 ,FA2

|R(f ) − Remp(f )| > ε) ≤ 0.00278,

so that A1 requires 10,000, while A2 needs 18,339 examples to provide the same
bound.

This comparison relied on the Shattering coefficients which must be computer
in some manner, as discussed in Sect. 2.7. Besides such theoretical approach,
Listing 3.4 introduces an empirical manner to estimate the Shattering coefficient as
n increases. It is useful to users understand what happens in terms of counting the
number of different functions admitted by some classification algorithm. It considers
p hyperplanes classifying some R-dimensional input space for R ≥ 2. In our
code, shattering.coefficient.estimator() produces two columns the
first with the sample size n, and the second with the estimated number of distinct
classifications for each particular sample size. Observe that the number of iterations
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iter should become excessively large in order to obtain a good approximation for
the theoretical Shattering coefficient (see Sect. 2.7).

Listing 3.4 Shattering estimation using random input examples

# E s t i m a t i n g t h e S h a t t e r i n g c o e f f i c i e n t ( or f u n c t i o n ) f o r an
i n p u t space g i v e n

# by t h e c a r t e s i a n p r o d u c t o f R r e a l l i n e s . For i n s t a n c e ,
f o r R^2 you use R=2.

# Parameter i t e r means t h e number o f i t e r a t i o n s used t o
a s s e s s e v e r y l i n e a r

# h y p e r p l a n e i n o r d e r t o check o u t how many d i f f e r e n t
c l a s s i f i c a t i o n s are found .

# Parame ter s n . s t a r t and n . end s e t t h e sample s i z e n f o r t h e
e s t i m a t i o n .

# Term p s e t s t h e number o f h y p e r p l a n e s . Observe t h e range
f o r v e c t o r w , term b

# and t o g e n e r a t e t h e da ta sample ( m a t r i x sample ) i s f i x e d ,
b u t t h e u s e r i s s u g g e s t e d

# t o adap t i t t o a n a l y z e a broader space .
s h a t t e r i n g . c o e f f i c i e n t . e s t i m a t o r <− f u n c t i o n ( i t e r =1000 , n .

s t a r t =1 , n . end =100 , p =1 , R=2) {

s h a t t e r = NULL
c a t ( " # Sample s i z e \ tNumber o f d i f f e r e n t

c l a s s i f i c a t i o n s found . . . \ n " )

# For e v e r y sample s i z e
f o r ( i i n n . s t a r t : n . end ) {

sample = NULL

# Produce some random da ta i n t h e i n p u t
space

f o r ( j i n 1 :R) {
sample = cbind ( sample , rnorm ( mean=0 ,

sd =1 , n= i ) )
}

s h a t t e r . ways = l i s t ( )

# A t t e m p t t o f i n d d i f f e r e n t c l a s s i f i c a t i o n s
# p r o v i d e d by a s i n g l e l i n e a r h y p e r p l a n e
f o r ( j i n 1 : ( i ^2∗ i t e r ) ) {

combined . l a b e l s = rep ( 0 , nrow ( sample
) )

f o r ( k i n 1 : p ) {
# Randomly s e t s v e c t o r w

which i s normal t o t h e
h y p e r p l a n e

w = r u n i f ( min=−10, max=10 , n
=R)
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# Randomly s e t s term b t o
d e f i n e t h e i n t e r s e c t i o n
o f t h e

# h y p e r p l a n e w i t h t h e i n p u t
v a r i a b l e s

b = r u n i f ( min=−5, max=5 , n
=1)

# P r o v i d i n g t h e outcomes
g i v i n g t h i s random
h y p e r p l a n e

l a b e l s = sample %∗% w + b

# I f t h e outcome i s e q u a l t o
z e r o or g r e a t e r

# we w i l l assume t h e
p o s i t i v e c l a s s ( or l a b e l
)

i d = which ( l a b e l s >= 0)

# O t h e r w i s e t h e n e g a t i v e
c l a s s

n i d = which ( l a b e l s < 0)

# S e t t i n g t h e p o s i t i v e and
n e g a t i v e outcomes

l a b e l s [ i d ] = 2^k−2
l a b e l s [ n i d ] = 2^k−1

# Combining h y p e r p l a n e s
combined . l a b e l s = combined .

l a b e l s + l a b e l s
}

# D e f i n i n g a key such as i n a
h a s h t a b l e so we

# can i n f o r m t h a t t h i s p a r t i c u l a r
c l a s s i f i c a t i o n happened

key = p a s t e ( combined . l a b e l s , s ep =" # "
, c o l l a p s e =" " )

s h a t t e r . ways [ [ key ] ] = 1
}

# P r i n t i n g r e s u l t s o u t
c a t ( i , " " , l e n g t h ( s h a t t e r . ways ) , " \ n " )
s h a t t e r = rbind ( s h a t t e r , c ( i , l e n g t h ( s h a t t e r

. ways ) ) )
}

re turn ( s h a t t e r )
}
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Results in Listing 3.5 shows outputs for the following setting shatter-
ing.coefficient.estimator(iter=1000, n.start=1, n.end=100, p=1, R=2) (input space
is R2). To estimate the Shattering coefficient, we take this output and produce some
regression to best fit it.

Listing 3.5 Output provided by the estimation of the Shattering coefficient using Listing 3.4

# Sample s i z e Number o f d i f f e r e n t c l a s s i f i c a t i o n s
1 2
2 4
3 8
4 14
5 22
6 32
7 42
8 56
9 74
10 92
11 109
12 132
13 156
14 180
15 206
16 237
17 266
18 298
19 337
20 373
21 414
22 459
23 490
24 535
25 583
26 635
27 682
28 738
29 787
30 840

The results of Listing 3.6 are saved in a file r2.dat, and then loaded in Gnuplot,
a command line graphing tool for Linux, to estimate the shattering coefficient via
regression. As output, we obtained something similar to Fig. 3.10, in which points
correspond to the observed data and the curve is the regression. This empirical
estimation approach is useful so the reader can picture we must assess all possible
but different classification results produced given some input space and a single
hyperplane.

Listing 3.6 Gnuplot script to estimate and plot the Shattering coefficient

f ( x ) =a∗x∗∗2+b∗x+c
f i t f ( x ) " r2 . d a t " v i a a , b , c
p l o t " r2 . d a t " with p o i n t s , f ( x )



144 3 Assessing Supervised Learning Algorithms

Fig. 3.10 The estimated
Shattering coefficient and its
regression function obtained
from Gnuplot
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Table 3.1 The regression
coefficients and respective
errors as estimated by
Gnuplot

Coefficient Value Error Error (%)

a 0.952914 ± 0.006659 (0.6988%)

b −0.475372 ± 0.2128 (44.75%)

c 0.474878 ± 1.431 (301.3%)

Regression results may change slightly because Gnuplot randomly selects the
seed for solving this fitting problem. The polynomial coefficients a, b and c and their
respective errors are listed in Table 3.1. For any classification algorithm building up
a single hyperplane in R

2 to separate two classes ({−1,+1}), note the Shattering
coefficient function can be approximated by f (n) = 0.952914n2 − 0.475372n +
0.474878. It is relevant to compare this result against the theoretical:

N (F , 2n) =
2∑

i=0

(
n − 1

i

)1

= n2 − n + 2,

from which we certainly notice our estimator is a infimum function. In any case,
this would be a fair estimation/approximation for the Shattering coefficient of
the Perceptron or the single-hyperplane Multilayer Perceptron working on a 2-
dimensional input space.

What does it happen when more linear hyperplanes are included in an algorithm
bias? As consequence, its Shattering coefficient will combine, or multiply, func-
tions. We here invite the reader to use our estimator and compare its results with the
theoretical Shattering coefficient (see Sect. 2.7).

From now on, consider the theoretical coefficient to study the training set
illustrated in Fig. 3.11 and let us assess the following classification algorithms for
this task: the Perceptron, an MLP with 5 hyperplanes and another MLP with 10
hyperplanes.
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Fig. 3.11 Input space
requiring more hyperplanes to
proceed with the
classification
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From Sect. 2.7, the Shattering coefficient of the Perceptron is f (n) = n2 −n+2,
while for the 5-hyperplane MLP in a 2-dimensional input space is:

g(n) =
2∑

i=0

(
n − 1

i

)5

= 2

(
1

32
(n − 2)5(n − 1)5 + (n − 1)5 + 1

)
, (3.2)

and for the 10-hyperplane MLP:

h(n) =
2∑

i=0

(
n − 1

i

)10

= 2

(
(n − 2)10(n − 1)10

1024
+ (n − 1)10 + 1

)
. (3.3)

Let the empirical risks for the algorithms be:

sup
f ∈FPerc

Remp(f ) = 0.75

sup
f ∈F5-MLP

Remp(f ) = 0.05

sup
f ∈F10-MLP

Remp(f ) = 0.05.

When assessing those classification algorithms, the 5-hyperplane MLP is easily
selected as the most adequate, because it converges faster to the upper-bound
probability while also having a good enough empirical risk. In order to check how
many training examples are required, we suggest the reader to follow the same steps
provided in Sect. 2.7.
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3.4 Using the Generalization Bound

In this section, the Generalization Bound is employed to select the best classification
algorithm from a set of possible ones:

R(f ) ≤ Remp(f )︸ ︷︷ ︸
training error

+
√

−4

n
(log(δ) − log(2N (F , 2n)))︸ ︷︷ ︸

divergence factor

To exemplify, consider again the problem illustrated in Fig. 3.11. Assume three
options:

1. 5-hyperplane Multilayer Perceptron (5-MLP);
2. 10-hyperplane Multilayer Perceptron (10-MLP);
3. Support Vector Machine (SVM) with a single hyperplane.

For both Multilayer Perceptron instances, we use the Shattering coefficient
previously estimated. The Shattering coefficient for the 5-MLP and the 10-MLP
are g(n) and h(n) as defined in Eqs. (3.2) and (3.3), respectively.

Then, let the SVM be an algorithm producing a single linear hyperplane. Could
it divide such an input space? Obviously not. As matter of fact, some embedding
(mapping) to another space would be necessary so that SVM can shatter examples.
In this scenario, the following nonlinear kernel function is used:

k

([
xi,1

xi,2

])
=

⎡
⎢⎣

x2
i,1√

2x2
i,1x

2
i,2

x2
i,2

⎤
⎥⎦ ,

to embed every example xi from R
2 into R

3, in which indices i, 1 and i, 2 refer to
both dimensions for every example i, so they will be reorganized as discussed later
in this chapter (see Fig. 3.19).

After applying such a kernel, the space R
3 becomes linearly separable so that

SVM can be used. In such situation, the Shattering coefficient will be:

N (F , 2n) = 2
3∑

i=0

(
n − 1

i

)1

= 1

3
n(n2 − 3n + 8)

as discussed in Sect. 2.7.
According to the Chernoff bound, SVM converges much faster so that less

examples are needed. In addition, supposing the empirical risks are:

sup
f ∈F5-MLP

Remp(f ) =0.05
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sup
f ∈F10-MLP

Remp(f ) =0.04

sup
f ∈FSVM

Remp(f ) =0.1,

which is the best algorithm for this problem? This is analytically answered using
the Generalization Bound:

1. Given the 5-hyperplane Multilayer Perceptron:

R(f ) ≤ Remp(f )︸ ︷︷ ︸
training error

+
√

−4

n
(log(δ) − log(2N (F , 2n)))︸ ︷︷ ︸

divergence factor

R(f ) ≤ 0.05 +
√

−4

n
(log(δ) − log(5 − MLP(n))),

2. Given the 10-hyperplane Multilayer Perceptron:

R(f ) ≤ Remp(f )︸ ︷︷ ︸
training error

+
√

−4

n
(log(δ) − log(2N (F , 2n)))︸ ︷︷ ︸

divergence factor

R(f ) ≤ 0.04 +
√

−4

n
(log(δ) − log(10 − MLP(n))),

3. Given the Support Vector Machine:

R(f ) ≤ Remp(f )︸ ︷︷ ︸
training error

+
√

−4

n
(log(δ) − log(2N (F , 2n)))︸ ︷︷ ︸

divergence factor

R(f ) ≤ 0.1 +
√

−4

n
(log(δ) − log(SVM(n))).

Figure 3.12 illustrates the right-side term of the Generalization Bound for all
three classification algorithms, providing an upper-limit for R(f ). We conclude
SVM converges faster to zero than the other options, so it defines a tighter (more
precise) upper-bound for the expected risk, making it more robust to classify unseen
examples. Figure 3.12 was produced, having δ = 0.01 in:

P( sup
f ∈F

|R(f ) − Remp(f )| > ε) ≤ δ.
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Fig. 3.12 Generalization
Bounds for all three
classification algorithms
under analysis
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Listing 3.7 Computing the Generalization Bound for all three classification algorithms under
analysis

# Sample s i z e v a r i a t i o n
n = 1:1000
d e l t a =0 .01

# E m p i r i c a l r i s k s
R_emp_ f _5_MLP = 0 . 0 5
R_emp_ f _10_MLP = 0 . 0 4
R_emp_ f _SVM = 0 . 1

# S h a t t e r i n g c o e f f i c i e n t s
S h a t t e r i n g _5_MLP = 2 ∗ (1 / 32 ∗ ( n − 2) ^5 ∗ ( n − 1) ^5 + ( n − 1)

^5 + 1)
S h a t t e r i n g _10_MLP = 2 ∗ ( ( ( n − 2) ^10 ∗ ( n − 1) ^10) / 1024 + ( n

− 1) ^10 + 1)
S h a t t e r i n g _SVM = 1 / 3 ∗ n ∗ ( n ^2 − 3∗n + 8)

# Computing t h e G e n e r a l i z a t i o n Bounds
R_ f _5_MLP = R_emp_ f _5_MLP + s q r t (−4 / n ∗ ( l o g ( d e l t a ) −

l o g ( S h a t t e r i n g _5_MLP) ) )
R_ f _10_MLP = R_emp_ f _10_MLP + s q r t (−4 / n ∗ ( l o g ( d e l t a ) −

l o g ( S h a t t e r i n g _10_MLP) ) )
R_ f _SVM = R_emp_ f _SVM + s q r t (−4 / n ∗ ( l o g ( d e l t a ) −

l o g ( S h a t t e r i n g _SVM) ) )

p l o t (R_ f _5_MLP, t =" l " , c o l =1 , y l im =c ( 0 , max ( c (R_ f _5_MLP, R_ f
_10_MLP) ) ) )

l i n e s (R_ f _10_MLP, c o l =2)
l i n e s (R_ f _SVM, c o l =3)
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Fig. 3.13 Assessing the
Generalization Bound using
greater sample sizes
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By analyzing a greater sample (e.g., n > 30,000), we observe the 5-hyperplane
MLP crosses the convergence of SVM when n is around 31,000 (Fig. 3.13). Thus, if
one has that many examples available, the 5-hyperplane MLP would perform better.
Otherwise, SVM is the best choice.

According to this classification task, we conclude the empirical risk is not the
only factor to rely on when taking decisions. We should consider the Generalization
Bound as well. Despite this fact, many studies do not report the Generalization
Bounds to ensure learning. Some of them neither present results using the k-fold
cross validation strategy [1], which is a way to approximate such a bound. We
encourage the reader to analyze the Shattering coefficient for any input space (s)he
is working on.

3.5 Using the SVM Generalization Bound

The previous sections considered the most common approach to compute the
Generalization Bound, which is defined as follows:

R(f ) ≤ Remp(f ) +
√

−4

n
(log(δ) − log(2N (F , 2n))),

in which R(f ) is the expected risk, Remp(f ) is the empirical risk, n is the training
set size (or sample size), and N (F , 2n) is the Shattering coefficient. However,
there is a tighter bound for Support Vector Machines:
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Fig. 3.14 Studying the SVM
Generalization Bound
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+

R(f ) ≤ ν(f ) +
√

c

n

(
R

ρ2 log(n2) + log(1/δ)

)
, (3.4)

in which ρ is the maximal margin, R as the radius of the smallest open ball capable
of containing all training examples in the input space, c is a constant depending on
the target scenario, and, finally, ν(f ) is the fraction of the training samples lying on
the margin limits.

This bound is exemplified through the training set depicted in Fig. 3.14, having
the smallest open ball circumscribing all training examples with radius R =
7.386189, the maximal margin as ρ = 4.242641, and ν(f ) = 0 due to no example
is located within the support hyperplanes of each class.

From such information, we compute the SVM Generalization Bound as follows
(considering c = 4 and δ = 0.01 for convenience):

R(f ) ≤ ν(f ) +
√

c

n

(
R

ρ2 log(n2) + log(1/δ)

)

R(f ) ≤ 0 +
√

4

n

(
7.386189

4.2426412
log(n2) + log(1/0.01)

)

R(f ) ≤
√

4

n

(
0.4103438 log(n2) + 4.60517

)
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Fig. 3.15 The common
versus the more precise SVM
Generalization Bound
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.

This is a tighter (more precise) bound when compared to the common Gen-
eralization Bound used in previous section, as illustrated in Fig. 3.15 (based on
Listing 3.8). However, this bound requires more knowledge about the input data
organization. Thus, given there are many situations parameters R and ρ are
unknown, we suggest the use of the common bound instead.

Listing 3.8 Analyzing the common versus the tighter (more precise) SVM Generalization Bound

n = 1:1000
d e l t a = 0 . 0 1

# Using t h e SVM G e n e r a l i z a t i o n Bound
Radius = 7 .386189
rho = 4 .242641
R_ f _SVM_ G e n e r a l i z a t i o n _Bound = s q r t ( 3 . 2 8 2 7 5 / n ∗ l o g ( n ) +

18 .42068 / n )

# A p p r o x i m a t i n g t h e S h a t t e r i n g c o e f f i c i e n t u s i n g t h e common
G e n e r a l i z a t i o n Bound

S h a t t e r i n g _SVM = 1 / 3 ∗ n ∗ ( n ^2 − 3∗n + 8)
R_ f _common_ G e n e r a l i z a t i o n _Bound = s q r t (−4 / n ∗ ( l o g ( d e l t a ) −

l o g ( S h a t t e r i n g _SVM) ) )
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Fig. 3.16 Dataset to study
the impact of the SVM
Generalization Bound for a
scenario with class
overlapping
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p l o t (R_ f _SVM_ G e n e r a l i z a t i o n _Bound , t =" l " )
l i n e s (R_ f _common_ G e n e r a l i z a t i o n _Bound , c o l =2)

To better understand the SVM Generalization Bound, Fig. 3.16 shows a problem

instance with n = 200 examples, having R = 3.886189 and ρ =
√

2
2 = 0.7071068.

Parameters c = 4 and δ = 0.01 are again assumed. In this situation, 15 training
examples lie within the margin so that ν(f ) = 15

200 = 0.075.
Thus, we have the following SVM Generalization Bound:

R(f ) ≤ ν(f ) +
√

c

n

(
R

ρ2 log(n2) + log(1/δ)

)

R(f ) ≤ 0.075 +
√

4

n

(
3.886189

0.70710682
log(n2) + log(1/0.01)

)

R(f ) ≤ 0.075 +
√

4

n

(
7.772378 log(n2) + 4.60517

)

R(f ) ≤ 0.075 +
√

31.08951

n
log(n2) + 18.42068

n

R(f ) ≤ 0.075 +
√

62.17902

n
log(n) + 18.42068

n
,
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Fig. 3.17 Analyzing the
impact of the SVM
Generalization Bound for a
scenario with class
overlapping
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which is illustrated and compared against the perfect linearly separable case
(Fig. 3.14) as well as against the common Generalization Bound for a single linear
hyperplane, as seen in Fig. 3.17. As we may notice, the convergence is slower when
some class overlapping is present, as expected. Listing 3.9 shows the script to plot
such a figure.

Listing 3.9 Assessing the SVM Generalization Bound for perfectly separable versus class
overlapping sets

n = 1:1000
d e l t a = 0 . 0 1
nu_ f = 0 .0 75

# Using t h e SVM G e n e r a l i z a t i o n Bound f o r t h e p e r f e c t l y
s e p a r a b l e t r a i n i n g s e t

Radius = 7 .386189
rho = 4 .242641
R_ f _SVM_ G e n e r a l i z a t i o n _Bound_ P e r f e c t = nu_ f + s q r t ( 3 . 2 8 2 7 5 / n

∗ l o g ( n ) + 18 .42068 / n )

# Using t h e SVM G e n e r a l i z a t i o n Bound f o r t h e t r a i n i n g s e t
w i t h some c l a s s o v e r l a p p i n g

Radius = 3 .886189
rho = 0 .7071068
R_ f _SVM_ G e n e r a l i z a t i o n _Bound_Mix = nu_ f + s q r t ( 6 2 . 1 7 9 0 2 / n ∗

l o g ( n ) + 18 .42068 / n )

# A p p r o x i m a t i n g t h e S h a t t e r i n g c o e f f i c i e n t u s i n g t h e common
G e n e r a l i z a t i o n Bound
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Fig. 3.18 Input space
requiring a kernel to proceed
with the classification
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S h a t t e r i n g _SVM = 1 / 3 ∗ n ∗ ( n ^2 − 3∗n + 8)
R_ f _common_ G e n e r a l i z a t i o n _Bound = nu_ f + s q r t (−4 / n ∗ ( l o g (

d e l t a ) − l o g ( S h a t t e r i n g _SVM) ) )

p l o t (R_ f _SVM_ G e n e r a l i z a t i o n _Bound_ P e r f e c t , t =" l " )
l i n e s (R_ f _SVM_ G e n e r a l i z a t i o n _Bound_Mix , c o l =2)
l i n e s (R_ f _common_ G e n e r a l i z a t i o n _Bound , c o l =3)

We then proceed to the last problem instance to be approached in this section,
which deals with the training set shown in Fig. 3.18.

To solve this problem, we must apply the following nonlinear kernel function:

k

([
xi,1

xi,2

])
=

⎡
⎢⎣

x2
i,1√

2x2
i,1x

2
i,2

x2
i,2

⎤
⎥⎦ ,

to obtain a third-dimensional feature space, as depicted in Fig. 3.19. This new space
allows the perfect linear separation between classes, having ν(f ) = 0.

In this circumstance, R = 104.4398 and ρ = 41.08596. Assuming c = 4 and
δ = 0.01:

R(f ) ≤ ν(f ) +
√

c

n

(
R

ρ2 log(n2) + log(1/δ)

)
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Fig. 3.19 Feature space after
applying the nonlinear kernel
function. We show a
hyperplane separating the
classes

R(f ) ≤ 0 +
√

4

n

(
104.4398

41.085962
log(n2) + log(1/0.01)

)

R(f ) ≤
√

4

n

(
0.06186986 log(n2) + 4.60517

)
,

R(f ) ≤
√

0.2474794

n
log(n2) + 18.42068

n

R(f ) ≤
√

0.4949589

n
log(n) + 18.42068

n
,

which is compared to the 5-hyperplane MLP (capable of classifying the original
input space R

2), as seen in Fig. 3.20 (based on Listing 3.10). After applying the
nonlinear kernel function, the feature space is linearly separable and, in addition,
SVM converges much faster than MLP. However, if we attempt to apply SVM
directly on the original 2-dimensional input space, classification results are poor.

Listing 3.10 Comparing the 5-hyperplane MLP versus the SVM Generalization Bound

n = 1:1000
d e l t a = 0 . 0 1
nu_ f = 0

# Using t h e SVM G e n e r a l i z a t i o n Bound f o r t h e p e r f e c t l y
s e p a r a b l e t r a i n i n g s e t

Radius = 104 .4398
rho = 41 .08596
R_ f _SVM_ G e n e r a l i z a t i o n _Bound_ P e r f e c t = nu_ f + s q r t ( 0 . 4 9 4 9 5 8 9

/ n ∗ l o g ( n ) + 18 .42068 / n )
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Fig. 3.20 Comparing the
5-hyperplane MLP and the
SVM Generalization Bounds

# Using t h e common G e n e r a l i z a t i o n Bound f o r t h e 5−h y p e r p l a n e
MLP on t h e o r i g i n a l 2−d i m e n s i o n a l i n p u t space

S h a t t e r i n g _5_MLP = 2 ∗ (1 / 32 ∗ ( n − 2) ^5 ∗ ( n − 1) ^5 + ( n − 1)
^5 + 1)

R_ f _5_MLP_common_ G e n e r a l i z a t i o n _Bound = nu_ f + s q r t (−4 / n ∗ (
l o g ( d e l t a ) − l o g ( S h a t t e r i n g _5_MLP) ) )

p l o t (R_ f _SVM_ G e n e r a l i z a t i o n _Bound_ P e r f e c t , t =" l " )
l i n e s (R_ f _5_MLP_common_ G e n e r a l i z a t i o n _Bound , c o l =2)

SVM may be naively compared against other classification algorithms based
solely on empirical risks. It will provide bad results when the input space is not
adequate to shatter examples, requiring some space transformation. If such ideal
transformation is found, no other algorithm can outperform SVM. This is the main
reason to discuss about kernel functions in a following chapter. One should study
the input space and possible kernel-based transformations rather than investing time
in designing new classification algorithms that do not have the same aforementioned
tight learning guarantees.
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3.6 Empirical Study of the Biases of Classification
Algorithms

We can use the Shattering coefficient and the empirical risk to illustrate the biases
of classification algorithms. In summary, both pieces of information are part of the
Generalization Bound:

R(f ) ≤ Remp(f )︸ ︷︷ ︸
training error

+
√

−4

n
(log(δ) − log(2N (F , 2n)))︸ ︷︷ ︸

divergence factor

.

In this section, we analyze three binary classification problems, having a 2-
dimensional input space, in which:

1. classes are linearly separable, such as in Fig. 3.14;
2. there is a low degree of class overlapping, as seen Fig. 3.16;
3. examples under a given class are surrounded by another, as in Fig. 3.18.

In the first situation, given classes are linearly separable, the Perceptron could
be used instead of the Multilayer Perceptron, once a single hyperplane is enough.
Thus, if we consider the Perceptron, the Shattering coefficient will be:

f (n) = n2 − n + 2.

If we take a k-hyperplane MLP (for k > 1), the coefficient is unnecessarily
complex. From this information, the biases for the Perceptron and for the k-
hyperplane MLP are illustrated in Fig. 3.21.

Fig. 3.21 Illustrating the
biases for the Perceptron,
1-MLP and k-MLP for k > 1
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Fig. 3.22 Illustrating the SVM bias in comparison with Perceptron and MLP, according to
possible sample organizations in terms of R and ρ. (a) SVM with a stronger bias, (b) SVM with a
weaker bias

Bias FPerceptron = F1−MLP, otherwise MLP contains more admissible functions
as represented by a greater space. The best classifier for Perceptron and k-MLP is
within the same region as seen in Fig. 3.21. Approximately, we may say the SVM
bias is similar to the Perceptron, but not exactly. As seen in the previous section,
the SVM generalization bound may change depending on terms R and ρ (Eq. (3.4)),
thus its bias may be more (stronger) or less (weaker) restricted depending on the
sample under analysis (see Fig. 3.22).

Observe that SVM, Perceptron and k-MLP share a common classifier f , which
is the best they can reach for a perfectly linearly separable task (Fig. 3.14). In this
circumstance, f = fBayes because all those classification algorithms are capable of
representing such an ideal solution.1

In a sample with class overlapping (see Fig. 3.16), examples under different
labels may transpass the hyperplane to a region they do not belong to. This causes a
growth in the SVM Shattering coefficient, jeopardizing the learning convergence
according to the Chernoff bound. This is an enough evidence to confirm that
SVM has a greater space of admissible functions than Perceptron, but being more
restricted (stronger) than k-MLP for k > 1, as in Fig. 3.23. Notice classifier fBayes
was suppressed due to we cannot confirm there is no other best solution, but f was
added to represent the best as possible classifier given such biases.

Finally, in a third scenario, a set of Normally distributed examples from a class
are surrounded by examples from another one (see Fig. 3.18). If such dataset is
provided as input to Perceptron or SVM, both with insufficient biases to model this

1We remind the Bayes classifier is the best possible in the whole space of functions Fall.
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Fig. 3.23 Analyzing the
SVM bias in a
class-overlapping scenario: f

corresponds to the best as
possible classifier

Fig. 3.24 Analyzing algorithm biases given a dataset in which Normally distributed examples
are surrounded by examples from another class. In (a) the original 2-dimensional input space is
provided to all algorithms, while in (b) a 2-order polynomial kernel is only employed to support
SVM classification (see Fig. 3.19)

task, no feasible solution would be ever found. In comparison, the 5-MLP would
provide a more than enough solution. The best classifier f for this task is only
within the 5-MLP bias, as depicted in Fig. 3.24a.

By applying the nonlinear kernel function discussed in the previous section, SVM
is then sufficient to model a feasible decision function. As consequence, 5-MLP and
SVM now share the best classifier f , thus SVM bias is stronger, ensuring faster
learning convergence (Fig. 3.24b). From this illustrative point of view, we conclude
the Shattering coefficient is directly associated with the number of admissible
functions.
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3.7 Concluding Remarks

This chapter introduced case studies on the Statistical Learning Theory, showing
how the Chernoff and the Generalization bounds impact the minimal number of
training examples as well as the learning convergence. We also discussed about clas-
sification tasks from simple to more complex scenarios, motivating the adaptation
of the space of admissible functions. In addition, the biases of some classification
algorithms were empirically studied, to mention: Perceptron, Multilayer Perceptron
and Support Vector Machines.

In summary, we wish the reader understood the most important subjects dis-
cussed throughout this chapter: at first, restricted biases may represent a drawback
when tackling nontrial tasks, however excessively weak biases are more likely to
contain the memory-based classifier. As consequence, the data scientist is responsi-
ble for adapting from an insufficient space of admissible functions to a sufficiently
greater and enough bias. This may sound contradictory to the good results reported
by methods considering an empirical and large number of hyperplanes, such as
Random Forest, Deep Networks, or any other classification algorithm that shatters
the data space using an excessive number of functions. As matter of fact, such results
would only be theoretically valid if huge training datasets are provided, otherwise
the reported performance may be a result of either overfitting or by chance. For more
information on Deep Learning architectures, please refer to [3].

3.8 List of Exercises

1. Based on Listing 3.4, estimate the Shattering coefficient for input spaces varying
the number of dimensions. What can you conclude about the space of admissible
functions (i.e. the algorithm bias)?

2. Build up a sinusoidal time series. Next, organize every current series observation
to predict its next. Then, separate part of your own dataset for training and the
remaining for testing. Notice such data separation is performed along the time
axis. Use the Distance-Weighted Nearest Neighbors to address this regression
task. Start with a great value for σ and reduce it. Analyze error results as such
parameter is adapted.

3. Using the same setting of the previous exercise, now attempt to modify DWNN to
recurrently predict k further observations. This means you should take the current
observation to predict a next, and this next will be used to predict the succeeding,
and so on. Analyze how the trajectory of recurrent predictions diverge from
expected values.
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4. Using the Chernoff Bound, set ε = 0.01, i.e., the maximum acceptable
divergence, and analyze the sample size necessary to ensure P(supf ∈F |R(f ) −
Remp(f )| ≥ ε) ≤ 0.1. Given the last classification task you approached, use this
concept to estimate the number of training examples to guarantee learning. As
suggestion, try any classification dataset available at the UCI Machine Learning
Repository—archive.ics.uci.edu/ml.

5. Estimate the Shattering coefficient for a 3-hyperplane Multilayer Perceptron
given the Iris dataset. Is the number of available examples sufficient to draw
theoretical conclusions about the classification results obtained?
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Chapter 4
Introduction to Support Vector Machines

4.1 About this Chapter

This chapter starts by reviewing the basic concepts on Linear Algebra, then we
design a simple hyperplane-based classification algorithm. Next, it provides an
intuitive and an algebraic formulation to obtain the optimization problem of the
Support Vector Machines. At last, hard-margin and soft-margin SVMs are detailed,
including the necessary mathematical tools to tackle them both.

4.2 Linear Algebra

Some relevant concepts on Linear Algebra are briefly introduced in the next
sections: basis, linear transformations and their inverses, dot products, change of
basis, orthonormal basis, and finally eigenvalues and eigenvectors.

4.2.1 Basis

When we numerically describe some vector, this description depends on a choice
of basis vectors. In a 2-dimensional space, it is common to use the unit vectors
i = (1, 0) and j = (0, 1), which form a basis because all other vectors in such space
can be represented by scalar multiplications and vector additions between i and j.
This means vectors are produced by linear combinations in form: ai + bj. The pair
i and j is called the “canonical” (or standard) basis because they are orthonormal;
in fact, the 2-dimensional cartesian plane that we commonly use to draw graphs
considers such canonical basis.
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However, there are other possible basis vectors. By using the formulation: u =
ax + by, and varying a and b over all real numbers, we get the set of all possible
combinations of linearly independent vectors x and y in a space R

n. This set is
called the span of x and y.

If we take a pair of vectors that are colinear, i.e., they line up, then it means that
one of them is redundant: it does not add any information so that we could remove
it without reducing the span. We say those vectors are linearly dependent and, for
this reason the resulting vectors u will lie on the same space (a.k.a. eigenspace). In
addition, if any of those is the zero vector, then they do not form a basis.

Consider two vectors forming a basis B = {v1, v2}, as follows:

v1 =
[

2
1

]
v2 =

[
1
2

]
,

and a vector obtained using such basis:

u = 3v1 + 2v2.

If we plot basis B and vector u in a cartesian plane, we confirm u is a linear
combination of the basis vectors:

[u]B =
[

3
2

]
.

As illustrated in Fig. 4.1, this is nothing but scaling v1 and v2, and summing the
resulting scaled vectors. Given such vectors are not colinear, they form a basis, and,
thus, it is possible to span the entire 2-dimensional space by using B.

We are used to visualize the 2-dimensional plane formed by the canonical basis.
However, basis B is not orthogonal and, therefore, we need to draw a grid using
parallel and equally spaced lines using B as reference, as illustrated in Fig. 4.2.
Then, it is possible to see that the resulting space is bent, but it still spans the entire
2-dimensional plan.

Fig. 4.1 Representation of a vector using the basis B. First, we show the two basis vectors (left),
then how we obtain a new vector by using the linear combination of the basis (centre) and its
position when overlayed with the plane formed by the canonical vectors i, j
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Fig. 4.2 Depicting the basis
change and how it modifies
the shape of the space: the
grid lines, however, maintain
equally spaced and parallel

One could unbend the space in order to represent the same vector [u]B using
the canonical basis instead. By applying the basis vectors and performing the sum,
we have:

u = 3

[
2
1

]
+ 2

[
1
2

]
=

[
8
7

]
.

This means the basis can be changed, which is a very useful tool for data analysis.
But before talking about the change of basis, we must introduce the concept of linear
transformation, once it is fundamental to understand how to transform the entire
span of vectors from one basis to another.

4.2.2 Linear Transformation

A linear transformation is the result of a matrix multiplied by some vector, mapping
an input space into some output space. Let us consider the 2-dimensional space: if
we visualize a grid of horizontal and vertical lines defining the orientation of vectors
lying in such space, then a linear transformation will always keep grid lines parallel
and evenly spaced, as well as a fixed origin point (see Fig. 4.3). This visualization
makes easier to understand a linear transformation as a function that takes all
possible input vectors (or points in the space represented by position vectors) to
produce output vectors while respecting the mentioned constraints.

More formally, let T : Rn → R
n be a transformation, which is linear if and only

if the following properties are held:

T (a + b) = T (a) + T (b)

T (ca) = cT (a).
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Fig. 4.3 Example of a linear
transformation

The first property is called additivity, which ensures the transformation preserves the
addition operation. The second one is the homogeneity, which implies scale variance
when a vector is multiplied by a real scalar. Those conditions provide necessary
foundation, relating linear transformations to linear combination of vectors.

Considering the following transformation:

T (x1, x2) = (x1 + x2, 3x1) for any vector x = [x1, x2]T ∈ R
2.

In order to verify if T is linear, we must first check the additivity property:

T (a + b) = T (a) + T (b)

T

([
a1 + b1

a2 + b2

])
= T

([
a1

a2

])
+ T

([
b1

b2

])

[
a1 + b1 + a2 + b2

3 · (a1 + b1)

]
=

[
a1 + a2

3a1

]
+

[
b1 + b2

3b1

]

[
a1 + a2 + b1 + b2

3a1 + 3b1

]
=

[
a1 + a2 + b1 + b2

3a1 + 3b1

]
,

which is true, so let us check the second property:

T (ca) = cT (a)

T

(
c

[
a1

a2

])
= c

[
a1 + a2

3a1

]

[
ca1 + ca2

3ca1

]
= c

[
a1 + a2

3a1

]
,

which shows the scale variance is also held, therefore this transformation is linear.
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Fig. 4.4 Example of a linear
transformation using basis
vectors

Note that multiplications between vectors, squares and other more complex
functions are not linear. For example, by inspecting the transformation below:

T (x1, x2) = (x2
1 + √

2x1x2, x
2
2) for any vector x ∈ R

2,

the additivity and homogeneity constraints are not held.

Matrix Representation of Linear Transformations one of the most useful ways
to represent a linear transformation is by using a basis matrix, composed of a set of
linearly independent vectors that span the whole space.

Considering the 2-dimensional space basis i = (1, 0) and j = (0, 1). As depicted
in Fig. 4.4, it is possible to write any other vector in this space by linearly combining
i and j. For example, vector x = (−3, 1) can be written as: −3i + 1j. If a linear
transformation is applied on this space, then it is possible to know T (x) by assessing
the transformed versions of the basis vectors. Let the transformed basis vectors be
î = (5/6, 1/3) and ĵ = (−1, 1), then:

x =x1 · i + x2 · j

T (x) =x1 · T (i) + x2 · T (j)

T (x) =x1

[
5/6
1/3

]
+ x2

[−1
1

]

T (x) =
[

5/6 · x1 + (−1) · x2

1/3 · x1 + 1 · x2

]

The matrix formed by the transformed basis vectors describes the linear transfor-
mation:

A =
[

5/6 −1
1/3 1

]
,

so transforming x = (−3, 1) (see Fig. 4.4) results in:

T (x) = Ax =
[

5/6 · −3 + (−1) · 1
1/3 · −3 + 1 · 1

]
=

[−2.5 − 1
−1 + 1

]
=

[−3.5
0

]
,



168 4 Introduction to Support Vector Machines

matching the visualization, in which we overlay the transformed space with the
original grid. This linear transformation T : Rn → R

m maps the elements (vectors,
in this case), of the first set into the second set. We call the first set domain, and the
second co-domain.

It is easy to see that Linear Algebra has important relationships with the study
of kernels, in particular because it formalizes many concepts related to mapping
some set of elements into another space. By designing a linear or nonlinear
transformation,1 we aim to simplify tasks by reorganizing data. In the case of a
classification problem, this means data is reorganized so that a single hyperplane
is sufficient to separate classes. Linear transformations are also widely used in
Computer Graphics, as well as a framework for other applications such as to solve
differential equations, image restoration, and compute Markov chains.

4.2.3 Inverses of Linear Transformations

In many scenarios, it is useful to map the vectors of some transformed space
back into the original space. This is often the case when one needs an alternative
representation, i.e. the transformed space, to facilitate some operation. Afterwards,
in order to bring the resultant vectors back, an inverse transformation is needed.
Mathematically, having a linear transformation described by a matrix A so that
T (x) = y = Ax, then, in order to obtain x, we need the inverse matrix A−1 in
order to compute x = A−1y.

Let T : R
n → R

m be a linear transformation. The conditions to ensure the
inverse of the transformation are:

1. the transformation T (.) must be bijective, meaning it is at the same time injective
(maps distinct elements of the domain to also distinct elements in the co-domain),
and surjective (every element y in the co-domain has a corresponding element x
in the domain, such that T (x) = y);

2. m × n matrix A has to be square, i.e., m = n, otherwise for m > n the
number of elements in the co-domain is greater than the domain. In such cases,
there are alternative techniques such as pseudo-inverses to approximate results,
but for exact inverses both the domain and the co-domain must have the same
cardinality;

3. every column vector in the matrix must be linearly independent between each
other. In this case, the reduced row echelon form of A is the identity matrix,
forming a basis for Rn.

Another way to confirm that a square matrix A is invertible is by computing its
determinant: if det(A) �= 0, then A is invertible. One way to interpret the value
of the determinant is to describe how areas in the original space are increased or

1Nonlinear transformations are typical when designing kernels.
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Fig. 4.5 Area of the rectangle formed by the basis vectors in the original space is 1 (left), after
scaling is 8 (center), and after shearing is 1 (right)

decreased. For example, considering again the 2-dimensional space basis vectors
i = (1, 0) and j = (0, 1) and the following transformation matrices:

A =
[

2 0
0 4

]
B =

[
1 1
1 0

]
,

then matrix A will scale i by a factor of 2 and j by a factor of 4, while matrix
B (that produces a shear transformation) will keep i unaltered, while moving j to
the position (1, 1). If we pay attention on the rectangle formed by the vectors in
the original space, and the transformed spaces (see Fig. 4.5), A scales the area of
the original rectangle by a factor of 8. The matrix B turns the rectangle into a
parallelogram, but it keeps the area unchanged. By computing the determinants,
we can see that det(A) = 8 and det(B) = 1.

Notice that in the case of linear transformations, by looking at how the unit
rectangle area changes, we can understand the modifications spanned throughout
the space. If a determinant of a matrix A is greater than zero, but less than 1, i.e.,
0 < det (A) < 1, then the transformation decreases areas. Negative determinants are
possible, indicating the space is flipped over by the transformation, but its absolute
value, |det (A)| is still an area scaling indicator.

However, when the determinant is zero, the transformation is mapping the current
space into a subspace with lower dimensionality. For example, if the domain is in
R

2, a transformation with zero determinant might be mapping the space either into
a line or a single point, making impossible to compute an inverse, since distinct
vectors in the original space are mapped into the same vector in the target space, i.e.,
the transformation function is surjective, but not injective. If the original space is R3,
a zero determinant indicates that the transformation is mapping the 3-dimensional
space into a plane, a line, or a single point. Once the whole 3-dimensional space
is collapsed, for example, into a plane, it would be impossible to unfold it into
the whole 3-dimensional space again. In such scenarios, the column vectors of the
matrix are linearly dependent. Consequently det (A) = 0 and matrix A is referred
to as singular or degenerate.
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Rank There is another specific terminology to specify the characteristics of a
transformation matrix: when all vectors after a transformation lie on a line, i.e.,
it is one-dimensional, it is said to have a rank equal to one. When the output of
some transformation maps all vectors into a plane, the transformation has a rank of
2. Notice a 3 × 3 transformation matrix can have at most rank 3, if so we say it
has “full rank” because the basis vectors span the whole 3-dimensional space and
the determinant is non-zero. However if that 3 × 3 matrix has a rank 2, that can
be pictured as flattening the 3-d space into a plane, but it could have collapsed the
space even more if it had a rank 1. The rank means the dimensionality of the output
of a transformation, more precisely the number of dimensions in the column space
of the transformation matrix. The set of all outputs of Ax is called the column space
of such matrix, since the columns define where the basis vectors will lie after the
transformation.

4.2.4 Dot Products

Dot products are useful to understand projections and to compare the directions of
two vectors. Taking the dot product between x and y of the same dimensionality,
which is denoted by x · y =< x, y >, is to pair each of their coordinates, multiply
the pairs, and add those products. Considering two vectors in R

2, this is defined
by: < x, y >= (x1 · y1) + (x2 · y2). Notice the dot product outputs a scalar, a real
number, regardless the dimensionality of vectors. Also, the order of the dot product
is irrelevant: < x, y >=< y, x >.

A vector projection of y onto x is computed as:

Projx(y) = 〈y, x〉
||x|| ,

which orthogonally maps vector y into the eigenspace of x.
The geometrical interpretation of this operation in R

2 (depicted in Fig. 4.6) can
be seen as first projecting vector y onto the line that passes through the origin and
the tip of vector x, and then multiplying the length of this projection, projx y, by
the length of x, i.e., || projx y|| · ||x||. This leads us to three scenarios: when vectors
are pointing to the same direction, their dot product is positive; when vectors are
orthogonal, their dot product is zero (the projected vector has length zero); and
when vectors are pointing to different directions, their dot product is negative.

As mentioned before, the dot product produces a single value from a pair of vec-
tors. This can be seen as a linear transformation that maps a given multidimensional
space into the real line, or a function that takes as input a pair of vectors and outputs
an one-dimensional value, i.e. a scalar number. If we have a line of evenly spaced
dots in a plane, and apply a linear transformation T : R2 → R

1, then it remains
evenly spaced after transformation. This gives us an interesting interpretation of the
dot product: by looking where the unit basis vectors i and j will lie on the space R1,
we can compose a transformation matrix.
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Fig. 4.6 Geometrical interpretation of the dot product: projection of y onto the line passing
through the origin and the tip of vector x, and the resulting lengths of the projection and vector
x, which when multiplied provide the dot product between vectors

Fig. 4.7 A linear transformation from a two to one-dimensional space will keep a set of evenly-
spaced vectors on a line, also evenly spaced in the output space

In Fig. 4.7, we depict an example in which i lies on 1.5, while j lies on −3, leading
to a 1 × 2 transformation matrix given by A = [1.5 − 3]. Let a vector x = [3 2]T ,
then its transformation can be computed by:

[1.5 − 3]

[
3
2

]
= (1.5 · 3) + (−3 · 2) = 4.5 − 6 = −1.5,

which is computationally similar to perform a dot product (multiply and add). The
interesting relationship with the dot product is that such a transformation outputs an
one-dimensional space associated with the input vector, so that the transformation
matrix corresponds to vector [1.5 −3].
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The dot product operation is fundamental in the context of SVM, once it a
standard to measure (dis)similarities among vectors.

4.2.5 Change of Basis and Orthonormal Basis

The choice of basis vectors defines the space coordinates to represent vectors.
However, it may be useful to describe a coordinate system in a different way by
changing its basis. A change of basis can be performed via a linear transformation,
that is, by applying a transformation matrix on vectors. In this section, we discuss
the advantages of using an orthonormal basis.

In an orthogonal basis, vectors in B are perpendicular/orthogonal each other,
that is, their dot product is zero. If we have orthogonal unit vectors, than the basis is
also orthonormal, forming an optimal coordinate system, since they are simple and
intuitive to work with.

Consider two basis vectors B = {v1, v2}:

v1 =
[

2
3

]
v2 =

[
7
4

]
,

which, although capable of spanning R
2, it could be adapted to an orthonormal

basis. This can be done using the Gram-Schmidt process, which firstly produces a
unity vector for the first column vector v1 by normalizing it:

u1 = v1

||v1|| = 1√
22 + 32

[
2
3

]
= 1√

13

[
2
3

]
.

This first vector spans a space produced by multiplying the vector with all
possible scalars so that S1 = span(u1), forming an infinite line that goes along the
vector (a.k.a. the linear eigenspace). Now we need to transform the second vector
so it becomes orthonormal with respect to u1. In order to do so, we project vector v2
onto the subspace S1 and take the vector corresponding to the subtraction between
v1 and its projection onto S1, referred to as ProjS1

(v1):

y2 = v2 − ProjS1
(v2).
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Fig. 4.8 Finding an orthonormal basis by using the Gram-Schmidt process: first, we have the
subspace S1, onto v2 is projected; then by using the vector subtraction, we produce y2 which is
orthogonal to u1, and, by normalizing it, we obtain u2 to compose the orthonormal basis

In our example:

y2 =
[

7
4

]
−

[
4
6

]
=

[
3

−2

]
.

Thus, as y2 is already orthogonal to u1, one just needs to normalize it:

u2 = y2

||y2|| = 1√
13

[
3

−2

]
.

Figure 4.8 depicts this process. We can now say that span(v1, v2) = span(u1, u2),
but the new basis allows the typical representation of vectors, as well as simpler
vectorial operations.
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4.2.6 Eigenvalues and Eigenvectors

The term eigen comes from German and means characteristic. What eigenvalues
and eigenvectors allow us to understand is the characteristics of some linear
transformation performed by some matrix A. Eigenvalues are scalars (often real
numbers, but can also be complex numbers), often denoted by variables λ, and, in
general terms, represent the amount by which the linear transformation provided by
matrix A stretches the length of vectors, i.e. stretching factors. On the other hand,
the eigenvectors represent the stretching directions.

Consider a linear transformation applied to a vector Av, and suppose it results in
another vector that is only a version of � multiplied by some scalar:

Av = λv. (4.1)

Note that transformation A may only change the length and the direction of v
according to scalar λ, but not its orientation.

Equation (4.1) represents the relationship between eigenvectors and eigenvalues.
We call eigenvectors those vectors for which the output of the transformation
is another vector that is co-linear with respect to the input. Its corresponding
eigenvalue is the multiplication factor produced by the transformation matrix A,
so that Av = λv. Notice that λ can also be negative, which would change not only
the length of the input vector, but also its direction. Finding which vectors are being
stretched by matrix A and their corresponding stretching factors is equivalent to
solve the eigenvectors and eigenvalue equation.

Let us approach these concepts by using an example. Consider the following
transformation matrix:

A =
[

1 2
4 3

]
.

In Fig. 4.9, we have examples of the following vectors transformed by matrix A:

v1 =
[−1

0

]
; v2 =

[
0
1

]
; v3 =

[
1/2
1

]
; v4 =

[−1
1

]
.

Note that in the case of vectors v1 and v2, the transformation changes both
scale and orientation, but in the case of v3 and v4, the transformed vectors are
represented by T (v3) = λv3 and T (v4) = λv4, respectively. Those two last vectors
are important because they define reference axes for the linear transformation.
Remembering the concepts of basis and linear transformations (see Figs. 4.2, 4.3,
and 4.4), the eigenvectors would define the axes in which the transformed space
grid lines are drawn.

Observe each of those vectors span infinite lines forming axes. The linear
transformation A produces changes in vectors using as reference axes λv3 and
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Fig. 4.9 Vectors produced
after the linear transformation
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l = 5 l = 5

l = -1 l = -1

V3

V4
V3

V4

(a) (b)

Fig. 4.10 (a) Eigenvectors and eigenvalues for a linear transformation and their span; (b) An input
vector (black solid line) is transformed by flipping and scaling its length (black dotted line)

λv4, for λ ∈ R. The eigenvalues associated with those eigenvectors define the
stretching factors. See Fig. 4.10a: all vectors lying on the subspace spanned by v3
are multiplied by 5, while vectors lying on the subspace spanned by v4 are flipped,
i.e., multiplied by −1. The other vectors are transformed according to the influence
of both axes.

Going back to the eigenvalues and eigenvectors in Eq. (4.1), v is an eigenvector
and λ its associated eigenvalue. Let I be the identity matrix2:

Av = λv

Av − λv = 0

(A − λI)v = 0 (4.2)

From this formulation, consider B = (A−λI), so that Bv = 0, which algebraically
is the same as the null space of B, i.e., N(B) [8]. The trivial solution for this problem
comes when v = 0, i.e., v is the zero vector. This trivial solution is not useful to find
the reference axes, therefore requiring non-trivial solutions.

It is important to recall that the trivial solution comes when the column vectors of
matrix B are linearly independent. Thus, in our case, we need to solve this problem
considering such column vectors are linearly dependent. Some square matrix B with
linearly dependent vectors has no inverse, therefore det (B) = 0 [8]. From this
observation, the eigenvector/eigenvalue is defined as:

(A − λI)v = 0

2Remember that λv = λIv, allowing us the last step.
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Bv = 0

det (B) = 0

det (A − λI) = 0. (4.3)

So consider a problem in which matrix A is:

A =
[

1 2
4 3

]
,

so that:

det

([
1 2
4 3

]
− λ

[
1 0
0 1

])
= 0

det

([
1 − λ 2

4 3 − λ

])
= 0

(1 − λ) × (3 − λ) − (4 × 2) = 0

λ2 − 4λ − 5 = 0, (4.4)

thus there are two values λ = −1 and λ = 5, which are the eigenvalues for matrix
B. Going back to Eq. (4.2), the eigenvectors are found by solving, first for λ = −1:

([
1 2
4 3

]
− (−1)

[
1 0
0 1

])
v = 0

([
2 2
4 4

])
v = 0.

After applying the row-reduced echelon form on such matrix:

From:

[
2 2
4 4

]
, we divide the first row by 2 →

[
1 1
4 4

]
,

and then the second row receives −4 the first row plus the second →
[

1 1
0 0

]
.

From this last result:

[
1 1
0 0

]
v = 0

[
1 1
0 0

] [
v1

v2

]
=

[
0
0

]
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v1 + v2 = 0

v1 = −v2

Therefore, assuming v2 = t , t ∈ R:

Eλ=−1 = N(A − λI) =
{[

v1

v2

]
= t

[−1
1

]
, t ∈ R

}
,

in which Eλ=−1 is the eigenspace for the first eigenvector found:
[−1

1

]
.

We still need to find the second eigenvector, by using λ = 5:
([

1 2
4 3

]
− (5)

[
1 0
0 1

])
v = 0

([−4 2
4 −2

])
v = 0.

Applying the row-reduced echelon form on such matrix:

From:

[−4 2
4 −2

]
, second row receives itself plus the first row →

[−4 2
0 0

]
,

and then the first row divided by −4 →
[

1 − 1
2

0 0

]
.

From this last result:

[
1 − 1

2
0 0

]
v = 0

[
1 − 1

2
0 0

] [
v1

v2

]
=

[
0
0

]

v1 − 1

2
v2 = 0

v1 = 1

2
v2

Therefore, assuming v2 = t , t ∈ R:

Eλ=5 = N(A − λI) =
{[

v1

v2

]
= t

[ 1
2
1

]
, t ∈ R

}
,
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in which Eλ=5 is the eigenspace for the second eigenvector:

[ 1
2
1

]
.

We recall this is only a brief introduction on eigenvectors and eigenvalues, and
suggest the reader to proceed with the following book [8].

4.3 Using Basic Algebra to Build a Classification Algorithm

We start by introducing a kernel-based classification algorithm A that receives a
training set D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, in which xi ∈ R

2 are examples
in the input space, and yi ∈ {+1,−1} are their corresponding classes [7]. Let every
xi be composed of the variables temperature and humidity for some world region,
collected over years.3 Let the class define whether a person plays (+1) or does not
play (−1) soccer under such weather conditions. Figure 4.11a illustrates a given
instance for this classification task.
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Fig. 4.11 Classification task of playing soccer: (a) dataset (b) average vectors for each class, and
difference vector w indicated with a dashed line

3No temporal relation is here assumed.
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Let we compute the average values as defined in Eqs. (4.5) and (4.6), in which m+
and m− correspond to the number of examples labeled as +1 and −1, respectively;
xi is the vectorial form4 of example xi ; and, finally, c+ and c− are the average
vectors serving as class prototypes (as illustrated in Fig. 4.11b).

c+ = 1

m+

∑
i|yi=+1

xi (4.5)

c− = 1

m−

∑
i|yi=−1

xi (4.6)

Let vector w = c+ − c− be the difference between averages, whose central
point is c = c++c−

2 . Then, let a linear hyperplane h, orthogonal to w, crossing it
at c (Fig. 4.12). Observe h divides the input space into two regions (a.k.a. two half
spaces), one associated with positive examples and another with the negatives.

As next step, consider A is used to predict the output label for an unseen example,
represented by vector x (see Fig. 4.13).

Fig. 4.12 Classification task
of playing soccer: hyperplane
h is orthogonal to the
difference vector w
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4Our notation considers xi to be an identification of some example, without precisely defining its
representation (e.g. it might be in a Topological, Hausdorff, Normed, or any other space). However,
xi is its vectorial form in some Hilbert space.
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(a) new data to be classified x (b) vector x− c

Fig. 4.13 Classification task of playing soccer: adding an unseen example into the input space.
(a) New example to be classified, (b) distance vector between the new example and the midpoint
of the hyperplane

Our algorithm estimates the output class by computing on which side of h the
vector x lies on. For that, the dot product of vector x − c with w provides the result
(Fig. 4.13b). In particular, by computing d =< x − c, w >, it is possible to interpret
the results in R

2 as follows:

1. vectors x − c and w “pull” to the same side, then d > 0;
2. vectors x − c and w “pull” to opposite sides, then d < 0;
3. otherwise, they are orthogonal to each other when d = 0.

Term “pull” can be used in this two-dimensional space to study the angle between
vectors w and x − c. We say vectors “pull” to the same side when they form an
acute angle; “pulling” to opposite sides mean their angle is obtuse; and finally,
when orthogonal, the angle is π

2 . The classification result is obtained from the sign
function, i.e. y = sign(< x − c, w >), because the magnitude of the dot product
does not affect the result. However, note that when y = 0, we have a tie, meaning
the example lies exactly on the hyperplane, and therefore it might belong to any
class.

Next, we detail the dot product to obtain a closed form that facilitates the
implementation of the algorithm:

y = sign(< x − c, w >)

= sign(< x − c, c+ − c− >)

= sign(< x − 1

2
(c+ + c−), c+ − c− >)
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= sign(< x, c+ > − < x, c− >

− 1

2
(< c+, c+ > − < c+, c− > + < c−, c+ > − < c−, c− >))

= sign(< x, c+ > − < x, c− > +1

2
(< c−, c− > − < c+, c+ >)),

resulting in:

{
y = sign(< x, c+ > − < x, c− > +b)

b = 1
2 (< c−, c− > − < c+, c+ >).

Rewriting this equation in terms of every example xi , represented by xi , we can
simplify the formulation for y:

y = sign (< x, c+ > − < x, c− > +b)

= sign

⎛
⎝ 1

m+

∑
i|yi=+1

< x, xi > − 1

m−

∑
i|yi=−1

< x, xi > +b

⎞
⎠ ,

in which b is also rewritten as:

b = 1

2
(< c−, c− > − < c+, c+ >)

= 1

2

⎛
⎝
〈

1

m−

∑
i|yi=−1

< x, xi >,
1

m−

∑
i|yi=−1

< x, xi >

〉

−
〈

1

m+

∑
i|yi=+1

< x, xi >,
1

m+

∑
i|yi=+1

< x, xi >

〉⎞
⎠

= 1

2

⎛
⎝ 1

m2−

∑
(i,j)|yi=yj =−1

< xi , xj > − 1

m2+

∑
(i,j)|yi=yj =+1

< xi , xj >

⎞
⎠ .

Listing 4.1 details the classification algorithm described above. Function
first.classification.algorithm() runs the training and test stages. A complete example
of usage of this algorithm is found in test.first(), which employs the Normal
probability distribution to produce synthetic positive and negative examples (see
Fig. 4.14). Positive examples are significantly far from the negative ones, allowing a
perfect linear separation between classes, that is why this algorithm works properly
in this scenario.
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Fig. 4.14 Positive and
negative examples produced
by function test.first()
(Code 4.1)
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Listing 4.1 Our first classification algorithm

f i r s t . c l a s s i f i c a t i o n . a l g o r i t h m <− f u n c t i o n ( t r a i n i n g . s e t ,
t e s t . s e t ) {

# D e f i n i n g t h e column i d r e p r e s e n t i n g t h e e x p e c t e d c l a s s
c l a s s A t t r i b u t e I d = nco l ( t r a i n i n g . s e t )

# S e t t i n g X and Y f o r t r a i n i n g
t r a i n i n g .X = t r a i n i n g . s e t [ , 1 : ( c l a s s A t t r i b u t e I d −1) ]
t r a i n i n g .Y = t r a i n i n g . s e t [ , c l a s s A t t r i b u t e I d ]

# S e t t i n g X and Y f o r t e s t i n g
t e s t .X = t e s t . s e t [ , 1 : ( c l a s s A t t r i b u t e I d −1) ]
t e s t .Y = t e s t . s e t [ , c l a s s A t t r i b u t e I d ]

# The f i n a l r e s u l t s are saved i n t h i s v a r i a b l e
r e s u l t s = NULL

c a t ( " # Outcome \ t E x p e c t e d c l a s s \ n " )
# For e v e r y unseen example i n t h e t e s t s e t
f o r ( unseen i n 1 : nrow ( t e s t .X) ) {

# These v a r i a b l e s c o u n t t h e number o f p o s i t i v e
# and n e g a t i v e examples i n t h e t r a i n i n g s e t
m_ p o s i t i v e = 0
m_ n e g a t i v e = 0

# To sum up t h e d o t p r o d u c t o f t h e unseen example
# a g a i n s t e v e r y o t h e r example c o n t a i n e d i n t h e
# p o s i t i v e and t h e n e g a t i v e c l a s s e s
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sum_ p o s i t i v e = 0
sum_ n e g a t i v e = 0

# Apply t h e e q u a t i o n s f o r t h e unseen example
# t e s t . X[ unseen , ] g i v e n t h e t r a i n i n g s e t
f o r ( i i n 1 : nrow ( t r a i n i n g .X) ) {

i f ( t r a i n i n g .Y[ i ] == +1) {
sum_ p o s i t i v e = sum_ p o s i t i v e +

t e s t .X[ unseen , ] %∗% t r a i n i n g .X[ i , ]
m_ p o s i t i v e = m_ p o s i t i v e + 1

}

i f ( t r a i n i n g .Y[ i ] == −1) {
sum_ n e g a t i v e = sum_ n e g a t i v e +

t e s t .X[ unseen , ] %∗% t r a i n i n g .X[ i , ]
m_ n e g a t i v e = m_ n e g a t i v e + 1

}
}

# These v a r i a b l e s s t o r e t h e squared number o f p o s i t i v e and
# n e g a t i v e examples i n t h e t r a i n i n g s e t . They are r e q u i r e d
# t o compute term b
m_ s q u a r e d _ p o s i t i v e = 0
m_ s q u a r e d _ n e g a t i v e = 0

# To sum up t h e d o t p r o d u c t o f t h e unseen example a g a i n s t
# e v e r y example c o n t a i n e d i n t h e p o s i t i v e and n e g a t i v e
# c l a s s e s . They are used t o compute term b
sum_b_ p o s i t i v e = 0
sum_b_ n e g a t i v e = 0

# S t a r t i n g t h e c o m p u t a t i o n o f term b
f o r ( i i n 1 : nrow ( t r a i n i n g .X) ) {

f o r ( j i n 1 : nrow ( t r a i n i n g .X) ) {

i f ( t r a i n i n g .Y[ i ] == −1 && t r a i n i n g .Y[ j ] == −1 ) {
sum_b_ n e g a t i v e = sum_b_ n e g a t i v e +

t r a i n i n g .X[ i , ] %∗% t r a i n i n g .X[ j
, ]

m_ s q u a r e d _ n e g a t i v e = m_ s q u a r e d _ n e g a t i v e + 1
}

i f ( t r a i n i n g .Y[ i ] == +1 && t r a i n i n g .Y[ j ] == +1 ) {
sum_b_ p o s i t i v e = sum_b_ p o s i t i v e + \

t r a i n i n g .X[ i , ] %∗% t r a i n i n g .X[ j
, ]

m_ s q u a r e d _ p o s i t i v e = m_ s q u a r e d _ p o s i t i v e + 1

}
}

}

# F i n a l l y , we have term b .
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# We do n o t s q u a r e v a r i a b l e s m_ squared _ n e g a t i v e and
# m_ squared _ p o s i t i v e because t h e y were a l r e a d y squared
# due t o t h e d o u b l e l o o p s used above
b = 1 / 2 ∗ ( 1 /m_ s q u a r e d _ n e g a t i v e ∗ sum_b_ n e g a t i v e

− 1 /m_ s q u a r e d _ p o s i t i v e ∗ sum_b_ p o s i t i v e )

# Now term y i s computed t o c l a s s i f y t h e unseen
# example , a s s i g n i n g e i t h e r a p o s i t i v e or n e g a t i v e l a b e l
y = s i g n ( 1 /m_ p o s i t i v e ∗ sum_ p o s i t i v e

− 1 /m_ n e g a t i v e ∗ sum_ n e g a t i v e + b )

# Sav i ng t h e o u t p u t and e x p e c t e d l a b e l s , r e s p e c t i v e l y
r e s u l t s = rbind ( r e s u l t s , cbind ( y , t e s t .Y[ unseen ] ) )

# P r i n t i n g o u t t h e r e s u l t s
c a t ( y , " " , t e s t .Y[ unseen ] , " \ n " )

}

re turn ( r e s u l t s )
}

t e s t . f i r s t <− f u n c t i o n ( ) {

# G e n e r a t i n g t h e p o s i t i v e examples
d a t a s e t = cbind ( rnorm ( mean=0 , sd =1 , n =100) ,

rnorm ( mean=0 , sd =1 , n =100) , rep ( 1 , 100) )

# G e n e r a t i n g t h e n e g a t i v e examples
d a t a s e t = rbind ( d a t a s e t , cbind ( rnorm ( mean=10 , sd =1 , n =100) ,

rnorm ( mean=10 , sd =1 , n =100) , rep ( −1 , 100) ) )

# P l o t t i n g t h e d a t a s e t
p l o t ( d a t a s e t [ , 1 : 2 ] , c o l = d a t a s e t [ , 3 ] + 2 )
c a t ( " C l i c k on t h e c h a r t t o c o n t i n u e . . . \ n " )
l o c a t o r ( 1 )

# S e t t i n g t h e t r a i n i n g s e t s i z e
t r a i n . s i z e = round ( nrow ( d a t a s e t ) / 2)

# Sampl ing h a l f o f t h i s d a t a s e t f o r t r a i n i n g
i d = sample ( 1 : nrow ( d a t a s e t ) , s i z e = t r a i n . s i z e )

# B u i l d i n g up t h e t r a i n i n g s e t
t r a i n . s e t = d a t a s e t [ id , ]

# B u i l d i n g up t h e t e s t s e t
t e s t . s e t = d a t a s e t [− id , ]

# C a l l i n g our c l a s s i f i c a t i o n a l g o r i t h m t o check t h e r e s u l t s
r e s u l t s = f i r s t . c l a s s i f i c a t i o n . a l g o r i t h m ( t r a i n . s e t , t e s t . s e t )

re turn ( r e s u l t s )
}



186 4 Introduction to Support Vector Machines

Fig. 4.15 A more complex
input space to apply the
classification algorithm
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Poor results are obtained if we apply this classification algorithm in a more
complex input space, such as in Fig. 4.15, once it attempts to shatter a non-linearly
separable problem using a single hyperplane (Code 4.2). Such scenario motivates
the use of kernels to modify the input space, making positive and negative classes
linearly separable.

Listing 4.2 Applying our classification algorithm on a more complex task

source ( " f i r s t −c l a s s i f i c a t i o n −a l g o r i t h m . r " )

t e s t . complex <− f u n c t i o n ( ) {

# G e n e r a t i n g t h e p o s i t i v e examples
d a t a s e t = cbind ( rnorm ( mean=0 , sd = 0 . 2 5 , n =200) ,

rnorm ( mean=0 , sd = 0 . 2 5 , n =200) , rep ( 1 , 200) )

# G e n e r a t i n g t h e n e g a t i v e examples
n e g a t i v e . s e t = 5∗ s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =200) ) +

rnorm ( mean=0 , sd = 0 . 5 , n =200)
d a t a s e t = rbind ( d a t a s e t ,

cbind ( n e g a t i v e . s e t [ 1 : ( l e n g t h ( n e g a t i v e . s e t ) −5) ] ,
n e g a t i v e . s e t [ 6 : l e n g t h ( n e g a t i v e . s e t ) ] ,
rep ( −1 , l e n g t h ( n e g a t i v e . s e t ) −5) ) )

# P l o t t i n g t h e d a t a s e t
p l o t ( d a t a s e t [ , 1 : 2 ] , c o l = d a t a s e t [ , 3 ] + 2 )
c a t ( " C l i c k on t h e c h a r t t o c o n t i n u e . . . \ n " )
l o c a t o r ( 1 )
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# S e t t i n g t h e t r a i n i n g s e t s i z e
t r a i n . s i z e = round ( nrow ( d a t a s e t ) / 2)

# Sampl ing h a l f o f t h i s d a t a s e t f o r t r a i n i n g
i d = sample ( 1 : nrow ( d a t a s e t ) , s i z e = t r a i n . s i z e )

# B u i l d i n g up t h e t r a i n i n g s e t
t r a i n . s e t = d a t a s e t [ id , ]

# B u i l d i n g up t h e t e s t s e t
t e s t . s e t = d a t a s e t [− id , ]

# C a l l i n g our c l a s s i f i c a t i o n a l g o r i t h m t o check r e s u l t s
r e s u l t s = f i r s t . c l a s s i f i c a t i o n . a l g o r i t h m ( t r a i n . s e t , t e s t .

s e t )

re turn ( r e s u l t s )
}

A kernel function k(xi, xj ) maps examples xi and xj into another space, also
referred to as features space, so that the algorithm computes their dot product. When
kernelizing the algorithm, a slightly different formulation is obtained:

y = sign

⎛
⎝ 1

m+

∑
i|yi=+1

k(x, xi) − 1

m−

∑
i|yi=−1

k(x, xi) + b

⎞
⎠ ,

in which term b also needs to be redefined:

b = 1

2

⎛
⎝ 1

m2−

∑
(i,j)|yi=yj =−1

k(xi, xj ) − 1

m2+

∑
(i,j)|yi=yj =+1

k(xi, xj )

⎞
⎠ .

In this situation, every example xi is mapped from some input space R
m to a

features space R
p, for p > m, so that the classification algorithm computes the dot

product in such target space. Let us consider the second-order polynomial kernel
working on vectors in R

2:

k(xi, xj ) =< xi , xj >2,

what is the same as:

k(xi, xj ) = (xi,1xj,1 + xi,2xj,2)
2,

given:

xi =
[

xi,1

xi,2,

]
, xj =

[
xj,1

xj,2.

]
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In open form, this kernel function results in:

k(xi, xj ) = x2
i,1x2

j,1 + 2xi,1xj,1xi,2xj,2 + x2
i,2x2

j,2,

which is equivalent to the following space transformation:

Φ(xi) = Φ

([
xi,1

xi,2

])
=

⎡
⎢⎣

x2
i,1√

2xi,1xi,2

x2
i,2

⎤
⎥⎦ ,

and, then, the dot product is computed on the features space as follows:

k(xi, xj ) = x2
i,1x2

j,1 + 2xi,1xj,1xi,2xj,2 + x2
i,2x2

j,2

=
⎡
⎢⎣

x2
i,1√

2xi,1xi,2

x2
i,2

⎤
⎥⎦ ·

⎡
⎢⎣

x2
j,1√

2xj,1xj,2

x2
j,2

⎤
⎥⎦ .

Now it is clear that every x ∈ R
2 is transformed into a 3-dimensional vector, as

follows:

T (x) =
⎡
⎣ x2

1√
2x1x2

x2
2

⎤
⎦ ,

so that the classification algorithm applies the dot product over those new vectors.
Figure 4.16 illustrates the kernelized vectors.

The features space is linearly separable, drastically improving the algorithm
accuracy. Listing 4.3 details such implementation.

Listing 4.3 Applying the second-order polynomial kernel to proceed with the classification

source ( " f i r s t −c l a s s i f i c a t i o n −complex . r " )

r e q u i r e ( r g l )

T r a n s f o r m a t i o n <− f u n c t i o n ( vec ) {
c l a s s = vec [ 3 ]
# Observe t h e e x p e c t e d c l a s s w i l l be t h e same
re turn ( c ( vec [ 1 ] ^ 2 , s q r t ( 2 ) ∗vec [ 1 ] ∗vec [ 2 ] , vec [ 2 ] ^ 2 ,

c l a s s ) )
}

t e s t . complex . k e r n e l <− f u n c t i o n ( ) {

# G e n e r a t i n g t h e p o s i t i v e examples
d a t a s e t = cbind ( rnorm ( mean=0 , sd = 0 . 2 5 , n =200) ,
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Fig. 4.16 The three-dimensional features space obtained after applying the second-order polyno-
mial kernel on the input space illustrated in Fig. 4.15

rnorm ( mean=0 , sd = 0 . 2 5 , n =200) , rep ( 1 , 200) )

# G e n e r a t i n g t h e n e g a t i v e examples
n e g a t i v e . s e t = 5∗ s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =200) ) +

rnorm ( mean=0 , sd = 0 . 5 , n =200)
d a t a s e t = rbind ( d a t a s e t ,

cbind ( n e g a t i v e . s e t [ 1 : ( l e n g t h ( n e g a t i v e . s e t )
−5) ] ,
n e g a t i v e . s e t [ 6 : l e n g t h ( n e g a t i v e . s e t ) ] ,
rep ( −1 , l e n g t h ( n e g a t i v e . s e t ) −5) ) )

# P l o t t i n g t h e o r i g i n a l d a t a s e t
p l o t ( d a t a s e t [ , 1 : 2 ] , c o l = d a t a s e t [ , 3 ] + 2 )
c a t ( " C l i c k on t h e c h a r t t o c o n t i n u e . . . \ n " )
l o c a t o r ( 1 )

# A p p l y i n g t h e k e r n e l f u n c t i o n t o map e v e r y example
# i n t o t h e f e a t u r e s space
new . d a t a s e t = NULL
f o r ( i i n 1 : nrow ( d a t a s e t ) ) {

new . d a t a s e t = rbind ( new . d a t a s e t ,
T r a n s f o r m a t i o n ( d a t a s e t [ i , ] ) )

}

p r i n t ( new . d a t a s e t )
# P l o t t i n g t h e t r a n s f o r m e d d a t a s e t
p l o t 3 d ( new . d a t a s e t [ , 1 : 3 ] , c o l =new . d a t a s e t [ , 4 ] + 2 )

# S e t t i n g t h e t r a i n i n g s e t s i z e
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t r a i n . s i z e = round ( nrow ( new . d a t a s e t ) / 2)

# Sampl ing h a l f o f t h i s new . d a t a s e t f o r t r a i n i n g
i d = sample ( 1 : nrow ( new . d a t a s e t ) , s i z e = t r a i n . s i z e )

# B u i l d i n g up t h e t r a i n i n g s e t
t r a i n . s e t = new . d a t a s e t [ id , ]

# B u i l d i n g up t h e t e s t s e t
t e s t . s e t = new . d a t a s e t [− id , ]

# C a l l i n g our c l a s s i f i c a t i o n a l g o r i t h m t o check r e s u l t s
r e s u l t s = f i r s t . c l a s s i f i c a t i o n . a l g o r i t h m ( t r a i n . s e t , t e s t .

s e t )

re turn ( r e s u l t s )
}

This instance makes evident the need for an adequate space transformation to
provide linear separability between examples from different classes. However, the
kernel design is not a trivial task, motivating researchers to algebraically study
the input space. In fact, the best kernel function to make an input space linearly
separable depends on the target problem. As consequence, studying the input space
is more important than designing new classification algorithms.

4.4 Hyperplane-Based Classification: An Intuitive View

In this section, we start the design of Support Vector Machines from an intuitive
point of view. Let a dataset labeled according to classes {−1,+1}, in which
examples are generated using two Normal probability distributions that allow their
linear separation (see Fig. 4.17).

In this scenario, our intention is to build up a linear hyperplane with the
maximal margin, i.e., the hyperplane has the same distance to both closest positive
and negative examples, as shown in Fig. 4.20. This is the best hyperplane given
it provides the smallest as possible class overlapping, considering distribution
deviations from means.

Figure 4.18 illustrates the practical impact of maximal-margin hyperplanes.
Consider one-dimensional examples and the probability distributions responsible
for generating them.5 Observe h1 or h2 might be obtained after running any regular
classification algorithm (e.g. Perceptron), while hbest corresponds to the maximal-
margin hyperplane (e.g. SVM). Although all of them produce the same classification
results and, therefore, the same empirical risks Remp(h), hbest provides the greatest

5Distributions are used for illustration purposes. In fact, we remind the reader that the Statistical
Learning Theory assumes they are unknown at the time of training.
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Fig. 4.17 Input space of examples produced by two different Normal probability distributions
(a) the distribution densities, (b) densities and points drawn from the distributions to be used as
training examples

learning generalization given both class distributions are shattered in the best as
possible place. Figures permit us to conclude that h1 will mostly misclassify the
negative class, while h2 the positive class. The reader may also refer to the type-I
and type-II errors from Statistical Inference to interpret the results [6].

In Fig. 4.18 illustration, suppose the hyperplane h2 is estimated by the Perceptron
algorithm. Its hyperplane is skewed towards one of the data distributions (the
positive examples), so that new examples drawn and eventually close to such
decision boundary will tend to be misclassified, as shown in Fig. 4.19.
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Fig. 4.18 Assessing the maximal-margin hyperplane in an one-dimensional problem, comparing
the maximal-margin classifier hbest and another two linear classifiers h1 and h2
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Fig. 4.19 Illustration of the effect of non-maximal margin hyperplane on unseen (new) data
examples drawn from the class distributions. The vertical solid line is the optimal classifier h1,
while the vertical dashed line represents a suboptimal classifier such as h2

Support Vector Machines (SVMs) were designed to find this maximal margin
hyperplane. As discussed in Chap. 2, if the best as possible space is provided, then
SVM outperforms any other classification algorithm.

Consider a linearly separable problem with two classes, as shown in Fig. 4.20.
Intuitively, SVM builds up the best as possible hyperplane, solving the following
problem for the closest positive and negative examples:

|< w, x+ > +b| = 1,

|< w, x− > +b| = 1,
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Fig. 4.20 Input space to
illustrate how SVM works
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in which vector w corresponds to weights, x+ and x− are the examples nearby the
hyperplane (a.k.a. support vectors), and finally b is a bias term.6 Such equality
constraints must produce an absolute value equals to one for x+ and x−, what is
associated to the relative distance they have to the decision boundary. When xi is far
from such boundary, those constraints should be adapted to produce:

|< w, xi > +b| > 1,

meaning it is |< w, xi > +b| − 1 units more distant from the hyperplane than the
support vectors. In summary, the SVM optimization problem intends to find w and
b while respecting such constraints, so the best as possible linear separation can
be used to classify further unseen examples. But how could one estimate those
variables? As first step, vector w must be found:

w = x+ − x−,

which is given by the difference between the positive and the negative support
vectors. Figure 4.21 illustrates vector w in a simple classification scenario:

w = x+ − x−

6This work as an intercept term, such as θ for the Perceptron and the Multilayer Perceptron
algorithms (see Chap. 1).
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Fig. 4.21 Computing
vector w
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=
[

1
1

]
−

[−1
−1

]
=

[
2
2

]
.

Then, we solve the equality constraints using the support vectors:

|< w, x+ > +b| = 1

|< w, x− > +b| = 1,

in form: 〈[
2
2

]
, x+

〉
+ b = +1

〈[
2
2

]
, x−

〉
+ b = −1.

Afterwards, the bias term b is computed:

[
2
2

] [
1 1

] + b = +1

[
2
2

] [−1 −1
] + b = −1,

to obtain:

2 + 2 + b = +1



4.4 Hyperplane-Based Classification: An Intuitive View 195

−2 + (−2) + b = −1

b = ±3.

Observe term b is not unique, consequently it does not provide a single solution
satisfying this problem. In order to obtain unicity, we multiply both sides of equality
constraints by their corresponding classes (y+ and y−):

y+(< w, x+ > +b) = +1y+
y−(< w, x− > +b) = −1y−,

obtaining:

y+(< w, x+ > +b) = 1

y−(< w, x− > +b) = 1,

thus, ensuring the constraints only for the support vectors. We then extend con-
straints to consider any other example by using inequalities:

y+(< w, x+ > +b) ≥ 1

y−(< w, x− > +b) ≥ 1,

which are simplified to the general case (for any label), as follows:

yi(< w, xi > +b) ≥ 1.

Going back to our previous example, we check if this last inequality holds
for both values of term b, e.g., +3 and −3. For b = +3 (question mark means
assessment):

+1

([
2
2

] [
1 1

] + 3

)
?≥ 1,

yes, it holds since 7 ≥ 1.

−1

([
2
2

] [−1 −1
] + 3

)
?≥ 1,

yes, given 1 ≥ 1.
Assessing for b = −3:

+1

([
2
2

] [
1 1

] − 3

)
?≥ 1,
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Fig. 4.22 Two hyperplanes
for both values of the bias
term b = ±3
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yes, it holds since 1 ≥ 1.

−1

([
2
2

] [−1 −1
] − 3

)
?≥ 1,

yes, given 7 ≥ 1. As consequence, we conclude both values satisfy our general
inequality taking us to the following conclusions:

1. Different hyperplanes are found for b = +3 and b = −3 (see Fig. 4.22);
2. The bias term b is seen as a correction term to produce positive and negative

values on each side of the decision boundary;
3. Vector w is orthogonal to the hyperplane (see Fig. 4.23).

In order to empirically explore the SVM problem, we now study the effect of
increasing the norm (the length) of vector w. For example, let:

w =
[

10
10

]
,

what would require a bias term b ± 19. Two solutions were again obtained, but
with scaled correction terms b. In fact, the greater the norm of w, the greater the
difference in inequality results as seen next:

+1

([
10
10

] [
1 1

] + 19

)
≥ 1 ⇒ 39 ≥ 1
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Fig. 4.23 Illustrating the
orthogonality of vector w,
drawn as a gray arrow, with
respect to the optimal
hyperplane
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−1

([
10
10

] [−1 −1
] + 19

)
≥ 1 ⇒ 1 ≥ 1,

and:

+1

([
10
10

] [
1 1

] − 19

)
≥ 1 ⇒ 1 ≥ 1

−1

([
10
10

] [−1 −1
] − 19

)
≥ 1 ⇒ 39 ≥ 1.

To contrapose, we now assess the best as possible scenario in which vector w is:

w =
[

0.5
0.5

]
,

allowing to obtain unicity for the bias term b = 0, as required. Applying such
solution on the inequality, we have:

+1

([
0.5
0.5

] [
1 1

] + 0

)
≥ 1 ⇒ 1 ≥ 1

−1

([
0.5
0.5

] [−1 −1
] + 0

)
≥ 1 ⇒ 1 ≥ 1,
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finding the ideal situation (see Fig. 4.23). As observed, by reducing the norm of
w, the smallest possible and unique correction b is found. However, there is an
important criterion to proceed with the norm minimization, which is the satisfaction
of constraints. In other words, despite one might try to improve results by reducing
even more the vector norm, constraints would never be respected. Thus, this problem
of finding the best hyperplane for a linearly separable task could be, intuitively,
set as:

minimize
w,b

∥∥w
∥∥

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m,

having m as the number of examples in the training set. This problem is typically
written as:

minimize
w∈H,b∈R

1

2

∥∥w
∥∥2

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m,

in which H defines the space the hyperplane is built in (the Hilbert space), R ensures
the bias term b lies on the real line, and fraction 1

2 is only used as a mathematical
convenience for solving the error derivative. It is worth to mention that the norm is
powered to two to transform the objective function into a convex surface, facilitating
the usage of mathematical tools to drive the optimization process (e.g. gradient
descent method). Chapter 5 details this formulation and why it is the most used
in the literature.

4.5 Hyperplane-Based Classification: An Algebraic View

After an intuitive approach for the SVM optimization problem, this section intro-
duces its step-by-step algebraic formulation. Consider examples lying on R

2 and
let two linear hyperplanes (a.k.a. support hyperplanes) define the boundaries for the
positive and negative labels such as the “sidewalks” for a street, as in Fig. 4.24a.
Those support hyperplanes are parallel to the maximal-margin hyperplane as well
as to each other. It is important to notice that they lie on the tip of the support
vectors, defining the frontiers of each class. The best as possible hyperplane divides
the region between support hyperplanes in half (Fig. 4.24b).

In that scenario, if we take the difference vector x+ − x− and project it over the
unitary vector v, we obtain the “street” width (see Fig. 4.25). This is only possible
because v is orthogonal to both support hyperplanes. By measuring such width, it
is possible to compute the gap between classes and, consequently, find the maximal
margin as half of such value.
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Fig. 4.24 Support hyperplanes define the “sidewalks”, lying on the tip of the highlighted support
vectors (a). The best as possible hyperplane is in between those support hyperplanes (b)

Fig. 4.25 Computing the
difference vector x+ − x− to
be projected on the unitary
vector v and obtain the
“street” width
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From that, the projection is computed as:

Projv(x+ − x−) = 〈x+ − x−, v〉 .

Observe that by maximizing this projection, we consequently maximize the margin.
Besides the unitary vector v is unknown, w can be found as the orthogonal vector of
the hyperplane to be found:

v = w∥∥w
∥∥ ,

and, then:

Projv(x+ − x−) =
〈

x+ − x−,
w∥∥w
∥∥
〉

,

thus, after some manipulation:

Projv(x+ − x−) =
〈

x+ − x−,
w∥∥w
∥∥
〉

=
〈

x+,
w∥∥w
∥∥
〉

−
〈

x−,
w∥∥w
∥∥
〉

.

Now remember the example corresponding to the positive support vector must
be classified as +1, while the negative as −1, both satisfying:

yi(< w, xi > +b) = 1,

then, solving for w:

〈
x+,

w∥∥w
∥∥
〉

= < x+, w >∥∥w
∥∥ ,

and, thus:

< w, xi > +b = yi

< w, xi > = yi − b,

so, setting yi = +1:

〈
x+,

w∥∥w
∥∥
〉

= 1 − b∥∥w
∥∥ ,
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and, setting yi = −1:

〈
x−,

w∥∥w
∥∥
〉

= −1 − b∥∥w
∥∥ .

Finally, the projection is given by:

Projv(x+ − x−) = 1 − b∥∥w
∥∥ − −1 − b∥∥w

∥∥ = 2∥∥w
∥∥ .

Therefore, by maximizing the projection, we look for the maximal margin:

maximize Projv(x+ − x−)

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m,

what is the same as:

maximize
2∥∥w
∥∥

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m.

By inverting the objective function, we can reformulate it as a minimization
problem, as usually found in literature:

minimize
1

2

∥∥w
∥∥2

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m,

having the norm of w powered to two in order to simplify error derivatives as for
a convex function, so it converges to a minimum (see Chap. 5 for more details).
Defining the sets for variables w and the bias term b, we finally have:

minimize
w∈H,b∈R

1

2

∥∥w
∥∥2

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m,

noting w is in a Hilbert space H (see Chap. 2), and b is a real number.
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4.5.1 Lagrange Multipliers

Lagrange multipliers is a mathematical tool to find local maxima or minima subject
to equality constraints. To formalize, consider the following optimization problem:

maximize f (x, y)

subject to g(x, y) = c,

in which f (x, y) defines the objective function, while g(x, y) ensures equality
constraints. According to Lagrange multipliers, there is one or more solutions only
if f and g are differentiable, i.e.:

�f = −λ�g,

given some point (x, y), λ �= 0, and � meaning the gradient vector. Therefore, this
optimization problem has a solution only if the gradient vectors of f and g are equal
(a.k.a. parallel) given some constant λ �= 0.

As an example, consider the following optimization problem:

maximize f (x, y) = x + y

subject to x2 + y2 = 1.

To solve this problem using the Lagrange multipliers, the following must hold:

1. All constraints must be defined in terms of equalities;
2. Functions f and g must be differentiable, so the gradient vectors exist;
3. Gradient vectors for f and g must be different from zero.

Thus, the following system of equations must be solved:
{

�f = −λ�g

g(x, y) − c = 0
,

to find: ⎧⎨
⎩
[

1
1

]
= −λ

[
2x

2y

]

x2 + y2 − 1 = 0
,

what results in:

⎧⎨
⎩

1 = −λ2x

1 = −λ2y

x2 + y2 − 1 = 0
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Finally, solving such system:

⎧⎪⎨
⎪⎩

1 + λ2x = 0 ⇒ x = − 1
2λ

1 + λ2y = 0 ⇒ y = − 1
2λ

x2 + y2 − 1 = 0 ⇒
(
− 1

2λ

)2 +
(
− 1

2λ

)2 − 1 = 0, for λ �= 0,

we find:

λ = ± 1√
2
,

which is then used to calculate, by substitution, x and y. By setting λ = − 1√
2
, the

following solution is obtained:

x = y = − 1

2λ
=

(
−1

2

)(
−

√
2

1

)
=

√
2

2
,

and, setting λ = 1√
2
, there is another solution:

x = y = − 1

2λ
=

(
−1

2

)(√
2

1

)
= −

√
2

2
.

As a consequence, there are two coordinates (x, y) satisfying the Lagrange
multipliers:

(√
2

2
,

√
2

2

)
,

(
−

√
2

2
,−

√
2

2

)
.

The objective value is only found by evaluating them in terms of f :

f

(√
2

2
,

√
2

2

)
= √

2,

which is the global maximum, and:

f

(
−

√
2

2
,−

√
2

2

)
= −√

2,

which is the global minimum.
Figure 4.26 illustrates this optimization problem, having the vertical axis associ-

ated with the output values of f , while the other two axes are related to variables
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Fig. 4.26 Illustration of the optimization problem and its solutions (global maximum and
minimum) found according to Lagrange multipliers

Fig. 4.27 Studying the same
optimization problem from
Fig. 4.26, but using contour
lines that help visualizing the
gradient vectors

x and y. Observe constraint x2 + y2 = 1 is plotted into the space formed by axes
x and y, which is then projected into the surface formed by f . Notice one of the
points corresponds to the maximum, while the other to the minimum value of f ,
considering this equality constraint.

Figure 4.27 shows contour lines for the same problem, in which arrows denote
the gradient vectors. Notice there are two points in which the gradient vectors of
the constraint and the objective function are parallel to each other (independently
of their directions). Those points are found through Lagrange multipliers and both
lie on the projection of the constraint into the surface produced by the objective
function. This idea motivated Joseph Louis Lagrange to find the solution for any
optimization problem, given the objective function f and one or more equality
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Fig. 4.28 Illustration of the second optimization problem and its solutions according to Lagrange
multipliers

constraints gi , in form:

{
�f = −λ�gi

gi(x, y) − ci = 0
,

having λ �= 0 as the factor to correct the magnitudes and directions of gradient
vectors, so they become equal.

Lagrange multipliers does not provide any solution within the region defined by
constraint x2 + y2 = 1, i.e., for x, y such that x2 + y2 < 1, nor even outside, i.e.,
for x, y such that x2 + y2 > 1. It is a mathematical tool to find solutions that touch
the projection of constraints into the objective function.

As a second example, let:

maximize f (x, y) = x2y

subject to x2 + y2 = 3,

as illustrated in Fig. 4.28. The single constraint function is defined in terms of x

and y, and the vertical axis refers to the objective function outputs. To complement,
Fig. 4.29 shows the contour lines, from which the solution points are easily seen.

Thus, using Lagrange multipliers, the following problem must be solved:

⎧⎨
⎩
[

2xy

x2

]
= −λ

[
2x

2y

]

x2 + y2 − 3 = 0
,

from which six critical points are obtained:

(
√

2, 1), (−√
2, 1), (

√
2,−1), (−√

2,−1), (0,
√

3), (0,−√
3),
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Fig. 4.29 Contour lines for
the second optimization
problem. Note that f and g

become parallel only when
constraints are respected

which must be evaluated by the objective function f :

f (±√
2, 1) = 2, f (±√

2,−1) = −2, f (0,±√
3) = 0,

so that the global maxima occurs at two coordinates (
√

2, 1) and (−√
2, 1), while

the global minima are at (
√

2,−1) and (−√
2,−1).

4.5.2 Karush-Kuhn-Tucker Conditions

Although the Lagrange multipliers provides an important optimization tool, it can
only be employed under equality constraints, while the SVM minimization problem
is restricted by inequalities. In order to tackle the maximal-margin problem, we must
introduce the Karush-Kuhn-Tucker (KKT) conditions which complement Lagrange
multipliers for inequality constraints.

minimize
w∈H,b∈R

1

2

∥∥w
∥∥2

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m,

as defined in Sect. 4.5. The Karush-Kuhn-Tucker (KKT) conditions extend
Lagrange multipliers to solve problems in the following standard forms:
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maximize f (x)

subject to gi(x) ≥ 0, hj (x) = 0,

and:

minimize f (x)

subject to gi(x) ≥ 0, hj (x) = 0,

given f is the objective function, gi defines a set of inequality constraints for i =
1, . . . , n, and hj corresponds to the set of equality constraints for j = 1, . . . , m.

KKT conditions determine the circumstances in which this type of optimization
problem has solution:

1. Primal feasibility—it must exist an optimal solution x∗, for which all constraints
are satisfied, i.e., gi(x

∗) ≥ 0 and hj (x
∗) = 0, for all i, j ;

2. Stationarity—there is at least one (stationary) point for which the gradient of f is
parallel to the gradient of constraints gi and hj , such as in Lagrange multipliers,
i.e.:

�f (x∗) =
n∑

i=1

μ∗
i �gi(x

∗) +
m∑

j=1

λ∗
j�hj (x

∗),

in which μ∗
i and λ∗

j are known as the KKT multipliers (instead of Lagrange
multipliers), and stars mean the optimal value for each variable;

3. Complementary slackness—KKT multipliers times inequality constraints must
be equal to zero, i.e., μ∗

i gi(x
∗) = 0 for all i = 1, . . . , m;

4. Dual feasibility—All KKT multipliers must be positive for inequality constraints,
i.e., μ∗

i ≥ 0 for all i = 1, . . . , m.

Later in Chap. 5, we detail how those conditions are found. For now, we simply
exemplify their usefulness.

Consider the following optimization problem (from [2, 3]):

minimize f (x1, x2) = 4x2
1 + 2x2

2

subject to 3x1 + x2 = 8

2x1 + 4x2 ≤ 15,

and consider someone has informed us that the second constraint in non-binding. A
binding constraint is the one whose solution depends on, so if we change it, the
optimal solution also changes. On the other hand, a non-binding constraint does
not affect the optimal solution, so it can be discarded without any loss.

However, before dropping the second constraint, the problem is rewritten in the
standard form:
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minimize f (x1, x2) = 4x2
1 + 2x2

2

subject to 3x1 + x2 = 8

− 2x1 − 4x2 ≥ −15,

and, then, we need to check whether the KKT conditions are held:

1. Primal feasibility—all constraints have to be satisfied, which, in this case, is:

3x1 + x2 = 8;

2. Stationarity—we must find the stationary point:

�f (x∗) =
n∑

i=1

μ∗
i �gi(x

∗) +
m∑

j=1

λ∗
j�hj (x

∗)

[
8x1

4x2

]
− λ1

[
3
1

]
− μ1

[−2
−4

]
= 0

but, given the second constraint is non-binding, then μ1 = 0:

�f (x∗) =
n∑

i=1

μ∗
i �gi(x

∗) +
m∑

j=1

λ∗
j�hj (x

∗)

[
8x1

4x2

]
− λ1

[
3
1

]
= 0,

therefore, the linear system of equations is solved in form Ax = B:
⎡
⎣3 1 0

8 0 −3
0 4 −1

⎤
⎦
⎡
⎣x1

x2

λ1

⎤
⎦ =

⎡
⎣8

0
0

⎤
⎦ ,

to obtain x = A−1B:

x =
⎡
⎣2.182

1.455
5.818

⎤
⎦ ;

3. The further conditions (Complementary slackness and Dual feasibility) are only
necessary for inequality constraints, what is not the case in this example.

As a consequence, we found a feasible solution x1 = 2.182, x2 = 1.455,
λ1 = 5.818 and μ1 = 0 (given the inequality constraint is non-binding) for this
optimization problem, considering all KKT conditions. Observe that a solver may
be used instead of the inverse of A.
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Now consider another problem with two inequality constraints:

minimize f (x1, x2, x3) = x2
1 + 2x2

2 + 3x2
3

subject to g1(x1, x2, x3) = −5x1 + x2 + 3x3 ≤ −3

g2(x1, x2, x3) = 2x1 + x2 + 2x3 ≥ 6,

which must be rewritten using the standard form:

minimize f (x1, x2, x3) = x2
1 + 2x2

2 + 3x2
3

subject to g1(x1, x2, x3) = 5x1 − x2 − 3x3 ≥ 3

g2(x1, x2, x3) = 2x1 + x2 + 2x3 ≥ 6,

in order to assess the KKT conditions:

1. Primal feasibility—initially, every constraint is assumed to have a solution. Later
on, that will be checked;

2. Stationarity—finding the stationary points:

�f (x∗) =
n∑

i=1

μ∗
i �gi(x

∗) +
m∑

j=1

λ∗
j�hj (x

∗),

to obtain: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎣2

4
6

⎤
⎦ − μ1

⎡
⎣ 5

−1
−3

⎤
⎦ − μ2

⎡
⎣2

1
2

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

5x1 − x2 − 3x3 = 3
2x1 + x2 + 2x3 = 6

,

from which constraints are solved by using equalities instead. Then, solving the
linear system Ax = B:

⎡
⎢⎢⎢⎢⎢⎣

2 0 0 −5 −2
0 4 0 +1 −1
0 0 6 +3 −2
5 −1 −3 0 0
2 1 2 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

μ1

μ2

⎤
⎥⎥⎥⎥⎥⎦

= B

⎡
⎢⎢⎢⎢⎢⎣

2 0 0 −5 −2
0 4 0 +1 −1
0 0 6 +3 −2
5 −1 −3 0 0
2 1 2 0 0

⎤
⎥⎥⎥⎥⎥⎦

x =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
3
6

⎤
⎥⎥⎥⎥⎥⎦

,
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Fig. 4.30 Contour lines in
terms of variables x1 and x2.
This supports the analysis of
gradient vectors for the
objective and constraint
functions. The continuous
and dashed lines represent the
constraints, the black dot is
the solution found
considering both constraints,
and the white dot is the
optimal solution, obtained by
considering the first
constraint non-binding

the following solutions are found:

x1 = 1.450, x2 = 0.8, x3 = 1.150, μ1 = −0.5, μ2 = 2.70;

3. Complementary slackness—we now verify if μigi(x
∗) = 0 for i = 1, 2:

μ1g1(x
∗) = −0.5(5(1.450) − (0.8) − 3(1.150) − 3) ≈ 0

μ2g2(x
∗) = 2.70(2(1.450) + (0.8) + 2(1.150) − 6) = 0,

what ensures this third condition.
4. Dual feasibility—this fourth condition is violated due to μ1 = −0.5 < 0,

meaning this is not an optimal solution.

Consider the contour lines in Fig. 4.30 from which we can visually inspect the
solution found. Observe constraint g1(x

∗) is non-binding as indicated by μ1 =
−0.5 < 0. Consequently, to solve this problem, one must set μ1 = 0 to cancel
g1(x

∗) in form:

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣2

4
6

⎤
⎦ − μ2

⎡
⎣2

1
2

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

2x1 + x2 + 2x3 = 6

,
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providing the system Ax = B:

⎡
⎢⎢⎣

2 0 0 0 −2
0 4 0 0 −1
0 0 6 0 −2
2 1 2 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

μ2

⎤
⎥⎥⎦ = B

⎡
⎢⎢⎣

2 0 0 0 −2
0 4 0 0 −1
0 0 6 0 −2
2 1 2 0 0

⎤
⎥⎥⎦ x =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
3
6

⎤
⎥⎥⎥⎥⎥⎦

,

in order to obtain the final solution x1 = 2.0571429, x2 = 0.5142857, x3 =
0.6857143, μ1 = 0, and μ2 = 2.0571429, which indeed respects the KKT
conditions.

For the sake of curiosity, the Karush-Kuhn-Tucker conditions were originally
named after Kuhn and Tucker [5]. Later on, other researchers discovered that those
conditions were already stated by William Karush in his master’s thesis [4].

4.6 Formulating the Hard-Margin SVM Optimization
Problem

After building up the concepts on Lagrange multipliers and KKT conditions, we are
finally able to formulate the optimal linear hyperplane in terms of an optimization
problem:

minimize
w∈H,b∈R

1

2

∥∥w
∥∥2

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m.

The KKT conditions for this optimization problem are:

1. Primal feasibility—we assume there is an optimal solution for this problem to be
verified later;

2. Stationarity—we formulate the Lagrangian as follows:

Λ(w, b, α) = 1

2

∥∥w
∥∥2 −

m∑
i=1

αi(yi(< xi , w > +b) − 1),

in which αi is used instead of μi to represent the KKT multipliers, a notation
commonly found in the SLT literature;
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Fig. 4.31 Simple
classification task, using
positive and negative
examples
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3. Complementary slackness—KKT multipliers times inequality constraints must
be equal to zero: either because the multiplier makes the constraint equals to
zero or the constraint is non-binding. To illustrate, consider Fig. 4.31 whose
support vectors provide enough constraints, thus all other points might be simply
disconsidered once their constraints are weaker (thus, αj = 0 for every j

associated to those examples);
4. Dual feasibility—All KKT multipliers must be positive for inequality constraints,

i.e., μ∗
i ≥ 0 for all i = 1, . . . , m.

Thus, if all KKT conditions are held, a solution exists. To solve this problem,
the gradient vectors for the objective f and the constraint functions g must be
computed:

�f = α�g

�f − α�g = 0,

given:

f = 1

2

∥∥w
∥∥2

,

and:

gi = yi(< xi , w > +b) − 1,

for every i = 1, . . . , m. As a consequence of this formulation, we derive our
optimization problem in terms of free variables, which are the ones we can adapt:



4.6 Formulating the Hard-Margin SVM Optimization Problem 213

∂Λ

∂w
= w −

m∑
i=1

αiyixi = 0 ⇒ w =
m∑

i=1

αiyixi

∂Λ

∂b
= −

m∑
i=1

αiyi = 0.

Returning to the Lagrangian:

Λ(w, b, α) = 1

2

∥∥w
∥∥2 −

m∑
i=1

αiyi < xi , w > −b

m∑
i=1

αiyi +
m∑

i=1

αi,

and, then, substituting the terms found through derivatives in order to ensure
equality for the gradient vectors (see Sect. 4.5.1):

−
m∑

i=1

αiyi = 0,

we have:

Λ(w, b, α) = 1

2

∥∥w
∥∥2 −

m∑
i=1

αiyi < xi , w > +
m∑

i=1

αi,

and plugging term:

w =
m∑

i=1

αiyixi ,

we find:

Λ(w, b, α) = 1

2
<

m∑
i=1

αiyixi ,

m∑
j=1

αjyj xj > −
m∑

i=1

αiyi < xi ,

m∑
j=1

αjyj xj >

+
m∑

i=1

αi.

By simplifying the formulation, we finally obtain the Dual form for this
optimization problem:

Λ(w, b, α) = 1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > −
m∑

i=1

m∑
j=1

αiαjyiyj < xi , yj xj >

+
m∑

i=1

αi,

Λ(w, b, α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +
m∑

i=1

αi,
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addressing the same problem but using different variables. In this situation, observe
w and b are now represented in terms of α. This helps us to deal with only one
vectorial variable at a single scale, while w and b had different ones. This is only
possible because the derivation preserves the optimization problem characteristics.
Note that after finding the gradient vectors, we can use every possible Lagrangian
simplification to obtain an alternative form to express a target problem. The original
optimization problem is referred to as Primal, while this second is called the Dual
form. There are particular situations in which the Dual solution does not match the
Primal, as discussed in more details in Chap. 5. For now, consider we were told
the solution will be approximately the same, what is sufficient to address the SVM
optimization.

The Dual form still requires some particular constraints obtained from the
Lagrangian derivation. Those are necessary to ensure parallel gradient vectors (see
Sect. 4.5.1). So, constraint −∑m

i=1 αiyi = 0 is added, which was cancelled of the
objective function while formulating the Dual. By including it, the gradients are as
parallel as in the Primal form.

While the original problem is formulated in terms of a minimization, the Dual
necessarily employs the opposite goal. We still need to ensure all KKT conditions
to make this Dual problem complete. Again, the first comes from the assumption
that there is at least one solution for the primal constraints (primal feasibility), the
second comes from the Lagrangian derivation (stationarity), the third is guaranteed
by adding constraint −∑m

i=1 αiyi = 0. Finally, the fourth KKT condition (Dual
feasibility) must be respected, implying αi ≥ 0 for all i = 1, . . . , m, so that the
complete Dual form is:

maximize
α

W(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +
m∑

i=1

αi

subject to αi ≥ 0, for all i = 1, . . . , m

m∑
i=1

αiyi = 0.

It is worth to mention that whenever some Lagrangian derivation implies a
substitution in an objective function, the problem is kept the same. However, when
the same implies canceling out some term, that derivative must be taken as an
additional constraint. In our example, one of the derivatives resultant from the
Lagrangian, i.e., w = ∑m

i=1 αiyixi , was not added as constraint given it was
substituted and not canceled such as −∑m

i=1 αiyi = 0. Without any loss of
generality, also notice this latter was multiplied by −1. We also highlight that the
objective function was renamed to W(α), given it is a different function and only α

is adapted during the optimization process.
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Once the Dual form is solved, we can now find w and b, in form:

f (x+) =< w, x+ > +b ≥ 1

f (x−) =< w, x− > +b ≤ 1,

having x+ and x− as positive and negative training examples, respectively. From
that, the sign function provides labels:

f (x) = sign(< w, x > +b),

for any unseen example x. Substituting vector w by the term found after differenti-
ating the Primal form:

f (x) = sign

(
m∑

i=1

αiyi < xi , x > +b

)
,

and term b found by solving the following system of equations given support vectors
x+ and x−:

{
< w, x+ > +b = +1
< w, x− > +b = −1

.

Adding both equations:

< w, x+ > +b+ < w, x− > +b = +1 − 1

< w, x+ + x− > +2b = 0

b = −1

2
< w, x+ + x− >,

and substituting w, we finally have:

b = −1

2

m∑
i=1

< xi , x+ + x− > .

In order to illustrate this Dual form, consider a simple scenario as shown in
Fig. 4.32. Trying different values for αi (two examples, so there are two constraints)
such as {0.1, 0.25, 0.3, 0.7}, one can analyze the outcomes of W(α). Listing 4.4
supports the user to attempt other values for αi .
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Fig. 4.32 Simple
classification task
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Listing 4.4 Assessing the objective function W(α)

f i n d _w_b <− f u n c t i o n ( a l p h a s , x , y ) {

# Computing v e c t o r w
w = 0
f o r ( i i n 1 : l e n g t h ( a l p h a s ) ) {

w = w + a l p h a s [ i ] ∗ y [ i ] ∗ x [ i , ]
}

# Computing term b
p o s i t i v e _ s u p p o r t _ v e c t o r = x [ y == + 1 , ]
n e g a t i v e _ s u p p o r t _ v e c t o r = x [ y == −1 ,]
b = 1 / 2∗ ( ( p o s i t i v e _ s u p p o r t _ v e c t o r

+ n e g a t i v e _ s u p p o r t _ v e c t o r ) %∗% w)

c a t ( " V e c t o r w\ n " )
p r i n t (w)

c a t ( " Rea l number b \ n " )
p r i n t ( b )

r e t = l i s t ( )
r e t $w = w
r e t $b = b

r e t
}

c l a s s i f y <− f u n c t i o n (w, b , newX ) {
r e t = w %∗% newX + b
r e t

}
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x = NULL
x = rbind ( c ( + 1 , +1) )
x = rbind ( x , c ( −1 , −1) )

y = c ( + 1 , −1)

a l p h a s = c ( 0 . 2 5 , 0 . 2 5 )

W_ of _ a l p h a = 0
f o r ( i i n 1 : 2 ) {

f o r ( j i n 1 : 2 ) {
W_ of _ a l p h a = W_ of _ a l p h a

+ a l p h a s [ i ] ∗ a l p h a s [ j ] ∗y [ i ] ∗y [ j ] ∗x [ i , ]%∗%x [ j
, ]

}
}

r e s u l t = −1 / 2 ∗ W_ of _ a l p h a + sum ( a l p h a s )

c a t ( " Th i s i s t h e r e s u l t f o r W( a l p h a ) , which we want t o maximize !
\ n " )

p r i n t ( r e s u l t )

f i n d _w_b ( a l p h a s , x , y )

For instance, using α1 = α2 = 0.1, the objective function W(α) = 0.16, vector

w = [
0.2 0.2

]T
, and b = 0. Other examples are:

α1 = α2 = 0.25 ⇒ W(α) = 0.25, w = [
0.5 0.5

]T
, b = 0

α1 = α2 = 0.3 ⇒ W(α) = 0.24, w = [
0.6 0.6

]T
, b = 0

α1 = α2 = 0.7 ⇒ W(α) = −0.56, w = [
1.4 1.4

]T
, b = 0,

consequently α1 = α2 = 0.25 are the best parameters, once they provide the
maximum value when compared to others. How can one maximize the objective
function W(α), for any αi ≥ 0, and still respect all constraints? This answer
requires a special optimization algorithm, as discussed in Chap. 5. For now, we
suggest the reader to call function classify() from Listing 4.4 to test the classification
performance for such a simple scenario.
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To illustrate, consider the following instances:

Listing 4.5 Running function classify() from Listing 4.4

p r i n t ( c l a s s i f y (w=c ( 0 . 5 , 0 . 5 ) , b =0 , newX=c (−5 ,−5) ) )
p r i n t ( c l a s s i f y (w=c ( 0 . 5 , 0 . 5 ) , b =0 , newX=c (−2 ,−2) ) )
p r i n t ( c l a s s i f y (w=c ( 0 . 5 , 0 . 5 ) , b =0 , newX=c ( −0.1 , −0.5) ) )
p r i n t ( c l a s s i f y (w=c ( 0 . 5 , 0 . 5 ) , b =0 , newX=c ( 2 , 2 ) ) )
p r i n t ( c l a s s i f y (w=c ( 0 . 5 , 0 . 5 ) , b =0 , newX=c ( 5 , 5 ) ) )
p r i n t ( c l a s s i f y (w=c ( 0 . 5 , 0 . 5 ) , b =0 , newX=c ( 0 . 1 , 0 . 5 ) ) )

whose outputs are, respectively:

Listing 4.6 Text output produced by Listing 4.5

−5
−2
−0.3
2
5
0 . 3

confirming the positive and negative signs indicate the label, i.e., the point position
relative to the hyperplane.

It is worth to mention that a kernel can be plugged into the Dual form:

maximize
α

W(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj k(xi, xj ) +
m∑

i=1

αi

subject to αi ≥ 0, for all i = 1, . . . , m

m∑
i=1

αiyi = 0,

so that the classification result would be:

f (x) = sign

(
m∑

i=1

αiyik(xi, x) + b

)
.

Observe the kernel function is applied to transform examples xi and xj from
an input space to some features space, while all the SVM formulation remains the
same. There are additional conditions to maintain the same SVM formulation which
are discussed in Chap. 5.
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4.7 Formulating the Soft-Margin SVM Optimization
Problem

All formulation provided in the previous section is known as the hard-margin SVM
problem, in which training examples are assumed to be linearly separable. However,
real-world tasks typically present some degree of class overlap so that a more
flexible SVM formulation is required. The soft-margin problem introduces slack
variables to relax the assumption of perfect linear separability.

Let the slack variables ξi ≥ 0, and the new problem constraints in form:

yi(< w, xi > +b) ≥ 1 − ξi,

for all i = 1, . . . , m. This new formulation allows constraints to produce values
smaller than one, required by overlapping examples that appear close to the
hyperplane or even on the opposite side. In other words, slack variables permit
positive points to lay on the negative side of the hyperplane and vice-versa.
Figure 4.33 illustrates a problem requiring such relaxation.

The greater slack variables are, the greater is the uncertainty region associated
with the hyperplane. This is the same as having a wider hyperplane in which every
point lying inside it does not have to respect constraints. Figure 4.34 illustrate the
impact of such slackness on the soft-margin hyperplane.

The hard-margin SVM does not work for the task illustrated in Fig. 4.34, because
constraints cannot be held. In such scenario, the only solution is provided by the
soft-margin formulation, having slack variables ξi as relaxations for every constraint
i. Consider the positive point located at the negative side of the hyperplane. The
soft-margin output is:

Fig. 4.33 Classification task
involving the class
overlapping
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Fig. 4.34 Classification task
employing the Soft-Margin
Support Vector Machine
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yi(< w, xi > +b) ≥ 1 − ξi

+1(< w, xi > +b) ≥ 1 − ξi .

Note the hyperplane should produce a negative value for < w, xi > +b, but this
constraint would only be valid for ξi > 1 with sufficient magnitude to make it true.
The same happens for the negative point at the positive side. This reinforces the idea
that ξi works by increasing the thickness of the hyperplane, which is associated to
a region of uncertain classification. Every training example out of that uncertainty
region provides correct answers. We wish to reduce uncertainty as much as possible,
what is the same as reducing the value of ξi . Observe we have a hard-margin SVM
if ξi = 0∀i, confirming the hard-margin is a special case of the soft-margin SVM.

From the Primal hard-margin problem:

minimize
w∈H,b∈R

1

2

∥∥w
∥∥2

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m.

We write the Primal soft-margin problem as:

minimize
w∈H,b∈R,ξ∈Rm+

1

2

∥∥w
∥∥2 + C

m∑
i=1

ξi

subject to yi(< w, xi > +b) ≥ 1 − ξi, for all i = 1, . . . , m

ξi ≥ 0, for all i = 1, . . . , m,
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in which constant C > 0 defines the trade-off between margin maximization and the
constraints relaxation. This constant is hyper-parameter set by the end-user, which
is referred to as cost in several libraries [1]. The additional constraint ξi ≥ 0 is
necessary to ensure feasibility for the other constraints.

Applying the Karush-Kuhn-Tucker conditions to obtain the Dual form:

1. Primal feasibility—we assume there is an optimal solution for which all con-
straints are satisfied, which is verified later;

2. Stationarity—there is at least one stationary point for which the gradient of f is
parallel to the gradient of constraints gi and hj :

�f (x∗) =
n∑

i=1

μ∗
i �gi(x

∗) +
m∑

j=1

λ∗
j�hj (x

∗),

in this case, it is written in form:

Λ(w, b, ξ ,α,β,λ) = 1

2

∥∥w
∥∥2 + C

m∑
i=1

ξi −
m∑

i=1

αi(yi(< xi , w > +b) − 1 + ξi)

−
m∑

i=1

βiξi,

having
∑m

i=1 λiξi as additional constraint to ensure slack variables are greater
than or equal to zero in order to satisfy the main classification constraints, αi and
βi are the KKT multipliers;

3. Complementary slackness—KKT multipliers times inequality constraints must
be equal to zero, what must be evaluated later;

4. Dual feasibility—all KKT multipliers must be positive for inequality constraints,
i.e., αi ≥ 0 and βi for all i = 1, . . . , m. This is also assessed later.

Solving the Lagrangian:

Λ(w, b, ξ ,α,β,λ) = 1

2

∥∥w
∥∥2 + C

m∑
i=1

ξi −
m∑

i=1

αi(yi(< xi , w > +b) − 1 + ξi)

−
m∑

i=1

βiξi,

the derivatives in terms of free variables w, b, ξ are:

∂Λ

∂w
= w −

m∑
i=1

αiyixi = 0
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w =
m∑

i=1

αiyixi ,

then:

∂Λ

∂b
=

m∑
i=1

αiyi = 0,

and, finally:

∂Λ

∂ξi

= C − αi − βi = 0, for all i = 1, . . . , m.

From this last equation, we have:

αi = C − βi, for all i = 1, . . . , m.

Observe αi is constrained by C and βi . Due to the fourth KKT condition, αi ≥ 0
and βi ≥ 0, so that:

0 ≤ αi ≤ C − βi,

and, as βi can assume zero:

0 ≤ αi ≤ C, for all i = 1, . . . , m.

As in the hard-margin SVM problem, we first distribute the Lagrangian terms:

Λ(w, b, ξ ,α,λ) = 1

2

∥∥w
∥∥2 + C

m∑
i=1

ξi −
m∑

i=1

αi(yi(< xi , w > +b) − 1 + ξi)

−
m∑

i=1

βiξi,

to obtain:

Λ(w, b, ξ ,α,λ) = 1

2

∥∥w
∥∥2 + C

m∑
i=1

ξi −
m∑

i=1

αiyi < xi , w > −
m∑

i=1

αiyib

−
m∑

i=1

αi(−1) −
m∑

i=1

αiξi −
m∑

i=1

βiξi,
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and, then, plugging w = ∑m
i=1 αiyixi :

Λ(w, b, ξ ,α,λ) = 1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +C

m∑
i=1

ξi

−
m∑

i=1

m∑
j=1

αiαjyiyj < xi , xj >

−
m∑

i=1

αiyib −
m∑

i=1

αi(−1) −
m∑

i=1

αiξi −
m∑

i=1

βiξi,

next, substituting
∑m

i=1 αiyi = 0:

Λ(w, b, ξ ,α,λ) = 1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +C

m∑
i=1

ξi

−
m∑

i=1

m∑
j=1

αiαjyiyj < xi , xj >

−
m∑

i=1

αi(−1) −
m∑

i=1

αiξi −
m∑

i=1

βiξi,

and using:

αi = C − βi

βi = C − αi,

term βi is no longer necessary:

Λ(w, b, ξ ,α,λ) = 1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +C

m∑
i=1

ξi

−
m∑

i=1

m∑
j=1

αiαjyiyj < xi , xj >

−
m∑

i=1

αi(−1) −
m∑

i=1

αiξi −
m∑

i=1

(C − αi)ξi .
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We can now manipulate three summation terms of that formulation, as follows:

+C

m∑
i=1

ξi −
m∑

i=1

αiξi −
m∑

i=1

(C − αi)ξi =

+
m∑

i=1

Cξi −
m∑

i=1

αiξi −
m∑

i=1

(C − αi)ξi =

+
m∑

i=1

(C − αi)ξi −
m∑

i=1

(C − αi)ξi = 0,

allowing us to reduce it to:

Λ(w, b, ξ ,α,λ) = 1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj >

−
m∑

i=1

m∑
j=1

αiαjyiyj < xi , xj > −
m∑

i=1

αi(−1),

to finally obtain:

W(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +
m∑

i=1

αi,

which was renamed as W(α), given it depends only on αi , for i = 1, . . . , m. This
can be seen as a vector α of variables to be found instead of w, b, ξ , α and β. This
is again the effect of applying the derivation as a way to find the Dual form for the
original soft-margin optimization problem.

From all those steps, we write the Dual form by adding constraints:

maximize
α

W(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +
m∑

i=1

αi

subject to 0 ≤ αi ≤ C, for all i = 1, . . . , m,

m∑
i=1

αiyi = 0,

in which the constraint
∑m

i=1 αiyi = 0 was added because it was cancelled out in
the Lagrangian derivation. To remind the reader, the classification process is:

f (x) = sign (< w, x > +b)
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f (x) = sign

(
m∑

i=1

αiyi < xi , x > +b

)
,

given some unseen example x, in which b is found as:

{
< w, x+ > +b = +1 − ξ+
< w, x− > +b = −1 − ξ−

,

by summing up equations:

< w, x+ + x− > +2b = −ξ+ − ξ−,

and, thus:

b = −1

2
(ξ+ + ξ−) − 1

2
< w, x+ + x− > .

After all those steps, we have the complete soft-margin SVM optimization problem,
which is the most employed in practical scenarios.

4.8 Concluding Remarks

In this chapter, we first introduced a simple classification algorithm based on Linear
Algebra concepts, supporting the reader to understand why SVM employs the dot
product as similarity measurement. Next, we presented both an intuitive and an
algebraic view of the SVM problem. Afterwards, Lagrange multipliers and Karush-
Kuhn-Tucker conditions were detailed in order to support the formulation of both
maximal-margin problems. Next chapter addresses the minimal requirements on
optimization concepts, tools and implementations.

4.9 List of Exercises

1. Using Lagrange multipliers, solve the following optimization problems:

(a)

maximize (x, y) = x2y

subject to x + y = 7
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(b)

maximize f (x, y) = x2 − y2

subject to y − x2 = 1

(c) Let the price of coffee beans be given by the seed cost x and the labor y, as
follows: f (x, y) = x + 3y. Find the maximum and minimum prices, while
respecting constraint x2 + y2 = 1500.

2. Using the KKT conditions, solve the following problem [2]:

(a)

minimize f (x, y) = 2x2 + 3y

subject to g1(x, y) = x2 + y2 − 7 ≤ 0

g2(x, y) = x + y − 1 ≤ 0

which must be written in the standard form (do not forget it) before being
solved, i.e.:

minimize f (x, y) = 2x2 + 3y

subject to g1(x, y) = −x2 − y2 + 7 ≥ 0

g2(x, y) = −x − y + 1 ≥ 0.
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Chapter 5
In Search for the Optimization Algorithm

5.1 Motivation

In this chapter, we provide the necessary foundation for completely design and
implement SVM optimization algorithm. The concepts are described so that those
can be broadly applied to general-purpose optimization problems.

5.2 Introducing Optimization Problems

There are several real-world problems that we wish to minimize cost or maximize
profit while respecting certain constraints. For instance, Formula One designers
attempt to find the best car aerodynamics to maximize speed constrained to fuel
consumption, aircraft manufacturers intend to minimize drag while respecting
turbulence thresholds, agricultural producers must decide how to divide farms into
different crops in order to maximize profit or reduce costs constrained to the total
investment, etc. In all those scenarios, an optimization problem has the following
form:

minimize/maximize f0(x)

subject to fi(x) ≤ bi, for all i = 1, . . . , m,

in which:

1. vector x = [
x1 . . . xn

]T
contains the optimization variables, i.e., the ones that

are allowed to be modified in order to provide a solution for the problem;
2. function f0 : Rn → R is referred to as the objective function;
3. functions fi : Rn → R are the constraint functions (or simply constraints);
4. constants b1, . . . , bm are the constraint bounds.
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Given this problem, vector x∗ is referred to as the optimal or the problem solution
if it produces the minimal (or maximal when that is the case) value of the objective
function, given all constraints are satisfied. Thus, for a minimization problem:

f0(x∗) ≤ f0(x),

and, for a maximization problem:

f0(x∗) ≥ f0(x),

given any feasible value for x. In summary, feasibility means all constraints are
satisfied:

f1(x) ≤ b1, . . . , fm(x) ≤ bm.

5.3 Main Types of Optimization Problems

Optimization problems are typically organized in:

1. Linear optimization problems;
2. Nonlinear optimization problems:

(a) Convex problems;
(b) Quasi-convex problems;
(c) Non-convex problems.

In Linear optimization problems, every function fi , for i = 0, . . . , m is linear.
This means the objective function f0(.), and all constraints f1, . . . , fm are linear.
For instance, Fig. 5.1 illustrates a linear problem in which constraints are defined in

terms of vector x = [
x1 x2

]T
. This means constraint functions are in R

2 while the
objective is mapped in a third dimension, thus the whole problem is in R

3.
In this scenario, we have four linear constraints which are seen as the four straight

lines in the plane formed by combinations of variables x1 and x2. For now, we
will not detail how constraints were defined in order to take the internal region of
this 4-sided polygon as the feasible set. By feasible, we mean that x1 and x2 can
only assume values inside this polygon. It is common to illustrate an optimization
problem by projecting the constraints into the objective function (whenever possible,
i.e., if the problem is in R

2 or R3) as shown in Fig. 5.2.
Such projection helps us to solve linear optimization problems in a simpler

way, only by pointing out the minimum or the maximum value for the objective
function. Of course, there are many scenarios in which projection is impossible or
too complex to provide any visual inspection, therefore algorithmic tools help us to
tackle problems, as seen in Sect. 5.4.
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Fig. 5.1 Example of a linear
optimization problem.
Constraints depend on
variables x1 and x2, therefore
such functions are plotted in
terms of the space R

2 formed
by those two variables.
Observe the outputs provided
by the objective function are
plotted using an additional
axis

Fig. 5.2 Projection of the
constraints on the objective
function in order to support
the interpretation of the linear
optimization problem from
Fig. 5.1

A Nonlinear optimization problem has either the objective function or any of the
constraints as nonlinear. Figures 5.3 and 5.4 illustrate a nonlinear objective function
(convex), and examples of nonlinear constraints, respectively. A single nonlinear
function, either objective or constraint is enough to make it a nonlinear problem.

There is a particular class of nonlinear problems called Convex optimization
problems for which there are solutions. In such class, either the objective function
is convex or the constraints form a convex set, or both. Figure 5.5 illustrates the
situation in which constraints form a convex set for x1 and x2, and the objective
function is linear. In such scenario, constraints are nonlinear but convex, simplifying
the design of optimization algorithms.

In summary, a feasible region, defined by constraints, is referred to as a convex
set when every possible line segment (or affine function) connecting two points
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Fig. 5.3 Example of a nonlinear objective function

Fig. 5.4 Two examples of linear optimization problems with nonlinear constraint functions

A and B inside that region produces points also laying down inside the same set in
form (1−α)A+αB, for 0 ≤ α ≤ 1. Figure 5.5 illustrates a line segment connecting
two points of the feasible region. Observe that all line points are inside the same set.

However, to solve this class of problems, we need complementary methods such
as the Lagrange multipliers and the Karush-Kuhn-Tucker conditions [1, 2, 13, 14].
In addition, when the objective function is convex, we need interior point methods.
All those are discussed in Sect. 5.5.

On the other hand, we could have a Nonlinear and Nonconvex optimization
problem, as depicted in Fig. 5.4. Besides the objective function is linear, notice
the constraints form a nonconvex set for the feasible region. To confirm the
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Fig. 5.5 Example of a
convex optimization problem.
While the objective function
is linear, the constraints form
a convex set

(b)(a)

Fig. 5.6 Illustration of a convex versus a nonconvex set. (a) Convex, (b) non-convex

nonconvexity of the feasible set, we suggest the reader to trace a line segment
connecting two points A and B as shown. If at least one of those line segments
has at least one point outside the region, then it is nonconvex. To better illustrate
convexity and nonconvexity of sets, see Fig. 5.6.

Nonlinear and Nonconvex optimization problems are more difficult to tackle.
Attempt to picture an algorithm that “walks” on the feasible region considering the
gradient of the linear objective function shown in Fig. 5.4. Figure 5.7 shows the
gradients, but using vectors in a bidimensional plane to simplify understanding.
Consider the starting point A and that one wishes to maximize such objective
function, in that situation the algorithm should “walk” according to the gradient
vectors and cross the boundary for the feasible set, what is undesirable once it would
assume invalid solutions (they do not satisfy constraints). A few possible methods
can be used in such scenarios.

There are some methods that avoid crossing the boundaries of the feasible region
by considering something similar to a physical barrier (Fig. 5.8). For instance,
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Fig. 5.7 Illustrating the
gradient vectors for the
problem in Fig. 5.4b

Fig. 5.8 The impact of the
barrier in optimization
problems

consider the algorithm starts at point A but, while moving according to the gradient
vectors, it finds an intransponible barrier (such as the Everest, at least for most
people), then “walks” around it until finding a way to follow the gradient vectors, in
order to finally obtain the optimal solution.

As an alternative, one can also simplify nonconvex sets by creating convex
approximations for the feasible region, as illustrated in Fig. 5.9, making optimiza-
tion much simpler.
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Fig. 5.9 Relaxing the
nonconvex optimization
problem by creating some
convex approximation

Fig. 5.10 Example of a
grid-based approach to solve
a nonconvex optimization
problem

We can also have nonconvex objective functions while having convex feasible
sets (see Fig. 5.10). In such situation, we may consider algorithms that attempt to
apply cover as much as possible the feasible region and evaluate several candidate
points. Then, after finding the best as possible maximum or minimum, it could
use gradient vectors to converge to a fair enough candidate solution. Would such
solution be the optimal? Not sure.

In this book, we are interested in discussing Convex optimization, because
Support Vector Machines correspond to this class of problems. However, before
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starting with this subject, we briefly introduce linear optimization in attempt to
support our reader to better understand all details.

5.4 Linear Optimization Problems

5.4.1 Solving Through Graphing

To start with the linear optimization problems, consider either a maximization or a
minimization problem given linear objective and constraint functions. As first step,
we employ the graphical interpretation and analysis of vertex points to obtain the
optimal solution.

For example, consider 240 acres of land and the following possibilities [17]:

1. $40/acre if we grow corn, and;
2. $30/acre if we grow oats.

Now suppose:

1. Corn takes 2 h of labor per acre;
2. Oats requires 1 h per acre;
3. The farmer has only 320 h of labor available.

As main question: “How many acres of each cereal should the farmer grow to
maximize profit?”. This is a practical example of a linear optimization problem,
but first is has to be properly formulated. We first need to define the free variables,
a.k.a. the optimization variables. In this scenario, a solution is given by vector x =[
x1 x2

]T
, in which x1 is associated to the number of acres of corn, and x2 with

the number of acres of oats. Next, we need to define the objective function. For
that, observe the main question. In this situation, we wish to maximize profit, so
what equation (objective function) would be adequate/enough to quantify profit?
We decided to use the following:

f0(x) = 40x1 + 30x2,

as our objective function, given each acre of corn results in $40 and oats in $30.
As next step, we need to define the constraints, otherwise they could grow up

to an infinite number. In fact, variables x1 and x2 obviously accept only positive
numbers, because a negative amount would be impossible, thus:

x1 ≥ 0, x2 ≥ 0,

from this we have the first two constraints for our problem. In addition, we cannot
grow more than 240 acres, once that is the farm size, so:
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x1 + x2 ≤ 240.

Finally, the farmer has 320 h of labor available:

2x1 + x2 ≤ 320,

given every acre of corn requires 2 h of labor, while oats just one.
The full problem formulation is as follows:

maximize f0(x) = 40x1 + 30x2

subject to x1 + x2 ≤ 240

2x1 + x2 ≤ 320

x1 ≥ 0, x2 ≥ 0,

which can be graphed because there are only two optimization variables (two axes)
plus a third axis for the objective function, so that problem can be represented in a
three-dimensional space. At first, we graph constraint x1 + x2 ≤ 240, as shown in
Fig. 5.11. We found this linear function by considering x2 = 0, i.e. without growing
oats, providing x1 +0 ≥ 240, so that (x1, x2) = (240, 0) = 240, and by considering
x1 = 0, the coordinate (x1, x2) = (0, 240) = 240 is found.

After obtaining this linear function, we need to define which of its sides holds the
constraint. We basically analyze pairs of values (x1, x2) to satisfy it. For instance

Fig. 5.11 Graphing
constraint x1 + x2 ≤ 240.
The gray shaded area
represents the feasible region
for this constraint. The arrow
is a vector indicating the
correct linear function side
that satisfies the constraint
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Fig. 5.12 Graphing constraint 2x1 + x2 ≤ 320 with the previous one

(5, 5) = 10 ≤ 240, what holds it, while (130, 140) = 270 does not. We can trace a
vector to inform us the correct linear function side, depicted as an arrow in Fig. 5.11.

Now we go for the next constraint 2x1 + x2 ≤ 320 and find the second linear
function, as depicted in Fig. 5.12. Similarly, we need to determine the correct side
to consider values for x1 and x2. The reader has probably already noticed the side
will help us to define the feasible region for candidate solutions x.

Finally, we have the two constraints x1 ≥ 0 and x2 ≥ 0, what implies two
additional functions laying on both axes, as shown in Fig. 5.13. It is obvious the
correct sides must be taken into account to ensure both constraints (see direction
vectors on those constraints).

The intersection of all those sides, set in terms of direction vectors associated
to the linear functions, define the feasible region for any candidate solution x, as
depicted in Fig. 5.14.

Now we add a third dimension in this chart to plot the results every pair x =[
x1 x2

]
produces on the objective function f0(x) (Fig. 5.15).

The simplest way to solve this problem involves evaluating the objective function
f0(.) at every vertex defined by constraints. Observe there is no need of assessing
points contained in the interior of the feasible region, because they will provide
neither a maximum nor a minimum (see Fig. 5.15). Thus, we have to assess f0(x)

having vector x equals to (0, 0), (160, 0), (0, 240) and (80, 160):

f0(
[
0 0

]
) = 40 × 0 + 30 × 0 = 0
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Fig. 5.13 All constraints
plotted for the linear
optimization problem
involving the farmer’s
decision, including the x1 ≥ 0
and x2 ≥ 0, which are
indicated by the vectors at the
origin
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Fig. 5.14 Feasible region for
the farmer’s decision
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Fig. 5.15 The complete
farmer’s linear optimization
problem: the plane light gray
dot represents the optimal
solution projected on the
objective function
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f0(
[
160 0

]
) = 40 × 160 + 30 × 0 = 6400

f0(
[
0 240

]
) = 40 × 0 + 240 × 0 = 7200

f0(
[
80 160

]
) = 40 × 80 + 160 × 0 = 8000,

in which vector x = [
80 160

]
is the optimal solution. As consequence, we should

grow 80 acres of corn and 160 of oats to maximize profit.
Considering a different linear optimization problem to illustrate the minimization

scenario [18], suppose a rancher needing to mix two brands of food to feed his/her
cattle:

1. Brand x1:

(a) 15 g of protein;
(b) 10 g of fat;
(c) it costs $0.80 per unit;

2. Brand x2:

(a) 20 g of protein;
(b) 5 g of fat;
(c) it costs $0.50 per unit.

Consider each serving is required to have at least:

1. 60 g of protein;
2. 30 g of fat.
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The main question is: “How much of each brand should he/she use to minimize
the total feeding cost?”. Observe again the need for formulating the problem. As we
already defined, the optimization variables will be x1 and x2, the first associated to
the amount of Brand x1, and the second to Brand x2. Then, the objective function
must be set:

f0(x) = 0.80x1 + 0.50x2,

which is inherently obtained from the cost per unit. The first constraints will
certainly be x1 ≥ 0 and x2 ≥ 0, given negative values are not acceptable to compose
the serving. Then, constraints must ensure the necessary amount of protein and fat
per serving:

15x1 + 20x2 ≥ 60,

and:

10x1 + 5x2 ≥ 30,

respectively. Finally, the complete linear optimization problem is:

minimize f0(x) = 0.80x1 + 0.50x2

subject to 15x1 + 20x2 ≥ 60

10x1 + 5x2 ≥ 30

x1 ≥ 0, x2 ≥ 0,

which requires a three-dimensional space representation, having two axes for
variables x1 and x2, and an additional for the objective function f0(.). We then
start graphing the constraints in terms of variables x1 and x2 to next add the third
dimension. Figure 5.16 illustrates all four constraints.

The feasible region for vector x = [
x1 x2

]
is depicted in Fig. 5.17. Then, we add

a third dimension to represent the values every vector x produces for the objective
function f0(x) (Fig. 5.18).

Observe the gradient vectors in Fig. 5.18. It is easy to notice that smaller costs
are associated to small values for x1 and x2, that is why the analysis of vertices
(4, 0), (0, 6) and (2.4, 1.2) allows to find the minimum (optimum). By assessing the
objective function at those points, we have:

f0(
[
4 0

]
) = 0.80 × 4 + 0.50 × 0 = 3.2

f0(
[
0 6

]
) = 0.80 × 0 + 0.50 × 6 = 3

f0(
[
2.4 1.2

]
) = 0.80 × 2.4 + 0.50 × 1.2 = 2.52,
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Fig. 5.16 Graphing all four
constraints for the rancher’s
decision
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Fig. 5.17 Feasible region for
the rancher’s decision
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Fig. 5.18 The complete rancher’s linear optimization problem

therefore the optimal solution is given by vector x = [
2.4 1.2

]
, according to which

this rancher will mix 2.4 units of Brand x1 with 1.2 unit of Brand x2 to get the
minimal cost while satisfying all constraints.

5.4.2 Primal and Dual Forms of Linear Problems

We now address how to translate those problems into equivalent forms in attempt
to improve modeling and devise simpler algorithms. Here, the original optimization
problem is referred to as the primal form (or the primal problem), which is then
translated into the dual form (or the dual problem). What would it be the benefit
of rewriting the original problem into an equivalent form? That usually helps us to
simplify the free variables and constraints. Next sections introduce the tools to write
the dual forms from the original problems.

5.4.2.1 Using the Table and Rules

In this section, a practical approach of building up dual forms is to use a table
mapping relationships between the primal and dual problems. This provides a
systematic approach to rewrite problems without requiring any additional knowl-
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edge. Afterwards, we interpret the effect of this table-based approach1 and, finally,
introduce the proper reformulation using the Lagrange multipliers.

To begin with, consider the following primal optimization problem [26]:

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

which should be rewritten into its dual form. It is important to mention that if the
primal maximizes, then its dual must minimize another objective function (or vice-
versa):

Primal problem

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

Dual problem

minimize

Then, the upper bounds for all constraints become quantities of the new objective
function to be minimized:

Primal problem

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

Dual problem

minimize 2 10

Those quantities are now associated with free variables:

Primal problem

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

Dual problem

minimize 2λ1 + 10λ2

1More details about this table-based method can be found in [1].
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Then, from the primal constraints:

3x + 4y + z ≤ 2

x + 2y + 3z = 10,

we build up a matrix A:

[
3 4 1
1 2 3

]
,

which, once transposed, provide the quantities for the constraints of the dual form:

Primal problem

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

Dual problem

minimize 2λ1 + 10λ2

subject to 3 1

4 2

1 3
in which the column order is associated with each new variable of the dual form:

Primal problem

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

Dual problem

minimize 2λ1 + 10λ2

subject to 3λ1 1λ2

4λ1 2λ2

1λ1 3λ2
Next, all constraint terms are summed and bounded by the quantities of the

primal objective function:

Primal problem

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

Dual problem

minimize 2λ1 + 10λ2

subject to 3λ1 + 1λ2 3

4λ1 + 2λ2 6

1λ1 + 3λ2 2
This dual formulation still requires the following: (1) defining bounds for λ1

and λ2; and (2) setting the relational operators for the new constraints. Having two
constraints in the primal, two variables are needed in the dual form: λ1 and λ2. The
relational operator associated with the first primal constraint ≤ implies a bound for
λ1 to be greater or equal to zero. Consequently, the operator = in the second primal
constraint implies a bound for λ2, as seen in Table 5.1.
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Table 5.1 Conversion between the primal and dual forms

Variables Minimization problem Maximization problem Constraints

≥ 0 ≤
≤ 0 ≥
Unrestricted =

Constraints Minimization problem Maximization problem Variables

≥ ≥ 0

≤ ≤ 0

= Unrestricted

Analyzing Table 5.1, when the primal is in maximization form and the constraint
uses a relational operator ≤, then the corresponding dual variable must be bounded
as ≥ 0. While variable λ2 will be unbounded, given the constraint in the maximiza-
tion form uses the relational operator =:

Primal problem

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

Dual problem

minimize 2λ1 + 10λ2

subject to 3λ1 + 1λ2 3

4λ1 + 2λ2 6

1λ1 + 3λ2 2

λ1 ≥ 0
Now we need to define the relational operators for the dual constraints. Given

the constraints in the primal form affect the dual variables, the variables of the
primal affect the dual constraints. Observe variables x and z are unbounded, that
is why there is no additional constraint for them. By looking at Table 5.1, observe
that unrestricted variables in maximization problems correspond to the relational
operator = for dual constraints. Then, the first and third constraints must use
operator =, once the first is associated with x, and the third with z:

Primal problem

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

Dual problem

minimize 2λ1 + 10λ2

subject to 3λ1 + 1λ2 = 3

4λ1 + 2λ2 6

1λ1 + 3λ2 = 2

λ1 ≥ 0
Let us analyze the impacts of variable y from the primal form. It is bounded as

y ≥ 0 in the maximization problem, affecting the associated dual constraint to use
the relational operator ≥ (Table 5.1):
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Primal problem

maximize 3x + 6y + 2z

subject to 3x + 4y + z ≤ 2

x + 2y + 3z = 10

y ≥ 0,

Dual problem

minimize 2λ1 + 10λ2

subject to 3λ1 + 1λ2 = 3

4λ1 + 2λ2 ≥ 6

1λ1 + 3λ2 = 2

λ1 ≥ 0
Then we finally have the dual form for the original primal problem. It is

interesting to note that, by solving any of these problems, the same solution is
found. This is guaranteed for linear problems, but not necessarily for other problem
types. In this case, it is worth to obtain the dual form, because it considers only
two variables (λ1 and λ2) instead of three. This makes the problem simpler and, in
addition, allows to solve it by graphing. In the next section, we find again the dual
form for another problem and, then, analyze the solutions found using both forms.

5.4.2.2 Graphical Interpretation of Primal and Dual Forms

We start formulating the dual problem for another linear optimization problem
and, then, provide a graphical interpretation for the solutions in both forms. Thus,
consider the following primal problem:

maximize 6x + 4y

subject to x + y ≤ 2

2x − y ≤ 2

x ≥ 0, y ≥ 0,

The dual form will be a minimization problem, and the bounds for the primal
constraints will define the quantities associated with the dual variables:

Primal problem

maximize 6x + 4y

subject to x + y ≤ 2

2x − y ≤ 2

x ≥ 0, y ≥ 0,

Dual problem

minimize 2 2

Now we define the two new variables λ1 and λ2, and sum both quantities to
compose the dual objective function:
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Primal problem

maximize 6x + 4y

subject to x + y ≤ 2

2x − y ≤ 2

x ≥ 0, y ≥ 0,

Dual problem

minimize 2λ1 + 2λ2

Next, quantities associated with the primal constraints, i.e.:

x + y ≤ 2

2x − y ≤ 2,

are used to build up a matrix A:

[
1 1
2 −1

]
.

and, by transposing A, we find the quantities for the dual constraints:

Primal problem

maximize 6x + 4y

subject to x + y ≤ 2

2x − y ≤ 2

x ≥ 0, y ≥ 0,

Dual problem

minimize 2λ1 + 2λ2

subject to 1 2

1 − 1

Afterwards, the bounds for dual variables are defined:

Primal problem

maximize 6x + 4y

subject to x + y ≤ 2

2x − y ≤ 2

x ≥ 0, y ≥ 0,

Dual problem

minimize 2λ1 + 2λ2

subject to 1λ1 + 2λ2

1λ1 − 1λ2,

and

the quantities of the primal objective function are used to set the bounds for the
constraints:
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Primal problem

maximize 6x + 4y

subject to x + y ≤ 2

2x − y ≤ 2

x ≥ 0, y ≥ 0,

Dual problem

minimize 2λ1 + 2λ2

subject to 1λ1 + 2λ2 6

1λ1 − 1λ2 4.

Next, we look at Table 5.1 to define constraints for variables λ1 and λ2. The first
primal constraint is responsible for restricting λ1, and the second for λ2. Observe
both primal constraints use the relational operator ≤, thus λ1 ≥ 0 and λ2 ≥ 0:

Primal problem

maximize 6x + 4y

subject to x + y ≤ 2

2x − y ≤ 2

x ≥ 0, y ≥ 0,

Dual problem

minimize 2λ1 + 2λ2

subject to 1λ1 + 2λ2 6

1λ1 − 1λ2 4

λ1 ≥ 0, λ2 ≥ 0.

Finally, we analyze bounds for x and y to define the relational operators for the
dual constraints. Both x and y must be greater or equal to zero, thus from Table 5.1,
the relational operator ≥ is then set for both constraints:

Primal problem

maximize 6x + 4y

subject to x + y ≤ 2

2x − y ≤ 2

x ≥ 0, y ≥ 0,

Dual problem

minimize 2λ1 + 2λ2

subject to 1λ1 + 2λ2 ≥ 6

1λ1 − 1λ2 ≥ 4

λ1 ≥ 0, λ2 ≥ 0,

which is the final dual problem formulation.
Let us analyze both forms by graphing solutions. Figure 5.19 illustrates the

constraints in a space with x and y as defined in the primal problem.
The corners of the feasible region provide the solution:

Given(0, 0) → 6x + 4y = 6(0) + 4(0) = 0

Given(1, 0) → 6x + 4y = 6(1) + 4(0) = 6

Given(0, 2) → 6x + 4y = 6(0) + 4(2) = 8

Given

(
4

3
,

2

3

)
→ 6x + 4y = 6

(
4

3

)
+ 4

(
2

3

)
= 32

3
≈ 10.66,
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Fig. 5.19 Graphing the
primal problem
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consequently, the solution for this maximization primal problem is at x = 4
3 and

y = 2
3 , for which the objective function produces 32

3 ≈ 10.66.
Figure 5.20 illustrates the dual problem, in which two corners must be evaluated:

Given(6, 0) → 2(6) + 2(0) = 12

Given

(
14

3
,

2

3

)
→ 2

(
14

3

)
+ 2

(
2

3

)
= 32

3
≈ 10.66,

allowing us to conclude that both primal and dual forms provide the same solution.
While the primal problem is a maximization under a constrained space spanned

by x and y, the dual minimizes under a different space defined by λ1 and λ2. The
outcome provided by both objective functions is the same, however the optimization
process adapts different free variables while looking for the solution.

In the particular scenario of linear optimization problems, the primal and dual
objective functions always provide the same result, what is referred to as Strong
Duality. On the other hand, there is a class of nonlinear problems for which the
outcomes of the objective functions are different, meaning we have a Weak Duality.
When the duality is weak for a primal maximization (minimization) problem,
the objective function will provide an outcome that is less (greater) than the one
produced by its dual form. As a consequence, when solving the primal and the dual
forms simultaneously, we can analyze whether the final outcomes are equal or not.
When equal, the problems are completely equivalent. When different, it is possible
to measure the gap between them (how distant one is from the other).
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Fig. 5.20 Graphing the dual
problem
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5.4.2.3 Using Lagrange Multipliers

The previous section illustrated a table-based method to formulate dual problems.
Such a table is build up using Lagrange multipliers. Now Lagrange multipliers are
employed to analytically formulate the dual problem without needing a mapping
table.

For example, consider the following primal problem:

maximize F(x)

subject to g(x) ≤ b,

from which the dual is found by solving the following Lagrangian:

minimize L(x, λ) = F(x) − λ [g(x) − b]

subject to
∂L

∂x
= 0

λ ≥ 0

x ∈ D,

whose terms can be described as:

1. first constraint ∂L
∂x

= 0 is required to make the gradient vector of F(x) parallel
to the gradient vector of constraint g(x) − b (this is detailed in Sect. 4.5.1);
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2. second constraint λ ≥ 0 is due to the relational operator ≤ used in the constraint
of the primal problem as previously discussed in last section (see Table 5.1). A
more detailed explanation is given later in the text, when discussing the KKT
conditions;

3. third constraint informs us that x ∈ D, i.e. in the feasible region D, for this
primal problem. Any x outside D would be invalid by disrespecting the primal
constraints.

In order to exercise this formal framework to build up the dual form, consider the
following primal problem:

maximize cT x

subject to Ax ≤ b.

Then, we build the Lagrangian:

L(x, λ) = cT x − λ (Ax − b) ,

and use it to formulate the dual, as follows:

minimize L(x, λ) = cT x − λ (Ax − b)

subject to
∂L

∂x
= 0

λ ≥ 0

x ∈ D.

We now solve constraint ∂L
∂x = 0:

∂L

∂x
= ∂

∂x
cT x − λ (Ax − b)

= c − AT λ = 0

AT λ = c.

Since this formulation respects the parallel gradients, any substitution resultant of
this last derivative provides the same stationary solutions. Therefore, we can take
advantage of using this equation to make substitutions in the original Lagrangian.
So, from:

L(x, λ) = cT x − λ (Ax − b) ,

we obtain:

L(x, λ) = cT x − AT λx + λb,
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and given that AT λ = c, then:

L(x, λ) = cT x − cT x + λb

= λb,

finally, the dual problem will be:

minimize L(x, λ) = λb

subject to AT λ = c

λ ≥ 0,

then observe we disconsidered x ∈ D because the whole problem is no longer
represented in terms of x. In fact, after solving the dual problem, we can also find x.

To complement, we suggest the reader to observe that c, associated with
the primal objective function, defines the upper bounds for the dual constraints,
justifying part of the table-based method discussed in the previous section. Matrix
A, that defines the quantities associated with primal constraints, is now transposed
in the dual. Moreover, pay attention in the new dual variable λ, which corresponds
to the Lagrange multipliers, ensuring gradient vectors are parallel. Finally, λ is
required to be greater than or equal to zero (≥ 0), due to the relational operator
≤ found in the constraint of the primal problem.2

Let the primal form be:

minimize λb

subject to AT λ = c

λ ≥ 0.

Say the corresponding dual form is:

maximize cT x

subject to Ax ≤ b.

In order to confirm this is indeed the correct formulation, we must first build up
the Lagrangian for the primal problem:

L(λ, x) = λb − x
(
AT λ − c

)
,

2We will not detail this information in here, but discuss it later in a convex optimization scenario.
We suggest [1] as a more detailed introduction to linear optimization problems.
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in which the Lagrange multiplier is x, only because that will help us to obtain the
same problem form as before.

Solving the Lagrangian to ensure parallel gradient vectors:

∂L

∂λ
= ∂

∂λ
λb − x

(
AT λ − c

)

= b − Ax = 0

= Ax = b,

thus, substituting this term in the Lagrangian:

L(λ, x) = λb − x
(
AT λ − c

)

= λb − Axλ + cT x

= λb − λb + cT x

= cT x.

Then, the dual form is:

maximize cT x,

and the constraints are obtained from Ax = b. By considering the same concepts of
the previous section (see Table 5.1 for more information), minimization problems
whose variables are bounded in form ≥ 0 require the relational operator ≤ in the
dual constraints:

maximize cT x

subject to Ax ≤ b.

We should also analyze the eventual constraints that x will take in the dual
form. From Table 5.1, we see that constraints in the primal form of a minimization
problem using the relational operator = define an unbounded variable in the dual.
Therefore, there is no need to add any other constraint for x. This finally confirms
the dual problem is found after applying the Lagrangian on the primal. The reader
might not be completely satisfied with the usage of Table 5.1 to represent relational
operators, however that will be better explained analyzing the KKT conditions for
convex optimization problems.
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Fig. 5.21 Illustrating the
Simplex algorithm
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5.4.3 Using an Algorithmic Approach to Solve Linear
Problems

We now provide an algorithmical view on how to solve linear problems using the
Simplex algorithm. This section does not intend to explain all Simplex forms and
details, but solely an introduction3 to solve linear problems in maximization form
given constraints are defined using ≤, or in minimization form provided constraints
use ≥.

Intuitively, the Simplex algorithm is an approach to visit the corners of the
feasible region in order to solve the linear optimization problem. At every corner, it
computes the objective function and decides which vertex provides the solution.

To illustrate, consider Fig. 5.21 that defines a linear optimization problem with
four constraints. The feasible region is the set for which all constraints are held.
The gradient of the objective function is traced using directional vectors, supporting
the visual inspection of the maximal and the minimal corners. Simplex starts at any
corner and “walks” in the direction of the gradient vectors to reach another candidate
solution. More specifically, it moves to another corner while the gradient vector
is increased given a maximization problem, or decreased when a minimization is
considered.

For example, suppose a company manufacturing different car parts [19]:

3More details in [1].
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1. Component A—requires 2 h of fabrication and 1 h of assembly;
2. Component B—requires 3 h of fabrication and 1 h of assembly;
3. Component C—requires 2 h of fabrication and 2 h of assembly.

Then, consider:

1. This company has up to 1000 h available for fabrication, and 800 h of assembly
time a week;

2. If the profit on each component A, B and C is respectively $7, $8 and $10, how
many components of each type should be produced to maximize profit?

From that, we start by defining the optimization variables as:

1. x1 represents the number of components A;
2. x2 represents the number of components B;
3. x3 represents the number of components C.

Then, we need an objective function to be maximized:

maximize P = 7x1 + 8x2 + 10x3,

having the quantities 7, 8 and 10 defined according to the individual profit provided
by each component A, B and C, respectively.

Next, we need to set the problem constraints. There are three associated with the
variables:

maximizeP = 7x1 + 8x2 + 10x3

subject to x1, x2, x3 ≥ 0,

due to one cannot manufacture a negative number of components.
Another constraint is necessary to bound the fabrication time. Remind the

company has up to 1000 h for fabrication, so:

2x1 + 3x2 + 2x3 ≤ 1000,

what is a consequence of the hours to fabricate components A, B and C, respectively.
Finally, the next constraint bounds the available assembly time, as follows:

x1 + x2 + 2x3 ≤ 800,

which is resultant of the assembly time spent on each component A, B and C,
respectively.

Putting all pieces together, the linear optimization problem is:

maximize P = 7x1 + 8x2 + 10x3

subject to 2x1 + 3x2 + 2x3 ≤ 1000
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x1 + x2 + 2x3 ≤ 800

x1, x2, x3 ≥ 0.

To apply the Simplex algorithm, we must transform our formulation to the
standard form. We start by taking the objective function:

P = 7x1 + 8x2 + 10x3,

and making it equal to zero:

−7x1 − 8x2 − 10x3 + P = 0.

Then, the slack variables s1 and s2 are introduced to convert the inequality
constraints to equalities:

2x1 + 3x2 + 2x3 + s1 = 1000

x1 + x2 + 2x3 + s2 = 800,

and observe s1, s2 ≥ 0 to ensure such inequalities, i.e., they must sum up in order to
be equal to 1000 and 800. This standard transformation makes the whole problem
easier to be addressed [1].

We now have the following system of equations:

−7x1 − 8x2 − 10x3 + P = 0

2x1 + 3x2 + 2x3 + s1 = 1000

x1 + x2 + 2x3 + s2 = 800,

which is used to build up the Simplex Tableau. Then, labeling our variables as
columns:

x1 x2 x3 s1 s2 P Results

and adding the quantities associated to the new equality constraints:

x1 x2 x3 s1 s2 P Results

2 3 2 1 0 0 1000

1 1 2 0 1 0 800

and, finally, the objective function is set as equal to zero (after a solid line to make
it more evident):
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x1 x2 x3 s1 s2 P Results

2 3 2 1 0 0 1000

1 1 2 0 1 0 800

−7 −8 −10 0 0 1 0

From that, we start executing the Simplex steps. Initially, we label the two first
Tableau rows with the slack variables, and the last with variable P :

Basis x1 x2 x3 s1 s2 P Results

s1 2 3 2 1 0 0 1000

s2 1 1 2 0 1 0 800

P −7 −8 −10 0 0 1 0

what is the same as defining the basis for a given space in Linear Algebra. This
means only a vector composed of s1 and s2 is currently considered to solve this
problem. This is the same as taking only the submatrix with the rows and columns
corresponding to the slack variables (current basis):

Basis x1 x2 x3 s1 s2 P Results

s1 2 3 2 1 0 0 1000

s2 1 1 2 0 1 0 800

P −7 −8 −10 0 0 1 0

Being the same as:

B =
[

1 0
0 1

]
,

which currently defines the solution basis in terms of Linear Algebra.4

Given basis B, we must solve the following system of equations:

Bx = b,

in which:

b =
[

1000
800

]
,

4More details in [23].
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to obtain x:

Bx = b

x = B−1b

x =
[
s1

s2

]
=

[
1 0
0 1

] [
1000
800

]
=

[
1000
800

]
.

Considering this basis B, slack variables are s1 = 1000 and s2 = 800.
Consequently, no component is fabricated x1 = x2 = x3 = 0, yet the constraints are
held, what is not a reasonable solution. Observe the Simplex must find the best basis
B that maximizes the profit by adapting the Tableau and bringing other variables to
form a next candidate basis. Thus, as two terms compose our current basis, only two
components will be fabricated. If another constraint is included, it would be possible
to define three variables.

As in Linear Algebra, the best basis is found by using the row-reduced echelon
form, what depends on a pivot term. The most relevant term to be corrected is made
evident at the last row, which is associated with the objective function. The variable
that better supports the optimization criterion is the one having the most negative
value (in bold):

Basis x1 x2 x3 s1 s2 P Results
s1 2 3 2 1 0 0 1000
s2 1 1 2 0 1 0 800
P −7 −8 −10 0 0 1 0

defining the pivot column. This column informs us that variable x3 must be
considered at this point as part of our next basis B. However, one of the slack
variables must provide room for x3 (see row labels). In order to take such decision,
column “Results” is divided by the corresponding values (values for x3) in the pivot
column:

Basis x1 x2 x3 s1 s2 P Results

s1 2 3 2 1 0 0 1000
s2 1 1 2 0 1 0 800
P −7 −8 −10 0 0 1 0

thus:

1000

2
= 500

800

2
= 400,
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allowing to find the pivot row as the one producing the smallest value, i.e. 400,
which is associated with the smallest as possible gradient correction, however still
respecting constraints. Therefore, the row associated to variable s2 is the pivot row:

Basis x1 x2 x3 s1 s2 P Results

s1 2 3 2 1 0 0 1000

s2 1 1 2 0 1 0 800

P −7 −8 −10 0 0 1 0

Having both the pivot row and column, the pivot term is (in bold):

Basis x1 x2 x3 s1 s2 P Results

s1 2 3 2 1 0 0 1000

s2 1 1 2 0 1 0 800

P −7 −8 −10 0 0 1 0

Next, the row-reduced echelon form must be used to make the pivot term equals
to one, requiring row operations. Firstly, we multiply the second row by 1

2 (using the
following notation: R2 = 1

2R2) to obtain (such as when solving a linear system):

Basis x1 x2 x3 s1 s2 P Results

s1 2 3 2 1 0 0 1000

s2
1
2

1
2 1 0 1

2 0 400

P −7 −8 −10 0 0 1 0

Secondly, row operations are used to make the other column terms equal to zero,
therefore we operate on the first and third rows as follows (R means row and the
index corresponds to the row number):

R1 = R1 − 2R2

R3 = R3 + 10R2

to obtain:

Basis x1 x2 x3 s1 s2 P Results

s1 1 2 0 1 −1 0 200

s2
1
2

1
2 1 0 1

2 0 400

P −2 −3 0 0 5 1 4000
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Thirdly, we substitute the row variable R2 (s2) by the pivot column variable x3 to
compose the next basis:

Basis x1 x2 x3 s1 s2 P Results

s1 1 2 0 1 −1 0 200

x3
1
2

1
2 1 0 1

2 0 400

P −2 −3 0 0 5 1 4000

Now there is another basis to represent the solution for our linear optimization
problem, defined by variables s1 and x3 whose values are found by computing5:

Bx = b

x = B−1b

x =
[
s1

x3

]
=

[
1 0
0 1

] [
200
400

]
=

[
200
400

]
.

which confirms the correction s1 = 200 is necessary to hold the constraints for
this optimization problem, given x3 = 400. As matter of fact, all slack variables
should be equal to zero, allowing to find a solution with no relaxation. That is always
possible for linear optimization problems.

Iterations repeat all previous steps. Thus, in this example, we must analyze the
last row R3 looking for the current most negative value, which is now at the column
associated with x2. Then, we proceed in the same way as before by dividing the
results (last column) by the quantities at column x2:

200

2
= 100

400
1
2

= 800,

and the pivot row has the smallest value after such operation, i.e. R1. Therefore, the
pivot term is 2 (in bold):

Basis x1 x2 x3 s1 s2 P Results

s1 1 2 0 1 −1 0 200

x3
1
2

1
2 1 0 1

2 0 400

P −2 −3 0 0 5 1 4000

5Observe we build matrix B using the columns associated to those variables indexing rows.
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and now the next basis must be found for this Tableau by applying the row-reduced
echelon form again. So, we operate on rows in the following order (the order is
relevant):

R1 = 1

2
R1

R2 = R2 − 1

2
R1

R3 = R3 + 3R1,

to obtain:

Basis x1 x2 x3 s1 s2 P Results

s1
1
2 1 0 1

2 − 1
2 0 100

x3
1
4 0 1 − 1

4
3
4 0 350

P − 1
2 0 0 3

2
7
2 1 4300

and the row variable s1 (pivot row) is exchanged with the column variable x2 (pivot
column):

Basis x1 x2 x3 s1 s2 P Results

x2
1
2 1 0 1

2 − 1
2 0 100

x3
1
4 0 1 − 1

4
3
4 0 350

P − 1
2 0 0 3

2
7
2 1 4300

Using this new basis:

Bx = b

x = B−1b

x =
[
x2

x3

]
=

[
1 0
0 1

] [
100
350

]
=

[
100
350

]
,

given there is no slack variable labeling rows, so we may conclude this is a candidate
solution. Thus, let us plug those values for x2 and x3 into our original problem:

maximize P = 7x1 + 8x2 + 10x3

subject to 2x1 + 3x2 + 2x3 ≤ 1000

x1 + x2 + 2x3 ≤ 800
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x1, x2, x3 ≥ 0,

to obtain (x1 = 0 as this variable does not compose the basis):

maximize P = 7(0) + 8(100) + 10(350)

subject to 2(0) + 3(100) + 2(350) ≤ 1000

(0) + (100) + 2(350) ≤ 800

x1, x2, x3 ≥ 0,

what is the same as:

maximize P = 7(0) + 8(100) + 10(350) = 4300

subject to 1000 ≤ 1000

800 ≤ 800

x1, x2, x3 ≥ 0,

therefore, this is indeed a candidate solution, provided all constraints were held.
Observe the objective function produced 4300 as output, which is the same value
at the last column and row of the Tableau (see Table 5.2). In fact, such a Tableau
cell always provides the objective function output, therefore there is no need of
computing it using the original problem form. However, the last row of this Tableau
still contains a negative number (variable x1), indicating that there is still room for
improvements.

As consequence, we must proceed with another iteration to find the next pivot
term which is at the first column. So, dividing the results by the quantities at the first
column:

100
1
2

= 200

350
1
4

= 1400,

then, the first is the pivot row, and the pivot term is (in bold—see Table 5.2):

Table 5.2 Tableau
representing the first
candidate solution

Basis x1 x2 x3 s1 s2 P Results

x2
1
2 1 0 1

2 − 1
2 0 100

x3
1
4 0 1 − 1

4
3
4 0 350

P − 1
2 0 0 3

2
7
2 1 4300
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Operating on rows to make the pivot term equals to 1 and any other term equals
to zero:

R1 = 2R1

R2 = R2 − 1

4
R1

R3 = R3 + 1

2
R1,

we obtain:

Basis x1 x2 x3 s1 s2 P Results

x2 1 2 0 1 −1 0 200

x3 0 − 1
2 1 − 1

2 1 0 300

P 0 1 0 2 3 1 4400

and, then, exchanging the variable associated with the pivot row with x1:
Finally, observe there is no negative value at the last row, meaning the Simplex

algorithm has reached its stop criterion. Our last basis is:

Bx = b

x = B−1b

x =
[
x1

x3

]
=

[
1 0
0 1

] [
200
300

]
=

[
200
300

]
,

given the objective function produces 4400. Such output is confirmed by plugging
x1 = 200 and x3 = 300 (x2 = 0 as it is not part of the basis):

maximize P = 7(200) + 8(0) + 10(300) = 4400

subject to 2(200) + 3(0) + 2(300) ≤ 1000

(200) + (0) + 2(300) ≤ 800

x1, x2, x3 ≥ 0.

Notice Simplex has improved the previous candidate solution. Consequently, the
maximum profit is obtained for:

1. x1 = 200 components of type A;
2. x2 = 0 component of type B;
3. x3 = 300 components of type C;



5.4 Linear Optimization Problems 263

4. No slackness is necessary to hold equality constraints,6 thus s1 = 0 and s2 = 0.

An interesting observation is that the algorithm actually found a transformation
basis. Now that we know the basis is formed by x1 and x3, it is easy to notice from
the first Tableau:

x1 x2 x3 s1 s2 P Results

2 3 2 1 0 0 1000

1 1 2 0 1 0 800

−7 −8 −10 0 0 1 0

that we originally had a basis represented in matrix form as:

B =
[

2 2
1 2

]
,

and then finding its inverse, B−1:

B1 =
[

1 −1
− 1

2 1

]
,

which is exactly the values obtained at the last Tableau (see Table 5.3) for the
columns associated with the slack variables s1 and s2. Thus, observe the initial
solution provides full relevance to slack variables and, via step by step reductions,
the final basis is found for this linear optimization problem. In addition, the row-
reduced echelon form provided us the basis and its inverse.

5.4.4 On the KKT Conditions for Linear Problems

The Karush-Kuhn-Tucker conditions define necessary properties so the primal and
the dual forms of some optimization problem provide close enough results [1, 2,

Table 5.3 Tableau
representing the final solution

Basis x1 x2 x3 s1 s2 P Results

x1 1 2 0 1 −1 0 200

x3 0 − 1
2 1 − 1

2 1 0 300

P 0 1 0 2 3 1 4400

6Remember the original constraints were modified to assume the equality form by using the slack
variables.
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13, 14]. In this section, the KKT conditions for linear optimization problems are
formalized:

Primal problem

minimize cT x

subject to Ax ≥ b

x ≥ 0

Dual problem

maximize wT b

subject to wT A ≤ c

w ≥ 0
In summary, the KKT conditions are employed to provide guarantees for all

primal constraints, i.e. the primal feasibility:

Ax ≥ b, x ≥ 0,

and for all dual constraints, i.e. the dual feasibility:

wT A ≤ c, w ≥ 0.

In addition, for linear optimization problems, KKT conditions prove the strong
duality, i.e., both objective functions produce the same output, as follows:

cT x = wT b.

In order to prove the strong duality, consider the primal constraint:

Ax ≥ b,

in terms of equality (what could be also obtained using some slack variable):

Ax = b,

thus, we substitute b:

cT x = wT b

cT x = wT Ax

cT x − wT Ax = 0

(cT − wT A)x = 0,

so if and only if wT A = cT , then this property is held, ensuring the objective
functions output is the same on both forms.

Looking from the perspective of the dual constraint wT A ≤ c and still having
the same equality, we wish to hold:
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cT x = wT b.

Considering the dual constraint holds the equality (what can be also ensured by
adding slack variables), we have:

wT A = c,

and, then, cT is substituted as follows:

AT wx = wT b

AT wx − wT b = 0

wT (Ax − b) = 0.

As consequence, note cT x = wT b holds, thus the following two equations must
also hold:

cT = wT A

Ax = b,

confirming the solution is found by respecting the primal and the dual constraints.
However, our optimization problem has inequality constraints, so we need to

reformulate it by adding slack variables and taking into account the possibility of a
weak duality. This means we assume the outputs of the two objective functions may
not be the same:

cT x ≥ wT b,

thus, the primal form to be minimized may produce greater values than the dual to be
maximized. This is what happens when the duality is weak: the results provided
by both objective functions may be different even for the best as possible solution
found from each form.

Therefore, a slack variable s ≥ 0 is added to ensure the equality:

cT x ≥ wT b

cT x − s = wT b; s ≥ 0,

and, then, proceed as follows:

cT x − wT b = s; s ≥ 0.

Now the primal feasibility (primal constraint) can be written in equality form:
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Ax = b,

once the slack variable accounts for the divergence between the primal and dual
objective functions. Reformulating the equation:

cT x − wT b = s

cT x − wT Ax = s

(cT − wT A)x = s; s ≥ 0,

as consequence:

cT − wT A = sx; s ≥ 0.

To ensure the strong duality, sx = 0 for s ≥ 0, and, finally, the KKT conditions
are:

1. Primal feasibility: Ax ≥ b, x ≥ 0;
2. Dual feasibility: wT A ≤ c, w ≥ 0;
3. Complementary slackness: wT (Ax − b) = 0; sx = 0.

Finally, observe the first two KKT conditions are used to simply ensure all
constraints (primal and dual), while the third condition connects both forms in terms
of their objective functions.

5.4.4.1 Applying the Rules

The KKT conditions are applied to explain how to tackle the following practical
scenario:

minimize − x1 − 3x2

subject to x1 − 2x2 ≥ −4

− x1 − x2 ≥ −4

x1, x2 ≥ 0,

whose constraint functions, the gradient of the objective function, and the feasible
set are illustrated in Fig. 5.22. Note the corners that the Simplex algorithm assesses
to find the solution are given by the following pairs (x1, x2): (0, 0), (4, 0), (0, 2),

and
(

4
3 , 8

3

)
. Now we attempt to apply the KKT conditions on those candidate

solutions.
At first, consider corner x1 = 0, x2 = 0 as the candidate solution to be assessed.

Beforehand, we need to define matrix A as the quantities associated with the
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Fig. 5.22 Illustrating the
linear optimization problem
to be analyzed using the KKT
conditions
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constraint functions:

A =
[

1 −2
−1 −1

]
,

and vector b defined by the constraint bounds:

b =
[−4
−4

]
,

having vector c with the objective function quantities:

c =
[−1
−3

]
,

vector x defined by the pair (x1, x2):

x =
[
x1

x2

]
,

vector w is associated to the Lagrange multipliers (see Sect. 4.5.1) and it comes up
when building the dual form. Finally, vector s corresponds to the slack variables to
ensure equality constraints, as discussed in the previous section.
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From all those definitions, by assessing the KKT conditions for:

x =
[

0
0

]
,

the first condition Ax ≥ b, given x ≥ 0, is:

A

[
0
0

]
≥

[−4
−4

]
,

allowing to ensure the primal feasibility.
From the second KKT condition wT A ≤ c, given w ≥ 0, the two constraint

functions are non-binding, i.e., they are not applied at the point (0, 0), therefore:

w =
[

0
0

]
,

and, consequently:

wA + s = c; w ≥ 0; s ≥ 0
[

0
0

]
A + s = c

s = c

s =
[−1
−3

]
,

what violates the non-negativity property s ≥ 0, therefore the candidate solution
(0, 0) is not optimal. That means there is no need for evaluating the remaining KKT
conditions.

Now we go directly to the optimal point
(

4
3 , 8

3

)
, and suggest the reader to test

the other corners later. Starting with the first KKT condition Ax ≥ b, x ≥ 0:

A

[ 4
3
8
3

]
≥

[−4
−4

]

[−4
−4

]
=

[−4
−4

]
,

which is true.
From the second condition wA + s = c, w ≥ 0, given s ≥ 0, vector w must have

values greater than zero, provided both constraint functions are binding. However,
since x > 0, in order to satisfy part of the third condition sx = 0, then s must be
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equal to the zero vector, i.e., s = 0:

wA + s = c; w ≥ 0, s ≥ 0

wA +
[

0
0

]
= c

{
w1 − w2 = −1

−2w1 − w2 = −3
,

resulting in:

w =
[
w1

w2

]
=

[ 2
3
5
3

]
,

satisfying the second condition.
Proceeding with the third KKT condition, wT (Ax − b) = 0, sx = 0, we already

know that sx = 0, and then:

wT (Ax − b) = 0

[
2
3

5
3

] ([ 1 −2
−1 −1

] [ 4
3
8
3

]
−

[−4
−4

]
= [

2
3

5
3

] [0
0

]
= 0

)
,

showing the last condition is satisfied. Therefore, the optimal point is:

x =
[
x1

x2

]
=

[ 4
3
8
3

]
.

This simple linear optimization problem illustrates how the KKT conditions can
be used to find and prove the optimal solution.

5.4.4.2 Graphical Interpretation of the KKT Conditions

In this section, we get back to the previous optimization problem illustrated in
Fig. 5.22:

minimize − x1 − 3x2

subject to x1 − 2x2 ≥ −4

− x1 − x2 ≥ −4

x1, x2 ≥ 0,
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Fig. 5.23 Illustration of the
linear optimization problem
used to graphically analyze
the KKT conditions: step 2
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We start by computing the gradient vector for the objective function −x1 − 3x2:

�f = c =
[−1
−3

]
,

and plotting it at every corner of the feasible set (see Fig. 5.23).
Afterwards, the gradient vectors of the constraint functions are computed (term

ci is associated to the gradient vector for the i-th constraint):

�c1 =
[

1
−2

]

�c2 =
[−1
−1

]
,

as well as the gradient vectors bounding variables (i.e., x1, x2 ≥ 0):

�v1 =
[

1
0

]

�v2 =
[

0
1

]
.
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Fig. 5.24 Illustration of the
linear optimization problem
used to graphically analyze
the KKT conditions: step 3
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All those gradient vectors are plotted at the corners affected by such constraints (see

Fig. 5.24). For example, at the point
(

4
3 , 8

3

)
, the gradients �c1 and �c2 are plotted;

at the point (4, 0), we plot the gradient vectors for the first constraint (�c1) and the
one associated to variable x1 (�v1).

Those gradient vectors allow a visual interpretation of the results evaluated at
each candidate solution. Let us take point (0, 2) and use its constraint gradients to
define a cone, as depicted in Fig. 5.25. Observe the gradient of the objective function
�f does not lay inside such a cone at that particular corner, meaning point (0, 2) is
not the optimal.

Now we inspect all other corners to look for the solution in which �f lies inside

the convex cone. Observe
(

4
3 , 8

3

)
is the only satisfying the criterion, and therefore

represents the optimal (minimal) solution. If we had a maximization problem, we
would instead check whether the negative of the gradient (i.e., − � f ) lays inside
such a cone. This is the geometrical interpretation of the KKT conditions while
ensuring the solution at a particular corner for linear problems. For more information
about the KKT conditions, we suggest the reader to study the Farkas’ lemma [1].

5.5 Convex Optimization Problems

Linear optimization problems can either be graphed, in terms of their gradient
vectors, to be manually solved (when possible) or algorithmically approached using
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Fig. 5.25 Illustration of the
linear optimization problem
used to graphically analyze
the KKT conditions: step 4
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the Simplex method. However, nonlinear optimization problems require different
strategies. In this section, we are interested in convex nonlinear problems, in
particular defined by functions as follows:

1. Convex constraints and linear objective function;
2. Convex constraints and convex objective function.

Figure 5.26 illustrates the first scenario, in which the nonlinear optimization
problem has convex constraints and a linear objective function. Note the constraints
form a convex set, i.e., if a line segment is traced connecting two points inside the
feasible region, then all line points are within the same region. In this situation, we
can simply “project” the constraints onto the linear objective function to find either
the maximal or the minimal solution.

This problem was already discussed in Sect. 4.5.1, in the context of Lagrange
multipliers. Such method solves those optimization problems for equality con-
straints projected into the objective function. However, nonlinear optimization
problems with convex constraints and a convex objective function require more
advanced techniques. To illustrate, consider the primal problem for the Support
Vector Machines:

minimize
w∈H,b∈R

τ(w) = 1

2

∥∥w
∥∥2

subject to yi(< w, xi > +b) ≥ 1, for all i = 1, . . . , m,
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Fig. 5.26 Optimization
problem involving convex
constraints and a linear
objective function
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Fig. 5.27 Optimization problem involving convex constraints and a convex objective function

in which the objective function is convex and the constraints are linear but form a
convex feasible region, more details in [2]. Figure 5.27 illustrates this problem in
a typical scenario in which constraints are defined in terms of two variables xi =
(xi,1, xi,2), for every possible example i. By plugging w into the objective function,
the convex surface is obtained whose values are represented by the third axis τ(w).

Notice linear constraints define a convex feasible set for xi . Figure 5.28 illustrates
the convexity of this feasible region by using an affine function connecting any two
points inside such set.
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Fig. 5.28 Illustrating the convexity of the feasible region

It is very important to notice that the minimum (optimal solution) is not at the
boundary defined by the linear constraints, but it is inside the feasible region so
that methods assessing boundaries are not sufficient. For example, neither Lagrange
multipliers nor the Simplex algorithm would be adequate to tackle this class of
problems.

In fact, the solution can be anywhere inside the feasible region, even including
its boundaries (but not exclusively). The method to solve this class of problems
is required to “walk” inside the feasible set until finding the solution. At first
someone may think about a gradient descent method as employed by the Multilayer
Perceptron (Sect. 1.5.2), however that algorithm solves an unconstrained problem.
In this context, Interior Point Methods are the most adequate algorithms [2, 20].

Before proceeding with those algorithms, we must firstly write the dual form
for the SVM problem and discuss some additional details (following the concepts
provided in Sects. 4.6 and 4.7). Recall the SVM dual problem:

maximize
α

W(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +
m∑

i=1

αi

subject to 0 ≤ αi ≤ C, for all i = 1, . . . , m,

and
m∑

i=1

αiyi = 0,
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after applying the Lagrange multipliers and the KKT conditions as problem
adaptation tools. In addition, recall x is a vector defining the attributes for a given
training example.

We now have sufficient background to discuss some properties:

1. About the number of constraints: m defines both the number of examples and
constraints. That means every additional training example imposes an additional
linear constraint;

2. About the nonbinding constraints: assuming a binary classification problem
without class overlapping, the equality for the primal constraints, yi(< w, xi >

+b) ≥ 1, must be ensured only for the support vectors. That is enough so
the remaining points, far from the hyperplane, consequently satisfy constraints.
Every constraint has a KKT multiplier associated with, whose value αi > 0
when binding. Observe that, by having αi > 0 for every ith support vector, we
already define the SVM margin for the most restricted case, i.e. the points nearby
the maximal margin hyperplane. As consequence, the remaining constraints are
nonbinding, thus their αj = 0, for every example that is not a support vector;

3. About the objective functions: when the primal problem is represented by a
convex function, its dual must form a concave function.

To illustrate the second property, suppose a two-class SVM problem (see
Fig. 5.29), in which the best hyperplane is known, and xi = (xi,1, xi,2) for every
training example i.
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Fig. 5.29 Illustration of a two-class SVM problem
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Recall vector w for the SVM problem is given by:

w =
m∑

i=1

αiyixi ,

in which xi is a vector in this bidimensional space, yi = −1 for i = 1, . . . , 5 and
yi = +1 for i = 6, . . . , 10, and let α1 = α6 = 0.005102041 be the binding KKT
multipliers, and αi = 0 the nonbinding ones, which are related to any other point in
space. For this particular problem:

w =
[

0.07142857
0.07142857

]
,

and b = 0. Then, let us observe what happens for the training example (7, 7), which
should be classified as +1 and respect the linear constraint function:

yi(< w, xi > +b) =

+1

(〈[
0.07142857
0.07142857

]
,

[
7
7

]〉)
+ 0 = 1,

confirming the constraint function was held for this training example. Evaluating
another training example, (11.3, 10.2), we again conclude the linear constraint is
respected:

yi(< w, xi > +b) =

+1

(〈[
0.07142857
0.07142857

]
,

[
11.3
10.2

]〉)
+ 0 = 1.535714.

The resulting value is 1.535714 ≥ 1, as required by the constraint. For the negative
training example (−7,−7):

yi(< w, xi > +b) =

−1

(〈[
0.07142857
0.07142857

]
,

[−7
−7

]〉)
+ 0 = 1,

as required, i.e., 1 ≥ 1.
We now suggest the reader to test for all training examples and conclude all

constraints are held for this linearly separable problem. Remember αi = 0 for 8
out of the 10 training examples. This is because only two constraints are necessary,
related to the points closer to the ideal hyperplane, providing enough information
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Fig. 5.30 SVM problem without perfect linear separability

to ensure all 10 constraints, i.e., the two binding constraints defined by examples
(7, 7) and (−7,−7). Moreover, in all linearly separable problems, many constraints
are nonbinding and unnecessary.

Now, consider the problem illustrated in Fig. 5.30, which has no ideal linear
hyperplane capable of separating all positive and negative examples.

Then, let yi = −1, for i = 1, . . . , 5, and yi = +1, for i = 6, . . . , 10, α1 = α6 =
0.25 and αi = 0 for any other example and, finally, b = 0. Thus, vector w is:

w =
[

0.5
0.5

]
.

Now consider the training example (1, 1) and solve the constraint function as
follows:

yi(< w, xi > +b) =

+1

(〈[
0.5
0.5

]
,

[
1
1

]〉)
+ 0 = 1,

to confirm the constraint is held. We suggest the reader to solve for the training
example (−1,−1) and observe the result will be 1, which again confirms the
linear constraint is satisfied. While attempting to solve for (−0.2,−0.2), which is
supposed to be classified as +1:
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Fig. 5.31 Illustrating the
linear boundary defined by
the support vectors
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yi(< w, xi > +b) =

+1

(〈[
0.5
0.5

]
,

[−0.2
−0.2

]〉)
+ 0 = −0.2,

from which the result does not respect the linear constraint yi(< w, xi > +b) ≥ 1.
However, this is acceptable when the soft-margin SVM is used, which means some
examples may not respect constraints (see Sect. 4.7). In those situations, αi = 0 in
order to disconsider those training examples and ensure yi(< w, xi > +b) ≥ 1, as
shown in Fig. 5.31.

From this, note linear constraints are only ensured for training examples laying
above the positive support vector or below the negative one. There may have
more than one positive or negative support vectors, but their tips must lie on the
same support hyperplanes. Training examples in between those support hyperplanes
provide uncertain results, that is why they are disconsidered while solving the
optimization problem. Even in this more complex problem, which presents some
mixture or uncertainty, the support vectors can be still used to define the necessary
set of constraints:

yi(< w, xi > +b) > 1,

for more distant examples such as (−2.06,−1.36), (−1,−3), (−0.5,−2.5),
(0.5, 2.5), (1, 3), and (2, 1.25).
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Fig. 5.32 Illustrating concave (a) and convex (b) functions in terms of α

To illustrate the third property, let the objective function in the primal form be:

minimize
w∈H,b∈R

τ(w) = 1

2

∥∥w
∥∥2

,

and its dual form be:

maximize
α

W(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +
m∑

i=1

αi.

In summary, the primal form attempts to minimize a convex function while the dual
maximizes a concave one, being both required to ensure solution guarantee. For
instance, consider the dual form and let term yiyj < xi , xj > provide a convex
function as required,7 which is represented by:

M =
[

1 0
0 1,

]

in which αi, αj ∈ R. By adapting alphas and solving
[
αi αj

]
M

[
αi

αj

]
, a convex

function is obtained, as shown in Fig. 5.32a.
On the hand, the dual solves a maximization of − 1

2

∑m
i=1

∑m
j=1 αiαjyiyj <

xi , xj >, in which a minus sign is used to produced the concave surface with a
unique maximum, as shown in Fig. 5.32b.

For the convex function, we expect:

[
αi αj

]
M

[
αi

αj

]
≥ 0,

7This ends up as concave after applying the minus sign.
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while for the concave:

− [
αi αj

]
M

[
αi

αj

]
≤ 0.

This inequality implies matrix M is positive-semidefinite, i.e., it always produces
results greater than or equal to zero.8 This concept of positive-semidefiniteness is
mandatory for the SVM problem, thus we must prove:

[
αi αj

]
M

[
αi

αj

]
=

[
αi αj

] 1 0
0 1,

[
αi

αj

]
=

[
1αi + 0αj 0αi + 1αj

] [αi

αj

]
= α2

i + α2
j ≥ 0,

being equal to zero only when αi = αj = 0. This is essential to verify if matrix M

defines a convex primal objective function and a concave dual. In the next section,
both SVM problem forms are algebraically reformulated, using the matrix form, in
order to use well-known methods to study their convexity and concavity. To oppose
this concept of positive-semidefiniteness, consider another matrix M:

M =
[−1 0

0 1,

]

in such situation, we have:

[
αi αj

]
M

[
αi

αj

]
=

[
αi αj

]−1 0
0 1,

[
αi

αj

]
=

[−1αi + 0αj 0αi + 1αj

] [αi

αj

]
= −α2

i + α2
j ≥ 0,

resulting in a saddle surface, as seen in Fig. 5.33. Such type of matrix cannot be
solved for the SVM problem, given any attempt of maximization (dual form) would
make the objective function go to positive infinity. There is neither a way to solve the
primal, given it would go to negative infinity, confirming there is no point providing
the optimal solution.

8A matrix M is referred to as positive definite if
[
αi αj

]
M

[
αi

αj

]
> 0.
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Fig. 5.33 Example of a
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Going a step further, any kernel function must produce matrix M = yiyj <

xi , xj > as positive-semidefinite, so that the SVM problem has solution. There is
also the scenario in which the kernel provides a locally convex/concave objective
function what may be sufficient for some problems.

5.5.1 Interior Point Methods

At this point, we present a class of algorithms to solve convex optimization
problems, referred to as Interior Point Methods. In the late 1940s, Dantzig pro-
posed the Simplex method to approach linear optimization problems while other
researchers proposed Interior Point Methods (IPM), such as Von Neumann [27],
Hoffman et al. [10], and Frisch [3, 8, 25]. IPM is used to traverse across the
interior of the feasible region in attempt to avoid the combinatorial complexities of
vertex-following algorithms (such as Simplex). However, IPM required expensive
computational steps and suffered from numerical instabilities, what discouraged the
adoption of such methods in practical scenarios. In 1984, Karmakar [12] introduced
a novel IPM approach to tackle practical problems. Gill et al. [9] then showed
a formal relationship between that new IPM and the classical logarithmic barrier
method.

There are three major types of IPM methods:

1. The potential reduction algorithm which most closely embodies the proposal by
Karmakar;

2. The affine scaling algorithm which is probably the simplest to implement;
3. Path-following algorithms that, due to their arguably excellent behavior in theory

and practice, are discussed in this book.
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Fig. 5.34 Linear
optimization problem in
primal form
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5.5.1.1 Primal-Dual IPM for Linear Problem

We start with a linear optimization problem to simplify the introduction of the path-
following algorithm [25]. Let the following primal linear optimization problem:

maximize f0(x) = 2x1 + 3x2

subject to 2x1 + x2 ≤ 8

x1 + 2x2 ≤ 6

x1 ≥ 0, x2 ≥ 0,

illustrated in Fig. 5.34. It could be solved using the Simplex algorithm, by visiting
constraint corners to find x1 = 10

3 and x2 = 4
3 , and obtain f0(x) = 32

3 ≈ 10.66 . . ..
Consider also its dual form:

minimize g0(π) = 8π1 + 6π2

subject to 2π1 + π2 ≥ 2

π1 + 2π2 ≥ 3

π1 ≥ 0, π2 ≥ 0,

seen in Fig. 5.35. Again, the solution could be found using the Simplex algorithm,
finding π1 = 1

3 and π2 = 4
3 , producing g0(π) = 32

3 ≈ 10.66 . . ..
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Fig. 5.35 Linear
optimization problem in dual
form
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Simplex considers either the primal or the dual forms to solve the optimization
problem, therefore there is no connection between them. On the other hand, the IPM
path-following algorithm considers both forms [11]. Thus, we start by rewriting both
forms using slack variables, similarly to the Simplex algorithm:

Primal problem

maximize f0(x) = 2x1 + 3x2

subject to 2x1 + x2 + x3 = 8

x1 + 2x2 + x4 = 6

x1, x2, x3, x4 ≥ 0

Dual problem

minimize g0(π) = 8π1 + 6π2

subject to 2π1 + π2 − z1 = 2

π1 + 2π2 − z2 = 3

π1 − z3 = 0, π2 − z4 = 0

z1, z2, z3, z4 ≥ 0,

having the slack variables x3 and x4 for the maximization, and z1, z2, z3, z4 for the
minimization form.9

The plus sign in front of variables x3 and x4 make constraint functions reach the
upper limit defined by ≤ (primal form), while the minus sign in front of z1, z2, z3
and z4 make constraints (dual form) equal to the right-side terms given the relational
operator ≥.

9We could have added simply slack variables π3 and π4 to provide the same results in the
minimization form, however we decided to use this formulation to follow the proposal [11].
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Fig. 5.36 The Interior-Point Path-Following Method (IPM) traverses the feasible region to find
the solution, (a) illustrates IPM for a primal problem, and (b) illustrates IPM for a dual problem

Instead of “walking” on the boundaries such as Simplex, this IPM path-following
algorithm traverses inside the feasible region (see Fig. 5.36). Given this is a linear
problem, the solution obviously lies on one constraint corner (boundary of the
feasible region), as consequence IPM goes towards such corner without touching
it, because it represents a barrier for the feasible set.

Before solving it, there is here the opportunity to provide a general formulation
for this path-following algorithm. Consider the following general problem:

Primal problem

maximize cT x

subject to Ax = b

x ≥ 0

Dual problem

minimize πT b

subject to πA − z = c

z ≥ 0
having z as the slack variable vector. By building the barriers, IPM never reaches the
boundary itself, otherwise the solution would be risked by assuming values outside
the feasible set (they do not respect constraints).

Suppose a minimization problem for which variable x ≥ 0, implying a boundary
or barrier must be set to penalize solutions as they approach zero (Fig. 5.37a). Fiacco
and McCormick [5] designed a logarithmic-based barrier to represent those variable
boundaries. In this scenario, a logarithmic function applies a penalty to the objective
function, pushing solutions back as they get to close to the barrier.

In another situation, given a maximization problem for which solutions must
assume x ≥ 0, as shown in Fig. 5.37b, a negative logarithmic function is employed.
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Fig. 5.37 Illustration of the barrier method applied to an optimization problem. (a) Minimization:
solutions avoid values close to the barrier while coming from the positive side, (b) Maximization:
solution avoid values close to the barrier from the negative size

In our general formulation, we do not accept x < 0 nor z ≥ 0, for the primal and
dual forms, respectively. Therefore, we rewrite the original forms:

Primal problem

maximize cT x + μ

n∑
j=1

log xj

subject to Ax = b

Dual problem

minimize πT b − μ

n∑
j=1

zj

subject to πA − z = c
allowing us to remove constraints x ≥ 0 and z ≥ 0, which were reformulated using
the barrier method.

A new parameter μ appears in both primal and dual forms, which is responsible
for controlling the relevance given to the barrier term along the algorithm iterations.
If we give too much relevance for the barrier, the solution would never approach the
boundary, avoiding the optimal solution when necessary. In practice, μ starts with
some great value, which is reduced along iterations, allowing to get close enough
boundaries.

Now we employ Lagrange multipliers to rewrite this equality-based general
formulation (see Sect. 4.5.1):

Λprimal = cT x + μ

n∑
j=1

log xj − πT (Ax − b)
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Λdual = πT b − μ

n∑
j=1

zj − xT (πA − z − c),

given primal variables x are the Lagrange multipliers of the dual, and dual variables
π are the Lagrange multipliers of the primal.

To find the solution, the Lagrangians are derived in terms of the free variables to
obtain stable points:

∂Λprimal

∂xj

= 0

∂Λprimal

∂πi

= 0

∂Λdual

∂zj

= 0

∂Λdual

∂πi

= 0

∂Λdual

∂xj

= 0.

Solving those derivatives, the following is found for the primal Lagrangian:

∂Λprimal

∂xj

= cj −
m∑

i=1

aijπj + μ

xj

= 0

∂Λprimal

∂πi

=
n∑

j=1

aij xj − bi = 0,

and for the dual Lagrangian:

∂Λdual

∂zj

= − μ

zj

+ xj = 0

∂Λdual

∂πi

=
n∑

j=1

aij xj − bi = 0

∂Λdual

∂xj

=
m∑

i=1

aijπj − zj − cj = 0.

Then, this primal-dual path-following algorithm uses the derivatives obtained
from both forms to find the solution. As first step, we compare the derivatives,
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starting with
∂Λprimal

∂xj
and ∂Λdual

∂zj
:

∂Λdual

∂zj

= − μ

zj

+ xj = 0

zj xj = μ, for j = 1, . . . , n,

thus, variable μ used in
∂Λprimal

∂xj
must assume the same values as in the derivative of

the dual, i.e.:

∂Λprimal

∂xj

= cj −
m∑

i=1

aijπj + μ

xj

= 0

∂Λprimal

∂xj

= cj −
m∑

i=1

aijπj + zjxj

xj

= 0

∂Λprimal

∂xj

= cj −
m∑

i=1

aijπj + zj = 0.

The partial derivatives
∂Λprimal

∂xj
and ∂Λdual

∂zj
produces what is referred to as the

μ-complementary slackness, whose equations must agree in both (primal and dual)
forms.

In practice, we intend to make μ as close as possible to zero along iterations,
allowing our algorithm to approach the boundary without crossing it. The objective
functions for the primal and the dual forms will not produce the exact same results
along iterations, because the optimal is at a corner in this linear optimization
problem. Thus, while the primal form approaches a corner, the dual makes the
same for its corresponding corner, in those steps, both objective functions provide
different outputs. That difference can be computed as follows:

Gap =
n∑

j=1

zj xj ,

given zj xj = μ. This gap is typically used to control the iterations in terms of the
stop criterion. Note the solution is at the corner, which would oblige μ = 0. But
since μ > 0, this implies a gap between the objective functions of the primal and
the dual forms.

One might ask why not set μ = 0 since the beginning of our algorithm. That
would most probably make it consider solutions outside the feasible region, because
no relevance would be given for the barrier terms. Once outside, we may never get
back to it.
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Now compare
∂Λprimal

∂πi
and ∂Λdual

∂πi
. Both produce the same partial derivative∑n

j=1 aij xj − bi = 0, which is another representation for the primal constraints.
That is why those derivatives are referred to as the primal feasibility.

The dual form has an extra partial derivative:

∂Λdual

∂xj

=
m∑

i=1

aijπj − zj − cj = 0

which corresponds to the dual constraints in a different representation, being
referred to as the dual feasibility.

We now build a system including the three equations, that is used to solve
the optimization problem. To simplify its formulation, we consider two diagonal
matrices containing the elements of vectors x and z, in form:

X = diag{x1, x2, . . . , xn} =

⎡
⎢⎢⎢⎣

x1 0 . . . 0
0 x2 . . . 0
...

. . . . . . 0
0 0 . . . xn

⎤
⎥⎥⎥⎦

Z = diag{z1, z2, . . . , zn} =

⎡
⎢⎢⎢⎣

z1 0 . . . 0
0 z2 . . . 0
...

. . . . . . 0
0 0 . . . zn

⎤
⎥⎥⎥⎦ ,

and let e = [
1 1 . . . 1

]T
be a column vector with length n. Therefore, all derivatives

are put together in the following system of equations:

⎧⎨
⎩

Ax − b = 0, primal feasibility
AT πT − z − cT = 0, dual feasibility

XZe − μe = 0, μ − complementary slackness.

The solution of this system provides parallel gradient vectors for the objective
functions of the primal and the dual forms. The third equation, i.e. μ-complementary
slackness, connects the solutions of both problems. In order to solve this system,
the algorithm finds the zeros for those three equations using the Newton-Raphson
method [24], which considers the following dynamical system:

xt+1 = xt − f (xt )

f ′(xt )
,

to modify variable x along iterations indexed as t . This method estimates the zero
for function f (.) by taking its derivative f ′ in the direction of x (see Fig. 5.38).
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Fig. 5.38 Illustrating four iterations (a–d) of the Newton-Raphson method

We can reformulate the Newton-Raphson method, as follows:

xt+1 = xt − f (xt )

f ′(xt )

xt+1 − xt = − f (xt )

f ′(xt )

Δx = − f (xt )

f ′(xt )
,

to finally obtain:

f ′(xt )Δx = −f (xt ).
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Writing this method into a multivariable approach, term f ′(xt ) is substituted by the
Jacobian matrix:

J (xt ) =

⎡
⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn

...
...

. . .
...

∂fn

∂xn

∂fn

∂xn
. . .

∂fn

∂xn

⎤
⎥⎥⎥⎥⎦ ,

in which t corresponds to the iteration, and n defines the number of variables. From
that, we solve:

J (xt )Δx = −f(xt ),

having f(xt ) as a vector containing all results provided by functions f1, . . . , fn.
To find the Jacobian matrix, we derive our system of equations:

⎧⎨
⎩

Ax − b = 0, primal feasibility
AT πT − z − cT = 0, dual feasibility

XZe − μe = 0, μ − complementary slackness
,

to obtain:

J (x,π , z) =
⎡
⎢⎣

∂f1
∂x

∂f1
∂π

∂f1
∂z

∂f2
∂x

∂f2
∂π

∂f2
∂z

∂f3
∂x

∂f3
∂π

∂f3
∂z

⎤
⎥⎦ ,

in which:

f1(x,π , z) = Ax − b

f2(x,π , z) = AT πT − z − cT

f3(x,π , z) = XZe − μe.

Consequently:

∂f1
x = A

∂f1
π

= 0
∂f1
z = 0

∂f2
x = 0

∂f2
π

= AT

∂f2
z = −I

∂f3
x = Z

∂f3
π

= 0
∂f3
z = X.

Therefore, the Jacobian matrix is:

J (x,π , z) =
⎡
⎣A 0 0

0 AT −I

Z 0 X

⎤
⎦ .
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Now we must consider some valid initial values, i.e., respecting the constraints,
for variables in order to start the optimization process:

f(x0) = Ax0 − b

f(π0) = −cT + AT (π0)
T − z0

f(z0) = X0Z0e − μe,

in which the subscript index refers to the iteration (first iteration is zero).
Using the Newton-Raphson’s formulation:

J (xt )Δx = −f(xt ),

to obtain:

J (x,π , z) =
⎡
⎣A 0 0

0 AT −I

Z 0 X

⎤
⎦
⎡
⎣Δx

Δπ

Δz

⎤
⎦ = −

⎡
⎣ f(x0)

f(π0)

f(z0)

⎤
⎦ ,

and in open-form:

J (x,π , z) =
⎡
⎣A 0 0

0 AT −I

Z 0 X

⎤
⎦
⎡
⎣Δx

Δπ

Δz

⎤
⎦ = −

⎡
⎣ Ax − b

−cT + AT (π)T − z
XZe − μe

⎤
⎦ .

Note this problem has analytical solution given the Jacobian matrix is sufficiently
sparse.10 Using the first row of the Jacobian, observe matrix A helps us to find Δx,
the second row helps us to find Δπ , and, at last, the third take both previous results
to solve Δz. From a simple matrix multiplication, we find:

Δx = (AZ−1XAT )−1(−b + μAZ−1e + AZ−1Xf(π))

Δπ = −f(π) + AT Δπ

Δz = Z−1(μe − XZe − XΔz),

which are the equations used to find the best values for x,π and z.
Listing 5.1 provides the implementation of Primal-Dual Path-Following opti-

mization algorithm for this particular linear problem. Comments throughout the
source code match every formulation step with the corresponding implementation.

10Other scenarios may require a solver to approximate the solution.
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Listing 5.1 Primal-Dual Path-Following optimization algorithm to solve the first linear problem

1 # T h i s package i s r e q u i r e d t o f i n d m a t r i x i n v e r s e s ( f u n c t i o n
g i n v ) .

2 # The use o f i n v e r s e s i s o n l y f o r d i d a c t i c a l p u r p o s e s .
3 r e q u i r e (MASS)
4
5 # ######### PRIMAL FORM ###########
6
7 # D e f i n i n g v e c t o r c t o m u l t i p l y 2∗x1+3∗x2+0∗x3+0∗x4
8 c = matrix ( c ( 2 , 3 , 0 , 0 ) , nrow =1)
9

10 # D e f i n i n g m a t r i x A which d e f i n e s t h e c o n s t r a i n t f u n c t i o n s :
11 #
12 # 2∗x1 + x2 + x3 = 8
13 # x1 + 2∗x2 + x4 = 6
14 #
15 A = matrix ( c ( 2 , 1 , 1 , 0 ,
16 1 , 2 , 0 , 1 ) , nrow =2 , byrow=T )
17
18 # D e f i n i n g t h e r i g h t −s i d e t e r m s f o r c o n s t r a i n t f u n c t i o n s
19 b = matrix ( c ( 8 , 6 ) , nco l =1)
20
21 # D e f i n i n g some i n i t i a l i z a t i o n f o r x1 , x2 , x3 and x4 .
22 # T h i s i s made r e s p e c t i n g t h e c o n s t r a i n t f u n c t i o n s
23 # f o r t h e p r i m a l form as f o l l o w s :
24 #
25 # i ) We s i m p l y d e c i d e d t o s e t x1 =1 , which r e s p e c t s t h e

c o n s t r a i n t x1 >=0
26 # i i ) Then , we a p p l i e d x1=1 i n t o t h e f i r s t c o n s t r a i n t

f u n c t i o n :
27 #
28 # 2∗x1 + x2 + x3 = 8
29 # 2∗ ( 1 )+ x2 + x3 = 8
30 # i i i ) So , we a l s o d e c i d e d t o s e t x2=1 ( r e s p e c t i n g t h e

c o n s t r a i n t x2 >=0) , t h u s :
31 #
32 # 2∗ ( 1 )+ x2 + x3 = 8
33 # 2∗ ( 1 )+ ( 1 ) + x3 = 8
34 # 3 + x3 = 8
35 # x3 = 8 − 3 = 5
36 #
37 # i v ) A l l o w i n g us t o f i n d x3 =5 , which a l s o r e s p e c t s t h e

c o n s t r a i n t x3 >= 0
38 #
39 # v ) Next , we had t o f i n d an a c c e p t a b l e v a l u e f o r x4 which

must be x4 >= 0 ,
40 # as d e f i n e d by t h e p r i m a l form . So we g o t t h e second

c o n s t r a i n t f u n c t i o n :
41 #
42 # x1 + 2∗x2 + x4 = 6
43 #
44 # Given x1 =1 , x2=1 and x3=5 we found :
45 #
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46 # x1 + 2∗x2 + x4 = 6
47 # ( 1 ) + 2∗ ( 1 ) + x4 = 6
48 # 3 + x4 = 6
49 # x4 = 6 − 3 = 3
50 #
51 # v i ) Next , we o r g a n i z e d x1 , x2 , x3 and x4 i n a d i a g o n a l

m a t r i x as f o l l o w s .
52 X = diag ( c ( 1 , 1 , 5 , 3 ) )
53
54 # ######### DUAL FORM ###########
55
56 # From t h e dua l s i d e , we had t o s e t pi1 , p i 2 . For t h a t , we

s i m p l y s e l e c t e d
57 # two v a l u e s as f o l l o w s :
58 P i = matrix ( c ( 2 , 2 ) , nco l =1)
59
60 # Then , we e n s u r e d t h e c o n s t r a i n t f u n c t i o n s f o r t h e dua l

form were r e s p e c t e d .
61 #
62 # i ) F i r s t c o n s t r a i n t f u n c t i o n :
63 #
64 # 2∗ p i 1 + p i 2 − z1 = 2
65 # 2∗ ( 2 ) + ( 2 ) − z1 = 2
66 # 6 − z1 = 2
67 # − z1 = 2 − 6
68 # z1 = 4
69 #
70 # r e s p e c t i n g t h e c o n s t r a i n t z1 >= 0 , which i s d e f i n e d

f o r t h i s dua l form .
71 #
72 # i i ) Second c o n s t r a i n t f u n c t i o n :
73 #
74 # p i 1 + 2∗ p i 2 − z2 = 3
75 #
76 # s u b s t i t u t i n g p i 1 =2 and p i 2 =2 , we have :
77 #
78 # ( 2 ) + 2∗ ( 2 ) − z2 = 3
79 # 6 − z2 = 3
80 # − z2 = 3 − 6
81 # z2 = 3
82 #
83 # r e s p e c t i n g t h e c o n s t r a i n t z2 >= 0 , which i s d e f i n e d

f o r t h i s dua l form .
84 #
85 # i i i ) T h i r d c o n s t r a i n t f u n c t i o n :
86 #
87 # p i 1 − z3 = 0
88 # ( 2 ) − z3 = 0
89 # z3 = 2
90 #
91 # r e s p e c t i n g t h e c o n s t r a i n t z3 >= 0 , which i s d e f i n e d

f o r t h i s dua l form .
92 #
93 # i v ) Four th c o n s t r a i n t f u n c t i o n :
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94 #
95 # p i 2 − z4 = 0
96 # ( 2 ) − z4 = 0
97 # z4 = 2
98 #
99 # r e s p e c t i n g t h e c o n s t r a i n t z4 >= 0 , which i s d e f i n e d

f o r t h i s dua l form .
100 #
101 # v ) Next , we s i m p l y s e t t h e d i a g o n a l m a t r i x Z w i t h t h o s e

v a l u e s we found ( remember
102 # t h e y r e s p e c t a l l c o n s t r a i n t f u n c t i o n s , o t h e r w i s e we

would n o t o b t a i n t h e s o l u t i o n ) .
103 Z = diag ( c ( 4 , 3 , 2 , 2 ) )
104
105 # S t a r t i n g mu w i t h some p o s i t i v e v a l u e .
106 mu = 1 .4375
107
108 # D e f i n i n g a column v e c t o r f i l l e d w i t h 1 s .
109 e = matrix ( rep ( 1 , 4 ) , nco l =1)
110
111 # V a r i a b l e e t a d e f i n e s t h e r a t e o f change f o r t h e p r i m a l and

dua l v a r i a b l e s a long i t e r a t i o n s .
112 e t a = 0 . 99 5
113
114 # D e f i n i n g v e c t o r s D e l t a _x , D e l t a _ p i and D e l t a _ z . Combined

t h e y d e f i n e t h e column v e c t o r
115 # on which t h e J a c o b i a n m a t r i x w i l l be a p p l i e d t o .
116 dX = rep ( 0 , 4 )
117 dPi = rep ( 0 , 2 )
118 dZ = rep ( 0 , 4 )
119
120 # S e t t i n g a c o u n t e r t o know t h e c u r r e n t i t e r a t i o n o f t h i s

a l g o r i t h m .
121 c o u n t e r = 1
122
123 # D e f i n i n g a s t o p c r i t e r i o n . Whi le t h e gap term i s g r e a t e r

than such t h r e s h o l d ,
124 # t h i s a l g o r i t h m k e e p s running , o t h e r w i s e i t w i l l s t o p and

p r i n t t h e s o l u t i o n o u t .
125 t h r e s h o l d = 1e−5
126
127 # Computing t h e c u r r e n t gap term f o r t h e s o l u t i o n we d e f i n e d

, i . e . , f o r t h e c u r r e n t
128 # v a l u e s o f x1 , x2 , x3 and x4 i n t h e p r i m a l form and z1 , z2 ,

z3 and z4 i n t h e dua l .
129 gap = t ( e ) %∗% X %∗% Z %∗% e
130
131 # Whi le t h e gap i s g r e a t e r than a c c e p t a b l e , run :
132 whi le ( gap > t h r e s h o l d ) {
133
134 # P r i n t i n g o u t t h e c u r r e n t i t e r a t i o n and t h e gap
135 c a t ( " I t e r a t i o n : " , c o u n t e r , " w i th Gap = " , gap , " \ n

" )
136
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137 # S o l v i n g t h e l i n e a r s y s t e m o f e q u a t i o n s
138 d e l t a D = t (A)%∗%dPi − dZ
139 dPi = g inv (A%∗%g i n v ( Z )%∗%X%∗%t (A) )%∗%(−b+mu∗A%∗%g inv

( Z )%∗%e+A%∗%g i n v ( Z )%∗%X%∗%d e l t a D )
140 dZ = −d e l t a D + t (A)%∗%dPi
141 dX = g inv ( Z )%∗%( e%∗%mu−X%∗%Z%∗%e−X%∗%dZ )
142
143 # Changing v a r i a b l e s f o r t h e n e x t i t e r a t i o n ( o n l y

t h e d i a g o n a l i n here ) .
144 # The a l g o r i t h m walks a c c o r d i n g t o t h e g r a d i e n t

v e c t o r
145 X = X + e t a ∗ diag ( as . v e c t o r ( dX ) )
146 P i = P i + e t a ∗ dPi
147 Z = Z + e t a ∗ diag ( as . v e c t o r ( dZ ) )
148
149 # Computing t h e gap aga in t o v e r i f y i f we w i l l c a r r y

on r u n n i n g
150 gap = t ( e ) %∗% X %∗% Z %∗% e
151
152 # Reduc ing t h e i n f l u e n c e o f t h e b a r r i e r term , so we

can g e t c l o s e r t o a v e r t e x
153 # i f t h e s o l u t i o n i s e v e n t u a l l y t h e r e ( i n t h i s case ,

i t i s ! )
154 mu = as . numeric ( gap / c o u n t e r ^2 )
155
156 # Coun t ing t h e number o f i t e r a t i o n s
157 c o u n t e r = c o u n t e r + 1
158 }
159
160 c a t ( " C o n s t r a i n t f u n c t i o n s must be e q u a l t o z e r o : \ n " )
161
162 c a t ( " P r i m a l f e a s i b i l i t y : \ n " )
163 p r i n t (A%∗%diag (X)−b )
164
165 c a t ( " Dual f e a s i b i l i t y : \ n " )
166 p r i n t ( t (A)%∗%Pi−diag ( Z )−t ( c ) )
167
168 c a t ( " u−complementary s l a c k n e s s : \ n " )
169 p r i n t ( diag (X)%∗%Z−mu)
170
171 c a t ( " Va lues found f o r X : \ n " )
172 p r i n t ( diag (X) )
173
174 c a t ( " Va lues found f o r Z : \ n " )
175 p r i n t ( diag ( Z ) )

After running the function of Listing 5.1, the following output is obtained:

Listing 5.2 Text output produced by Listing 5.1

Loading r e q u i r e d package : MASS
I t e r a t i o n : 1 wi th Gap = 23
I t e r a t i o n : 2 wi th Gap = 5 .83625
I t e r a t i o n : 3 wi th Gap = 23 .25746
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I t e r a t i o n : 4 wi th Gap = 23 .25746
I t e r a t i o n : 5 wi th Gap = 10 .40125
I t e r a t i o n : 6 wi th Gap = 2 .639318
I t e r a t i o n : 7 wi th Gap = 0.4333759
I t e r a t i o n : 8 wi th Gap = 0 .050079
I t e r a t i o n : 9 wi th Gap = 0.004318036
I t e r a t i o n : 10 wi th Gap = 0.000290118
I t e r a t i o n : 11 wi th Gap = 1 .570577 e−05
C o n s t r a i n t f u n c t i o n s must be e q u a l t o z e r o :
P r i m a l f e a s i b i l i t y :

[ , 1 ]
[ 1 , ] −2.664535 e−15
[ 2 , ] −1.776357 e−15
Dual f e a s i b i l i t y :

[ , 1 ]
[ 1 , ] 0
[ 2 , ] 0
[ 3 , ] 0
[ 4 , ] 0
u−complementary s l a c k n e s s :

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
[ 1 , ] 1 .701224 e−07 1 .700303 e−07 1 .700874 e−07 1 .701183 e−07
Values found f o r X:
[ 1 ] 3 .333333 e +00 1 .333333 e +00 5 .277074 e−07 1 .319500 e−07
Values found f o r Z :
[ 1 ] 5 .278124 e−08 1 .318840 e−07 3 .333333 e−01 1 .333333 e +00

Observe the gap reduces along iterations, confirming the algorithm is getting
closer to the solution from the primal and the dual sides simultaneously, as
illustrated in Fig. 5.36. At the end, the primal constraints (primal feasibility), the
dual constraints (dual feasibility), and the μ-complementary slackness are close to
zero as expected.

The solution is found so that the variables X and Z are: x1 = 3.33 . . ., x2 =
1.33 . . ., x3 = 5.27×10−7, x4 = 1.31×10−7, z1 = 5.27×10−8, z2 = 1.31×10−7,
z3 = 0.33 . . ., z4 = 1.33 . . .. Observe all of them respect the constraints, once they
are equal or greater than zero.

Next, notice x3 and x4 approach zero as desired, meaning the slack variables for
the primal form have a minimal effect. Also notice z1 and z2 approach zero for the
same reasons, but for the dual problem. Assessing the linear optimization problem
using the solution:

x1 = 3.33 . . . , x2 = 1.33 . . .

z3 = 0.33 . . . , z4 = 1.33 . . . ,

which (approximately) corresponds to the solution graphically found in Fig. 5.36,
i.e., x1 = 10

3 , x2 = 4
3 , π1 = 1

3 , and π2 = 4
3 . The only difference is that now we have

z3 and z4 as slack variables to make π1 and π2 equal to zero, respectively, thus from
the dual variable constraints:
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π1 − z3 = 0

π1 − 0.33 . . . = 0

π1 = 0.33 . . .

π2 − z4 = 0

π2 − 1.333333 = 0

π2 = 1.333333.

5.5.2 IPM to Solve the SVM Optimization Problem

In this section, we consider the Interior Point Method proposed in [6] as basis to
address the SVM optimization problem.11 Let the soft-margin SVM optimization
problem:

Primal problem

minimize
w∈H,b∈R,ξ∈Rm

τ(w) = 1

2

∥∥w
∥∥2 + C

m∑
i=1

ξi

subject to yi(< w, xi > +b) ≥ 1 − ξ, for all i = 1, . . . , m,

ξi ≥ 0, for all i = 1, . . . , m

Dual problem

maximize
α

W(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +
m∑

i=1

αi

subject to 0 ≤ αi ≤ C, for all i = 1, . . . , m,

and
m∑

i=1

αiyi = 0.

We start by rewriting the primal and dual forms for the soft-margin SVM
optimization problem in matrix-form, as detailed next. Such step requires the terms
found after the primal Lagrangian (as seen in Sect. 4.3):

w =
m∑

i=1

αiyixi ,

11We detail and implement most of such paper, but we do not consider its rank reduction.
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which is substituted in the primal:

minimize
α∈Rm

τ(w) = 1

2
<

m∑
i=1

αiyixi ,

m∑
j=1

αjyj xj > +C

m∑
i=1

ξi

subject to yi(<

m∑
j=1

αjyj xj , xi > +b) ≥ 1 − ξ, for all i = 1, . . . , m,

ξi ≥ 0, for all i = 1, . . . , m,

and then:

minimize
α∈Rm

τ(w) = 1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +C

m∑
i=1

ξi

subject to
m∑

j=1

αjyjyi < xj , xi > +yib + ξi ≥ 1, for all i = 1, . . . , m,

ξi ≥ 0, for all i = 1, . . . , m.

Next, we define e = [
1 1 . . . 1

]T
to be a column vector with length m, in order

to produce:

minimize
α∈Rm

τ(w) = 1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +C

m∑
i=1

ξi

subject to
m∑

j=1

αjyjyi < xj , xi > +yib + ξi ≥ ei , for all i = 1, . . . , m,

ξi ≥ 0, for all i = 1, . . . , m.

Consider matrix X contains every vector xi along its rows, and the column vector
y with the corresponding classes yi . From that, matrix Q = (yyT ) × (XXT ) allows
us to simplify the primal form:

minimize
α∈Rm

τ(w) = 1

2
αT Qα + C

m∑
i=1

ξi

subject to Qα + yb + ξ ≥ e

ξi ≥ 0, for all i = 1, . . . , m,
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in which:

α =

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦ ,

and the constraint function is provided in matrix form.
We now remove variable w from the formulation and, simultaneously, add a

vector s with slack variables, permitting us to reformulate the constraint function
in terms of equalities:

minimize
α∈Rm

1

2
αT Qα + C

m∑
i=1

ξi

subject to Qα + yb + ξ + s = e

ξ ≥ 0, s ≥ 0,

having the minimization in terms of the slack variables.12 Also notice all variables
ξi and si are represented as vectors. This is the final matrix form for this primal
problem.

Thus, we proceed with the same representation for the dual form:

maximize
α

W(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +
m∑

i=1

αi

subject to 0 ≤ αi ≤ C, for all i = 1, . . . , m,

and
m∑

i=1

αiyi = 0,

to obtain:

maximize
α

W(α) = −1

2
αT Qα + eT α

subject to 0 ≤ α ≤ C,

yT α = 0,

12Meaning we wish them to have the least relevance as possible for our problem, once they are
associated to relaxation terms.
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having all constraints in vector form, including vector C, which is given by:

C =

⎡
⎢⎢⎢⎣

C

C
...

C

⎤
⎥⎥⎥⎦ .

We then present the primal and the dual forms in the matrix form:

Primal problem

minimize
α∈Rm

1

2
αT Qα + C

m∑
i=1

ξi

subject to Qα + yb + ξ + s = e

ξ ≥ 0, s ≥ 0

Dual problem

maximize
α

− 1

2
αT Qα + eT α

subject to 0 ≤ α ≤ C,

yT α = 0

and proceed with the formulation of Lagrangians to later build the Primal-Dual Path
Following algorithm:

Λprimal = 1

2
αT Qα + C

m∑
i=1

ξi − λ(Qα + yb + ξ + s − e) − μ

m∑
i=1

log ξi

− μ

m∑
i=1

log si,

which contains two barrier terms to bound vectors ξ and s. Remember the constraint
function must be equal to zero and considered as part of the Lagrangian (see more
in Sects. 4.5.1 and 4.5.2), having λ as the KKT multiplier.

Then, we derive the Lagrangian Λprimal in order to find the stationary point:

∂Λprimal

si
= −μ

1

si
+ λ = 0

∂Λprimal

b
= −yT λ = 0

∂Λprimal

ξi

= C − μ
1

ξi

− λ = 0

∂Λprimal

λ
= Qα + yb + ξ − s − e = 0,
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and, then, we represent vectors s and ξ as diagonal matrices S and Ξ :

S =

⎡
⎢⎢⎢⎣

s1 0 . . . 0
0 s2 . . . 0
...

...
. . . 0

0 0 . . . sm

⎤
⎥⎥⎥⎦ ,

and:

Ξ =

⎡
⎢⎢⎢⎣

ξ1 0 . . . 0
0 ξ2 . . . 0
...

...
. . . 0

0 0 . . . ξm

⎤
⎥⎥⎥⎦ ,

from which derivatives are rewritten as:

∂Λprimal

S
= −μS−1 + λ = 0

∂Λprimal

b
= −yT λ = 0

∂Λprimal

Ξ
= C − μΞ−1 − λ = 0

∂Λprimal

λ
= Qα + yb + ξ − s − e = 0.

We now build the Lagrangian for the dual form:

Λdual = −1

2
αT Qα + eT α − β(yT α) + μ

m∑
i=1

log αi + μ
∑
i=1

m log(−αi + C),

in which β is the KKT multiplier, and two barrier terms were added to ensure αi ≥ 0
for i = 1, . . . , m and αi ≤ C. This second constraint was obtained as follows:

αi ≤ C

αi − C ≤ 0

Multiplying both sides by − 1 we find:

−αi + C ≥ 0,

which provides the barrier term.
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We then derive Λdual:

∂Λdual

∂αi

= −1

2
Qα + e − βy + μ

1

αi

− μ
1

αi − C
= 0

∂Λdual

∂β
= −yT α = 0,

and consider α to be a diagonal matrix:

α =

⎡
⎢⎢⎢⎣

α1 0 . . . 0
0 α2 . . . 0
...

...
. . . 0

0 0 . . . αm

⎤
⎥⎥⎥⎦ ,

allowing to rewrite derivatives:

∂Λdual

∂α
= −1

2
Qα + e − βy + μα−1 − μ(α − C)−1 = 0

∂Λdual

∂β
= −yT α = 0.

As next step, the Primal-Dual Path Following algorithm firstly assesses which of
the derivatives must be considered in the system of equations. Initially, we select
only the derivatives that are different from both primal and dual forms to compose
the system. Given that condition, we have:

∂Λprimal

b
= −yT λ = 0,

and:

∂Λdual

∂β
= −yT α = 0,

from the primal and dual forms, respectively. Thus observe λ must be equal to α, so
both derivatives are equivalent. This also reflects in the following derivatives:

∂Λprimal

S
= −μS−1 + λ = 0

μ = Sλ,



5.5 Convex Optimization Problems 303

and:

∂Λdual

∂α
= −1

2
Qα + e − βy + μα−1 − μ(α − C)−1 = 0,

what is necessary to ensure both forms (primal and dual) provide the same solution.
Also, observe the derivatives:

∂Λprimal

λ
= Qα + yb + ξ − s − e = 0,

and:

∂Λdual

∂α
= −1

2
Qα + e − βy + μα−1 − μ(α − C)−1 = 0,

allow us to conclude that:

1. vector s, organized as a diagonal matrix S, must be equal to μα−1;
2. vector ξ , organized as a diagonal matrix Ξ , must be equal to μ(C −α)−1, so that

both forms provide the same solution.

From those remarks, the smallest system of equations to be solved is:

⎧⎪⎪⎨
⎪⎪⎩

Qα + yb + ξ − s − e = 0
−yT α = 0
Sλ − μ = 0

(C − α)Ξ − μ = 0,

in which the last equation ensures Ξ = μ(C − α)−1, a result from:

Ξ = −μ(C − α)−1

(C − α)Ξ = μ

(C − α)Ξ − μ = 0.

Next, we solve this system using Newton-Raphson’s method, which requires the
Jacobian matrix:

J (α, b, s, ξ ) =

⎡
⎢⎢⎢⎢⎣

∂f1
∂α

∂f1
∂b

∂f1
∂s

∂f1
∂ξ

∂f2
∂α

∂f2
∂b

∂f2
∂s

∂f2
∂ξ

∂f3
∂α

∂f3
∂b

∂f3
∂s

∂f3
∂ξ

∂f4
∂α

∂f4
∂b

∂f4
∂s

∂f4
∂ξ

⎤
⎥⎥⎥⎥⎦ ,
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which is given by:

J (α, b, s, ξ ) =

⎡
⎢⎢⎣

Q y −I I

−yT 0 0 0
S 0 α 0

−Ξ 0 0 (C − α)

⎤
⎥⎥⎦ .

So, applying the Newton-Raphson’s method:

J (xt )Δx = −f(xt ),

we solve:

J (α, b, s, ξ )Δα,b,s,ξ = −

⎡
⎢⎢⎣

Qα + yb + ξ − s − e
−yT α

Sλ − μ

(C − α)Ξ − μ

⎤
⎥⎥⎦ .

Let the training set contain 200 examples organized as row vectors xi in matrix
X, a column vector y containing all respective classes in {−1,+1}, and, finally,
recall matrix Q = (yyT ) × (XXT ). The Jacobian matrix must be squared, contain
the same number of rows and columns as variables of the problem,13 in which
blocks represent each term: I is the identity matrix, and −I its negative; and terms
S, α, Ξ , and (C − α) are diagonal matrices. The free problem variables are α

(vector with m elements), b (scalar value), s (vector with m slack variables), and
ξ (vector with m elements). In total, we must adapt 3m + 1 free variables, which
indeed define the number of rows and columns of this Jacobian matrix. Parameter
m refers to the number of examples in the training set, which is m = 200 for this
particular instance. After applying this Jacobian matrix on a column vector Δα,b,s,ξ ,
the necessary modifications (Δα , Δb, Δs and Δξ ) are computed for this problem.

Applying the linear transformation provided by the (3m+1)×(3m+1)-Jacobian
matrix on the (3m + 1) × 1 vector Δα,b,s,ξ , a resultant vector with 3m + 1 rows and
one column is obtained.

The Primal-Dual Path Following algorithm still requires the following:

1. initial values for α, respecting the feasible region, i.e., α ≥ 0;
2. initial values for ξ ;
3. an initial value for b;
4. and, finally, set matrix S in terms of α, Ξ and b.

13Jacobian matrices must be squared so that the input and the output spaces have the same
dimensionality, allowing inverse transformations.
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Listing 5.3 details the SVM Primal-Dual Path Following algorithm, with addi-
tional comments. After loading this code in the R Statistical Software, the user
should run function ipm.svm() to test the algorithm.

Listing 5.3 Primal-Dual Path Following algorithm to address the SVM optimization problem

1 # T h i s f u n c t i o n b u i l d s up a v e r y s i m p l e l i n e a r l y s e p a r a b l e
d a t a s e t

2 s i m p l e D a t a s e t <− f u n c t i o n ( ) {
3
4 # Produc ing a two−d i m e n s i o n a l d a t a s e t u s i n g t h e

Normal d i s t r i b u t i o n .
5 # N e g a t i v e examples are d e f i n e d t o have mean ( 0 , 0 )

w i t h s t a n d a r d d e v i a t i o n ( 1 , 1 ) .
6 # P o s i t i v e examples are d e f i n e d t o have mean ( 1 0 , 1 0 )

w i t h s t a n d a r d d e v i a t i o n ( 1 , 1 ) .
7
8 # These are t h e t r a i n i n g examples
9 t r a i n <− cbind ( rnorm ( mean=0 , sd =1 , n =100) , rnorm (

mean=0 , sd =1 , n =100) )
10 t r a i n <− rbind ( t r a i n , cbind ( rnorm ( mean=10 , sd =1 , n

=100) , rnorm ( mean=10 , sd =1 , n =100) ) )
11 t r a i n <− cbind ( t r a i n , c ( rep ( −1 , 100) , rep ( 1 , 100) ) )
12
13 # These are t h e t e s t examples
14 t e s t <− cbind ( rnorm ( mean=0 , sd =1 , n =10) , rnorm ( mean

=0 , sd =1 , n =10) )
15 t e s t <− rbind ( t e s t , cbind ( rnorm ( mean=10 , sd =1 , n =10)

, rnorm ( mean=10 , sd =1 , n =10) ) )
16 t e s t <− cbind ( t e s t , c ( rep ( −1 , 10) , rep ( 1 , 10) ) )
17
18 # R e t u r n i n g t h e t r a i n i n g and t e s t s e t s u s i n g a l i s t
19 re turn ( l i s t ( t r a i n = t r a i n , t e s t = t e s t ) )
20 }
21
22 # T h i s f u n c t i o n o u t p u t s t h e c l a s s i f i c a t i o n ( l a b e l s ) f o r a

g i v e n s e t .
23 # In our case , we use i t t o p r i n t o u t t h e l a b e l s p r e d i c t e d

f o r t h e t e s t s e t .
24 d i s c r e t e . c l a s s i f i c a t i o n <− f u n c t i o n (X, Y, a lpha , b , X. t e s t ,

Y . t e s t , t h r e s h o l d = 1e −5) {
25 a l l . l a b e l s = NULL
26 a l p h a s = diag ( a l p h a )
27 a l p h a s [ a l p h a s < t h r e s h o l d ] = 0
28
29 f o r ( i i n 1 : nrow (X. t e s t ) ) {
30 l a b e l = sum ( a l p h a s ∗ as . v e c t o r (Y) ∗ (X. t e s t [

i , ] %∗% t (X) ) ) + b
31 i f ( l a b e l >= 0)
32 l a b e l = 1
33 e l s e
34 l a b e l = −1
35 e x p e c t e d _ l a b e l = Y. t e s t [ i , ]
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36 a l l . l a b e l s = rbind ( a l l . l a b e l s , cbind (
e x p e c t e d _ l a b e l , l a b e l ) )

37 }
38
39 colnames ( a l l . l a b e l s ) = c ( " Expec ted c l a s s " , "

P r e d i c t e d c l a s s " )
40
41 re turn ( a l l . l a b e l s )
42 }
43
44 # T h i s f u n c t i o n i m p l e m e n t s t h e Primal−Dual Path F o l l o w i n g

a l g o r i t h m
45 # f o r t h e s i m p l e d a t a s e t ( l i n e a r l y s e p a r a b l e ) .
46 ipm . svm <− f u n c t i o n ( ) {
47
48 # B u i l d i n g up t h e l i n e a r l y s e p a r a b l e d a t a s e t
49 d a t a s e t = s i m p l e D a t a s e t ( )
50
51 # C r e a t i n g m a t r i x X t o r e p r e s e n t a l l v e c t o r x _ i (

t r a i n i n g examples )
52 X = d a t a s e t $ t r a i n [ , 1 : 2 ]
53
54 # T h i s v e c t o r y w i t h l a b e l s −1 and +1
55 # ( we i n f a c t c r e a t e d a m a t r i x w i t h a s i n g l e column )
56 Y = matrix ( d a t a s e t $ t r a i n [ , 3 ] , nco l =1)
57
58 # Number o f t r a i n i n g examples
59 n p o i n t s = nrow (X)
60
61 # Computing m a t r i x Q as we f o r m u l a t e d
62 Q = (Y %∗% t (Y) ) ∗ (X %∗% t (X) )
63
64 # D e f i n i n g v a l u e s t o s t a r t t h e e x e c u t i o n
65 C = 1 # Upper l i m i t f o r

a lpha _ i
66 e t a = 0 . 1 # T h i s w i l l be used

t o adap t t h e v a r i a b l e s o f our problem
67 b = r u n i f ( min=−1, max=1 , n =1) # I n i t i a l b
68 i t e r a t i o n = 1 # Counter o f

i t e r a t i o n
69 t h r e s h o l d = 1e−5 # T h i s parame te r

d e f i n e s t h e s t o p c r i t e r i o n
70
71 # V e c t o r f i l l e d o u t w i t h ones ( one ’ s v e c t o r )
72 e = rep ( 1 , nrow (Q) )
73
74 # I d e n t i t y m a t r i x
75 I = diag ( rep ( 1 , nrow (Q) ) )
76
77 # S e t t i n g a l l a l p h a s as h a l f o f C i n t o a d i a g o n a l

m a t r i x
78 Alpha = diag ( rep (C/ 2 , nrow (Q) ) )
79
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80 # D e f i n i n g t h e d i a g o n a l m a t r i x Xi u s i n g t h e same
v a l u e s o f a lphas ,

81 # what makes c o n s t r a i n t s r e s p e c t e d a c c o r d i n g t o t h e
v a l u e s o f t h e

82 # s l a c k v a r i a b l e s
83 Xi = Alpha
84
85 # Computing t h e d i a g o n a l m a t r i x S u s i n g t h e f i r s t

e q u a t i o n , as f o l l o w s :
86 # Q alpha + y b + Xi − s − e = 0
87 # Q alpha + y b + Xi − e = s
88 S = diag ( as . v e c t o r (Q%∗%diag ( Alpha ) + Y∗b + diag ( Xi )

− e ) )
89
90 # T h i s v a l u e found f o r S h e l p s us t o compute

e q u a t i o n :
91 #
92 # S a lpha − mu = 0
93 # S a lpha = mu
94 #
95 # a l l o w i n g t o f i n d t h e c u r r e n t Gap f o r our s o l u t i o n
96 # ( p l e a s e r e f e r t o t h e f i r s t Primal−Dual Path

F o l l o w i n g a l g o r i t h m
97 # used t o t a c k l e t h e l i n e a r o p t i m i z a t i o n problem )
98 gap = e%∗%S%∗%Alpha%∗%e
99

100 # T h i s i s t h e i n i t i a l mu
101 mu = as . numeric ( gap )
102
103 # F ac to r t o r educe mu along i t e r a t i o n s and

e v e n t u a l l y g e t c l o s e r t o b a r r i e r s .
104 # T h i s i s n e c e s s a r y i f t h e s o l u t i o n i s c l o s e t o one

o f t h e b a r r i e r t e r m s .
105 r e d u c i n g . f a c t o r = 0 . 9
106
107 # I d e n t i t y m a t r i x
108 I = diag ( nrow (Q) )
109
110 # B u i l d i n g up t h e J a c o b i a n m a t r i x .
111 # F i r s t and second rows w i l l n o t change anymore ,
112 # t h e r e f o r e t h e y are i n i t i a l i z e d b e f o r e t h e

i t e r a t i v e p r o c e s s .
113
114 # J a c o b i a n m a t r i x : f i r s t row
115 A = matrix ( 0 , nrow =(3∗ n p o i n t s +1) , nco l =(3∗ n p o i n t s +1)

)
116 A[ 1 : nrow (Q) , 1 : nco l (Q) ] = Q
117 A[ 1 : nrow (Q) , nco l (Q) +1] = Y
118 A[ 1 : nrow (Q) , ( nco l (Q) +2) : ( 2 ∗ n p o i n t s +1) ] = −I
119 A[ 1 : nrow (Q) , ( 2 ∗ n p o i n t s +2) : ( 3 ∗ n p o i n t s +1) ] = I
120
121 # J a c o b i a n m a t r i x : second row
122 A[ nrow (Q) +1 , 1 : l e n g t h (Y) ] = −t (Y)
123
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124 whi le ( gap > t h r e s h o l d ) {
125
126 # J a c o b i a n m a t r i x : t h i r d row
127 A[ ( n p o i n t s +2) : ( 2 ∗ n p o i n t s +1) , 1 : n p o i n t s ] = S
128 A[ ( n p o i n t s +2) : ( 2 ∗ n p o i n t s +1) , ( n p o i n t s +2) : ( 2 ∗

n p o i n t s +1) ] = Alpha
129
130 # J a c o b i a n m a t r i x : f o u r t h row
131 A[ ( 2 ∗ n p o i n t s +2) : ( 3 ∗ n p o i n t s +1) , 1 : n p o i n t s ] =

−Xi
132 A[ ( 2 ∗ n p o i n t s +2) : ( 3 ∗ n p o i n t s +1) , (2 ∗ n p o i n t s +2)

: ( 3 ∗ n p o i n t s +1) ] = diag ( rep (C , n p o i n t s ) )−
Alpha

133
134 # B u i l d i n g up v e c t o r b
135 B = matrix ( 0 , nrow=2∗ n p o i n t s +1 , nco l =1)
136
137 # F i r s t f u n c t i o n
138 f1 = − Q%∗%diag ( Alpha ) − Y∗b − diag ( Xi ) +

diag ( S ) + e
139
140 # Second f u n c t i o n
141 f2 = diag ( Alpha )%∗%Y
142
143 # T h i r d f u n c t i o n
144 f3 = −diag ( S%∗%Alpha ) + mu
145
146 # Four th f u n c t i o n
147 f4 = −( diag ( rep (C , n p o i n t s ) )−Alpha )%∗%diag ( Xi

) + mu
148
149 B [ 1 : n p o i n t s ] = f1
150 B[ n p o i n t s +1] = f2
151 B [ ( n p o i n t s +2) : ( 2 ∗ n p o i n t s +1) ] = f3
152 B[ ( 2 ∗ n p o i n t s +2) : ( 3 ∗ n p o i n t s +1) ] = f4
153
154 # S o l v i n g t h e s y s t e m ( t h i s s o l v e r comes w i t h

t h e package base )
155 d = s o l v e (A, B)
156
157 # C u t t i n g o u t t h e c o r r e s p o n d i n g D e l t a s f o r

Alpha , b , S and Xi
158 # t o be l a t e r used as u p d a t i n g f a c t o r s
159 d_ a l p h a = d [ 1 : n p o i n t s ]
160 d_b = d [ n p o i n t s +1]
161 d_S = d [ ( n p o i n t s +2) : ( 2 ∗ n p o i n t s +1) ]
162 d_Xi = d [ ( 2 ∗ n p o i n t s +2) : ( 3 ∗ n p o i n t s +1) ]
163
164 # Updat ing t h e v a r i a b l e s f o r our problem .
165 # Parameter e t a d e f i n e s t h e u p d a t e s t e p
166 diag ( Alpha ) = diag ( Alpha ) + e t a ∗ d_ a l p h a
167 b = b + e t a ∗ d_b
168 diag ( S ) = diag ( S ) + e t a ∗ d_S
169 diag ( Xi ) = diag ( Xi ) + e t a ∗ d_Xi
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170
171 # Coun t ing i t e r a t i o n s
172 i t e r a t i o n = i t e r a t i o n + 1
173
174 # R e c a l c u l a t i n g t h e Gap f o r t h e n e x t

i t e r a t i o n
175 gap = e%∗%S%∗%Alpha%∗%e
176
177 # We d e c r e a s e t h e v a l u e o f mu t o a l l o w our

a l g o r i t h m t o g e t
178 # c l o s e r t o b a r r i e r s whenever n e c e s s a r y
179 mu = mu ∗ r e d u c i n g . f a c t o r
180
181 c a t ( " C u r r e n t Gap i s " , gap , " \ n " )
182 }
183
184 # P l o t t i n g t h e d a t a s e t and t h e s u p p o r t v e c t o r s .
185 # S u p p o r t v e c t o r s c o r r e s p o n d t o e v e r y x _ i t h a t was

found t o h e l p
186 # our a l g o r i t h m d e f i n e t h e maximal−margin h y p e r p l a n e
187 c o l o r s = rep ( 1 , nrow (Q) )
188 i d s = which ( diag ( Alpha ) > 1e −5)
189 c o l o r s [ i d s ] = 2
190 p l o t (X, c o l = c o l o r s , main=" D a t a s e t and s u p p o r t

v e c t o r s " )
191 l o c a t o r ( 1 )
192
193 # P l o t t i n g t h e c l a s s i f i c a t i o n r e s u l t s .
194 # C r e a t i n g m a t r i x X t o r e p r e s e n t a l l v e c t o r s x _ i (

t e s t examples )
195 X. t e s t = d a t a s e t $ t e s t [ , 1 : 2 ]
196
197 # T h i s v e c t o r y c o n t a i n s l a b e l s −1 and +1
198 # ( we c r e a t e d a m a t r i x w i t h a s i n g l e column )
199 Y. t e s t = matrix ( d a t a s e t $ t e s t [ , 3 ] , nco l =1)
200
201 p r i n t ( d i s c r e t e . c l a s s i f i c a t i o n (X, Y, Alpha , b , X. t e s t

, Y. t e s t , t h r e s h o l d = 1e −5) )
202 }

The output provided by Listing 5.3 is similar to the output below, which contains
information about the current gap, and the expected versus the predicted classes
for test examples. Figure 5.39 illustrates the solution produced by this algorithm,
in which every gray dot corresponds to a training example, while black dots to
estimated support vectors.

Listing 5.4 Text output produced by Listing 5.3

C u r r e n t Gap i s 1 .701278 e−05
C u r r e n t Gap i s 1 .53115 e−05
C u r r e n t Gap i s 1 .378035 e−05
C u r r e n t Gap i s 1 .240231 e−05
C u r r e n t Gap i s 1 .116208 e−05
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Fig. 5.39 Solution produced
by the Primal-Dual Path
Following algorithm for the
SVM problem
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C u r r e n t Gap i s 1 .004587 e−05
C u r r e n t Gap i s 9 .041287 e−06

Expec ted c l a s s P r e d i c t e d c l a s s
[ 1 , ] −1 −1
[ 2 , ] −1 −1
[ 3 , ] −1 −1
[ 4 , ] −1 −1
[ 5 , ] −1 −1
[ 6 , ] −1 −1
[ 7 , ] −1 −1
[ 8 , ] −1 −1
[ 9 , ] −1 −1

[ 1 0 , ] −1 −1
[ 1 1 , ] 1 1
[ 1 2 , ] 1 1
[ 1 3 , ] 1 1
[ 1 4 , ] 1 1
[ 1 5 , ] 1 1
[ 1 6 , ] 1 1
[ 1 7 , ] 1 1
[ 1 8 , ] 1 1
[ 1 9 , ] 1 1
[ 2 0 , ] 1 1
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Fig. 5.40 Half-cylinder: all points on the light gray line represent a possible solution

5.5.3 Solving the SVM Optimization Problem Using Package
LowRankQP

Now we introduce an optimized version of the SVM Primal-Dual Path Following
algorithm available at package LowRankQP with the R Statistical Software [15].
LowRankQP implements the features described in [4, 6, 16, 20] to solve the
following convex optimization problem:

minimize dT α + 1

2
αT Hα

subject to Aα = b

0 ≤ α ≤ u,

in which H is either a positive definite matrix, i.e., αT Hα > 0, or a positive semi-
definite matrix, i.e., αT Hα ≥ 0. If positive definite, term 1

2αT Hα forms a convex
function, which is known to have a single minimum. If positive semi-definite, it also
forms a convex function, but eventually having an infinite set of equivalent solutions
such as in a half-cylinder (see Fig. 5.40).

The minimization problem solved by LowRankQP is equivalent to the SVM dual
optimization problem, given by:

maximize
α

− 1

2
αT Qα + eT α
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subject to 0 ≤ α ≤ C,

yT α = 0.

Thus, we must set dT = −eT , H = Q, u = C, b = 0, A = yT , so that the problem
solved by LowRankQP becomes:

minimize
α

− eT α + 1

2
αT Qα

subject to yT α = 0

0 ≤ α ≤ C,

which provides the same solution as the SVM dual:

maximize
α

eT α − 1

2
αT Qα

subject to 0 ≤ α ≤ C,

yT α = 0,

due to the inverse signs to translate the maximization to a minimization, as required
by such a package.

Listing 5.5 details the SVM optimization problem solved using LowRankQP.
Function testSimpleDataset() runs all steps, outputting plots and results.

Listing 5.5 Approaching the SVM optimization problem by using the package LowRankQP

1 # Loading package LowRankQP
2 l i b r a r y ( LowRankQP )
3
4 # T h i s i s t h e main f u n c t i o n which i s r e s p o n s i b l e f o r s o l v i n g

t h e o p t i m i z a t i o n
5 # problem u s i n g l i n e a r or a k th−o r d e r p o l y n o m i a l k e r n e l . I t

r e c e i v e s t h e t r a i n i n g
6 # s e t X and i t s c o r r e s p o n d i n g c l a s s e s Y i n {−1 , +1} . We a l s o

s e t t h e upper l i m i t C
7 # f o r e v e r y v a l u e c o n t a i n e d i n v e c t o r a lpha .
8 svm . p o l y n o m i a l <− f u n c t i o n (X, Y, C = I n f , p o l y n o m i a l . order =

2 , t h r e s h o l d = 1e −8) {
9

10 # B u i l d i n g up m a t r i x Q. Observe t h e k e r n e l f u n c t i o n
i s d e f i n e d

11 # i n here . I f p o l y n o m i a l . o r d e r =1 , t h e n we are
c o n s i d e r i n g t h e

12 # o r i g i n a l i n p u t space o f examples i n X , o t h e r w i s e
we are a p p l y i n g

13 # some n o n l i n e a r space t r a n s f o r m a t i o n .
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14 Qmat <− (Y %∗% t (Y) ) ∗ ( 1 + (X %∗% t (X) ) ) ^ p o l y n o m i a l .
order

15
16 # D e f i n i n g d as a v e c t o r c o n t a i n i n g v a l u e s e q u a l t o

−1
17 # t o e n s u r e t h e problem s o l v e d by LowRankQP i s t h e

same as ours
18 dvec <− rep ( −1 , nrow (X) )
19
20 # D e f i n i n g m a t r i x A as t h e t r a n s p o s e o f v e c t o r y
21 Amat <− t (Y)
22
23 # D e f i n i n g b as a z e r o v e c t o r
24 bvec <− 0
25
26 # S e t t i n g t h e upper l i m i t v e c t o r w i t h v a l u e s d e f i n e d

by C
27 uvec <− rep (C , nrow (X) )
28
29 # Running t h e LowRankQP f u n c t i o n t o f i n d v e c t o r

a lpha f o r which
30 # c o n s t r a i n t s are s a t i s f i e d . Thus , we m i n i m i z e t h e

f u n c t i o n a l
31 # d e f i n e d by LowRankQP
32 r e s <− LowRankQP ( Qmat , dvec , Amat , bvec , uvec ,

method="CHOL" )
33
34 # T h i s i s v e c t o r a lpha found a f t e r t h e o p t i m i z a t i o n

p r o c e s s
35 a l p h a s <− r e s $ a l p h a
36
37 # Here we d e f i n e which are t h e s u p p o r t v e c t o r s u s i n g

t h e v a l u e s
38 # i n v e c t o r a lpha . V a l ue s above some t h r e s h o l d are

t a k e n as more
39 # r e l e v a n t ( remember t h e s e are t h e KKT m u l t i p l i e r s )

t o d e f i n e
40 # c o n s t r a i n t s
41 s u p p o r t . v e c t o r s <− which ( a l p h a s > t h r e s h o l d )
42
43 # F i n a l l y , we d e f i n e t h e i d e n t i f i e r s o f s u p p o r t

v e c t o r s so we
44 # know who t h e y are
45 s u p p o r t . a l p h a s <− a l p h a s [ s u p p o r t . v e c t o r s ]
46
47 # Now we d e f i n e t h e margin u s i n g t h e s u p p o r t v e c t o r s
48 margin <− s u p p o r t . v e c t o r s
49
50 # and t h e n compute t h e v a l u e f o r b
51 b <− Y[ margin ] − t ( s u p p o r t . a l p h a s ∗Y[ s u p p o r t . v e c t o r s

] ) %∗% ( 1 + (X[ s u p p o r t . v e c t o r s , ] %∗% t (X[ margin , ] )
) ) ^ p o l y n o m i a l . order

52
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53 # R e t u r n i n g t h e whole model found d u r i n g t h e
o p t i m i z a t i o n p r o c e s s

54 re turn ( l i s t (X=X, Y=Y, p o l y n o m i a l . order= p o l y n o m i a l .
order , s u p p o r t . v e c t o r s = s u p p o r t . v e c t o r s , s u p p o r t .
a l p h a s = s u p p o r t . a l p h a s , b=mean ( b ) , a l l . a l p h a s =as .
v e c t o r ( a l p h a s ) ) )

55 }
56
57 # T h i s i s a s i m p l e f u n c t i o n t o p r o v i d e t h e d i s c r e t e

c l a s s i f i c a t i o n f o r unseen examples
58 d i s c r e t e . c l a s s i f i c a t i o n <− f u n c t i o n ( model , t e s t S e t ) {
59
60 # C r e a t i n g a v e c t o r t o s t o r e l a b e l s
61 a l l . l a b e l s = c ( )
62
63 # For e v e r y unseen example i n t h i s t e s t s e t
64 f o r ( i i n 1 : nrow ( t e s t S e t ) ) {
65
66 # Use t h e model found t h r ough f u n c t i o n svm .

p o l y n o m i a l t o
67 # o b t a i n t h e c l a s s i f i c a t i o n o u t p u t
68 l a b e l = sum ( model$ a l l . a l p h a s ∗ model$Y ∗

( 1 + ( t e s t S e t [ i , ] %∗% t ( model$X) ) ) ^ model$
p o l y n o m i a l . order ) + model$b

69
70 # I f l a b e l >= 0 , so t h e t e s t example l i e s on

t h e p o s i t i v e s i d e
71 # o f t h e h y p e r p l a n e , o t h e r w i s e i t l i e s on

t h e n e g a t i v e one
72 i f ( l a b e l >= 0)
73 l a b e l = 1
74 e l s e
75 l a b e l = −1
76
77 # S t o r i n g l a b e l s
78 a l l . l a b e l s = c ( a l l . l a b e l s , l a b e l )
79 }
80
81 # R e t u r n i n g t h e l a b e l s found
82 re turn ( a l l . l a b e l s )
83 }
84
85 # T h i s i s a s i m p l e f u n c t i o n t o p r o v i d e t h e c o n t i n u o u s

c l a s s i f i c a t i o n f o r unseen examples
86 c o n t i n u o u s . c l a s s i f i c a t i o n <− f u n c t i o n ( model , t e s t S e t ) {
87
88 # C r e a t i n g a v e c t o r t o s t o r e l a b e l s
89 a l l . l a b e l s = c ( )
90
91 # For e v e r y unseen example i n t h i s t e s t s e t
92 f o r ( i i n 1 : nrow ( t e s t S e t ) ) {
93
94 # Use t h e model found t h r ough f u n c t i o n svm .

p o l y n o m i a l t o
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95 # o b t a i n t h e c l a s s i f i c a t i o n o u t p u t
96 l a b e l = sum ( model$ a l l . a l p h a s ∗ model$Y ∗

( 1 + ( t e s t S e t [ i , ] %∗% t ( model$X) ) ) ^ model$
p o l y n o m i a l . order ) + model$b

97
98 # S t o r i n g l a b e l s
99 # The s i g n a l a s s o c i a t e d w i t h t h i s v a l u e

i n d i c a t e s t h e l a b e l , i . e . , − c o r r e s p o n d s
100 # t o c l a s s −1 and + t o c l a s s +1. In a d d i t i o n

, t h e magni tude o f t h i s v a r i a b l e
101 # ‘ l a b e l ’ i n f o r m s us how c l o s e or f a r t h e

unseen example i s from t h e h y p e r p l a n e
102 a l l . l a b e l s = c ( a l l . l a b e l s , l a b e l )
103 }
104
105 # R e t u r n i n g t h e l a b e l s found
106 re turn ( a l l . l a b e l s )
107 }
108
109 # T h i s i s a s i m p l e f u n c t i o n t o p l o t t h e h y p e r p l a n e found ,

b u t o n l y f o r b i d i m e n s i o n a l t r a i n i n g
110 # and t e s t s e t s
111 p l o t H y p e r p l a n e <− f u n c t i o n ( model , x . a x i s =c ( −1 ,1) , y . a x i s =c

( −1 ,1) , r e s o l u t i o n =100 , c o n t i n u o u s =TRUE) {
112
113 # Produc ing a s e t o f v a l u e s f o r t h e two d i m e n s i o n s

o f t h e t r a i n i n g / t e s t s e t s
114 x = seq ( x . a x i s [ 1 ] , x . a x i s [ 2 ] , l e n = r e s o l u t i o n )
115 y = seq ( y . a x i s [ 1 ] , y . a x i s [ 2 ] , l e n = r e s o l u t i o n )
116
117 # T h i s i s a m a t r i x t o s t o r e what we r e f e r t o p l o t

s e t .
118 # I t i s b i d i m e n s i o n a l as t h e t r a i n i n g and t e s t s e t s
119 p l o t S e t = NULL
120 f o r ( i i n 1 : l e n g t h ( x ) ) {
121 f o r ( j i n 1 : l e n g t h ( y ) ) {
122 p l o t S e t = rbind ( p l o t S e t , c ( x [ i ] , y [ j

] ) )
123 }
124 }
125
126 # T h i s i s a m a t r i x t o save l a b e l s f o r p l o t t i n g
127 l a b e l s = NULL
128 i f ( c o n t i n u o u s ) {
129 # Running t h e c o n t i n u o u s c l a s s i f i c a t i o n
130 l a b e l s = matrix ( c o n t i n u o u s . c l a s s i f i c a t i o n (

model , p l o t S e t ) , nrow= l e n g t h ( x ) , nco l =
l e n g t h ( y ) , byrow=T )

131 } e l s e {
132 # or t h e d i s c r e t e c l a s s i f i c a t i o n
133 l a b e l s = matrix ( d i s c r e t e . c l a s s i f i c a t i o n (

model , p l o t S e t ) , nrow= l e n g t h ( x ) , nco l =
l e n g t h ( y ) , byrow=T )

134 }
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135
136 # P l o t t i n g t h e h y p e r p l a n e found
137 f i l l e d . contour ( x , y , l a b e l s )
138 }
139
140 # T h i s f u n c t i o n p r o d u c e s v e r y s i m p l e l i n e a r l y s e p a r a b l e

t r a i n i n g / t e s t s e t s
141 s i m p l e D a t a s e t <− f u n c t i o n ( ) {
142
143 # B u i l d i n g up t h e t r a i n i n g s e t w i t h 100 examples
144 t r a i n <− cbind ( rnorm ( mean=0 , sd =1 , n =100) , rnorm (

mean=0 , sd =1 , n =100) )
145 t r a i n <− rbind ( t r a i n , cbind ( rnorm ( mean=10 , sd =1 , n

=100) , rnorm ( mean=10 , sd =1 , n =100) ) )
146 t r a i n <− cbind ( t r a i n , c ( rep ( −1 , 100) , rep ( 1 , 100) ) )
147
148 # B u i l d i n g up t h e t e s t s e t w i t h 10 examples
149 t e s t <− cbind ( rnorm ( mean=0 , sd =1 , n =10) , rnorm ( mean

=0 , sd =1 , n =10) )
150 t e s t <− rbind ( t e s t , cbind ( rnorm ( mean=10 , sd =1 , n =10)

, rnorm ( mean=10 , sd =1 , n =10) ) )
151 t e s t <− cbind ( t e s t , c ( rep ( −1 , 10) , rep ( 1 , 10) ) )
152
153 # R e t u r n i n g bo th s e t s
154 re turn ( l i s t ( t r a i n = t r a i n , t e s t = t e s t ) )
155 }
156
157 # T h i s i s a v e r y s i m p l e f u n c t i o n t o t e s t f u n c t i o n svm .

p o l y n o m i a l
158 t e s t S i m p l e D a t a s e t <− f u n c t i o n ( ) {
159
160 # B u i l d i n g up a v e r y s i m p l e l i n e a r l y s e p a r a b l e

t r a i n i n g s e t
161 d a t a s e t = s i m p l e D a t a s e t ( )
162
163 # O p t i m i z i n g v a l u e s f o r alpha , g i v e n t h i s s i m p l e

d a t a s e t
164 model = svm . p o l y n o m i a l ( d a t a s e t $ t r a i n [ , 1 : 2 ] , d a t a s e t $

t r a i n [ , 3 ] , C=10000 , p o l y n o m i a l . order =1)
165
166 # P l o t t i n g a l l v a l u e s i n v e c t o r a lpha t o check them

o u t
167 # and o b s e r v e which are t h e most r e l e v a n t ones
168 p l o t ( model$ a l l . a l p h a s )
169 l o c a t o r ( 1 )
170
171 # P l o t t i n g da ta space i n b l a c k and s u p p o r t v e c t o r s

i n red
172 p l o t ( d a t a s e t $ t r a i n [ , 1 : 2 ] )
173 p o i n t s ( d a t a s e t $ t r a i n [ model$ s u p p o r t . v e c t o r s , 1 : 2 ] , c o l

=2)
174 l o c a t o r ( 1 )
175
176 # P r i n t i n g l a b e l s −1 and +1 f o r v e r i f i c a t i o n
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177 l a b e l s = d i s c r e t e . c l a s s i f i c a t i o n ( model , d a t a s e t $ t e s t
[ , 1 : 2 ] )

178 r e s u l t = cbind ( d a t a s e t $ t e s t [ , 3 ] , l a b e l s )
179 colnames ( r e s u l t ) = c ( " Expec ted c l a s s " , " O b t a i n e d

c l a s s " )
180 c a t ( " D i s c r e t e c l a s s i f i c a t i o n : \ n " )
181 p r i n t ( r e s u l t )
182
183 # P r i n t i n g t h e c o n t i n u o u s c l a s s i f i c a t i o n o u t
184 l a b e l s = c o n t i n u o u s . c l a s s i f i c a t i o n ( model , d a t a s e t $

t e s t [ , 1 : 2 ] )
185 r e s u l t = cbind ( d a t a s e t $ t e s t [ , 3 ] , l a b e l s )
186 colnames ( r e s u l t ) = c ( " Expec ted c l a s s " , " O b t a i n e d

c l a s s " )
187 c a t ( " C o n t i n u o u s c l a s s i f i c a t i o n : \ n " )
188 p r i n t ( r e s u l t )
189
190 # P l o t t i n g t h e h y p e r p l a n e found
191 p l o t H y p e r p l a n e ( model , x . a x i s =c ( −1 ,11) , y . a x i s =c

( −1 ,11) , r e s o l u t i o n =100 , c o n t i n u o u s =FALSE )
192 }

The output below shows an example of results from function testSimpleDataset().
Notice that package LowRankQP shows information about the KKT conditions,
which ideally must be equal to zero (in fact they simply tend to zero, otherwise the
algorithm may cross barriers and make constraints unfeasible). The term “Duality
Gap” informs how close the results of the objective functions (primal and the dual)
are. The closer the duality gap is from zero, the better the solution is.

Listing 5.6 Text output produced by function testSimpleDataset() from Listing 5.5

LowRankQP CONVERGED IN 22 ITERATIONS

P r i m a l F e a s i b i l i t y = 1 .3990730 e−13
Dual F e a s i b i l i t y = 2 .3485572 e−17
C om pl e m e n t a r i t y Value = 1 .4534699 e−12
D u a l i t y Gap = 1.4534309 e−12
T e r m i n a t i o n C o n d i t i o n = 1 .4167561 e−12

D i s c r e t e c l a s s i f i c a t i o n :
Expec ted c l a s s O b t a i n e d c l a s s

[ 1 , ] −1 −1
[ 2 , ] −1 −1
[ 3 , ] −1 −1
[ 4 , ] −1 −1
[ 5 , ] −1 −1
[ 6 , ] −1 −1
[ 7 , ] −1 −1
[ 8 , ] −1 −1
[ 9 , ] −1 −1

[ 1 0 , ] −1 −1
[ 1 1 , ] 1 1
[ 1 2 , ] 1 1
[ 1 3 , ] 1 1
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[ 1 4 , ] 1 1
[ 1 5 , ] 1 1
[ 1 6 , ] 1 1
[ 1 7 , ] 1 1
[ 1 8 , ] 1 1
[ 1 9 , ] 1 1
[ 2 0 , ] 1 1
C o n t i n u o u s c l a s s i f i c a t i o n :

Expec ted c l a s s O b t a i n e d c l a s s
[ 1 , ] −1 −1.483436
[ 2 , ] −1 −1.450068
[ 3 , ] −1 −1.908535
[ 4 , ] −1 −1.450721
[ 5 , ] −1 −1.435895
[ 6 , ] −1 −1.474640
[ 7 , ] −1 −1.217873
[ 8 , ] −1 −1.473798
[ 9 , ] −1 −1.456945

[ 1 0 , ] −1 −1.599042
[ 1 1 , ] 1 1 .933268
[ 1 2 , ] 1 1 .674008
[ 1 3 , ] 1 1 .551290
[ 1 4 , ] 1 1 .529009
[ 1 5 , ] 1 2 .222672
[ 1 6 , ] 1 1 .092659
[ 1 7 , ] 1 1 .745056
[ 1 8 , ] 1 1 .749871
[ 1 9 , ] 1 1 .622522
[ 2 0 , ] 1 1 .687724

Also notice the discrete classification results provided the labels as expected
(first column is the expected class, while the second is the obtained by using the
classifier). We also suggest the reader to pay special attention to the continuous
classification, whose plus and minus signs are associated with the discrete label,
while the magnitude informs us about how far an unseen example is from the
maximal-margin hyperplane. For example, the first continuous classification pro-
duced −1.483436, meaning such unseen example is located at the negative side
(class −1) but more distant from the hyperplane than the support vector used
to define such negative class. Figure 5.41a illustrates the training examples, with
support vectors in black, while Fig. 5.41b illustrates the resulting hyperplane.

Listing 5.7 includes two other functions to test this SVM optimization program,
but now using a second-order polynomial kernel. The original data space is
illustrated in Fig. 5.42a, while Fig. 5.42b shows the features space projected into
the original data space, i.e. after applying the second-order polynomial kernel. Our
code runs on top of the features space, consequently a single hyperplane is enough
to separate classes, which is equivalent to find a more complex decision boundary
in the input space.
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Fig. 5.41 SVM optimization problem: (a) illustrates examples of the training set, with support
vectors highlighted in black; (b) shows the hyperplane found by using the optimization algorithm
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Fig. 5.42 Data space requiring a second-order polynomial kernel. (a) Training set with the support
vectors highlighted in black, (b) decision boundary mapped into the original data space, after
applying the second-order polynomial kernel

Listing 5.7 SVM optimization program using a second-order polynomial kernel

1 # T h i s package i s used t o b u i l d up t h e r a d i a l d a t a s e t
2 r e q u i r e ( t s e r i e s C h a o s )
3
4 # Loading t h e s o u r c e code t o s t a r t t h e o p t i m i z a t i o n p r o c e s s
5 source ( " lowrankqp−svm−s i m p l e . r " )
6
7 # T h i s f u n c t i o n b u i l d s up a r a d i a l d a t a s e t
8 r a d i a l D a t a s e t <− f u n c t i o n ( ) {
9
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10 # B u i l d i n g up t h e t r a i n i n g s e t w i t h 1000 examples
11 t r a i n <− rbind ( cbind ( rnorm ( mean=0 , sd = 0 . 1 , n =1000) ,

rnorm ( mean=0 , sd = 0 . 1 , n =1000) ) )
12 t r a i n <− rbind ( t r a i n , embedd (2 ∗ s i n (2 ∗ p i ∗ seq ( 0 , 9 ,

l e n g t h =1027) ) +
13 rnorm ( mean=0 , sd = 0 . 1 , n

=1027) , m=2 , d =27) )
14 t r a i n <− cbind ( t r a i n , c ( rep ( −1 , 1000) , rep ( + 1 , 1000)

) )
15
16 # B u i l d i n g up t h e t e s t s e t w i t h 10 examples
17 t e s t <− rbind ( cbind ( rnorm ( mean=0 , sd = 0 . 1 , n =10) ,

rnorm ( mean=0 , sd = 0 . 1 , n =10) ) )
18 t e s t <− rbind ( t e s t , embedd (2 ∗ s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n g t h

=37) ) +
19 rnorm ( mean=0 , sd = 0 . 1 , n

=37) , m=2 , d =27) )
20 t e s t <− cbind ( t e s t , c ( rep ( −1 , 10) , rep ( + 1 , 10) ) )
21
22 re turn ( l i s t ( t r a i n = t r a i n , t e s t = t e s t ) )
23
24 }
25
26 # T h i s f u n c t i o n i s used t o t e s t t h e SVM o p t i m i z a t i o n w i t h a

r a d i a l d a t a s e t
27 t e s t R a d i a l D a t a s e t <− f u n c t i o n (C=10) {
28
29 # B u i l d i n g up t h e r a d i a l d a t a s e t
30 d a t a s e t = r a d i a l D a t a s e t ( )
31
32 # Running t h e SVM o p t i m i z e r , so we can e s t i m a t e

a d e q u a t e v a l u e s f o r v e c t o r a lpha .
33 # N o t i c e we are now u s i n g a second−o r d e r p o l y n o m i a l

k e r n e l .
34 model = svm . p o l y n o m i a l ( d a t a s e t $ t r a i n [ , 1 : 2 ] , d a t a s e t $

t r a i n [ , 3 ] , C=C ,
35 p o l y n o m i a l . order =2 , t h r e s h o l d

= 1e −3)
36
37 # P l o t t i n g a l l v a l u e s c o n t a i n e d i n v e c t o r a lpha i n

o r d e r t o check them o u t
38 # and c o n c l u d e on which are t h e most r e l e v a n t ones
39 p l o t ( model$ a l l . a l p h a s )
40 l o c a t o r ( 1 )
41
42 # P l o t t i n g t h e da ta space i n b l a c k and s u p p o r t

v e c t o r s i n red
43 p l o t ( d a t a s e t $ t r a i n [ , 1 : 2 ] )
44 p o i n t s ( d a t a s e t $ t r a i n [ model$ s u p p o r t . v e c t o r s , 1 : 2 ] , c o l

=2)
45 l o c a t o r ( 1 )
46
47 # P r i n t i n g l a b e l s −1 and +1 f o r v e r i f i c a t i o n
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48 l a b e l s = d i s c r e t e . c l a s s i f i c a t i o n ( model , d a t a s e t $ t e s t
[ , 1 : 2 ] )

49 r e s u l t = cbind ( d a t a s e t $ t e s t [ , 3 ] , l a b e l s )
50 colnames ( r e s u l t ) = c ( " Expec ted c l a s s " , " O b t a i n e d

c l a s s " )
51 c a t ( " D i s c r e t e c l a s s i f i c a t i o n : \ n " )
52 p r i n t ( r e s u l t )
53
54 # P r i n t i n g t h e c o n t i n u o u s c l a s s i f i c a t i o n o u t
55 l a b e l s = c o n t i n u o u s . c l a s s i f i c a t i o n ( model , d a t a s e t $

t e s t [ , 1 : 2 ] )
56 r e s u l t = cbind ( d a t a s e t $ t e s t [ , 3 ] , l a b e l s )
57 colnames ( r e s u l t ) = c ( " Expec ted c l a s s " , " O b t a i n e d

c l a s s " )
58 c a t ( " C o n t i n u o u s c l a s s i f i c a t i o n : \ n " )
59 p r i n t ( r e s u l t )
60
61 # P l o t t i n g t h e h y p e r p l a n e found
62 p l o t H y p e r p l a n e ( model , x . a x i s =c ( −5 ,5) , y . a x i s =c ( −5 ,5)

, r e s o l u t i o n =100 , c o n t i n u o u s =FALSE )
63 }

Next, an example of output of Listing 5.7 is shown. Notice the “Duality Gap”
is close to zero, and that all KKT conditions (primal, dual and complementary
slackness) are similarly close to zero, and therefore to be fully satisfied. The
expected and obtained classes indeed confirm good classification results for unseen
examples. As before, the continuous classification provides additional information
about the relative position of test examples to the hyperplane. Such position can be
seen as a distance, from which an Entropy measure may be computed to analyze the
complexity of classifying some dataset [7, 21, 22].

Listing 5.8 Text output produced by Listing 5.7

LowRankQP CONVERGED IN 22 ITERATIONS

P r i m a l F e a s i b i l i t y = 4 .7949031 e−12
Dual F e a s i b i l i t y = 1 .3756696 e−15
C om pl e m e n t a r i t y Value = 3 .6998986 e−11
D u a l i t y Gap = 3.6999463 e−11
T e r m i n a t i o n C o n d i t i o n = 2 .4646533 e−11

D i s c r e t e c l a s s i f i c a t i o n :
Expec ted c l a s s O b t a i n e d c l a s s

[ 1 , ] −1 −1
[ 2 , ] −1 −1
[ 3 , ] −1 −1
[ 4 , ] −1 −1
[ 5 , ] −1 −1
[ 6 , ] −1 −1
[ 7 , ] −1 −1
[ 8 , ] −1 −1
[ 9 , ] −1 −1

[ 1 0 , ] −1 −1
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[ 1 1 , ] 1 1
[ 1 2 , ] 1 1
[ 1 3 , ] 1 1
[ 1 4 , ] 1 1
[ 1 5 , ] 1 1
[ 1 6 , ] 1 1
[ 1 7 , ] 1 1
[ 1 8 , ] 1 1
[ 1 9 , ] 1 1
[ 2 0 , ] 1 1
C o n t i n u o u s c l a s s i f i c a t i o n :

Expec ted c l a s s O b t a i n e d c l a s s
[ 1 , ] −1 −1.084941
[ 2 , ] −1 −1.091868
[ 3 , ] −1 −1.045681
[ 4 , ] −1 −1.049770
[ 5 , ] −1 −1.079689
[ 6 , ] −1 −1.086685
[ 7 , ] −1 −1.086326
[ 8 , ] −1 −1.062396
[ 9 , ] −1 −1.085283

[ 1 0 , ] −1 −1.087076
[ 1 1 , ] 1 1 .760680
[ 1 2 , ] 1 2 .257556
[ 1 3 , ] 1 1 .712013
[ 1 4 , ] 1 1 .685414
[ 1 5 , ] 1 1 .536826
[ 1 6 , ] 1 1 .421677
[ 1 7 , ] 1 1 .744846
[ 1 8 , ] 1 1 .766647
[ 1 9 , ] 1 1 .459362
[ 2 0 , ] 1 1 .422031

5.6 Concluding Remarks

This chapter introduced the necessary optimization concepts and tools for the
design, from scratch, of an Interior Point Method to approach the SVM opti-
mization problem. In the next chapter, we address some aspects of kernels and
Linear Algebra. Up until this point, we just employed such kernels to exemplify
practical scenarios, without theoretical discussion. By understanding how the input
spaces can be transformed, one can better study such spaces in order to improve
classification results, while keeping learning guarantees.
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5.7 List of Exercises

1. Implement the Simplex method described in Sect. 5.4.3, and apply it to solve the
linear problems discussed throughout this chapter.

2. Implement the Interior Point Method for the SVM optimization problem, and
apply it on different datasets, including: linearly separable data, linearly separa-
ble data with random noise (try uniform and Gaussian noises, for example), and
class-overlapped datasets.
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Chapter 6
A Brief Introduction on Kernels

In the previous chapters, we described the Support Vector Machines as a method
that creates an optimal hyperplane separating two classes by minimizing the loss
via margin maximization. This maximization led to a dual optimization problem
resulting in a Lagrangian function which is quadratic and requires simple inequality
constraints. The support vectors are responsible for defining the hyperplane, result-
ing in the support vector classifier f which not only provides a unique solution to
the problem, but also ensures learning with tighter guarantees. However this is only
possible if the input space is sufficiently linearly separable. On the other hand, many
input spaces are, in fact, not linearly separable. In order to overcome this restriction,
nonlinear transformations can be used to implicitly obtain a more adequate space.

In this chapter, we address the design of kernels to transform, or map, data
into a space that is as linearly separable as possible. The optimization problem is
formulated in terms of dot products, so that we can replace such operations with a
transformation function (kernel) that maps the input space into a higher dimensional
space. The main property of kernel functions is that they can be seen as providing
dot products in some Hilbert space in which the original input space is virtually
embedded.

The use of such strategy is often referred to as the “kernel trick” or “kernel
substitution”, as no modification is necessary in the primal and dual forms for the
SVM problem when the kernel application produces a Gram matrix. Designing a
kernel often requires prior knowledge about the problem, but allows space F to be
more restricted, leading to a faster convergence, and stronger learning guarantees.

In this context, we present the most typical kernel functions, practical aspects,
and the interpretation of such transformation in the light of Linear Algebra concepts.
Then, the kernel trick is discussed in terms of the SVM optimization problem.
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6.1 Definitions, Typical Kernels and Examples

A kernel k(x, y) is a function that takes two elements, typically vectors from some
space Rn, and outputs a measure of similarity between them. Considering the metric
space, we usually have something in form k : Rn × R

n → R. The reader can think
of it as computing dot products that quantify the similarity between examples—this
function has to obey certain mathematical properties that will be discussed later.

The simplest kernel function is the identity map, that is often called linear kernel,
defined as: k(x, y) =< x, y >= xT y, given x and y are represented by vectors x and
y, respectively. The dot product between a pair of data points is a linear combination
between x and y, as depicted in Fig. 6.1. However, notice that the linear kernel has
no additional effect because it does not map input data into a higher dimensional
space.

Among the kernels that map data into higher dimensional spaces, the most
known and widely used are: the polynomial, the radial basis function (RBF), and
the sigmoidal. In the following sections, we briefly describe those typical kernels
throughout examples. Later in the chapter, a more detailed discussion in the context
of SVM optimization is provided.

Fig. 6.1 Space formed by the
dot product between a pair of
vectors
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6.1.1 The Polynomial Kernel

The polynomial kernel is expressed by:

k(xi, xj ) =< xi , xj + c >d,

in which the arguments of function k(., .) are non-bold, because those are not
necessarily vectors in a Hilbert space; however the corresponding vectors xi , xj

must be in a space in which dot products are defined, i.e. the Hilbert space; d is
the kernel order; and, finally, c ≥ 0 is a parameter that trades off the influence of
higher-order versus lower-order terms in the polynomial. When c = 0 the kernel is
homogeneous polynomial, in which all terms have equal influence:

k(xi, xj ) =< xi , xj >d .

Considering a second-order homogeneous polynomial kernel (d = 2), and an
input space R

2 containing the following vectors:

x = [x1, x2]T

y = [y1, y2]T ,

then, the polynomial kernel is:

k(x, y) =< x, y >2= (x1y1 + x2y2)
2

= x2
1y2

1 + 2x1y1x2y2 + x2
2y2

2

Note the same result is obtained by representing the function as a dot product in
another space. The three last terms in the previous equation can be rewritten as:

[x2
1 , x1x2, x1x2, x

2
2 ]T · [y2

1 , y1y2, y1y2, y
2
2 ]T . (6.1)

Equation (6.1) describes a space with four dimensions, in other words, it is a
map from a 2-dimensional data space to a 4-dimensional features space. But, in
fact, two of the features space dimensions are the same, what allow us to simplify it
to three dimensions, as follows:

k(x, y) = x2
1y2

1 + 2x1y1x2y2 + x2
2y2

2

= [x2
1 ,

√
2x1x2, x

2
2 ]T .[y2

1 ,
√

2y1y2, y
2
2 ]T , (6.2)

but yet product the same dot-product result. By using this definition each 2-
dimensional vector x in the input space is mapped into a 3-dimensional vector in
the features space, as depicted in Fig. 6.2.
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Fig. 6.2 Space formed by second-order polynomial kernel applied to a nonlinear problem

6.1.2 The Radial Basis Function Kernel

Another typical and widely used kernel is the Radial Basis Function (RBF) kernel,
whose most common example is the Gaussian kernel, defined as:

k(x, y) = exp(−γ ||x, y||2), (6.3)

in which γ > 0 is commonly parametrized as γ = 1/(2σ 2), with σ as the standard
deviation of the Gaussian distribution. Considering the data space R

2:

x = [x1, x2]T ,

y = [y1, y2]T ,

the RBF kernel is:

k(x, y) = exp(−γ ||x, y||2)
= exp

(
−γ ||[x1, x2]T − [y1, y2]T ||2

)

= exp
(
−γ ||[x1, x2]T − [y1, y2]T ||2

)
. (6.4)

Notice this operation first computes the norm of the difference vector. For each
possible pair of vectors x and y in the data space, a difference vector is created in the
features space. For a data space in R

2, the features space is also in R
2, as depicted

in Fig. 6.3.
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Fig. 6.3 Space formed by the
difference vectors. Notice that
the length of the difference
vector carries the important
information: the shorter the
vector is, the more similar
vectors x and y are. k(x, y) is
computed using
gamma = 1/2
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k(x,y)= 0.08208

The Gaussian function is then applied over the length of the difference vector in
order to weigh the distances, so that greater relevance is given to nearby instances.
Due to the shape of the Gaussian distribution, it produces different weights for
vectors y lying on different radii with respect to a reference vector x. Remember
the parameter γ is related to the standard deviation of the Gaussian distribution, and
it defines how fast the weights drop as the length of the difference vector increases.

6.1.3 The Sigmoidal Kernel

As last example of a typical kernel, the sigmoidal produces a space that is similar to
the identity operation, but bounding magnitudes, i.e.:

k(x, y) = tanh(−κx · y + c), (6.5)

for some κ > 0 and c < 0. Considering again the data space R
2, the sigmoidal

kernel produces a space that is the same as the linear kernel, but with κ as a modifier
for the dot product magnitudes, and c as a shifting parameter for the hyperbolic
tangent curve. The most relevant aspect of this kernel is that it produces a continuous
output in a bounding range [−1, 1].
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6.1.4 Practical Examples with Kernels

Let us illustrate the use of two kernels applied on synthetic data examples in R
2,

produced as describe in Listing 6.1:

Listing 6.1 Two kernels applied on synthetic data examples in R
2

1 r e q u i r e ( t s e r i e s C h a o s )
2 data _ sp = cbind ( embedd ( 0 . 6 ∗ s i n ( seq ( 0 , 9 , l e n =1000) ) ,m=2 , d =175)

+
3 rnorm ( mean=0 , sd = 0 . 0 1 , n =825) ,
4 rep ( 0 , 825) )
5 data _ sp = rbind ( data _ sp , cbind ( rnorm ( mean=0 , sd = 0 . 1 , n =825) ,
6 rnorm ( mean=0 , sd = 0 . 1 , n =825) , rep ( 1 , 825) ) )
7 p l o t ( data _ sp [ , 1 : 2 ] , c o l =data _ sp [ , 3 ] + 1 )

We compare how MLP and SVM would solve this problem, in which we have
a Gaussian-distributed class enclosed by a circularly-distributed class. In Fig. 6.4,
see that MLP needs at least four linear hyperplanes to separate the two distributions
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Fig. 6.4 Comparison between the results provided by MLP with 4 hyperplanes and SVM
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(meaning the MLP model must have at least four neurons in the hidden layer). Those
hyperplanes do not guarantee maximal margin, which may hinder generalization
guarantees. On the other hand, the SVM optimizes the maximal margin for a single
hyperplane, but the results are poor because the original data space is not ideal.

However, by having prior knowledge about the class distributions, one can design
a second-order polynomial kernel to produce a features space in which a single
hyperplane is enough to separate classes. Such features space is computed and
visualized using Listing 6.2:

Listing 6.2 Designing a second-order polynomial kernel

1 r e q u i r e ( r g l )
2 f e a t u r e _ sp = cbind ( data _ sp [ , 1 ] ^ 2 , s q r t ( 2 ) ∗data _ sp [ , 1 ] ∗data _

sp [ , 2 ] ,
3 data _ sp [ , 2 ] ^ 2 )
4 p l o t 3 d ( f e a t u r e _ sp , c o l =data _ sp [ , 3 ] + 1 )

Figure 6.5 depicts the resulting features space, in which classes are now linearly
separable, emphasizing the importance of kernels. Now both MLP (still with 4
hyperplanes) and SVM are able to solve the problem, but providing different
VC dimensions and, consequently, generalization guarantees. When comparing the
output of those two inferred classifiers, one may only assess the numerical results,
e.g. in terms of accuracies, disregarding the theoretical aspects. As covered by
previous chapters, SVM has lower VC dimension due to the large-margin bounds,
and therefore stronger learning guarantees.
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Fig. 6.5 Second-order polynomial kernel: (a) resulting 3D features space, (b) hyperplane after
projecting the classification into the original 2D input space
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This example illustrates in practice how important is to consider kernels when
addressing classification problems that are originally non-linearly separable. When
comparing SVM with another classification algorithm such as MLP, if the latter
produces higher accuracies then most probably the data space is not adequate.

6.2 Principal Component Analysis

The Principal Component Analysis (PCA) is a method to linearly transform a
domain into a co-domain whose basis vectors are orthogonal. This transformation is
often considered for dimensionality reduction via feature selection, for studying the
data variance along reference axes, as well as for analyzing data subspaces. Given
this method is based on a linear transformation, it considers the linear combination
of reference axes (a.k.a. space dimensions) to form vectors in a target space, in
which linearly correlated dimensions are simplified in terms of an orthogonal and
centralized representation.

As an example, consider the synthetic dataset illustrated in Fig. 6.6 produced
using Listing 6.3, in which there is a linear correlation between students’ grades in
the subjects of Physics and Statistics.

Listing 6.3 Producing a synthetic dataset

1 r e q u i r e ( sp lus2R )
2 data = as . data . frame ( rmvnorm ( 1 0 0 , rho =0 .9 ) ∗ 5+70 )
3 colnames ( data ) = c ( " S t a t i s t i c s " , " P h y s i c s " )
4 p l o t ( data )

Pre-processing First, PCA centralizes and rescales data. In our example, variables
are in interval [50, 85], so they must be centralized to the origin (0, 0), i.e., let xi be
the ith variable in X, then its centralized version is x′

i = xi − mean(xi ):

Listing 6.4 Centralizing input data

1 c e n t r a l = apply ( data , 2 , f u n c t i o n ( x_ i ) { x_ i−mean ( x_ i ) } )
2 p l o t ( c e n t r a l )

Once the variables have the same unit of measurement (grades), there is no
need to rescale them. However, there are situations in which variables are in
different units of measurement, so that they need to be rescaled using their
standard deviation, i.e., x′′

i = (xi − mean(xi ))/ sd(xi ) or in terms of R code:
(x_i-mean(x_i))/sd(x_i).

Covariance Matrix After preprocessing data, the data covariance matrix must be
computed. The definition of the covariance of X is:

(X − column means(X))T (X − column means(X))



6.2 Principal Component Analysis 333

Fig. 6.6 Data with linear
correlation between
dimensions
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Considering the centralized version of data X′ = X − column means(X):

cov(X′) = X′T X′,

as the covariance matrix along its attributes. To compute it using the R Statistical
Software:

Listing 6.5 Computing the covariance matrix

1 c e n t r a l . cov = cov ( c e n t r a l )

resulting in:
Statistics Physics

Statistics 29.4139 27.7378
Physics 27.7378 30.0590

Eigenvalues and Eigenvectors As a third step, PCA computes the eigenvalues and
eigenvectors for the correlation matrix:

Listing 6.6 Computing the eigenvalues and eigenvectors

1 e i g e n s = e i g e n ( c e n t r a l . cov )
2 rownames ( e i g e n s $ v e c t o r s ) = c ( " S t a t i s t i c s " , " P h y s i c s " )
3 colnames ( e i g e n s $ v e c t o r s ) = c ( "PC1" , "PC2" )



334 6 A Brief Introduction on Kernels

The object eigens contains the eigenvalues λ1, λ2, and the respective eigen-
vectors v1, v2: eigens$values = 57.47620 1.99683 eigens$vectors =

PC1 PC2
Statistics 0.70298 −0.71120
Physics 0.71120 0.70298

It is interesting to observe that the sum of eigenvalues is actually the sum of
the variances for both attributes from the scaled data, i.e., λ1 + λ2 = var(x′′

1) +
var(x′′

2), or in R: sum(eigens$values) == var(scaled[,1]) + var
(scaled[,2])

Principal Components The eigenvectors of the covariance matrix are known as
the Principal Components. Each individual value of an eigenvector indicates the
association strength of each data attribute with the corresponding component. In our
example, v1 = [0.702, 0.711] and v2 = [−0.711, 0.702], meaning that Statistics has
an association of 0.702 with PC1 and Physics 0.711 with the same component. PC1
has positive associations with the attributes Statistics and Physics, i.e., they pull to
same directions in a plane. PC2 indicates inverse associations with each attribute.

One may plot the eigenvectors by computing their slopes:

Listing 6.7 Plotting the eigenvectors

1 pc1 . s l o p e = e i g e n s $ v e c t o r s [ 1 , 1 ] / e i g e n s $ v e c t o r s [ 2 , 1 ]
2 pc2 . s l o p e = e i g e n s $ v e c t o r s [ 1 , 2 ] / e i g e n s $ v e c t o r s [ 2 , 2 ]
3 a b l i n e ( 0 , pc1 . s l o p e , c o l =" r e d " )
4 a b l i n e ( 0 , pc2 . s l o p e , c o l =" b l u e " )

As expected, eigenvectors are orthogonal (Fig. 6.7). The first principal compo-
nent always corresponds to the axis with the greater data variance. PCA considers

Fig. 6.7 Eigenvectors related
to the principal components
of data. Note the data is
centralized, i.e. with zero
mean
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Fig. 6.8 Data obtained after
the rotation employed by the
eigenvectors
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that components with the greatest variance are the most relevant. The percentage
of variation in each axis is given by the corresponding eigenvalues. Given λ1 =
57.47620 and λ2 = 1.99683, then computing:

Listing 6.8 Percentage of data variances along the principal components

1 e i g e n s $ v a l u e s / ( sum ( e i g e n $ v a l u e s ) ∗ 100)

we find the relative percentual relevance of each axis: 94.45926 5.54073 Therefore,
the first principal component PC1 carries more than 94% of the data variance, but
remember it is not Physics nor Statistics, it is indeed a linear combination of both.
As matter of fact, PCA computes the orthogonal basis for some input data, so that
the main directions can be used to describe the data space.

Space Transformation In order to remove the linear correlation, PCA rotates
data so that eigenvectors (principal components) become parallel to cartesian axes
(Fig. 6.8). This allows us to illustrate the score plot, computed after changing the
basis of the data matrix:

Listing 6.9 Changing basis to obtain the score plot

1 s c o r e s = c e n t r a l %∗% e i g e n s $ v e c t o r s
2 p l o t ( s c o r e s )
3 a b l i n e ( 0 , 0 , c o l =" r e d " )
4 a b l i n e ( 0 , 9 0 , c o l =" b l u e " )

The Biplot illustrates the relationship among the score plot and data attributes,
which is produced as follows:
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Listing 6.10 Producing the Biplot

1 p l o t ( s c o r e s , x l im =range ( s c o r e s ) , y l im =range ( s c o r e s ) )
2 a b l i n e ( 0 , 0 , c o l =" r e d " )
3 a b l i n e ( 0 , 9 0 , c o l =" b l u e " )
4 sd = s q r t ( e i g e n s $ v a l u e s )
5 f a c t o r = 1
6 arrows ( 0 , 0 , e i g e n s $ v e c t o r s [ , 1 ] ∗ sd [ 1 ] / f a c t o r , e i g e n s $ v e c t o r s

[ , 2 ] ∗ sd [ 2 ] / f a c t o r ,
7 l e n g t h = 0 . 1 , c o l =1)
8 t e x t ( e i g e n s $ v e c t o r s [ , 1 ] ∗ sd [ 1 ] / f a c t o r ∗ 1 . 2 , e i g e n s $ v e c t o r s [ , 2 ]

∗ sd [ 2 ] / f a c t o r ∗ 1 . 2 ,
9 c ( " S t a t i s t i c s " , " P h y s i c s " ) , cex = 1 . 6 , c o l =2)

The cosine of the angle between vectors corresponds to the correlation between
attributes Statistics and Physics. Vectors with a small angle present a greater correla-
tion due to its projection. Indeed, in our example, the vectors representing attributes
have an acute angle between them, what is evidenced by the correlation of 0.888:

cor(data) =
Statistics Physics

Statistics 1.000 0.888
Physics 0.888 1.000

In the Biplot shown in Fig. 6.9, points close to the tip of vector Statistics
correspond to greater grades in that subject, many of the coincide with the points
close to Physics. Points in the opposite direction correspond to lower grades. Given
there is correlation, attribute vectors pull to nearby directions, that is why there
is an acute angle between them. An anti-correlation is also possible, with vectors
indicating opposite directions. Note that eigenvectors are orthogonal but attribute
values can assume other organizations.

For problems requiring dimensionality reduction, i.e., in which one wishes to
consider less variables, one may simply use the first principal components to
retain the desired relative percentual relevance. In our example, the use of PC1 is
equivalent to projecting any vector in the original space (after centralization) into the
direction of the first principal component: vT

i x, with i = 1. Provided eigenvectors
form an orthogonal matrix, its inverse is trivial and given by its transpose. In that
manner, one may map vectors back to the original space. A practical aspect to
be considered is to compute the covariance matrix on training data, so that the
eigenvectors may be used to transform test examples to this new space.

6.3 Kernel Principal Component Analysis

PCA assumes input data, represented by position vectors, are represented by linear
combinations. Alternatively, the Kernel Principal Component Analysis (KPCA)
assumes some kernel function must be applied on input data to make such position
vectors be represented through linear combinations.

For example, consider the bidimensional input data which has two distributions,
in a similar way as in Fig. 6.5, one drawn from a Gaussian distribution, another
surrounding this first in a circular way. Suppose some specialist wishes to find
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Fig. 6.9 Biplot illustrating
the correlation between
variables
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an alternative representation to vectors. After applying a second-order polynomial
kernel:

k(xi , xj ) =< Φ(xi ), Φ(xj ) >, (6.6)

which operates in R
2 to produce:

Φ

([
xi,1

xi,2

])
=

⎡
⎢⎣

x2
i,1√

2xi,1xi,2

x2
i,2

⎤
⎥⎦

resulting in a function to map every input vector xi , composed of two scalars xi,1
and xi,2, into a features space, as illustrated in Fig. 6.5b. On this new space, PCA
may be used to provide the best as possible linear representation for data.

There is no need to explicitly apply some kernel function as defined in Eq. (6.6).
Instead, one can simply ensure the similarity matrix among pairs xi , xj ∈ X is
Gramian. A Gram matrix M is positive semidefinite, i.e.:

xT Mx ≥ 0,

ensuring a convex function. As consequence, the kernel transformation may be
directly computed on top of the covariance matrix (which is already Gramian):

C = XXT ,



338 6 A Brief Introduction on Kernels

in which matrix X contains every position vector as row vectors, and then we apply
some kernel:

M = (XXT )2,

which in this case is the same second-order polynomial kernel as before. Then, we
can proceed with PCA on M instead of using matrix C. Note that here we employ a
multiplication of X by its transpose and not the other way around as for PCA. This
happens because we need the dot product among all vectors in the original space to
build up the kernel function, instead of analyzing attributes such as for PCA in its
original form.1

Listing 6.11 illustrates the usage of KPCA on a synthetic dataset with the same
properties discussed throughout this section. Matrix X is the same as discussed
before, while matrix K corresponds to the position vectors in the features space,
after explicitly applying the kernel function Φ(.). Matrices M1 and M2 correspond
to the covariance matrices after the explicit and implicit application of the kernel,
respectively. Observe the last line prints out the divergence between both covariance
matrices, which is less than 10−14 for this instance (simply a numerical error).

Listing 6.11 Example of the Kernel principal component analysis

1 # R e q u i r e d packages
2 r e q u i r e ( r g l )
3 r e q u i r e ( t s e r i e s C h a o s )
4
5 # B u i l d i n g up t h e d a t a s e t
6 X = embedd ( s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =500) ) , m=2 , d =14)
7 X = rbind (X, cbind ( rnorm ( mean=0 , sd = 0 . 1 , n =500) ,
8 rnorm ( mean=0 , sd = 0 . 1 , n =500) ) )
9 p l o t (X)

10
11 # Manual ly c r e a t i n g t h e k e r n e l space .
12 # T h i s i s t h e i m pac t o f t h e 2−o r d e r p o l y n o m i a l k e r n e l
13 K = cbind (X[ , 1 ] ^ 2 , s q r t ( 2 ) ∗X[ , 1 ] ∗X[ , 2 ] , X[ , 2 ] ^ 2 )
14 p l o t 3 d (K)
15
16 # Computing t h e c o v a r i a n c e m a t r i x u s i n g t h e e x p l i c i t
17 # t r a n s f o r m a t i o n o f v e c t o r s u s i n g t h e k e r n e l f u n c t i o n
18 M_1 = K%∗%t (K)
19
20 # Computing t h e c o v a r i a n c e m a t r i x f o r t h e 2nd p o l y n o m i a l
21 # k e r n e l , u s i n g i m p l i c i t a p p l i c a t i o n o f t h e k e r n e l f u n c t i o n
22 M_2 = (X%∗%t (X) ) ^2
23
24 c a t ( " D i f f e r e n c e : " , s q r t ( sum ( (M_1 − M_ 2) ^2 ) ) , " \ n " )

1There are variations for PCA to study data subspaces which employ XXT in order to analyze the
correlations among position vectors.
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We suggest the reader to employ PCA on M1 and M2 to observe eigenvectors and
eigenvalues are the same, apart some numerical error divergence. As a result, PCA
supports the separation of both data groups using the eigenvector with the maximal
variance. Section 6.5 discusses more about the need for such Gram matrix in the
context of SVM.

Other Interesting Remarks The following methods are also very useful to tackle
data decompositions:

• Singular Value Decomposition (SVD): if we decompose the centralized data
matrix X′ using Singular Value Decomposition, then we have X′ = UΣV T ,
in which U = XXT is a d × d matrix (d is the number of variables), V =
XT X is a matrix n × n (n is the number of data points), and Σ is a diagonal
matrix containing the eigenvalues of U . This means one could perform SVD
in the centralized data matrix and then apply the eigen decomposition in the
resulting matrix U ;

• Linear Discriminant Analysis (LDA): this is a generalization of Fisher’s linear
discriminant, a method used in Machine Learning, Statistics, Engineering, etc.
to find a linear combination of features that allows the characterization or the
separation of examples labeled under two or more classes;

• Kernel Discriminant Analysis (KDA): this is for LDA, as KPCA is to PCA,
meaning some kernel maps examples from the input space to another features
space in which LDA is employed;

• Low-Rank Representation (LRR): is a technique that performs a similar
analysis to PCA, but computing the covariance matrix for the data rows instead
of columns.

6.4 Exploratory Data Analysis

As previously discussed the typical kernels are: linear, polynomial, radial basis
and sigmoidal. The linear kernel simply consider the dot product of input vectors,
in form:

klinear(xi, xj ) =< xi , xj >,

having xi and xj as data elements, while xi and xj as their vectorial representations
in some Hilbert space H . The polynomial kernel computes the power of d (kernel
order) for such dot product and it may add a constant c, as follows:

k(xi, xj ) =< xi , xj + c >d . (6.7)

The radial basis function (RBF) kernel considers some real value γ > 0 to
compute:

k(xi, xj ) = exp(−γ ||xi , xj ||2),
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Fig. 6.10 Space provided by a two-class linearly separable dataset. (a) Original space before
kernel function is applied, (b) space after transformation via kernel function

and, finally, the sigmoidal kernel takes two real values κ > 0 and c < 0, in form:

k(xi, xj ) = tanh(−κxi · xj + c).

Each kernel may be more adequate to tackle a given scenario, so, in order to
illustrate their usefulness, next we discuss about some classification tasks in terms
of different data spaces.

6.4.1 How Does the Data Space Affect the Kernel Selection?

In this section, we use some datasets to illustrate the selection of SVM kernels. We
start with the two-class linearly separable dataset shown in Fig. 6.10. Listing 6.12
details the use of SVM to assess this input space. Observe the space is already
linearly separable, therefore the best choice is to use the linear kernel, instead of the
polynomial one, as confirmed by the output provided in Listing 6.13.

This code was implemented using the R package e1071, which contains function
svm. In Listing 6.12, we set parameter x = X and y = as.factor(Y) that correspond to
the examples (attributes along columns) and labels, respectively. Function as.factor
is necessary due to labels must be translated to such R data type. We set no scale
modification (scale = FALSE) for attributes, otherwise they would be modified to
zero mean and unit variance (recall the PCA preprocessing stage). Parameter degree
informs us that a second-order polynomial kernel is used, term d in Eq. (6.7), while
coef0 is associated with term c in the same equation. Argument cross=10 means
the SVM will proceed with a tenfold cross validation strategy to train and test the
classifiers found. Variable cost=1000 defines the upper bound for the cost constant
C (more information in Sect. 4.7).
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Listing 6.12 Space provided by a two-class linearly separable dataset: assessing a linear and a
second-order polynomial kernel

1 r e q u i r e ( e1071 )
2 r e q u i r e ( t s e r i e s C h a o s )
3
4 # B u i l d i n g t h e d a t a s e t
5 X = cbind ( rnorm ( mean=−1, sd = 0 . 1 , n =1000) ,
6 rnorm ( mean=−1, sd = 0 . 1 , n =1000) )
7 X = rbind (X, cbind ( rnorm ( mean=1 , sd = 0 . 1 , n =1000) ,
8 rnorm ( mean=1 , sd = 0 . 1 , n =1000) ) )
9

10 # D e f i n i n g t h e c l a s s l a b e l s
11 Y = c ( rep ( −1 , 1000) , rep ( + 1 , 1000) )
12
13 # P l o t t i n g t h e i n p u t space
14 p l o t (X, x l im =c ( min (X) , max (X) ) , y l im =c ( min (X) , max (X) ) , c o l =

Y+2)
15
16 # Using a l i n e a r k e r n e l
17 model1 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
18 k e r n e l =" l i n e a r " , c o s t =1000 , c r o s s =10)
19
20 c a t ( " A c c u r a c i e s f o r each one of t h e t e n c l a s s i f i e r s found : \ n

" )
21 p r i n t ( model1 $ a c c u r a c i e s )
22
23 # Using a second−o r d e r p o l y n o m i a l k e r n e l
24 model2 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
25 k e r n e l =" p o l y n o m i a l " , d e g r e e =2 ,
26 c o e f 0 =0 , c o s t =1000 , c r o s s =10)
27
28 c a t ( " A c c u r a c i e s f o r each one of t h e t e n c l a s s i f i e r s found : \ n

" )
29 p r i n t ( model2 $ a c c u r a c i e s )

The results provided by Listing 6.12 is shown next, which presents the ten
accuracies obtained along each one of the ten classifiers induced along the tenfold
cross validation strategy. Notice the linear hyperplane was already enough to
separate this first dataset as expected. The bias provided by the second-order
polynomial kernel was not good for this situation.

Listing 6.13 Text output produced by Listing 6.12

A c c u r a c i e s f o r each one of t h e t e n c l a s s i f i e r s found :
[ 1 ] 100 100 100 100 100 100 100 100 100 100

A c c u r a c i e s f o r each one of t h e t e n c l a s s i f i e r s found :
[ 1 ] 4 9 . 0 5 3 . 0 3 9 . 0 5 1 . 0 4 9 . 0 5 0 . 5 4 7 . 5 4 6 . 5 4 8 . 0 5 0 . 5

As a next instance, consider the input data illustrated in Fig. 6.11a, whose
examples are in a bidimensional space and centered at (0, 0). Such data organization
requires some second-order polynomial kernel to make it linearly separable through
an additional dimension. Listing 6.14 details a program to assess the same two
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Fig. 6.11 Space requiring a second-order polynomial kernel. (a) Original space before kernel
function is applied, (b) space after transformation via kernel function

kernels used in the previous example, but now the usefulness of the second-order
polynomial kernel is clear. Figure 6.11b illustrates the third-dimensional space
obtained after applying the second-order polynomial kernel, in which this features
space is then linearly separable.

Listing 6.14 Space provided by a two-class second-order polynomially separable dataset: assess-
ing a linear and a second-order polynomial kernel

1 r e q u i r e ( r g l )
2 r e q u i r e ( e1071 )
3 r e q u i r e ( t s e r i e s C h a o s )
4
5 # B u i l d i n g t h e d a t a s e t
6 X = cbind ( rnorm ( mean=0 , sd = 0 . 1 , n =1000) ,
7 rnorm ( mean=0 , sd = 0 . 1 , n =1000) )
8 X = rbind (X, embedd ( s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =1027) ) , m=2 , d =27) )
9

10 # D e f i n i n g t h e c l a s s l a b e l s
11 Y = c ( rep ( −1 , 1000) , rep ( + 1 , 1000) )
12
13 # P l o t t i n g t h e i n p u t space
14 p l o t (X, x l im =c ( min (X) , max (X) ) , y l im =c ( min (X) , max (X) ) , c o l =

Y+2)
15
16 # Using a l i n e a r k e r n e l
17 model1 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
18 k e r n e l =" l i n e a r " , c o s t =1000 , c r o s s =10)
19
20 c a t ( " A c c u r a c i e s f o r each one of t h e t e n c l a s s i f i e r s found : \ n

" )
21 p r i n t ( model1 $ a c c u r a c i e s )
22
23 # Using a second−o r d e r p o l y n o m i a l k e r n e l
24 model2 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
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25 k e r n e l =" p o l y n o m i a l " , d e g r e e =2 , c o e f 0 =0 ,
26 c o s t =1000 , c r o s s =10)
27
28 c a t ( " A c c u r a c i e s f o r each one of t h e t e n c l a s s i f i e r s found : \ n

" )
29 p r i n t ( model2 $ a c c u r a c i e s )
30
31 # E f f e c t o f t h e second−o r d e r p o l y n o m i a l k e r n e l
32 a f t e r . k e r n e l = cbind (X[ , 1 ] ^ 2 , s q r t ( 2 ) ∗X[ , 1 ] ∗X[ , 2 ] , X[ , 2 ] ^ 2 )
33 p l o t 3 d ( a f t e r . k e r n e l , c o l =Y+2)

The outputs below confirm the second-order polynomial kernel provides good
results when the input data has the same characteristics as in Fig. 6.11. Users may
run a linear SVM on this type of data space and question the abilities of SVM
as a classification algorithm. In all those situations, it is worth to remember that
SVM provides the strongest learning guarantees as possible, so when one observes
low classification performance that is due to the lack of linear separability of the
provided data space. In that context, SVM is still the best supervised algorithm,
however it requires an adequate kernel to transform input examples into linearly
separable data. As a practical example, suppose Multilayer Perceptron performs
better on some original input space while SVM provides poor results. The reason
is simple, the input space is not adequate for SVM, while MLP may apply several
hyperplanes to produce some better result. In this instance we have just studied, a
second-order polynomial kernel is necessary to produce space transformations and
allow SVM to work properly.

Listing 6.15 Text output produced by Listing 6.14

A c c u r a c i e s f o r each one of t h e t e n c l a s s i f i e r s found :
[ 1 ] 4 5 . 0 6 5 . 5 6 6 . 0 6 5 . 5 6 9 . 5 6 3 . 0 7 3 . 5 4 4 . 5 6 4 . 5 6 9 . 5

A c c u r a c i e s f o r each one of t h e t e n c l a s s i f i e r s found :
[ 1 ] 100 100 100 100 100 100 100 100 100 100

At a next instance, consider the dataset illustrated in Fig. 6.12a, which motivates
us to employ different kernels and analyze results. Listing 6.16 details the program
used to design a dataset as well as all SVM settings. We employed a linear kernel
(model1), an homogeneous second-order polynomial kernel (here referred to as
homogeneous given c = 0 in Eq. (6.7)—model2), an homogeneous third-order
polynomial kernel (model3), another homogeneous but fourth-order polynomial
kernel (model4) and, finally, a nonhomogeneous third-order polynomial kernel
(because c �= 0 in Eq. (6.7)—model5). In Fig. 6.12b we show the result of applying
the second order polynomial kernel to illustrate its effect. The remaining ones are
not plotted due to the their higher dimensionalities.

For the sake of comparison, we analyze the homogeneous versus the nonhomo-
geneous third-order polynomial kernel and their effects in the features space. Let
vectors:
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Fig. 6.12 Space provided by a two-class complex dataset. (a) Original space before kernel
function is applied, (b) space after transformation via kernel function

x =
[
x1

x2

]
and y =

[
y1

y2

]
.

The homogeneous third-order polynomial kernel produces the following dot
product:

(< x, y >)3 = (x1y1 + x2y2)
3

x3
1y3

1 + 3x2
1y2

1x2y2 + 3x1y1x
2
2y2

2 + x3
2y3

2 ,

which can be represented in terms of two vectors so one can understand the features
space:

ẋ =

⎡
⎢⎢⎣

x3
1√

3x2
1x2√

3x1x
2
2

x3
2

⎤
⎥⎥⎦ and ẏ =

⎡
⎢⎢⎣

y3
1√

3y2
1y2√

3y1y
2
2

y3
2

⎤
⎥⎥⎦ ,

therefore, < ẋ, ẏ >= (< x, y >)3. However, < ẋ, ẏ > allows us to analyze the
dimensions of the features space, which contains four axes as defined by those
vectors. If the reader is interested in visualizing the impacts of this features space,
we suggest him/her to plot every three possible axes and empirically check up the
effects of this kernel on the input space.

By using the nonhomogeneous third-order kernel:

(< x, y > +1)3 = (x1y1 + x2y2 + 1)3

x3
1y3

1 + 3x2
1y2

1x2y2 + 3x2
1y2

1 + 3x1y1x
2
2y2

2
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+ 6x1y1x2y2 + 3x1y1 + x3
2y3

2 + 3x2
2y2

2 +3x2y2 + 1,

the dot product in the features space becomes an operation on vectors:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3
1√

3x2
1x2√

3x2
1√

3x1x
2
2√

6x1x2√
3x1

x3
2√

3x2
2√

3x2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ẏ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y3
1√

3y2
1y2√

3y2
1√

3y1y
2
2√

6y1y2√
3y1

y3
2√

3y2
2√

3y2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this situation, the features space has ten dimensions instead of four. In addition,
notice the four dimensions obtained through the homogeneous kernel are included
in this nonhomogeneous space, as well as

√
3y2

1 ,
√

6y1y2,
√

3y1,
√

3y2
2 ,

√
3y2,

and 1. Notice dimensions
√

3y2
1 ,

√
6y1y2, and

√
3y2

2 are associated with a second-
order polynomial kernel, while dimensions

√
3y1 and

√
3y2 correspond to the linear

kernel (just multiplied by a scalar). The last dimension, i.e., 1, comes from the
nonhomogeneous constant c but has no effect, since all vectors will have the same
scalar value for it.

The effect of the nonhomogeneous third-order polynomial kernel is to bring
information from all previous orders in terms of axes in the target features space.
In that sense, one has access to the third order, but also to the second and the linear
ones as result of such nonhomogeneous kernel. This happens whenever someone
decides to employ a kth nonhomogeneous kernel, allowing the features space to
bring information from all previous orders.

Listing 6.16 Space provided by a two-class complex dataset: assessing different kernels

1 r e q u i r e ( e1071 )
2 r e q u i r e ( t s e r i e s C h a o s )
3
4 # B u i l d i n g t h e d a t a s e t
5 X1 = embedd ( s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =1000) ) , m=2 , d =27)
6 i d s = which ( X1 [ , 1 ] < −0.5 & X1 [ , 2 ] < −0.5)
7 X1 = X1[− i d s , ]
8
9 X2 = embedd ( s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =1000) ) , m=2 , d =27)

10 i d s = which ( X2 [ , 1 ] > 0 . 5 & X2 [ , 2 ] > 0 . 5 )
11 X2 = X2[− i d s , ]
12 X2 [ , 1 ] = X2 [ , 1 ] + 0 . 3
13 X2 [ , 2 ] = X2[ ,2 ] −0 .75
14
15 # D e f i n i n g t h e c l a s s l a b e l s
16 X = rbind ( X1 , X2 )



346 6 A Brief Introduction on Kernels

17 Y = c ( rep ( −1 , nrow ( X1 ) ) , rep ( + 1 , nrow ( X2 ) ) )
18
19 # P l o t t i n g t h e i n p u t space
20 p l o t (X, c o l =Y+2)
21
22 # Using a l i n e a r k e r n e l
23 model1 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
24 k e r n e l =" l i n e a r " , c o s t =10 , c r o s s =10)
25 c a t ( " Accuracy wi th a l i n e a r k e r n e l : " , model1 $ t o t . a ccu racy ,

" \ n " )
26
27 # Using a second−o r d e r p o l y n o m i a l k e r n e l
28 model2 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
29 k e r n e l =" p o l y n o m i a l " , d e g r e e =2 , c o e f 0 =0 ,
30 c o s t =10 , c r o s s =10)
31 c a t ( " Accuracy wi th a second−o r d e r p o l y n o m i a l k e r n e l : " ,
32 model2 $ t o t . a ccu racy , " \ n " )
33
34 # Using a t h i r d −o r d e r p o l y n o m i a l k e r n e l
35 model3 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
36 k e r n e l =" p o l y n o m i a l " , d e g r e e =3 , c o e f 0 =0 ,
37 c o s t =10 , c r o s s =10)
38 c a t ( " Accuracy wi th a t h i r d −o r d e r p o l y n o m i a l k e r n e l : " ,
39 model3 $ t o t . a ccu racy , " \ n " )
40
41 # Using a f o u r t h −o r d e r p o l y n o m i a l k e r n e l
42 model4 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
43 k e r n e l =" p o l y n o m i a l " , d e g r e e =4 , c o e f 0 =0 ,
44 c o s t =10 , c r o s s =10)
45 c a t ( " Accuracy wi th a f o u r t h −o r d e r p o l y n o m i a l k e r n e l : " ,
46 model4 $ t o t . a ccu racy , " \ n " )
47
48 # Using a t h i r d −o r d e r p o l y n o m i a l k e r n e l w i t h c o e f 0 =1
49 model5 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
50 k e r n e l =" p o l y n o m i a l " , d e g r e e =3 , c o e f 0 =1 ,
51 c o s t =10 , c r o s s =10)
52 c a t ( " Accuracy wi th a 3 rd−o r d e r p o l y n o m i a l k e r n e l c o e f 0 =1: " ,
53 model5 $ t o t . a ccu racy , " \ n " )

The output below confirms the third-order polynomial kernel has already pro-
vided fair accuracy results (≈82), however only after assessing its nonhomogeneous
version (≈99) we notice the effects of adding the previous orders in the features
space. This is a very useful strategy to assess some unknown input space, i.e.,
by increasing the polynomial order until classifiers reduce their accuracy, what
happened for the fourth-order kernel. Then, we may attempt to use the previous
orders, less than four, in nonhomogeneous kernel versions and assess the results.
This brings us information about the inherent data complexity, or if one prefers,
about the necessary axes/dimensions to make the original space linearly separable.

Listing 6.17 Text output produced by Listing 6.16

Accuracy wi th a l i n e a r k e r n e l : 69 .082
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Accuracy wi th a second−o r d e r p o l y n o m i a l k e r n e l : 77 .633
Accuracy wi th a t h i r d −o r d e r p o l y n o m i a l k e r n e l : 82 .049
Accuracy wi th a f o u r t h −o r d e r p o l y n o m i a l k e r n e l : 79 .841
Accuracy wi th a t h i r d −o r d e r p o l y n o m i a l k e r n e l c o e f 0 =1:

99 .660

As next scenario, we attempt to classify the input space illustrated in Fig. 6.13a,
in which examples are displaced from the center, i.e., their average is not centered at
the coordinate (0, 0). This brings up a simple but interesting analysis (Listing 6.18),
from which we notice the second-order polynomial kernel is not adequate anymore.
Note for example Fig. 6.13b.

Listing 6.18 Space provided by a two-class and uncentered dataset: assessing different kernels

1 r e q u i r e ( e1071 )
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Fig. 6.13 Space provided by a two-class and uncentered dataset. (a) Uncentered input space, (b)
illustrates how the use of a polynomial kernel for uncentered data does not provide an adequate
transformation, (c) input space after centering, (d) the features space after kernel transformation is
now linearly separable
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2 r e q u i r e ( t s e r i e s C h a o s )
3
4 # B u i l d i n g t h e d a t a s e t
5 X = cbind ( rnorm ( mean=10 , sd = 0 . 1 , n =1000) ,
6 rnorm ( mean=10 , sd = 0 . 1 , n =1000) )
7 X = rbind (X, embedd ( s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =1027) ) , m=2 , d =27)

+ 10)
8
9 # D e f i n i n g t h e c l a s s l a b e l s

10 Y = c ( rep ( −1 , 1000) , rep ( + 1 , 1000) )
11
12 # P l o t t i n g t h e i n p u t space
13 par ( mfrow=c ( 1 , 2 ) )
14 p l o t (X, x l im =c ( 0 , max (X) ) , y l im =c ( 0 , max (X) ) , c o l =Y+2)
15
16 # Using an homogeneous second−o r d e r p o l y n o m i a l k e r n e l
17 model1 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
18 k e r n e l =" p o l y n o m i a l " , d e g r e e =2 , c o e f 0 =0 ,
19 c o s t =1000 , c r o s s =10)
20 c a t ( " Accuracy u s i n g t h e second−o r d e r p o l y n o m i a l k e r n e l
21 on t h e u n c e n t e r e d s p a c e : " , model1 $ t o t . a ccu racy , " \ n " )
22
23 # Using a r a d i a l k e r n e l
24 model2 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
25 k e r n e l =" r a d i a l " , gamma= 0 . 2 5 , c o s t =1000 , c r o s s

=10)
26 c a t ( " Accuracy wi th r a d i a l k e r n e l on t h e u n c e n t e r e d s p a c e : " ,
27 model2 $ t o t . a ccu racy , " \ n " )
28
29 # C e n t e r i n g t h e d a t a s e t
30 X = apply (X, 2 , f u n c t i o n ( column ) { column − mean ( column ) } )
31 p l o t (X, x l im =c ( min (X) , max (X) ) , y l im =c ( min (X) , max (X) ) , c o l =

Y+2)
32
33 # The homogeneous second−o r d e r p o l y n o m i a l k e r n e l i s a p p l i e d

aga in
34 model3 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
35 k e r n e l =" p o l y n o m i a l " , d e g r e e =2 , c o e f 0 =0 ,
36 c o s t =1000 , c r o s s =10)
37 c a t ( " Accuracy wi th t h e 2nd−o r d e r p o l y n o m i a l k e r n e l
38 on t h e c e n t e r e d s p a c e : " , model3 $ t o t . a ccu racy , " \ n " )

The second-order polynomial kernel can be seen as the computation of vector
norms, therefore as the input space is not centered at (0, 0), such a distance measure
does not provide any additional information (≈90). However, after centralizing data,
as seen in the third accuracy below, the second-order polynomial kernel provides
best results (100). From this, it is clear the relevance of the centralization operation
when dealing with polynomial kernels. Figure 6.13c, d shows the resulting centered
space before and after applying the kernel. On the other hand, the radial kernel does
not require centralization, since its parameters allow it to be centered anywhere
in the space, so that vector norms are locally computed. Besides the simplicity of
this problem instance, it is very significative to compare polynomial kernels against
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the radial basis one: (1) second-order polynomial kernels and radials have the same
usefulness when data is centered; and (2) polynomial kernels always measure vector
norms in terms of the original input space, but assuming different factors according
to the selected kernel.

Listing 6.19 Text output produced by Listing 6.18

Accuracy wi th second−o r d e r p o l y n o m i a l k e r n e l , u n c e n t e r e d
s p a c e : 9 0 . 9 5

Accuracy wi th r a d i a l k e r n e l , u n c e n t e r e d s p a c e : 100
Accuracy wi th second−o r d e r p o l y n o m i a l k e r n e l , c e n t e r e d s p a c e

: 100

6.4.2 Kernels on a 3-Class Problem

The SVM classifier and kernel functions can be employed also in multi-class
problems. In this section, we study the space with 3 classes illustrated in Fig. 6.14,
in which two classes, similar to those presented in Fig. 6.12, are surrounded by a
circularly shaped third class. This is interesting because SVM tackles multi-class
problems often using a one-versus-all approach. Listing 6.20 presents the source
code to generate the data and carry out experiments with this problem, whose results
are shown in Listing 6.21. In this case, a homogeneous second-order polynomial
kernel is also not adequate, but non-homogeneous polynomial kernels seem to
improve results (see Fig. 6.15 for some examples of 3d spaces using the features
space), in particular the third-order non-homogeneous polynomial kernel is the best
fit. The radial basis kernel is also adequate in this scenario.

Listing 6.20 Space with 3 classes: assessing different kernels

1 r e q u i r e ( e1071 )
2 r e q u i r e ( t s e r i e s C h a o s )
3 x = seq ( −1 . 0 , 1 . 0 , l e n =1000)
4
5 # c l a s s 1
6 X1 = 1∗ cos ( x∗2∗ p i )
7 X1 = cbind ( X1 , 1 . 1 ∗ s i n ( x∗2∗ p i ) )
8 X1 = X1 [ −which ( ( X1 [ , 1 ] < −0.5) & ( X1 [ , 2 ] < 0 . 5 ) ) , ]
9 X1 = X1 + cbind ( rep ( 0 . 1 , nrow ( X1 ) ) , rep ( 0 . 4 , nrow ( X1 ) ) )

10 X1 = X1 + rnorm ( mean=0 , sd = 0 . 1 , n=nrow ( X1 ) )
11
12 # c l a s s 2
13 X2 = 1 . 1 ∗ cos ( x∗2∗ p i )
14 X2 = cbind ( X2 , 1∗ s i n ( x∗2∗ p i ) )
15 X2 = X2 [ −which ( ( X2 [ , 1 ] > 0 . 6 ) & ( X2 [ , 2 ] < 0 . 4 ) ) , ]
16 X2 = X2 − 0 . 4
17 X2 = X2 + rnorm ( mean=0 , sd = 0 . 1 , n=nrow ( X2 ) )
18
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Fig. 6.14 Space with three
non-linearly separable classes
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Fig. 6.15 3d projections combining every distinct triple of features produced after the second-
order nonhomogeneous polynomial kernel with coef0=2. The top-left figure shows the same
resultant space as a second-order homogeneous kernel. The additional figures, illustrate the other
subspaces contained in the nonhomogeneous function



6.4 Exploratory Data Analysis 351

19 # c l a s s 3
20 X3 = 2 . 6 ∗ cos ( x∗2∗ p i )
21 X3 = cbind ( X3 , 2 . 6 ∗ s i n ( x∗2∗ p i ) )
22 X3 = X3 + rnorm ( mean=0 , sd = 0 . 2 , n=nrow ( X3 ) )
23
24 # D e f i n i n g t h e c l a s s l a b e l s
25 X = rbind ( X1 , X2 , X3 )
26 Y = c ( rep ( 0 , nrow ( X1 ) ) , rep ( 1 , nrow ( X2 ) ) , rep ( 2 , nrow ( X3 ) ) )
27
28 # Using a l i n e a r k e r n e l
29 model1 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
30 k e r n e l =" l i n e a r " , c o s t =10 , c r o s s =10)
31 c a t ( " Accuracy wi th l i n e a r k e r n e l : " , model1 $ t o t . a ccu racy , " \

n " )
32
33 # Using a second−o r d e r p o l y n o m i a l k e r n e l
34 model2 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
35 k e r n e l =" p o l y n o m i a l " , d e g r e e =2 , c o e f 0 =0 ,
36 c o s t =10 , c r o s s =10)
37 c a t ( " Accuracy wi th 2nd−o r d e r p o l y n o m i a l k e r n e l : " ,
38 model2 $ t o t . a ccu racy , " \ n " )
39
40 # Using a t h i r d −o r d e r p o l y n o m i a l k e r n e l
41 model3 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
42 k e r n e l =" p o l y n o m i a l " , d e g r e e =3 , c o e f 0 =0 ,
43 c o s t =10 , c r o s s =10)
44 c a t ( " Accuracy wi th 3 rd−o r d e r p o l y n o m i a l k e r n e l : " ,
45 model3 $ t o t . a ccu racy , " \ n " )
46
47 # Using a f o u r t h −o r d e r p o l y n o m i a l k e r n e l
48 model4 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
49 k e r n e l =" p o l y n o m i a l " , d e g r e e =4 , c o e f 0 =0 ,
50 c o s t =10 , c r o s s =10)
51 c a t ( " Accuracy wi th 4 th−o r d e r p o l y n o m i a l k e r n e l : " ,
52 model4 $ t o t . a ccu racy , " \ n " )
53
54 # Using a r a d i a l k e r n e l
55 model5 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
56 k e r n e l =" r a d i a l " , gamma= 0 . 5 , c o s t =10 , c r o s s =10)
57 c a t ( " Accuracy wi th r a d i a l k e r n e l , gamma = 0 . 5 : " ,
58 model5 $ t o t . a ccu racy , " \ n " )
59
60 # Using a 2nd−o r d e r p o l y n o m i a l k e r n e l w i t h c o e f 0 =2
61 model6 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
62 k e r n e l =" p o l y n o m i a l " , d e g r e e =2 , c o e f 0 =2 ,
63 c o s t =10 , c r o s s =10)
64 c a t ( " Accuracy wi th 2nd−o r d e r p o l y n o m i a l k e r n e l , c o e f 0 =2: " ,
65 model6 $ t o t . a ccu racy , " \ n " )
66
67 # Using a 3 rd−o r d e r p o l y n o m i a l k e r n e l w i t h c o e f 0 =1
68 model7 = svm ( x = X, y = as . f a c t o r (Y) , s c a l e =FALSE ,
69 k e r n e l =" p o l y n o m i a l " , d e g r e e =3 , c o e f 0 =1 ,
70 c o s t =10 , c r o s s =10)
71 c a t ( " Accuracy wi th 3 rd−o r d e r p o l y n o m i a l k e r n e l , c o e f 0 =1: " ,
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72 model7 $ t o t . a ccu racy , " \ n " )

Listing 6.21 Text output produced by Listing 6.20

Accuracy wi th l i n e a r k e r n e l : 40 .5842
Accuracy wi th 2nd−o r d e r p o l y n o m i a l k e r n e l : 74 .9703
Accuracy wi th 3 rd−o r d e r p o l y n o m i a l k e r n e l : 39 .4788
Accuracy wi th 4 th−o r d e r p o l y n o m i a l k e r n e l : 79 .6683
Accuracy wi th r a d i a l k e r n e l , gamma =0 .5 : 99 .8026
Accuracy wi th 2nd−o r d e r p o l y n o m i a l k e r n e l , c o e f 0 =2: 92 .8148
Accuracy wi th 3 rd−o r d e r p o l y n o m i a l k e r n e l , c o e f 0 =1: 99 .8420

Observe the usefulness of assessing multiple kernels and their parameters to
understand the input space. A grid search approach supports such assessment,
however it is much more important to interpret the most adequate settings found
because they provide relevant information on the features embedding.

6.4.3 Studying the Data Spaces in an Empirical Fashion

The same input space illustrated in Fig. 6.12 is considered in this section, so we
can explore an empirical approach to assess different kernels and analyze data
complexity. Listing 6.22 is used to analyze polynomial kernels under different
orders, which are parametrized using five values for term c in Eq. (6.7), from an
homogeneous to four other nonhomogeneous kernels.

Listing 6.22 Assessing polynomial kernels

1 r e q u i r e ( e1071 )
2 r e q u i r e ( t s e r i e s C h a o s )
3
4 # B u i l d i n g t h e d a t a s e t
5 X1 = embedd ( s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =1000) ) , m=2 , d =27)
6 i d s = which ( X1 [ , 1 ] < −0.5 & X1 [ , 2 ] < −0.5)
7 X1 = X1[− i d s , ]
8
9 X2 = embedd ( s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =1000) ) , m=2 , d =27)

10 i d s = which ( X2 [ , 1 ] > 0 . 5 & X2 [ , 2 ] > 0 . 5 )
11 X2 = X2[− i d s , ]
12 X2 [ , 1 ] = X2 [ , 1 ] + 0 . 3
13 X2 [ , 2 ] = X2[ ,2 ] −0 .75
14
15 X = rbind ( X1 , X2 )
16
17 # D e f i n i n g t h e c l a s s l a b e l s
18 Y = c ( rep ( −1 , nrow ( X1 ) ) , rep ( + 1 , nrow ( X2 ) ) )
19
20 # P l o t t i n g t h e i n p u t space
21 p l o t (X, c o l =Y+2)
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22
23 # A s s e s s i n g s e v e r a l p o l y n o m i a l k e r n e l s
24 r e s u l t s = matrix ( 0 , nrow =7 , nco l =5)
25 c o e f f s = seq ( 0 , 1 , l e n g t h =5)
26 f o r ( d i n 1 : 7 ) {
27 c a t ( " Running f o r d e g r e e " , d , " \ n " )
28 c o l = 1
29 f o r ( c i n c o e f f s ) {
30 r e s u l t s [ d , c o l ] = svm ( x=X, y=as . f a c t o r (Y) ,
31 s c a l e =FALSE , k e r n e l =" p o l y n o m i a l " ,
32 d e g r e e =d , c o e f 0 =c ,
33 c o s t =10 , c r o s s =10) $ t o t . a c c u r a c y
34 c o l = c o l + 1
35 }
36 }
37
38 column . names = c ( )
39 f o r ( c i n c o e f f s ) {
40 column . names = c ( column . names , p a s t e ( " c o e f =" , c , s ep =" " )

)
41 }
42
43 order . names = c ( )
44 f o r ( d i n 1 : 7 ) {
45 order . names = c ( order . names , p a s t e ( " o r d e r =" , d , " : " ,

sep =" " ) )
46 }
47
48 r e s u l t s = as . data . frame ( r e s u l t s )
49 colnames ( r e s u l t s ) = column . names
50 rownames ( r e s u l t s ) = order . names
51
52 # P r i n t i n g o u t t h e a c c u r a c i e s
53 p r i n t ( r e s u l t s )

The outputs below confirm the usefulness of this basic empirical approach.
Observe the tenfold cross validation strategy informs which kernels are better to
address this particular classification task. We suggest the reader to expand this
source code and make it evaluate other kernels and general enough to tackle any
input space. The greater the polynomial order needed, the more complex the original
data space is. In addition, term c (indicated as coef in the results below) confirms
the need for considering previous polynomial orders along the features space, as
previously discussed. Observe the three-order nonhomogeneous polynomial kernel
is already a good option (≈99), but of course the fourth-order provides the best
result (100) without adding unnecessary dimensions to the features space.

Listing 6.23 Text output produced by Listing 6.22

c o e f =0 c o e f =0 .25 c o e f =0 .5 c o e f =0 .75 c o e f =1
o r d e r =1 : 69 .25255 69 .25255 69 .13930 69 .25255 69 .25255
o r d e r =2 : 78 .02945 80 .35108 80 .01133 79 .89807 79 .84145
o r d e r =3 : 81 .59683 98 .98075 99 .49037 99 .60362 99 .83012
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o r d e r =4 : 80 .06795 98 .75425 100 .00000 100 .00000 100 .00000
o r d e r =5 : 83 .57871 99 .49037 100 .00000 100 .00000 100 .00000
o r d e r =6 : 81 .59683 100 .00000 100 .00000 100 .00000 100 .00000
o r d e r =7 : 83 .12571 100 .00000 100 .00000 100 .00000 100 .00000

To finish this section, consider Listing 6.24 which makes the same as List-
ing 6.22, but using function tune.svm from the R package e1071. Such a function
receives a list of parameters and produces the performance after a tenfold cross
validation for all possible combinations, reflecting a grid-search strategy.

Listing 6.24 Assessing polynomial kernels through function tune

1 r e q u i r e ( e1071 )
2 r e q u i r e ( t s e r i e s C h a o s )
3
4 # B u i l d i n g t h e d a t a s e t
5 X1 = embedd ( s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =1000) ) , m=2 , d =27)
6 i d s = which ( X1 [ , 1 ] < −0.5 & X1 [ , 2 ] < −0.5)
7 X1 = X1[− i d s , ]
8
9 X2 = embedd ( s i n (2 ∗ p i ∗ seq ( 0 , 9 , l e n =1000) ) , m=2 , d =27)

10 i d s = which ( X2 [ , 1 ] > 0 . 5 & X2 [ , 2 ] > 0 . 5 )
11 X2 = X2[− i d s , ]
12 X2 [ , 1 ] = X2 [ , 1 ] + 0 . 3
13 X2 [ , 2 ] = X2[ ,2 ] −0 .75
14
15 X = rbind ( X1 , X2 )
16
17 # D e f i n i n g t h e c l a s s l a b e l s
18 Y = c ( rep ( −1 , nrow ( X1 ) ) , rep ( + 1 , nrow ( X2 ) ) )
19
20 # P l o t t i n g t h e i n p u t space
21 p l o t (X, c o l =Y+2)
22
23 # Using t u n e . svm t o s t u d y k e r n e l s
24 model = t u n e . svm ( x = X, y = as . f a c t o r (Y) ,
25 k e r n e l =" p o l y n o m i a l " , d e g r e e = 1 : 7 ,
26 c o e f 0 = seq ( 0 , 1 , l e n g t h =5) , c o s t =10)
27
28 # P r i n t i n g o u t t h e r e s u l t s i n t e r m s o f e r r o r s
29 p r i n t ( model$ p e r f o r m a n c e s )

The output below shows the summary of results provided with tune.svm for
different polynomial kernel orders degree, its nonhomogeneous constant value
coef and the SVM cost. Note the output is in terms of average error and its
variance, instead of accuracy, e.g. the first scenario provides an error equal to
0.3125257, therefore the accuracy is 1 − 0.3125257 = 0.6874743. We conclude the
third-order nonhomogeneous polynomial kernel provides very good results while
being less complex than the ones at greater orders.

Listing 6.25 Text output produced by Listing 6.24
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d e g r e e c o e f 0 c o s t e r r o r d i s p e r s i o n
1 1 0 . 0 0 10 0 .3125257 0 .039928485
2 2 0 . 0 0 10 0 .5481510 0 .033711649
3 3 0 . 0 0 10 0 .3063014 0 .036855644
4 4 0 . 0 0 10 0 .5022470 0 .031115611
5 5 0 . 0 0 10 0 .2564715 0 .052094297
6 6 0 . 0 0 10 0 .5022310 0 .031628824
7 7 0 . 0 0 10 0 .1981574 0 .064456709
8 1 0 . 2 5 10 0 .3125257 0 .039928485
9 2 0 . 2 5 10 0 .2015826 0 .031714991
10 3 0 . 2 5 10 0 .0000000 0 .000000000
11 4 0 . 2 5 10 0 .0118933 0 .004188703
12 5 0 . 2 5 10 0 .0000000 0 .000000000
13 6 0 . 2 5 10 0 .0000000 0 .000000000
14 7 0 . 2 5 10 0 .0000000 0 .000000000
15 1 0 . 5 0 10 0 .3125257 0 .039928485
16 2 0 . 5 0 10 0 .2015826 0 .031714991
17 3 0 . 5 0 10 0 .0000000 0 .000000000
18 4 0 . 5 0 10 0 .0000000 0 .000000000
19 5 0 . 5 0 10 0 .0000000 0 .000000000
20 6 0 . 5 0 10 0 .0000000 0 .000000000
21 7 0 . 5 0 10 0 .0000000 0 .000000000
22 1 0 . 7 5 10 0 .3125257 0 .039928485
23 2 0 . 7 5 10 0 .2015826 0 .031714991
24 3 0 . 7 5 10 0 .0000000 0 .000000000
25 4 0 . 7 5 10 0 .0000000 0 .000000000
26 5 0 . 7 5 10 0 .0000000 0 .000000000
27 6 0 . 7 5 10 0 .0000000 0 .000000000
28 7 0 . 7 5 10 0 .0000000 0 .000000000
29 1 1 . 0 0 10 0 .3125257 0 .039928485
30 2 1 . 0 0 10 0 .2015826 0 .031714991
31 3 1 . 0 0 10 0 .0000000 0 .000000000
32 4 1 . 0 0 10 0 .0000000 0 .000000000
33 5 1 . 0 0 10 0 .0000000 0 .000000000
34 6 1 . 0 0 10 0 .0000000 0 .000000000
35 7 1 . 0 0 10 0 .0000000 0 .000000000

6.4.4 Additional Notes on Kernels

We here list some notes on SVM kernels. The sigmoidal kernel (Sect. 6.1.3) was
not exemplified in the exploratory analysis since it produces the same classifier as
the linear kernel. In practice, it multiplies the inner product by some value −κ , has
a nonhomogeneity term c and also applies a hyperbolic tangent after computing
the main operation (Eq. (6.5)), whose outputs are similar as for the linear kernel
but rescaled in range [−1, 1] in a similar manner as the sigmoid function for the
Perceptron and Multilayer Perceptron, both discussed in Sect. 1.5.

In addition, we also make an important note to motivate the reader to design
his/her kernels using some basic principles. Given some input space, at first the
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reader should simply apply the linear kernel and evaluate results, as provided
in Sect. 6.4.3. If no good result is obtained, we suggest to try handcrafting the
features space. For example, consider the reader is interested in some sort of
text classification task, in which word frequencies or some other measurement is
available. Consider the interest in representing the word “machine” coming right
before “learning”. In that situation, one could use the frequency of both words
together as another space axis.

In addition, one could also attempt the multiplication of some attribute in the
input space by another, in attempt to represent some sort of correlation between
them. One attribute could also be powered to some order to make it more or less
relevant (order may assume real values less than 1). All those comments do not come
without considering PCA or any other feature selection approach (Sect. 6.2). Note
that this handcraft process does not explicitly use a typical kernel, but in fact this
can be seen as transforming the input space and adding new dimensions, which also
happens when applying kernels. The next section brings a very important discussion
that influences in the kernel design.

6.5 SVM Kernel Trick

The SVM dual optimization is used to solve a binary classification problem
considering data is linearly separable:

max − 1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi , xj > +
m∑

i=1

αi.

In order to deal with input data that it is not linearly separable (see Sect. 6.1.1), we
need some function φ(.) to transform the input data into a more convenient features
space. Instead of explicitly applying such transformation, it is common to design a
kernel function to provide the dot product of vectors in the features space. This is
used to avoid additional computational costs as well as to implicitly construct the
features space in a general purpose manner, e.g., such as for polynomial kernels that
basically add up some order.

The dot product itself, i.e., k(xi, xj ) = 〈xi , xj 〉 can be seen as a way to obtain
an angular similarity value between vectors, for example, it outputs 0 if they are
orthogonal to each other. But notice that this can also be represented as the dot
product of two functions φ(xi ) and φ(xj ), i.e.:

k(xi, xj ) = φ(xi ) · φ(xj )

In this way, as long as there is some higher dimensional space in which φ(.) is
just the dot product of that higher dimensional space, the kernel can be written as a
dot product and used directly into the optimization problem in form:
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max −1

2

m∑
i=1

m∑
j=1

αiαjyiyj k(xi , xj ) +
m∑

i=1

αi,

All places in which dot products occur are then replaced by the kernel function.
According to the properties of dot products, we need to have a kernel function such
that k(xi, xj ) = k(xj , xi) and k(xi, xj ) ≥ 0, what is the same as requiring its
kernelized matrix form to be positive semi-definite.

To exemplify, let the SVM problem in its matrix dual form:

minimize
α

eT α − 1

2
αT Qα

subject to 0 ≤ α ≤ C

yT α = 0.

The important term to study in this case is −αT Qα, which is expected to form a
concave objective function for the maximization problem. Similarly, in the primal
form αT Qα, this term must form a convex objective function to be minimized.
When using kernels, we must know matrix Q, subject to Qi , j = k(xi, xj ), to
confirm if those optimization problems have solutions. Such a matrix is only valid
if it is Gramian, which is positive semi-definite and symmetric.

As an example, consider matrix Q obtained after a p-order polynomial kernel:

Q = (YY T )(c + XXT )p,

in which Y represents the vector of classes, X corresponds to the training examples
already in some vectorial space (vectors along rows), c is the coefficient to
control the kernel homogeneity (it is homogeneous when c = 0, otherwise it is
nonhomogeneous), and p is the polynomial order. To proceed with further analysis,
let c = 1:

Q = (1 + XXT )p.

In order to show there is a mapping from the input space to some higher dimensional
space so that k(xi, xj ) = 〈φ(xi), φ(xj )〉, assume that xi,0 = xj,0 = 1, and explicitly
separate each dot product of the power, writing it as a sum of the product of
monomials (a polynomial with a single term), so that:

(1 + XXT )p = (1 + XXT ) · · · (1 + XXT )

=
(

n∑
k=0

xi,kxj,k

)
· · ·

(
n∑

k=0

xi,kxj,k

)
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=
∑

K∈{0,1,··· ,n}p

p∏
l=1

xi,Kl
xj,Kl

=
∑

K∈{0,1,··· ,n}p

p∏
l=1

xi,Kl

p∏
l=1

xj,Kl
.

In this case, the map is φ : R
n → R

(n+1)p . If there is φ(x) = ∏p

l=1 xKl
, for

K ∈ {0, 1, · · · , n}p, we can say that the separating hyperplane in the range of
φ(.) corresponds to a polynomial curve of degree p in the original space. This is
because function φ(.) contains all the single term polynomials up to the pth degree.
Therefore, it is true that:

k(xi, xj ) = 〈φ(xi), φ(xj )〉.

This result shows a practical example of the kernel trick: by using a polynomial
kernel in the SVM optimization problem, we are in fact learning a predictor of pth
degree over the input space. However, as mentioned before, in order to guarantee
that the optimization is possible even when using kernels, Q must be a positive
semi-definite matrix, so that αT Qα ≥ 0. Let us introduce two simple examples,
first:

Q =
[

1 0
0 1

]
,

which is evaluated for every possible α ∈ R2:

[
α1 α2

] [1 0
0 1

] [
α1

α2

]
= [

1α1 + 0α2 0α1 + 1α2
] [α1

α2

]

= [
α1 α2

] [α1

α2

]
= α2

1 + α2
2 .

By plotting this function, we notice the surface is convex. Thus, considering a
second example:

Q =
[−1 0

0 1

]
,

and solving for Q:

[
α1 α2

] [−1 0
0 1

] [
α1

α2

]
= [−α1 α2

] [α1

α2

]
= −α2

1 + α2
2 .
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A saddle is obtained by plotting this function, what makes it unfeasible to
proceed with the SVM optimization (no stationary solution would be obtained—
no maximum and no minimum). The first matrix is positive semi-definite, while the
second is not. However, it is common to have more complex matrices in practical
scenarios. For example, a small matrix could be given by:

Q =
⎡
⎣2.3898 2.8320 2.6503

0.9126 3.4200 2.2544
3.1522 3.8803 1.8666

⎤
⎦ .

One way to investigate if this is a positive semi-definite matrix is by computing
its eigenvalues. They represent the direction and magnitude of the eigenvectors
and when no eigenvalue is negative, there is no reflection performed by the linear
transformation. This is a useful tool because when linear transformations do not
include the reflection operation, they correspond to positive semi-definite matrices.
For this matrix, the eigenvalues are 7.5990, 1.1593 and −1.0822, so that it is
not positive semi-definite, and therefore cannot be used in the context of SVM
optimization.

As a more practical example, let us define a synthetical dataset using the
following R code:

Listing 6.26 Practical example using a synthetical dataset

1 x = cbind ( rnorm ( mean=0 , sd =1 , n =500) , rnorm ( mean=0 , sd =1 , n
=500) )

2 x = rbind ( x , cbind ( rnorm ( mean=10 , sd =1 , n =500) , rnorm ( mean
=10 , sd =1 , n =500) ) )

3 y = c ( rep ( 0 , 5 0 0 ) , rep ( 1 , 5 0 0 ) )
4 Q = ( y%∗%t ( y ) ) ∗ ( x%∗%t ( x ) )

Our matrix is symmetric, what guarantees that the eigenvalues will be real numbers,
otherwise those may assume complex values. By computing the eigenvalues of
the matrix, we observe some slightly negative values due to precision error in the
numerical computation. Assuming symmetry, we can confirm if this is a valid matrix
via the Cholesky decomposition which produces: A = LLT , for some matrix A
containing real values. Notice that the Cholesky decomposition can only be used for
positive definite matrices. Give Q is positive semi-definite, one trick to solve this is
by summing up a small ε value to every term on its diagonal in order to allow the
decomposition.

The following R code performs this addition using ε = 1−10, and then it
computes the divergence between the original matrix Q and the new one obtained
after the Cholesky decomposition:

Listing 6.27 Adding a constant to the diagonal to proceed with the Cholesky decomposition

1 Q = ( y%∗%t ( y ) ) ∗ ( x%∗%t ( x ) )
2 Qeps = Q
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3 e p s i l o n = 1e−10
4 f o r ( i i n 1 : nrow (Q) ) { Qeps [ i , i ] = Qeps [ i , i ] + e p s i l o n ; }
5 ch = cho l ( Qeps )
6 t o t a l _ d i v e r g e n c e = sum ( (Q − t ( ch )%∗%ch ) ^2 )
7 newQ = t ( ch ) %∗% ch

Now we have indeed a positive definite matrix (defined in the code as newQ) that
can be used in the SVM optimization problem. In fact, even if we try to use the
original matrix, SVM would be capable of reaching some feasible solution once the
negative eigenvalues are numerically close to zero, indicating our assumption can
be relaxed to consider the matrix is semi-definite, which in fact it is. However, this
trick should be used with caution because we are changing matrix Q and therefore
the original problem to some approximation. The greater ε is, the more relaxed is
the approximation, which might become too dissimilar to the original problem.

In summary, we have now a general method to assess convexity and confirm there
is some global solution under theoretical learning guarantees. In addition, kernels
provide a tool to represent data in another space, for which the SVM optimization
problem holds.

6.6 A Quick Note on the Mercer’s Theorem

The conditions for a valid matrix in the context of the SVM optimization problem is
due to Mercer’s theorem [1]. It is analogue to the study of the eigenvalues to ensure
matrices that are positive semi-definite, but also evaluates kernels in an infinite-
dimensional space.

In particular, it states that the following is a sufficient and necessary condition for
a valid kernel function: for all x1, · · · , xn, matrix Qi,j = k(xi, xj ) is a positive semi-
definite matrix (a.k.a. a Gramian matrix), i.e., a symmetric function K : X×X → R

implements a dot product on some Hilbert space if and only if it is positive semi-
definite.

The proof in two parts basically demonstrates, first, that if a kernel implements a
dot product in some Hilbert space then a Gram matrix is obtained. It is mandatory
that function φ(.) maps examples to a Hilbert space in which the dot product is
defined.2 In practice, it is then possible to verify how similar a vector is to others, and
make projections in order to build separating hyperplanes, both crucial operations
for classification problems.

Let M be a linear subspace of a Hilbert space, then every x in this subspace can
be written in form x = u+v, with u ∈ M and 〈v, w〉 = 0, for all w ∈ M . Therefore,
this first part is trivial.

2Recall a Hilbert space is simply a vector space for which: a distance metric, a vector norm and a
dot product are defined. Because of that, it supports projection of vectors into spaces, and therefore
geometry.
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The second part of the proof involves the definition of a space of functions over
X as RX = {f : X → R}. Then, let function φ(x) : x → k(., x) for each x ∈ X, a
valid dot product on this vector space is:〈∑

i

αik(., x),
∑
j

βj k(., xj )

〉
=

∑
i,j

αiβj k(x, xj ),

because it is symmetric (as k(.) is also symmetric), linear and it is positive definite
since k(x, xj ) ≥ 0. It shows, to conclude the proof, that:

〈φ(x), φ(xj )〉 = 〈k(., x), k(xj , .)〉 = k(x, xj )

6.7 Concluding Remarks

This chapter defined and discussed about the most common SVM kernels employed
in the literature. Afterwards, we introduce the Principal Component Analysis and
the Kernel Principal Component Analysis, as well as an exploratory data analysis,
including a discussion on kernels and features spaces. Finally, the SVM Kernel trick
and the Mercer’s theorem are presented.

6.8 List of Exercises

1. Considering the MNIST database,3 employ different kernels on its input space
and then use SVM as classification algorithm. Assess the final results using the
tenfold cross validation strategy;

2. Evaluate different SVM kernels using the Columbia University Image Library
available at http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php;

3. Evaluate different SVM kernels using the CIFAR-10 dataset available at http://
www.cs.utoronto.ca/~kriz/cifar.html;

4. Study Deep Learning algorithms and use them on the same problems listed
before. Compare the overall results;

5. All those datasets are commonly employed to justify and assess Deep Learning
algorithms. What can you conclude about the effects of a kernel transformation
versus Deep Learning techniques?

3Please, refer to the MNIST database http://yann.lecun.com/exdb/mnist.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.cs.utoronto.ca/~kriz/cifar.html
http://www.cs.utoronto.ca/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist
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