Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Sistemas Eletrônicos - PSI

PSI-3452- Projeto de Circuitos Integrados Digitais e Analógicos

Lab 5: Projeto Eletrônico e Leiaute de um Amplificador Analógico- Prática (2022)

1 – Objetivos

Desenvolver o projeto de um amplificador analógico simples. Entender o seu funcionamento e os passos que conduzem às dimensões de seus componentes. Realizar as simulações iniciais do projeto verificando a sua correção. Desenhar o leiaute deste amplificador com aplicação de técnicas específicas para circuitos analógicos, realizar a extração do circuito elétrico e simulação do mesmo. Comparar as previsões teóricas com as simulações pré e pós-leiaute.

3 – Parte Prática

3.1. Projeto do aluno baseado em equações simplificadas

O(A) aluno(a) gerará os parâmetros do seu projeto específico, na forma apresentado no exemplo da seção 2.4, mantendo as especificações de frequência e ganho.

Os parâmetros Wn1 e Rcarga da eq. 6 deverão se ajustadas de acordo com o número USP, seguindo a atividade (provinha) proposta.

⇒ Completar na folha de respostas com as informações solicitadas (item 3.1)

3.2. Simulação do Projeto

Faça a simulação com o circuito completo (apenas o obtido teoricamente). Para isto, utilize como base o arquivo 'ampl_ideal.sp', dado no Moodle e mostrado a seguir. Edite-o em uma pasta referente a esta seção (~/lab5/caso_ideal, por exemplo). O aluno deve alterar os números que estão em negrito, compatibilizando-os com os do seu projeto, obtidos através de seu número USP e de seus cálculos. Observe e analise a descrição do circuito para ter certeza que se trata do circuito desejado, além dos valores de polarização projetados.

ATENÇÃO: Tenha certeza que entende os comandos .ac e .plot

Simulacao no eldo de amplificador ideal * nome lab5ideal.sp .include /tools/mgc_tree/adk3_1/technology/ic/models/tsmc035.mod M1 out pt1 0 0 n L=4e-07 W=100e-06 M2 pol pol 0 0 n L=4e-07 W=100e-06 Rdes pol pt1 8.7k Cdes in pt1 1.82p Rcarga fonte out 2.5k Ipol pol 0 -0.66m vin in 0 ac 0.1 vcc fonte 0 3.3 .ac dec 10 10e+4 10e+8 .plot ac vm(out) vm(in) .end Simule e obtenha a sua **curva de tensão de saída**. Deverá ser semelhante ao da Figura 10. Calcule o **ganho** (v_{out}/v_{in}) na frequência planejada (use o vin da sua descrição de circuito).

Figura 10 - resultado esperado de simulação

⇒ Seguir a folha de respostas e completar com as informações solicitadas (item 3.2)

3.3. Geração do Leiaute

Desenhe, usando o IC Station, o leiaute dos diversos componentes para, em seguida, conectá-los em forma de amplificador. Crie uma nova pasta (~/lab5/caso_leiaute, por exemplo), Salve o seu leiaute com o nome amplifier, por exemplo. A seguir serão dadas as instruções para o desenho de cada um destes componentes.

3.3.1. O par de transistores

Os seus transistores M1 e M2 devem seguir o esquema de leiaute da Figura 4 da Seção 2.2.2.

a) Vamos construir o M1 primeiro (a grade é em λ no IC Station):

Width (sub-bloco) = Wn1/(0.2) (use o seu valor)

Length (sub-bloco)= $Ln/0.2 = 2\lambda$

b) Utilizando os comandos a seguir do IC Station, crie a base do transistor (de um subbloco):

1) Na palheta de projeto, selecione DLA Device >> AddMos

2) Insira na caixa de preenchimento à esquerda da tela, as dimensões do transistor.

3) Clique no ponto desejado na tela de leiaute. Você observará que trata-se de um transistor bastante estreito, com a razão de aspecto bem diferente de 1.

PSI3452 - 2022

4) Deixe o transistor selecionado (F2 no vazio e depois F1 no bloco). No próprio AddMos, opte por Edit > Fold Mos.

5) Escolha 8 o número de *legs*, observe que isto resulta em um bloco próximo de um quadrado.

- c) Crie uma linha de metal 1 horizontal (dimensões mínimas) acima do transistor para o dreno e <u>conecte-a com as regiões "ímpares" de difusão</u>, de forma intercalada, esticando as suas linhas de metal correspondentes, <u>na forma descrita na Figura 4 e no leiaute exemplo</u> <u>da Figura 11</u>.
- d) Crie uma linha de metal 1 horizontal (dimensões mínimas) abaixo do transistor para a fonte e <u>conecte-a com as regiões "pares" de difusão</u>, de forma intercalada, esticando as suas linhas de metal correspondentes, <u>na forma descrita na Figura 4 e no leiaute exemplo da Figura 11</u>.
- e) Inclua um contato de substrato p (lembre-se que trata-se de transistor tipo n).

1) O contato de substrato deve ser adicionado como foi feito ao se projetar o inversor em sessão de lab anterior, ou seja, utilizando o comando:

Add -> Instance

de '/tools/mgc_tree/adk3_1/technology/ic/process/tmsc035_via/pwell_contact'

f) Todas a portas devem ser interligadas de forma semelhante, porém usando-se uma linha horizontal de POLY1(dimensões mínimas). A camada de POLY deve ter contato para metal 1para futura interligação (ver Figura 11).

g) Duplique o transistor (para se ter M2); para isto, utilize o cursor e/ou as teclas f1 e f2 e selecione todo o transistor M1 já desenhado. Para duplicá-lo, utilize o comando 'Easy Edit / Copy' e selecione apenas mover horizontalmente. Deve resultar em uma figura parecida com a da Figura 11.

⇒ Seguir a folha de respostas e completar com as informações solicitadas (item 3.3.1)

3.3.2. Capacitor

Crie um capacitor com o valor por você projetado. Para isto, use o comando:

'DLA Device >> Cap >> Point Cap'

Na janela Object Editor selecione:

Capacitor Specification = Capacitance and Area Ratio

Capacitance = seu valor em fF obtido em **3.3.1**

Area Ratio = 1

Posicione o cursor onde você quer desenhar o capacitor clique o mouse no botão da esquerda.

ATENÇÃO: o capacitor apresenta dois polos. Descubra quais são eles no leiaute. Ambos os polos deverão se conectar a outros componentes por linhas de metal. Construa contatos se necessário.

3.3.3. Rcarga

Crie o resistor Rcarga usando o comando:

'DLA Device >> Res >> Point Res'

Na janela Object Editor selecione:

Type = HR Resistor Specification = Resistance and width Width = 5.0 (defaut) Resistance = seu valor em Ohm obtido em 3.3 Number of Legs = [4] Resistor Structure = series

Posicione o cursor onde você quer desenhar Rcarga e clique o botão esquerdo do mouse. Veja se o resultado é próximo de um quadrado. Senão, modifique o número de *legs*.

ATENÇÃO: o resistor apresenta dois polos. Descubra quais são eles no leiaute. Ambos os polos deverão se conectar a outros componentes por linhas de metal.

3.3.4. Rdes

Crie o resistor Rdes usando o comando:

'DLA Device >> Res >> Point Res'

Na janela Object Editor selecione:

Type = HR Resistor Specification = Resistance and width Width = 5.0 (defaut) Resistance = seu valor em Ohm obtido em 3.3 Number of Legs = [9] Resistor Structure = series

Posicione o cursor onde você quer desenhar Rdes e clique o botão esquerdo do mouse. Veja se o resultado é próximo de um quadrado. Senão, modifique o número de *legs*.

ATENÇÃO: o resistor apresenta dois polos. Descubra quais são eles no leiaute. Ambos os polos deverão se conectar a outros componentes por linhas de metal.

3.3.5. Juntando tudo

Após ter desenhado os diversos componentes e tê-los colocado de forma conveniente no leiaute, faça as ligações e coloque os rótulos dos portos (M1.port): Entrada, Saida, VCC e Ipol. O leiaute resultante deve ser parecido com o mostrado na Figura 11.

⇒ Seguir a folha de respostas (item 3.3.5)

3.4. Extração e Simulação

O aluno deve proceder com a extração do circuito **amplifier.sp**. Observe o arquivo extraído com cuidado, identificando os dois transistores, o capacitor e as resisências.

Faça a simulação no ELDO e verifique a conformidade dos resultados. É dado no Moodle o arquivo **ampl_completo.sp'** com a seguinte sintaxe, chamando o arquivo amplifier.sp:

Simulacao do leiaute o LAB5 .include /tools/mgc_tree/adk3_1/technology/ic/models/tsmc035.mod .include './amplifier.sp' X1 IN POL 0 VCC OUT LAB5 Ipol POL 0 -0.66m vin IN 0 ac 0.1 vcc VCC 0 3.3 .ac dec 10 10e+4 10e+8 .plot ac vm(OUT) vm(IN) .end

⇒ Seguir a folha de respostas e completar com as informações solicitadas (item 3.4)

Figura 11 – leiaute final

Apendice A – Melhorias possíveis no circuito proposto.

A.1 – Melhorando o espelho de corrente

Para reduzir o problema da impedância de saída do circuito, um espelho de corrente com melhor impedância de saída é proposto na figura A.1. Isto fará com que o ganho aumente, pois a impedância na saída será reduzida. O lado negativo em se ter transistores em série é que a tensão mínima de alimentação é aumentada.

Figura A.1 – Melhora no espelho de corrente

O arquivo que descreve este novo circuito é o mostrado a seguir:

Simulacao no eldo de amplificador ideal .include /tools/mgc_tree/adk3_1/technology/ic/models/tsmc035.mod M3 out pol pt2 0 n L=4e-07 W=100e-06 M4 pol pol pt3 0 n L=4e-07 W=100e-06 M1 pt2 pt1 0 0 n L=4e-07 W=100e-06 M2 pt3 pt3 0 0 n L=4e-07 W=100e-06 Rdes pt3 pt1 8.7k Cdes in pt1 1.82p Rcarga fonte out 2.5k Ipol pol 0 -0.66m vin in 0 ac 0.1 vcc fonte 0 3.3 .ac dec 10 10e+4 10e+8 .plot ac vm(out) .end

Neste caso, a resposta é a mostrada na figura A.2 onde o ganho é da ordem de 15, ou seja, bem mais próximo do esperado.

Figura A.2 – Resposta em frequência

PSI3452 - 2022

A.2 – Usando um transistor PMOS como carga

Uma outra possível modificação é substituir o resistor Rc por um transistor canal P que esteja sempre conduzindo, conforme mostrado na figura A.3. Isto reduz a área, porém deve aumentar a distorção do sinal de saída.

Figura A.3 – Transistor canal P como carga

O arquivo usado nesta simulação é mostrado a seguir.

Simulacao no eldo de amplificador ideal .include /tools/mgc_tree/adk3_1/technology/ic/models/tsmc035.mod M3 out pol pt2 0 n L=4e-07 W=100e-06 M4 pol pol pt3 0 n L=4e-07 W=100e-06 M1 pt2 pt1 0 0 n L=4e-07 W=100e-06 M2 pt3 pt3 0 0 n L=4e-07 W=100e-06 Rdes pt3 pt1 8.7k Cdes in pt1 1.82p M5 out 0 fonte fonte p W=54u L=10u Ipol pol 0 -0.66m vin in 0 ac 0.1 vcc fonte 0 3.3 .ac dec 10 10e+4 10e+8 .plot ac vm(out) .end

O resultado da simulação é apresentado na figura A.4. Pode serobservado um aumento significativo do ganho. Pode-se esperar um aumento na distorção devido à não-linearidade do transistor canal P como carga.

Figura A.4 – Ganho usando transistor canal P como carga