Medidas de diversidade e índices ecológicos usados na vigilância entomológica

Fredy Galvis-Ovallos
Estatística aplicada à Entomogia
ESP 5102

Conceito de Diversidade

Um conceito que permite descrever e caracterizar uma comunidade ecológica, assim, a diversidade se refere às diferentes espécies que compõem uma comunidade.

Ex. Diversidade de aves

DIVERSIDADE E TAMANHO AMOSTRAL

O número de espécies encontradas em um determinado local é considerado em relação ao número de indivíduos que constituem a amostra, portanto, a diversidade passa a ser função do tamanho amostral.

Riqueza vs Equitabilidade

- Dois conceitos são fundamentais para entender a diversidade ecológica: Riqueza e equitalibilidade.
- A **riqueza** refere-se ao número de espécies que compõem uma determinada comunidade.
- Por outro lado, na análise da diversidade também deve se considerar a distribuição dos indivíduos nas espécies que compõem a comunidade. Assim, a equitabilidade é um indicador dessa distribuição.

Índices de Diversidade de Espécies:

- 1 Quais variáveis usar?
 - Somente RIQUEZA
 - Somente EQUITABILIDADE
- RIQUEZA e EQUITABILIDADE
- Outras (Relações filogenéticas; Grupos funcionais, etc)

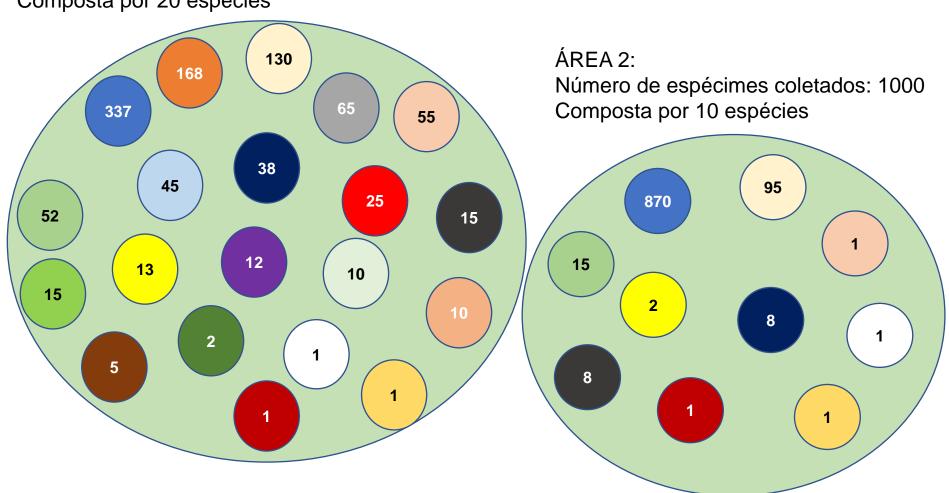
Qual peso deve ser atribuído a cada variável?

Maior peso para RIQUEZA : Espécies raras têm maior valor proporcional

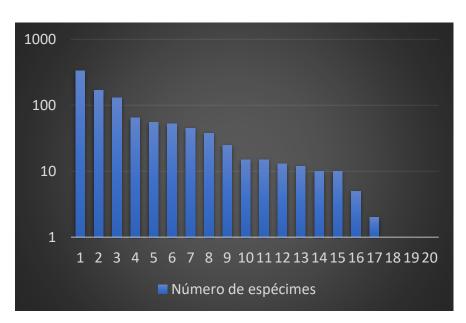
Maior peso para EQUABILIDADE : Espécies raras tem menor valor proporcional

Quanto interessa uma espécie rara?

Conservação



Estrutura da comunidade

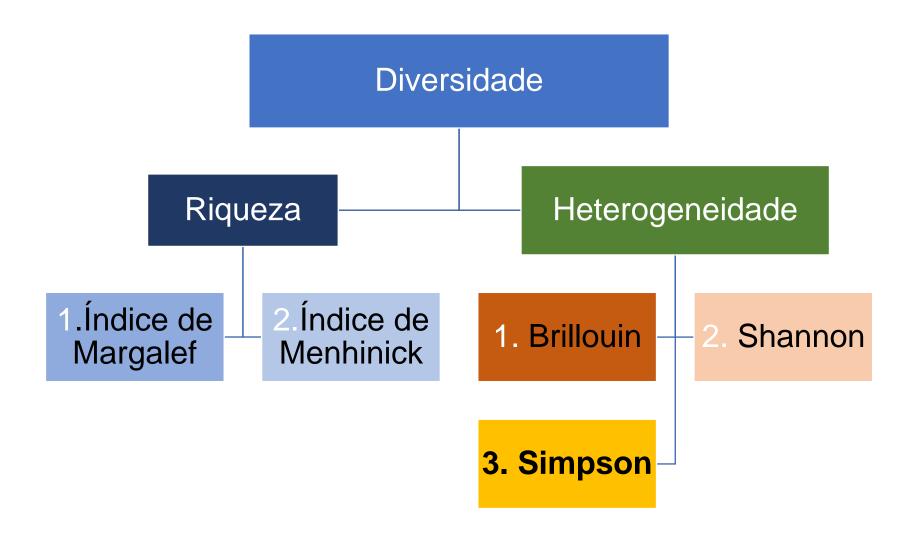

Exemplo 1.

 Considere duas áreas nas quais foram coletados 1000 espécimes de mosquitos, usando os mesmos métodos e esforço amostral (Fig. 1).

ÁREA 1: Número de espécimes coletados: 1000 Composta por 20 espécies

Distribuição de *Nyssomyia neivai* segundo ambiente:

Exemplo 2.


Ambiente	Número de espécimes
1. Intradomicilio	500
2. Peridomicilio	500
3. Borda da Mata	500
4. Interior da Mata	500
Total	2.000

Ambiente	Número de espécimes		
1. Intradomicilio	1700		
2. Peridomicilio	100		
3. Borda da Mata	100		
4. Interior da Mata	100		
Total	2.000		

Grande a incerteza a respeito ao ambiente em que os espécimes estariam distribuídos se uma armadilha for instalada em um dos quatro ambientes selecionado aleatoriamente

Em termos de incerteza, pode-se dizer que neste caso, **é possível prever com relativa certeza** onde poderemos capturar espécimes desta espécie instalando armadilhas aleatoriamente

Estimando a diversidade

RIQUEZA

Tenta compensar o efeito de diferentes tamanhos de amostras

1 Índice de Margalef (D_{Mg})

$$D_{Mg} = (S-1)/ln N$$

S= número total de espécies encontradas

N= número total de espécimes coletados

In= logaritmo natural

Em uma amostra coletada na floresta amazônica foram capturados 523 espécimes pertencentes a 35 espécies de mosquitos.

Portanto a riqueza segundo o índice de Margalef neste local será:

$$D_{Mg} = (35-1)/ln 523$$

 $D_{Mg} = 34/6,26 = 5,4$

Em uma amostra coletada na Mata Atlântica foram capturados 523 espécimes pertencentes a 15 espécies de mosquitos.

Portanto a riqueza segundo o índice de Margalef neste local será:

Estimar a riqueza segundo Margalef e compare com os resultados obtidos no exemplo anterior!

$$D_{Mg} = (15-1)/ln 523$$

 $D_{Mg} = 14/6,26 = 2,2$

Valores <2 são considerados como baixa diversidade Valores > 5 são considerados como alta diversidade.

RIQUEZA

2 Índice de Menhinick (D_{Mn})

- $D_{Mn} = S/\sqrt{N}$
- S= número total de espécies encontradas
- N= número total de espécimes coletados
- In= logaritmo natural

Em uma amostra coletada na floresta amazônica foram capturados 523 espécimes pertencentes a 35 espécies de mosquitos.

Portanto a riqueza segundo o índice de Menhinick neste local será:

- $D_{Mn} = 35/\sqrt{523}$
- $D_{Mn} = 35/22,87 = 1,53$
- Em uma amostra coletada na Mata Atlântica foram capturados 523 espécimes pertencentes a 15 espécies de mosquitos.
- $D_{Mn} = 15/\sqrt{523}$
- $D_{Mn} = 15/22,87 = 0,65$

Índice de Shannon

Assume que:

- os indivíduos são amostrados de forma aleatória, de uma comunidade infinitamente grande.
- Todas as espécies estão representadas na amostra.

$$H' = -\sum_{i=1}^{s} p_i. \ln p_i$$

p_i = abundância relativa (proporção) da espécie i naamostra

$$p_i = n_i/N$$

n_i = número de indivíduos da espécie i N= Número de indivíduos total da amostra Estimando o índice de Shannon para flebotomíneos capturados em área peri-urbana de um município

Pintomyia fischeri	17				
Migonemyia migonei	9				
Total	91				
Número de espécies				7	
Número de espécimes				91	
Soma Pi In Pi				-1.75	
H'	1.75				

Dados hipotéticos.

Estimando o índice de Shannon para flebotomíneos capturados em área urbana de um município

Espécie	Número de espécimes	n/N	Pi	In Pi	Pi In Pi
Lutzomyia longipalpis	6				
Evandromyia lenti	5				
Nyssomyia whtimani	1				
Nyssomyia neivai	3				
Psathyromyia lanei	12				
Total	27				0
Número de espécies 5					
Número de espécimes 27					
Soma Pi In Pi -1.37					
H'					1.37

Comparando os resultados:

H' Peri urbano: 1.75

H' Urbano: 1.37